1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/compilationPolicy.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/signature.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "runtime/vframe_hp.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/xmlstream.hpp"
  57 
  58 #if INCLUDE_JVMCI
  59 #include "jvmci/jvmciRuntime.hpp"
  60 #include "jvmci/jvmciJavaClasses.hpp"
  61 #endif
  62 
  63 
  64 bool DeoptimizationMarker::_is_active = false;
  65 
  66 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  67                                          int  caller_adjustment,
  68                                          int  caller_actual_parameters,
  69                                          int  number_of_frames,
  70                                          intptr_t* frame_sizes,
  71                                          address* frame_pcs,
  72                                          BasicType return_type,
  73                                          int exec_mode) {
  74   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  75   _caller_adjustment         = caller_adjustment;
  76   _caller_actual_parameters  = caller_actual_parameters;
  77   _number_of_frames          = number_of_frames;
  78   _frame_sizes               = frame_sizes;
  79   _frame_pcs                 = frame_pcs;
  80   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  81   _return_type               = return_type;
  82   _initial_info              = 0;
  83   // PD (x86 only)
  84   _counter_temp              = 0;
  85   _unpack_kind               = exec_mode;
  86   _sender_sp_temp            = 0;
  87 
  88   _total_frame_sizes         = size_of_frames();
  89   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  90 }
  91 
  92 
  93 Deoptimization::UnrollBlock::~UnrollBlock() {
  94   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  95   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  96   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  97 }
  98 
  99 
 100 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 101   assert(register_number < RegisterMap::reg_count, "checking register number");
 102   return &_register_block[register_number * 2];
 103 }
 104 
 105 
 106 
 107 int Deoptimization::UnrollBlock::size_of_frames() const {
 108   // Acount first for the adjustment of the initial frame
 109   int result = _caller_adjustment;
 110   for (int index = 0; index < number_of_frames(); index++) {
 111     result += frame_sizes()[index];
 112   }
 113   return result;
 114 }
 115 
 116 
 117 void Deoptimization::UnrollBlock::print() {
 118   ttyLocker ttyl;
 119   tty->print_cr("UnrollBlock");
 120   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 121   tty->print(   "  frame_sizes: ");
 122   for (int index = 0; index < number_of_frames(); index++) {
 123     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 124   }
 125   tty->cr();
 126 }
 127 
 128 
 129 // In order to make fetch_unroll_info work properly with escape
 130 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 131 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 132 // of previously eliminated objects occurs in realloc_objects, which is
 133 // called from the method fetch_unroll_info_helper below.
 134 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 135   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 136   // but makes the entry a little slower. There is however a little dance we have to
 137   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 138 
 139   // fetch_unroll_info() is called at the beginning of the deoptimization
 140   // handler. Note this fact before we start generating temporary frames
 141   // that can confuse an asynchronous stack walker. This counter is
 142   // decremented at the end of unpack_frames().
 143   if (TraceDeoptimization) {
 144     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 145   }
 146   thread->inc_in_deopt_handler();
 147 
 148   return fetch_unroll_info_helper(thread, exec_mode);
 149 JRT_END
 150 
 151 
 152 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 153 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 154 
 155   // Note: there is a safepoint safety issue here. No matter whether we enter
 156   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 157   // the vframeArray is created.
 158   //
 159 
 160   // Allocate our special deoptimization ResourceMark
 161   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 162   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 163   thread->set_deopt_mark(dmark);
 164 
 165   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 166   RegisterMap map(thread, true);
 167   RegisterMap dummy_map(thread, false);
 168   // Now get the deoptee with a valid map
 169   frame deoptee = stub_frame.sender(&map);
 170   // Set the deoptee nmethod
 171   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 172   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 173   thread->set_deopt_compiled_method(cm);
 174 
 175   if (VerifyStack) {
 176     thread->validate_frame_layout();
 177   }
 178 
 179   // Create a growable array of VFrames where each VFrame represents an inlined
 180   // Java frame.  This storage is allocated with the usual system arena.
 181   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 182   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 183   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 184   while (!vf->is_top()) {
 185     assert(vf->is_compiled_frame(), "Wrong frame type");
 186     chunk->push(compiledVFrame::cast(vf));
 187     vf = vf->sender();
 188   }
 189   assert(vf->is_compiled_frame(), "Wrong frame type");
 190   chunk->push(compiledVFrame::cast(vf));
 191 
 192   ScopeDesc* trap_scope = chunk->at(0)->scope();
 193   Handle exceptionObject;
 194   if (trap_scope->rethrow_exception()) {
 195     if (PrintDeoptimizationDetails) {
 196       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 197     }
 198     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 199     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 200     ScopeValue* topOfStack = expressions->top();
 201     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 202     assert(exceptionObject() != NULL, "exception oop can not be null");
 203   }
 204 
 205   bool realloc_failures = false;
 206 
 207 #if defined(COMPILER2) || INCLUDE_JVMCI
 208   // Reallocate the non-escaping objects and restore their fields. Then
 209   // relock objects if synchronization on them was eliminated.
 210 #ifndef INCLUDE_JVMCI
 211   if (DoEscapeAnalysis || EliminateNestedLocks) {
 212     if (EliminateAllocations) {
 213 #endif // INCLUDE_JVMCI
 214       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 215       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 216 
 217       // The flag return_oop() indicates call sites which return oop
 218       // in compiled code. Such sites include java method calls,
 219       // runtime calls (for example, used to allocate new objects/arrays
 220       // on slow code path) and any other calls generated in compiled code.
 221       // It is not guaranteed that we can get such information here only
 222       // by analyzing bytecode in deoptimized frames. This is why this flag
 223       // is set during method compilation (see Compile::Process_OopMap_Node()).
 224       // If the previous frame was popped, we don't have a result.
 225       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 226       Handle return_value;
 227       if (save_oop_result) {
 228         // Reallocation may trigger GC. If deoptimization happened on return from
 229         // call which returns oop we need to save it since it is not in oopmap.
 230         oop result = deoptee.saved_oop_result(&map);
 231         assert(result == NULL || result->is_oop(), "must be oop");
 232         return_value = Handle(thread, result);
 233         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 234         if (TraceDeoptimization) {
 235           ttyLocker ttyl;
 236           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 237         }
 238       }
 239       if (objects != NULL) {
 240         JRT_BLOCK
 241           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 242         JRT_END
 243         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 244         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 245 #ifndef PRODUCT
 246         if (TraceDeoptimization) {
 247           ttyLocker ttyl;
 248           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 249           print_objects(objects, realloc_failures);
 250         }
 251 #endif
 252       }
 253       if (save_oop_result) {
 254         // Restore result.
 255         deoptee.set_saved_oop_result(&map, return_value());
 256       }
 257 #ifndef INCLUDE_JVMCI
 258     }
 259     if (EliminateLocks) {
 260 #endif // INCLUDE_JVMCI
 261 #ifndef PRODUCT
 262       bool first = true;
 263 #endif
 264       for (int i = 0; i < chunk->length(); i++) {
 265         compiledVFrame* cvf = chunk->at(i);
 266         assert (cvf->scope() != NULL,"expect only compiled java frames");
 267         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 268         if (monitors->is_nonempty()) {
 269           relock_objects(monitors, thread, realloc_failures);
 270 #ifndef PRODUCT
 271           if (PrintDeoptimizationDetails) {
 272             ttyLocker ttyl;
 273             for (int j = 0; j < monitors->length(); j++) {
 274               MonitorInfo* mi = monitors->at(j);
 275               if (mi->eliminated()) {
 276                 if (first) {
 277                   first = false;
 278                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 279                 }
 280                 if (mi->owner_is_scalar_replaced()) {
 281                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 282                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 283                 } else {
 284                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 285                 }
 286               }
 287             }
 288           }
 289 #endif // !PRODUCT
 290         }
 291       }
 292 #ifndef INCLUDE_JVMCI
 293     }
 294   }
 295 #endif // INCLUDE_JVMCI
 296 #endif // COMPILER2 || INCLUDE_JVMCI
 297 
 298   // Ensure that no safepoint is taken after pointers have been stored
 299   // in fields of rematerialized objects.  If a safepoint occurs from here on
 300   // out the java state residing in the vframeArray will be missed.
 301   NoSafepointVerifier no_safepoint;
 302 
 303   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 304 #if defined(COMPILER2) || INCLUDE_JVMCI
 305   if (realloc_failures) {
 306     pop_frames_failed_reallocs(thread, array);
 307   }
 308 #endif
 309 
 310   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 311   thread->set_vframe_array_head(array);
 312 
 313   // Now that the vframeArray has been created if we have any deferred local writes
 314   // added by jvmti then we can free up that structure as the data is now in the
 315   // vframeArray
 316 
 317   if (thread->deferred_locals() != NULL) {
 318     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 319     int i = 0;
 320     do {
 321       // Because of inlining we could have multiple vframes for a single frame
 322       // and several of the vframes could have deferred writes. Find them all.
 323       if (list->at(i)->id() == array->original().id()) {
 324         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 325         list->remove_at(i);
 326         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 327         delete dlv;
 328       } else {
 329         i++;
 330       }
 331     } while ( i < list->length() );
 332     if (list->length() == 0) {
 333       thread->set_deferred_locals(NULL);
 334       // free the list and elements back to C heap.
 335       delete list;
 336     }
 337 
 338   }
 339 
 340 #ifndef SHARK
 341   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 342   CodeBlob* cb = stub_frame.cb();
 343   // Verify we have the right vframeArray
 344   assert(cb->frame_size() >= 0, "Unexpected frame size");
 345   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 346 
 347   // If the deopt call site is a MethodHandle invoke call site we have
 348   // to adjust the unpack_sp.
 349   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 350   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 351     unpack_sp = deoptee.unextended_sp();
 352 
 353 #ifdef ASSERT
 354   assert(cb->is_deoptimization_stub() ||
 355          cb->is_uncommon_trap_stub() ||
 356          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 357          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 358          "unexpected code blob: %s", cb->name());
 359 #endif
 360 #else
 361   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 362 #endif // !SHARK
 363 
 364   // This is a guarantee instead of an assert because if vframe doesn't match
 365   // we will unpack the wrong deoptimized frame and wind up in strange places
 366   // where it will be very difficult to figure out what went wrong. Better
 367   // to die an early death here than some very obscure death later when the
 368   // trail is cold.
 369   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 370   // in that it will fail to detect a problem when there is one. This needs
 371   // more work in tiger timeframe.
 372   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 373 
 374   int number_of_frames = array->frames();
 375 
 376   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 377   // virtual activation, which is the reverse of the elements in the vframes array.
 378   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 379   // +1 because we always have an interpreter return address for the final slot.
 380   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 381   int popframe_extra_args = 0;
 382   // Create an interpreter return address for the stub to use as its return
 383   // address so the skeletal frames are perfectly walkable
 384   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 385 
 386   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 387   // activation be put back on the expression stack of the caller for reexecution
 388   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 389     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 390   }
 391 
 392   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 393   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 394   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 395   //
 396   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 397   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 398 
 399   // It's possible that the number of parameters at the call site is
 400   // different than number of arguments in the callee when method
 401   // handles are used.  If the caller is interpreted get the real
 402   // value so that the proper amount of space can be added to it's
 403   // frame.
 404   bool caller_was_method_handle = false;
 405   if (deopt_sender.is_interpreted_frame()) {
 406     methodHandle method = deopt_sender.interpreter_frame_method();
 407     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 408     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 409       // Method handle invokes may involve fairly arbitrary chains of
 410       // calls so it's impossible to know how much actual space the
 411       // caller has for locals.
 412       caller_was_method_handle = true;
 413     }
 414   }
 415 
 416   //
 417   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 418   // frame_sizes/frame_pcs[1] next oldest frame (int)
 419   // frame_sizes/frame_pcs[n] youngest frame (int)
 420   //
 421   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 422   // owns the space for the return address to it's caller).  Confusing ain't it.
 423   //
 424   // The vframe array can address vframes with indices running from
 425   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 426   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 427   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 428   // so things look a little strange in this loop.
 429   //
 430   int callee_parameters = 0;
 431   int callee_locals = 0;
 432   for (int index = 0; index < array->frames(); index++ ) {
 433     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 434     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 435     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 436     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 437                                                                                                     callee_locals,
 438                                                                                                     index == 0,
 439                                                                                                     popframe_extra_args);
 440     // This pc doesn't have to be perfect just good enough to identify the frame
 441     // as interpreted so the skeleton frame will be walkable
 442     // The correct pc will be set when the skeleton frame is completely filled out
 443     // The final pc we store in the loop is wrong and will be overwritten below
 444     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 445 
 446     callee_parameters = array->element(index)->method()->size_of_parameters();
 447     callee_locals = array->element(index)->method()->max_locals();
 448     popframe_extra_args = 0;
 449   }
 450 
 451   // Compute whether the root vframe returns a float or double value.
 452   BasicType return_type;
 453   {
 454     HandleMark hm;
 455     methodHandle method(thread, array->element(0)->method());
 456     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 457     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 458   }
 459 
 460   // Compute information for handling adapters and adjusting the frame size of the caller.
 461   int caller_adjustment = 0;
 462 
 463   // Compute the amount the oldest interpreter frame will have to adjust
 464   // its caller's stack by. If the caller is a compiled frame then
 465   // we pretend that the callee has no parameters so that the
 466   // extension counts for the full amount of locals and not just
 467   // locals-parms. This is because without a c2i adapter the parm
 468   // area as created by the compiled frame will not be usable by
 469   // the interpreter. (Depending on the calling convention there
 470   // may not even be enough space).
 471 
 472   // QQQ I'd rather see this pushed down into last_frame_adjust
 473   // and have it take the sender (aka caller).
 474 
 475   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 476     caller_adjustment = last_frame_adjust(0, callee_locals);
 477   } else if (callee_locals > callee_parameters) {
 478     // The caller frame may need extending to accommodate
 479     // non-parameter locals of the first unpacked interpreted frame.
 480     // Compute that adjustment.
 481     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 482   }
 483 
 484   // If the sender is deoptimized the we must retrieve the address of the handler
 485   // since the frame will "magically" show the original pc before the deopt
 486   // and we'd undo the deopt.
 487 
 488   frame_pcs[0] = deopt_sender.raw_pc();
 489 
 490 #ifndef SHARK
 491   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 492 #endif // SHARK
 493 
 494 #ifdef INCLUDE_JVMCI
 495   if (exceptionObject() != NULL) {
 496     thread->set_exception_oop(exceptionObject());
 497     exec_mode = Unpack_exception;
 498   }
 499 #endif
 500 
 501   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 502     assert(thread->has_pending_exception(), "should have thrown OOME");
 503     thread->set_exception_oop(thread->pending_exception());
 504     thread->clear_pending_exception();
 505     exec_mode = Unpack_exception;
 506   }
 507 
 508 #if INCLUDE_JVMCI
 509   if (thread->frames_to_pop_failed_realloc() > 0) {
 510     thread->set_pending_monitorenter(false);
 511   }
 512 #endif
 513 
 514   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 515                                       caller_adjustment * BytesPerWord,
 516                                       caller_was_method_handle ? 0 : callee_parameters,
 517                                       number_of_frames,
 518                                       frame_sizes,
 519                                       frame_pcs,
 520                                       return_type,
 521                                       exec_mode);
 522   // On some platforms, we need a way to pass some platform dependent
 523   // information to the unpacking code so the skeletal frames come out
 524   // correct (initial fp value, unextended sp, ...)
 525   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 526 
 527   if (array->frames() > 1) {
 528     if (VerifyStack && TraceDeoptimization) {
 529       ttyLocker ttyl;
 530       tty->print_cr("Deoptimizing method containing inlining");
 531     }
 532   }
 533 
 534   array->set_unroll_block(info);
 535   return info;
 536 }
 537 
 538 // Called to cleanup deoptimization data structures in normal case
 539 // after unpacking to stack and when stack overflow error occurs
 540 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 541                                         vframeArray *array) {
 542 
 543   // Get array if coming from exception
 544   if (array == NULL) {
 545     array = thread->vframe_array_head();
 546   }
 547   thread->set_vframe_array_head(NULL);
 548 
 549   // Free the previous UnrollBlock
 550   vframeArray* old_array = thread->vframe_array_last();
 551   thread->set_vframe_array_last(array);
 552 
 553   if (old_array != NULL) {
 554     UnrollBlock* old_info = old_array->unroll_block();
 555     old_array->set_unroll_block(NULL);
 556     delete old_info;
 557     delete old_array;
 558   }
 559 
 560   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 561   // inside the vframeArray (StackValueCollections)
 562 
 563   delete thread->deopt_mark();
 564   thread->set_deopt_mark(NULL);
 565   thread->set_deopt_compiled_method(NULL);
 566 
 567 
 568   if (JvmtiExport::can_pop_frame()) {
 569 #ifndef CC_INTERP
 570     // Regardless of whether we entered this routine with the pending
 571     // popframe condition bit set, we should always clear it now
 572     thread->clear_popframe_condition();
 573 #else
 574     // C++ interpreter will clear has_pending_popframe when it enters
 575     // with method_resume. For deopt_resume2 we clear it now.
 576     if (thread->popframe_forcing_deopt_reexecution())
 577         thread->clear_popframe_condition();
 578 #endif /* CC_INTERP */
 579   }
 580 
 581   // unpack_frames() is called at the end of the deoptimization handler
 582   // and (in C2) at the end of the uncommon trap handler. Note this fact
 583   // so that an asynchronous stack walker can work again. This counter is
 584   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 585   // the beginning of uncommon_trap().
 586   thread->dec_in_deopt_handler();
 587 }
 588 
 589 // Moved from cpu directories because none of the cpus has callee save values.
 590 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 591 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 592 
 593   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 594   // the days we had adapter frames. When we deoptimize a situation where a
 595   // compiled caller calls a compiled caller will have registers it expects
 596   // to survive the call to the callee. If we deoptimize the callee the only
 597   // way we can restore these registers is to have the oldest interpreter
 598   // frame that we create restore these values. That is what this routine
 599   // will accomplish.
 600 
 601   // At the moment we have modified c2 to not have any callee save registers
 602   // so this problem does not exist and this routine is just a place holder.
 603 
 604   assert(f->is_interpreted_frame(), "must be interpreted");
 605 }
 606 
 607 // Return BasicType of value being returned
 608 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 609 
 610   // We are already active int he special DeoptResourceMark any ResourceObj's we
 611   // allocate will be freed at the end of the routine.
 612 
 613   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 614   // but makes the entry a little slower. There is however a little dance we have to
 615   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 616   ResetNoHandleMark rnhm; // No-op in release/product versions
 617   HandleMark hm;
 618 
 619   frame stub_frame = thread->last_frame();
 620 
 621   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 622   // must point to the vframeArray for the unpack frame.
 623   vframeArray* array = thread->vframe_array_head();
 624 
 625 #ifndef PRODUCT
 626   if (TraceDeoptimization) {
 627     ttyLocker ttyl;
 628     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 629                   p2i(thread), p2i(array), exec_mode);
 630   }
 631 #endif
 632   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 633               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 634 
 635   UnrollBlock* info = array->unroll_block();
 636 
 637   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 638   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 639 
 640   BasicType bt = info->return_type();
 641 
 642   // If we have an exception pending, claim that the return type is an oop
 643   // so the deopt_blob does not overwrite the exception_oop.
 644 
 645   if (exec_mode == Unpack_exception)
 646     bt = T_OBJECT;
 647 
 648   // Cleanup thread deopt data
 649   cleanup_deopt_info(thread, array);
 650 
 651 #ifndef PRODUCT
 652   if (VerifyStack) {
 653     ResourceMark res_mark;
 654 
 655     thread->validate_frame_layout();
 656 
 657     // Verify that the just-unpacked frames match the interpreter's
 658     // notions of expression stack and locals
 659     vframeArray* cur_array = thread->vframe_array_last();
 660     RegisterMap rm(thread, false);
 661     rm.set_include_argument_oops(false);
 662     bool is_top_frame = true;
 663     int callee_size_of_parameters = 0;
 664     int callee_max_locals = 0;
 665     for (int i = 0; i < cur_array->frames(); i++) {
 666       vframeArrayElement* el = cur_array->element(i);
 667       frame* iframe = el->iframe();
 668       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 669 
 670       // Get the oop map for this bci
 671       InterpreterOopMap mask;
 672       int cur_invoke_parameter_size = 0;
 673       bool try_next_mask = false;
 674       int next_mask_expression_stack_size = -1;
 675       int top_frame_expression_stack_adjustment = 0;
 676       methodHandle mh(thread, iframe->interpreter_frame_method());
 677       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 678       BytecodeStream str(mh);
 679       str.set_start(iframe->interpreter_frame_bci());
 680       int max_bci = mh->code_size();
 681       // Get to the next bytecode if possible
 682       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 683       // Check to see if we can grab the number of outgoing arguments
 684       // at an uncommon trap for an invoke (where the compiler
 685       // generates debug info before the invoke has executed)
 686       Bytecodes::Code cur_code = str.next();
 687       if (cur_code == Bytecodes::_invokevirtual   ||
 688           cur_code == Bytecodes::_invokespecial   ||
 689           cur_code == Bytecodes::_invokestatic    ||
 690           cur_code == Bytecodes::_invokeinterface ||
 691           cur_code == Bytecodes::_invokedynamic) {
 692         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 693         Symbol* signature = invoke.signature();
 694         ArgumentSizeComputer asc(signature);
 695         cur_invoke_parameter_size = asc.size();
 696         if (invoke.has_receiver()) {
 697           // Add in receiver
 698           ++cur_invoke_parameter_size;
 699         }
 700         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 701           callee_size_of_parameters++;
 702         }
 703       }
 704       if (str.bci() < max_bci) {
 705         Bytecodes::Code bc = str.next();
 706         if (bc >= 0) {
 707           // The interpreter oop map generator reports results before
 708           // the current bytecode has executed except in the case of
 709           // calls. It seems to be hard to tell whether the compiler
 710           // has emitted debug information matching the "state before"
 711           // a given bytecode or the state after, so we try both
 712           switch (cur_code) {
 713             case Bytecodes::_invokevirtual:
 714             case Bytecodes::_invokespecial:
 715             case Bytecodes::_invokestatic:
 716             case Bytecodes::_invokeinterface:
 717             case Bytecodes::_invokedynamic:
 718             case Bytecodes::_athrow:
 719               break;
 720             default: {
 721               InterpreterOopMap next_mask;
 722               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 723               next_mask_expression_stack_size = next_mask.expression_stack_size();
 724               // Need to subtract off the size of the result type of
 725               // the bytecode because this is not described in the
 726               // debug info but returned to the interpreter in the TOS
 727               // caching register
 728               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 729               if (bytecode_result_type != T_ILLEGAL) {
 730                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 731               }
 732               assert(top_frame_expression_stack_adjustment >= 0, "");
 733               try_next_mask = true;
 734               break;
 735             }
 736           }
 737         }
 738       }
 739 
 740       // Verify stack depth and oops in frame
 741       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 742       if (!(
 743             /* SPARC */
 744             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 745             /* x86 */
 746             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 747             (try_next_mask &&
 748              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 749                                                                     top_frame_expression_stack_adjustment))) ||
 750             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 751             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 752              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 753             )) {
 754         ttyLocker ttyl;
 755 
 756         // Print out some information that will help us debug the problem
 757         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 758         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 759         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 760                       iframe->interpreter_frame_expression_stack_size());
 761         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 762         tty->print_cr("  try_next_mask = %d", try_next_mask);
 763         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 764         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 765         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 766         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 767         tty->print_cr("  exec_mode = %d", exec_mode);
 768         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 769         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 770         tty->print_cr("  Interpreted frames:");
 771         for (int k = 0; k < cur_array->frames(); k++) {
 772           vframeArrayElement* el = cur_array->element(k);
 773           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 774         }
 775         cur_array->print_on_2(tty);
 776         guarantee(false, "wrong number of expression stack elements during deopt");
 777       }
 778       VerifyOopClosure verify;
 779       iframe->oops_interpreted_do(&verify, &rm, false);
 780       callee_size_of_parameters = mh->size_of_parameters();
 781       callee_max_locals = mh->max_locals();
 782       is_top_frame = false;
 783     }
 784   }
 785 #endif /* !PRODUCT */
 786 
 787 
 788   return bt;
 789 JRT_END
 790 
 791 
 792 int Deoptimization::deoptimize_dependents() {
 793   Threads::deoptimized_wrt_marked_nmethods();
 794   return 0;
 795 }
 796 
 797 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 798   = Deoptimization::Action_reinterpret;
 799 
 800 #if defined(COMPILER2) || INCLUDE_JVMCI
 801 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 802   Handle pending_exception(thread->pending_exception());
 803   const char* exception_file = thread->exception_file();
 804   int exception_line = thread->exception_line();
 805   thread->clear_pending_exception();
 806 
 807   bool failures = false;
 808 
 809   for (int i = 0; i < objects->length(); i++) {
 810     assert(objects->at(i)->is_object(), "invalid debug information");
 811     ObjectValue* sv = (ObjectValue*) objects->at(i);
 812 
 813     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 814     oop obj = NULL;
 815 
 816     if (k->is_instance_klass()) {
 817       InstanceKlass* ik = InstanceKlass::cast(k());
 818       obj = ik->allocate_instance(THREAD);
 819     } else if (k->is_typeArray_klass()) {
 820       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 821       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 822       int len = sv->field_size() / type2size[ak->element_type()];
 823       obj = ak->allocate(len, THREAD);
 824     } else if (k->is_objArray_klass()) {
 825       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 826       obj = ak->allocate(sv->field_size(), THREAD);
 827     }
 828 
 829     if (obj == NULL) {
 830       failures = true;
 831     }
 832 
 833     assert(sv->value().is_null(), "redundant reallocation");
 834     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 835     CLEAR_PENDING_EXCEPTION;
 836     sv->set_value(obj);
 837   }
 838 
 839   if (failures) {
 840     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 841   } else if (pending_exception.not_null()) {
 842     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 843   }
 844 
 845   return failures;
 846 }
 847 
 848 // restore elements of an eliminated type array
 849 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 850   int index = 0;
 851   intptr_t val;
 852 
 853   for (int i = 0; i < sv->field_size(); i++) {
 854     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 855     switch(type) {
 856     case T_LONG: case T_DOUBLE: {
 857       assert(value->type() == T_INT, "Agreement.");
 858       StackValue* low =
 859         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 860 #ifdef _LP64
 861       jlong res = (jlong)low->get_int();
 862 #else
 863 #ifdef SPARC
 864       // For SPARC we have to swap high and low words.
 865       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 866 #else
 867       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 868 #endif //SPARC
 869 #endif
 870       obj->long_at_put(index, res);
 871       break;
 872     }
 873 
 874     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 875     case T_INT: case T_FLOAT: { // 4 bytes.
 876       assert(value->type() == T_INT, "Agreement.");
 877       bool big_value = false;
 878       if (i + 1 < sv->field_size() && type == T_INT) {
 879         if (sv->field_at(i)->is_location()) {
 880           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 881           if (type == Location::dbl || type == Location::lng) {
 882             big_value = true;
 883           }
 884         } else if (sv->field_at(i)->is_constant_int()) {
 885           ScopeValue* next_scope_field = sv->field_at(i + 1);
 886           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 887             big_value = true;
 888           }
 889         }
 890       }
 891 
 892       if (big_value) {
 893         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 894   #ifdef _LP64
 895         jlong res = (jlong)low->get_int();
 896   #else
 897   #ifdef SPARC
 898         // For SPARC we have to swap high and low words.
 899         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 900   #else
 901         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 902   #endif //SPARC
 903   #endif
 904         obj->int_at_put(index, (jint)*((jint*)&res));
 905         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 906       } else {
 907         val = value->get_int();
 908         obj->int_at_put(index, (jint)*((jint*)&val));
 909       }
 910       break;
 911     }
 912 
 913     case T_SHORT:
 914       assert(value->type() == T_INT, "Agreement.");
 915       val = value->get_int();
 916       obj->short_at_put(index, (jshort)*((jint*)&val));
 917       break;
 918 
 919     case T_CHAR:
 920       assert(value->type() == T_INT, "Agreement.");
 921       val = value->get_int();
 922       obj->char_at_put(index, (jchar)*((jint*)&val));
 923       break;
 924 
 925     case T_BYTE:
 926       assert(value->type() == T_INT, "Agreement.");
 927       val = value->get_int();
 928       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 929       break;
 930 
 931     case T_BOOLEAN:
 932       assert(value->type() == T_INT, "Agreement.");
 933       val = value->get_int();
 934       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 935       break;
 936 
 937       default:
 938         ShouldNotReachHere();
 939     }
 940     index++;
 941   }
 942 }
 943 
 944 
 945 // restore fields of an eliminated object array
 946 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 947   for (int i = 0; i < sv->field_size(); i++) {
 948     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 949     assert(value->type() == T_OBJECT, "object element expected");
 950     obj->obj_at_put(i, value->get_obj()());
 951   }
 952 }
 953 
 954 class ReassignedField {
 955 public:
 956   int _offset;
 957   BasicType _type;
 958 public:
 959   ReassignedField() {
 960     _offset = 0;
 961     _type = T_ILLEGAL;
 962   }
 963 };
 964 
 965 int compare(ReassignedField* left, ReassignedField* right) {
 966   return left->_offset - right->_offset;
 967 }
 968 
 969 // Restore fields of an eliminated instance object using the same field order
 970 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 971 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 972   if (klass->superklass() != NULL) {
 973     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 974   }
 975 
 976   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 977   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 978     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 979       ReassignedField field;
 980       field._offset = fs.offset();
 981       field._type = FieldType::basic_type(fs.signature());
 982       fields->append(field);
 983     }
 984   }
 985   fields->sort(compare);
 986   for (int i = 0; i < fields->length(); i++) {
 987     intptr_t val;
 988     ScopeValue* scope_field = sv->field_at(svIndex);
 989     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 990     int offset = fields->at(i)._offset;
 991     BasicType type = fields->at(i)._type;
 992     switch (type) {
 993       case T_OBJECT: case T_ARRAY:
 994         assert(value->type() == T_OBJECT, "Agreement.");
 995         obj->obj_field_put(offset, value->get_obj()());
 996         break;
 997 
 998       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 999       case T_INT: case T_FLOAT: { // 4 bytes.
1000         assert(value->type() == T_INT, "Agreement.");
1001         bool big_value = false;
1002         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1003           if (scope_field->is_location()) {
1004             Location::Type type = ((LocationValue*) scope_field)->location().type();
1005             if (type == Location::dbl || type == Location::lng) {
1006               big_value = true;
1007             }
1008           }
1009           if (scope_field->is_constant_int()) {
1010             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1011             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1012               big_value = true;
1013             }
1014           }
1015         }
1016 
1017         if (big_value) {
1018           i++;
1019           assert(i < fields->length(), "second T_INT field needed");
1020           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1021         } else {
1022           val = value->get_int();
1023           obj->int_field_put(offset, (jint)*((jint*)&val));
1024           break;
1025         }
1026       }
1027         /* no break */
1028 
1029       case T_LONG: case T_DOUBLE: {
1030         assert(value->type() == T_INT, "Agreement.");
1031         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1032 #ifdef _LP64
1033         jlong res = (jlong)low->get_int();
1034 #else
1035 #ifdef SPARC
1036         // For SPARC we have to swap high and low words.
1037         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1038 #else
1039         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1040 #endif //SPARC
1041 #endif
1042         obj->long_field_put(offset, res);
1043         break;
1044       }
1045 
1046       case T_SHORT:
1047         assert(value->type() == T_INT, "Agreement.");
1048         val = value->get_int();
1049         obj->short_field_put(offset, (jshort)*((jint*)&val));
1050         break;
1051 
1052       case T_CHAR:
1053         assert(value->type() == T_INT, "Agreement.");
1054         val = value->get_int();
1055         obj->char_field_put(offset, (jchar)*((jint*)&val));
1056         break;
1057 
1058       case T_BYTE:
1059         assert(value->type() == T_INT, "Agreement.");
1060         val = value->get_int();
1061         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1062         break;
1063 
1064       case T_BOOLEAN:
1065         assert(value->type() == T_INT, "Agreement.");
1066         val = value->get_int();
1067         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1068         break;
1069 
1070       default:
1071         ShouldNotReachHere();
1072     }
1073     svIndex++;
1074   }
1075   return svIndex;
1076 }
1077 
1078 // restore fields of all eliminated objects and arrays
1079 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1080   for (int i = 0; i < objects->length(); i++) {
1081     ObjectValue* sv = (ObjectValue*) objects->at(i);
1082     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1083     Handle obj = sv->value();
1084     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1085     if (PrintDeoptimizationDetails) {
1086       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1087     }
1088     if (obj.is_null()) {
1089       continue;
1090     }
1091 
1092     if (k->is_instance_klass()) {
1093       InstanceKlass* ik = InstanceKlass::cast(k());
1094       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1095     } else if (k->is_typeArray_klass()) {
1096       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1097       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1098     } else if (k->is_objArray_klass()) {
1099       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1100     }
1101   }
1102 }
1103 
1104 
1105 // relock objects for which synchronization was eliminated
1106 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1107   for (int i = 0; i < monitors->length(); i++) {
1108     MonitorInfo* mon_info = monitors->at(i);
1109     if (mon_info->eliminated()) {
1110       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1111       if (!mon_info->owner_is_scalar_replaced()) {
1112         Handle obj = Handle(mon_info->owner());
1113         markOop mark = obj->mark();
1114         if (UseBiasedLocking && mark->has_bias_pattern()) {
1115           // New allocated objects may have the mark set to anonymously biased.
1116           // Also the deoptimized method may called methods with synchronization
1117           // where the thread-local object is bias locked to the current thread.
1118           assert(mark->is_biased_anonymously() ||
1119                  mark->biased_locker() == thread, "should be locked to current thread");
1120           // Reset mark word to unbiased prototype.
1121           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1122           obj->set_mark(unbiased_prototype);
1123         }
1124         BasicLock* lock = mon_info->lock();
1125         ObjectSynchronizer::slow_enter(obj, lock, thread);
1126         assert(mon_info->owner()->is_locked(), "object must be locked now");
1127       }
1128     }
1129   }
1130 }
1131 
1132 
1133 #ifndef PRODUCT
1134 // print information about reallocated objects
1135 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1136   fieldDescriptor fd;
1137 
1138   for (int i = 0; i < objects->length(); i++) {
1139     ObjectValue* sv = (ObjectValue*) objects->at(i);
1140     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1141     Handle obj = sv->value();
1142 
1143     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1144     k->print_value();
1145     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1146     if (obj.is_null()) {
1147       tty->print(" allocation failed");
1148     } else {
1149       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1150     }
1151     tty->cr();
1152 
1153     if (Verbose && !obj.is_null()) {
1154       k->oop_print_on(obj(), tty);
1155     }
1156   }
1157 }
1158 #endif
1159 #endif // COMPILER2 || INCLUDE_JVMCI
1160 
1161 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1162   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1163 
1164 #ifndef PRODUCT
1165   if (PrintDeoptimizationDetails) {
1166     ttyLocker ttyl;
1167     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1168     fr.print_on(tty);
1169     tty->print_cr("     Virtual frames (innermost first):");
1170     for (int index = 0; index < chunk->length(); index++) {
1171       compiledVFrame* vf = chunk->at(index);
1172       tty->print("       %2d - ", index);
1173       vf->print_value();
1174       int bci = chunk->at(index)->raw_bci();
1175       const char* code_name;
1176       if (bci == SynchronizationEntryBCI) {
1177         code_name = "sync entry";
1178       } else {
1179         Bytecodes::Code code = vf->method()->code_at(bci);
1180         code_name = Bytecodes::name(code);
1181       }
1182       tty->print(" - %s", code_name);
1183       tty->print_cr(" @ bci %d ", bci);
1184       if (Verbose) {
1185         vf->print();
1186         tty->cr();
1187       }
1188     }
1189   }
1190 #endif
1191 
1192   // Register map for next frame (used for stack crawl).  We capture
1193   // the state of the deopt'ing frame's caller.  Thus if we need to
1194   // stuff a C2I adapter we can properly fill in the callee-save
1195   // register locations.
1196   frame caller = fr.sender(reg_map);
1197   int frame_size = caller.sp() - fr.sp();
1198 
1199   frame sender = caller;
1200 
1201   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1202   // the vframeArray containing the unpacking information is allocated in the C heap.
1203   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1204   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1205 
1206   // Compare the vframeArray to the collected vframes
1207   assert(array->structural_compare(thread, chunk), "just checking");
1208 
1209 #ifndef PRODUCT
1210   if (PrintDeoptimizationDetails) {
1211     ttyLocker ttyl;
1212     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1213   }
1214 #endif // PRODUCT
1215 
1216   return array;
1217 }
1218 
1219 #if defined(COMPILER2) || INCLUDE_JVMCI
1220 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1221   // Reallocation of some scalar replaced objects failed. Record
1222   // that we need to pop all the interpreter frames for the
1223   // deoptimized compiled frame.
1224   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1225   thread->set_frames_to_pop_failed_realloc(array->frames());
1226   // Unlock all monitors here otherwise the interpreter will see a
1227   // mix of locked and unlocked monitors (because of failed
1228   // reallocations of synchronized objects) and be confused.
1229   for (int i = 0; i < array->frames(); i++) {
1230     MonitorChunk* monitors = array->element(i)->monitors();
1231     if (monitors != NULL) {
1232       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1233         BasicObjectLock* src = monitors->at(j);
1234         if (src->obj() != NULL) {
1235           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1236         }
1237       }
1238       array->element(i)->free_monitors(thread);
1239 #ifdef ASSERT
1240       array->element(i)->set_removed_monitors();
1241 #endif
1242     }
1243   }
1244 }
1245 #endif
1246 
1247 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1248   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1249   for (int i = 0; i < monitors->length(); i++) {
1250     MonitorInfo* mon_info = monitors->at(i);
1251     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1252       objects_to_revoke->append(Handle(mon_info->owner()));
1253     }
1254   }
1255 }
1256 
1257 
1258 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1259   if (!UseBiasedLocking) {
1260     return;
1261   }
1262 
1263   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1264 
1265   // Unfortunately we don't have a RegisterMap available in most of
1266   // the places we want to call this routine so we need to walk the
1267   // stack again to update the register map.
1268   if (map == NULL || !map->update_map()) {
1269     StackFrameStream sfs(thread, true);
1270     bool found = false;
1271     while (!found && !sfs.is_done()) {
1272       frame* cur = sfs.current();
1273       sfs.next();
1274       found = cur->id() == fr.id();
1275     }
1276     assert(found, "frame to be deoptimized not found on target thread's stack");
1277     map = sfs.register_map();
1278   }
1279 
1280   vframe* vf = vframe::new_vframe(&fr, map, thread);
1281   compiledVFrame* cvf = compiledVFrame::cast(vf);
1282   // Revoke monitors' biases in all scopes
1283   while (!cvf->is_top()) {
1284     collect_monitors(cvf, objects_to_revoke);
1285     cvf = compiledVFrame::cast(cvf->sender());
1286   }
1287   collect_monitors(cvf, objects_to_revoke);
1288 
1289   if (SafepointSynchronize::is_at_safepoint()) {
1290     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1291   } else {
1292     BiasedLocking::revoke(objects_to_revoke);
1293   }
1294 }
1295 
1296 
1297 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1298   if (!UseBiasedLocking) {
1299     return;
1300   }
1301 
1302   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1303   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1304   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1305     if (jt->has_last_Java_frame()) {
1306       StackFrameStream sfs(jt, true);
1307       while (!sfs.is_done()) {
1308         frame* cur = sfs.current();
1309         if (cb->contains(cur->pc())) {
1310           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1311           compiledVFrame* cvf = compiledVFrame::cast(vf);
1312           // Revoke monitors' biases in all scopes
1313           while (!cvf->is_top()) {
1314             collect_monitors(cvf, objects_to_revoke);
1315             cvf = compiledVFrame::cast(cvf->sender());
1316           }
1317           collect_monitors(cvf, objects_to_revoke);
1318         }
1319         sfs.next();
1320       }
1321     }
1322   }
1323   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1324 }
1325 
1326 
1327 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1328   assert(fr.can_be_deoptimized(), "checking frame type");
1329 
1330   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1331 
1332   if (LogCompilation && xtty != NULL) {
1333     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1334     assert(cm != NULL, "only compiled methods can deopt");
1335 
1336     ttyLocker ttyl;
1337     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1338     cm->log_identity(xtty);
1339     xtty->end_head();
1340     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1341       xtty->begin_elem("jvms bci='%d'", sd->bci());
1342       xtty->method(sd->method());
1343       xtty->end_elem();
1344       if (sd->is_top())  break;
1345     }
1346     xtty->tail("deoptimized");
1347   }
1348 
1349   // Patch the compiled method so that when execution returns to it we will
1350   // deopt the execution state and return to the interpreter.
1351   fr.deoptimize(thread);
1352 }
1353 
1354 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1355   deoptimize(thread, fr, map, Reason_constraint);
1356 }
1357 
1358 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1359   // Deoptimize only if the frame comes from compile code.
1360   // Do not deoptimize the frame which is already patched
1361   // during the execution of the loops below.
1362   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1363     return;
1364   }
1365   ResourceMark rm;
1366   DeoptimizationMarker dm;
1367   if (UseBiasedLocking) {
1368     revoke_biases_of_monitors(thread, fr, map);
1369   }
1370   deoptimize_single_frame(thread, fr, reason);
1371 
1372 }
1373 
1374 
1375 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1376   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1377          "can only deoptimize other thread at a safepoint");
1378   // Compute frame and register map based on thread and sp.
1379   RegisterMap reg_map(thread, UseBiasedLocking);
1380   frame fr = thread->last_frame();
1381   while (fr.id() != id) {
1382     fr = fr.sender(&reg_map);
1383   }
1384   deoptimize(thread, fr, &reg_map, reason);
1385 }
1386 
1387 
1388 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1389   if (thread == Thread::current()) {
1390     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1391   } else {
1392     VM_DeoptimizeFrame deopt(thread, id, reason);
1393     VMThread::execute(&deopt);
1394   }
1395 }
1396 
1397 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1398   deoptimize_frame(thread, id, Reason_constraint);
1399 }
1400 
1401 // JVMTI PopFrame support
1402 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1403 {
1404   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1405 }
1406 JRT_END
1407 
1408 MethodData*
1409 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1410                                 bool create_if_missing) {
1411   Thread* THREAD = thread;
1412   MethodData* mdo = m()->method_data();
1413   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1414     // Build an MDO.  Ignore errors like OutOfMemory;
1415     // that simply means we won't have an MDO to update.
1416     Method::build_interpreter_method_data(m, THREAD);
1417     if (HAS_PENDING_EXCEPTION) {
1418       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1419       CLEAR_PENDING_EXCEPTION;
1420     }
1421     mdo = m()->method_data();
1422   }
1423   return mdo;
1424 }
1425 
1426 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1427 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1428   // in case of an unresolved klass entry, load the class.
1429   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1430     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1431     return;
1432   }
1433 
1434   if (!constant_pool->tag_at(index).is_symbol()) return;
1435 
1436   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1437   Symbol*  symbol  = constant_pool->symbol_at(index);
1438 
1439   // class name?
1440   if (symbol->byte_at(0) != '(') {
1441     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1442     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1443     return;
1444   }
1445 
1446   // then it must be a signature!
1447   ResourceMark rm(THREAD);
1448   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1449     if (ss.is_object()) {
1450       Symbol* class_name = ss.as_symbol(CHECK);
1451       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1452       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1453     }
1454   }
1455 }
1456 
1457 
1458 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1459   EXCEPTION_MARK;
1460   load_class_by_index(constant_pool, index, THREAD);
1461   if (HAS_PENDING_EXCEPTION) {
1462     // Exception happened during classloading. We ignore the exception here, since it
1463     // is going to be rethrown since the current activation is going to be deoptimized and
1464     // the interpreter will re-execute the bytecode.
1465     CLEAR_PENDING_EXCEPTION;
1466     // Class loading called java code which may have caused a stack
1467     // overflow. If the exception was thrown right before the return
1468     // to the runtime the stack is no longer guarded. Reguard the
1469     // stack otherwise if we return to the uncommon trap blob and the
1470     // stack bang causes a stack overflow we crash.
1471     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1472     JavaThread* thread = (JavaThread*)THREAD;
1473     bool guard_pages_enabled = thread->stack_guards_enabled();
1474     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1475     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1476   }
1477 }
1478 
1479 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1480   HandleMark hm;
1481 
1482   // uncommon_trap() is called at the beginning of the uncommon trap
1483   // handler. Note this fact before we start generating temporary frames
1484   // that can confuse an asynchronous stack walker. This counter is
1485   // decremented at the end of unpack_frames().
1486   thread->inc_in_deopt_handler();
1487 
1488   // We need to update the map if we have biased locking.
1489 #if INCLUDE_JVMCI
1490   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1491   RegisterMap reg_map(thread, true);
1492 #else
1493   RegisterMap reg_map(thread, UseBiasedLocking);
1494 #endif
1495   frame stub_frame = thread->last_frame();
1496   frame fr = stub_frame.sender(&reg_map);
1497   // Make sure the calling nmethod is not getting deoptimized and removed
1498   // before we are done with it.
1499   nmethodLocker nl(fr.pc());
1500 
1501   // Log a message
1502   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1503               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1504 
1505   {
1506     ResourceMark rm;
1507 
1508     // Revoke biases of any monitors in the frame to ensure we can migrate them
1509     revoke_biases_of_monitors(thread, fr, &reg_map);
1510 
1511     DeoptReason reason = trap_request_reason(trap_request);
1512     DeoptAction action = trap_request_action(trap_request);
1513 #if INCLUDE_JVMCI
1514     int debug_id = trap_request_debug_id(trap_request);
1515 #endif
1516     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1517 
1518     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1519     compiledVFrame* cvf = compiledVFrame::cast(vf);
1520 
1521     CompiledMethod* nm = cvf->code();
1522 
1523     ScopeDesc*      trap_scope  = cvf->scope();
1524 
1525     if (TraceDeoptimization) {
1526       ttyLocker ttyl;
1527       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1528 #if INCLUDE_JVMCI
1529           , debug_id
1530 #endif
1531           );
1532     }
1533 
1534     methodHandle    trap_method = trap_scope->method();
1535     int             trap_bci    = trap_scope->bci();
1536 #if INCLUDE_JVMCI
1537     oop speculation = thread->pending_failed_speculation();
1538     if (nm->is_compiled_by_jvmci()) {
1539       if (speculation != NULL) {
1540         oop speculation_log = nm->as_nmethod()->speculation_log();
1541         if (speculation_log != NULL) {
1542           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1543             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1544               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1545             }
1546           }
1547           if (TraceDeoptimization) {
1548             tty->print_cr("Saving speculation to speculation log");
1549           }
1550           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1551         } else {
1552           if (TraceDeoptimization) {
1553             tty->print_cr("Speculation present but no speculation log");
1554           }
1555         }
1556         thread->set_pending_failed_speculation(NULL);
1557       } else {
1558         if (TraceDeoptimization) {
1559           tty->print_cr("No speculation");
1560         }
1561       }
1562     } else {
1563       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1564     }
1565 
1566     if (trap_bci == SynchronizationEntryBCI) {
1567       trap_bci = 0;
1568       thread->set_pending_monitorenter(true);
1569     }
1570 
1571     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1572       thread->set_pending_transfer_to_interpreter(true);
1573     }
1574 #endif
1575 
1576     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1577     // Record this event in the histogram.
1578     gather_statistics(reason, action, trap_bc);
1579 
1580     // Ensure that we can record deopt. history:
1581     // Need MDO to record RTM code generation state.
1582     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1583 
1584     methodHandle profiled_method;
1585 #if INCLUDE_JVMCI
1586     if (nm->is_compiled_by_jvmci()) {
1587       profiled_method = nm->method();
1588     } else {
1589       profiled_method = trap_method;
1590     }
1591 #else
1592     profiled_method = trap_method;
1593 #endif
1594 
1595     MethodData* trap_mdo =
1596       get_method_data(thread, profiled_method, create_if_missing);
1597 
1598     // Log a message
1599     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1600                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1601                               trap_method->name_and_sig_as_C_string(), trap_bci);
1602 
1603     // Print a bunch of diagnostics, if requested.
1604     if (TraceDeoptimization || LogCompilation) {
1605       ResourceMark rm;
1606       ttyLocker ttyl;
1607       char buf[100];
1608       if (xtty != NULL) {
1609         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1610                          os::current_thread_id(),
1611                          format_trap_request(buf, sizeof(buf), trap_request));
1612         nm->log_identity(xtty);
1613       }
1614       Symbol* class_name = NULL;
1615       bool unresolved = false;
1616       if (unloaded_class_index >= 0) {
1617         constantPoolHandle constants (THREAD, trap_method->constants());
1618         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1619           class_name = constants->klass_name_at(unloaded_class_index);
1620           unresolved = true;
1621           if (xtty != NULL)
1622             xtty->print(" unresolved='1'");
1623         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1624           class_name = constants->symbol_at(unloaded_class_index);
1625         }
1626         if (xtty != NULL)
1627           xtty->name(class_name);
1628       }
1629       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1630         // Dump the relevant MDO state.
1631         // This is the deopt count for the current reason, any previous
1632         // reasons or recompiles seen at this point.
1633         int dcnt = trap_mdo->trap_count(reason);
1634         if (dcnt != 0)
1635           xtty->print(" count='%d'", dcnt);
1636         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1637         int dos = (pdata == NULL)? 0: pdata->trap_state();
1638         if (dos != 0) {
1639           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1640           if (trap_state_is_recompiled(dos)) {
1641             int recnt2 = trap_mdo->overflow_recompile_count();
1642             if (recnt2 != 0)
1643               xtty->print(" recompiles2='%d'", recnt2);
1644           }
1645         }
1646       }
1647       if (xtty != NULL) {
1648         xtty->stamp();
1649         xtty->end_head();
1650       }
1651       if (TraceDeoptimization) {  // make noise on the tty
1652         tty->print("Uncommon trap occurred in");
1653         nm->method()->print_short_name(tty);
1654         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1655 #if INCLUDE_JVMCI
1656         if (nm->is_nmethod()) {
1657           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1658           if (installedCode != NULL) {
1659             oop installedCodeName = NULL;
1660             if (installedCode->is_a(InstalledCode::klass())) {
1661               installedCodeName = InstalledCode::name(installedCode);
1662             }
1663             if (installedCodeName != NULL) {
1664               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1665             } else {
1666               tty->print(" (JVMCI: installed code has no name) ");
1667             }
1668           } else if (nm->is_compiled_by_jvmci()) {
1669             tty->print(" (JVMCI: no installed code) ");
1670           }
1671         }
1672 #endif
1673         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1674                    p2i(fr.pc()),
1675                    os::current_thread_id(),
1676                    trap_reason_name(reason),
1677                    trap_action_name(action),
1678                    unloaded_class_index
1679 #if INCLUDE_JVMCI
1680                    , debug_id
1681 #endif
1682                    );
1683         if (class_name != NULL) {
1684           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1685           class_name->print_symbol_on(tty);
1686         }
1687         tty->cr();
1688       }
1689       if (xtty != NULL) {
1690         // Log the precise location of the trap.
1691         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1692           xtty->begin_elem("jvms bci='%d'", sd->bci());
1693           xtty->method(sd->method());
1694           xtty->end_elem();
1695           if (sd->is_top())  break;
1696         }
1697         xtty->tail("uncommon_trap");
1698       }
1699     }
1700     // (End diagnostic printout.)
1701 
1702     // Load class if necessary
1703     if (unloaded_class_index >= 0) {
1704       constantPoolHandle constants(THREAD, trap_method->constants());
1705       load_class_by_index(constants, unloaded_class_index);
1706     }
1707 
1708     // Flush the nmethod if necessary and desirable.
1709     //
1710     // We need to avoid situations where we are re-flushing the nmethod
1711     // because of a hot deoptimization site.  Repeated flushes at the same
1712     // point need to be detected by the compiler and avoided.  If the compiler
1713     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1714     // module must take measures to avoid an infinite cycle of recompilation
1715     // and deoptimization.  There are several such measures:
1716     //
1717     //   1. If a recompilation is ordered a second time at some site X
1718     //   and for the same reason R, the action is adjusted to 'reinterpret',
1719     //   to give the interpreter time to exercise the method more thoroughly.
1720     //   If this happens, the method's overflow_recompile_count is incremented.
1721     //
1722     //   2. If the compiler fails to reduce the deoptimization rate, then
1723     //   the method's overflow_recompile_count will begin to exceed the set
1724     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1725     //   is adjusted to 'make_not_compilable', and the method is abandoned
1726     //   to the interpreter.  This is a performance hit for hot methods,
1727     //   but is better than a disastrous infinite cycle of recompilations.
1728     //   (Actually, only the method containing the site X is abandoned.)
1729     //
1730     //   3. In parallel with the previous measures, if the total number of
1731     //   recompilations of a method exceeds the much larger set limit
1732     //   PerMethodRecompilationCutoff, the method is abandoned.
1733     //   This should only happen if the method is very large and has
1734     //   many "lukewarm" deoptimizations.  The code which enforces this
1735     //   limit is elsewhere (class nmethod, class Method).
1736     //
1737     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1738     // to recompile at each bytecode independently of the per-BCI cutoff.
1739     //
1740     // The decision to update code is up to the compiler, and is encoded
1741     // in the Action_xxx code.  If the compiler requests Action_none
1742     // no trap state is changed, no compiled code is changed, and the
1743     // computation suffers along in the interpreter.
1744     //
1745     // The other action codes specify various tactics for decompilation
1746     // and recompilation.  Action_maybe_recompile is the loosest, and
1747     // allows the compiled code to stay around until enough traps are seen,
1748     // and until the compiler gets around to recompiling the trapping method.
1749     //
1750     // The other actions cause immediate removal of the present code.
1751 
1752     // Traps caused by injected profile shouldn't pollute trap counts.
1753     bool injected_profile_trap = trap_method->has_injected_profile() &&
1754                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1755 
1756     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1757     bool make_not_entrant = false;
1758     bool make_not_compilable = false;
1759     bool reprofile = false;
1760     switch (action) {
1761     case Action_none:
1762       // Keep the old code.
1763       update_trap_state = false;
1764       break;
1765     case Action_maybe_recompile:
1766       // Do not need to invalidate the present code, but we can
1767       // initiate another
1768       // Start compiler without (necessarily) invalidating the nmethod.
1769       // The system will tolerate the old code, but new code should be
1770       // generated when possible.
1771       break;
1772     case Action_reinterpret:
1773       // Go back into the interpreter for a while, and then consider
1774       // recompiling form scratch.
1775       make_not_entrant = true;
1776       // Reset invocation counter for outer most method.
1777       // This will allow the interpreter to exercise the bytecodes
1778       // for a while before recompiling.
1779       // By contrast, Action_make_not_entrant is immediate.
1780       //
1781       // Note that the compiler will track null_check, null_assert,
1782       // range_check, and class_check events and log them as if they
1783       // had been traps taken from compiled code.  This will update
1784       // the MDO trap history so that the next compilation will
1785       // properly detect hot trap sites.
1786       reprofile = true;
1787       break;
1788     case Action_make_not_entrant:
1789       // Request immediate recompilation, and get rid of the old code.
1790       // Make them not entrant, so next time they are called they get
1791       // recompiled.  Unloaded classes are loaded now so recompile before next
1792       // time they are called.  Same for uninitialized.  The interpreter will
1793       // link the missing class, if any.
1794       make_not_entrant = true;
1795       break;
1796     case Action_make_not_compilable:
1797       // Give up on compiling this method at all.
1798       make_not_entrant = true;
1799       make_not_compilable = true;
1800       break;
1801     default:
1802       ShouldNotReachHere();
1803     }
1804 
1805     // Setting +ProfileTraps fixes the following, on all platforms:
1806     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1807     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1808     // recompile relies on a MethodData* to record heroic opt failures.
1809 
1810     // Whether the interpreter is producing MDO data or not, we also need
1811     // to use the MDO to detect hot deoptimization points and control
1812     // aggressive optimization.
1813     bool inc_recompile_count = false;
1814     ProfileData* pdata = NULL;
1815     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1816       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1817       uint this_trap_count = 0;
1818       bool maybe_prior_trap = false;
1819       bool maybe_prior_recompile = false;
1820       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1821 #if INCLUDE_JVMCI
1822                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1823 #endif
1824                                    nm->method(),
1825                                    //outputs:
1826                                    this_trap_count,
1827                                    maybe_prior_trap,
1828                                    maybe_prior_recompile);
1829       // Because the interpreter also counts null, div0, range, and class
1830       // checks, these traps from compiled code are double-counted.
1831       // This is harmless; it just means that the PerXTrapLimit values
1832       // are in effect a little smaller than they look.
1833 
1834       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1835       if (per_bc_reason != Reason_none) {
1836         // Now take action based on the partially known per-BCI history.
1837         if (maybe_prior_trap
1838             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1839           // If there are too many traps at this BCI, force a recompile.
1840           // This will allow the compiler to see the limit overflow, and
1841           // take corrective action, if possible.  The compiler generally
1842           // does not use the exact PerBytecodeTrapLimit value, but instead
1843           // changes its tactics if it sees any traps at all.  This provides
1844           // a little hysteresis, delaying a recompile until a trap happens
1845           // several times.
1846           //
1847           // Actually, since there is only one bit of counter per BCI,
1848           // the possible per-BCI counts are {0,1,(per-method count)}.
1849           // This produces accurate results if in fact there is only
1850           // one hot trap site, but begins to get fuzzy if there are
1851           // many sites.  For example, if there are ten sites each
1852           // trapping two or more times, they each get the blame for
1853           // all of their traps.
1854           make_not_entrant = true;
1855         }
1856 
1857         // Detect repeated recompilation at the same BCI, and enforce a limit.
1858         if (make_not_entrant && maybe_prior_recompile) {
1859           // More than one recompile at this point.
1860           inc_recompile_count = maybe_prior_trap;
1861         }
1862       } else {
1863         // For reasons which are not recorded per-bytecode, we simply
1864         // force recompiles unconditionally.
1865         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1866         make_not_entrant = true;
1867       }
1868 
1869       // Go back to the compiler if there are too many traps in this method.
1870       if (this_trap_count >= per_method_trap_limit(reason)) {
1871         // If there are too many traps in this method, force a recompile.
1872         // This will allow the compiler to see the limit overflow, and
1873         // take corrective action, if possible.
1874         // (This condition is an unlikely backstop only, because the
1875         // PerBytecodeTrapLimit is more likely to take effect first,
1876         // if it is applicable.)
1877         make_not_entrant = true;
1878       }
1879 
1880       // Here's more hysteresis:  If there has been a recompile at
1881       // this trap point already, run the method in the interpreter
1882       // for a while to exercise it more thoroughly.
1883       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1884         reprofile = true;
1885       }
1886     }
1887 
1888     // Take requested actions on the method:
1889 
1890     // Recompile
1891     if (make_not_entrant) {
1892       if (!nm->make_not_entrant()) {
1893         return; // the call did not change nmethod's state
1894       }
1895 
1896       if (pdata != NULL) {
1897         // Record the recompilation event, if any.
1898         int tstate0 = pdata->trap_state();
1899         int tstate1 = trap_state_set_recompiled(tstate0, true);
1900         if (tstate1 != tstate0)
1901           pdata->set_trap_state(tstate1);
1902       }
1903 
1904 #if INCLUDE_RTM_OPT
1905       // Restart collecting RTM locking abort statistic if the method
1906       // is recompiled for a reason other than RTM state change.
1907       // Assume that in new recompiled code the statistic could be different,
1908       // for example, due to different inlining.
1909       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1910           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1911         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1912       }
1913 #endif
1914       // For code aging we count traps separately here, using make_not_entrant()
1915       // as a guard against simultaneous deopts in multiple threads.
1916       if (reason == Reason_tenured && trap_mdo != NULL) {
1917         trap_mdo->inc_tenure_traps();
1918       }
1919     }
1920 
1921     if (inc_recompile_count) {
1922       trap_mdo->inc_overflow_recompile_count();
1923       if ((uint)trap_mdo->overflow_recompile_count() >
1924           (uint)PerBytecodeRecompilationCutoff) {
1925         // Give up on the method containing the bad BCI.
1926         if (trap_method() == nm->method()) {
1927           make_not_compilable = true;
1928         } else {
1929           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1930           // But give grace to the enclosing nm->method().
1931         }
1932       }
1933     }
1934 
1935     // Reprofile
1936     if (reprofile) {
1937       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1938     }
1939 
1940     // Give up compiling
1941     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1942       assert(make_not_entrant, "consistent");
1943       nm->method()->set_not_compilable(CompLevel_full_optimization);
1944     }
1945 
1946   } // Free marked resources
1947 
1948 }
1949 JRT_END
1950 
1951 ProfileData*
1952 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1953                                          int trap_bci,
1954                                          Deoptimization::DeoptReason reason,
1955                                          bool update_total_trap_count,
1956 #if INCLUDE_JVMCI
1957                                          bool is_osr,
1958 #endif
1959                                          Method* compiled_method,
1960                                          //outputs:
1961                                          uint& ret_this_trap_count,
1962                                          bool& ret_maybe_prior_trap,
1963                                          bool& ret_maybe_prior_recompile) {
1964   bool maybe_prior_trap = false;
1965   bool maybe_prior_recompile = false;
1966   uint this_trap_count = 0;
1967   if (update_total_trap_count) {
1968     uint idx = reason;
1969 #if INCLUDE_JVMCI
1970     if (is_osr) {
1971       idx += Reason_LIMIT;
1972     }
1973 #endif
1974     uint prior_trap_count = trap_mdo->trap_count(idx);
1975     this_trap_count  = trap_mdo->inc_trap_count(idx);
1976 
1977     // If the runtime cannot find a place to store trap history,
1978     // it is estimated based on the general condition of the method.
1979     // If the method has ever been recompiled, or has ever incurred
1980     // a trap with the present reason , then this BCI is assumed
1981     // (pessimistically) to be the culprit.
1982     maybe_prior_trap      = (prior_trap_count != 0);
1983     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1984   }
1985   ProfileData* pdata = NULL;
1986 
1987 
1988   // For reasons which are recorded per bytecode, we check per-BCI data.
1989   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1990   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1991   if (per_bc_reason != Reason_none) {
1992     // Find the profile data for this BCI.  If there isn't one,
1993     // try to allocate one from the MDO's set of spares.
1994     // This will let us detect a repeated trap at this point.
1995     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1996 
1997     if (pdata != NULL) {
1998       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1999         if (LogCompilation && xtty != NULL) {
2000           ttyLocker ttyl;
2001           // no more room for speculative traps in this MDO
2002           xtty->elem("speculative_traps_oom");
2003         }
2004       }
2005       // Query the trap state of this profile datum.
2006       int tstate0 = pdata->trap_state();
2007       if (!trap_state_has_reason(tstate0, per_bc_reason))
2008         maybe_prior_trap = false;
2009       if (!trap_state_is_recompiled(tstate0))
2010         maybe_prior_recompile = false;
2011 
2012       // Update the trap state of this profile datum.
2013       int tstate1 = tstate0;
2014       // Record the reason.
2015       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2016       // Store the updated state on the MDO, for next time.
2017       if (tstate1 != tstate0)
2018         pdata->set_trap_state(tstate1);
2019     } else {
2020       if (LogCompilation && xtty != NULL) {
2021         ttyLocker ttyl;
2022         // Missing MDP?  Leave a small complaint in the log.
2023         xtty->elem("missing_mdp bci='%d'", trap_bci);
2024       }
2025     }
2026   }
2027 
2028   // Return results:
2029   ret_this_trap_count = this_trap_count;
2030   ret_maybe_prior_trap = maybe_prior_trap;
2031   ret_maybe_prior_recompile = maybe_prior_recompile;
2032   return pdata;
2033 }
2034 
2035 void
2036 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2037   ResourceMark rm;
2038   // Ignored outputs:
2039   uint ignore_this_trap_count;
2040   bool ignore_maybe_prior_trap;
2041   bool ignore_maybe_prior_recompile;
2042   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2043   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2044   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2045   query_update_method_data(trap_mdo, trap_bci,
2046                            (DeoptReason)reason,
2047                            update_total_counts,
2048 #if INCLUDE_JVMCI
2049                            false,
2050 #endif
2051                            NULL,
2052                            ignore_this_trap_count,
2053                            ignore_maybe_prior_trap,
2054                            ignore_maybe_prior_recompile);
2055 }
2056 
2057 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2058   if (TraceDeoptimization) {
2059     tty->print("Uncommon trap ");
2060   }
2061   // Still in Java no safepoints
2062   {
2063     // This enters VM and may safepoint
2064     uncommon_trap_inner(thread, trap_request);
2065   }
2066   return fetch_unroll_info_helper(thread, exec_mode);
2067 }
2068 
2069 // Local derived constants.
2070 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2071 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2072 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2073 
2074 //---------------------------trap_state_reason---------------------------------
2075 Deoptimization::DeoptReason
2076 Deoptimization::trap_state_reason(int trap_state) {
2077   // This assert provides the link between the width of DataLayout::trap_bits
2078   // and the encoding of "recorded" reasons.  It ensures there are enough
2079   // bits to store all needed reasons in the per-BCI MDO profile.
2080   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2081   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2082   trap_state -= recompile_bit;
2083   if (trap_state == DS_REASON_MASK) {
2084     return Reason_many;
2085   } else {
2086     assert((int)Reason_none == 0, "state=0 => Reason_none");
2087     return (DeoptReason)trap_state;
2088   }
2089 }
2090 //-------------------------trap_state_has_reason-------------------------------
2091 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2092   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2093   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2094   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2095   trap_state -= recompile_bit;
2096   if (trap_state == DS_REASON_MASK) {
2097     return -1;  // true, unspecifically (bottom of state lattice)
2098   } else if (trap_state == reason) {
2099     return 1;   // true, definitely
2100   } else if (trap_state == 0) {
2101     return 0;   // false, definitely (top of state lattice)
2102   } else {
2103     return 0;   // false, definitely
2104   }
2105 }
2106 //-------------------------trap_state_add_reason-------------------------------
2107 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2108   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2109   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2110   trap_state -= recompile_bit;
2111   if (trap_state == DS_REASON_MASK) {
2112     return trap_state + recompile_bit;     // already at state lattice bottom
2113   } else if (trap_state == reason) {
2114     return trap_state + recompile_bit;     // the condition is already true
2115   } else if (trap_state == 0) {
2116     return reason + recompile_bit;          // no condition has yet been true
2117   } else {
2118     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2119   }
2120 }
2121 //-----------------------trap_state_is_recompiled------------------------------
2122 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2123   return (trap_state & DS_RECOMPILE_BIT) != 0;
2124 }
2125 //-----------------------trap_state_set_recompiled-----------------------------
2126 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2127   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2128   else    return trap_state & ~DS_RECOMPILE_BIT;
2129 }
2130 //---------------------------format_trap_state---------------------------------
2131 // This is used for debugging and diagnostics, including LogFile output.
2132 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2133                                               int trap_state) {
2134   assert(buflen > 0, "sanity");
2135   DeoptReason reason      = trap_state_reason(trap_state);
2136   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2137   // Re-encode the state from its decoded components.
2138   int decoded_state = 0;
2139   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2140     decoded_state = trap_state_add_reason(decoded_state, reason);
2141   if (recomp_flag)
2142     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2143   // If the state re-encodes properly, format it symbolically.
2144   // Because this routine is used for debugging and diagnostics,
2145   // be robust even if the state is a strange value.
2146   size_t len;
2147   if (decoded_state != trap_state) {
2148     // Random buggy state that doesn't decode??
2149     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2150   } else {
2151     len = jio_snprintf(buf, buflen, "%s%s",
2152                        trap_reason_name(reason),
2153                        recomp_flag ? " recompiled" : "");
2154   }
2155   return buf;
2156 }
2157 
2158 
2159 //--------------------------------statics--------------------------------------
2160 const char* Deoptimization::_trap_reason_name[] = {
2161   // Note:  Keep this in sync. with enum DeoptReason.
2162   "none",
2163   "null_check",
2164   "null_assert" JVMCI_ONLY("_or_unreached0"),
2165   "range_check",
2166   "class_check",
2167   "array_check",
2168   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2169   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2170   "unloaded",
2171   "uninitialized",
2172   "unreached",
2173   "unhandled",
2174   "constraint",
2175   "div0_check",
2176   "age",
2177   "predicate",
2178   "loop_limit_check",
2179   "speculate_class_check",
2180   "speculate_null_check",
2181   "rtm_state_change",
2182   "unstable_if",
2183   "unstable_fused_if",
2184 #if INCLUDE_JVMCI
2185   "aliasing",
2186   "transfer_to_interpreter",
2187   "not_compiled_exception_handler",
2188   "unresolved",
2189   "jsr_mismatch",
2190 #endif
2191   "tenured"
2192 };
2193 const char* Deoptimization::_trap_action_name[] = {
2194   // Note:  Keep this in sync. with enum DeoptAction.
2195   "none",
2196   "maybe_recompile",
2197   "reinterpret",
2198   "make_not_entrant",
2199   "make_not_compilable"
2200 };
2201 
2202 const char* Deoptimization::trap_reason_name(int reason) {
2203   // Check that every reason has a name
2204   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2205 
2206   if (reason == Reason_many)  return "many";
2207   if ((uint)reason < Reason_LIMIT)
2208     return _trap_reason_name[reason];
2209   static char buf[20];
2210   sprintf(buf, "reason%d", reason);
2211   return buf;
2212 }
2213 const char* Deoptimization::trap_action_name(int action) {
2214   // Check that every action has a name
2215   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2216 
2217   if ((uint)action < Action_LIMIT)
2218     return _trap_action_name[action];
2219   static char buf[20];
2220   sprintf(buf, "action%d", action);
2221   return buf;
2222 }
2223 
2224 // This is used for debugging and diagnostics, including LogFile output.
2225 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2226                                                 int trap_request) {
2227   jint unloaded_class_index = trap_request_index(trap_request);
2228   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2229   const char* action = trap_action_name(trap_request_action(trap_request));
2230 #if INCLUDE_JVMCI
2231   int debug_id = trap_request_debug_id(trap_request);
2232 #endif
2233   size_t len;
2234   if (unloaded_class_index < 0) {
2235     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2236                        reason, action
2237 #if INCLUDE_JVMCI
2238                        ,debug_id
2239 #endif
2240                        );
2241   } else {
2242     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2243                        reason, action, unloaded_class_index
2244 #if INCLUDE_JVMCI
2245                        ,debug_id
2246 #endif
2247                        );
2248   }
2249   return buf;
2250 }
2251 
2252 juint Deoptimization::_deoptimization_hist
2253         [Deoptimization::Reason_LIMIT]
2254     [1 + Deoptimization::Action_LIMIT]
2255         [Deoptimization::BC_CASE_LIMIT]
2256   = {0};
2257 
2258 enum {
2259   LSB_BITS = 8,
2260   LSB_MASK = right_n_bits(LSB_BITS)
2261 };
2262 
2263 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2264                                        Bytecodes::Code bc) {
2265   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2266   assert(action >= 0 && action < Action_LIMIT, "oob");
2267   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2268   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2269   juint* cases = _deoptimization_hist[reason][1+action];
2270   juint* bc_counter_addr = NULL;
2271   juint  bc_counter      = 0;
2272   // Look for an unused counter, or an exact match to this BC.
2273   if (bc != Bytecodes::_illegal) {
2274     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2275       juint* counter_addr = &cases[bc_case];
2276       juint  counter = *counter_addr;
2277       if ((counter == 0 && bc_counter_addr == NULL)
2278           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2279         // this counter is either free or is already devoted to this BC
2280         bc_counter_addr = counter_addr;
2281         bc_counter = counter | bc;
2282       }
2283     }
2284   }
2285   if (bc_counter_addr == NULL) {
2286     // Overflow, or no given bytecode.
2287     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2288     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2289   }
2290   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2291 }
2292 
2293 jint Deoptimization::total_deoptimization_count() {
2294   return _deoptimization_hist[Reason_none][0][0];
2295 }
2296 
2297 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2298   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2299   return _deoptimization_hist[reason][0][0];
2300 }
2301 
2302 void Deoptimization::print_statistics() {
2303   juint total = total_deoptimization_count();
2304   juint account = total;
2305   if (total != 0) {
2306     ttyLocker ttyl;
2307     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2308     tty->print_cr("Deoptimization traps recorded:");
2309     #define PRINT_STAT_LINE(name, r) \
2310       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2311     PRINT_STAT_LINE("total", total);
2312     // For each non-zero entry in the histogram, print the reason,
2313     // the action, and (if specifically known) the type of bytecode.
2314     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2315       for (int action = 0; action < Action_LIMIT; action++) {
2316         juint* cases = _deoptimization_hist[reason][1+action];
2317         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2318           juint counter = cases[bc_case];
2319           if (counter != 0) {
2320             char name[1*K];
2321             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2322             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2323               bc = Bytecodes::_illegal;
2324             sprintf(name, "%s/%s/%s",
2325                     trap_reason_name(reason),
2326                     trap_action_name(action),
2327                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2328             juint r = counter >> LSB_BITS;
2329             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2330             account -= r;
2331           }
2332         }
2333       }
2334     }
2335     if (account != 0) {
2336       PRINT_STAT_LINE("unaccounted", account);
2337     }
2338     #undef PRINT_STAT_LINE
2339     if (xtty != NULL)  xtty->tail("statistics");
2340   }
2341 }
2342 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2343 
2344 
2345 // Stubs for C1 only system.
2346 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2347   return false;
2348 }
2349 
2350 const char* Deoptimization::trap_reason_name(int reason) {
2351   return "unknown";
2352 }
2353 
2354 void Deoptimization::print_statistics() {
2355   // no output
2356 }
2357 
2358 void
2359 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2360   // no udpate
2361 }
2362 
2363 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2364   return 0;
2365 }
2366 
2367 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2368                                        Bytecodes::Code bc) {
2369   // no update
2370 }
2371 
2372 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2373                                               int trap_state) {
2374   jio_snprintf(buf, buflen, "#%d", trap_state);
2375   return buf;
2376 }
2377 
2378 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI