1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArray.hpp"
  35 #include "ci/ciObjArrayKlass.hpp"
  36 #include "ci/ciTypeArrayKlass.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "vmreg_aarch64.inline.hpp"
  40 
  41 #ifdef ASSERT
  42 #define __ gen()->lir(__FILE__, __LINE__)->
  43 #else
  44 #define __ gen()->lir()->
  45 #endif
  46 
  47 // Item will be loaded into a byte register; Intel only
  48 void LIRItem::load_byte_item() {
  49   load_item();
  50 }
  51 
  52 
  53 void LIRItem::load_nonconstant() {
  54   LIR_Opr r = value()->operand();
  55   if (r->is_constant()) {
  56     _result = r;
  57   } else {
  58     load_item();
  59   }
  60 }
  61 
  62 //--------------------------------------------------------------
  63 //               LIRGenerator
  64 //--------------------------------------------------------------
  65 
  66 
  67 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  68 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  69 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  70 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  71 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  74 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  75 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  76 
  77 
  78 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  79   LIR_Opr opr;
  80   switch (type->tag()) {
  81     case intTag:     opr = FrameMap::r0_opr;          break;
  82     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  83     case longTag:    opr = FrameMap::long0_opr;        break;
  84     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  85     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  86 
  87     case addressTag:
  88     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  89   }
  90 
  91   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  92   return opr;
  93 }
  94 
  95 
  96 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  97   LIR_Opr reg = new_register(T_INT);
  98   set_vreg_flag(reg, LIRGenerator::byte_reg);
  99   return reg;
 100 }
 101 
 102 
 103 //--------- loading items into registers --------------------------------
 104 
 105 
 106 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 107   if (v->type()->as_IntConstant() != NULL) {
 108     return v->type()->as_IntConstant()->value() == 0L;
 109   } else if (v->type()->as_LongConstant() != NULL) {
 110     return v->type()->as_LongConstant()->value() == 0L;
 111   } else if (v->type()->as_ObjectConstant() != NULL) {
 112     return v->type()->as_ObjectConstant()->value()->is_null_object();
 113   } else {
 114     return false;
 115   }
 116 }
 117 
 118 bool LIRGenerator::can_inline_as_constant(Value v) const {
 119   // FIXME: Just a guess
 120   if (v->type()->as_IntConstant() != NULL) {
 121     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 122   } else if (v->type()->as_LongConstant() != NULL) {
 123     return v->type()->as_LongConstant()->value() == 0L;
 124   } else if (v->type()->as_ObjectConstant() != NULL) {
 125     return v->type()->as_ObjectConstant()->value()->is_null_object();
 126   } else {
 127     return false;
 128   }
 129 }
 130 
 131 
 132 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 133 
 134 
 135 LIR_Opr LIRGenerator::safepoint_poll_register() {
 136   return LIR_OprFact::illegalOpr;
 137 }
 138 
 139 
 140 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 141                                             int shift, int disp, BasicType type) {
 142   assert(base->is_register(), "must be");
 143 
 144   // accumulate fixed displacements
 145   if (index->is_constant()) {
 146     disp += index->as_constant_ptr()->as_jint() << shift;
 147     index = LIR_OprFact::illegalOpr;
 148   }
 149 
 150   if (index->is_register()) {
 151     // apply the shift and accumulate the displacement
 152     if (shift > 0) {
 153       LIR_Opr tmp = new_pointer_register();
 154       __ shift_left(index, shift, tmp);
 155       index = tmp;
 156     }
 157     if (disp != 0) {
 158       LIR_Opr tmp = new_pointer_register();
 159       if (Assembler::operand_valid_for_add_sub_immediate(disp)) {
 160         __ add(tmp, tmp, LIR_OprFact::intptrConst(disp));
 161         index = tmp;
 162       } else {
 163         __ move(tmp, LIR_OprFact::intptrConst(disp));
 164         __ add(tmp, index, tmp);
 165         index = tmp;
 166       }
 167       disp = 0;
 168     }
 169   } else if (disp != 0 && !Address::offset_ok_for_immed(disp, shift)) {
 170     // index is illegal so replace it with the displacement loaded into a register
 171     index = new_pointer_register();
 172     __ move(LIR_OprFact::intptrConst(disp), index);
 173     disp = 0;
 174   }
 175 
 176   // at this point we either have base + index or base + displacement
 177   if (disp == 0) {
 178     return new LIR_Address(base, index, type);
 179   } else {
 180     assert(Address::offset_ok_for_immed(disp, 0), "must be");
 181     return new LIR_Address(base, disp, type);
 182   }
 183 }
 184 
 185 
 186 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 187                                               BasicType type, bool needs_card_mark) {
 188   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 189   int elem_size = type2aelembytes(type);
 190   int shift = exact_log2(elem_size);
 191 
 192   LIR_Address* addr;
 193   if (index_opr->is_constant()) {
 194     addr = new LIR_Address(array_opr,
 195                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 196   } else {
 197     if (offset_in_bytes) {
 198       LIR_Opr tmp = new_pointer_register();
 199       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 200       array_opr = tmp;
 201       offset_in_bytes = 0;
 202     }
 203     addr =  new LIR_Address(array_opr,
 204                             index_opr,
 205                             LIR_Address::scale(type),
 206                             offset_in_bytes, type);
 207   }
 208   if (needs_card_mark) {
 209     // This store will need a precise card mark, so go ahead and
 210     // compute the full adddres instead of computing once for the
 211     // store and again for the card mark.
 212     LIR_Opr tmp = new_pointer_register();
 213     __ leal(LIR_OprFact::address(addr), tmp);
 214     return new LIR_Address(tmp, type);
 215   } else {
 216     return addr;
 217   }
 218 }
 219 
 220 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 221   LIR_Opr r;
 222   if (type == T_LONG) {
 223     r = LIR_OprFact::longConst(x);
 224     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 225       LIR_Opr tmp = new_register(type);
 226       __ move(r, tmp);
 227       return tmp;
 228     }
 229   } else if (type == T_INT) {
 230     r = LIR_OprFact::intConst(x);
 231     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 232       // This is all rather nasty.  We don't know whether our constant
 233       // is required for a logical or an arithmetic operation, wo we
 234       // don't know what the range of valid values is!!
 235       LIR_Opr tmp = new_register(type);
 236       __ move(r, tmp);
 237       return tmp;
 238     }
 239   } else {
 240     ShouldNotReachHere();
 241     r = NULL;  // unreachable
 242   }
 243   return r;
 244 }
 245 
 246 
 247 
 248 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 249   LIR_Opr pointer = new_pointer_register();
 250   __ move(LIR_OprFact::intptrConst(counter), pointer);
 251   LIR_Address* addr = new LIR_Address(pointer, type);
 252   increment_counter(addr, step);
 253 }
 254 
 255 
 256 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 257   LIR_Opr imm = NULL;
 258   switch(addr->type()) {
 259   case T_INT:
 260     imm = LIR_OprFact::intConst(step);
 261     break;
 262   case T_LONG:
 263     imm = LIR_OprFact::longConst(step);
 264     break;
 265   default:
 266     ShouldNotReachHere();
 267   }
 268   LIR_Opr reg = new_register(addr->type());
 269   __ load(addr, reg);
 270   __ add(reg, imm, reg);
 271   __ store(reg, addr);
 272 }
 273 
 274 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 275   LIR_Opr reg = new_register(T_INT);
 276   __ load(generate_address(base, disp, T_INT), reg, info);
 277   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 278 }
 279 
 280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 281   LIR_Opr reg1 = new_register(T_INT);
 282   __ load(generate_address(base, disp, type), reg1, info);
 283   __ cmp(condition, reg, reg1);
 284 }
 285 
 286 
 287 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 288 
 289   if (is_power_of_2(c - 1)) {
 290     __ shift_left(left, exact_log2(c - 1), tmp);
 291     __ add(tmp, left, result);
 292     return true;
 293   } else if (is_power_of_2(c + 1)) {
 294     __ shift_left(left, exact_log2(c + 1), tmp);
 295     __ sub(tmp, left, result);
 296     return true;
 297   } else {
 298     return false;
 299   }
 300 }
 301 
 302 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 303   BasicType type = item->type();
 304   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 305 }
 306 
 307 //----------------------------------------------------------------------
 308 //             visitor functions
 309 //----------------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 313   assert(x->is_pinned(),"");
 314   bool needs_range_check = x->compute_needs_range_check();
 315   bool use_length = x->length() != NULL;
 316   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 317   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 318                                          !get_jobject_constant(x->value())->is_null_object() ||
 319                                          x->should_profile());
 320 
 321   LIRItem array(x->array(), this);
 322   LIRItem index(x->index(), this);
 323   LIRItem value(x->value(), this);
 324   LIRItem length(this);
 325 
 326   array.load_item();
 327   index.load_nonconstant();
 328 
 329   if (use_length && needs_range_check) {
 330     length.set_instruction(x->length());
 331     length.load_item();
 332 
 333   }
 334   if (needs_store_check || x->check_boolean()) {
 335     value.load_item();
 336   } else {
 337     value.load_for_store(x->elt_type());
 338   }
 339 
 340   set_no_result(x);
 341 
 342   // the CodeEmitInfo must be duplicated for each different
 343   // LIR-instruction because spilling can occur anywhere between two
 344   // instructions and so the debug information must be different
 345   CodeEmitInfo* range_check_info = state_for(x);
 346   CodeEmitInfo* null_check_info = NULL;
 347   if (x->needs_null_check()) {
 348     null_check_info = new CodeEmitInfo(range_check_info);
 349   }
 350 
 351   // emit array address setup early so it schedules better
 352   // FIXME?  No harm in this on aarch64, and it might help
 353   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 354 
 355   if (GenerateRangeChecks && needs_range_check) {
 356     if (use_length) {
 357       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 358       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 359     } else {
 360       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 361       // range_check also does the null check
 362       null_check_info = NULL;
 363     }
 364   }
 365 
 366   if (GenerateArrayStoreCheck && needs_store_check) {
 367     LIR_Opr tmp1 = new_register(objectType);
 368     LIR_Opr tmp2 = new_register(objectType);
 369     LIR_Opr tmp3 = new_register(objectType);
 370 
 371     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 372     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 373   }
 374 
 375   if (obj_store) {
 376     // Needs GC write barriers.
 377     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 378                 true /* do_load */, false /* patch */, NULL);
 379     __ move(value.result(), array_addr, null_check_info);
 380     // Seems to be a precise
 381     post_barrier(LIR_OprFact::address(array_addr), value.result());
 382   } else {
 383     LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
 384     __ move(result, array_addr, null_check_info);
 385   }
 386 }
 387 
 388 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 389   assert(x->is_pinned(),"");
 390   LIRItem obj(x->obj(), this);
 391   obj.load_item();
 392 
 393   set_no_result(x);
 394 
 395   // "lock" stores the address of the monitor stack slot, so this is not an oop
 396   LIR_Opr lock = new_register(T_INT);
 397   // Need a scratch register for biased locking
 398   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 399   if (UseBiasedLocking) {
 400     scratch = new_register(T_INT);
 401   }
 402 
 403   CodeEmitInfo* info_for_exception = NULL;
 404   if (x->needs_null_check()) {
 405     info_for_exception = state_for(x);
 406   }
 407   // this CodeEmitInfo must not have the xhandlers because here the
 408   // object is already locked (xhandlers expect object to be unlocked)
 409   CodeEmitInfo* info = state_for(x, x->state(), true);
 410   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 411                         x->monitor_no(), info_for_exception, info);
 412 }
 413 
 414 
 415 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 416   assert(x->is_pinned(),"");
 417 
 418   LIRItem obj(x->obj(), this);
 419   obj.dont_load_item();
 420 
 421   LIR_Opr lock = new_register(T_INT);
 422   LIR_Opr obj_temp = new_register(T_INT);
 423   set_no_result(x);
 424   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 425 }
 426 
 427 
 428 void LIRGenerator::do_NegateOp(NegateOp* x) {
 429 
 430   LIRItem from(x->x(), this);
 431   from.load_item();
 432   LIR_Opr result = rlock_result(x);
 433   __ negate (from.result(), result);
 434 
 435 }
 436 
 437 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 438 //      _dadd, _dmul, _dsub, _ddiv, _drem
 439 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 440 
 441   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 442     // float remainder is implemented as a direct call into the runtime
 443     LIRItem right(x->x(), this);
 444     LIRItem left(x->y(), this);
 445 
 446     BasicTypeList signature(2);
 447     if (x->op() == Bytecodes::_frem) {
 448       signature.append(T_FLOAT);
 449       signature.append(T_FLOAT);
 450     } else {
 451       signature.append(T_DOUBLE);
 452       signature.append(T_DOUBLE);
 453     }
 454     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 455 
 456     const LIR_Opr result_reg = result_register_for(x->type());
 457     left.load_item_force(cc->at(1));
 458     right.load_item();
 459 
 460     __ move(right.result(), cc->at(0));
 461 
 462     address entry;
 463     if (x->op() == Bytecodes::_frem) {
 464       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 465     } else {
 466       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 467     }
 468 
 469     LIR_Opr result = rlock_result(x);
 470     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 471     __ move(result_reg, result);
 472 
 473     return;
 474   }
 475 
 476   LIRItem left(x->x(),  this);
 477   LIRItem right(x->y(), this);
 478   LIRItem* left_arg  = &left;
 479   LIRItem* right_arg = &right;
 480 
 481   // Always load right hand side.
 482   right.load_item();
 483 
 484   if (!left.is_register())
 485     left.load_item();
 486 
 487   LIR_Opr reg = rlock(x);
 488   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 489   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 490     tmp = new_register(T_DOUBLE);
 491   }
 492 
 493   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), NULL);
 494 
 495   set_result(x, round_item(reg));
 496 }
 497 
 498 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 499 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 500 
 501   // missing test if instr is commutative and if we should swap
 502   LIRItem left(x->x(), this);
 503   LIRItem right(x->y(), this);
 504 
 505   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 506 
 507     // the check for division by zero destroys the right operand
 508     right.set_destroys_register();
 509 
 510     // check for division by zero (destroys registers of right operand!)
 511     CodeEmitInfo* info = state_for(x);
 512 
 513     left.load_item();
 514     right.load_item();
 515 
 516     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 517     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 518 
 519     rlock_result(x);
 520     switch (x->op()) {
 521     case Bytecodes::_lrem:
 522       __ rem (left.result(), right.result(), x->operand());
 523       break;
 524     case Bytecodes::_ldiv:
 525       __ div (left.result(), right.result(), x->operand());
 526       break;
 527     default:
 528       ShouldNotReachHere();
 529       break;
 530     }
 531 
 532 
 533   } else {
 534     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 535             "expect lmul, ladd or lsub");
 536     // add, sub, mul
 537     left.load_item();
 538     if (! right.is_register()) {
 539       if (x->op() == Bytecodes::_lmul
 540           || ! right.is_constant()
 541           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 542         right.load_item();
 543       } else { // add, sub
 544         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 545         // don't load constants to save register
 546         right.load_nonconstant();
 547       }
 548     }
 549     rlock_result(x);
 550     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 551   }
 552 }
 553 
 554 // for: _iadd, _imul, _isub, _idiv, _irem
 555 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 556 
 557   // Test if instr is commutative and if we should swap
 558   LIRItem left(x->x(),  this);
 559   LIRItem right(x->y(), this);
 560   LIRItem* left_arg = &left;
 561   LIRItem* right_arg = &right;
 562   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 563     // swap them if left is real stack (or cached) and right is real register(not cached)
 564     left_arg = &right;
 565     right_arg = &left;
 566   }
 567 
 568   left_arg->load_item();
 569 
 570   // do not need to load right, as we can handle stack and constants
 571   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 572 
 573     right_arg->load_item();
 574     rlock_result(x);
 575 
 576     CodeEmitInfo* info = state_for(x);
 577     LIR_Opr tmp = new_register(T_INT);
 578     __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 579     __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 580     info = state_for(x);
 581 
 582     if (x->op() == Bytecodes::_irem) {
 583       __ irem(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
 584     } else if (x->op() == Bytecodes::_idiv) {
 585       __ idiv(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
 586     }
 587 
 588   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 589     if (right.is_constant()
 590         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 591       right.load_nonconstant();
 592     } else {
 593       right.load_item();
 594     }
 595     rlock_result(x);
 596     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 597   } else {
 598     assert (x->op() == Bytecodes::_imul, "expect imul");
 599     if (right.is_constant()) {
 600       int c = right.get_jint_constant();
 601       if (! is_power_of_2(c) && ! is_power_of_2(c + 1) && ! is_power_of_2(c - 1)) {
 602         // Cannot use constant op.
 603         right.load_item();
 604       } else {
 605         right.dont_load_item();
 606       }
 607     } else {
 608       right.load_item();
 609     }
 610     rlock_result(x);
 611     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 612   }
 613 }
 614 
 615 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 616   // when an operand with use count 1 is the left operand, then it is
 617   // likely that no move for 2-operand-LIR-form is necessary
 618   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 619     x->swap_operands();
 620   }
 621 
 622   ValueTag tag = x->type()->tag();
 623   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 624   switch (tag) {
 625     case floatTag:
 626     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 627     case longTag:    do_ArithmeticOp_Long(x); return;
 628     case intTag:     do_ArithmeticOp_Int(x);  return;
 629   }
 630   ShouldNotReachHere();
 631 }
 632 
 633 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 634 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 635 
 636   LIRItem left(x->x(),  this);
 637   LIRItem right(x->y(), this);
 638 
 639   left.load_item();
 640 
 641   rlock_result(x);
 642   if (right.is_constant()) {
 643     right.dont_load_item();
 644 
 645     switch (x->op()) {
 646     case Bytecodes::_ishl: {
 647       int c = right.get_jint_constant() & 0x1f;
 648       __ shift_left(left.result(), c, x->operand());
 649       break;
 650     }
 651     case Bytecodes::_ishr: {
 652       int c = right.get_jint_constant() & 0x1f;
 653       __ shift_right(left.result(), c, x->operand());
 654       break;
 655     }
 656     case Bytecodes::_iushr: {
 657       int c = right.get_jint_constant() & 0x1f;
 658       __ unsigned_shift_right(left.result(), c, x->operand());
 659       break;
 660     }
 661     case Bytecodes::_lshl: {
 662       int c = right.get_jint_constant() & 0x3f;
 663       __ shift_left(left.result(), c, x->operand());
 664       break;
 665     }
 666     case Bytecodes::_lshr: {
 667       int c = right.get_jint_constant() & 0x3f;
 668       __ shift_right(left.result(), c, x->operand());
 669       break;
 670     }
 671     case Bytecodes::_lushr: {
 672       int c = right.get_jint_constant() & 0x3f;
 673       __ unsigned_shift_right(left.result(), c, x->operand());
 674       break;
 675     }
 676     default:
 677       ShouldNotReachHere();
 678     }
 679   } else {
 680     right.load_item();
 681     LIR_Opr tmp = new_register(T_INT);
 682     switch (x->op()) {
 683     case Bytecodes::_ishl: {
 684       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 685       __ shift_left(left.result(), tmp, x->operand(), tmp);
 686       break;
 687     }
 688     case Bytecodes::_ishr: {
 689       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 690       __ shift_right(left.result(), tmp, x->operand(), tmp);
 691       break;
 692     }
 693     case Bytecodes::_iushr: {
 694       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 695       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 696       break;
 697     }
 698     case Bytecodes::_lshl: {
 699       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 700       __ shift_left(left.result(), tmp, x->operand(), tmp);
 701       break;
 702     }
 703     case Bytecodes::_lshr: {
 704       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 705       __ shift_right(left.result(), tmp, x->operand(), tmp);
 706       break;
 707     }
 708     case Bytecodes::_lushr: {
 709       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 710       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 711       break;
 712     }
 713     default:
 714       ShouldNotReachHere();
 715     }
 716   }
 717 }
 718 
 719 // _iand, _land, _ior, _lor, _ixor, _lxor
 720 void LIRGenerator::do_LogicOp(LogicOp* x) {
 721 
 722   LIRItem left(x->x(),  this);
 723   LIRItem right(x->y(), this);
 724 
 725   left.load_item();
 726 
 727   rlock_result(x);
 728   if (right.is_constant()
 729       && ((right.type()->tag() == intTag
 730            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 731           || (right.type()->tag() == longTag
 732               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 733     right.dont_load_item();
 734   } else {
 735     right.load_item();
 736   }
 737   switch (x->op()) {
 738   case Bytecodes::_iand:
 739   case Bytecodes::_land:
 740     __ logical_and(left.result(), right.result(), x->operand()); break;
 741   case Bytecodes::_ior:
 742   case Bytecodes::_lor:
 743     __ logical_or (left.result(), right.result(), x->operand()); break;
 744   case Bytecodes::_ixor:
 745   case Bytecodes::_lxor:
 746     __ logical_xor(left.result(), right.result(), x->operand()); break;
 747   default: Unimplemented();
 748   }
 749 }
 750 
 751 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 752 void LIRGenerator::do_CompareOp(CompareOp* x) {
 753   LIRItem left(x->x(), this);
 754   LIRItem right(x->y(), this);
 755   ValueTag tag = x->x()->type()->tag();
 756   if (tag == longTag) {
 757     left.set_destroys_register();
 758   }
 759   left.load_item();
 760   right.load_item();
 761   LIR_Opr reg = rlock_result(x);
 762 
 763   if (x->x()->type()->is_float_kind()) {
 764     Bytecodes::Code code = x->op();
 765     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 766   } else if (x->x()->type()->tag() == longTag) {
 767     __ lcmp2int(left.result(), right.result(), reg);
 768   } else {
 769     Unimplemented();
 770   }
 771 }
 772 
 773 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 774   assert(x->number_of_arguments() == 4, "wrong type");
 775   LIRItem obj   (x->argument_at(0), this);  // object
 776   LIRItem offset(x->argument_at(1), this);  // offset of field
 777   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 778   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 779 
 780   assert(obj.type()->tag() == objectTag, "invalid type");
 781 
 782   // In 64bit the type can be long, sparc doesn't have this assert
 783   // assert(offset.type()->tag() == intTag, "invalid type");
 784 
 785   assert(cmp.type()->tag() == type->tag(), "invalid type");
 786   assert(val.type()->tag() == type->tag(), "invalid type");
 787 
 788   // get address of field
 789   obj.load_item();
 790   offset.load_nonconstant();
 791   val.load_item();
 792   cmp.load_item();
 793 
 794   LIR_Address* a;
 795   if(offset.result()->is_constant()) {
 796     jlong c = offset.result()->as_jlong();
 797     if ((jlong)((jint)c) == c) {
 798       a = new LIR_Address(obj.result(),
 799                           (jint)c,
 800                           as_BasicType(type));
 801     } else {
 802       LIR_Opr tmp = new_register(T_LONG);
 803       __ move(offset.result(), tmp);
 804       a = new LIR_Address(obj.result(),
 805                           tmp,
 806                           as_BasicType(type));
 807     }
 808   } else {
 809     a = new LIR_Address(obj.result(),
 810                         offset.result(),
 811                         LIR_Address::times_1,
 812                         0,
 813                         as_BasicType(type));
 814   }
 815   LIR_Opr addr = new_pointer_register();
 816   __ leal(LIR_OprFact::address(a), addr);
 817 
 818   if (type == objectType) {  // Write-barrier needed for Object fields.
 819     // Do the pre-write barrier, if any.
 820     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 821                 true /* do_load */, false /* patch */, NULL);
 822   }
 823 
 824   LIR_Opr result = rlock_result(x);
 825 
 826   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 827   if (type == objectType)
 828     __ cas_obj(addr, cmp.result(), val.result(), new_register(T_INT), new_register(T_INT),
 829                result);
 830   else if (type == intType)
 831     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 832   else if (type == longType)
 833     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 834   else {
 835     ShouldNotReachHere();
 836   }
 837 
 838   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 839 
 840   if (type == objectType) {   // Write-barrier needed for Object fields.
 841     // Seems to be precise
 842     post_barrier(addr, val.result());
 843   }
 844 }
 845 
 846 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 847   switch (x->id()) {
 848     case vmIntrinsics::_dabs:
 849     case vmIntrinsics::_dsqrt: {
 850       assert(x->number_of_arguments() == 1, "wrong type");
 851       LIRItem value(x->argument_at(0), this);
 852       value.load_item();
 853       LIR_Opr dst = rlock_result(x);
 854 
 855       switch (x->id()) {
 856       case vmIntrinsics::_dsqrt: {
 857         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 858         break;
 859       }
 860       case vmIntrinsics::_dabs: {
 861         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 862         break;
 863       }
 864       }
 865       break;
 866     }
 867     case vmIntrinsics::_dlog10: // fall through
 868     case vmIntrinsics::_dlog: // fall through
 869     case vmIntrinsics::_dsin: // fall through
 870     case vmIntrinsics::_dtan: // fall through
 871     case vmIntrinsics::_dcos: // fall through
 872     case vmIntrinsics::_dexp: {
 873       assert(x->number_of_arguments() == 1, "wrong type");
 874 
 875       address runtime_entry = NULL;
 876       switch (x->id()) {
 877       case vmIntrinsics::_dsin:
 878         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 879         break;
 880       case vmIntrinsics::_dcos:
 881         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 882         break;
 883       case vmIntrinsics::_dtan:
 884         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 885         break;
 886       case vmIntrinsics::_dlog:
 887         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 888         break;
 889       case vmIntrinsics::_dlog10:
 890         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 891         break;
 892       case vmIntrinsics::_dexp:
 893         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 894         break;
 895       default:
 896         ShouldNotReachHere();
 897       }
 898 
 899       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 900       set_result(x, result);
 901       break;
 902     }
 903     case vmIntrinsics::_dpow: {
 904       assert(x->number_of_arguments() == 2, "wrong type");
 905       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 906       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 907       set_result(x, result);
 908       break;
 909     }
 910   }
 911 }
 912 
 913 
 914 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 915   assert(x->number_of_arguments() == 5, "wrong type");
 916 
 917   // Make all state_for calls early since they can emit code
 918   CodeEmitInfo* info = state_for(x, x->state());
 919 
 920   LIRItem src(x->argument_at(0), this);
 921   LIRItem src_pos(x->argument_at(1), this);
 922   LIRItem dst(x->argument_at(2), this);
 923   LIRItem dst_pos(x->argument_at(3), this);
 924   LIRItem length(x->argument_at(4), this);
 925 
 926   // operands for arraycopy must use fixed registers, otherwise
 927   // LinearScan will fail allocation (because arraycopy always needs a
 928   // call)
 929 
 930   // The java calling convention will give us enough registers
 931   // so that on the stub side the args will be perfect already.
 932   // On the other slow/special case side we call C and the arg
 933   // positions are not similar enough to pick one as the best.
 934   // Also because the java calling convention is a "shifted" version
 935   // of the C convention we can process the java args trivially into C
 936   // args without worry of overwriting during the xfer
 937 
 938   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 939   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 940   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 941   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 942   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 943 
 944   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 945 
 946   set_no_result(x);
 947 
 948   int flags;
 949   ciArrayKlass* expected_type;
 950   arraycopy_helper(x, &flags, &expected_type);
 951 
 952   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 953 }
 954 
 955 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 956   assert(UseCRC32Intrinsics, "why are we here?");
 957   // Make all state_for calls early since they can emit code
 958   LIR_Opr result = rlock_result(x);
 959   int flags = 0;
 960   switch (x->id()) {
 961     case vmIntrinsics::_updateCRC32: {
 962       LIRItem crc(x->argument_at(0), this);
 963       LIRItem val(x->argument_at(1), this);
 964       // val is destroyed by update_crc32
 965       val.set_destroys_register();
 966       crc.load_item();
 967       val.load_item();
 968       __ update_crc32(crc.result(), val.result(), result);
 969       break;
 970     }
 971     case vmIntrinsics::_updateBytesCRC32:
 972     case vmIntrinsics::_updateByteBufferCRC32: {
 973       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 974 
 975       LIRItem crc(x->argument_at(0), this);
 976       LIRItem buf(x->argument_at(1), this);
 977       LIRItem off(x->argument_at(2), this);
 978       LIRItem len(x->argument_at(3), this);
 979       buf.load_item();
 980       off.load_nonconstant();
 981 
 982       LIR_Opr index = off.result();
 983       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 984       if(off.result()->is_constant()) {
 985         index = LIR_OprFact::illegalOpr;
 986        offset += off.result()->as_jint();
 987       }
 988       LIR_Opr base_op = buf.result();
 989 
 990       if (index->is_valid()) {
 991         LIR_Opr tmp = new_register(T_LONG);
 992         __ convert(Bytecodes::_i2l, index, tmp);
 993         index = tmp;
 994       }
 995 
 996       if (offset) {
 997         LIR_Opr tmp = new_pointer_register();
 998         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 999         base_op = tmp;
1000         offset = 0;
1001       }
1002 
1003       LIR_Address* a = new LIR_Address(base_op,
1004                                        index,
1005                                        LIR_Address::times_1,
1006                                        offset,
1007                                        T_BYTE);
1008       BasicTypeList signature(3);
1009       signature.append(T_INT);
1010       signature.append(T_ADDRESS);
1011       signature.append(T_INT);
1012       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1013       const LIR_Opr result_reg = result_register_for(x->type());
1014 
1015       LIR_Opr addr = new_pointer_register();
1016       __ leal(LIR_OprFact::address(a), addr);
1017 
1018       crc.load_item_force(cc->at(0));
1019       __ move(addr, cc->at(1));
1020       len.load_item_force(cc->at(2));
1021 
1022       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1023       __ move(result_reg, result);
1024 
1025       break;
1026     }
1027     default: {
1028       ShouldNotReachHere();
1029     }
1030   }
1031 }
1032 
1033 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1034   Unimplemented();
1035 }
1036 
1037 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1038   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1039 }
1040 
1041 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1042 // _i2b, _i2c, _i2s
1043 void LIRGenerator::do_Convert(Convert* x) {
1044   LIRItem value(x->value(), this);
1045   value.load_item();
1046   LIR_Opr input = value.result();
1047   LIR_Opr result = rlock(x);
1048 
1049   // arguments of lir_convert
1050   LIR_Opr conv_input = input;
1051   LIR_Opr conv_result = result;
1052   ConversionStub* stub = NULL;
1053 
1054   __ convert(x->op(), conv_input, conv_result);
1055 
1056   assert(result->is_virtual(), "result must be virtual register");
1057   set_result(x, result);
1058 }
1059 
1060 void LIRGenerator::do_NewInstance(NewInstance* x) {
1061 #ifndef PRODUCT
1062   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1063     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1064   }
1065 #endif
1066   CodeEmitInfo* info = state_for(x, x->state());
1067   LIR_Opr reg = result_register_for(x->type());
1068   new_instance(reg, x->klass(), x->is_unresolved(),
1069                        FrameMap::r2_oop_opr,
1070                        FrameMap::r5_oop_opr,
1071                        FrameMap::r4_oop_opr,
1072                        LIR_OprFact::illegalOpr,
1073                        FrameMap::r3_metadata_opr, info);
1074   LIR_Opr result = rlock_result(x);
1075   __ move(reg, result);
1076 }
1077 
1078 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1079   CodeEmitInfo* info = state_for(x, x->state());
1080 
1081   LIRItem length(x->length(), this);
1082   length.load_item_force(FrameMap::r19_opr);
1083 
1084   LIR_Opr reg = result_register_for(x->type());
1085   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1086   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1087   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1088   LIR_Opr tmp4 = reg;
1089   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1090   LIR_Opr len = length.result();
1091   BasicType elem_type = x->elt_type();
1092 
1093   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1094 
1095   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1096   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1097 
1098   LIR_Opr result = rlock_result(x);
1099   __ move(reg, result);
1100 }
1101 
1102 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1103   LIRItem length(x->length(), this);
1104   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1105   // and therefore provide the state before the parameters have been consumed
1106   CodeEmitInfo* patching_info = NULL;
1107   if (!x->klass()->is_loaded() || PatchALot) {
1108     patching_info =  state_for(x, x->state_before());
1109   }
1110 
1111   CodeEmitInfo* info = state_for(x, x->state());
1112 
1113   LIR_Opr reg = result_register_for(x->type());
1114   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1115   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1116   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1117   LIR_Opr tmp4 = reg;
1118   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1119 
1120   length.load_item_force(FrameMap::r19_opr);
1121   LIR_Opr len = length.result();
1122 
1123   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1124   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1125   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1126     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1127   }
1128   klass2reg_with_patching(klass_reg, obj, patching_info);
1129   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1130 
1131   LIR_Opr result = rlock_result(x);
1132   __ move(reg, result);
1133 }
1134 
1135 
1136 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1137   Values* dims = x->dims();
1138   int i = dims->length();
1139   LIRItemList* items = new LIRItemList(i, i, NULL);
1140   while (i-- > 0) {
1141     LIRItem* size = new LIRItem(dims->at(i), this);
1142     items->at_put(i, size);
1143   }
1144 
1145   // Evaluate state_for early since it may emit code.
1146   CodeEmitInfo* patching_info = NULL;
1147   if (!x->klass()->is_loaded() || PatchALot) {
1148     patching_info = state_for(x, x->state_before());
1149 
1150     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1151     // clone all handlers (NOTE: Usually this is handled transparently
1152     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1153     // is done explicitly here because a stub isn't being used).
1154     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1155   }
1156   CodeEmitInfo* info = state_for(x, x->state());
1157 
1158   i = dims->length();
1159   while (i-- > 0) {
1160     LIRItem* size = items->at(i);
1161     size->load_item();
1162 
1163     store_stack_parameter(size->result(), in_ByteSize(i*4));
1164   }
1165 
1166   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1167   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1168 
1169   LIR_Opr rank = FrameMap::r19_opr;
1170   __ move(LIR_OprFact::intConst(x->rank()), rank);
1171   LIR_Opr varargs = FrameMap::r2_opr;
1172   __ move(FrameMap::sp_opr, varargs);
1173   LIR_OprList* args = new LIR_OprList(3);
1174   args->append(klass_reg);
1175   args->append(rank);
1176   args->append(varargs);
1177   LIR_Opr reg = result_register_for(x->type());
1178   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1179                   LIR_OprFact::illegalOpr,
1180                   reg, args, info);
1181 
1182   LIR_Opr result = rlock_result(x);
1183   __ move(reg, result);
1184 }
1185 
1186 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1187   // nothing to do for now
1188 }
1189 
1190 void LIRGenerator::do_CheckCast(CheckCast* x) {
1191   LIRItem obj(x->obj(), this);
1192 
1193   CodeEmitInfo* patching_info = NULL;
1194   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1195     // must do this before locking the destination register as an oop register,
1196     // and before the obj is loaded (the latter is for deoptimization)
1197     patching_info = state_for(x, x->state_before());
1198   }
1199   obj.load_item();
1200 
1201   // info for exceptions
1202   CodeEmitInfo* info_for_exception = state_for(x);
1203 
1204   CodeStub* stub;
1205   if (x->is_incompatible_class_change_check()) {
1206     assert(patching_info == NULL, "can't patch this");
1207     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1208   } else {
1209     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1210   }
1211   LIR_Opr reg = rlock_result(x);
1212   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1213   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1214     tmp3 = new_register(objectType);
1215   }
1216   __ checkcast(reg, obj.result(), x->klass(),
1217                new_register(objectType), new_register(objectType), tmp3,
1218                x->direct_compare(), info_for_exception, patching_info, stub,
1219                x->profiled_method(), x->profiled_bci());
1220 }
1221 
1222 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1223   LIRItem obj(x->obj(), this);
1224 
1225   // result and test object may not be in same register
1226   LIR_Opr reg = rlock_result(x);
1227   CodeEmitInfo* patching_info = NULL;
1228   if ((!x->klass()->is_loaded() || PatchALot)) {
1229     // must do this before locking the destination register as an oop register
1230     patching_info = state_for(x, x->state_before());
1231   }
1232   obj.load_item();
1233   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1234   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1235     tmp3 = new_register(objectType);
1236   }
1237   __ instanceof(reg, obj.result(), x->klass(),
1238                 new_register(objectType), new_register(objectType), tmp3,
1239                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1240 }
1241 
1242 void LIRGenerator::do_If(If* x) {
1243   assert(x->number_of_sux() == 2, "inconsistency");
1244   ValueTag tag = x->x()->type()->tag();
1245   bool is_safepoint = x->is_safepoint();
1246 
1247   If::Condition cond = x->cond();
1248 
1249   LIRItem xitem(x->x(), this);
1250   LIRItem yitem(x->y(), this);
1251   LIRItem* xin = &xitem;
1252   LIRItem* yin = &yitem;
1253 
1254   if (tag == longTag) {
1255     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1256     // mirror for other conditions
1257     if (cond == If::gtr || cond == If::leq) {
1258       cond = Instruction::mirror(cond);
1259       xin = &yitem;
1260       yin = &xitem;
1261     }
1262     xin->set_destroys_register();
1263   }
1264   xin->load_item();
1265 
1266   if (tag == longTag) {
1267     if (yin->is_constant()
1268         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1269       yin->dont_load_item();
1270     } else {
1271       yin->load_item();
1272     }
1273   } else if (tag == intTag) {
1274     if (yin->is_constant()
1275         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1276       yin->dont_load_item();
1277     } else {
1278       yin->load_item();
1279     }
1280   } else {
1281     yin->load_item();
1282   }
1283 
1284   // add safepoint before generating condition code so it can be recomputed
1285   if (x->is_safepoint()) {
1286     // increment backedge counter if needed
1287     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1288     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1289   }
1290   set_no_result(x);
1291 
1292   LIR_Opr left = xin->result();
1293   LIR_Opr right = yin->result();
1294 
1295   __ cmp(lir_cond(cond), left, right);
1296   // Generate branch profiling. Profiling code doesn't kill flags.
1297   profile_branch(x, cond);
1298   move_to_phi(x->state());
1299   if (x->x()->type()->is_float_kind()) {
1300     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1301   } else {
1302     __ branch(lir_cond(cond), right->type(), x->tsux());
1303   }
1304   assert(x->default_sux() == x->fsux(), "wrong destination above");
1305   __ jump(x->default_sux());
1306 }
1307 
1308 LIR_Opr LIRGenerator::getThreadPointer() {
1309    return FrameMap::as_pointer_opr(rthread);
1310 }
1311 
1312 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1313 
1314 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1315                                         CodeEmitInfo* info) {
1316   __ volatile_store_mem_reg(value, address, info);
1317 }
1318 
1319 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1320                                        CodeEmitInfo* info) {
1321   __ volatile_load_mem_reg(address, result, info);
1322 }
1323 
1324 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1325                                      BasicType type, bool is_volatile) {
1326   LIR_Address* addr = new LIR_Address(src, offset, type);
1327   __ load(addr, dst);
1328 }
1329 
1330 
1331 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1332                                      BasicType type, bool is_volatile) {
1333   LIR_Address* addr = new LIR_Address(src, offset, type);
1334   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1335   if (is_obj) {
1336     // Do the pre-write barrier, if any.
1337     pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1338                 true /* do_load */, false /* patch */, NULL);
1339     __ move(data, addr);
1340     assert(src->is_register(), "must be register");
1341     // Seems to be a precise address
1342     post_barrier(LIR_OprFact::address(addr), data);
1343   } else {
1344     __ move(data, addr);
1345   }
1346 }
1347 
1348 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1349   BasicType type = x->basic_type();
1350   LIRItem src(x->object(), this);
1351   LIRItem off(x->offset(), this);
1352   LIRItem value(x->value(), this);
1353 
1354   src.load_item();
1355   off.load_nonconstant();
1356 
1357   // We can cope with a constant increment in an xadd
1358   if (! (x->is_add()
1359          && value.is_constant()
1360          && can_inline_as_constant(x->value()))) {
1361     value.load_item();
1362   }
1363 
1364   LIR_Opr dst = rlock_result(x, type);
1365   LIR_Opr data = value.result();
1366   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1367   LIR_Opr offset = off.result();
1368 
1369   if (data == dst) {
1370     LIR_Opr tmp = new_register(data->type());
1371     __ move(data, tmp);
1372     data = tmp;
1373   }
1374 
1375   LIR_Address* addr;
1376   if (offset->is_constant()) {
1377     jlong l = offset->as_jlong();
1378     assert((jlong)((jint)l) == l, "offset too large for constant");
1379     jint c = (jint)l;
1380     addr = new LIR_Address(src.result(), c, type);
1381   } else {
1382     addr = new LIR_Address(src.result(), offset, type);
1383   }
1384 
1385   LIR_Opr tmp = new_register(T_INT);
1386   LIR_Opr ptr = LIR_OprFact::illegalOpr;
1387 
1388   if (x->is_add()) {
1389     __ xadd(LIR_OprFact::address(addr), data, dst, tmp);
1390   } else {
1391     if (is_obj) {
1392       // Do the pre-write barrier, if any.
1393       ptr = new_pointer_register();
1394       __ add(src.result(), off.result(), ptr);
1395       pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1396                   true /* do_load */, false /* patch */, NULL);
1397     }
1398     __ xchg(LIR_OprFact::address(addr), data, dst, tmp);
1399     if (is_obj) {
1400       post_barrier(ptr, data);
1401     }
1402   }
1403 }