1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/objArrayKlass.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/movenode.hpp"
  36 #include "opto/narrowptrnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 //=============================================================================
  48 //------------------------------Value------------------------------------------
  49 // Compute the type of the RegionNode.
  50 const Type *RegionNode::Value( PhaseTransform *phase ) const {
  51   for( uint i=1; i<req(); ++i ) {       // For all paths in
  52     Node *n = in(i);            // Get Control source
  53     if( !n ) continue;          // Missing inputs are TOP
  54     if( phase->type(n) == Type::CONTROL )
  55       return Type::CONTROL;
  56   }
  57   return Type::TOP;             // All paths dead?  Then so are we
  58 }
  59 
  60 //------------------------------Identity---------------------------------------
  61 // Check for Region being Identity.
  62 Node *RegionNode::Identity( PhaseTransform *phase ) {
  63   // Cannot have Region be an identity, even if it has only 1 input.
  64   // Phi users cannot have their Region input folded away for them,
  65   // since they need to select the proper data input
  66   return this;
  67 }
  68 
  69 //------------------------------merge_region-----------------------------------
  70 // If a Region flows into a Region, merge into one big happy merge.  This is
  71 // hard to do if there is stuff that has to happen
  72 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  73   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  74     return NULL;
  75   Node *progress = NULL;        // Progress flag
  76   PhaseIterGVN *igvn = phase->is_IterGVN();
  77 
  78   uint rreq = region->req();
  79   for( uint i = 1; i < rreq; i++ ) {
  80     Node *r = region->in(i);
  81     if( r && r->Opcode() == Op_Region && // Found a region?
  82         r->in(0) == r &&        // Not already collapsed?
  83         r != region &&          // Avoid stupid situations
  84         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  85       assert(!r->as_Region()->has_phi(), "no phi users");
  86       if( !progress ) {         // No progress
  87         if (region->has_phi()) {
  88           return NULL;        // Only flatten if no Phi users
  89           // igvn->hash_delete( phi );
  90         }
  91         igvn->hash_delete( region );
  92         progress = region;      // Making progress
  93       }
  94       igvn->hash_delete( r );
  95 
  96       // Append inputs to 'r' onto 'region'
  97       for( uint j = 1; j < r->req(); j++ ) {
  98         // Move an input from 'r' to 'region'
  99         region->add_req(r->in(j));
 100         r->set_req(j, phase->C->top());
 101         // Update phis of 'region'
 102         //for( uint k = 0; k < max; k++ ) {
 103         //  Node *phi = region->out(k);
 104         //  if( phi->is_Phi() ) {
 105         //    phi->add_req(phi->in(i));
 106         //  }
 107         //}
 108 
 109         rreq++;                 // One more input to Region
 110       } // Found a region to merge into Region
 111       igvn->_worklist.push(r);
 112       // Clobber pointer to the now dead 'r'
 113       region->set_req(i, phase->C->top());
 114     }
 115   }
 116 
 117   return progress;
 118 }
 119 
 120 
 121 
 122 //--------------------------------has_phi--------------------------------------
 123 // Helper function: Return any PhiNode that uses this region or NULL
 124 PhiNode* RegionNode::has_phi() const {
 125   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 126     Node* phi = fast_out(i);
 127     if (phi->is_Phi()) {   // Check for Phi users
 128       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 129       return phi->as_Phi();  // this one is good enough
 130     }
 131   }
 132 
 133   return NULL;
 134 }
 135 
 136 
 137 //-----------------------------has_unique_phi----------------------------------
 138 // Helper function: Return the only PhiNode that uses this region or NULL
 139 PhiNode* RegionNode::has_unique_phi() const {
 140   // Check that only one use is a Phi
 141   PhiNode* only_phi = NULL;
 142   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 143     Node* phi = fast_out(i);
 144     if (phi->is_Phi()) {   // Check for Phi users
 145       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 146       if (only_phi == NULL) {
 147         only_phi = phi->as_Phi();
 148       } else {
 149         return NULL;  // multiple phis
 150       }
 151     }
 152   }
 153 
 154   return only_phi;
 155 }
 156 
 157 
 158 //------------------------------check_phi_clipping-----------------------------
 159 // Helper function for RegionNode's identification of FP clipping
 160 // Check inputs to the Phi
 161 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 162   min     = NULL;
 163   max     = NULL;
 164   val     = NULL;
 165   min_idx = 0;
 166   max_idx = 0;
 167   val_idx = 0;
 168   uint  phi_max = phi->req();
 169   if( phi_max == 4 ) {
 170     for( uint j = 1; j < phi_max; ++j ) {
 171       Node *n = phi->in(j);
 172       int opcode = n->Opcode();
 173       switch( opcode ) {
 174       case Op_ConI:
 175         {
 176           if( min == NULL ) {
 177             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 178             min_idx = j;
 179           } else {
 180             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 181             max_idx = j;
 182             if( min->get_int() > max->get_int() ) {
 183               // Swap min and max
 184               ConNode *temp;
 185               uint     temp_idx;
 186               temp     = min;     min     = max;     max     = temp;
 187               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 188             }
 189           }
 190         }
 191         break;
 192       default:
 193         {
 194           val = n;
 195           val_idx = j;
 196         }
 197         break;
 198       }
 199     }
 200   }
 201   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 202 }
 203 
 204 
 205 //------------------------------check_if_clipping------------------------------
 206 // Helper function for RegionNode's identification of FP clipping
 207 // Check that inputs to Region come from two IfNodes,
 208 //
 209 //            If
 210 //      False    True
 211 //       If        |
 212 //  False  True    |
 213 //    |      |     |
 214 //  RegionNode_inputs
 215 //
 216 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 217   top_if = NULL;
 218   bot_if = NULL;
 219 
 220   // Check control structure above RegionNode for (if  ( if  ) )
 221   Node *in1 = region->in(1);
 222   Node *in2 = region->in(2);
 223   Node *in3 = region->in(3);
 224   // Check that all inputs are projections
 225   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 226     Node *in10 = in1->in(0);
 227     Node *in20 = in2->in(0);
 228     Node *in30 = in3->in(0);
 229     // Check that #1 and #2 are ifTrue and ifFalse from same If
 230     if( in10 != NULL && in10->is_If() &&
 231         in20 != NULL && in20->is_If() &&
 232         in30 != NULL && in30->is_If() && in10 == in20 &&
 233         (in1->Opcode() != in2->Opcode()) ) {
 234       Node  *in100 = in10->in(0);
 235       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 236       // Check that control for in10 comes from other branch of IF from in3
 237       if( in1000 != NULL && in1000->is_If() &&
 238           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 239         // Control pattern checks
 240         top_if = (IfNode*)in1000;
 241         bot_if = (IfNode*)in10;
 242       }
 243     }
 244   }
 245 
 246   return (top_if != NULL);
 247 }
 248 
 249 
 250 //------------------------------check_convf2i_clipping-------------------------
 251 // Helper function for RegionNode's identification of FP clipping
 252 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 253 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 254   convf2i = NULL;
 255 
 256   // Check for the RShiftNode
 257   Node *rshift = phi->in(idx);
 258   assert( rshift, "Previous checks ensure phi input is present");
 259   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 260 
 261   // Check for the LShiftNode
 262   Node *lshift = rshift->in(1);
 263   assert( lshift, "Previous checks ensure phi input is present");
 264   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 265 
 266   // Check for the ConvF2INode
 267   Node *conv = lshift->in(1);
 268   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 269 
 270   // Check that shift amounts are only to get sign bits set after F2I
 271   jint max_cutoff     = max->get_int();
 272   jint min_cutoff     = min->get_int();
 273   jint left_shift     = lshift->in(2)->get_int();
 274   jint right_shift    = rshift->in(2)->get_int();
 275   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 276   if( left_shift != right_shift ||
 277       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 278       max_post_shift < max_cutoff ||
 279       max_post_shift < -min_cutoff ) {
 280     // Shifts are necessary but current transformation eliminates them
 281     return false;
 282   }
 283 
 284   // OK to return the result of ConvF2I without shifting
 285   convf2i = (ConvF2INode*)conv;
 286   return true;
 287 }
 288 
 289 
 290 //------------------------------check_compare_clipping-------------------------
 291 // Helper function for RegionNode's identification of FP clipping
 292 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 293   Node *i1 = iff->in(1);
 294   if ( !i1->is_Bool() ) { return false; }
 295   BoolNode *bool1 = i1->as_Bool();
 296   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 297   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 298   const Node *cmpF = bool1->in(1);
 299   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 300   // Test that the float value being compared against
 301   // is equivalent to the int value used as a limit
 302   Node *nodef = cmpF->in(2);
 303   if( nodef->Opcode() != Op_ConF ) { return false; }
 304   jfloat conf = nodef->getf();
 305   jint   coni = limit->get_int();
 306   if( ((int)conf) != coni )        { return false; }
 307   input = cmpF->in(1);
 308   return true;
 309 }
 310 
 311 //------------------------------is_unreachable_region--------------------------
 312 // Find if the Region node is reachable from the root.
 313 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 314   assert(req() == 2, "");
 315 
 316   // First, cut the simple case of fallthrough region when NONE of
 317   // region's phis references itself directly or through a data node.
 318   uint max = outcnt();
 319   uint i;
 320   for (i = 0; i < max; i++) {
 321     Node* phi = raw_out(i);
 322     if (phi != NULL && phi->is_Phi()) {
 323       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 324       if (phi->outcnt() == 0)
 325         continue; // Safe case - no loops
 326       if (phi->outcnt() == 1) {
 327         Node* u = phi->raw_out(0);
 328         // Skip if only one use is an other Phi or Call or Uncommon trap.
 329         // It is safe to consider this case as fallthrough.
 330         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 331           continue;
 332       }
 333       // Check when phi references itself directly or through an other node.
 334       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 335         break; // Found possible unsafe data loop.
 336     }
 337   }
 338   if (i >= max)
 339     return false; // An unsafe case was NOT found - don't need graph walk.
 340 
 341   // Unsafe case - check if the Region node is reachable from root.
 342   ResourceMark rm;
 343 
 344   Arena *a = Thread::current()->resource_area();
 345   Node_List nstack(a);
 346   VectorSet visited(a);
 347 
 348   // Mark all control nodes reachable from root outputs
 349   Node *n = (Node*)phase->C->root();
 350   nstack.push(n);
 351   visited.set(n->_idx);
 352   while (nstack.size() != 0) {
 353     n = nstack.pop();
 354     uint max = n->outcnt();
 355     for (uint i = 0; i < max; i++) {
 356       Node* m = n->raw_out(i);
 357       if (m != NULL && m->is_CFG()) {
 358         if (phase->eqv(m, this)) {
 359           return false; // We reached the Region node - it is not dead.
 360         }
 361         if (!visited.test_set(m->_idx))
 362           nstack.push(m);
 363       }
 364     }
 365   }
 366 
 367   return true; // The Region node is unreachable - it is dead.
 368 }
 369 
 370 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 371   // Incremental inlining + PhaseStringOpts sometimes produce:
 372   //
 373   // cmpP with 1 top input
 374   //           |
 375   //          If
 376   //         /  \
 377   //   IfFalse  IfTrue  /- Some Node
 378   //         \  /      /    /
 379   //        Region    / /-MergeMem
 380   //             \---Phi
 381   //
 382   //
 383   // It's expected by PhaseStringOpts that the Region goes away and is
 384   // replaced by If's control input but because there's still a Phi,
 385   // the Region stays in the graph. The top input from the cmpP is
 386   // propagated forward and a subgraph that is useful goes away. The
 387   // code below replaces the Phi with the MergeMem so that the Region
 388   // is simplified.
 389 
 390   PhiNode* phi = has_unique_phi();
 391   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 392     MergeMemNode* m = NULL;
 393     assert(phi->req() == 3, "same as region");
 394     for (uint i = 1; i < 3; ++i) {
 395       Node *mem = phi->in(i);
 396       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 397         // Nothing is control-dependent on path #i except the region itself.
 398         m = mem->as_MergeMem();
 399         uint j = 3 - i;
 400         Node* other = phi->in(j);
 401         if (other && other == m->base_memory()) {
 402           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 403           // This will allow the diamond to collapse completely.
 404           phase->is_IterGVN()->replace_node(phi, m);
 405           return true;
 406         }
 407       }
 408     }
 409   }
 410   return false;
 411 }
 412 
 413 //------------------------------Ideal------------------------------------------
 414 // Return a node which is more "ideal" than the current node.  Must preserve
 415 // the CFG, but we can still strip out dead paths.
 416 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 417   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 418   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 419 
 420   // Check for RegionNode with no Phi users and both inputs come from either
 421   // arm of the same IF.  If found, then the control-flow split is useless.
 422   bool has_phis = false;
 423   if (can_reshape) {            // Need DU info to check for Phi users
 424     has_phis = (has_phi() != NULL);       // Cache result
 425     if (has_phis && try_clean_mem_phi(phase)) {
 426       has_phis = false;
 427     }
 428 
 429     if (!has_phis) {            // No Phi users?  Nothing merging?
 430       for (uint i = 1; i < req()-1; i++) {
 431         Node *if1 = in(i);
 432         if( !if1 ) continue;
 433         Node *iff = if1->in(0);
 434         if( !iff || !iff->is_If() ) continue;
 435         for( uint j=i+1; j<req(); j++ ) {
 436           if( in(j) && in(j)->in(0) == iff &&
 437               if1->Opcode() != in(j)->Opcode() ) {
 438             // Add the IF Projections to the worklist. They (and the IF itself)
 439             // will be eliminated if dead.
 440             phase->is_IterGVN()->add_users_to_worklist(iff);
 441             set_req(i, iff->in(0));// Skip around the useless IF diamond
 442             set_req(j, NULL);
 443             return this;      // Record progress
 444           }
 445         }
 446       }
 447     }
 448   }
 449 
 450   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 451   // degrades to a copy.
 452   bool add_to_worklist = false;
 453   bool modified = false;
 454   int cnt = 0;                  // Count of values merging
 455   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 456   int del_it = 0;               // The last input path we delete
 457   // For all inputs...
 458   for( uint i=1; i<req(); ++i ){// For all paths in
 459     Node *n = in(i);            // Get the input
 460     if( n != NULL ) {
 461       // Remove useless control copy inputs
 462       if( n->is_Region() && n->as_Region()->is_copy() ) {
 463         set_req(i, n->nonnull_req());
 464         modified = true;
 465         i--;
 466         continue;
 467       }
 468       if( n->is_Proj() ) {      // Remove useless rethrows
 469         Node *call = n->in(0);
 470         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 471           set_req(i, call->in(0));
 472           modified = true;
 473           i--;
 474           continue;
 475         }
 476       }
 477       if( phase->type(n) == Type::TOP ) {
 478         set_req(i, NULL);       // Ignore TOP inputs
 479         modified = true;
 480         i--;
 481         continue;
 482       }
 483       cnt++;                    // One more value merging
 484 
 485     } else if (can_reshape) {   // Else found dead path with DU info
 486       PhaseIterGVN *igvn = phase->is_IterGVN();
 487       del_req(i);               // Yank path from self
 488       del_it = i;
 489       uint max = outcnt();
 490       DUIterator j;
 491       bool progress = true;
 492       while(progress) {         // Need to establish property over all users
 493         progress = false;
 494         for (j = outs(); has_out(j); j++) {
 495           Node *n = out(j);
 496           if( n->req() != req() && n->is_Phi() ) {
 497             assert( n->in(0) == this, "" );
 498             igvn->hash_delete(n); // Yank from hash before hacking edges
 499             n->set_req_X(i,NULL,igvn);// Correct DU info
 500             n->del_req(i);        // Yank path from Phis
 501             if( max != outcnt() ) {
 502               progress = true;
 503               j = refresh_out_pos(j);
 504               max = outcnt();
 505             }
 506           }
 507         }
 508       }
 509       add_to_worklist = true;
 510       i--;
 511     }
 512   }
 513 
 514   if (can_reshape && cnt == 1) {
 515     // Is it dead loop?
 516     // If it is LoopNopde it had 2 (+1 itself) inputs and
 517     // one of them was cut. The loop is dead if it was EntryContol.
 518     // Loop node may have only one input because entry path
 519     // is removed in PhaseIdealLoop::Dominators().
 520     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 521     if (this->is_Loop() && (del_it == LoopNode::EntryControl ||
 522                             del_it == 0 && is_unreachable_region(phase)) ||
 523        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
 524       // Yes,  the region will be removed during the next step below.
 525       // Cut the backedge input and remove phis since no data paths left.
 526       // We don't cut outputs to other nodes here since we need to put them
 527       // on the worklist.
 528       PhaseIterGVN *igvn = phase->is_IterGVN();
 529       if (in(1)->outcnt() == 1) {
 530         igvn->_worklist.push(in(1));
 531       }
 532       del_req(1);
 533       cnt = 0;
 534       assert( req() == 1, "no more inputs expected" );
 535       uint max = outcnt();
 536       bool progress = true;
 537       Node *top = phase->C->top();
 538       DUIterator j;
 539       while(progress) {
 540         progress = false;
 541         for (j = outs(); has_out(j); j++) {
 542           Node *n = out(j);
 543           if( n->is_Phi() ) {
 544             assert( igvn->eqv(n->in(0), this), "" );
 545             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 546             // Break dead loop data path.
 547             // Eagerly replace phis with top to avoid phis copies generation.
 548             igvn->replace_node(n, top);
 549             if( max != outcnt() ) {
 550               progress = true;
 551               j = refresh_out_pos(j);
 552               max = outcnt();
 553             }
 554           }
 555         }
 556       }
 557       add_to_worklist = true;
 558     }
 559   }
 560   if (add_to_worklist) {
 561     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 562   }
 563 
 564   if( cnt <= 1 ) {              // Only 1 path in?
 565     set_req(0, NULL);           // Null control input for region copy
 566     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 567       // No inputs or all inputs are NULL.
 568       return NULL;
 569     } else if (can_reshape) {   // Optimization phase - remove the node
 570       PhaseIterGVN *igvn = phase->is_IterGVN();
 571       Node *parent_ctrl;
 572       if( cnt == 0 ) {
 573         assert( req() == 1, "no inputs expected" );
 574         // During IGVN phase such region will be subsumed by TOP node
 575         // so region's phis will have TOP as control node.
 576         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 577         // Also set other user's input to top.
 578         parent_ctrl = phase->C->top();
 579       } else {
 580         // The fallthrough case since we already checked dead loops above.
 581         parent_ctrl = in(1);
 582         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 583         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 584       }
 585       if (!add_to_worklist)
 586         igvn->add_users_to_worklist(this); // Check for further allowed opts
 587       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 588         Node* n = last_out(i);
 589         igvn->hash_delete(n); // Remove from worklist before modifying edges
 590         if( n->is_Phi() ) {   // Collapse all Phis
 591           // Eagerly replace phis to avoid copies generation.
 592           Node* in;
 593           if( cnt == 0 ) {
 594             assert( n->req() == 1, "No data inputs expected" );
 595             in = parent_ctrl; // replaced by top
 596           } else {
 597             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 598             in = n->in(1);               // replaced by unique input
 599             if( n->as_Phi()->is_unsafe_data_reference(in) )
 600               in = phase->C->top();      // replaced by top
 601           }
 602           igvn->replace_node(n, in);
 603         }
 604         else if( n->is_Region() ) { // Update all incoming edges
 605           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 606           uint uses_found = 0;
 607           for( uint k=1; k < n->req(); k++ ) {
 608             if( n->in(k) == this ) {
 609               n->set_req(k, parent_ctrl);
 610               uses_found++;
 611             }
 612           }
 613           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 614             i -= (uses_found - 1);
 615           }
 616         }
 617         else {
 618           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 619           n->set_req(0, parent_ctrl);
 620         }
 621 #ifdef ASSERT
 622         for( uint k=0; k < n->req(); k++ ) {
 623           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 624         }
 625 #endif
 626       }
 627       // Remove the RegionNode itself from DefUse info
 628       igvn->remove_dead_node(this);
 629       return NULL;
 630     }
 631     return this;                // Record progress
 632   }
 633 
 634 
 635   // If a Region flows into a Region, merge into one big happy merge.
 636   if (can_reshape) {
 637     Node *m = merge_region(this, phase);
 638     if (m != NULL)  return m;
 639   }
 640 
 641   // Check if this region is the root of a clipping idiom on floats
 642   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 643     // Check that only one use is a Phi and that it simplifies to two constants +
 644     PhiNode* phi = has_unique_phi();
 645     if (phi != NULL) {          // One Phi user
 646       // Check inputs to the Phi
 647       ConNode *min;
 648       ConNode *max;
 649       Node    *val;
 650       uint     min_idx;
 651       uint     max_idx;
 652       uint     val_idx;
 653       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 654         IfNode *top_if;
 655         IfNode *bot_if;
 656         if( check_if_clipping( this, bot_if, top_if ) ) {
 657           // Control pattern checks, now verify compares
 658           Node   *top_in = NULL;   // value being compared against
 659           Node   *bot_in = NULL;
 660           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 661               check_compare_clipping( false, top_if, max, top_in ) ) {
 662             if( bot_in == top_in ) {
 663               PhaseIterGVN *gvn = phase->is_IterGVN();
 664               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 665               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 666 
 667               // Check for the ConvF2INode
 668               ConvF2INode *convf2i;
 669               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 670                 convf2i->in(1) == bot_in ) {
 671                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 672                 // max test
 673                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 674                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 675                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 676                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 677                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 678                 // min test
 679                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 680                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 681                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 682                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 683                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 684                 // update input edges to region node
 685                 set_req_X( min_idx, if_min, gvn );
 686                 set_req_X( max_idx, if_max, gvn );
 687                 set_req_X( val_idx, ifF,    gvn );
 688                 // remove unnecessary 'LShiftI; RShiftI' idiom
 689                 gvn->hash_delete(phi);
 690                 phi->set_req_X( val_idx, convf2i, gvn );
 691                 gvn->hash_find_insert(phi);
 692                 // Return transformed region node
 693                 return this;
 694               }
 695             }
 696           }
 697         }
 698       }
 699     }
 700   }
 701 
 702   return modified ? this : NULL;
 703 }
 704 
 705 
 706 
 707 const RegMask &RegionNode::out_RegMask() const {
 708   return RegMask::Empty;
 709 }
 710 
 711 // Find the one non-null required input.  RegionNode only
 712 Node *Node::nonnull_req() const {
 713   assert( is_Region(), "" );
 714   for( uint i = 1; i < _cnt; i++ )
 715     if( in(i) )
 716       return in(i);
 717   ShouldNotReachHere();
 718   return NULL;
 719 }
 720 
 721 
 722 //=============================================================================
 723 // note that these functions assume that the _adr_type field is flattened
 724 uint PhiNode::hash() const {
 725   const Type* at = _adr_type;
 726   return TypeNode::hash() + (at ? at->hash() : 0);
 727 }
 728 uint PhiNode::cmp( const Node &n ) const {
 729   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 730 }
 731 static inline
 732 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 733   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 734   return Compile::current()->alias_type(at)->adr_type();
 735 }
 736 
 737 //----------------------------make---------------------------------------------
 738 // create a new phi with edges matching r and set (initially) to x
 739 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 740   uint preds = r->req();   // Number of predecessor paths
 741   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 742   PhiNode* p = new PhiNode(r, t, at);
 743   for (uint j = 1; j < preds; j++) {
 744     // Fill in all inputs, except those which the region does not yet have
 745     if (r->in(j) != NULL)
 746       p->init_req(j, x);
 747   }
 748   return p;
 749 }
 750 PhiNode* PhiNode::make(Node* r, Node* x) {
 751   const Type*    t  = x->bottom_type();
 752   const TypePtr* at = NULL;
 753   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 754   return make(r, x, t, at);
 755 }
 756 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 757   const Type*    t  = x->bottom_type();
 758   const TypePtr* at = NULL;
 759   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 760   return new PhiNode(r, t, at);
 761 }
 762 
 763 
 764 //------------------------slice_memory-----------------------------------------
 765 // create a new phi with narrowed memory type
 766 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 767   PhiNode* mem = (PhiNode*) clone();
 768   *(const TypePtr**)&mem->_adr_type = adr_type;
 769   // convert self-loops, or else we get a bad graph
 770   for (uint i = 1; i < req(); i++) {
 771     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 772   }
 773   mem->verify_adr_type();
 774   return mem;
 775 }
 776 
 777 //------------------------split_out_instance-----------------------------------
 778 // Split out an instance type from a bottom phi.
 779 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 780   const TypeOopPtr *t_oop = at->isa_oopptr();
 781   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 782   const TypePtr *t = adr_type();
 783   assert(type() == Type::MEMORY &&
 784          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 785           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 786           t->is_oopptr()->cast_to_exactness(true)
 787            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 788            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 789          "bottom or raw memory required");
 790 
 791   // Check if an appropriate node already exists.
 792   Node *region = in(0);
 793   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 794     Node* use = region->fast_out(k);
 795     if( use->is_Phi()) {
 796       PhiNode *phi2 = use->as_Phi();
 797       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 798         return phi2;
 799       }
 800     }
 801   }
 802   Compile *C = igvn->C;
 803   Arena *a = Thread::current()->resource_area();
 804   Node_Array node_map = new Node_Array(a);
 805   Node_Stack stack(a, C->live_nodes() >> 4);
 806   PhiNode *nphi = slice_memory(at);
 807   igvn->register_new_node_with_optimizer( nphi );
 808   node_map.map(_idx, nphi);
 809   stack.push((Node *)this, 1);
 810   while(!stack.is_empty()) {
 811     PhiNode *ophi = stack.node()->as_Phi();
 812     uint i = stack.index();
 813     assert(i >= 1, "not control edge");
 814     stack.pop();
 815     nphi = node_map[ophi->_idx]->as_Phi();
 816     for (; i < ophi->req(); i++) {
 817       Node *in = ophi->in(i);
 818       if (in == NULL || igvn->type(in) == Type::TOP)
 819         continue;
 820       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 821       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 822       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 823         opt = node_map[optphi->_idx];
 824         if (opt == NULL) {
 825           stack.push(ophi, i);
 826           nphi = optphi->slice_memory(at);
 827           igvn->register_new_node_with_optimizer( nphi );
 828           node_map.map(optphi->_idx, nphi);
 829           ophi = optphi;
 830           i = 0; // will get incremented at top of loop
 831           continue;
 832         }
 833       }
 834       nphi->set_req(i, opt);
 835     }
 836   }
 837   return nphi;
 838 }
 839 
 840 //------------------------verify_adr_type--------------------------------------
 841 #ifdef ASSERT
 842 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 843   if (visited.test_set(_idx))  return;  //already visited
 844 
 845   // recheck constructor invariants:
 846   verify_adr_type(false);
 847 
 848   // recheck local phi/phi consistency:
 849   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 850          "adr_type must be consistent across phi nest");
 851 
 852   // walk around
 853   for (uint i = 1; i < req(); i++) {
 854     Node* n = in(i);
 855     if (n == NULL)  continue;
 856     const Node* np = in(i);
 857     if (np->is_Phi()) {
 858       np->as_Phi()->verify_adr_type(visited, at);
 859     } else if (n->bottom_type() == Type::TOP
 860                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 861       // ignore top inputs
 862     } else {
 863       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 864       // recheck phi/non-phi consistency at leaves:
 865       assert((nat != NULL) == (at != NULL), "");
 866       assert(nat == at || nat == TypePtr::BOTTOM,
 867              "adr_type must be consistent at leaves of phi nest");
 868     }
 869   }
 870 }
 871 
 872 // Verify a whole nest of phis rooted at this one.
 873 void PhiNode::verify_adr_type(bool recursive) const {
 874   if (is_error_reported())  return;  // muzzle asserts when debugging an error
 875   if (Node::in_dump())      return;  // muzzle asserts when printing
 876 
 877   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 878 
 879   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 880 
 881   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 882          "Phi::adr_type must be pre-normalized");
 883 
 884   if (recursive) {
 885     VectorSet visited(Thread::current()->resource_area());
 886     verify_adr_type(visited, _adr_type);
 887   }
 888 }
 889 #endif
 890 
 891 
 892 //------------------------------Value------------------------------------------
 893 // Compute the type of the PhiNode
 894 const Type *PhiNode::Value( PhaseTransform *phase ) const {
 895   Node *r = in(0);              // RegionNode
 896   if( !r )                      // Copy or dead
 897     return in(1) ? phase->type(in(1)) : Type::TOP;
 898 
 899   // Note: During parsing, phis are often transformed before their regions.
 900   // This means we have to use type_or_null to defend against untyped regions.
 901   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 902     return Type::TOP;
 903 
 904   // Check for trip-counted loop.  If so, be smarter.
 905   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 906   if( l && l->can_be_counted_loop(phase) &&
 907       ((const Node*)l->phi() == this) ) { // Trip counted loop!
 908     // protect against init_trip() or limit() returning NULL
 909     const Node *init   = l->init_trip();
 910     const Node *limit  = l->limit();
 911     if( init != NULL && limit != NULL && l->stride_is_con() ) {
 912       const TypeInt *lo = init ->bottom_type()->isa_int();
 913       const TypeInt *hi = limit->bottom_type()->isa_int();
 914       if( lo && hi ) {            // Dying loops might have TOP here
 915         int stride = l->stride_con();
 916         if( stride < 0 ) {          // Down-counter loop
 917           const TypeInt *tmp = lo; lo = hi; hi = tmp;
 918           stride = -stride;
 919         }
 920         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
 921           return TypeInt::make(lo->_lo,hi->_hi,3);
 922       }
 923     }
 924   }
 925 
 926   // Until we have harmony between classes and interfaces in the type
 927   // lattice, we must tread carefully around phis which implicitly
 928   // convert the one to the other.
 929   const TypePtr* ttp = _type->make_ptr();
 930   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 931   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 932   bool is_intf = false;
 933   if (ttip != NULL) {
 934     ciKlass* k = ttip->klass();
 935     if (k->is_loaded() && k->is_interface())
 936       is_intf = true;
 937   }
 938   if (ttkp != NULL) {
 939     ciKlass* k = ttkp->klass();
 940     if (k->is_loaded() && k->is_interface())
 941       is_intf = true;
 942   }
 943 
 944   // Default case: merge all inputs
 945   const Type *t = Type::TOP;        // Merged type starting value
 946   for (uint i = 1; i < req(); ++i) {// For all paths in
 947     // Reachable control path?
 948     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 949       const Type* ti = phase->type(in(i));
 950       // We assume that each input of an interface-valued Phi is a true
 951       // subtype of that interface.  This might not be true of the meet
 952       // of all the input types.  The lattice is not distributive in
 953       // such cases.  Ward off asserts in type.cpp by refusing to do
 954       // meets between interfaces and proper classes.
 955       const TypePtr* tip = ti->make_ptr();
 956       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 957       if (tiip) {
 958         bool ti_is_intf = false;
 959         ciKlass* k = tiip->klass();
 960         if (k->is_loaded() && k->is_interface())
 961           ti_is_intf = true;
 962         if (is_intf != ti_is_intf)
 963           { t = _type; break; }
 964       }
 965       t = t->meet_speculative(ti);
 966     }
 967   }
 968 
 969   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 970   // That is, we expect that "t->higher_equal(_type)" holds true.
 971   // There are various exceptions:
 972   // - Inputs which are phis might in fact be widened unnecessarily.
 973   //   For example, an input might be a widened int while the phi is a short.
 974   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 975   //   and postCCP has removed the cast which encodes the result of the check.
 976   // - The type of this phi is an interface, and the inputs are classes.
 977   // - Value calls on inputs might produce fuzzy results.
 978   //   (Occurrences of this case suggest improvements to Value methods.)
 979   //
 980   // It is not possible to see Type::BOTTOM values as phi inputs,
 981   // because the ciTypeFlow pre-pass produces verifier-quality types.
 982   const Type* ft = t->filter_speculative(_type);  // Worst case type
 983 
 984 #ifdef ASSERT
 985   // The following logic has been moved into TypeOopPtr::filter.
 986   const Type* jt = t->join_speculative(_type);
 987   if (jt->empty()) {           // Emptied out???
 988 
 989     // Check for evil case of 't' being a class and '_type' expecting an
 990     // interface.  This can happen because the bytecodes do not contain
 991     // enough type info to distinguish a Java-level interface variable
 992     // from a Java-level object variable.  If we meet 2 classes which
 993     // both implement interface I, but their meet is at 'j/l/O' which
 994     // doesn't implement I, we have no way to tell if the result should
 995     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
 996     // into a Phi which "knows" it's an Interface type we'll have to
 997     // uplift the type.
 998     if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
 999       assert(ft == _type, ""); // Uplift to interface
1000     } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1001       assert(ft == _type, ""); // Uplift to interface
1002     } else {
1003       // We also have to handle 'evil cases' of interface- vs. class-arrays
1004       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1005       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1006           assert(ft == _type, "");   // Uplift to array of interface
1007       } else {
1008         // Otherwise it's something stupid like non-overlapping int ranges
1009         // found on dying counted loops.
1010         assert(ft == Type::TOP, ""); // Canonical empty value
1011       }
1012     }
1013   }
1014 
1015   else {
1016 
1017     // If we have an interface-typed Phi and we narrow to a class type, the join
1018     // should report back the class.  However, if we have a J/L/Object
1019     // class-typed Phi and an interface flows in, it's possible that the meet &
1020     // join report an interface back out.  This isn't possible but happens
1021     // because the type system doesn't interact well with interfaces.
1022     const TypePtr *jtp = jt->make_ptr();
1023     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1024     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1025     if( jtip && ttip ) {
1026       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1027           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1028         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1029                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1030         jt = ft;
1031       }
1032     }
1033     if( jtkp && ttkp ) {
1034       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1035           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1036           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1037         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1038                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1039         jt = ft;
1040       }
1041     }
1042     if (jt != ft && jt->base() == ft->base()) {
1043       if (jt->isa_int() &&
1044           jt->is_int()->_lo == ft->is_int()->_lo &&
1045           jt->is_int()->_hi == ft->is_int()->_hi)
1046         jt = ft;
1047       if (jt->isa_long() &&
1048           jt->is_long()->_lo == ft->is_long()->_lo &&
1049           jt->is_long()->_hi == ft->is_long()->_hi)
1050         jt = ft;
1051     }
1052     if (jt != ft) {
1053       tty->print("merge type:  "); t->dump(); tty->cr();
1054       tty->print("kill type:   "); _type->dump(); tty->cr();
1055       tty->print("join type:   "); jt->dump(); tty->cr();
1056       tty->print("filter type: "); ft->dump(); tty->cr();
1057     }
1058     assert(jt == ft, "");
1059   }
1060 #endif //ASSERT
1061 
1062   // Deal with conversion problems found in data loops.
1063   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1064 
1065   return ft;
1066 }
1067 
1068 
1069 //------------------------------is_diamond_phi---------------------------------
1070 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1071 // index of the true path or 0 otherwise.
1072 // If check_control_only is true, do not inspect the If node at the
1073 // top, and return -1 (not an edge number) on success.
1074 int PhiNode::is_diamond_phi(bool check_control_only) const {
1075   // Check for a 2-path merge
1076   Node *region = in(0);
1077   if( !region ) return 0;
1078   if( region->req() != 3 ) return 0;
1079   if(         req() != 3 ) return 0;
1080   // Check that both paths come from the same If
1081   Node *ifp1 = region->in(1);
1082   Node *ifp2 = region->in(2);
1083   if( !ifp1 || !ifp2 ) return 0;
1084   Node *iff = ifp1->in(0);
1085   if( !iff || !iff->is_If() ) return 0;
1086   if( iff != ifp2->in(0) ) return 0;
1087   if (check_control_only)  return -1;
1088   // Check for a proper bool/cmp
1089   const Node *b = iff->in(1);
1090   if( !b->is_Bool() ) return 0;
1091   const Node *cmp = b->in(1);
1092   if( !cmp->is_Cmp() ) return 0;
1093 
1094   // Check for branching opposite expected
1095   if( ifp2->Opcode() == Op_IfTrue ) {
1096     assert( ifp1->Opcode() == Op_IfFalse, "" );
1097     return 2;
1098   } else {
1099     assert( ifp1->Opcode() == Op_IfTrue, "" );
1100     return 1;
1101   }
1102 }
1103 
1104 //----------------------------check_cmove_id-----------------------------------
1105 // Check for CMove'ing a constant after comparing against the constant.
1106 // Happens all the time now, since if we compare equality vs a constant in
1107 // the parser, we "know" the variable is constant on one path and we force
1108 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1109 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1110 // general in that we don't need constants.  Since CMove's are only inserted
1111 // in very special circumstances, we do it here on generic Phi's.
1112 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1113   assert(true_path !=0, "only diamond shape graph expected");
1114 
1115   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1116   // phi->region->if_proj->ifnode->bool->cmp
1117   Node*     region = in(0);
1118   Node*     iff    = region->in(1)->in(0);
1119   BoolNode* b      = iff->in(1)->as_Bool();
1120   Node*     cmp    = b->in(1);
1121   Node*     tval   = in(true_path);
1122   Node*     fval   = in(3-true_path);
1123   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1124   if (id == NULL)
1125     return NULL;
1126 
1127   // Either value might be a cast that depends on a branch of 'iff'.
1128   // Since the 'id' value will float free of the diamond, either
1129   // decast or return failure.
1130   Node* ctl = id->in(0);
1131   if (ctl != NULL && ctl->in(0) == iff) {
1132     if (id->is_ConstraintCast()) {
1133       return id->in(1);
1134     } else {
1135       // Don't know how to disentangle this value.
1136       return NULL;
1137     }
1138   }
1139 
1140   return id;
1141 }
1142 
1143 //------------------------------Identity---------------------------------------
1144 // Check for Region being Identity.
1145 Node *PhiNode::Identity( PhaseTransform *phase ) {
1146   // Check for no merging going on
1147   // (There used to be special-case code here when this->region->is_Loop.
1148   // It would check for a tributary phi on the backedge that the main phi
1149   // trivially, perhaps with a single cast.  The unique_input method
1150   // does all this and more, by reducing such tributaries to 'this'.)
1151   Node* uin = unique_input(phase);
1152   if (uin != NULL) {
1153     return uin;
1154   }
1155 
1156   int true_path = is_diamond_phi();
1157   if (true_path != 0) {
1158     Node* id = is_cmove_id(phase, true_path);
1159     if (id != NULL)  return id;
1160   }
1161 
1162   return this;                     // No identity
1163 }
1164 
1165 //-----------------------------unique_input------------------------------------
1166 // Find the unique value, discounting top, self-loops, and casts.
1167 // Return top if there are no inputs, and self if there are multiple.
1168 Node* PhiNode::unique_input(PhaseTransform* phase) {
1169   //  1) One unique direct input, or
1170   //  2) some of the inputs have an intervening ConstraintCast and
1171   //     the type of input is the same or sharper (more specific)
1172   //     than the phi's type.
1173   //  3) an input is a self loop
1174   //
1175   //  1) input   or   2) input     or   3) input __
1176   //     /   \           /   \               \  /  \
1177   //     \   /          |    cast             phi  cast
1178   //      phi            \   /               /  \  /
1179   //                      phi               /    --
1180 
1181   Node* r = in(0);                      // RegionNode
1182   if (r == NULL)  return in(1);         // Already degraded to a Copy
1183   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1184   Node* direct_input   = NULL; // The unique direct input
1185 
1186   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1187     Node* rc = r->in(i);
1188     if (rc == NULL || phase->type(rc) == Type::TOP)
1189       continue;                 // ignore unreachable control path
1190     Node* n = in(i);
1191     if (n == NULL)
1192       continue;
1193     Node* un = n->uncast();
1194     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1195       continue; // ignore if top, or in(i) and "this" are in a data cycle
1196     }
1197     // Check for a unique uncasted input
1198     if (uncasted_input == NULL) {
1199       uncasted_input = un;
1200     } else if (uncasted_input != un) {
1201       uncasted_input = NodeSentinel; // no unique uncasted input
1202     }
1203     // Check for a unique direct input
1204     if (direct_input == NULL) {
1205       direct_input = n;
1206     } else if (direct_input != n) {
1207       direct_input = NodeSentinel; // no unique direct input
1208     }
1209   }
1210   if (direct_input == NULL) {
1211     return phase->C->top();        // no inputs
1212   }
1213   assert(uncasted_input != NULL,"");
1214 
1215   if (direct_input != NodeSentinel) {
1216     return direct_input;           // one unique direct input
1217   }
1218   if (uncasted_input != NodeSentinel &&
1219       phase->type(uncasted_input)->higher_equal(type())) {
1220     return uncasted_input;         // one unique uncasted input
1221   }
1222 
1223   // Nothing.
1224   return NULL;
1225 }
1226 
1227 //------------------------------is_x2logic-------------------------------------
1228 // Check for simple convert-to-boolean pattern
1229 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1230 // Convert Phi to an ConvIB.
1231 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1232   assert(true_path !=0, "only diamond shape graph expected");
1233   // Convert the true/false index into an expected 0/1 return.
1234   // Map 2->0 and 1->1.
1235   int flipped = 2-true_path;
1236 
1237   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1238   // phi->region->if_proj->ifnode->bool->cmp
1239   Node *region = phi->in(0);
1240   Node *iff = region->in(1)->in(0);
1241   BoolNode *b = (BoolNode*)iff->in(1);
1242   const CmpNode *cmp = (CmpNode*)b->in(1);
1243 
1244   Node *zero = phi->in(1);
1245   Node *one  = phi->in(2);
1246   const Type *tzero = phase->type( zero );
1247   const Type *tone  = phase->type( one  );
1248 
1249   // Check for compare vs 0
1250   const Type *tcmp = phase->type(cmp->in(2));
1251   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1252     // Allow cmp-vs-1 if the other input is bounded by 0-1
1253     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1254       return NULL;
1255     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1256   }
1257 
1258   // Check for setting zero/one opposite expected
1259   if( tzero == TypeInt::ZERO ) {
1260     if( tone == TypeInt::ONE ) {
1261     } else return NULL;
1262   } else if( tzero == TypeInt::ONE ) {
1263     if( tone == TypeInt::ZERO ) {
1264       flipped = 1-flipped;
1265     } else return NULL;
1266   } else return NULL;
1267 
1268   // Check for boolean test backwards
1269   if( b->_test._test == BoolTest::ne ) {
1270   } else if( b->_test._test == BoolTest::eq ) {
1271     flipped = 1-flipped;
1272   } else return NULL;
1273 
1274   // Build int->bool conversion
1275   Node *n = new Conv2BNode( cmp->in(1) );
1276   if( flipped )
1277     n = new XorINode( phase->transform(n), phase->intcon(1) );
1278 
1279   return n;
1280 }
1281 
1282 //------------------------------is_cond_add------------------------------------
1283 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1284 // To be profitable the control flow has to disappear; there can be no other
1285 // values merging here.  We replace the test-and-branch with:
1286 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1287 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1288 // Then convert Y to 0-or-Y and finally add.
1289 // This is a key transform for SpecJava _201_compress.
1290 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1291   assert(true_path !=0, "only diamond shape graph expected");
1292 
1293   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1294   // phi->region->if_proj->ifnode->bool->cmp
1295   RegionNode *region = (RegionNode*)phi->in(0);
1296   Node *iff = region->in(1)->in(0);
1297   BoolNode* b = iff->in(1)->as_Bool();
1298   const CmpNode *cmp = (CmpNode*)b->in(1);
1299 
1300   // Make sure only merging this one phi here
1301   if (region->has_unique_phi() != phi)  return NULL;
1302 
1303   // Make sure each arm of the diamond has exactly one output, which we assume
1304   // is the region.  Otherwise, the control flow won't disappear.
1305   if (region->in(1)->outcnt() != 1) return NULL;
1306   if (region->in(2)->outcnt() != 1) return NULL;
1307 
1308   // Check for "(P < Q)" of type signed int
1309   if (b->_test._test != BoolTest::lt)  return NULL;
1310   if (cmp->Opcode() != Op_CmpI)        return NULL;
1311 
1312   Node *p = cmp->in(1);
1313   Node *q = cmp->in(2);
1314   Node *n1 = phi->in(  true_path);
1315   Node *n2 = phi->in(3-true_path);
1316 
1317   int op = n1->Opcode();
1318   if( op != Op_AddI           // Need zero as additive identity
1319       /*&&op != Op_SubI &&
1320       op != Op_AddP &&
1321       op != Op_XorI &&
1322       op != Op_OrI*/ )
1323     return NULL;
1324 
1325   Node *x = n2;
1326   Node *y = NULL;
1327   if( x == n1->in(1) ) {
1328     y = n1->in(2);
1329   } else if( x == n1->in(2) ) {
1330     y = n1->in(1);
1331   } else return NULL;
1332 
1333   // Not so profitable if compare and add are constants
1334   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1335     return NULL;
1336 
1337   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1338   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1339   return new AddINode(j_and,x);
1340 }
1341 
1342 //------------------------------is_absolute------------------------------------
1343 // Check for absolute value.
1344 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1345   assert(true_path !=0, "only diamond shape graph expected");
1346 
1347   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1348   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1349 
1350   // ABS ends with the merge of 2 control flow paths.
1351   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1352   int false_path = 3 - true_path;
1353 
1354   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1355   // phi->region->if_proj->ifnode->bool->cmp
1356   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1357 
1358   // Check bool sense
1359   switch( bol->_test._test ) {
1360   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1361   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1362   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1363   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1364   default:           return NULL;                              break;
1365   }
1366 
1367   // Test is next
1368   Node *cmp = bol->in(1);
1369   const Type *tzero = NULL;
1370   switch( cmp->Opcode() ) {
1371   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1372   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1373   default: return NULL;
1374   }
1375 
1376   // Find zero input of compare; the other input is being abs'd
1377   Node *x = NULL;
1378   bool flip = false;
1379   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1380     x = cmp->in(3 - cmp_zero_idx);
1381   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1382     // The test is inverted, we should invert the result...
1383     x = cmp->in(cmp_zero_idx);
1384     flip = true;
1385   } else {
1386     return NULL;
1387   }
1388 
1389   // Next get the 2 pieces being selected, one is the original value
1390   // and the other is the negated value.
1391   if( phi_root->in(phi_x_idx) != x ) return NULL;
1392 
1393   // Check other phi input for subtract node
1394   Node *sub = phi_root->in(3 - phi_x_idx);
1395 
1396   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1397   if( tzero == TypeF::ZERO ) {
1398     if( sub->Opcode() != Op_SubF ||
1399         sub->in(2) != x ||
1400         phase->type(sub->in(1)) != tzero ) return NULL;
1401     x = new AbsFNode(x);
1402     if (flip) {
1403       x = new SubFNode(sub->in(1), phase->transform(x));
1404     }
1405   } else {
1406     if( sub->Opcode() != Op_SubD ||
1407         sub->in(2) != x ||
1408         phase->type(sub->in(1)) != tzero ) return NULL;
1409     x = new AbsDNode(x);
1410     if (flip) {
1411       x = new SubDNode(sub->in(1), phase->transform(x));
1412     }
1413   }
1414 
1415   return x;
1416 }
1417 
1418 //------------------------------split_once-------------------------------------
1419 // Helper for split_flow_path
1420 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1421   igvn->hash_delete(n);         // Remove from hash before hacking edges
1422 
1423   uint j = 1;
1424   for (uint i = phi->req()-1; i > 0; i--) {
1425     if (phi->in(i) == val) {   // Found a path with val?
1426       // Add to NEW Region/Phi, no DU info
1427       newn->set_req( j++, n->in(i) );
1428       // Remove from OLD Region/Phi
1429       n->del_req(i);
1430     }
1431   }
1432 
1433   // Register the new node but do not transform it.  Cannot transform until the
1434   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1435   igvn->register_new_node_with_optimizer( newn );
1436 
1437   // Now I can point to the new node.
1438   n->add_req(newn);
1439   igvn->_worklist.push(n);
1440 }
1441 
1442 //------------------------------split_flow_path--------------------------------
1443 // Check for merging identical values and split flow paths
1444 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1445   BasicType bt = phi->type()->basic_type();
1446   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1447     return NULL;                // Bail out on funny non-value stuff
1448   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1449     return NULL;                // third unequal input to be worth doing
1450 
1451   // Scan for a constant
1452   uint i;
1453   for( i = 1; i < phi->req()-1; i++ ) {
1454     Node *n = phi->in(i);
1455     if( !n ) return NULL;
1456     if( phase->type(n) == Type::TOP ) return NULL;
1457     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1458       break;
1459   }
1460   if( i >= phi->req() )         // Only split for constants
1461     return NULL;
1462 
1463   Node *val = phi->in(i);       // Constant to split for
1464   uint hit = 0;                 // Number of times it occurs
1465   Node *r = phi->region();
1466 
1467   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1468     Node *n = phi->in(i);
1469     if( !n ) return NULL;
1470     if( phase->type(n) == Type::TOP ) return NULL;
1471     if( phi->in(i) == val ) {
1472       hit++;
1473       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1474         return NULL;            // don't split loop entry path
1475       }
1476     }
1477   }
1478 
1479   if( hit <= 1 ||               // Make sure we find 2 or more
1480       hit == phi->req()-1 )     // and not ALL the same value
1481     return NULL;
1482 
1483   // Now start splitting out the flow paths that merge the same value.
1484   // Split first the RegionNode.
1485   PhaseIterGVN *igvn = phase->is_IterGVN();
1486   RegionNode *newr = new RegionNode(hit+1);
1487   split_once(igvn, phi, val, r, newr);
1488 
1489   // Now split all other Phis than this one
1490   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1491     Node* phi2 = r->fast_out(k);
1492     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1493       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1494       split_once(igvn, phi, val, phi2, newphi);
1495     }
1496   }
1497 
1498   // Clean up this guy
1499   igvn->hash_delete(phi);
1500   for( i = phi->req()-1; i > 0; i-- ) {
1501     if( phi->in(i) == val ) {
1502       phi->del_req(i);
1503     }
1504   }
1505   phi->add_req(val);
1506 
1507   return phi;
1508 }
1509 
1510 //=============================================================================
1511 //------------------------------simple_data_loop_check-------------------------
1512 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1513 //  Returns:
1514 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1515 // Safe       - safe case when the phi and it's inputs reference only safe data
1516 //              nodes;
1517 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1518 //              is no reference back to the phi - need a graph walk
1519 //              to determine if it is in a loop;
1520 // UnsafeLoop - unsafe case when the phi references itself directly or through
1521 //              unsafe data node.
1522 //  Note: a safe data node is a node which could/never reference itself during
1523 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1524 //  I mark Phi nodes as safe node not only because they can reference itself
1525 //  but also to prevent mistaking the fallthrough case inside an outer loop
1526 //  as dead loop when the phi references itselfs through an other phi.
1527 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1528   // It is unsafe loop if the phi node references itself directly.
1529   if (in == (Node*)this)
1530     return UnsafeLoop; // Unsafe loop
1531   // Unsafe loop if the phi node references itself through an unsafe data node.
1532   // Exclude cases with null inputs or data nodes which could reference
1533   // itself (safe for dead loops).
1534   if (in != NULL && !in->is_dead_loop_safe()) {
1535     // Check inputs of phi's inputs also.
1536     // It is much less expensive then full graph walk.
1537     uint cnt = in->req();
1538     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1539     for (; i < cnt; ++i) {
1540       Node* m = in->in(i);
1541       if (m == (Node*)this)
1542         return UnsafeLoop; // Unsafe loop
1543       if (m != NULL && !m->is_dead_loop_safe()) {
1544         // Check the most common case (about 30% of all cases):
1545         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1546         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1547         if (m1 == (Node*)this)
1548           return UnsafeLoop; // Unsafe loop
1549         if (m1 != NULL && m1 == m->in(2) &&
1550             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1551           continue; // Safe case
1552         }
1553         // The phi references an unsafe node - need full analysis.
1554         return Unsafe;
1555       }
1556     }
1557   }
1558   return Safe; // Safe case - we can optimize the phi node.
1559 }
1560 
1561 //------------------------------is_unsafe_data_reference-----------------------
1562 // If phi can be reached through the data input - it is data loop.
1563 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1564   assert(req() > 1, "");
1565   // First, check simple cases when phi references itself directly or
1566   // through an other node.
1567   LoopSafety safety = simple_data_loop_check(in);
1568   if (safety == UnsafeLoop)
1569     return true;  // phi references itself - unsafe loop
1570   else if (safety == Safe)
1571     return false; // Safe case - phi could be replaced with the unique input.
1572 
1573   // Unsafe case when we should go through data graph to determine
1574   // if the phi references itself.
1575 
1576   ResourceMark rm;
1577 
1578   Arena *a = Thread::current()->resource_area();
1579   Node_List nstack(a);
1580   VectorSet visited(a);
1581 
1582   nstack.push(in); // Start with unique input.
1583   visited.set(in->_idx);
1584   while (nstack.size() != 0) {
1585     Node* n = nstack.pop();
1586     uint cnt = n->req();
1587     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1588     for (; i < cnt; i++) {
1589       Node* m = n->in(i);
1590       if (m == (Node*)this) {
1591         return true;    // Data loop
1592       }
1593       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1594         if (!visited.test_set(m->_idx))
1595           nstack.push(m);
1596       }
1597     }
1598   }
1599   return false; // The phi is not reachable from its inputs
1600 }
1601 
1602 
1603 //------------------------------Ideal------------------------------------------
1604 // Return a node which is more "ideal" than the current node.  Must preserve
1605 // the CFG, but we can still strip out dead paths.
1606 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1607   // The next should never happen after 6297035 fix.
1608   if( is_copy() )               // Already degraded to a Copy ?
1609     return NULL;                // No change
1610 
1611   Node *r = in(0);              // RegionNode
1612   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1613 
1614   // Note: During parsing, phis are often transformed before their regions.
1615   // This means we have to use type_or_null to defend against untyped regions.
1616   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1617     return NULL;                // No change
1618 
1619   Node *top = phase->C->top();
1620   bool new_phi = (outcnt() == 0); // transforming new Phi
1621   // No change for igvn if new phi is not hooked
1622   if (new_phi && can_reshape)
1623     return NULL;
1624 
1625   // The are 2 situations when only one valid phi's input is left
1626   // (in addition to Region input).
1627   // One: region is not loop - replace phi with this input.
1628   // Two: region is loop - replace phi with top since this data path is dead
1629   //                       and we need to break the dead data loop.
1630   Node* progress = NULL;        // Record if any progress made
1631   for( uint j = 1; j < req(); ++j ){ // For all paths in
1632     // Check unreachable control paths
1633     Node* rc = r->in(j);
1634     Node* n = in(j);            // Get the input
1635     if (rc == NULL || phase->type(rc) == Type::TOP) {
1636       if (n != top) {           // Not already top?
1637         PhaseIterGVN *igvn = phase->is_IterGVN();
1638         if (can_reshape && igvn != NULL) {
1639           igvn->_worklist.push(r);
1640         }
1641         set_req(j, top);        // Nuke it down
1642         progress = this;        // Record progress
1643       }
1644     }
1645   }
1646 
1647   if (can_reshape && outcnt() == 0) {
1648     // set_req() above may kill outputs if Phi is referenced
1649     // only by itself on the dead (top) control path.
1650     return top;
1651   }
1652 
1653   Node* uin = unique_input(phase);
1654   if (uin == top) {             // Simplest case: no alive inputs.
1655     if (can_reshape)            // IGVN transformation
1656       return top;
1657     else
1658       return NULL;              // Identity will return TOP
1659   } else if (uin != NULL) {
1660     // Only one not-NULL unique input path is left.
1661     // Determine if this input is backedge of a loop.
1662     // (Skip new phis which have no uses and dead regions).
1663     if (outcnt() > 0 && r->in(0) != NULL) {
1664       // First, take the short cut when we know it is a loop and
1665       // the EntryControl data path is dead.
1666       // Loop node may have only one input because entry path
1667       // is removed in PhaseIdealLoop::Dominators().
1668       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1669       bool is_loop = (r->is_Loop() && r->req() == 3);
1670       // Then, check if there is a data loop when phi references itself directly
1671       // or through other data nodes.
1672       if (is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl)) ||
1673          !is_loop && is_unsafe_data_reference(uin)) {
1674         // Break this data loop to avoid creation of a dead loop.
1675         if (can_reshape) {
1676           return top;
1677         } else {
1678           // We can't return top if we are in Parse phase - cut inputs only
1679           // let Identity to handle the case.
1680           replace_edge(uin, top);
1681           return NULL;
1682         }
1683       }
1684     }
1685 
1686     // One unique input.
1687     debug_only(Node* ident = Identity(phase));
1688     // The unique input must eventually be detected by the Identity call.
1689 #ifdef ASSERT
1690     if (ident != uin && !ident->is_top()) {
1691       // print this output before failing assert
1692       r->dump(3);
1693       this->dump(3);
1694       ident->dump();
1695       uin->dump();
1696     }
1697 #endif
1698     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1699     return NULL;
1700   }
1701 
1702 
1703   Node* opt = NULL;
1704   int true_path = is_diamond_phi();
1705   if( true_path != 0 ) {
1706     // Check for CMove'ing identity. If it would be unsafe,
1707     // handle it here. In the safe case, let Identity handle it.
1708     Node* unsafe_id = is_cmove_id(phase, true_path);
1709     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1710       opt = unsafe_id;
1711 
1712     // Check for simple convert-to-boolean pattern
1713     if( opt == NULL )
1714       opt = is_x2logic(phase, this, true_path);
1715 
1716     // Check for absolute value
1717     if( opt == NULL )
1718       opt = is_absolute(phase, this, true_path);
1719 
1720     // Check for conditional add
1721     if( opt == NULL && can_reshape )
1722       opt = is_cond_add(phase, this, true_path);
1723 
1724     // These 4 optimizations could subsume the phi:
1725     // have to check for a dead data loop creation.
1726     if( opt != NULL ) {
1727       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1728         // Found dead loop.
1729         if( can_reshape )
1730           return top;
1731         // We can't return top if we are in Parse phase - cut inputs only
1732         // to stop further optimizations for this phi. Identity will return TOP.
1733         assert(req() == 3, "only diamond merge phi here");
1734         set_req(1, top);
1735         set_req(2, top);
1736         return NULL;
1737       } else {
1738         return opt;
1739       }
1740     }
1741   }
1742 
1743   // Check for merging identical values and split flow paths
1744   if (can_reshape) {
1745     opt = split_flow_path(phase, this);
1746     // This optimization only modifies phi - don't need to check for dead loop.
1747     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1748     if (opt != NULL)  return opt;
1749   }
1750 
1751   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1752     // Try to undo Phi of AddP:
1753     // (Phi (AddP base base y) (AddP base2 base2 y))
1754     // becomes:
1755     // newbase := (Phi base base2)
1756     // (AddP newbase newbase y)
1757     //
1758     // This occurs as a result of unsuccessful split_thru_phi and
1759     // interferes with taking advantage of addressing modes. See the
1760     // clone_shift_expressions code in matcher.cpp
1761     Node* addp = in(1);
1762     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1763     Node* y = addp->in(AddPNode::Offset);
1764     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1765       // make sure that all the inputs are similar to the first one,
1766       // i.e. AddP with base == address and same offset as first AddP
1767       bool doit = true;
1768       for (uint i = 2; i < req(); i++) {
1769         if (in(i) == NULL ||
1770             in(i)->Opcode() != Op_AddP ||
1771             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1772             in(i)->in(AddPNode::Offset) != y) {
1773           doit = false;
1774           break;
1775         }
1776         // Accumulate type for resulting Phi
1777         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1778       }
1779       Node* base = NULL;
1780       if (doit) {
1781         // Check for neighboring AddP nodes in a tree.
1782         // If they have a base, use that it.
1783         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1784           Node* u = this->fast_out(k);
1785           if (u->is_AddP()) {
1786             Node* base2 = u->in(AddPNode::Base);
1787             if (base2 != NULL && !base2->is_top()) {
1788               if (base == NULL)
1789                 base = base2;
1790               else if (base != base2)
1791                 { doit = false; break; }
1792             }
1793           }
1794         }
1795       }
1796       if (doit) {
1797         if (base == NULL) {
1798           base = new PhiNode(in(0), type, NULL);
1799           for (uint i = 1; i < req(); i++) {
1800             base->init_req(i, in(i)->in(AddPNode::Base));
1801           }
1802           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1803         }
1804         return new AddPNode(base, base, y);
1805       }
1806     }
1807   }
1808 
1809   // Split phis through memory merges, so that the memory merges will go away.
1810   // Piggy-back this transformation on the search for a unique input....
1811   // It will be as if the merged memory is the unique value of the phi.
1812   // (Do not attempt this optimization unless parsing is complete.
1813   // It would make the parser's memory-merge logic sick.)
1814   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1815   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1816     // see if this phi should be sliced
1817     uint merge_width = 0;
1818     bool saw_self = false;
1819     for( uint i=1; i<req(); ++i ) {// For all paths in
1820       Node *ii = in(i);
1821       if (ii->is_MergeMem()) {
1822         MergeMemNode* n = ii->as_MergeMem();
1823         merge_width = MAX2(merge_width, n->req());
1824         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1825       }
1826     }
1827 
1828     // This restriction is temporarily necessary to ensure termination:
1829     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1830 
1831     if (merge_width > Compile::AliasIdxRaw) {
1832       // found at least one non-empty MergeMem
1833       const TypePtr* at = adr_type();
1834       if (at != TypePtr::BOTTOM) {
1835         // Patch the existing phi to select an input from the merge:
1836         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1837         //     Phi:AT1(...m1...)
1838         int alias_idx = phase->C->get_alias_index(at);
1839         for (uint i=1; i<req(); ++i) {
1840           Node *ii = in(i);
1841           if (ii->is_MergeMem()) {
1842             MergeMemNode* n = ii->as_MergeMem();
1843             // compress paths and change unreachable cycles to TOP
1844             // If not, we can update the input infinitely along a MergeMem cycle
1845             // Equivalent code is in MemNode::Ideal_common
1846             Node *m  = phase->transform(n);
1847             if (outcnt() == 0) {  // Above transform() may kill us!
1848               return top;
1849             }
1850             // If transformed to a MergeMem, get the desired slice
1851             // Otherwise the returned node represents memory for every slice
1852             Node *new_mem = (m->is_MergeMem()) ?
1853                              m->as_MergeMem()->memory_at(alias_idx) : m;
1854             // Update input if it is progress over what we have now
1855             if (new_mem != ii) {
1856               set_req(i, new_mem);
1857               progress = this;
1858             }
1859           }
1860         }
1861       } else {
1862         // We know that at least one MergeMem->base_memory() == this
1863         // (saw_self == true). If all other inputs also references this phi
1864         // (directly or through data nodes) - it is dead loop.
1865         bool saw_safe_input = false;
1866         for (uint j = 1; j < req(); ++j) {
1867           Node *n = in(j);
1868           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1869             continue;              // skip known cases
1870           if (!is_unsafe_data_reference(n)) {
1871             saw_safe_input = true; // found safe input
1872             break;
1873           }
1874         }
1875         if (!saw_safe_input)
1876           return top; // all inputs reference back to this phi - dead loop
1877 
1878         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1879         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1880         PhaseIterGVN *igvn = phase->is_IterGVN();
1881         Node* hook = new Node(1);
1882         PhiNode* new_base = (PhiNode*) clone();
1883         // Must eagerly register phis, since they participate in loops.
1884         if (igvn) {
1885           igvn->register_new_node_with_optimizer(new_base);
1886           hook->add_req(new_base);
1887         }
1888         MergeMemNode* result = MergeMemNode::make(new_base);
1889         for (uint i = 1; i < req(); ++i) {
1890           Node *ii = in(i);
1891           if (ii->is_MergeMem()) {
1892             MergeMemNode* n = ii->as_MergeMem();
1893             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1894               // If we have not seen this slice yet, make a phi for it.
1895               bool made_new_phi = false;
1896               if (mms.is_empty()) {
1897                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1898                 made_new_phi = true;
1899                 if (igvn) {
1900                   igvn->register_new_node_with_optimizer(new_phi);
1901                   hook->add_req(new_phi);
1902                 }
1903                 mms.set_memory(new_phi);
1904               }
1905               Node* phi = mms.memory();
1906               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1907               phi->set_req(i, mms.memory2());
1908             }
1909           }
1910         }
1911         // Distribute all self-loops.
1912         { // (Extra braces to hide mms.)
1913           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1914             Node* phi = mms.memory();
1915             for (uint i = 1; i < req(); ++i) {
1916               if (phi->in(i) == this)  phi->set_req(i, phi);
1917             }
1918           }
1919         }
1920         // now transform the new nodes, and return the mergemem
1921         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1922           Node* phi = mms.memory();
1923           mms.set_memory(phase->transform(phi));
1924         }
1925         if (igvn) { // Unhook.
1926           igvn->hash_delete(hook);
1927           for (uint i = 1; i < hook->req(); i++) {
1928             hook->set_req(i, NULL);
1929           }
1930         }
1931         // Replace self with the result.
1932         return result;
1933       }
1934     }
1935     //
1936     // Other optimizations on the memory chain
1937     //
1938     const TypePtr* at = adr_type();
1939     for( uint i=1; i<req(); ++i ) {// For all paths in
1940       Node *ii = in(i);
1941       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
1942       if (ii != new_in ) {
1943         set_req(i, new_in);
1944         progress = this;
1945       }
1946     }
1947   }
1948 
1949 #ifdef _LP64
1950   // Push DecodeN/DecodeNKlass down through phi.
1951   // The rest of phi graph will transform by split EncodeP node though phis up.
1952   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
1953     bool may_push = true;
1954     bool has_decodeN = false;
1955     bool is_decodeN = false;
1956     for (uint i=1; i<req(); ++i) {// For all paths in
1957       Node *ii = in(i);
1958       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
1959         // Do optimization if a non dead path exist.
1960         if (ii->in(1)->bottom_type() != Type::TOP) {
1961           has_decodeN = true;
1962           is_decodeN = ii->is_DecodeN();
1963         }
1964       } else if (!ii->is_Phi()) {
1965         may_push = false;
1966       }
1967     }
1968 
1969     if (has_decodeN && may_push) {
1970       PhaseIterGVN *igvn = phase->is_IterGVN();
1971       // Make narrow type for new phi.
1972       const Type* narrow_t;
1973       if (is_decodeN) {
1974         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
1975       } else {
1976         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
1977       }
1978       PhiNode* new_phi = new PhiNode(r, narrow_t);
1979       uint orig_cnt = req();
1980       for (uint i=1; i<req(); ++i) {// For all paths in
1981         Node *ii = in(i);
1982         Node* new_ii = NULL;
1983         if (ii->is_DecodeNarrowPtr()) {
1984           assert(ii->bottom_type() == bottom_type(), "sanity");
1985           new_ii = ii->in(1);
1986         } else {
1987           assert(ii->is_Phi(), "sanity");
1988           if (ii->as_Phi() == this) {
1989             new_ii = new_phi;
1990           } else {
1991             if (is_decodeN) {
1992               new_ii = new EncodePNode(ii, narrow_t);
1993             } else {
1994               new_ii = new EncodePKlassNode(ii, narrow_t);
1995             }
1996             igvn->register_new_node_with_optimizer(new_ii);
1997           }
1998         }
1999         new_phi->set_req(i, new_ii);
2000       }
2001       igvn->register_new_node_with_optimizer(new_phi, this);
2002       if (is_decodeN) {
2003         progress = new DecodeNNode(new_phi, bottom_type());
2004       } else {
2005         progress = new DecodeNKlassNode(new_phi, bottom_type());
2006       }
2007     }
2008   }
2009 #endif
2010 
2011   return progress;              // Return any progress
2012 }
2013 
2014 //------------------------------is_tripcount-----------------------------------
2015 bool PhiNode::is_tripcount() const {
2016   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2017           in(0)->as_CountedLoop()->phi() == this);
2018 }
2019 
2020 //------------------------------out_RegMask------------------------------------
2021 const RegMask &PhiNode::in_RegMask(uint i) const {
2022   return i ? out_RegMask() : RegMask::Empty;
2023 }
2024 
2025 const RegMask &PhiNode::out_RegMask() const {
2026   uint ideal_reg = _type->ideal_reg();
2027   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2028   if( ideal_reg == 0 ) return RegMask::Empty;
2029   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2030 }
2031 
2032 #ifndef PRODUCT
2033 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2034   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2035   // and all outputs till level 1. In compact mode, inputs till level 1 are
2036   // collected.
2037   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2038   this->collect_nodes(out_rel, -1, false, false);
2039 }
2040 
2041 void PhiNode::dump_spec(outputStream *st) const {
2042   TypeNode::dump_spec(st);
2043   if (is_tripcount()) {
2044     st->print(" #tripcount");
2045   }
2046 }
2047 #endif
2048 
2049 
2050 //=============================================================================
2051 const Type *GotoNode::Value( PhaseTransform *phase ) const {
2052   // If the input is reachable, then we are executed.
2053   // If the input is not reachable, then we are not executed.
2054   return phase->type(in(0));
2055 }
2056 
2057 Node *GotoNode::Identity( PhaseTransform *phase ) {
2058   return in(0);                // Simple copy of incoming control
2059 }
2060 
2061 const RegMask &GotoNode::out_RegMask() const {
2062   return RegMask::Empty;
2063 }
2064 
2065 #ifndef PRODUCT
2066 //-----------------------------related-----------------------------------------
2067 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2068 // outputs at level 1. This is regardless of compact mode.
2069 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2070   this->collect_nodes(in_rel, 1, false, false);
2071   this->collect_nodes(out_rel, -1, false, false);
2072 }
2073 #endif
2074 
2075 
2076 //=============================================================================
2077 const RegMask &JumpNode::out_RegMask() const {
2078   return RegMask::Empty;
2079 }
2080 
2081 #ifndef PRODUCT
2082 //-----------------------------related-----------------------------------------
2083 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2084 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2085 // This is regardless of compact mode.
2086 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2087   this->collect_nodes(in_rel, 1, false, false);
2088   this->collect_nodes(out_rel, -2, false, false);
2089 }
2090 #endif
2091 
2092 //=============================================================================
2093 const RegMask &JProjNode::out_RegMask() const {
2094   return RegMask::Empty;
2095 }
2096 
2097 //=============================================================================
2098 const RegMask &CProjNode::out_RegMask() const {
2099   return RegMask::Empty;
2100 }
2101 
2102 
2103 
2104 //=============================================================================
2105 
2106 uint PCTableNode::hash() const { return Node::hash() + _size; }
2107 uint PCTableNode::cmp( const Node &n ) const
2108 { return _size == ((PCTableNode&)n)._size; }
2109 
2110 const Type *PCTableNode::bottom_type() const {
2111   const Type** f = TypeTuple::fields(_size);
2112   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2113   return TypeTuple::make(_size, f);
2114 }
2115 
2116 //------------------------------Value------------------------------------------
2117 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2118 // Control, otherwise the table targets are not reachable
2119 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
2120   if( phase->type(in(0)) == Type::CONTROL )
2121     return bottom_type();
2122   return Type::TOP;             // All paths dead?  Then so are we
2123 }
2124 
2125 //------------------------------Ideal------------------------------------------
2126 // Return a node which is more "ideal" than the current node.  Strip out
2127 // control copies
2128 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2129   return remove_dead_region(phase, can_reshape) ? this : NULL;
2130 }
2131 
2132 //=============================================================================
2133 uint JumpProjNode::hash() const {
2134   return Node::hash() + _dest_bci;
2135 }
2136 
2137 uint JumpProjNode::cmp( const Node &n ) const {
2138   return ProjNode::cmp(n) &&
2139     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2140 }
2141 
2142 #ifndef PRODUCT
2143 void JumpProjNode::dump_spec(outputStream *st) const {
2144   ProjNode::dump_spec(st);
2145   st->print("@bci %d ",_dest_bci);
2146 }
2147 
2148 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2149   ProjNode::dump_compact_spec(st);
2150   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2151 }
2152 
2153 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2154   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2155   this->collect_nodes(in_rel, 1, false, false);
2156   this->collect_nodes(out_rel, -1, false, false);
2157 }
2158 #endif
2159 
2160 //=============================================================================
2161 //------------------------------Value------------------------------------------
2162 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2163 // have the default "fall_through_index" path.
2164 const Type *CatchNode::Value( PhaseTransform *phase ) const {
2165   // Unreachable?  Then so are all paths from here.
2166   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2167   // First assume all paths are reachable
2168   const Type** f = TypeTuple::fields(_size);
2169   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2170   // Identify cases that will always throw an exception
2171   // () rethrow call
2172   // () virtual or interface call with NULL receiver
2173   // () call is a check cast with incompatible arguments
2174   if( in(1)->is_Proj() ) {
2175     Node *i10 = in(1)->in(0);
2176     if( i10->is_Call() ) {
2177       CallNode *call = i10->as_Call();
2178       // Rethrows always throw exceptions, never return
2179       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2180         f[CatchProjNode::fall_through_index] = Type::TOP;
2181       } else if( call->req() > TypeFunc::Parms ) {
2182         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2183         // Check for null receiver to virtual or interface calls
2184         if( call->is_CallDynamicJava() &&
2185             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2186           f[CatchProjNode::fall_through_index] = Type::TOP;
2187         }
2188       } // End of if not a runtime stub
2189     } // End of if have call above me
2190   } // End of slot 1 is not a projection
2191   return TypeTuple::make(_size, f);
2192 }
2193 
2194 //=============================================================================
2195 uint CatchProjNode::hash() const {
2196   return Node::hash() + _handler_bci;
2197 }
2198 
2199 
2200 uint CatchProjNode::cmp( const Node &n ) const {
2201   return ProjNode::cmp(n) &&
2202     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2203 }
2204 
2205 
2206 //------------------------------Identity---------------------------------------
2207 // If only 1 target is possible, choose it if it is the main control
2208 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
2209   // If my value is control and no other value is, then treat as ID
2210   const TypeTuple *t = phase->type(in(0))->is_tuple();
2211   if (t->field_at(_con) != Type::CONTROL)  return this;
2212   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2213   // also remove any exception table entry.  Thus we must know the call
2214   // feeding the Catch will not really throw an exception.  This is ok for
2215   // the main fall-thru control (happens when we know a call can never throw
2216   // an exception) or for "rethrow", because a further optimization will
2217   // yank the rethrow (happens when we inline a function that can throw an
2218   // exception and the caller has no handler).  Not legal, e.g., for passing
2219   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2220   // These cases MUST throw an exception via the runtime system, so the VM
2221   // will be looking for a table entry.
2222   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2223   CallNode *call;
2224   if (_con != TypeFunc::Control && // Bail out if not the main control.
2225       !(proj->is_Proj() &&      // AND NOT a rethrow
2226         proj->in(0)->is_Call() &&
2227         (call = proj->in(0)->as_Call()) &&
2228         call->entry_point() == OptoRuntime::rethrow_stub()))
2229     return this;
2230 
2231   // Search for any other path being control
2232   for (uint i = 0; i < t->cnt(); i++) {
2233     if (i != _con && t->field_at(i) == Type::CONTROL)
2234       return this;
2235   }
2236   // Only my path is possible; I am identity on control to the jump
2237   return in(0)->in(0);
2238 }
2239 
2240 
2241 #ifndef PRODUCT
2242 void CatchProjNode::dump_spec(outputStream *st) const {
2243   ProjNode::dump_spec(st);
2244   st->print("@bci %d ",_handler_bci);
2245 }
2246 #endif
2247 
2248 //=============================================================================
2249 //------------------------------Identity---------------------------------------
2250 // Check for CreateEx being Identity.
2251 Node *CreateExNode::Identity( PhaseTransform *phase ) {
2252   if( phase->type(in(1)) == Type::TOP ) return in(1);
2253   if( phase->type(in(0)) == Type::TOP ) return in(0);
2254   // We only come from CatchProj, unless the CatchProj goes away.
2255   // If the CatchProj is optimized away, then we just carry the
2256   // exception oop through.
2257   CallNode *call = in(1)->in(0)->as_Call();
2258 
2259   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2260     ? this
2261     : call->in(TypeFunc::Parms);
2262 }
2263 
2264 //=============================================================================
2265 //------------------------------Value------------------------------------------
2266 // Check for being unreachable.
2267 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2268   if (!in(0) || in(0)->is_top()) return Type::TOP;
2269   return bottom_type();
2270 }
2271 
2272 //------------------------------Ideal------------------------------------------
2273 // Check for no longer being part of a loop
2274 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2275   if (can_reshape && !in(0)->is_Loop()) {
2276     // Dead code elimination can sometimes delete this projection so
2277     // if it's not there, there's nothing to do.
2278     Node* fallthru = proj_out(0);
2279     if (fallthru != NULL) {
2280       phase->is_IterGVN()->replace_node(fallthru, in(0));
2281     }
2282     return phase->C->top();
2283   }
2284   return NULL;
2285 }
2286 
2287 #ifndef PRODUCT
2288 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2289   st->print("%s", Name());
2290 }
2291 #endif