1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/escape.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 
  40 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  41   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  42   _in_worklist(C->comp_arena()),
  43   _next_pidx(0),
  44   _collecting(true),
  45   _verify(false),
  46   _compile(C),
  47   _igvn(igvn),
  48   _node_map(C->comp_arena()) {
  49   // Add unknown java object.
  50   add_java_object(C->top(), PointsToNode::GlobalEscape);
  51   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  52   // Add ConP(#NULL) and ConN(#NULL) nodes.
  53   Node* oop_null = igvn->zerocon(T_OBJECT);
  54   assert(oop_null->_idx < nodes_size(), "should be created already");
  55   add_java_object(oop_null, PointsToNode::NoEscape);
  56   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  57   if (UseCompressedOops) {
  58     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  59     assert(noop_null->_idx < nodes_size(), "should be created already");
  60     map_ideal_node(noop_null, null_obj);
  61   }
  62   _pcmp_neq = NULL; // Should be initialized
  63   _pcmp_eq  = NULL;
  64 }
  65 
  66 bool ConnectionGraph::has_candidates(Compile *C) {
  67   // EA brings benefits only when the code has allocations and/or locks which
  68   // are represented by ideal Macro nodes.
  69   int cnt = C->macro_count();
  70   for (int i = 0; i < cnt; i++) {
  71     Node *n = C->macro_node(i);
  72     if (n->is_Allocate())
  73       return true;
  74     if (n->is_Lock()) {
  75       Node* obj = n->as_Lock()->obj_node()->uncast();
  76       if (!(obj->is_Parm() || obj->is_Con()))
  77         return true;
  78     }
  79     if (n->is_CallStaticJava() &&
  80         n->as_CallStaticJava()->is_boxing_method()) {
  81       return true;
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  88   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  89   ResourceMark rm;
  90 
  91   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  92   // to create space for them in ConnectionGraph::_nodes[].
  93   Node* oop_null = igvn->zerocon(T_OBJECT);
  94   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  95   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  96   // Perform escape analysis
  97   if (congraph->compute_escape()) {
  98     // There are non escaping objects.
  99     C->set_congraph(congraph);
 100   }
 101   // Cleanup.
 102   if (oop_null->outcnt() == 0)
 103     igvn->hash_delete(oop_null);
 104   if (noop_null->outcnt() == 0)
 105     igvn->hash_delete(noop_null);
 106 }
 107 
 108 bool ConnectionGraph::compute_escape() {
 109   Compile* C = _compile;
 110   PhaseGVN* igvn = _igvn;
 111 
 112   // Worklists used by EA.
 113   Unique_Node_List delayed_worklist;
 114   GrowableArray<Node*> alloc_worklist;
 115   GrowableArray<Node*> ptr_cmp_worklist;
 116   GrowableArray<Node*> storestore_worklist;
 117   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 118   GrowableArray<PointsToNode*>   ptnodes_worklist;
 119   GrowableArray<JavaObjectNode*> java_objects_worklist;
 120   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 121   GrowableArray<FieldNode*>      oop_fields_worklist;
 122   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 123 
 124   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 125 
 126   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 127   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 128   // Initialize worklist
 129   if (C->root() != NULL) {
 130     ideal_nodes.push(C->root());
 131   }
 132   // Processed ideal nodes are unique on ideal_nodes list
 133   // but several ideal nodes are mapped to the phantom_obj.
 134   // To avoid duplicated entries on the following worklists
 135   // add the phantom_obj only once to them.
 136   ptnodes_worklist.append(phantom_obj);
 137   java_objects_worklist.append(phantom_obj);
 138   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 139     Node* n = ideal_nodes.at(next);
 140     // Create PointsTo nodes and add them to Connection Graph. Called
 141     // only once per ideal node since ideal_nodes is Unique_Node list.
 142     add_node_to_connection_graph(n, &delayed_worklist);
 143     PointsToNode* ptn = ptnode_adr(n->_idx);
 144     if (ptn != NULL && ptn != phantom_obj) {
 145       ptnodes_worklist.append(ptn);
 146       if (ptn->is_JavaObject()) {
 147         java_objects_worklist.append(ptn->as_JavaObject());
 148         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 149             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 150           // Only allocations and java static calls results are interesting.
 151           non_escaped_worklist.append(ptn->as_JavaObject());
 152         }
 153       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 154         oop_fields_worklist.append(ptn->as_Field());
 155       }
 156     }
 157     if (n->is_MergeMem()) {
 158       // Collect all MergeMem nodes to add memory slices for
 159       // scalar replaceable objects in split_unique_types().
 160       _mergemem_worklist.append(n->as_MergeMem());
 161     } else if (OptimizePtrCompare && n->is_Cmp() &&
 162                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 163       // Collect compare pointers nodes.
 164       ptr_cmp_worklist.append(n);
 165     } else if (n->is_MemBarStoreStore()) {
 166       // Collect all MemBarStoreStore nodes so that depending on the
 167       // escape status of the associated Allocate node some of them
 168       // may be eliminated.
 169       storestore_worklist.append(n);
 170     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 171                (n->req() > MemBarNode::Precedent)) {
 172       record_for_optimizer(n);
 173 #ifdef ASSERT
 174     } else if (n->is_AddP()) {
 175       // Collect address nodes for graph verification.
 176       addp_worklist.append(n);
 177 #endif
 178     } else if (n->is_ArrayCopy()) {
 179       // Keep a list of ArrayCopy nodes so if one of its input is non
 180       // escaping, we can record a unique type
 181       arraycopy_worklist.append(n->as_ArrayCopy());
 182     }
 183     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 184       Node* m = n->fast_out(i);   // Get user
 185       ideal_nodes.push(m);
 186     }
 187   }
 188   if (non_escaped_worklist.length() == 0) {
 189     _collecting = false;
 190     return false; // Nothing to do.
 191   }
 192   // Add final simple edges to graph.
 193   while(delayed_worklist.size() > 0) {
 194     Node* n = delayed_worklist.pop();
 195     add_final_edges(n);
 196   }
 197   int ptnodes_length = ptnodes_worklist.length();
 198 
 199 #ifdef ASSERT
 200   if (VerifyConnectionGraph) {
 201     // Verify that no new simple edges could be created and all
 202     // local vars has edges.
 203     _verify = true;
 204     for (int next = 0; next < ptnodes_length; ++next) {
 205       PointsToNode* ptn = ptnodes_worklist.at(next);
 206       add_final_edges(ptn->ideal_node());
 207       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 208         ptn->dump();
 209         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 210       }
 211     }
 212     _verify = false;
 213   }
 214 #endif
 215   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 216   // processing, calls to CI to resolve symbols (types, fields, methods)
 217   // referenced in bytecode. During symbol resolution VM may throw
 218   // an exception which CI cleans and converts to compilation failure.
 219   if (C->failing())  return false;
 220 
 221   // 2. Finish Graph construction by propagating references to all
 222   //    java objects through graph.
 223   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 224                                  java_objects_worklist, oop_fields_worklist)) {
 225     // All objects escaped or hit time or iterations limits.
 226     _collecting = false;
 227     return false;
 228   }
 229 
 230   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 231   //    scalar replaceable allocations on alloc_worklist for processing
 232   //    in split_unique_types().
 233   int non_escaped_length = non_escaped_worklist.length();
 234   for (int next = 0; next < non_escaped_length; next++) {
 235     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 236     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 237     Node* n = ptn->ideal_node();
 238     if (n->is_Allocate()) {
 239       n->as_Allocate()->_is_non_escaping = noescape;
 240     }
 241     if (n->is_CallStaticJava()) {
 242       n->as_CallStaticJava()->_is_non_escaping = noescape;
 243     }
 244     if (noescape && ptn->scalar_replaceable()) {
 245       adjust_scalar_replaceable_state(ptn);
 246       if (ptn->scalar_replaceable()) {
 247         alloc_worklist.append(ptn->ideal_node());
 248       }
 249     }
 250   }
 251 
 252 #ifdef ASSERT
 253   if (VerifyConnectionGraph) {
 254     // Verify that graph is complete - no new edges could be added or needed.
 255     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 256                             java_objects_worklist, addp_worklist);
 257   }
 258   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 259   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 260          null_obj->edge_count() == 0 &&
 261          !null_obj->arraycopy_src() &&
 262          !null_obj->arraycopy_dst(), "sanity");
 263 #endif
 264 
 265   _collecting = false;
 266 
 267   } // TracePhase t3("connectionGraph")
 268 
 269   // 4. Optimize ideal graph based on EA information.
 270   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 271   if (has_non_escaping_obj) {
 272     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 273   }
 274 
 275 #ifndef PRODUCT
 276   if (PrintEscapeAnalysis) {
 277     dump(ptnodes_worklist); // Dump ConnectionGraph
 278   }
 279 #endif
 280 
 281   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 282 #ifdef ASSERT
 283   if (VerifyConnectionGraph) {
 284     int alloc_length = alloc_worklist.length();
 285     for (int next = 0; next < alloc_length; ++next) {
 286       Node* n = alloc_worklist.at(next);
 287       PointsToNode* ptn = ptnode_adr(n->_idx);
 288       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 289     }
 290   }
 291 #endif
 292 
 293   // 5. Separate memory graph for scalar replaceable allcations.
 294   if (has_scalar_replaceable_candidates &&
 295       C->AliasLevel() >= 3 && EliminateAllocations) {
 296     // Now use the escape information to create unique types for
 297     // scalar replaceable objects.
 298     split_unique_types(alloc_worklist, arraycopy_worklist);
 299     if (C->failing())  return false;
 300     C->print_method(PHASE_AFTER_EA, 2);
 301 
 302 #ifdef ASSERT
 303   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 304     tty->print("=== No allocations eliminated for ");
 305     C->method()->print_short_name();
 306     if(!EliminateAllocations) {
 307       tty->print(" since EliminateAllocations is off ===");
 308     } else if(!has_scalar_replaceable_candidates) {
 309       tty->print(" since there are no scalar replaceable candidates ===");
 310     } else if(C->AliasLevel() < 3) {
 311       tty->print(" since AliasLevel < 3 ===");
 312     }
 313     tty->cr();
 314 #endif
 315   }
 316   return has_non_escaping_obj;
 317 }
 318 
 319 // Utility function for nodes that load an object
 320 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 321   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 322   // ThreadLocal has RawPtr type.
 323   const Type* t = _igvn->type(n);
 324   if (t->make_ptr() != NULL) {
 325     Node* adr = n->in(MemNode::Address);
 326 #ifdef ASSERT
 327     if (!adr->is_AddP()) {
 328       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 329     } else {
 330       assert((ptnode_adr(adr->_idx) == NULL ||
 331               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 332     }
 333 #endif
 334     add_local_var_and_edge(n, PointsToNode::NoEscape,
 335                            adr, delayed_worklist);
 336   }
 337 }
 338 
 339 // Populate Connection Graph with PointsTo nodes and create simple
 340 // connection graph edges.
 341 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 342   assert(!_verify, "this method should not be called for verification");
 343   PhaseGVN* igvn = _igvn;
 344   uint n_idx = n->_idx;
 345   PointsToNode* n_ptn = ptnode_adr(n_idx);
 346   if (n_ptn != NULL)
 347     return; // No need to redefine PointsTo node during first iteration.
 348 
 349   if (n->is_Call()) {
 350     // Arguments to allocation and locking don't escape.
 351     if (n->is_AbstractLock()) {
 352       // Put Lock and Unlock nodes on IGVN worklist to process them during
 353       // first IGVN optimization when escape information is still available.
 354       record_for_optimizer(n);
 355     } else if (n->is_Allocate()) {
 356       add_call_node(n->as_Call());
 357       record_for_optimizer(n);
 358     } else {
 359       if (n->is_CallStaticJava()) {
 360         const char* name = n->as_CallStaticJava()->_name;
 361         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 362           return; // Skip uncommon traps
 363       }
 364       // Don't mark as processed since call's arguments have to be processed.
 365       delayed_worklist->push(n);
 366       // Check if a call returns an object.
 367       if ((n->as_Call()->returns_pointer() &&
 368            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 369           (n->is_CallStaticJava() &&
 370            n->as_CallStaticJava()->is_boxing_method())) {
 371         add_call_node(n->as_Call());
 372       }
 373     }
 374     return;
 375   }
 376   // Put this check here to process call arguments since some call nodes
 377   // point to phantom_obj.
 378   if (n_ptn == phantom_obj || n_ptn == null_obj)
 379     return; // Skip predefined nodes.
 380 
 381   int opcode = n->Opcode();
 382   switch (opcode) {
 383     case Op_AddP: {
 384       Node* base = get_addp_base(n);
 385       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 386       // Field nodes are created for all field types. They are used in
 387       // adjust_scalar_replaceable_state() and split_unique_types().
 388       // Note, non-oop fields will have only base edges in Connection
 389       // Graph because such fields are not used for oop loads and stores.
 390       int offset = address_offset(n, igvn);
 391       add_field(n, PointsToNode::NoEscape, offset);
 392       if (ptn_base == NULL) {
 393         delayed_worklist->push(n); // Process it later.
 394       } else {
 395         n_ptn = ptnode_adr(n_idx);
 396         add_base(n_ptn->as_Field(), ptn_base);
 397       }
 398       break;
 399     }
 400     case Op_CastX2P: {
 401       map_ideal_node(n, phantom_obj);
 402       break;
 403     }
 404     case Op_CastPP:
 405     case Op_CheckCastPP:
 406     case Op_EncodeP:
 407     case Op_DecodeN:
 408     case Op_EncodePKlass:
 409     case Op_DecodeNKlass: {
 410       add_local_var_and_edge(n, PointsToNode::NoEscape,
 411                              n->in(1), delayed_worklist);
 412       break;
 413     }
 414     case Op_CMoveP: {
 415       add_local_var(n, PointsToNode::NoEscape);
 416       // Do not add edges during first iteration because some could be
 417       // not defined yet.
 418       delayed_worklist->push(n);
 419       break;
 420     }
 421     case Op_ConP:
 422     case Op_ConN:
 423     case Op_ConNKlass: {
 424       // assume all oop constants globally escape except for null
 425       PointsToNode::EscapeState es;
 426       const Type* t = igvn->type(n);
 427       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 428         es = PointsToNode::NoEscape;
 429       } else {
 430         es = PointsToNode::GlobalEscape;
 431       }
 432       add_java_object(n, es);
 433       break;
 434     }
 435     case Op_CreateEx: {
 436       // assume that all exception objects globally escape
 437       map_ideal_node(n, phantom_obj);
 438       break;
 439     }
 440     case Op_LoadKlass:
 441     case Op_LoadNKlass: {
 442       // Unknown class is loaded
 443       map_ideal_node(n, phantom_obj);
 444       break;
 445     }
 446     case Op_LoadP:
 447     case Op_LoadN:
 448     case Op_LoadPLocked: {
 449       add_objload_to_connection_graph(n, delayed_worklist);
 450       break;
 451     }
 452     case Op_Parm: {
 453       map_ideal_node(n, phantom_obj);
 454       break;
 455     }
 456     case Op_PartialSubtypeCheck: {
 457       // Produces Null or notNull and is used in only in CmpP so
 458       // phantom_obj could be used.
 459       map_ideal_node(n, phantom_obj); // Result is unknown
 460       break;
 461     }
 462     case Op_Phi: {
 463       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 464       // ThreadLocal has RawPtr type.
 465       const Type* t = n->as_Phi()->type();
 466       if (t->make_ptr() != NULL) {
 467         add_local_var(n, PointsToNode::NoEscape);
 468         // Do not add edges during first iteration because some could be
 469         // not defined yet.
 470         delayed_worklist->push(n);
 471       }
 472       break;
 473     }
 474     case Op_Proj: {
 475       // we are only interested in the oop result projection from a call
 476       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 477           n->in(0)->as_Call()->returns_pointer()) {
 478         add_local_var_and_edge(n, PointsToNode::NoEscape,
 479                                n->in(0), delayed_worklist);
 480       }
 481       break;
 482     }
 483     case Op_Rethrow: // Exception object escapes
 484     case Op_Return: {
 485       if (n->req() > TypeFunc::Parms &&
 486           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 487         // Treat Return value as LocalVar with GlobalEscape escape state.
 488         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 489                                n->in(TypeFunc::Parms), delayed_worklist);
 490       }
 491       break;
 492     }
 493     case Op_GetAndSetP:
 494     case Op_GetAndSetN: {
 495       add_objload_to_connection_graph(n, delayed_worklist);
 496       // fallthrough
 497     }
 498     case Op_StoreP:
 499     case Op_StoreN:
 500     case Op_StoreNKlass:
 501     case Op_StorePConditional:
 502     case Op_CompareAndSwapP:
 503     case Op_CompareAndSwapN: {
 504       Node* adr = n->in(MemNode::Address);
 505       const Type *adr_type = igvn->type(adr);
 506       adr_type = adr_type->make_ptr();
 507       if (adr_type == NULL) {
 508         break; // skip dead nodes
 509       }
 510       if (adr_type->isa_oopptr() ||
 511           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 512                         (adr_type == TypeRawPtr::NOTNULL &&
 513                          adr->in(AddPNode::Address)->is_Proj() &&
 514                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 515         delayed_worklist->push(n); // Process it later.
 516 #ifdef ASSERT
 517         assert(adr->is_AddP(), "expecting an AddP");
 518         if (adr_type == TypeRawPtr::NOTNULL) {
 519           // Verify a raw address for a store captured by Initialize node.
 520           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 521           assert(offs != Type::OffsetBot, "offset must be a constant");
 522         }
 523 #endif
 524       } else {
 525         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 526         if (adr->is_BoxLock())
 527           break;
 528         // Stored value escapes in unsafe access.
 529         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 530           // Pointer stores in G1 barriers looks like unsafe access.
 531           // Ignore such stores to be able scalar replace non-escaping
 532           // allocations.
 533           if (UseG1GC && adr->is_AddP()) {
 534             Node* base = get_addp_base(adr);
 535             if (base->Opcode() == Op_LoadP &&
 536                 base->in(MemNode::Address)->is_AddP()) {
 537               adr = base->in(MemNode::Address);
 538               Node* tls = get_addp_base(adr);
 539               if (tls->Opcode() == Op_ThreadLocal) {
 540                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 541                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 542                                      SATBMarkQueue::byte_offset_of_buf())) {
 543                   break; // G1 pre barrier previous oop value store.
 544                 }
 545                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 546                                      DirtyCardQueue::byte_offset_of_buf())) {
 547                   break; // G1 post barrier card address store.
 548                 }
 549               }
 550             }
 551           }
 552           delayed_worklist->push(n); // Process unsafe access later.
 553           break;
 554         }
 555 #ifdef ASSERT
 556         n->dump(1);
 557         assert(false, "not unsafe or G1 barrier raw StoreP");
 558 #endif
 559       }
 560       break;
 561     }
 562     case Op_AryEq:
 563     case Op_HasNegatives:
 564     case Op_StrComp:
 565     case Op_StrEquals:
 566     case Op_StrIndexOf:
 567     case Op_StrIndexOfChar:
 568     case Op_StrInflatedCopy:
 569     case Op_StrCompressedCopy:
 570     case Op_EncodeISOArray: {
 571       add_local_var(n, PointsToNode::ArgEscape);
 572       delayed_worklist->push(n); // Process it later.
 573       break;
 574     }
 575     case Op_ThreadLocal: {
 576       add_java_object(n, PointsToNode::ArgEscape);
 577       break;
 578     }
 579     default:
 580       ; // Do nothing for nodes not related to EA.
 581   }
 582   return;
 583 }
 584 
 585 #ifdef ASSERT
 586 #define ELSE_FAIL(name)                               \
 587       /* Should not be called for not pointer type. */  \
 588       n->dump(1);                                       \
 589       assert(false, name);                              \
 590       break;
 591 #else
 592 #define ELSE_FAIL(name) \
 593       break;
 594 #endif
 595 
 596 // Add final simple edges to graph.
 597 void ConnectionGraph::add_final_edges(Node *n) {
 598   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 599 #ifdef ASSERT
 600   if (_verify && n_ptn->is_JavaObject())
 601     return; // This method does not change graph for JavaObject.
 602 #endif
 603 
 604   if (n->is_Call()) {
 605     process_call_arguments(n->as_Call());
 606     return;
 607   }
 608   assert(n->is_Store() || n->is_LoadStore() ||
 609          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 610          "node should be registered already");
 611   int opcode = n->Opcode();
 612   switch (opcode) {
 613     case Op_AddP: {
 614       Node* base = get_addp_base(n);
 615       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 616       assert(ptn_base != NULL, "field's base should be registered");
 617       add_base(n_ptn->as_Field(), ptn_base);
 618       break;
 619     }
 620     case Op_CastPP:
 621     case Op_CheckCastPP:
 622     case Op_EncodeP:
 623     case Op_DecodeN:
 624     case Op_EncodePKlass:
 625     case Op_DecodeNKlass: {
 626       add_local_var_and_edge(n, PointsToNode::NoEscape,
 627                              n->in(1), NULL);
 628       break;
 629     }
 630     case Op_CMoveP: {
 631       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 632         Node* in = n->in(i);
 633         if (in == NULL)
 634           continue;  // ignore NULL
 635         Node* uncast_in = in->uncast();
 636         if (uncast_in->is_top() || uncast_in == n)
 637           continue;  // ignore top or inputs which go back this node
 638         PointsToNode* ptn = ptnode_adr(in->_idx);
 639         assert(ptn != NULL, "node should be registered");
 640         add_edge(n_ptn, ptn);
 641       }
 642       break;
 643     }
 644     case Op_LoadP:
 645     case Op_LoadN:
 646     case Op_LoadPLocked: {
 647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 648       // ThreadLocal has RawPtr type.
 649       const Type* t = _igvn->type(n);
 650       if (t->make_ptr() != NULL) {
 651         Node* adr = n->in(MemNode::Address);
 652         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 653         break;
 654       }
 655       ELSE_FAIL("Op_LoadP");
 656     }
 657     case Op_Phi: {
 658       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 659       // ThreadLocal has RawPtr type.
 660       const Type* t = n->as_Phi()->type();
 661       if (t->make_ptr() != NULL) {
 662         for (uint i = 1; i < n->req(); i++) {
 663           Node* in = n->in(i);
 664           if (in == NULL)
 665             continue;  // ignore NULL
 666           Node* uncast_in = in->uncast();
 667           if (uncast_in->is_top() || uncast_in == n)
 668             continue;  // ignore top or inputs which go back this node
 669           PointsToNode* ptn = ptnode_adr(in->_idx);
 670           assert(ptn != NULL, "node should be registered");
 671           add_edge(n_ptn, ptn);
 672         }
 673         break;
 674       }
 675       ELSE_FAIL("Op_Phi");
 676     }
 677     case Op_Proj: {
 678       // we are only interested in the oop result projection from a call
 679       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 680           n->in(0)->as_Call()->returns_pointer()) {
 681         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 682         break;
 683       }
 684       ELSE_FAIL("Op_Proj");
 685     }
 686     case Op_Rethrow: // Exception object escapes
 687     case Op_Return: {
 688       if (n->req() > TypeFunc::Parms &&
 689           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 690         // Treat Return value as LocalVar with GlobalEscape escape state.
 691         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 692                                n->in(TypeFunc::Parms), NULL);
 693         break;
 694       }
 695       ELSE_FAIL("Op_Return");
 696     }
 697     case Op_StoreP:
 698     case Op_StoreN:
 699     case Op_StoreNKlass:
 700     case Op_StorePConditional:
 701     case Op_CompareAndSwapP:
 702     case Op_CompareAndSwapN:
 703     case Op_GetAndSetP:
 704     case Op_GetAndSetN: {
 705       Node* adr = n->in(MemNode::Address);
 706       const Type *adr_type = _igvn->type(adr);
 707       adr_type = adr_type->make_ptr();
 708 #ifdef ASSERT
 709       if (adr_type == NULL) {
 710         n->dump(1);
 711         assert(adr_type != NULL, "dead node should not be on list");
 712         break;
 713       }
 714 #endif
 715       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 716         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 717       }
 718       if (adr_type->isa_oopptr() ||
 719           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 720                         (adr_type == TypeRawPtr::NOTNULL &&
 721                          adr->in(AddPNode::Address)->is_Proj() &&
 722                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 723         // Point Address to Value
 724         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 725         assert(adr_ptn != NULL &&
 726                adr_ptn->as_Field()->is_oop(), "node should be registered");
 727         Node *val = n->in(MemNode::ValueIn);
 728         PointsToNode* ptn = ptnode_adr(val->_idx);
 729         assert(ptn != NULL, "node should be registered");
 730         add_edge(adr_ptn, ptn);
 731         break;
 732       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 733         // Stored value escapes in unsafe access.
 734         Node *val = n->in(MemNode::ValueIn);
 735         PointsToNode* ptn = ptnode_adr(val->_idx);
 736         assert(ptn != NULL, "node should be registered");
 737         set_escape_state(ptn, PointsToNode::GlobalEscape);
 738         // Add edge to object for unsafe access with offset.
 739         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 740         assert(adr_ptn != NULL, "node should be registered");
 741         if (adr_ptn->is_Field()) {
 742           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 743           add_edge(adr_ptn, ptn);
 744         }
 745         break;
 746       }
 747       ELSE_FAIL("Op_StoreP");
 748     }
 749     case Op_AryEq:
 750     case Op_HasNegatives:
 751     case Op_StrComp:
 752     case Op_StrEquals:
 753     case Op_StrIndexOf:
 754     case Op_StrIndexOfChar:
 755     case Op_StrInflatedCopy:
 756     case Op_StrCompressedCopy:
 757     case Op_EncodeISOArray: {
 758       // char[]/byte[] arrays passed to string intrinsic do not escape but
 759       // they are not scalar replaceable. Adjust escape state for them.
 760       // Start from in(2) edge since in(1) is memory edge.
 761       for (uint i = 2; i < n->req(); i++) {
 762         Node* adr = n->in(i);
 763         const Type* at = _igvn->type(adr);
 764         if (!adr->is_top() && at->isa_ptr()) {
 765           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 766                  at->isa_ptr() != NULL, "expecting a pointer");
 767           if (adr->is_AddP()) {
 768             adr = get_addp_base(adr);
 769           }
 770           PointsToNode* ptn = ptnode_adr(adr->_idx);
 771           assert(ptn != NULL, "node should be registered");
 772           add_edge(n_ptn, ptn);
 773         }
 774       }
 775       break;
 776     }
 777     default: {
 778       // This method should be called only for EA specific nodes which may
 779       // miss some edges when they were created.
 780 #ifdef ASSERT
 781       n->dump(1);
 782 #endif
 783       guarantee(false, "unknown node");
 784     }
 785   }
 786   return;
 787 }
 788 
 789 void ConnectionGraph::add_call_node(CallNode* call) {
 790   assert(call->returns_pointer(), "only for call which returns pointer");
 791   uint call_idx = call->_idx;
 792   if (call->is_Allocate()) {
 793     Node* k = call->in(AllocateNode::KlassNode);
 794     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 795     assert(kt != NULL, "TypeKlassPtr  required.");
 796     ciKlass* cik = kt->klass();
 797     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 798     bool scalar_replaceable = true;
 799     if (call->is_AllocateArray()) {
 800       if (!cik->is_array_klass()) { // StressReflectiveCode
 801         es = PointsToNode::GlobalEscape;
 802       } else {
 803         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 804         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 805           // Not scalar replaceable if the length is not constant or too big.
 806           scalar_replaceable = false;
 807         }
 808       }
 809     } else {  // Allocate instance
 810       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 811           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 812          !cik->is_instance_klass() || // StressReflectiveCode
 813           cik->as_instance_klass()->has_finalizer()) {
 814         es = PointsToNode::GlobalEscape;
 815       }
 816     }
 817     add_java_object(call, es);
 818     PointsToNode* ptn = ptnode_adr(call_idx);
 819     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 820       ptn->set_scalar_replaceable(false);
 821     }
 822   } else if (call->is_CallStaticJava()) {
 823     // Call nodes could be different types:
 824     //
 825     // 1. CallDynamicJavaNode (what happened during call is unknown):
 826     //
 827     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 828     //
 829     //    - all oop arguments are escaping globally;
 830     //
 831     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 832     //
 833     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 834     //
 835     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 836     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 837     //      during call is returned;
 838     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 839     //      which are returned and does not escape during call;
 840     //
 841     //    - oop arguments escaping status is defined by bytecode analysis;
 842     //
 843     // For a static call, we know exactly what method is being called.
 844     // Use bytecode estimator to record whether the call's return value escapes.
 845     ciMethod* meth = call->as_CallJava()->method();
 846     if (meth == NULL) {
 847       const char* name = call->as_CallStaticJava()->_name;
 848       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 849       // Returns a newly allocated unescaped object.
 850       add_java_object(call, PointsToNode::NoEscape);
 851       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 852     } else if (meth->is_boxing_method()) {
 853       // Returns boxing object
 854       PointsToNode::EscapeState es;
 855       vmIntrinsics::ID intr = meth->intrinsic_id();
 856       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 857         // It does not escape if object is always allocated.
 858         es = PointsToNode::NoEscape;
 859       } else {
 860         // It escapes globally if object could be loaded from cache.
 861         es = PointsToNode::GlobalEscape;
 862       }
 863       add_java_object(call, es);
 864     } else {
 865       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 866       call_analyzer->copy_dependencies(_compile->dependencies());
 867       if (call_analyzer->is_return_allocated()) {
 868         // Returns a newly allocated unescaped object, simply
 869         // update dependency information.
 870         // Mark it as NoEscape so that objects referenced by
 871         // it's fields will be marked as NoEscape at least.
 872         add_java_object(call, PointsToNode::NoEscape);
 873         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 874       } else {
 875         // Determine whether any arguments are returned.
 876         const TypeTuple* d = call->tf()->domain();
 877         bool ret_arg = false;
 878         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 879           if (d->field_at(i)->isa_ptr() != NULL &&
 880               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 881             ret_arg = true;
 882             break;
 883           }
 884         }
 885         if (ret_arg) {
 886           add_local_var(call, PointsToNode::ArgEscape);
 887         } else {
 888           // Returns unknown object.
 889           map_ideal_node(call, phantom_obj);
 890         }
 891       }
 892     }
 893   } else {
 894     // An other type of call, assume the worst case:
 895     // returned value is unknown and globally escapes.
 896     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 897     map_ideal_node(call, phantom_obj);
 898   }
 899 }
 900 
 901 void ConnectionGraph::process_call_arguments(CallNode *call) {
 902     bool is_arraycopy = false;
 903     switch (call->Opcode()) {
 904 #ifdef ASSERT
 905     case Op_Allocate:
 906     case Op_AllocateArray:
 907     case Op_Lock:
 908     case Op_Unlock:
 909       assert(false, "should be done already");
 910       break;
 911 #endif
 912     case Op_ArrayCopy:
 913     case Op_CallLeafNoFP:
 914       // Most array copies are ArrayCopy nodes at this point but there
 915       // are still a few direct calls to the copy subroutines (See
 916       // PhaseStringOpts::copy_string())
 917       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 918         call->as_CallLeaf()->is_call_to_arraycopystub();
 919       // fall through
 920     case Op_CallLeaf: {
 921       // Stub calls, objects do not escape but they are not scale replaceable.
 922       // Adjust escape state for outgoing arguments.
 923       const TypeTuple * d = call->tf()->domain();
 924       bool src_has_oops = false;
 925       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 926         const Type* at = d->field_at(i);
 927         Node *arg = call->in(i);
 928         if (arg == NULL) {
 929           continue;
 930         }
 931         const Type *aat = _igvn->type(arg);
 932         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 933           continue;
 934         if (arg->is_AddP()) {
 935           //
 936           // The inline_native_clone() case when the arraycopy stub is called
 937           // after the allocation before Initialize and CheckCastPP nodes.
 938           // Or normal arraycopy for object arrays case.
 939           //
 940           // Set AddP's base (Allocate) as not scalar replaceable since
 941           // pointer to the base (with offset) is passed as argument.
 942           //
 943           arg = get_addp_base(arg);
 944         }
 945         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 946         assert(arg_ptn != NULL, "should be registered");
 947         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 948         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 949           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 950                  aat->isa_ptr() != NULL, "expecting an Ptr");
 951           bool arg_has_oops = aat->isa_oopptr() &&
 952                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 953                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 954           if (i == TypeFunc::Parms) {
 955             src_has_oops = arg_has_oops;
 956           }
 957           //
 958           // src or dst could be j.l.Object when other is basic type array:
 959           //
 960           //   arraycopy(char[],0,Object*,0,size);
 961           //   arraycopy(Object*,0,char[],0,size);
 962           //
 963           // Don't add edges in such cases.
 964           //
 965           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 966                                        arg_has_oops && (i > TypeFunc::Parms);
 967 #ifdef ASSERT
 968           if (!(is_arraycopy ||
 969                 (call->as_CallLeaf()->_name != NULL &&
 970                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 971                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 972                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 973                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 974                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 975                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 976                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 977                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 978                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 979                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 980                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 981                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 982                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 983                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 984                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
 993                  ))) {
 994             call->dump();
 995             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
 996           }
 997 #endif
 998           // Always process arraycopy's destination object since
 999           // we need to add all possible edges to references in
1000           // source object.
1001           if (arg_esc >= PointsToNode::ArgEscape &&
1002               !arg_is_arraycopy_dest) {
1003             continue;
1004           }
1005           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1006           if (call->is_ArrayCopy()) {
1007             ArrayCopyNode* ac = call->as_ArrayCopy();
1008             if (ac->is_clonebasic() ||
1009                 ac->is_arraycopy_validated() ||
1010                 ac->is_copyof_validated() ||
1011                 ac->is_copyofrange_validated()) {
1012               es = PointsToNode::NoEscape;
1013             }
1014           }
1015           set_escape_state(arg_ptn, es);
1016           if (arg_is_arraycopy_dest) {
1017             Node* src = call->in(TypeFunc::Parms);
1018             if (src->is_AddP()) {
1019               src = get_addp_base(src);
1020             }
1021             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1022             assert(src_ptn != NULL, "should be registered");
1023             if (arg_ptn != src_ptn) {
1024               // Special arraycopy edge:
1025               // A destination object's field can't have the source object
1026               // as base since objects escape states are not related.
1027               // Only escape state of destination object's fields affects
1028               // escape state of fields in source object.
1029               add_arraycopy(call, es, src_ptn, arg_ptn);
1030             }
1031           }
1032         }
1033       }
1034       break;
1035     }
1036     case Op_CallStaticJava: {
1037       // For a static call, we know exactly what method is being called.
1038       // Use bytecode estimator to record the call's escape affects
1039 #ifdef ASSERT
1040       const char* name = call->as_CallStaticJava()->_name;
1041       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1042 #endif
1043       ciMethod* meth = call->as_CallJava()->method();
1044       if ((meth != NULL) && meth->is_boxing_method()) {
1045         break; // Boxing methods do not modify any oops.
1046       }
1047       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1048       // fall-through if not a Java method or no analyzer information
1049       if (call_analyzer != NULL) {
1050         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1051         const TypeTuple* d = call->tf()->domain();
1052         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1053           const Type* at = d->field_at(i);
1054           int k = i - TypeFunc::Parms;
1055           Node* arg = call->in(i);
1056           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1057           if (at->isa_ptr() != NULL &&
1058               call_analyzer->is_arg_returned(k)) {
1059             // The call returns arguments.
1060             if (call_ptn != NULL) { // Is call's result used?
1061               assert(call_ptn->is_LocalVar(), "node should be registered");
1062               assert(arg_ptn != NULL, "node should be registered");
1063               add_edge(call_ptn, arg_ptn);
1064             }
1065           }
1066           if (at->isa_oopptr() != NULL &&
1067               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1068             if (!call_analyzer->is_arg_stack(k)) {
1069               // The argument global escapes
1070               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1071             } else {
1072               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1073               if (!call_analyzer->is_arg_local(k)) {
1074                 // The argument itself doesn't escape, but any fields might
1075                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1076               }
1077             }
1078           }
1079         }
1080         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1081           // The call returns arguments.
1082           assert(call_ptn->edge_count() > 0, "sanity");
1083           if (!call_analyzer->is_return_local()) {
1084             // Returns also unknown object.
1085             add_edge(call_ptn, phantom_obj);
1086           }
1087         }
1088         break;
1089       }
1090     }
1091     default: {
1092       // Fall-through here if not a Java method or no analyzer information
1093       // or some other type of call, assume the worst case: all arguments
1094       // globally escape.
1095       const TypeTuple* d = call->tf()->domain();
1096       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1097         const Type* at = d->field_at(i);
1098         if (at->isa_oopptr() != NULL) {
1099           Node* arg = call->in(i);
1100           if (arg->is_AddP()) {
1101             arg = get_addp_base(arg);
1102           }
1103           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1104           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1105         }
1106       }
1107     }
1108   }
1109 }
1110 
1111 
1112 // Finish Graph construction.
1113 bool ConnectionGraph::complete_connection_graph(
1114                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1115                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1116                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1117                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1118   // Normally only 1-3 passes needed to build Connection Graph depending
1119   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1120   // Set limit to 20 to catch situation when something did go wrong and
1121   // bailout Escape Analysis.
1122   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1123 #define CG_BUILD_ITER_LIMIT 20
1124 
1125   // Propagate GlobalEscape and ArgEscape escape states and check that
1126   // we still have non-escaping objects. The method pushs on _worklist
1127   // Field nodes which reference phantom_object.
1128   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1129     return false; // Nothing to do.
1130   }
1131   // Now propagate references to all JavaObject nodes.
1132   int java_objects_length = java_objects_worklist.length();
1133   elapsedTimer time;
1134   bool timeout = false;
1135   int new_edges = 1;
1136   int iterations = 0;
1137   do {
1138     while ((new_edges > 0) &&
1139            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1140       double start_time = time.seconds();
1141       time.start();
1142       new_edges = 0;
1143       // Propagate references to phantom_object for nodes pushed on _worklist
1144       // by find_non_escaped_objects() and find_field_value().
1145       new_edges += add_java_object_edges(phantom_obj, false);
1146       for (int next = 0; next < java_objects_length; ++next) {
1147         JavaObjectNode* ptn = java_objects_worklist.at(next);
1148         new_edges += add_java_object_edges(ptn, true);
1149 
1150 #define SAMPLE_SIZE 4
1151         if ((next % SAMPLE_SIZE) == 0) {
1152           // Each 4 iterations calculate how much time it will take
1153           // to complete graph construction.
1154           time.stop();
1155           // Poll for requests from shutdown mechanism to quiesce compiler
1156           // because Connection graph construction may take long time.
1157           CompileBroker::maybe_block();
1158           double stop_time = time.seconds();
1159           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1160           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1161           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1162             timeout = true;
1163             break; // Timeout
1164           }
1165           start_time = stop_time;
1166           time.start();
1167         }
1168 #undef SAMPLE_SIZE
1169 
1170       }
1171       if (timeout) break;
1172       if (new_edges > 0) {
1173         // Update escape states on each iteration if graph was updated.
1174         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1175           return false; // Nothing to do.
1176         }
1177       }
1178       time.stop();
1179       if (time.seconds() >= EscapeAnalysisTimeout) {
1180         timeout = true;
1181         break;
1182       }
1183     }
1184     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1185       time.start();
1186       // Find fields which have unknown value.
1187       int fields_length = oop_fields_worklist.length();
1188       for (int next = 0; next < fields_length; next++) {
1189         FieldNode* field = oop_fields_worklist.at(next);
1190         if (field->edge_count() == 0) {
1191           new_edges += find_field_value(field);
1192           // This code may added new edges to phantom_object.
1193           // Need an other cycle to propagate references to phantom_object.
1194         }
1195       }
1196       time.stop();
1197       if (time.seconds() >= EscapeAnalysisTimeout) {
1198         timeout = true;
1199         break;
1200       }
1201     } else {
1202       new_edges = 0; // Bailout
1203     }
1204   } while (new_edges > 0);
1205 
1206   // Bailout if passed limits.
1207   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1208     Compile* C = _compile;
1209     if (C->log() != NULL) {
1210       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1211       C->log()->text("%s", timeout ? "time" : "iterations");
1212       C->log()->end_elem(" limit'");
1213     }
1214     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1215            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1216     // Possible infinite build_connection_graph loop,
1217     // bailout (no changes to ideal graph were made).
1218     return false;
1219   }
1220 #ifdef ASSERT
1221   if (Verbose && PrintEscapeAnalysis) {
1222     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1223                   iterations, nodes_size(), ptnodes_worklist.length());
1224   }
1225 #endif
1226 
1227 #undef CG_BUILD_ITER_LIMIT
1228 
1229   // Find fields initialized by NULL for non-escaping Allocations.
1230   int non_escaped_length = non_escaped_worklist.length();
1231   for (int next = 0; next < non_escaped_length; next++) {
1232     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1233     PointsToNode::EscapeState es = ptn->escape_state();
1234     assert(es <= PointsToNode::ArgEscape, "sanity");
1235     if (es == PointsToNode::NoEscape) {
1236       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1237         // Adding references to NULL object does not change escape states
1238         // since it does not escape. Also no fields are added to NULL object.
1239         add_java_object_edges(null_obj, false);
1240       }
1241     }
1242     Node* n = ptn->ideal_node();
1243     if (n->is_Allocate()) {
1244       // The object allocated by this Allocate node will never be
1245       // seen by an other thread. Mark it so that when it is
1246       // expanded no MemBarStoreStore is added.
1247       InitializeNode* ini = n->as_Allocate()->initialization();
1248       if (ini != NULL)
1249         ini->set_does_not_escape();
1250     }
1251   }
1252   return true; // Finished graph construction.
1253 }
1254 
1255 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1256 // and check that we still have non-escaping java objects.
1257 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1258                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1259   GrowableArray<PointsToNode*> escape_worklist;
1260   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1261   int ptnodes_length = ptnodes_worklist.length();
1262   for (int next = 0; next < ptnodes_length; ++next) {
1263     PointsToNode* ptn = ptnodes_worklist.at(next);
1264     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1265         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1266       escape_worklist.push(ptn);
1267     }
1268   }
1269   // Set escape states to referenced nodes (edges list).
1270   while (escape_worklist.length() > 0) {
1271     PointsToNode* ptn = escape_worklist.pop();
1272     PointsToNode::EscapeState es  = ptn->escape_state();
1273     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1274     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1275         es >= PointsToNode::ArgEscape) {
1276       // GlobalEscape or ArgEscape state of field means it has unknown value.
1277       if (add_edge(ptn, phantom_obj)) {
1278         // New edge was added
1279         add_field_uses_to_worklist(ptn->as_Field());
1280       }
1281     }
1282     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1283       PointsToNode* e = i.get();
1284       if (e->is_Arraycopy()) {
1285         assert(ptn->arraycopy_dst(), "sanity");
1286         // Propagate only fields escape state through arraycopy edge.
1287         if (e->fields_escape_state() < field_es) {
1288           set_fields_escape_state(e, field_es);
1289           escape_worklist.push(e);
1290         }
1291       } else if (es >= field_es) {
1292         // fields_escape_state is also set to 'es' if it is less than 'es'.
1293         if (e->escape_state() < es) {
1294           set_escape_state(e, es);
1295           escape_worklist.push(e);
1296         }
1297       } else {
1298         // Propagate field escape state.
1299         bool es_changed = false;
1300         if (e->fields_escape_state() < field_es) {
1301           set_fields_escape_state(e, field_es);
1302           es_changed = true;
1303         }
1304         if ((e->escape_state() < field_es) &&
1305             e->is_Field() && ptn->is_JavaObject() &&
1306             e->as_Field()->is_oop()) {
1307           // Change escape state of referenced fields.
1308           set_escape_state(e, field_es);
1309           es_changed = true;
1310         } else if (e->escape_state() < es) {
1311           set_escape_state(e, es);
1312           es_changed = true;
1313         }
1314         if (es_changed) {
1315           escape_worklist.push(e);
1316         }
1317       }
1318     }
1319   }
1320   // Remove escaped objects from non_escaped list.
1321   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1322     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1323     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1324       non_escaped_worklist.delete_at(next);
1325     }
1326     if (ptn->escape_state() == PointsToNode::NoEscape) {
1327       // Find fields in non-escaped allocations which have unknown value.
1328       find_init_values(ptn, phantom_obj, NULL);
1329     }
1330   }
1331   return (non_escaped_worklist.length() > 0);
1332 }
1333 
1334 // Add all references to JavaObject node by walking over all uses.
1335 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1336   int new_edges = 0;
1337   if (populate_worklist) {
1338     // Populate _worklist by uses of jobj's uses.
1339     for (UseIterator i(jobj); i.has_next(); i.next()) {
1340       PointsToNode* use = i.get();
1341       if (use->is_Arraycopy())
1342         continue;
1343       add_uses_to_worklist(use);
1344       if (use->is_Field() && use->as_Field()->is_oop()) {
1345         // Put on worklist all field's uses (loads) and
1346         // related field nodes (same base and offset).
1347         add_field_uses_to_worklist(use->as_Field());
1348       }
1349     }
1350   }
1351   for (int l = 0; l < _worklist.length(); l++) {
1352     PointsToNode* use = _worklist.at(l);
1353     if (PointsToNode::is_base_use(use)) {
1354       // Add reference from jobj to field and from field to jobj (field's base).
1355       use = PointsToNode::get_use_node(use)->as_Field();
1356       if (add_base(use->as_Field(), jobj)) {
1357         new_edges++;
1358       }
1359       continue;
1360     }
1361     assert(!use->is_JavaObject(), "sanity");
1362     if (use->is_Arraycopy()) {
1363       if (jobj == null_obj) // NULL object does not have field edges
1364         continue;
1365       // Added edge from Arraycopy node to arraycopy's source java object
1366       if (add_edge(use, jobj)) {
1367         jobj->set_arraycopy_src();
1368         new_edges++;
1369       }
1370       // and stop here.
1371       continue;
1372     }
1373     if (!add_edge(use, jobj))
1374       continue; // No new edge added, there was such edge already.
1375     new_edges++;
1376     if (use->is_LocalVar()) {
1377       add_uses_to_worklist(use);
1378       if (use->arraycopy_dst()) {
1379         for (EdgeIterator i(use); i.has_next(); i.next()) {
1380           PointsToNode* e = i.get();
1381           if (e->is_Arraycopy()) {
1382             if (jobj == null_obj) // NULL object does not have field edges
1383               continue;
1384             // Add edge from arraycopy's destination java object to Arraycopy node.
1385             if (add_edge(jobj, e)) {
1386               new_edges++;
1387               jobj->set_arraycopy_dst();
1388             }
1389           }
1390         }
1391       }
1392     } else {
1393       // Added new edge to stored in field values.
1394       // Put on worklist all field's uses (loads) and
1395       // related field nodes (same base and offset).
1396       add_field_uses_to_worklist(use->as_Field());
1397     }
1398   }
1399   _worklist.clear();
1400   _in_worklist.Reset();
1401   return new_edges;
1402 }
1403 
1404 // Put on worklist all related field nodes.
1405 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1406   assert(field->is_oop(), "sanity");
1407   int offset = field->offset();
1408   add_uses_to_worklist(field);
1409   // Loop over all bases of this field and push on worklist Field nodes
1410   // with the same offset and base (since they may reference the same field).
1411   for (BaseIterator i(field); i.has_next(); i.next()) {
1412     PointsToNode* base = i.get();
1413     add_fields_to_worklist(field, base);
1414     // Check if the base was source object of arraycopy and go over arraycopy's
1415     // destination objects since values stored to a field of source object are
1416     // accessable by uses (loads) of fields of destination objects.
1417     if (base->arraycopy_src()) {
1418       for (UseIterator j(base); j.has_next(); j.next()) {
1419         PointsToNode* arycp = j.get();
1420         if (arycp->is_Arraycopy()) {
1421           for (UseIterator k(arycp); k.has_next(); k.next()) {
1422             PointsToNode* abase = k.get();
1423             if (abase->arraycopy_dst() && abase != base) {
1424               // Look for the same arraycopy reference.
1425               add_fields_to_worklist(field, abase);
1426             }
1427           }
1428         }
1429       }
1430     }
1431   }
1432 }
1433 
1434 // Put on worklist all related field nodes.
1435 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1436   int offset = field->offset();
1437   if (base->is_LocalVar()) {
1438     for (UseIterator j(base); j.has_next(); j.next()) {
1439       PointsToNode* f = j.get();
1440       if (PointsToNode::is_base_use(f)) { // Field
1441         f = PointsToNode::get_use_node(f);
1442         if (f == field || !f->as_Field()->is_oop())
1443           continue;
1444         int offs = f->as_Field()->offset();
1445         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1446           add_to_worklist(f);
1447         }
1448       }
1449     }
1450   } else {
1451     assert(base->is_JavaObject(), "sanity");
1452     if (// Skip phantom_object since it is only used to indicate that
1453         // this field's content globally escapes.
1454         (base != phantom_obj) &&
1455         // NULL object node does not have fields.
1456         (base != null_obj)) {
1457       for (EdgeIterator i(base); i.has_next(); i.next()) {
1458         PointsToNode* f = i.get();
1459         // Skip arraycopy edge since store to destination object field
1460         // does not update value in source object field.
1461         if (f->is_Arraycopy()) {
1462           assert(base->arraycopy_dst(), "sanity");
1463           continue;
1464         }
1465         if (f == field || !f->as_Field()->is_oop())
1466           continue;
1467         int offs = f->as_Field()->offset();
1468         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1469           add_to_worklist(f);
1470         }
1471       }
1472     }
1473   }
1474 }
1475 
1476 // Find fields which have unknown value.
1477 int ConnectionGraph::find_field_value(FieldNode* field) {
1478   // Escaped fields should have init value already.
1479   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1480   int new_edges = 0;
1481   for (BaseIterator i(field); i.has_next(); i.next()) {
1482     PointsToNode* base = i.get();
1483     if (base->is_JavaObject()) {
1484       // Skip Allocate's fields which will be processed later.
1485       if (base->ideal_node()->is_Allocate())
1486         return 0;
1487       assert(base == null_obj, "only NULL ptr base expected here");
1488     }
1489   }
1490   if (add_edge(field, phantom_obj)) {
1491     // New edge was added
1492     new_edges++;
1493     add_field_uses_to_worklist(field);
1494   }
1495   return new_edges;
1496 }
1497 
1498 // Find fields initializing values for allocations.
1499 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1500   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1501   int new_edges = 0;
1502   Node* alloc = pta->ideal_node();
1503   if (init_val == phantom_obj) {
1504     // Do nothing for Allocate nodes since its fields values are
1505     // "known" unless they are initialized by arraycopy/clone.
1506     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1507       return 0;
1508     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1509 #ifdef ASSERT
1510     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1511       const char* name = alloc->as_CallStaticJava()->_name;
1512       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1513     }
1514 #endif
1515     // Non-escaped allocation returned from Java or runtime call have
1516     // unknown values in fields.
1517     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1518       PointsToNode* field = i.get();
1519       if (field->is_Field() && field->as_Field()->is_oop()) {
1520         if (add_edge(field, phantom_obj)) {
1521           // New edge was added
1522           new_edges++;
1523           add_field_uses_to_worklist(field->as_Field());
1524         }
1525       }
1526     }
1527     return new_edges;
1528   }
1529   assert(init_val == null_obj, "sanity");
1530   // Do nothing for Call nodes since its fields values are unknown.
1531   if (!alloc->is_Allocate())
1532     return 0;
1533 
1534   InitializeNode* ini = alloc->as_Allocate()->initialization();
1535   bool visited_bottom_offset = false;
1536   GrowableArray<int> offsets_worklist;
1537 
1538   // Check if an oop field's initializing value is recorded and add
1539   // a corresponding NULL if field's value if it is not recorded.
1540   // Connection Graph does not record a default initialization by NULL
1541   // captured by Initialize node.
1542   //
1543   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1544     PointsToNode* field = i.get(); // Field (AddP)
1545     if (!field->is_Field() || !field->as_Field()->is_oop())
1546       continue; // Not oop field
1547     int offset = field->as_Field()->offset();
1548     if (offset == Type::OffsetBot) {
1549       if (!visited_bottom_offset) {
1550         // OffsetBot is used to reference array's element,
1551         // always add reference to NULL to all Field nodes since we don't
1552         // known which element is referenced.
1553         if (add_edge(field, null_obj)) {
1554           // New edge was added
1555           new_edges++;
1556           add_field_uses_to_worklist(field->as_Field());
1557           visited_bottom_offset = true;
1558         }
1559       }
1560     } else {
1561       // Check only oop fields.
1562       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1563       if (adr_type->isa_rawptr()) {
1564 #ifdef ASSERT
1565         // Raw pointers are used for initializing stores so skip it
1566         // since it should be recorded already
1567         Node* base = get_addp_base(field->ideal_node());
1568         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1569                (base->in(0) == alloc),"unexpected pointer type");
1570 #endif
1571         continue;
1572       }
1573       if (!offsets_worklist.contains(offset)) {
1574         offsets_worklist.append(offset);
1575         Node* value = NULL;
1576         if (ini != NULL) {
1577           // StoreP::memory_type() == T_ADDRESS
1578           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1579           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1580           // Make sure initializing store has the same type as this AddP.
1581           // This AddP may reference non existing field because it is on a
1582           // dead branch of bimorphic call which is not eliminated yet.
1583           if (store != NULL && store->is_Store() &&
1584               store->as_Store()->memory_type() == ft) {
1585             value = store->in(MemNode::ValueIn);
1586 #ifdef ASSERT
1587             if (VerifyConnectionGraph) {
1588               // Verify that AddP already points to all objects the value points to.
1589               PointsToNode* val = ptnode_adr(value->_idx);
1590               assert((val != NULL), "should be processed already");
1591               PointsToNode* missed_obj = NULL;
1592               if (val->is_JavaObject()) {
1593                 if (!field->points_to(val->as_JavaObject())) {
1594                   missed_obj = val;
1595                 }
1596               } else {
1597                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1598                   tty->print_cr("----------init store has invalid value -----");
1599                   store->dump();
1600                   val->dump();
1601                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1602                 }
1603                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1604                   PointsToNode* obj = j.get();
1605                   if (obj->is_JavaObject()) {
1606                     if (!field->points_to(obj->as_JavaObject())) {
1607                       missed_obj = obj;
1608                       break;
1609                     }
1610                   }
1611                 }
1612               }
1613               if (missed_obj != NULL) {
1614                 tty->print_cr("----------field---------------------------------");
1615                 field->dump();
1616                 tty->print_cr("----------missed referernce to object-----------");
1617                 missed_obj->dump();
1618                 tty->print_cr("----------object referernced by init store -----");
1619                 store->dump();
1620                 val->dump();
1621                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1622               }
1623             }
1624 #endif
1625           } else {
1626             // There could be initializing stores which follow allocation.
1627             // For example, a volatile field store is not collected
1628             // by Initialize node.
1629             //
1630             // Need to check for dependent loads to separate such stores from
1631             // stores which follow loads. For now, add initial value NULL so
1632             // that compare pointers optimization works correctly.
1633           }
1634         }
1635         if (value == NULL) {
1636           // A field's initializing value was not recorded. Add NULL.
1637           if (add_edge(field, null_obj)) {
1638             // New edge was added
1639             new_edges++;
1640             add_field_uses_to_worklist(field->as_Field());
1641           }
1642         }
1643       }
1644     }
1645   }
1646   return new_edges;
1647 }
1648 
1649 // Adjust scalar_replaceable state after Connection Graph is built.
1650 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1651   // Search for non-escaping objects which are not scalar replaceable
1652   // and mark them to propagate the state to referenced objects.
1653 
1654   // 1. An object is not scalar replaceable if the field into which it is
1655   // stored has unknown offset (stored into unknown element of an array).
1656   //
1657   for (UseIterator i(jobj); i.has_next(); i.next()) {
1658     PointsToNode* use = i.get();
1659     if (use->is_Arraycopy()) {
1660       continue;
1661     }
1662     if (use->is_Field()) {
1663       FieldNode* field = use->as_Field();
1664       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1665       if (field->offset() == Type::OffsetBot) {
1666         jobj->set_scalar_replaceable(false);
1667         return;
1668       }
1669       // 2. An object is not scalar replaceable if the field into which it is
1670       // stored has multiple bases one of which is null.
1671       if (field->base_count() > 1) {
1672         for (BaseIterator i(field); i.has_next(); i.next()) {
1673           PointsToNode* base = i.get();
1674           if (base == null_obj) {
1675             jobj->set_scalar_replaceable(false);
1676             return;
1677           }
1678         }
1679       }
1680     }
1681     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1682     // 3. An object is not scalar replaceable if it is merged with other objects.
1683     for (EdgeIterator j(use); j.has_next(); j.next()) {
1684       PointsToNode* ptn = j.get();
1685       if (ptn->is_JavaObject() && ptn != jobj) {
1686         // Mark all objects.
1687         jobj->set_scalar_replaceable(false);
1688          ptn->set_scalar_replaceable(false);
1689       }
1690     }
1691     if (!jobj->scalar_replaceable()) {
1692       return;
1693     }
1694   }
1695 
1696   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1697     if (j.get()->is_Arraycopy()) {
1698       continue;
1699     }
1700 
1701     // Non-escaping object node should point only to field nodes.
1702     FieldNode* field = j.get()->as_Field();
1703     int offset = field->as_Field()->offset();
1704 
1705     // 4. An object is not scalar replaceable if it has a field with unknown
1706     // offset (array's element is accessed in loop).
1707     if (offset == Type::OffsetBot) {
1708       jobj->set_scalar_replaceable(false);
1709       return;
1710     }
1711     // 5. Currently an object is not scalar replaceable if a LoadStore node
1712     // access its field since the field value is unknown after it.
1713     //
1714     Node* n = field->ideal_node();
1715     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1716       if (n->fast_out(i)->is_LoadStore()) {
1717         jobj->set_scalar_replaceable(false);
1718         return;
1719       }
1720     }
1721 
1722     // 6. Or the address may point to more then one object. This may produce
1723     // the false positive result (set not scalar replaceable)
1724     // since the flow-insensitive escape analysis can't separate
1725     // the case when stores overwrite the field's value from the case
1726     // when stores happened on different control branches.
1727     //
1728     // Note: it will disable scalar replacement in some cases:
1729     //
1730     //    Point p[] = new Point[1];
1731     //    p[0] = new Point(); // Will be not scalar replaced
1732     //
1733     // but it will save us from incorrect optimizations in next cases:
1734     //
1735     //    Point p[] = new Point[1];
1736     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1737     //
1738     if (field->base_count() > 1) {
1739       for (BaseIterator i(field); i.has_next(); i.next()) {
1740         PointsToNode* base = i.get();
1741         // Don't take into account LocalVar nodes which
1742         // may point to only one object which should be also
1743         // this field's base by now.
1744         if (base->is_JavaObject() && base != jobj) {
1745           // Mark all bases.
1746           jobj->set_scalar_replaceable(false);
1747           base->set_scalar_replaceable(false);
1748         }
1749       }
1750     }
1751   }
1752 }
1753 
1754 #ifdef ASSERT
1755 void ConnectionGraph::verify_connection_graph(
1756                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1757                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1758                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1759                          GrowableArray<Node*>& addp_worklist) {
1760   // Verify that graph is complete - no new edges could be added.
1761   int java_objects_length = java_objects_worklist.length();
1762   int non_escaped_length  = non_escaped_worklist.length();
1763   int new_edges = 0;
1764   for (int next = 0; next < java_objects_length; ++next) {
1765     JavaObjectNode* ptn = java_objects_worklist.at(next);
1766     new_edges += add_java_object_edges(ptn, true);
1767   }
1768   assert(new_edges == 0, "graph was not complete");
1769   // Verify that escape state is final.
1770   int length = non_escaped_worklist.length();
1771   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1772   assert((non_escaped_length == non_escaped_worklist.length()) &&
1773          (non_escaped_length == length) &&
1774          (_worklist.length() == 0), "escape state was not final");
1775 
1776   // Verify fields information.
1777   int addp_length = addp_worklist.length();
1778   for (int next = 0; next < addp_length; ++next ) {
1779     Node* n = addp_worklist.at(next);
1780     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1781     if (field->is_oop()) {
1782       // Verify that field has all bases
1783       Node* base = get_addp_base(n);
1784       PointsToNode* ptn = ptnode_adr(base->_idx);
1785       if (ptn->is_JavaObject()) {
1786         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1787       } else {
1788         assert(ptn->is_LocalVar(), "sanity");
1789         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1790           PointsToNode* e = i.get();
1791           if (e->is_JavaObject()) {
1792             assert(field->has_base(e->as_JavaObject()), "sanity");
1793           }
1794         }
1795       }
1796       // Verify that all fields have initializing values.
1797       if (field->edge_count() == 0) {
1798         tty->print_cr("----------field does not have references----------");
1799         field->dump();
1800         for (BaseIterator i(field); i.has_next(); i.next()) {
1801           PointsToNode* base = i.get();
1802           tty->print_cr("----------field has next base---------------------");
1803           base->dump();
1804           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1805             tty->print_cr("----------base has fields-------------------------");
1806             for (EdgeIterator j(base); j.has_next(); j.next()) {
1807               j.get()->dump();
1808             }
1809             tty->print_cr("----------base has references---------------------");
1810             for (UseIterator j(base); j.has_next(); j.next()) {
1811               j.get()->dump();
1812             }
1813           }
1814         }
1815         for (UseIterator i(field); i.has_next(); i.next()) {
1816           i.get()->dump();
1817         }
1818         assert(field->edge_count() > 0, "sanity");
1819       }
1820     }
1821   }
1822 }
1823 #endif
1824 
1825 // Optimize ideal graph.
1826 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1827                                            GrowableArray<Node*>& storestore_worklist) {
1828   Compile* C = _compile;
1829   PhaseIterGVN* igvn = _igvn;
1830   if (EliminateLocks) {
1831     // Mark locks before changing ideal graph.
1832     int cnt = C->macro_count();
1833     for( int i=0; i < cnt; i++ ) {
1834       Node *n = C->macro_node(i);
1835       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1836         AbstractLockNode* alock = n->as_AbstractLock();
1837         if (!alock->is_non_esc_obj()) {
1838           if (not_global_escape(alock->obj_node())) {
1839             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1840             // The lock could be marked eliminated by lock coarsening
1841             // code during first IGVN before EA. Replace coarsened flag
1842             // to eliminate all associated locks/unlocks.
1843 #ifdef ASSERT
1844             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1845 #endif
1846             alock->set_non_esc_obj();
1847           }
1848         }
1849       }
1850     }
1851   }
1852 
1853   if (OptimizePtrCompare) {
1854     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1855     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1856     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1857     // Optimize objects compare.
1858     while (ptr_cmp_worklist.length() != 0) {
1859       Node *n = ptr_cmp_worklist.pop();
1860       Node *res = optimize_ptr_compare(n);
1861       if (res != NULL) {
1862 #ifndef PRODUCT
1863         if (PrintOptimizePtrCompare) {
1864           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1865           if (Verbose) {
1866             n->dump(1);
1867           }
1868         }
1869 #endif
1870         igvn->replace_node(n, res);
1871       }
1872     }
1873     // cleanup
1874     if (_pcmp_neq->outcnt() == 0)
1875       igvn->hash_delete(_pcmp_neq);
1876     if (_pcmp_eq->outcnt()  == 0)
1877       igvn->hash_delete(_pcmp_eq);
1878   }
1879 
1880   // For MemBarStoreStore nodes added in library_call.cpp, check
1881   // escape status of associated AllocateNode and optimize out
1882   // MemBarStoreStore node if the allocated object never escapes.
1883   while (storestore_worklist.length() != 0) {
1884     Node *n = storestore_worklist.pop();
1885     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1886     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1887     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1888     if (not_global_escape(alloc)) {
1889       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1890       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1891       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1892       igvn->register_new_node_with_optimizer(mb);
1893       igvn->replace_node(storestore, mb);
1894     }
1895   }
1896 }
1897 
1898 // Optimize objects compare.
1899 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1900   assert(OptimizePtrCompare, "sanity");
1901   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1902   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1903   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1904   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1905   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1906   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1907 
1908   // Check simple cases first.
1909   if (jobj1 != NULL) {
1910     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1911       if (jobj1 == jobj2) {
1912         // Comparing the same not escaping object.
1913         return _pcmp_eq;
1914       }
1915       Node* obj = jobj1->ideal_node();
1916       // Comparing not escaping allocation.
1917       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1918           !ptn2->points_to(jobj1)) {
1919         return _pcmp_neq; // This includes nullness check.
1920       }
1921     }
1922   }
1923   if (jobj2 != NULL) {
1924     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1925       Node* obj = jobj2->ideal_node();
1926       // Comparing not escaping allocation.
1927       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1928           !ptn1->points_to(jobj2)) {
1929         return _pcmp_neq; // This includes nullness check.
1930       }
1931     }
1932   }
1933   if (jobj1 != NULL && jobj1 != phantom_obj &&
1934       jobj2 != NULL && jobj2 != phantom_obj &&
1935       jobj1->ideal_node()->is_Con() &&
1936       jobj2->ideal_node()->is_Con()) {
1937     // Klass or String constants compare. Need to be careful with
1938     // compressed pointers - compare types of ConN and ConP instead of nodes.
1939     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1940     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1941     if (t1->make_ptr() == t2->make_ptr()) {
1942       return _pcmp_eq;
1943     } else {
1944       return _pcmp_neq;
1945     }
1946   }
1947   if (ptn1->meet(ptn2)) {
1948     return NULL; // Sets are not disjoint
1949   }
1950 
1951   // Sets are disjoint.
1952   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1953   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1954   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1955   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1956   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1957       set2_has_unknown_ptr && set1_has_null_ptr) {
1958     // Check nullness of unknown object.
1959     return NULL;
1960   }
1961 
1962   // Disjointness by itself is not sufficient since
1963   // alias analysis is not complete for escaped objects.
1964   // Disjoint sets are definitely unrelated only when
1965   // at least one set has only not escaping allocations.
1966   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1967     if (ptn1->non_escaping_allocation()) {
1968       return _pcmp_neq;
1969     }
1970   }
1971   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1972     if (ptn2->non_escaping_allocation()) {
1973       return _pcmp_neq;
1974     }
1975   }
1976   return NULL;
1977 }
1978 
1979 // Connection Graph constuction functions.
1980 
1981 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1982   PointsToNode* ptadr = _nodes.at(n->_idx);
1983   if (ptadr != NULL) {
1984     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1985     return;
1986   }
1987   Compile* C = _compile;
1988   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1989   _nodes.at_put(n->_idx, ptadr);
1990 }
1991 
1992 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1993   PointsToNode* ptadr = _nodes.at(n->_idx);
1994   if (ptadr != NULL) {
1995     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1996     return;
1997   }
1998   Compile* C = _compile;
1999   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2000   _nodes.at_put(n->_idx, ptadr);
2001 }
2002 
2003 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2004   PointsToNode* ptadr = _nodes.at(n->_idx);
2005   if (ptadr != NULL) {
2006     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2007     return;
2008   }
2009   bool unsafe = false;
2010   bool is_oop = is_oop_field(n, offset, &unsafe);
2011   if (unsafe) {
2012     es = PointsToNode::GlobalEscape;
2013   }
2014   Compile* C = _compile;
2015   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2016   _nodes.at_put(n->_idx, field);
2017 }
2018 
2019 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2020                                     PointsToNode* src, PointsToNode* dst) {
2021   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2022   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2023   PointsToNode* ptadr = _nodes.at(n->_idx);
2024   if (ptadr != NULL) {
2025     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2026     return;
2027   }
2028   Compile* C = _compile;
2029   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2030   _nodes.at_put(n->_idx, ptadr);
2031   // Add edge from arraycopy node to source object.
2032   (void)add_edge(ptadr, src);
2033   src->set_arraycopy_src();
2034   // Add edge from destination object to arraycopy node.
2035   (void)add_edge(dst, ptadr);
2036   dst->set_arraycopy_dst();
2037 }
2038 
2039 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2040   const Type* adr_type = n->as_AddP()->bottom_type();
2041   BasicType bt = T_INT;
2042   if (offset == Type::OffsetBot) {
2043     // Check only oop fields.
2044     if (!adr_type->isa_aryptr() ||
2045         (adr_type->isa_aryptr()->klass() == NULL) ||
2046          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2047       // OffsetBot is used to reference array's element. Ignore first AddP.
2048       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2049         bt = T_OBJECT;
2050       }
2051     }
2052   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2053     if (adr_type->isa_instptr()) {
2054       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2055       if (field != NULL) {
2056         bt = field->layout_type();
2057       } else {
2058         // Check for unsafe oop field access
2059         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2060           bt = T_OBJECT;
2061           (*unsafe) = true;
2062         }
2063       }
2064     } else if (adr_type->isa_aryptr()) {
2065       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2066         // Ignore array length load.
2067       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2068         // Ignore first AddP.
2069       } else {
2070         const Type* elemtype = adr_type->isa_aryptr()->elem();
2071         bt = elemtype->array_element_basic_type();
2072       }
2073     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2074       // Allocation initialization, ThreadLocal field access, unsafe access
2075       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2076         bt = T_OBJECT;
2077       }
2078     }
2079   }
2080   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2081 }
2082 
2083 // Returns unique pointed java object or NULL.
2084 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2085   assert(!_collecting, "should not call when contructed graph");
2086   // If the node was created after the escape computation we can't answer.
2087   uint idx = n->_idx;
2088   if (idx >= nodes_size()) {
2089     return NULL;
2090   }
2091   PointsToNode* ptn = ptnode_adr(idx);
2092   if (ptn->is_JavaObject()) {
2093     return ptn->as_JavaObject();
2094   }
2095   assert(ptn->is_LocalVar(), "sanity");
2096   // Check all java objects it points to.
2097   JavaObjectNode* jobj = NULL;
2098   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2099     PointsToNode* e = i.get();
2100     if (e->is_JavaObject()) {
2101       if (jobj == NULL) {
2102         jobj = e->as_JavaObject();
2103       } else if (jobj != e) {
2104         return NULL;
2105       }
2106     }
2107   }
2108   return jobj;
2109 }
2110 
2111 // Return true if this node points only to non-escaping allocations.
2112 bool PointsToNode::non_escaping_allocation() {
2113   if (is_JavaObject()) {
2114     Node* n = ideal_node();
2115     if (n->is_Allocate() || n->is_CallStaticJava()) {
2116       return (escape_state() == PointsToNode::NoEscape);
2117     } else {
2118       return false;
2119     }
2120   }
2121   assert(is_LocalVar(), "sanity");
2122   // Check all java objects it points to.
2123   for (EdgeIterator i(this); i.has_next(); i.next()) {
2124     PointsToNode* e = i.get();
2125     if (e->is_JavaObject()) {
2126       Node* n = e->ideal_node();
2127       if ((e->escape_state() != PointsToNode::NoEscape) ||
2128           !(n->is_Allocate() || n->is_CallStaticJava())) {
2129         return false;
2130       }
2131     }
2132   }
2133   return true;
2134 }
2135 
2136 // Return true if we know the node does not escape globally.
2137 bool ConnectionGraph::not_global_escape(Node *n) {
2138   assert(!_collecting, "should not call during graph construction");
2139   // If the node was created after the escape computation we can't answer.
2140   uint idx = n->_idx;
2141   if (idx >= nodes_size()) {
2142     return false;
2143   }
2144   PointsToNode* ptn = ptnode_adr(idx);
2145   PointsToNode::EscapeState es = ptn->escape_state();
2146   // If we have already computed a value, return it.
2147   if (es >= PointsToNode::GlobalEscape)
2148     return false;
2149   if (ptn->is_JavaObject()) {
2150     return true; // (es < PointsToNode::GlobalEscape);
2151   }
2152   assert(ptn->is_LocalVar(), "sanity");
2153   // Check all java objects it points to.
2154   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2155     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2156       return false;
2157   }
2158   return true;
2159 }
2160 
2161 
2162 // Helper functions
2163 
2164 // Return true if this node points to specified node or nodes it points to.
2165 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2166   if (is_JavaObject()) {
2167     return (this == ptn);
2168   }
2169   assert(is_LocalVar() || is_Field(), "sanity");
2170   for (EdgeIterator i(this); i.has_next(); i.next()) {
2171     if (i.get() == ptn)
2172       return true;
2173   }
2174   return false;
2175 }
2176 
2177 // Return true if one node points to an other.
2178 bool PointsToNode::meet(PointsToNode* ptn) {
2179   if (this == ptn) {
2180     return true;
2181   } else if (ptn->is_JavaObject()) {
2182     return this->points_to(ptn->as_JavaObject());
2183   } else if (this->is_JavaObject()) {
2184     return ptn->points_to(this->as_JavaObject());
2185   }
2186   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2187   int ptn_count =  ptn->edge_count();
2188   for (EdgeIterator i(this); i.has_next(); i.next()) {
2189     PointsToNode* this_e = i.get();
2190     for (int j = 0; j < ptn_count; j++) {
2191       if (this_e == ptn->edge(j))
2192         return true;
2193     }
2194   }
2195   return false;
2196 }
2197 
2198 #ifdef ASSERT
2199 // Return true if bases point to this java object.
2200 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2201   for (BaseIterator i(this); i.has_next(); i.next()) {
2202     if (i.get() == jobj)
2203       return true;
2204   }
2205   return false;
2206 }
2207 #endif
2208 
2209 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2210   const Type *adr_type = phase->type(adr);
2211   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2212       adr->in(AddPNode::Address)->is_Proj() &&
2213       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2214     // We are computing a raw address for a store captured by an Initialize
2215     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2216     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2217     assert(offs != Type::OffsetBot ||
2218            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2219            "offset must be a constant or it is initialization of array");
2220     return offs;
2221   }
2222   const TypePtr *t_ptr = adr_type->isa_ptr();
2223   assert(t_ptr != NULL, "must be a pointer type");
2224   return t_ptr->offset();
2225 }
2226 
2227 Node* ConnectionGraph::get_addp_base(Node *addp) {
2228   assert(addp->is_AddP(), "must be AddP");
2229   //
2230   // AddP cases for Base and Address inputs:
2231   // case #1. Direct object's field reference:
2232   //     Allocate
2233   //       |
2234   //     Proj #5 ( oop result )
2235   //       |
2236   //     CheckCastPP (cast to instance type)
2237   //      | |
2238   //     AddP  ( base == address )
2239   //
2240   // case #2. Indirect object's field reference:
2241   //      Phi
2242   //       |
2243   //     CastPP (cast to instance type)
2244   //      | |
2245   //     AddP  ( base == address )
2246   //
2247   // case #3. Raw object's field reference for Initialize node:
2248   //      Allocate
2249   //        |
2250   //      Proj #5 ( oop result )
2251   //  top   |
2252   //     \  |
2253   //     AddP  ( base == top )
2254   //
2255   // case #4. Array's element reference:
2256   //   {CheckCastPP | CastPP}
2257   //     |  | |
2258   //     |  AddP ( array's element offset )
2259   //     |  |
2260   //     AddP ( array's offset )
2261   //
2262   // case #5. Raw object's field reference for arraycopy stub call:
2263   //          The inline_native_clone() case when the arraycopy stub is called
2264   //          after the allocation before Initialize and CheckCastPP nodes.
2265   //      Allocate
2266   //        |
2267   //      Proj #5 ( oop result )
2268   //       | |
2269   //       AddP  ( base == address )
2270   //
2271   // case #6. Constant Pool, ThreadLocal, CastX2P or
2272   //          Raw object's field reference:
2273   //      {ConP, ThreadLocal, CastX2P, raw Load}
2274   //  top   |
2275   //     \  |
2276   //     AddP  ( base == top )
2277   //
2278   // case #7. Klass's field reference.
2279   //      LoadKlass
2280   //       | |
2281   //       AddP  ( base == address )
2282   //
2283   // case #8. narrow Klass's field reference.
2284   //      LoadNKlass
2285   //       |
2286   //      DecodeN
2287   //       | |
2288   //       AddP  ( base == address )
2289   //
2290   Node *base = addp->in(AddPNode::Base);
2291   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2292     base = addp->in(AddPNode::Address);
2293     while (base->is_AddP()) {
2294       // Case #6 (unsafe access) may have several chained AddP nodes.
2295       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2296       base = base->in(AddPNode::Address);
2297     }
2298     Node* uncast_base = base->uncast();
2299     int opcode = uncast_base->Opcode();
2300     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2301            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2302            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2303            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2304   }
2305   return base;
2306 }
2307 
2308 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2309   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2310   Node* addp2 = addp->raw_out(0);
2311   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2312       addp2->in(AddPNode::Base) == n &&
2313       addp2->in(AddPNode::Address) == addp) {
2314     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2315     //
2316     // Find array's offset to push it on worklist first and
2317     // as result process an array's element offset first (pushed second)
2318     // to avoid CastPP for the array's offset.
2319     // Otherwise the inserted CastPP (LocalVar) will point to what
2320     // the AddP (Field) points to. Which would be wrong since
2321     // the algorithm expects the CastPP has the same point as
2322     // as AddP's base CheckCastPP (LocalVar).
2323     //
2324     //    ArrayAllocation
2325     //     |
2326     //    CheckCastPP
2327     //     |
2328     //    memProj (from ArrayAllocation CheckCastPP)
2329     //     |  ||
2330     //     |  ||   Int (element index)
2331     //     |  ||    |   ConI (log(element size))
2332     //     |  ||    |   /
2333     //     |  ||   LShift
2334     //     |  ||  /
2335     //     |  AddP (array's element offset)
2336     //     |  |
2337     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2338     //     | / /
2339     //     AddP (array's offset)
2340     //      |
2341     //     Load/Store (memory operation on array's element)
2342     //
2343     return addp2;
2344   }
2345   return NULL;
2346 }
2347 
2348 //
2349 // Adjust the type and inputs of an AddP which computes the
2350 // address of a field of an instance
2351 //
2352 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2353   PhaseGVN* igvn = _igvn;
2354   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2355   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2356   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2357   if (t == NULL) {
2358     // We are computing a raw address for a store captured by an Initialize
2359     // compute an appropriate address type (cases #3 and #5).
2360     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2361     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2362     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2363     assert(offs != Type::OffsetBot, "offset must be a constant");
2364     t = base_t->add_offset(offs)->is_oopptr();
2365   }
2366   int inst_id =  base_t->instance_id();
2367   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2368                              "old type must be non-instance or match new type");
2369 
2370   // The type 't' could be subclass of 'base_t'.
2371   // As result t->offset() could be large then base_t's size and it will
2372   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2373   // constructor verifies correctness of the offset.
2374   //
2375   // It could happened on subclass's branch (from the type profiling
2376   // inlining) which was not eliminated during parsing since the exactness
2377   // of the allocation type was not propagated to the subclass type check.
2378   //
2379   // Or the type 't' could be not related to 'base_t' at all.
2380   // It could happened when CHA type is different from MDO type on a dead path
2381   // (for example, from instanceof check) which is not collapsed during parsing.
2382   //
2383   // Do nothing for such AddP node and don't process its users since
2384   // this code branch will go away.
2385   //
2386   if (!t->is_known_instance() &&
2387       !base_t->klass()->is_subtype_of(t->klass())) {
2388      return false; // bail out
2389   }
2390   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2391   // Do NOT remove the next line: ensure a new alias index is allocated
2392   // for the instance type. Note: C++ will not remove it since the call
2393   // has side effect.
2394   int alias_idx = _compile->get_alias_index(tinst);
2395   igvn->set_type(addp, tinst);
2396   // record the allocation in the node map
2397   set_map(addp, get_map(base->_idx));
2398   // Set addp's Base and Address to 'base'.
2399   Node *abase = addp->in(AddPNode::Base);
2400   Node *adr   = addp->in(AddPNode::Address);
2401   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2402       adr->in(0)->_idx == (uint)inst_id) {
2403     // Skip AddP cases #3 and #5.
2404   } else {
2405     assert(!abase->is_top(), "sanity"); // AddP case #3
2406     if (abase != base) {
2407       igvn->hash_delete(addp);
2408       addp->set_req(AddPNode::Base, base);
2409       if (abase == adr) {
2410         addp->set_req(AddPNode::Address, base);
2411       } else {
2412         // AddP case #4 (adr is array's element offset AddP node)
2413 #ifdef ASSERT
2414         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2415         assert(adr->is_AddP() && atype != NULL &&
2416                atype->instance_id() == inst_id, "array's element offset should be processed first");
2417 #endif
2418       }
2419       igvn->hash_insert(addp);
2420     }
2421   }
2422   // Put on IGVN worklist since at least addp's type was changed above.
2423   record_for_optimizer(addp);
2424   return true;
2425 }
2426 
2427 //
2428 // Create a new version of orig_phi if necessary. Returns either the newly
2429 // created phi or an existing phi.  Sets create_new to indicate whether a new
2430 // phi was created.  Cache the last newly created phi in the node map.
2431 //
2432 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2433   Compile *C = _compile;
2434   PhaseGVN* igvn = _igvn;
2435   new_created = false;
2436   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2437   // nothing to do if orig_phi is bottom memory or matches alias_idx
2438   if (phi_alias_idx == alias_idx) {
2439     return orig_phi;
2440   }
2441   // Have we recently created a Phi for this alias index?
2442   PhiNode *result = get_map_phi(orig_phi->_idx);
2443   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2444     return result;
2445   }
2446   // Previous check may fail when the same wide memory Phi was split into Phis
2447   // for different memory slices. Search all Phis for this region.
2448   if (result != NULL) {
2449     Node* region = orig_phi->in(0);
2450     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2451       Node* phi = region->fast_out(i);
2452       if (phi->is_Phi() &&
2453           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2454         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2455         return phi->as_Phi();
2456       }
2457     }
2458   }
2459   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2460     if (C->do_escape_analysis() == true && !C->failing()) {
2461       // Retry compilation without escape analysis.
2462       // If this is the first failure, the sentinel string will "stick"
2463       // to the Compile object, and the C2Compiler will see it and retry.
2464       C->record_failure(C2Compiler::retry_no_escape_analysis());
2465     }
2466     return NULL;
2467   }
2468   orig_phi_worklist.append_if_missing(orig_phi);
2469   const TypePtr *atype = C->get_adr_type(alias_idx);
2470   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2471   C->copy_node_notes_to(result, orig_phi);
2472   igvn->set_type(result, result->bottom_type());
2473   record_for_optimizer(result);
2474   set_map(orig_phi, result);
2475   new_created = true;
2476   return result;
2477 }
2478 
2479 //
2480 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2481 // specified alias index.
2482 //
2483 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2484   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2485   Compile *C = _compile;
2486   PhaseGVN* igvn = _igvn;
2487   bool new_phi_created;
2488   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2489   if (!new_phi_created) {
2490     return result;
2491   }
2492   GrowableArray<PhiNode *>  phi_list;
2493   GrowableArray<uint>  cur_input;
2494   PhiNode *phi = orig_phi;
2495   uint idx = 1;
2496   bool finished = false;
2497   while(!finished) {
2498     while (idx < phi->req()) {
2499       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2500       if (mem != NULL && mem->is_Phi()) {
2501         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2502         if (new_phi_created) {
2503           // found an phi for which we created a new split, push current one on worklist and begin
2504           // processing new one
2505           phi_list.push(phi);
2506           cur_input.push(idx);
2507           phi = mem->as_Phi();
2508           result = newphi;
2509           idx = 1;
2510           continue;
2511         } else {
2512           mem = newphi;
2513         }
2514       }
2515       if (C->failing()) {
2516         return NULL;
2517       }
2518       result->set_req(idx++, mem);
2519     }
2520 #ifdef ASSERT
2521     // verify that the new Phi has an input for each input of the original
2522     assert( phi->req() == result->req(), "must have same number of inputs.");
2523     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2524 #endif
2525     // Check if all new phi's inputs have specified alias index.
2526     // Otherwise use old phi.
2527     for (uint i = 1; i < phi->req(); i++) {
2528       Node* in = result->in(i);
2529       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2530     }
2531     // we have finished processing a Phi, see if there are any more to do
2532     finished = (phi_list.length() == 0 );
2533     if (!finished) {
2534       phi = phi_list.pop();
2535       idx = cur_input.pop();
2536       PhiNode *prev_result = get_map_phi(phi->_idx);
2537       prev_result->set_req(idx++, result);
2538       result = prev_result;
2539     }
2540   }
2541   return result;
2542 }
2543 
2544 //
2545 // The next methods are derived from methods in MemNode.
2546 //
2547 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2548   Node *mem = mmem;
2549   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2550   // means an array I have not precisely typed yet.  Do not do any
2551   // alias stuff with it any time soon.
2552   if (toop->base() != Type::AnyPtr &&
2553       !(toop->klass() != NULL &&
2554         toop->klass()->is_java_lang_Object() &&
2555         toop->offset() == Type::OffsetBot)) {
2556     mem = mmem->memory_at(alias_idx);
2557     // Update input if it is progress over what we have now
2558   }
2559   return mem;
2560 }
2561 
2562 //
2563 // Move memory users to their memory slices.
2564 //
2565 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2566   Compile* C = _compile;
2567   PhaseGVN* igvn = _igvn;
2568   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2569   assert(tp != NULL, "ptr type");
2570   int alias_idx = C->get_alias_index(tp);
2571   int general_idx = C->get_general_index(alias_idx);
2572 
2573   // Move users first
2574   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2575     Node* use = n->fast_out(i);
2576     if (use->is_MergeMem()) {
2577       MergeMemNode* mmem = use->as_MergeMem();
2578       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2579       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2580         continue; // Nothing to do
2581       }
2582       // Replace previous general reference to mem node.
2583       uint orig_uniq = C->unique();
2584       Node* m = find_inst_mem(n, general_idx, orig_phis);
2585       assert(orig_uniq == C->unique(), "no new nodes");
2586       mmem->set_memory_at(general_idx, m);
2587       --imax;
2588       --i;
2589     } else if (use->is_MemBar()) {
2590       assert(!use->is_Initialize(), "initializing stores should not be moved");
2591       if (use->req() > MemBarNode::Precedent &&
2592           use->in(MemBarNode::Precedent) == n) {
2593         // Don't move related membars.
2594         record_for_optimizer(use);
2595         continue;
2596       }
2597       tp = use->as_MemBar()->adr_type()->isa_ptr();
2598       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2599           alias_idx == general_idx) {
2600         continue; // Nothing to do
2601       }
2602       // Move to general memory slice.
2603       uint orig_uniq = C->unique();
2604       Node* m = find_inst_mem(n, general_idx, orig_phis);
2605       assert(orig_uniq == C->unique(), "no new nodes");
2606       igvn->hash_delete(use);
2607       imax -= use->replace_edge(n, m);
2608       igvn->hash_insert(use);
2609       record_for_optimizer(use);
2610       --i;
2611 #ifdef ASSERT
2612     } else if (use->is_Mem()) {
2613       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2614         // Don't move related cardmark.
2615         continue;
2616       }
2617       // Memory nodes should have new memory input.
2618       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2619       assert(tp != NULL, "ptr type");
2620       int idx = C->get_alias_index(tp);
2621       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2622              "Following memory nodes should have new memory input or be on the same memory slice");
2623     } else if (use->is_Phi()) {
2624       // Phi nodes should be split and moved already.
2625       tp = use->as_Phi()->adr_type()->isa_ptr();
2626       assert(tp != NULL, "ptr type");
2627       int idx = C->get_alias_index(tp);
2628       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2629     } else {
2630       use->dump();
2631       assert(false, "should not be here");
2632 #endif
2633     }
2634   }
2635 }
2636 
2637 //
2638 // Search memory chain of "mem" to find a MemNode whose address
2639 // is the specified alias index.
2640 //
2641 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2642   if (orig_mem == NULL)
2643     return orig_mem;
2644   Compile* C = _compile;
2645   PhaseGVN* igvn = _igvn;
2646   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2647   bool is_instance = (toop != NULL) && toop->is_known_instance();
2648   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2649   Node *prev = NULL;
2650   Node *result = orig_mem;
2651   while (prev != result) {
2652     prev = result;
2653     if (result == start_mem)
2654       break;  // hit one of our sentinels
2655     if (result->is_Mem()) {
2656       const Type *at = igvn->type(result->in(MemNode::Address));
2657       if (at == Type::TOP)
2658         break; // Dead
2659       assert (at->isa_ptr() != NULL, "pointer type required.");
2660       int idx = C->get_alias_index(at->is_ptr());
2661       if (idx == alias_idx)
2662         break; // Found
2663       if (!is_instance && (at->isa_oopptr() == NULL ||
2664                            !at->is_oopptr()->is_known_instance())) {
2665         break; // Do not skip store to general memory slice.
2666       }
2667       result = result->in(MemNode::Memory);
2668     }
2669     if (!is_instance)
2670       continue;  // don't search further for non-instance types
2671     // skip over a call which does not affect this memory slice
2672     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2673       Node *proj_in = result->in(0);
2674       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2675         break;  // hit one of our sentinels
2676       } else if (proj_in->is_Call()) {
2677         // ArrayCopy node processed here as well
2678         CallNode *call = proj_in->as_Call();
2679         if (!call->may_modify(toop, igvn)) {
2680           result = call->in(TypeFunc::Memory);
2681         }
2682       } else if (proj_in->is_Initialize()) {
2683         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2684         // Stop if this is the initialization for the object instance which
2685         // which contains this memory slice, otherwise skip over it.
2686         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2687           result = proj_in->in(TypeFunc::Memory);
2688         }
2689       } else if (proj_in->is_MemBar()) {
2690         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2691             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2692             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2693           // clone
2694           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2695           if (ac->may_modify(toop, igvn)) {
2696             break;
2697           }
2698         }
2699         result = proj_in->in(TypeFunc::Memory);
2700       }
2701     } else if (result->is_MergeMem()) {
2702       MergeMemNode *mmem = result->as_MergeMem();
2703       result = step_through_mergemem(mmem, alias_idx, toop);
2704       if (result == mmem->base_memory()) {
2705         // Didn't find instance memory, search through general slice recursively.
2706         result = mmem->memory_at(C->get_general_index(alias_idx));
2707         result = find_inst_mem(result, alias_idx, orig_phis);
2708         if (C->failing()) {
2709           return NULL;
2710         }
2711         mmem->set_memory_at(alias_idx, result);
2712       }
2713     } else if (result->is_Phi() &&
2714                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2715       Node *un = result->as_Phi()->unique_input(igvn);
2716       if (un != NULL) {
2717         orig_phis.append_if_missing(result->as_Phi());
2718         result = un;
2719       } else {
2720         break;
2721       }
2722     } else if (result->is_ClearArray()) {
2723       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2724         // Can not bypass initialization of the instance
2725         // we are looking for.
2726         break;
2727       }
2728       // Otherwise skip it (the call updated 'result' value).
2729     } else if (result->Opcode() == Op_SCMemProj) {
2730       Node* mem = result->in(0);
2731       Node* adr = NULL;
2732       if (mem->is_LoadStore()) {
2733         adr = mem->in(MemNode::Address);
2734       } else {
2735         assert(mem->Opcode() == Op_EncodeISOArray ||
2736                mem->Opcode() == Op_StrInflatedCopy ||
2737                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2738         adr = mem->in(3); // Memory edge corresponds to destination array
2739       }
2740       const Type *at = igvn->type(adr);
2741       if (at != Type::TOP) {
2742         assert(at->isa_ptr() != NULL, "pointer type required.");
2743         int idx = C->get_alias_index(at->is_ptr());
2744         if (idx == alias_idx) {
2745           // Assert in debug mode
2746           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2747           break; // In product mode return SCMemProj node
2748         }
2749       }
2750       result = mem->in(MemNode::Memory);
2751     }
2752   }
2753   if (result->is_Phi()) {
2754     PhiNode *mphi = result->as_Phi();
2755     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2756     const TypePtr *t = mphi->adr_type();
2757     if (!is_instance) {
2758       // Push all non-instance Phis on the orig_phis worklist to update inputs
2759       // during Phase 4 if needed.
2760       orig_phis.append_if_missing(mphi);
2761     } else if (C->get_alias_index(t) != alias_idx) {
2762       // Create a new Phi with the specified alias index type.
2763       result = split_memory_phi(mphi, alias_idx, orig_phis);
2764     }
2765   }
2766   // the result is either MemNode, PhiNode, InitializeNode.
2767   return result;
2768 }
2769 
2770 //
2771 //  Convert the types of unescaped object to instance types where possible,
2772 //  propagate the new type information through the graph, and update memory
2773 //  edges and MergeMem inputs to reflect the new type.
2774 //
2775 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2776 //  The processing is done in 4 phases:
2777 //
2778 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2779 //            types for the CheckCastPP for allocations where possible.
2780 //            Propagate the new types through users as follows:
2781 //               casts and Phi:  push users on alloc_worklist
2782 //               AddP:  cast Base and Address inputs to the instance type
2783 //                      push any AddP users on alloc_worklist and push any memnode
2784 //                      users onto memnode_worklist.
2785 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2786 //            search the Memory chain for a store with the appropriate type
2787 //            address type.  If a Phi is found, create a new version with
2788 //            the appropriate memory slices from each of the Phi inputs.
2789 //            For stores, process the users as follows:
2790 //               MemNode:  push on memnode_worklist
2791 //               MergeMem: push on mergemem_worklist
2792 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2793 //            moving the first node encountered of each  instance type to the
2794 //            the input corresponding to its alias index.
2795 //            appropriate memory slice.
2796 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2797 //
2798 // In the following example, the CheckCastPP nodes are the cast of allocation
2799 // results and the allocation of node 29 is unescaped and eligible to be an
2800 // instance type.
2801 //
2802 // We start with:
2803 //
2804 //     7 Parm #memory
2805 //    10  ConI  "12"
2806 //    19  CheckCastPP   "Foo"
2807 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2808 //    29  CheckCastPP   "Foo"
2809 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2810 //
2811 //    40  StoreP  25   7  20   ... alias_index=4
2812 //    50  StoreP  35  40  30   ... alias_index=4
2813 //    60  StoreP  45  50  20   ... alias_index=4
2814 //    70  LoadP    _  60  30   ... alias_index=4
2815 //    80  Phi     75  50  60   Memory alias_index=4
2816 //    90  LoadP    _  80  30   ... alias_index=4
2817 //   100  LoadP    _  80  20   ... alias_index=4
2818 //
2819 //
2820 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2821 // and creating a new alias index for node 30.  This gives:
2822 //
2823 //     7 Parm #memory
2824 //    10  ConI  "12"
2825 //    19  CheckCastPP   "Foo"
2826 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2827 //    29  CheckCastPP   "Foo"  iid=24
2828 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2829 //
2830 //    40  StoreP  25   7  20   ... alias_index=4
2831 //    50  StoreP  35  40  30   ... alias_index=6
2832 //    60  StoreP  45  50  20   ... alias_index=4
2833 //    70  LoadP    _  60  30   ... alias_index=6
2834 //    80  Phi     75  50  60   Memory alias_index=4
2835 //    90  LoadP    _  80  30   ... alias_index=6
2836 //   100  LoadP    _  80  20   ... alias_index=4
2837 //
2838 // In phase 2, new memory inputs are computed for the loads and stores,
2839 // And a new version of the phi is created.  In phase 4, the inputs to
2840 // node 80 are updated and then the memory nodes are updated with the
2841 // values computed in phase 2.  This results in:
2842 //
2843 //     7 Parm #memory
2844 //    10  ConI  "12"
2845 //    19  CheckCastPP   "Foo"
2846 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2847 //    29  CheckCastPP   "Foo"  iid=24
2848 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2849 //
2850 //    40  StoreP  25  7   20   ... alias_index=4
2851 //    50  StoreP  35  7   30   ... alias_index=6
2852 //    60  StoreP  45  40  20   ... alias_index=4
2853 //    70  LoadP    _  50  30   ... alias_index=6
2854 //    80  Phi     75  40  60   Memory alias_index=4
2855 //   120  Phi     75  50  50   Memory alias_index=6
2856 //    90  LoadP    _ 120  30   ... alias_index=6
2857 //   100  LoadP    _  80  20   ... alias_index=4
2858 //
2859 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2860   GrowableArray<Node *>  memnode_worklist;
2861   GrowableArray<PhiNode *>  orig_phis;
2862   PhaseIterGVN  *igvn = _igvn;
2863   uint new_index_start = (uint) _compile->num_alias_types();
2864   Arena* arena = Thread::current()->resource_area();
2865   VectorSet visited(arena);
2866   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2867   uint unique_old = _compile->unique();
2868 
2869   //  Phase 1:  Process possible allocations from alloc_worklist.
2870   //  Create instance types for the CheckCastPP for allocations where possible.
2871   //
2872   // (Note: don't forget to change the order of the second AddP node on
2873   //  the alloc_worklist if the order of the worklist processing is changed,
2874   //  see the comment in find_second_addp().)
2875   //
2876   while (alloc_worklist.length() != 0) {
2877     Node *n = alloc_worklist.pop();
2878     uint ni = n->_idx;
2879     if (n->is_Call()) {
2880       CallNode *alloc = n->as_Call();
2881       // copy escape information to call node
2882       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2883       PointsToNode::EscapeState es = ptn->escape_state();
2884       // We have an allocation or call which returns a Java object,
2885       // see if it is unescaped.
2886       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2887         continue;
2888       // Find CheckCastPP for the allocate or for the return value of a call
2889       n = alloc->result_cast();
2890       if (n == NULL) {            // No uses except Initialize node
2891         if (alloc->is_Allocate()) {
2892           // Set the scalar_replaceable flag for allocation
2893           // so it could be eliminated if it has no uses.
2894           alloc->as_Allocate()->_is_scalar_replaceable = true;
2895         }
2896         if (alloc->is_CallStaticJava()) {
2897           // Set the scalar_replaceable flag for boxing method
2898           // so it could be eliminated if it has no uses.
2899           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2900         }
2901         continue;
2902       }
2903       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2904         assert(!alloc->is_Allocate(), "allocation should have unique type");
2905         continue;
2906       }
2907 
2908       // The inline code for Object.clone() casts the allocation result to
2909       // java.lang.Object and then to the actual type of the allocated
2910       // object. Detect this case and use the second cast.
2911       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2912       // the allocation result is cast to java.lang.Object and then
2913       // to the actual Array type.
2914       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2915           && (alloc->is_AllocateArray() ||
2916               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2917         Node *cast2 = NULL;
2918         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2919           Node *use = n->fast_out(i);
2920           if (use->is_CheckCastPP()) {
2921             cast2 = use;
2922             break;
2923           }
2924         }
2925         if (cast2 != NULL) {
2926           n = cast2;
2927         } else {
2928           // Non-scalar replaceable if the allocation type is unknown statically
2929           // (reflection allocation), the object can't be restored during
2930           // deoptimization without precise type.
2931           continue;
2932         }
2933       }
2934 
2935       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2936       if (t == NULL)
2937         continue;  // not a TypeOopPtr
2938       if (!t->klass_is_exact())
2939         continue; // not an unique type
2940 
2941       if (alloc->is_Allocate()) {
2942         // Set the scalar_replaceable flag for allocation
2943         // so it could be eliminated.
2944         alloc->as_Allocate()->_is_scalar_replaceable = true;
2945       }
2946       if (alloc->is_CallStaticJava()) {
2947         // Set the scalar_replaceable flag for boxing method
2948         // so it could be eliminated.
2949         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2950       }
2951       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2952       // in order for an object to be scalar-replaceable, it must be:
2953       //   - a direct allocation (not a call returning an object)
2954       //   - non-escaping
2955       //   - eligible to be a unique type
2956       //   - not determined to be ineligible by escape analysis
2957       set_map(alloc, n);
2958       set_map(n, alloc);
2959       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2960       igvn->hash_delete(n);
2961       igvn->set_type(n,  tinst);
2962       n->raise_bottom_type(tinst);
2963       igvn->hash_insert(n);
2964       record_for_optimizer(n);
2965       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2966 
2967         // First, put on the worklist all Field edges from Connection Graph
2968         // which is more accurate than putting immediate users from Ideal Graph.
2969         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2970           PointsToNode* tgt = e.get();
2971           if (tgt->is_Arraycopy()) {
2972             continue;
2973           }
2974           Node* use = tgt->ideal_node();
2975           assert(tgt->is_Field() && use->is_AddP(),
2976                  "only AddP nodes are Field edges in CG");
2977           if (use->outcnt() > 0) { // Don't process dead nodes
2978             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2979             if (addp2 != NULL) {
2980               assert(alloc->is_AllocateArray(),"array allocation was expected");
2981               alloc_worklist.append_if_missing(addp2);
2982             }
2983             alloc_worklist.append_if_missing(use);
2984           }
2985         }
2986 
2987         // An allocation may have an Initialize which has raw stores. Scan
2988         // the users of the raw allocation result and push AddP users
2989         // on alloc_worklist.
2990         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2991         assert (raw_result != NULL, "must have an allocation result");
2992         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2993           Node *use = raw_result->fast_out(i);
2994           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2995             Node* addp2 = find_second_addp(use, raw_result);
2996             if (addp2 != NULL) {
2997               assert(alloc->is_AllocateArray(),"array allocation was expected");
2998               alloc_worklist.append_if_missing(addp2);
2999             }
3000             alloc_worklist.append_if_missing(use);
3001           } else if (use->is_MemBar()) {
3002             memnode_worklist.append_if_missing(use);
3003           }
3004         }
3005       }
3006     } else if (n->is_AddP()) {
3007       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3008       if (jobj == NULL || jobj == phantom_obj) {
3009 #ifdef ASSERT
3010         ptnode_adr(get_addp_base(n)->_idx)->dump();
3011         ptnode_adr(n->_idx)->dump();
3012         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3013 #endif
3014         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3015         return;
3016       }
3017       Node *base = get_map(jobj->idx());  // CheckCastPP node
3018       if (!split_AddP(n, base)) continue; // wrong type from dead path
3019     } else if (n->is_Phi() ||
3020                n->is_CheckCastPP() ||
3021                n->is_EncodeP() ||
3022                n->is_DecodeN() ||
3023                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3024       if (visited.test_set(n->_idx)) {
3025         assert(n->is_Phi(), "loops only through Phi's");
3026         continue;  // already processed
3027       }
3028       JavaObjectNode* jobj = unique_java_object(n);
3029       if (jobj == NULL || jobj == phantom_obj) {
3030 #ifdef ASSERT
3031         ptnode_adr(n->_idx)->dump();
3032         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3033 #endif
3034         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3035         return;
3036       } else {
3037         Node *val = get_map(jobj->idx());   // CheckCastPP node
3038         TypeNode *tn = n->as_Type();
3039         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3040         assert(tinst != NULL && tinst->is_known_instance() &&
3041                tinst->instance_id() == jobj->idx() , "instance type expected.");
3042 
3043         const Type *tn_type = igvn->type(tn);
3044         const TypeOopPtr *tn_t;
3045         if (tn_type->isa_narrowoop()) {
3046           tn_t = tn_type->make_ptr()->isa_oopptr();
3047         } else {
3048           tn_t = tn_type->isa_oopptr();
3049         }
3050         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3051           if (tn_type->isa_narrowoop()) {
3052             tn_type = tinst->make_narrowoop();
3053           } else {
3054             tn_type = tinst;
3055           }
3056           igvn->hash_delete(tn);
3057           igvn->set_type(tn, tn_type);
3058           tn->set_type(tn_type);
3059           igvn->hash_insert(tn);
3060           record_for_optimizer(n);
3061         } else {
3062           assert(tn_type == TypePtr::NULL_PTR ||
3063                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3064                  "unexpected type");
3065           continue; // Skip dead path with different type
3066         }
3067       }
3068     } else {
3069       debug_only(n->dump();)
3070       assert(false, "EA: unexpected node");
3071       continue;
3072     }
3073     // push allocation's users on appropriate worklist
3074     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3075       Node *use = n->fast_out(i);
3076       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3077         // Load/store to instance's field
3078         memnode_worklist.append_if_missing(use);
3079       } else if (use->is_MemBar()) {
3080         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3081           memnode_worklist.append_if_missing(use);
3082         }
3083       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3084         Node* addp2 = find_second_addp(use, n);
3085         if (addp2 != NULL) {
3086           alloc_worklist.append_if_missing(addp2);
3087         }
3088         alloc_worklist.append_if_missing(use);
3089       } else if (use->is_Phi() ||
3090                  use->is_CheckCastPP() ||
3091                  use->is_EncodeNarrowPtr() ||
3092                  use->is_DecodeNarrowPtr() ||
3093                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3094         alloc_worklist.append_if_missing(use);
3095 #ifdef ASSERT
3096       } else if (use->is_Mem()) {
3097         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3098       } else if (use->is_MergeMem()) {
3099         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3100       } else if (use->is_SafePoint()) {
3101         // Look for MergeMem nodes for calls which reference unique allocation
3102         // (through CheckCastPP nodes) even for debug info.
3103         Node* m = use->in(TypeFunc::Memory);
3104         if (m->is_MergeMem()) {
3105           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3106         }
3107       } else if (use->Opcode() == Op_EncodeISOArray) {
3108         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3109           // EncodeISOArray overwrites destination array
3110           memnode_worklist.append_if_missing(use);
3111         }
3112       } else {
3113         uint op = use->Opcode();
3114         if ((use->in(MemNode::Memory) == n) &&
3115             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3116           // They overwrite memory edge corresponding to destination array,
3117           memnode_worklist.append_if_missing(use);
3118         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3119               op == Op_CastP2X || op == Op_StoreCM ||
3120               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3121               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3122               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3123           n->dump();
3124           use->dump();
3125           assert(false, "EA: missing allocation reference path");
3126         }
3127 #endif
3128       }
3129     }
3130 
3131   }
3132 
3133   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3134   // type, record it in the ArrayCopy node so we know what memory this
3135   // node uses/modified.
3136   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3137     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3138     Node* dest = ac->in(ArrayCopyNode::Dest);
3139     if (dest->is_AddP()) {
3140       dest = get_addp_base(dest);
3141     }
3142     JavaObjectNode* jobj = unique_java_object(dest);
3143     if (jobj != NULL) {
3144       Node *base = get_map(jobj->idx());
3145       if (base != NULL) {
3146         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3147         ac->_dest_type = base_t;
3148       }
3149     }
3150     Node* src = ac->in(ArrayCopyNode::Src);
3151     if (src->is_AddP()) {
3152       src = get_addp_base(src);
3153     }
3154     jobj = unique_java_object(src);
3155     if (jobj != NULL) {
3156       Node* base = get_map(jobj->idx());
3157       if (base != NULL) {
3158         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3159         ac->_src_type = base_t;
3160       }
3161     }
3162   }
3163 
3164   // New alias types were created in split_AddP().
3165   uint new_index_end = (uint) _compile->num_alias_types();
3166   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3167 
3168   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3169   //            compute new values for Memory inputs  (the Memory inputs are not
3170   //            actually updated until phase 4.)
3171   if (memnode_worklist.length() == 0)
3172     return;  // nothing to do
3173   while (memnode_worklist.length() != 0) {
3174     Node *n = memnode_worklist.pop();
3175     if (visited.test_set(n->_idx))
3176       continue;
3177     if (n->is_Phi() || n->is_ClearArray()) {
3178       // we don't need to do anything, but the users must be pushed
3179     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3180       // we don't need to do anything, but the users must be pushed
3181       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3182       if (n == NULL)
3183         continue;
3184     } else if (n->Opcode() == Op_StrCompressedCopy ||
3185                n->Opcode() == Op_StrInflatedCopy ||
3186                n->Opcode() == Op_EncodeISOArray) {
3187       // get the memory projection
3188       n = n->find_out_with(Op_SCMemProj);
3189       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3190     } else {
3191       assert(n->is_Mem(), "memory node required.");
3192       Node *addr = n->in(MemNode::Address);
3193       const Type *addr_t = igvn->type(addr);
3194       if (addr_t == Type::TOP)
3195         continue;
3196       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3197       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3198       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3199       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3200       if (_compile->failing()) {
3201         return;
3202       }
3203       if (mem != n->in(MemNode::Memory)) {
3204         // We delay the memory edge update since we need old one in
3205         // MergeMem code below when instances memory slices are separated.
3206         set_map(n, mem);
3207       }
3208       if (n->is_Load()) {
3209         continue;  // don't push users
3210       } else if (n->is_LoadStore()) {
3211         // get the memory projection
3212         n = n->find_out_with(Op_SCMemProj);
3213         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3214       }
3215     }
3216     // push user on appropriate worklist
3217     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3218       Node *use = n->fast_out(i);
3219       if (use->is_Phi() || use->is_ClearArray()) {
3220         memnode_worklist.append_if_missing(use);
3221       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3222         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3223           continue;
3224         memnode_worklist.append_if_missing(use);
3225       } else if (use->is_MemBar()) {
3226         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3227           memnode_worklist.append_if_missing(use);
3228         }
3229 #ifdef ASSERT
3230       } else if(use->is_Mem()) {
3231         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3232       } else if (use->is_MergeMem()) {
3233         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3234       } else if (use->Opcode() == Op_EncodeISOArray) {
3235         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3236           // EncodeISOArray overwrites destination array
3237           memnode_worklist.append_if_missing(use);
3238         }
3239       } else {
3240         uint op = use->Opcode();
3241         if ((use->in(MemNode::Memory) == n) &&
3242             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3243           // They overwrite memory edge corresponding to destination array,
3244           memnode_worklist.append_if_missing(use);
3245         } else if (!(op == Op_StoreCM ||
3246               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3247                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3248               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3249               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3250               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3251           n->dump();
3252           use->dump();
3253           assert(false, "EA: missing memory path");
3254         }
3255 #endif
3256       }
3257     }
3258   }
3259 
3260   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3261   //            Walk each memory slice moving the first node encountered of each
3262   //            instance type to the the input corresponding to its alias index.
3263   uint length = _mergemem_worklist.length();
3264   for( uint next = 0; next < length; ++next ) {
3265     MergeMemNode* nmm = _mergemem_worklist.at(next);
3266     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3267     // Note: we don't want to use MergeMemStream here because we only want to
3268     // scan inputs which exist at the start, not ones we add during processing.
3269     // Note 2: MergeMem may already contains instance memory slices added
3270     // during find_inst_mem() call when memory nodes were processed above.
3271     igvn->hash_delete(nmm);
3272     uint nslices = MIN2(nmm->req(), new_index_start);
3273     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3274       Node* mem = nmm->in(i);
3275       Node* cur = NULL;
3276       if (mem == NULL || mem->is_top())
3277         continue;
3278       // First, update mergemem by moving memory nodes to corresponding slices
3279       // if their type became more precise since this mergemem was created.
3280       while (mem->is_Mem()) {
3281         const Type *at = igvn->type(mem->in(MemNode::Address));
3282         if (at != Type::TOP) {
3283           assert (at->isa_ptr() != NULL, "pointer type required.");
3284           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3285           if (idx == i) {
3286             if (cur == NULL)
3287               cur = mem;
3288           } else {
3289             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3290               nmm->set_memory_at(idx, mem);
3291             }
3292           }
3293         }
3294         mem = mem->in(MemNode::Memory);
3295       }
3296       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3297       // Find any instance of the current type if we haven't encountered
3298       // already a memory slice of the instance along the memory chain.
3299       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3300         if((uint)_compile->get_general_index(ni) == i) {
3301           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3302           if (nmm->is_empty_memory(m)) {
3303             Node* result = find_inst_mem(mem, ni, orig_phis);
3304             if (_compile->failing()) {
3305               return;
3306             }
3307             nmm->set_memory_at(ni, result);
3308           }
3309         }
3310       }
3311     }
3312     // Find the rest of instances values
3313     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3314       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3315       Node* result = step_through_mergemem(nmm, ni, tinst);
3316       if (result == nmm->base_memory()) {
3317         // Didn't find instance memory, search through general slice recursively.
3318         result = nmm->memory_at(_compile->get_general_index(ni));
3319         result = find_inst_mem(result, ni, orig_phis);
3320         if (_compile->failing()) {
3321           return;
3322         }
3323         nmm->set_memory_at(ni, result);
3324       }
3325     }
3326     igvn->hash_insert(nmm);
3327     record_for_optimizer(nmm);
3328   }
3329 
3330   //  Phase 4:  Update the inputs of non-instance memory Phis and
3331   //            the Memory input of memnodes
3332   // First update the inputs of any non-instance Phi's from
3333   // which we split out an instance Phi.  Note we don't have
3334   // to recursively process Phi's encounted on the input memory
3335   // chains as is done in split_memory_phi() since they  will
3336   // also be processed here.
3337   for (int j = 0; j < orig_phis.length(); j++) {
3338     PhiNode *phi = orig_phis.at(j);
3339     int alias_idx = _compile->get_alias_index(phi->adr_type());
3340     igvn->hash_delete(phi);
3341     for (uint i = 1; i < phi->req(); i++) {
3342       Node *mem = phi->in(i);
3343       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3344       if (_compile->failing()) {
3345         return;
3346       }
3347       if (mem != new_mem) {
3348         phi->set_req(i, new_mem);
3349       }
3350     }
3351     igvn->hash_insert(phi);
3352     record_for_optimizer(phi);
3353   }
3354 
3355   // Update the memory inputs of MemNodes with the value we computed
3356   // in Phase 2 and move stores memory users to corresponding memory slices.
3357   // Disable memory split verification code until the fix for 6984348.
3358   // Currently it produces false negative results since it does not cover all cases.
3359 #if 0 // ifdef ASSERT
3360   visited.Reset();
3361   Node_Stack old_mems(arena, _compile->unique() >> 2);
3362 #endif
3363   for (uint i = 0; i < ideal_nodes.size(); i++) {
3364     Node*    n = ideal_nodes.at(i);
3365     Node* nmem = get_map(n->_idx);
3366     assert(nmem != NULL, "sanity");
3367     if (n->is_Mem()) {
3368 #if 0 // ifdef ASSERT
3369       Node* old_mem = n->in(MemNode::Memory);
3370       if (!visited.test_set(old_mem->_idx)) {
3371         old_mems.push(old_mem, old_mem->outcnt());
3372       }
3373 #endif
3374       assert(n->in(MemNode::Memory) != nmem, "sanity");
3375       if (!n->is_Load()) {
3376         // Move memory users of a store first.
3377         move_inst_mem(n, orig_phis);
3378       }
3379       // Now update memory input
3380       igvn->hash_delete(n);
3381       n->set_req(MemNode::Memory, nmem);
3382       igvn->hash_insert(n);
3383       record_for_optimizer(n);
3384     } else {
3385       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3386              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3387     }
3388   }
3389 #if 0 // ifdef ASSERT
3390   // Verify that memory was split correctly
3391   while (old_mems.is_nonempty()) {
3392     Node* old_mem = old_mems.node();
3393     uint  old_cnt = old_mems.index();
3394     old_mems.pop();
3395     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3396   }
3397 #endif
3398 }
3399 
3400 #ifndef PRODUCT
3401 static const char *node_type_names[] = {
3402   "UnknownType",
3403   "JavaObject",
3404   "LocalVar",
3405   "Field",
3406   "Arraycopy"
3407 };
3408 
3409 static const char *esc_names[] = {
3410   "UnknownEscape",
3411   "NoEscape",
3412   "ArgEscape",
3413   "GlobalEscape"
3414 };
3415 
3416 void PointsToNode::dump(bool print_state) const {
3417   NodeType nt = node_type();
3418   tty->print("%s ", node_type_names[(int) nt]);
3419   if (print_state) {
3420     EscapeState es = escape_state();
3421     EscapeState fields_es = fields_escape_state();
3422     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3423     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3424       tty->print("NSR ");
3425   }
3426   if (is_Field()) {
3427     FieldNode* f = (FieldNode*)this;
3428     if (f->is_oop())
3429       tty->print("oop ");
3430     if (f->offset() > 0)
3431       tty->print("+%d ", f->offset());
3432     tty->print("(");
3433     for (BaseIterator i(f); i.has_next(); i.next()) {
3434       PointsToNode* b = i.get();
3435       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3436     }
3437     tty->print(" )");
3438   }
3439   tty->print("[");
3440   for (EdgeIterator i(this); i.has_next(); i.next()) {
3441     PointsToNode* e = i.get();
3442     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3443   }
3444   tty->print(" [");
3445   for (UseIterator i(this); i.has_next(); i.next()) {
3446     PointsToNode* u = i.get();
3447     bool is_base = false;
3448     if (PointsToNode::is_base_use(u)) {
3449       is_base = true;
3450       u = PointsToNode::get_use_node(u)->as_Field();
3451     }
3452     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3453   }
3454   tty->print(" ]]  ");
3455   if (_node == NULL)
3456     tty->print_cr("<null>");
3457   else
3458     _node->dump();
3459 }
3460 
3461 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3462   bool first = true;
3463   int ptnodes_length = ptnodes_worklist.length();
3464   for (int i = 0; i < ptnodes_length; i++) {
3465     PointsToNode *ptn = ptnodes_worklist.at(i);
3466     if (ptn == NULL || !ptn->is_JavaObject())
3467       continue;
3468     PointsToNode::EscapeState es = ptn->escape_state();
3469     if ((es != PointsToNode::NoEscape) && !Verbose) {
3470       continue;
3471     }
3472     Node* n = ptn->ideal_node();
3473     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3474                              n->as_CallStaticJava()->is_boxing_method())) {
3475       if (first) {
3476         tty->cr();
3477         tty->print("======== Connection graph for ");
3478         _compile->method()->print_short_name();
3479         tty->cr();
3480         first = false;
3481       }
3482       ptn->dump();
3483       // Print all locals and fields which reference this allocation
3484       for (UseIterator j(ptn); j.has_next(); j.next()) {
3485         PointsToNode* use = j.get();
3486         if (use->is_LocalVar()) {
3487           use->dump(Verbose);
3488         } else if (Verbose) {
3489           use->dump();
3490         }
3491       }
3492       tty->cr();
3493     }
3494   }
3495 }
3496 #endif