1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "logging/log.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "runtime/java.hpp"
  31 #include "runtime/os.hpp"
  32 #include "runtime/stubCodeGenerator.hpp"
  33 #include "vm_version_x86.hpp"
  34 
  35 
  36 int VM_Version::_cpu;
  37 int VM_Version::_model;
  38 int VM_Version::_stepping;
  39 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  40 
  41 // Address of instruction which causes SEGV
  42 address VM_Version::_cpuinfo_segv_addr = 0;
  43 // Address of instruction after the one which causes SEGV
  44 address VM_Version::_cpuinfo_cont_addr = 0;
  45 
  46 static BufferBlob* stub_blob;
  47 static const int stub_size = 1000;
  48 
  49 extern "C" {
  50   typedef void (*get_cpu_info_stub_t)(void*);
  51 }
  52 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  53 
  54 
  55 class VM_Version_StubGenerator: public StubCodeGenerator {
  56  public:
  57 
  58   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  59 
  60   address generate_get_cpu_info() {
  61     // Flags to test CPU type.
  62     const uint32_t HS_EFL_AC = 0x40000;
  63     const uint32_t HS_EFL_ID = 0x200000;
  64     // Values for when we don't have a CPUID instruction.
  65     const int      CPU_FAMILY_SHIFT = 8;
  66     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  67     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  68 
  69     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  70     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done, wrapup;
  71     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  72 
  73     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  74 #   define __ _masm->
  75 
  76     address start = __ pc();
  77 
  78     //
  79     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  80     //
  81     // LP64: rcx and rdx are first and second argument registers on windows
  82 
  83     __ push(rbp);
  84 #ifdef _LP64
  85     __ mov(rbp, c_rarg0); // cpuid_info address
  86 #else
  87     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  88 #endif
  89     __ push(rbx);
  90     __ push(rsi);
  91     __ pushf();          // preserve rbx, and flags
  92     __ pop(rax);
  93     __ push(rax);
  94     __ mov(rcx, rax);
  95     //
  96     // if we are unable to change the AC flag, we have a 386
  97     //
  98     __ xorl(rax, HS_EFL_AC);
  99     __ push(rax);
 100     __ popf();
 101     __ pushf();
 102     __ pop(rax);
 103     __ cmpptr(rax, rcx);
 104     __ jccb(Assembler::notEqual, detect_486);
 105 
 106     __ movl(rax, CPU_FAMILY_386);
 107     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 108     __ jmp(done);
 109 
 110     //
 111     // If we are unable to change the ID flag, we have a 486 which does
 112     // not support the "cpuid" instruction.
 113     //
 114     __ bind(detect_486);
 115     __ mov(rax, rcx);
 116     __ xorl(rax, HS_EFL_ID);
 117     __ push(rax);
 118     __ popf();
 119     __ pushf();
 120     __ pop(rax);
 121     __ cmpptr(rcx, rax);
 122     __ jccb(Assembler::notEqual, detect_586);
 123 
 124     __ bind(cpu486);
 125     __ movl(rax, CPU_FAMILY_486);
 126     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 127     __ jmp(done);
 128 
 129     //
 130     // At this point, we have a chip which supports the "cpuid" instruction
 131     //
 132     __ bind(detect_586);
 133     __ xorl(rax, rax);
 134     __ cpuid();
 135     __ orl(rax, rax);
 136     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 137                                         // value of at least 1, we give up and
 138                                         // assume a 486
 139     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 140     __ movl(Address(rsi, 0), rax);
 141     __ movl(Address(rsi, 4), rbx);
 142     __ movl(Address(rsi, 8), rcx);
 143     __ movl(Address(rsi,12), rdx);
 144 
 145     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 146     __ jccb(Assembler::belowEqual, std_cpuid4);
 147 
 148     //
 149     // cpuid(0xB) Processor Topology
 150     //
 151     __ movl(rax, 0xb);
 152     __ xorl(rcx, rcx);   // Threads level
 153     __ cpuid();
 154 
 155     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 156     __ movl(Address(rsi, 0), rax);
 157     __ movl(Address(rsi, 4), rbx);
 158     __ movl(Address(rsi, 8), rcx);
 159     __ movl(Address(rsi,12), rdx);
 160 
 161     __ movl(rax, 0xb);
 162     __ movl(rcx, 1);     // Cores level
 163     __ cpuid();
 164     __ push(rax);
 165     __ andl(rax, 0x1f);  // Determine if valid topology level
 166     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 167     __ andl(rax, 0xffff);
 168     __ pop(rax);
 169     __ jccb(Assembler::equal, std_cpuid4);
 170 
 171     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 172     __ movl(Address(rsi, 0), rax);
 173     __ movl(Address(rsi, 4), rbx);
 174     __ movl(Address(rsi, 8), rcx);
 175     __ movl(Address(rsi,12), rdx);
 176 
 177     __ movl(rax, 0xb);
 178     __ movl(rcx, 2);     // Packages level
 179     __ cpuid();
 180     __ push(rax);
 181     __ andl(rax, 0x1f);  // Determine if valid topology level
 182     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 183     __ andl(rax, 0xffff);
 184     __ pop(rax);
 185     __ jccb(Assembler::equal, std_cpuid4);
 186 
 187     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 188     __ movl(Address(rsi, 0), rax);
 189     __ movl(Address(rsi, 4), rbx);
 190     __ movl(Address(rsi, 8), rcx);
 191     __ movl(Address(rsi,12), rdx);
 192 
 193     //
 194     // cpuid(0x4) Deterministic cache params
 195     //
 196     __ bind(std_cpuid4);
 197     __ movl(rax, 4);
 198     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 199     __ jccb(Assembler::greater, std_cpuid1);
 200 
 201     __ xorl(rcx, rcx);   // L1 cache
 202     __ cpuid();
 203     __ push(rax);
 204     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 205     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 206     __ pop(rax);
 207     __ jccb(Assembler::equal, std_cpuid1);
 208 
 209     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 210     __ movl(Address(rsi, 0), rax);
 211     __ movl(Address(rsi, 4), rbx);
 212     __ movl(Address(rsi, 8), rcx);
 213     __ movl(Address(rsi,12), rdx);
 214 
 215     //
 216     // Standard cpuid(0x1)
 217     //
 218     __ bind(std_cpuid1);
 219     __ movl(rax, 1);
 220     __ cpuid();
 221     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 222     __ movl(Address(rsi, 0), rax);
 223     __ movl(Address(rsi, 4), rbx);
 224     __ movl(Address(rsi, 8), rcx);
 225     __ movl(Address(rsi,12), rdx);
 226 
 227     //
 228     // Check if OS has enabled XGETBV instruction to access XCR0
 229     // (OSXSAVE feature flag) and CPU supports AVX
 230     //
 231     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 232     __ cmpl(rcx, 0x18000000);
 233     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 234 
 235     //
 236     // XCR0, XFEATURE_ENABLED_MASK register
 237     //
 238     __ xorl(rcx, rcx);   // zero for XCR0 register
 239     __ xgetbv();
 240     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 241     __ movl(Address(rsi, 0), rax);
 242     __ movl(Address(rsi, 4), rdx);
 243 
 244     //
 245     // cpuid(0x7) Structured Extended Features
 246     //
 247     __ bind(sef_cpuid);
 248     __ movl(rax, 7);
 249     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 250     __ jccb(Assembler::greater, ext_cpuid);
 251 
 252     __ xorl(rcx, rcx);
 253     __ cpuid();
 254     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 255     __ movl(Address(rsi, 0), rax);
 256     __ movl(Address(rsi, 4), rbx);
 257 
 258     //
 259     // Extended cpuid(0x80000000)
 260     //
 261     __ bind(ext_cpuid);
 262     __ movl(rax, 0x80000000);
 263     __ cpuid();
 264     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 265     __ jcc(Assembler::belowEqual, done);
 266     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 267     __ jccb(Assembler::belowEqual, ext_cpuid1);
 268     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 269     __ jccb(Assembler::belowEqual, ext_cpuid5);
 270     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 271     __ jccb(Assembler::belowEqual, ext_cpuid7);
 272     //
 273     // Extended cpuid(0x80000008)
 274     //
 275     __ movl(rax, 0x80000008);
 276     __ cpuid();
 277     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 278     __ movl(Address(rsi, 0), rax);
 279     __ movl(Address(rsi, 4), rbx);
 280     __ movl(Address(rsi, 8), rcx);
 281     __ movl(Address(rsi,12), rdx);
 282 
 283     //
 284     // Extended cpuid(0x80000007)
 285     //
 286     __ bind(ext_cpuid7);
 287     __ movl(rax, 0x80000007);
 288     __ cpuid();
 289     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 290     __ movl(Address(rsi, 0), rax);
 291     __ movl(Address(rsi, 4), rbx);
 292     __ movl(Address(rsi, 8), rcx);
 293     __ movl(Address(rsi,12), rdx);
 294 
 295     //
 296     // Extended cpuid(0x80000005)
 297     //
 298     __ bind(ext_cpuid5);
 299     __ movl(rax, 0x80000005);
 300     __ cpuid();
 301     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 302     __ movl(Address(rsi, 0), rax);
 303     __ movl(Address(rsi, 4), rbx);
 304     __ movl(Address(rsi, 8), rcx);
 305     __ movl(Address(rsi,12), rdx);
 306 
 307     //
 308     // Extended cpuid(0x80000001)
 309     //
 310     __ bind(ext_cpuid1);
 311     __ movl(rax, 0x80000001);
 312     __ cpuid();
 313     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 314     __ movl(Address(rsi, 0), rax);
 315     __ movl(Address(rsi, 4), rbx);
 316     __ movl(Address(rsi, 8), rcx);
 317     __ movl(Address(rsi,12), rdx);
 318 
 319     //
 320     // Check if OS has enabled XGETBV instruction to access XCR0
 321     // (OSXSAVE feature flag) and CPU supports AVX
 322     //
 323     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 324     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 325     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 326     __ cmpl(rcx, 0x18000000);
 327     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 328 
 329     __ movl(rax, 0x6);
 330     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 331     __ cmpl(rax, 0x6);
 332     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 333 
 334     // we need to bridge farther than imm8, so we use this island as a thunk
 335     __ bind(done);
 336     __ jmp(wrapup);
 337 
 338     __ bind(start_simd_check);
 339     //
 340     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 341     // registers are not restored after a signal processing.
 342     // Generate SEGV here (reference through NULL)
 343     // and check upper YMM/ZMM bits after it.
 344     //
 345     intx saved_useavx = UseAVX;
 346     intx saved_usesse = UseSSE;
 347     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 348     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 349     __ movl(rax, 0x10000);
 350     __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 351     __ cmpl(rax, 0x10000);
 352     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 353     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 354     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 355     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 356     __ movl(rax, 0xE0);
 357     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 358     __ cmpl(rax, 0xE0);
 359     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 360 
 361     // EVEX setup: run in lowest evex mode
 362     VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 363     UseAVX = 3;
 364     UseSSE = 2;
 365     // load value into all 64 bytes of zmm7 register
 366     __ movl(rcx, VM_Version::ymm_test_value());
 367     __ movdl(xmm0, rcx);
 368     __ movl(rcx, 0xffff);
 369     __ kmovwl(k1, rcx);
 370     __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 371     __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 372 #ifdef _LP64
 373     __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 374     __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 375 #endif
 376     VM_Version::clean_cpuFeatures();
 377     __ jmp(save_restore_except);
 378 
 379     __ bind(legacy_setup);
 380     // AVX setup
 381     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 382     UseAVX = 1;
 383     UseSSE = 2;
 384     // load value into all 32 bytes of ymm7 register
 385     __ movl(rcx, VM_Version::ymm_test_value());
 386 
 387     __ movdl(xmm0, rcx);
 388     __ pshufd(xmm0, xmm0, 0x00);
 389     __ vinsertf128_high(xmm0, xmm0);
 390     __ vmovdqu(xmm7, xmm0);
 391 #ifdef _LP64
 392     __ vmovdqu(xmm8, xmm0);
 393     __ vmovdqu(xmm15, xmm0);
 394 #endif
 395     VM_Version::clean_cpuFeatures();
 396 
 397     __ bind(save_restore_except);
 398     __ xorl(rsi, rsi);
 399     VM_Version::set_cpuinfo_segv_addr(__ pc());
 400     // Generate SEGV
 401     __ movl(rax, Address(rsi, 0));
 402 
 403     VM_Version::set_cpuinfo_cont_addr(__ pc());
 404     // Returns here after signal. Save xmm0 to check it later.
 405 
 406     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 407     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 408     __ movl(rax, 0x10000);
 409     __ andl(rax, Address(rsi, 4));
 410     __ cmpl(rax, 0x10000);
 411     __ jccb(Assembler::notEqual, legacy_save_restore);
 412     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 413     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 414     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 415     __ movl(rax, 0xE0);
 416     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 417     __ cmpl(rax, 0xE0);
 418     __ jccb(Assembler::notEqual, legacy_save_restore);
 419 
 420     // EVEX check: run in lowest evex mode
 421     VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 422     UseAVX = 3;
 423     UseSSE = 2;
 424     __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 425     __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 426     __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 427 #ifdef _LP64
 428     __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 429     __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 430 #endif
 431     VM_Version::clean_cpuFeatures();
 432     UseAVX = saved_useavx;
 433     UseSSE = saved_usesse;
 434     __ jmp(wrapup);
 435 
 436     __ bind(legacy_save_restore);
 437     // AVX check
 438     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 439     UseAVX = 1;
 440     UseSSE = 2;
 441     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 442     __ vmovdqu(Address(rsi, 0), xmm0);
 443     __ vmovdqu(Address(rsi, 32), xmm7);
 444 #ifdef _LP64
 445     __ vmovdqu(Address(rsi, 64), xmm8);
 446     __ vmovdqu(Address(rsi, 96), xmm15);
 447 #endif
 448     VM_Version::clean_cpuFeatures();
 449     UseAVX = saved_useavx;
 450     UseSSE = saved_usesse;
 451 
 452     __ bind(wrapup);
 453     __ popf();
 454     __ pop(rsi);
 455     __ pop(rbx);
 456     __ pop(rbp);
 457     __ ret(0);
 458 
 459 #   undef __
 460 
 461     return start;
 462   };
 463 };
 464 
 465 void VM_Version::get_processor_features() {
 466 
 467   _cpu = 4; // 486 by default
 468   _model = 0;
 469   _stepping = 0;
 470   _features = 0;
 471   _logical_processors_per_package = 1;
 472   // i486 internal cache is both I&D and has a 16-byte line size
 473   _L1_data_cache_line_size = 16;
 474 
 475   // Get raw processor info
 476 
 477   get_cpu_info_stub(&_cpuid_info);
 478 
 479   assert_is_initialized();
 480   _cpu = extended_cpu_family();
 481   _model = extended_cpu_model();
 482   _stepping = cpu_stepping();
 483 
 484   if (cpu_family() > 4) { // it supports CPUID
 485     _features = feature_flags();
 486     // Logical processors are only available on P4s and above,
 487     // and only if hyperthreading is available.
 488     _logical_processors_per_package = logical_processor_count();
 489     _L1_data_cache_line_size = L1_line_size();
 490   }
 491 
 492   _supports_cx8 = supports_cmpxchg8();
 493   // xchg and xadd instructions
 494   _supports_atomic_getset4 = true;
 495   _supports_atomic_getadd4 = true;
 496   LP64_ONLY(_supports_atomic_getset8 = true);
 497   LP64_ONLY(_supports_atomic_getadd8 = true);
 498 
 499 #ifdef _LP64
 500   // OS should support SSE for x64 and hardware should support at least SSE2.
 501   if (!VM_Version::supports_sse2()) {
 502     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 503   }
 504   // in 64 bit the use of SSE2 is the minimum
 505   if (UseSSE < 2) UseSSE = 2;
 506 #endif
 507 
 508 #ifdef AMD64
 509   // flush_icache_stub have to be generated first.
 510   // That is why Icache line size is hard coded in ICache class,
 511   // see icache_x86.hpp. It is also the reason why we can't use
 512   // clflush instruction in 32-bit VM since it could be running
 513   // on CPU which does not support it.
 514   //
 515   // The only thing we can do is to verify that flushed
 516   // ICache::line_size has correct value.
 517   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 518   // clflush_size is size in quadwords (8 bytes).
 519   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 520 #endif
 521 
 522   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 523   if (!os::supports_sse())
 524     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 525 
 526   if (UseSSE < 4) {
 527     _features &= ~CPU_SSE4_1;
 528     _features &= ~CPU_SSE4_2;
 529   }
 530 
 531   if (UseSSE < 3) {
 532     _features &= ~CPU_SSE3;
 533     _features &= ~CPU_SSSE3;
 534     _features &= ~CPU_SSE4A;
 535   }
 536 
 537   if (UseSSE < 2)
 538     _features &= ~CPU_SSE2;
 539 
 540   if (UseSSE < 1)
 541     _features &= ~CPU_SSE;
 542 
 543   // first try initial setting and detect what we can support
 544   if (UseAVX > 0) {
 545     if (UseAVX > 2 && supports_evex()) {
 546       UseAVX = 3;
 547     } else if (UseAVX > 1 && supports_avx2()) {
 548       UseAVX = 2;
 549     } else if (UseAVX > 0 && supports_avx()) {
 550       UseAVX = 1;
 551     } else {
 552       UseAVX = 0;
 553     }
 554   } else if (UseAVX < 0) {
 555     UseAVX = 0;
 556   }
 557 
 558   if (UseAVX < 3) {
 559     _features &= ~CPU_AVX512F;
 560     _features &= ~CPU_AVX512DQ;
 561     _features &= ~CPU_AVX512CD;
 562     _features &= ~CPU_AVX512BW;
 563     _features &= ~CPU_AVX512VL;
 564   }
 565 
 566   if (UseAVX < 2)
 567     _features &= ~CPU_AVX2;
 568 
 569   if (UseAVX < 1)
 570     _features &= ~CPU_AVX;
 571 
 572   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
 573     _features &= ~CPU_AES;
 574 
 575   if (logical_processors_per_package() == 1) {
 576     // HT processor could be installed on a system which doesn't support HT.
 577     _features &= ~CPU_HT;
 578   }
 579 
 580   char buf[256];
 581   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 582                cores_per_cpu(), threads_per_core(),
 583                cpu_family(), _model, _stepping,
 584                (supports_cmov() ? ", cmov" : ""),
 585                (supports_cmpxchg8() ? ", cx8" : ""),
 586                (supports_fxsr() ? ", fxsr" : ""),
 587                (supports_mmx()  ? ", mmx"  : ""),
 588                (supports_sse()  ? ", sse"  : ""),
 589                (supports_sse2() ? ", sse2" : ""),
 590                (supports_sse3() ? ", sse3" : ""),
 591                (supports_ssse3()? ", ssse3": ""),
 592                (supports_sse4_1() ? ", sse4.1" : ""),
 593                (supports_sse4_2() ? ", sse4.2" : ""),
 594                (supports_popcnt() ? ", popcnt" : ""),
 595                (supports_avx()    ? ", avx" : ""),
 596                (supports_avx2()   ? ", avx2" : ""),
 597                (supports_aes()    ? ", aes" : ""),
 598                (supports_clmul()  ? ", clmul" : ""),
 599                (supports_erms()   ? ", erms" : ""),
 600                (supports_rtm()    ? ", rtm" : ""),
 601                (supports_mmx_ext() ? ", mmxext" : ""),
 602                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 603                (supports_lzcnt()   ? ", lzcnt": ""),
 604                (supports_sse4a()   ? ", sse4a": ""),
 605                (supports_ht() ? ", ht": ""),
 606                (supports_tsc() ? ", tsc": ""),
 607                (supports_tscinv_bit() ? ", tscinvbit": ""),
 608                (supports_tscinv() ? ", tscinv": ""),
 609                (supports_bmi1() ? ", bmi1" : ""),
 610                (supports_bmi2() ? ", bmi2" : ""),
 611                (supports_adx() ? ", adx" : ""),
 612                (supports_evex() ? ", evex" : ""),
 613                (supports_sha() ? ", sha" : ""));
 614   _features_string = os::strdup(buf);
 615 
 616   // UseSSE is set to the smaller of what hardware supports and what
 617   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 618   // older Pentiums which do not support it.
 619   if (UseSSE > 4) UseSSE=4;
 620   if (UseSSE < 0) UseSSE=0;
 621   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
 622     UseSSE = MIN2((intx)3,UseSSE);
 623   if (!supports_sse3()) // Drop to 2 if no SSE3 support
 624     UseSSE = MIN2((intx)2,UseSSE);
 625   if (!supports_sse2()) // Drop to 1 if no SSE2 support
 626     UseSSE = MIN2((intx)1,UseSSE);
 627   if (!supports_sse ()) // Drop to 0 if no SSE  support
 628     UseSSE = 0;
 629 
 630   // Use AES instructions if available.
 631   if (supports_aes()) {
 632     if (FLAG_IS_DEFAULT(UseAES)) {
 633       FLAG_SET_DEFAULT(UseAES, true);
 634     }
 635     if (!UseAES) {
 636       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 637         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 638       }
 639       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 640     } else {
 641       if (UseSSE > 2) {
 642         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 643           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 644         }
 645       } else {
 646         // The AES intrinsic stubs require AES instruction support (of course)
 647         // but also require sse3 mode or higher for instructions it use.
 648         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 649           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 650         }
 651         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 652       }
 653 
 654       // --AES-CTR begins--
 655       if (!UseAESIntrinsics) {
 656         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 657           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 658           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 659         }
 660       } else {
 661         if(supports_sse4_1()) {
 662           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 663             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 664           }
 665         } else {
 666            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 667            // but also require sse4.1 mode or higher for instructions it use.
 668           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 669              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 670            }
 671            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 672         }
 673       }
 674       // --AES-CTR ends--
 675     }
 676   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 677     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 678       warning("AES instructions are not available on this CPU");
 679       FLAG_SET_DEFAULT(UseAES, false);
 680     }
 681     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 682       warning("AES intrinsics are not available on this CPU");
 683       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 684     }
 685     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 686       warning("AES-CTR intrinsics are not available on this CPU");
 687       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 688     }
 689   }
 690 
 691   // Use CLMUL instructions if available.
 692   if (supports_clmul()) {
 693     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 694       UseCLMUL = true;
 695     }
 696   } else if (UseCLMUL) {
 697     if (!FLAG_IS_DEFAULT(UseCLMUL))
 698       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 699     FLAG_SET_DEFAULT(UseCLMUL, false);
 700   }
 701 
 702   if (UseCLMUL && supports_sse4_1()) {
 703     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 704       UseCRC32Intrinsics = true;
 705     }
 706   } else if (UseCRC32Intrinsics) {
 707     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 708       warning("CRC32 intrinsics are not available on this CPU");
 709     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 710   }
 711 
 712   if (supports_sse4_2()) {
 713     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 714       UseCRC32CIntrinsics = true;
 715     }
 716   }
 717   else if (UseCRC32CIntrinsics) {
 718     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 719       warning("CRC32C intrinsics are not available on this CPU");
 720     }
 721     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 722   }
 723 
 724   // GHASH/GCM intrinsics
 725   if (UseCLMUL && (UseSSE > 2)) {
 726     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 727       UseGHASHIntrinsics = true;
 728     }
 729   } else if (UseGHASHIntrinsics) {
 730     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 731       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 732     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 733   }
 734 
 735   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 736     if (FLAG_IS_DEFAULT(UseSHA)) {
 737       UseSHA = true;
 738     }
 739   } else if (UseSHA) {
 740     warning("SHA instructions are not available on this CPU");
 741     FLAG_SET_DEFAULT(UseSHA, false);
 742   }
 743 
 744   if (supports_sha() && UseSHA) {
 745     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 746       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 747     }
 748   } else if (UseSHA1Intrinsics) {
 749     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 750     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 751   }
 752 
 753   if (UseSHA) {
 754     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 755       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 756     }
 757   } else if (UseSHA256Intrinsics) {
 758     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 759     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 760   }
 761 
 762   if (UseSHA512Intrinsics) {
 763     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 764     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 765   }
 766 
 767   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 768     FLAG_SET_DEFAULT(UseSHA, false);
 769   }
 770 
 771   if (UseAdler32Intrinsics) {
 772     warning("Adler32Intrinsics not available on this CPU.");
 773     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 774   }
 775 
 776   // Adjust RTM (Restricted Transactional Memory) flags
 777   if (!supports_rtm() && UseRTMLocking) {
 778     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 779     // setting during arguments processing. See use_biased_locking().
 780     // VM_Version_init() is executed after UseBiasedLocking is used
 781     // in Thread::allocate().
 782     vm_exit_during_initialization("RTM instructions are not available on this CPU");
 783   }
 784 
 785 #if INCLUDE_RTM_OPT
 786   if (UseRTMLocking) {
 787     if (is_intel_family_core()) {
 788       if ((_model == CPU_MODEL_HASWELL_E3) ||
 789           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
 790           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
 791         // currently a collision between SKL and HSW_E3
 792         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
 793           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
 794         } else {
 795           warning("UseRTMLocking is only available as experimental option on this platform.");
 796         }
 797       }
 798     }
 799     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
 800       // RTM locking should be used only for applications with
 801       // high lock contention. For now we do not use it by default.
 802       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
 803     }
 804     if (!is_power_of_2(RTMTotalCountIncrRate)) {
 805       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
 806       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
 807     }
 808     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
 809       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
 810       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
 811     }
 812   } else { // !UseRTMLocking
 813     if (UseRTMForStackLocks) {
 814       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
 815         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
 816       }
 817       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
 818     }
 819     if (UseRTMDeopt) {
 820       FLAG_SET_DEFAULT(UseRTMDeopt, false);
 821     }
 822     if (PrintPreciseRTMLockingStatistics) {
 823       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
 824     }
 825   }
 826 #else
 827   if (UseRTMLocking) {
 828     // Only C2 does RTM locking optimization.
 829     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 830     // setting during arguments processing. See use_biased_locking().
 831     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 832   }
 833 #endif
 834 
 835 #ifdef COMPILER2
 836   if (UseFPUForSpilling) {
 837     if (UseSSE < 2) {
 838       // Only supported with SSE2+
 839       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 840     }
 841   }
 842 #endif
 843 #if defined(COMPILER2) || INCLUDE_JVMCI
 844   if (MaxVectorSize > 0) {
 845     if (!is_power_of_2(MaxVectorSize)) {
 846       warning("MaxVectorSize must be a power of 2");
 847       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 848     }
 849     if (MaxVectorSize > 64) {
 850       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 851     }
 852     if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
 853       // 32 bytes vectors (in YMM) are only supported with AVX+
 854       FLAG_SET_DEFAULT(MaxVectorSize, 16);
 855     }
 856     if (UseSSE < 2) {
 857       // Vectors (in XMM) are only supported with SSE2+
 858       FLAG_SET_DEFAULT(MaxVectorSize, 0);
 859     }
 860 #if defined(COMPILER2) && defined(ASSERT)
 861     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
 862       tty->print_cr("State of YMM registers after signal handle:");
 863       int nreg = 2 LP64_ONLY(+2);
 864       const char* ymm_name[4] = {"0", "7", "8", "15"};
 865       for (int i = 0; i < nreg; i++) {
 866         tty->print("YMM%s:", ymm_name[i]);
 867         for (int j = 7; j >=0; j--) {
 868           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
 869         }
 870         tty->cr();
 871       }
 872     }
 873 #endif // COMPILER2 && ASSERT
 874   }
 875 #endif // COMPILER2 || INCLUDE_JVMCI
 876 
 877 #ifdef COMPILER2
 878 #ifdef _LP64
 879   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
 880     UseMultiplyToLenIntrinsic = true;
 881   }
 882   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
 883     UseSquareToLenIntrinsic = true;
 884   }
 885   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
 886     UseMulAddIntrinsic = true;
 887   }
 888   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
 889     UseMontgomeryMultiplyIntrinsic = true;
 890   }
 891   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
 892     UseMontgomerySquareIntrinsic = true;
 893   }
 894 #else
 895   if (UseMultiplyToLenIntrinsic) {
 896     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
 897       warning("multiplyToLen intrinsic is not available in 32-bit VM");
 898     }
 899     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
 900   }
 901   if (UseMontgomeryMultiplyIntrinsic) {
 902     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
 903       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
 904     }
 905     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
 906   }
 907   if (UseMontgomerySquareIntrinsic) {
 908     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
 909       warning("montgomerySquare intrinsic is not available in 32-bit VM");
 910     }
 911     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
 912   }
 913   if (UseSquareToLenIntrinsic) {
 914     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
 915       warning("squareToLen intrinsic is not available in 32-bit VM");
 916     }
 917     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
 918   }
 919   if (UseMulAddIntrinsic) {
 920     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
 921       warning("mulAdd intrinsic is not available in 32-bit VM");
 922     }
 923     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
 924   }
 925 #endif
 926 #endif // COMPILER2
 927 
 928   // On new cpus instructions which update whole XMM register should be used
 929   // to prevent partial register stall due to dependencies on high half.
 930   //
 931   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 932   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 933   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 934   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 935 
 936   if( is_amd() ) { // AMD cpus specific settings
 937     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 938       // Use it on new AMD cpus starting from Opteron.
 939       UseAddressNop = true;
 940     }
 941     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 942       // Use it on new AMD cpus starting from Opteron.
 943       UseNewLongLShift = true;
 944     }
 945     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 946       if (supports_sse4a()) {
 947         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 948       } else {
 949         UseXmmLoadAndClearUpper = false;
 950       }
 951     }
 952     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 953       if( supports_sse4a() ) {
 954         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 955       } else {
 956         UseXmmRegToRegMoveAll = false;
 957       }
 958     }
 959     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 960       if( supports_sse4a() ) {
 961         UseXmmI2F = true;
 962       } else {
 963         UseXmmI2F = false;
 964       }
 965     }
 966     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 967       if( supports_sse4a() ) {
 968         UseXmmI2D = true;
 969       } else {
 970         UseXmmI2D = false;
 971       }
 972     }
 973     if (supports_sse4_2()) {
 974       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 975         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
 976       }
 977     } else {
 978       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 979         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
 980       }
 981       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
 982     }
 983 
 984     // some defaults for AMD family 15h
 985     if ( cpu_family() == 0x15 ) {
 986       // On family 15h processors default is no sw prefetch
 987       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
 988         AllocatePrefetchStyle = 0;
 989       }
 990       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
 991       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
 992         AllocatePrefetchInstr = 3;
 993       }
 994       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
 995       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
 996         UseXMMForArrayCopy = true;
 997       }
 998       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
 999         UseUnalignedLoadStores = true;
1000       }
1001     }
1002 
1003 #ifdef COMPILER2
1004     if (MaxVectorSize > 16) {
1005       // Limit vectors size to 16 bytes on current AMD cpus.
1006       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1007     }
1008 #endif // COMPILER2
1009   }
1010 
1011   if( is_intel() ) { // Intel cpus specific settings
1012     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
1013       UseStoreImmI16 = false; // don't use it on Intel cpus
1014     }
1015     if( cpu_family() == 6 || cpu_family() == 15 ) {
1016       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
1017         // Use it on all Intel cpus starting from PentiumPro
1018         UseAddressNop = true;
1019       }
1020     }
1021     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1022       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1023     }
1024     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1025       if( supports_sse3() ) {
1026         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1027       } else {
1028         UseXmmRegToRegMoveAll = false;
1029       }
1030     }
1031     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
1032 #ifdef COMPILER2
1033       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
1034         // For new Intel cpus do the next optimization:
1035         // don't align the beginning of a loop if there are enough instructions
1036         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1037         // in current fetch line (OptoLoopAlignment) or the padding
1038         // is big (> MaxLoopPad).
1039         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1040         // generated NOP instructions. 11 is the largest size of one
1041         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1042         MaxLoopPad = 11;
1043       }
1044 #endif // COMPILER2
1045       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1046         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1047       }
1048       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
1049         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1050           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1051         }
1052       }
1053       if (supports_sse4_2()) {
1054         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1055           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1056         }
1057       } else {
1058         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1059           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1060         }
1061         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1062       }
1063     }
1064     if ((cpu_family() == 0x06) &&
1065         ((extended_cpu_model() == 0x36) || // Centerton
1066          (extended_cpu_model() == 0x37) || // Silvermont
1067          (extended_cpu_model() == 0x4D))) {
1068 #ifdef COMPILER2
1069       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1070         OptoScheduling = true;
1071       }
1072 #endif
1073       if (supports_sse4_2()) { // Silvermont
1074         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1075           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1076         }
1077       }
1078     }
1079     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1080       AllocatePrefetchInstr = 3;
1081     }
1082   }
1083 
1084 #ifdef _LP64
1085   if (UseSSE42Intrinsics) {
1086     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1087       UseVectorizedMismatchIntrinsic = true;
1088     }
1089   } else if (UseVectorizedMismatchIntrinsic) {
1090     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1091       warning("vectorizedMismatch intrinsics are not available on this CPU");
1092     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1093   }
1094 #else
1095   if (UseVectorizedMismatchIntrinsic) {
1096     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1097       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1098     }
1099     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1100   }
1101 #endif // _LP64
1102 
1103   // Use count leading zeros count instruction if available.
1104   if (supports_lzcnt()) {
1105     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1106       UseCountLeadingZerosInstruction = true;
1107     }
1108    } else if (UseCountLeadingZerosInstruction) {
1109     warning("lzcnt instruction is not available on this CPU");
1110     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1111   }
1112 
1113   // Use count trailing zeros instruction if available
1114   if (supports_bmi1()) {
1115     // tzcnt does not require VEX prefix
1116     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1117       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1118         // Don't use tzcnt if BMI1 is switched off on command line.
1119         UseCountTrailingZerosInstruction = false;
1120       } else {
1121         UseCountTrailingZerosInstruction = true;
1122       }
1123     }
1124   } else if (UseCountTrailingZerosInstruction) {
1125     warning("tzcnt instruction is not available on this CPU");
1126     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1127   }
1128 
1129   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1130   // VEX prefix is generated only when AVX > 0.
1131   if (supports_bmi1() && supports_avx()) {
1132     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1133       UseBMI1Instructions = true;
1134     }
1135   } else if (UseBMI1Instructions) {
1136     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1137     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1138   }
1139 
1140   if (supports_bmi2() && supports_avx()) {
1141     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1142       UseBMI2Instructions = true;
1143     }
1144   } else if (UseBMI2Instructions) {
1145     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1146     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1147   }
1148 
1149   // Use population count instruction if available.
1150   if (supports_popcnt()) {
1151     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1152       UsePopCountInstruction = true;
1153     }
1154   } else if (UsePopCountInstruction) {
1155     warning("POPCNT instruction is not available on this CPU");
1156     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1157   }
1158 
1159   // Use fast-string operations if available.
1160   if (supports_erms()) {
1161     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1162       UseFastStosb = true;
1163     }
1164   } else if (UseFastStosb) {
1165     warning("fast-string operations are not available on this CPU");
1166     FLAG_SET_DEFAULT(UseFastStosb, false);
1167   }
1168 
1169 #ifdef COMPILER2
1170   if (FLAG_IS_DEFAULT(AlignVector)) {
1171     // Modern processors allow misaligned memory operations for vectors.
1172     AlignVector = !UseUnalignedLoadStores;
1173   }
1174 #endif // COMPILER2
1175 
1176   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
1177   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
1178 
1179   // Allocation prefetch settings
1180   intx cache_line_size = prefetch_data_size();
1181   if( cache_line_size > AllocatePrefetchStepSize )
1182     AllocatePrefetchStepSize = cache_line_size;
1183 
1184   AllocatePrefetchDistance = allocate_prefetch_distance();
1185   AllocatePrefetchStyle    = allocate_prefetch_style();
1186 
1187   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1188     if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
1189 #ifdef _LP64
1190       AllocatePrefetchDistance = 384;
1191 #else
1192       AllocatePrefetchDistance = 320;
1193 #endif
1194     }
1195     if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1196       AllocatePrefetchDistance = 192;
1197       if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) {
1198         FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1199       }
1200     }
1201 #ifdef COMPILER2
1202     if (supports_sse4_2()) {
1203       if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1204         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1205       }
1206     }
1207 #endif
1208   }
1209 
1210 #ifdef _LP64
1211   // Prefetch settings
1212   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
1213   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
1214   PrefetchFieldsAhead         = prefetch_fields_ahead();
1215 #endif
1216 
1217   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1218      (cache_line_size > ContendedPaddingWidth))
1219      ContendedPaddingWidth = cache_line_size;
1220 
1221   // This machine allows unaligned memory accesses
1222   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1223     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1224   }
1225 
1226 #ifndef PRODUCT
1227   if (log_is_enabled(Info, os, cpu)) {
1228     outputStream* log = Log(os, cpu)::info_stream();
1229     log->print_cr("Logical CPUs per core: %u",
1230                   logical_processors_per_package());
1231     log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1232     log->print("UseSSE=%d", (int) UseSSE);
1233     if (UseAVX > 0) {
1234       log->print("  UseAVX=%d", (int) UseAVX);
1235     }
1236     if (UseAES) {
1237       log->print("  UseAES=1");
1238     }
1239 #ifdef COMPILER2
1240     if (MaxVectorSize > 0) {
1241       log->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1242     }
1243 #endif
1244     log->cr();
1245     log->print("Allocation");
1246     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
1247       log->print_cr(": no prefetching");
1248     } else {
1249       log->print(" prefetching: ");
1250       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1251         log->print("PREFETCHW");
1252       } else if (UseSSE >= 1) {
1253         if (AllocatePrefetchInstr == 0) {
1254           log->print("PREFETCHNTA");
1255         } else if (AllocatePrefetchInstr == 1) {
1256           log->print("PREFETCHT0");
1257         } else if (AllocatePrefetchInstr == 2) {
1258           log->print("PREFETCHT2");
1259         } else if (AllocatePrefetchInstr == 3) {
1260           log->print("PREFETCHW");
1261         }
1262       }
1263       if (AllocatePrefetchLines > 1) {
1264         log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1265       } else {
1266         log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1267       }
1268     }
1269 
1270     if (PrefetchCopyIntervalInBytes > 0) {
1271       log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1272     }
1273     if (PrefetchScanIntervalInBytes > 0) {
1274       log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1275     }
1276     if (PrefetchFieldsAhead > 0) {
1277       log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1278     }
1279     if (ContendedPaddingWidth > 0) {
1280       log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1281     }
1282   }
1283 #endif // !PRODUCT
1284 }
1285 
1286 bool VM_Version::use_biased_locking() {
1287 #if INCLUDE_RTM_OPT
1288   // RTM locking is most useful when there is high lock contention and
1289   // low data contention.  With high lock contention the lock is usually
1290   // inflated and biased locking is not suitable for that case.
1291   // RTM locking code requires that biased locking is off.
1292   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1293   // because it is used by Thread::allocate() which is called before
1294   // VM_Version::initialize().
1295   if (UseRTMLocking && UseBiasedLocking) {
1296     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1297       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1298     } else {
1299       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1300       UseBiasedLocking = false;
1301     }
1302   }
1303 #endif
1304   return UseBiasedLocking;
1305 }
1306 
1307 void VM_Version::initialize() {
1308   ResourceMark rm;
1309   // Making this stub must be FIRST use of assembler
1310 
1311   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1312   if (stub_blob == NULL) {
1313     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1314   }
1315   CodeBuffer c(stub_blob);
1316   VM_Version_StubGenerator g(&c);
1317   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1318                                      g.generate_get_cpu_info());
1319 
1320   get_processor_features();
1321 }