1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/idealGraphPrinter.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/rootnode.hpp"
  39 
  40 //=============================================================================
  41 #define NODE_HASH_MINIMUM_SIZE    255
  42 //------------------------------NodeHash---------------------------------------
  43 NodeHash::NodeHash(uint est_max_size) :
  44   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  45   _a(Thread::current()->resource_area()),
  46   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  47   _inserts(0), _insert_limit( insert_limit() )
  48 #ifndef PRODUCT
  49   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  50   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  51   _total_insert_probes(0), _total_inserts(0),
  52   _insert_probes(0), _grows(0)
  53 #endif
  54 {
  55   // _sentinel must be in the current node space
  56   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  57   memset(_table,0,sizeof(Node*)*_max);
  58 }
  59 
  60 //------------------------------NodeHash---------------------------------------
  61 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  62   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  63   _a(arena),
  64   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  65   _inserts(0), _insert_limit( insert_limit() )
  66 #ifndef PRODUCT
  67   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  68   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  69   _total_insert_probes(0), _total_inserts(0),
  70   _insert_probes(0), _grows(0)
  71 #endif
  72 {
  73   // _sentinel must be in the current node space
  74   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  75   memset(_table,0,sizeof(Node*)*_max);
  76 }
  77 
  78 //------------------------------NodeHash---------------------------------------
  79 NodeHash::NodeHash(NodeHash *nh) {
  80   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  81   // just copy in all the fields
  82   *this = *nh;
  83   // nh->_sentinel must be in the current node space
  84 }
  85 
  86 void NodeHash::replace_with(NodeHash *nh) {
  87   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  88   // just copy in all the fields
  89   *this = *nh;
  90   // nh->_sentinel must be in the current node space
  91 }
  92 
  93 //------------------------------hash_find--------------------------------------
  94 // Find in hash table
  95 Node *NodeHash::hash_find( const Node *n ) {
  96   // ((Node*)n)->set_hash( n->hash() );
  97   uint hash = n->hash();
  98   if (hash == Node::NO_HASH) {
  99     NOT_PRODUCT( _lookup_misses++ );
 100     return NULL;
 101   }
 102   uint key = hash & (_max-1);
 103   uint stride = key | 0x01;
 104   NOT_PRODUCT( _look_probes++ );
 105   Node *k = _table[key];        // Get hashed value
 106   if( !k ) {                    // ?Miss?
 107     NOT_PRODUCT( _lookup_misses++ );
 108     return NULL;                // Miss!
 109   }
 110 
 111   int op = n->Opcode();
 112   uint req = n->req();
 113   while( 1 ) {                  // While probing hash table
 114     if( k->req() == req &&      // Same count of inputs
 115         k->Opcode() == op ) {   // Same Opcode
 116       for( uint i=0; i<req; i++ )
 117         if( n->in(i)!=k->in(i)) // Different inputs?
 118           goto collision;       // "goto" is a speed hack...
 119       if( n->cmp(*k) ) {        // Check for any special bits
 120         NOT_PRODUCT( _lookup_hits++ );
 121         return k;               // Hit!
 122       }
 123     }
 124   collision:
 125     NOT_PRODUCT( _look_probes++ );
 126     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 127     k = _table[key];            // Get hashed value
 128     if( !k ) {                  // ?Miss?
 129       NOT_PRODUCT( _lookup_misses++ );
 130       return NULL;              // Miss!
 131     }
 132   }
 133   ShouldNotReachHere();
 134   return NULL;
 135 }
 136 
 137 //------------------------------hash_find_insert-------------------------------
 138 // Find in hash table, insert if not already present
 139 // Used to preserve unique entries in hash table
 140 Node *NodeHash::hash_find_insert( Node *n ) {
 141   // n->set_hash( );
 142   uint hash = n->hash();
 143   if (hash == Node::NO_HASH) {
 144     NOT_PRODUCT( _lookup_misses++ );
 145     return NULL;
 146   }
 147   uint key = hash & (_max-1);
 148   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 149   uint first_sentinel = 0;      // replace a sentinel if seen.
 150   NOT_PRODUCT( _look_probes++ );
 151   Node *k = _table[key];        // Get hashed value
 152   if( !k ) {                    // ?Miss?
 153     NOT_PRODUCT( _lookup_misses++ );
 154     _table[key] = n;            // Insert into table!
 155     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 156     check_grow();               // Grow table if insert hit limit
 157     return NULL;                // Miss!
 158   }
 159   else if( k == _sentinel ) {
 160     first_sentinel = key;      // Can insert here
 161   }
 162 
 163   int op = n->Opcode();
 164   uint req = n->req();
 165   while( 1 ) {                  // While probing hash table
 166     if( k->req() == req &&      // Same count of inputs
 167         k->Opcode() == op ) {   // Same Opcode
 168       for( uint i=0; i<req; i++ )
 169         if( n->in(i)!=k->in(i)) // Different inputs?
 170           goto collision;       // "goto" is a speed hack...
 171       if( n->cmp(*k) ) {        // Check for any special bits
 172         NOT_PRODUCT( _lookup_hits++ );
 173         return k;               // Hit!
 174       }
 175     }
 176   collision:
 177     NOT_PRODUCT( _look_probes++ );
 178     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 179     k = _table[key];            // Get hashed value
 180     if( !k ) {                  // ?Miss?
 181       NOT_PRODUCT( _lookup_misses++ );
 182       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 183       _table[key] = n;          // Insert into table!
 184       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 185       check_grow();             // Grow table if insert hit limit
 186       return NULL;              // Miss!
 187     }
 188     else if( first_sentinel == 0 && k == _sentinel ) {
 189       first_sentinel = key;    // Can insert here
 190     }
 191 
 192   }
 193   ShouldNotReachHere();
 194   return NULL;
 195 }
 196 
 197 //------------------------------hash_insert------------------------------------
 198 // Insert into hash table
 199 void NodeHash::hash_insert( Node *n ) {
 200   // // "conflict" comments -- print nodes that conflict
 201   // bool conflict = false;
 202   // n->set_hash();
 203   uint hash = n->hash();
 204   if (hash == Node::NO_HASH) {
 205     return;
 206   }
 207   check_grow();
 208   uint key = hash & (_max-1);
 209   uint stride = key | 0x01;
 210 
 211   while( 1 ) {                  // While probing hash table
 212     NOT_PRODUCT( _insert_probes++ );
 213     Node *k = _table[key];      // Get hashed value
 214     if( !k || (k == _sentinel) ) break;       // Found a slot
 215     assert( k != n, "already inserted" );
 216     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 217     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 218   }
 219   _table[key] = n;              // Insert into table!
 220   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 221   // if( conflict ) { n->dump(); }
 222 }
 223 
 224 //------------------------------hash_delete------------------------------------
 225 // Replace in hash table with sentinel
 226 bool NodeHash::hash_delete( const Node *n ) {
 227   Node *k;
 228   uint hash = n->hash();
 229   if (hash == Node::NO_HASH) {
 230     NOT_PRODUCT( _delete_misses++ );
 231     return false;
 232   }
 233   uint key = hash & (_max-1);
 234   uint stride = key | 0x01;
 235   debug_only( uint counter = 0; );
 236   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 237     debug_only( counter++ );
 238     NOT_PRODUCT( _delete_probes++ );
 239     k = _table[key];            // Get hashed value
 240     if( !k ) {                  // Miss?
 241       NOT_PRODUCT( _delete_misses++ );
 242 #ifdef ASSERT
 243       if( VerifyOpto ) {
 244         for( uint i=0; i < _max; i++ )
 245           assert( _table[i] != n, "changed edges with rehashing" );
 246       }
 247 #endif
 248       return false;             // Miss! Not in chain
 249     }
 250     else if( n == k ) {
 251       NOT_PRODUCT( _delete_hits++ );
 252       _table[key] = _sentinel;  // Hit! Label as deleted entry
 253       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 254       return true;
 255     }
 256     else {
 257       // collision: move through table with prime offset
 258       key = (key + stride/*7*/) & (_max-1);
 259       assert( counter <= _insert_limit, "Cycle in hash-table");
 260     }
 261   }
 262   ShouldNotReachHere();
 263   return false;
 264 }
 265 
 266 //------------------------------round_up---------------------------------------
 267 // Round up to nearest power of 2
 268 uint NodeHash::round_up( uint x ) {
 269   x += (x>>2);                  // Add 25% slop
 270   if( x <16 ) return 16;        // Small stuff
 271   uint i=16;
 272   while( i < x ) i <<= 1;       // Double to fit
 273   return i;                     // Return hash table size
 274 }
 275 
 276 //------------------------------grow-------------------------------------------
 277 // Grow _table to next power of 2 and insert old entries
 278 void  NodeHash::grow() {
 279   // Record old state
 280   uint   old_max   = _max;
 281   Node **old_table = _table;
 282   // Construct new table with twice the space
 283 #ifndef PRODUCT
 284   _grows++;
 285   _total_inserts       += _inserts;
 286   _total_insert_probes += _insert_probes;
 287   _insert_probes   = 0;
 288 #endif
 289   _inserts         = 0;
 290   _max     = _max << 1;
 291   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 292   memset(_table,0,sizeof(Node*)*_max);
 293   _insert_limit = insert_limit();
 294   // Insert old entries into the new table
 295   for( uint i = 0; i < old_max; i++ ) {
 296     Node *m = *old_table++;
 297     if( !m || m == _sentinel ) continue;
 298     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 299     hash_insert(m);
 300   }
 301 }
 302 
 303 //------------------------------clear------------------------------------------
 304 // Clear all entries in _table to NULL but keep storage
 305 void  NodeHash::clear() {
 306 #ifdef ASSERT
 307   // Unlock all nodes upon removal from table.
 308   for (uint i = 0; i < _max; i++) {
 309     Node* n = _table[i];
 310     if (!n || n == _sentinel)  continue;
 311     n->exit_hash_lock();
 312   }
 313 #endif
 314 
 315   memset( _table, 0, _max * sizeof(Node*) );
 316 }
 317 
 318 //-----------------------remove_useless_nodes----------------------------------
 319 // Remove useless nodes from value table,
 320 // implementation does not depend on hash function
 321 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 322 
 323   // Dead nodes in the hash table inherited from GVN should not replace
 324   // existing nodes, remove dead nodes.
 325   uint max = size();
 326   Node *sentinel_node = sentinel();
 327   for( uint i = 0; i < max; ++i ) {
 328     Node *n = at(i);
 329     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 330       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 331       _table[i] = sentinel_node;       // Replace with placeholder
 332     }
 333   }
 334 }
 335 
 336 
 337 void NodeHash::check_no_speculative_types() {
 338 #ifdef ASSERT
 339   uint max = size();
 340   Node *sentinel_node = sentinel();
 341   for (uint i = 0; i < max; ++i) {
 342     Node *n = at(i);
 343     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 344       TypeNode* tn = n->as_Type();
 345       const Type* t = tn->type();
 346       const Type* t_no_spec = t->remove_speculative();
 347       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 348     }
 349   }
 350 #endif
 351 }
 352 
 353 #ifndef PRODUCT
 354 //------------------------------dump-------------------------------------------
 355 // Dump statistics for the hash table
 356 void NodeHash::dump() {
 357   _total_inserts       += _inserts;
 358   _total_insert_probes += _insert_probes;
 359   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 360     if (WizardMode) {
 361       for (uint i=0; i<_max; i++) {
 362         if (_table[i])
 363           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 364       }
 365     }
 366     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 367     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 368     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 369     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 370     // sentinels increase lookup cost, but not insert cost
 371     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 372     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 373     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 374   }
 375 }
 376 
 377 Node *NodeHash::find_index(uint idx) { // For debugging
 378   // Find an entry by its index value
 379   for( uint i = 0; i < _max; i++ ) {
 380     Node *m = _table[i];
 381     if( !m || m == _sentinel ) continue;
 382     if( m->_idx == (uint)idx ) return m;
 383   }
 384   return NULL;
 385 }
 386 #endif
 387 
 388 #ifdef ASSERT
 389 NodeHash::~NodeHash() {
 390   // Unlock all nodes upon destruction of table.
 391   if (_table != (Node**)badAddress)  clear();
 392 }
 393 
 394 void NodeHash::operator=(const NodeHash& nh) {
 395   // Unlock all nodes upon replacement of table.
 396   if (&nh == this)  return;
 397   if (_table != (Node**)badAddress)  clear();
 398   memcpy((void*)this, (void*)&nh, sizeof(*this));
 399   // Do not increment hash_lock counts again.
 400   // Instead, be sure we never again use the source table.
 401   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 402 }
 403 
 404 
 405 #endif
 406 
 407 
 408 //=============================================================================
 409 //------------------------------PhaseRemoveUseless-----------------------------
 410 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 411 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 412   _useful(Thread::current()->resource_area()) {
 413 
 414   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 415   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 416   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 417 
 418   // Identify nodes that are reachable from below, useful.
 419   C->identify_useful_nodes(_useful);
 420   // Update dead node list
 421   C->update_dead_node_list(_useful);
 422 
 423   // Remove all useless nodes from PhaseValues' recorded types
 424   // Must be done before disconnecting nodes to preserve hash-table-invariant
 425   gvn->remove_useless_nodes(_useful.member_set());
 426 
 427   // Remove all useless nodes from future worklist
 428   worklist->remove_useless_nodes(_useful.member_set());
 429 
 430   // Disconnect 'useless' nodes that are adjacent to useful nodes
 431   C->remove_useless_nodes(_useful);
 432 
 433   // Remove edges from "root" to each SafePoint at a backward branch.
 434   // They were inserted during parsing (see add_safepoint()) to make infinite
 435   // loops without calls or exceptions visible to root, i.e., useful.
 436   Node *root = C->root();
 437   if( root != NULL ) {
 438     for( uint i = root->req(); i < root->len(); ++i ) {
 439       Node *n = root->in(i);
 440       if( n != NULL && n->is_SafePoint() ) {
 441         root->rm_prec(i);
 442         --i;
 443       }
 444     }
 445   }
 446 }
 447 
 448 //=============================================================================
 449 //------------------------------PhaseRenumberLive------------------------------
 450 // First, remove useless nodes (equivalent to identifying live nodes).
 451 // Then, renumber live nodes.
 452 //
 453 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 454 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 455 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 456 // value in the range [0, x).
 457 //
 458 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 459 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 460 //
 461 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 462 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 463 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 464 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 465 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 466 // information is returned in PhaseGVN::_types.
 467 //
 468 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 469 //
 470 // Other data structures used by the compiler are not updated. The hash table for value
 471 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 472 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 473 // because it is empty wherever PhaseRenumberLive is used.
 474 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 475                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 476                                      PhaseNumber phase_num) :
 477   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
 478 
 479   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 480   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 481   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 482 
 483   uint old_unique_count = C->unique();
 484   uint live_node_count = C->live_nodes();
 485   uint worklist_size = worklist->size();
 486 
 487   // Storage for the updated type information.
 488   Type_Array new_type_array(C->comp_arena());
 489 
 490   // Iterate over the set of live nodes.
 491   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
 492   for (uint i = 0; i < _useful.size(); i++) {
 493     Node* n = _useful.at(i);
 494     // Sanity check that fails if we ever decide to execute this phase after EA
 495     assert(!n->is_Phi() || n->as_Phi()->inst_mem_id() == -1, "should not be linked to data Phi");
 496     const Type* type = gvn->type_or_null(n);
 497     new_type_array.map(current_idx, type);
 498 
 499     bool in_worklist = false;
 500     if (worklist->member(n)) {
 501       in_worklist = true;
 502     }
 503 
 504     n->set_idx(current_idx); // Update node ID.
 505 
 506     if (in_worklist) {
 507       new_worklist->push(n);
 508     }
 509 
 510     current_idx++;
 511   }
 512 
 513   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 514   assert(live_node_count == current_idx, "all live nodes must be processed");
 515 
 516   // Replace the compiler's type information with the updated type information.
 517   gvn->replace_types(new_type_array);
 518 
 519   // Update the unique node count of the compilation to the number of currently live nodes.
 520   C->set_unique(live_node_count);
 521 
 522   // Set the dead node count to 0 and reset dead node list.
 523   C->reset_dead_node_list();
 524 }
 525 
 526 
 527 //=============================================================================
 528 //------------------------------PhaseTransform---------------------------------
 529 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 530   _arena(Thread::current()->resource_area()),
 531   _nodes(_arena),
 532   _types(_arena)
 533 {
 534   init_con_caches();
 535 #ifndef PRODUCT
 536   clear_progress();
 537   clear_transforms();
 538   set_allow_progress(true);
 539 #endif
 540   // Force allocation for currently existing nodes
 541   _types.map(C->unique(), NULL);
 542 }
 543 
 544 //------------------------------PhaseTransform---------------------------------
 545 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 546   _arena(arena),
 547   _nodes(arena),
 548   _types(arena)
 549 {
 550   init_con_caches();
 551 #ifndef PRODUCT
 552   clear_progress();
 553   clear_transforms();
 554   set_allow_progress(true);
 555 #endif
 556   // Force allocation for currently existing nodes
 557   _types.map(C->unique(), NULL);
 558 }
 559 
 560 //------------------------------PhaseTransform---------------------------------
 561 // Initialize with previously generated type information
 562 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 563   _arena(pt->_arena),
 564   _nodes(pt->_nodes),
 565   _types(pt->_types)
 566 {
 567   init_con_caches();
 568 #ifndef PRODUCT
 569   clear_progress();
 570   clear_transforms();
 571   set_allow_progress(true);
 572 #endif
 573 }
 574 
 575 void PhaseTransform::init_con_caches() {
 576   memset(_icons,0,sizeof(_icons));
 577   memset(_lcons,0,sizeof(_lcons));
 578   memset(_zcons,0,sizeof(_zcons));
 579 }
 580 
 581 
 582 //--------------------------------find_int_type--------------------------------
 583 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 584   if (n == NULL)  return NULL;
 585   // Call type_or_null(n) to determine node's type since we might be in
 586   // parse phase and call n->Value() may return wrong type.
 587   // (For example, a phi node at the beginning of loop parsing is not ready.)
 588   const Type* t = type_or_null(n);
 589   if (t == NULL)  return NULL;
 590   return t->isa_int();
 591 }
 592 
 593 
 594 //-------------------------------find_long_type--------------------------------
 595 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 596   if (n == NULL)  return NULL;
 597   // (See comment above on type_or_null.)
 598   const Type* t = type_or_null(n);
 599   if (t == NULL)  return NULL;
 600   return t->isa_long();
 601 }
 602 
 603 
 604 #ifndef PRODUCT
 605 void PhaseTransform::dump_old2new_map() const {
 606   _nodes.dump();
 607 }
 608 
 609 void PhaseTransform::dump_new( uint nidx ) const {
 610   for( uint i=0; i<_nodes.Size(); i++ )
 611     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 612       _nodes[i]->dump();
 613       tty->cr();
 614       tty->print_cr("Old index= %d",i);
 615       return;
 616     }
 617   tty->print_cr("Node %d not found in the new indices", nidx);
 618 }
 619 
 620 //------------------------------dump_types-------------------------------------
 621 void PhaseTransform::dump_types( ) const {
 622   _types.dump();
 623 }
 624 
 625 //------------------------------dump_nodes_and_types---------------------------
 626 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 627   VectorSet visited(Thread::current()->resource_area());
 628   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 629 }
 630 
 631 //------------------------------dump_nodes_and_types_recur---------------------
 632 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 633   if( !n ) return;
 634   if( depth == 0 ) return;
 635   if( visited.test_set(n->_idx) ) return;
 636   for( uint i=0; i<n->len(); i++ ) {
 637     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 638     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 639   }
 640   n->dump();
 641   if (type_or_null(n) != NULL) {
 642     tty->print("      "); type(n)->dump(); tty->cr();
 643   }
 644 }
 645 
 646 #endif
 647 
 648 
 649 //=============================================================================
 650 //------------------------------PhaseValues------------------------------------
 651 // Set minimum table size to "255"
 652 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 653   NOT_PRODUCT( clear_new_values(); )
 654 }
 655 
 656 //------------------------------PhaseValues------------------------------------
 657 // Set minimum table size to "255"
 658 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 659   _table(&ptv->_table) {
 660   NOT_PRODUCT( clear_new_values(); )
 661 }
 662 
 663 //------------------------------PhaseValues------------------------------------
 664 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 665 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 666   _table(ptv->arena(),ptv->_table.size()) {
 667   NOT_PRODUCT( clear_new_values(); )
 668 }
 669 
 670 //------------------------------~PhaseValues-----------------------------------
 671 #ifndef PRODUCT
 672 PhaseValues::~PhaseValues() {
 673   _table.dump();
 674 
 675   // Statistics for value progress and efficiency
 676   if( PrintCompilation && Verbose && WizardMode ) {
 677     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 678       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 679     if( made_transforms() != 0 ) {
 680       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 681     } else {
 682       tty->cr();
 683     }
 684   }
 685 }
 686 #endif
 687 
 688 //------------------------------makecon----------------------------------------
 689 ConNode* PhaseTransform::makecon(const Type *t) {
 690   assert(t->singleton(), "must be a constant");
 691   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 692   switch (t->base()) {  // fast paths
 693   case Type::Half:
 694   case Type::Top:  return (ConNode*) C->top();
 695   case Type::Int:  return intcon( t->is_int()->get_con() );
 696   case Type::Long: return longcon( t->is_long()->get_con() );
 697   default:         break;
 698   }
 699   if (t->is_zero_type())
 700     return zerocon(t->basic_type());
 701   return uncached_makecon(t);
 702 }
 703 
 704 //--------------------------uncached_makecon-----------------------------------
 705 // Make an idealized constant - one of ConINode, ConPNode, etc.
 706 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 707   assert(t->singleton(), "must be a constant");
 708   ConNode* x = ConNode::make(t);
 709   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 710   if (k == NULL) {
 711     set_type(x, t);             // Missed, provide type mapping
 712     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 713     if (nna != NULL) {
 714       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 715       loc->clear(); // do not put debug info on constants
 716     }
 717   } else {
 718     x->destruct();              // Hit, destroy duplicate constant
 719     x = k;                      // use existing constant
 720   }
 721   return x;
 722 }
 723 
 724 //------------------------------intcon-----------------------------------------
 725 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 726 ConINode* PhaseTransform::intcon(int i) {
 727   // Small integer?  Check cache! Check that cached node is not dead
 728   if (i >= _icon_min && i <= _icon_max) {
 729     ConINode* icon = _icons[i-_icon_min];
 730     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 731       return icon;
 732   }
 733   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 734   assert(icon->is_Con(), "");
 735   if (i >= _icon_min && i <= _icon_max)
 736     _icons[i-_icon_min] = icon;   // Cache small integers
 737   return icon;
 738 }
 739 
 740 //------------------------------longcon----------------------------------------
 741 // Fast long constant.
 742 ConLNode* PhaseTransform::longcon(jlong l) {
 743   // Small integer?  Check cache! Check that cached node is not dead
 744   if (l >= _lcon_min && l <= _lcon_max) {
 745     ConLNode* lcon = _lcons[l-_lcon_min];
 746     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 747       return lcon;
 748   }
 749   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 750   assert(lcon->is_Con(), "");
 751   if (l >= _lcon_min && l <= _lcon_max)
 752     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 753   return lcon;
 754 }
 755 
 756 //------------------------------zerocon-----------------------------------------
 757 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 758 ConNode* PhaseTransform::zerocon(BasicType bt) {
 759   assert((uint)bt <= _zcon_max, "domain check");
 760   ConNode* zcon = _zcons[bt];
 761   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 762     return zcon;
 763   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 764   _zcons[bt] = zcon;
 765   return zcon;
 766 }
 767 
 768 
 769 
 770 //=============================================================================
 771 //------------------------------transform--------------------------------------
 772 // Return a node which computes the same function as this node, but in a
 773 // faster or cheaper fashion.
 774 Node *PhaseGVN::transform( Node *n ) {
 775   return transform_no_reclaim(n);
 776 }
 777 
 778 //------------------------------transform--------------------------------------
 779 // Return a node which computes the same function as this node, but
 780 // in a faster or cheaper fashion.
 781 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 782   NOT_PRODUCT( set_transforms(); )
 783 
 784   // Apply the Ideal call in a loop until it no longer applies
 785   Node *k = n;
 786   NOT_PRODUCT( uint loop_count = 0; )
 787   while( 1 ) {
 788     Node *i = k->Ideal(this, /*can_reshape=*/false);
 789     if( !i ) break;
 790     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 791     k = i;
 792     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 793   }
 794   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 795 
 796 
 797   // If brand new node, make space in type array.
 798   ensure_type_or_null(k);
 799 
 800   // Since I just called 'Value' to compute the set of run-time values
 801   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 802   // cache Value.  Later requests for the local phase->type of this Node can
 803   // use the cached Value instead of suffering with 'bottom_type'.
 804   const Type *t = k->Value(this); // Get runtime Value set
 805   assert(t != NULL, "value sanity");
 806   if (type_or_null(k) != t) {
 807 #ifndef PRODUCT
 808     // Do not count initial visit to node as a transformation
 809     if (type_or_null(k) == NULL) {
 810       inc_new_values();
 811       set_progress();
 812     }
 813 #endif
 814     set_type(k, t);
 815     // If k is a TypeNode, capture any more-precise type permanently into Node
 816     k->raise_bottom_type(t);
 817   }
 818 
 819   if( t->singleton() && !k->is_Con() ) {
 820     NOT_PRODUCT( set_progress(); )
 821     return makecon(t);          // Turn into a constant
 822   }
 823 
 824   // Now check for Identities
 825   Node *i = k->Identity(this);  // Look for a nearby replacement
 826   if( i != k ) {                // Found? Return replacement!
 827     NOT_PRODUCT( set_progress(); )
 828     return i;
 829   }
 830 
 831   // Global Value Numbering
 832   i = hash_find_insert(k);      // Insert if new
 833   if( i && (i != k) ) {
 834     // Return the pre-existing node
 835     NOT_PRODUCT( set_progress(); )
 836     return i;
 837   }
 838 
 839   // Return Idealized original
 840   return k;
 841 }
 842 
 843 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
 844   if (d->is_top() || n->is_top()) {
 845     return false;
 846   }
 847   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
 848   int i = 0;
 849   while (d != n) {
 850     n = IfNode::up_one_dom(n, linear_only);
 851     i++;
 852     if (n == NULL || i >= 10) {
 853       return false;
 854     }
 855   }
 856   return true;
 857 }
 858 
 859 #ifdef ASSERT
 860 //------------------------------dead_loop_check--------------------------------
 861 // Check for a simple dead loop when a data node references itself directly
 862 // or through an other data node excluding cons and phis.
 863 void PhaseGVN::dead_loop_check( Node *n ) {
 864   // Phi may reference itself in a loop
 865   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 866     // Do 2 levels check and only data inputs.
 867     bool no_dead_loop = true;
 868     uint cnt = n->req();
 869     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 870       Node *in = n->in(i);
 871       if (in == n) {
 872         no_dead_loop = false;
 873       } else if (in != NULL && !in->is_dead_loop_safe()) {
 874         uint icnt = in->req();
 875         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 876           if (in->in(j) == n || in->in(j) == in)
 877             no_dead_loop = false;
 878         }
 879       }
 880     }
 881     if (!no_dead_loop) n->dump(3);
 882     assert(no_dead_loop, "dead loop detected");
 883   }
 884 }
 885 #endif
 886 
 887 //=============================================================================
 888 //------------------------------PhaseIterGVN-----------------------------------
 889 // Initialize hash table to fresh and clean for +VerifyOpto
 890 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 891                                                                       _stack(C->live_nodes() >> 1),
 892                                                                       _delay_transform(false) {
 893 }
 894 
 895 //------------------------------PhaseIterGVN-----------------------------------
 896 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 897 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 898                                                    _worklist( igvn->_worklist ),
 899                                                    _stack( igvn->_stack ),
 900                                                    _delay_transform(igvn->_delay_transform)
 901 {
 902 }
 903 
 904 //------------------------------PhaseIterGVN-----------------------------------
 905 // Initialize with previous PhaseGVN info from Parser
 906 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 907                                               _worklist(*C->for_igvn()),
 908 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 909 //       the constructor is used in incremental inlining, this consumes too much memory:
 910 //                                            _stack(C->live_nodes() >> 1),
 911 //       So, as a band-aid, we replace this by:
 912                                               _stack(C->comp_arena(), 32),
 913                                               _delay_transform(false)
 914 {
 915   uint max;
 916 
 917   // Dead nodes in the hash table inherited from GVN were not treated as
 918   // roots during def-use info creation; hence they represent an invisible
 919   // use.  Clear them out.
 920   max = _table.size();
 921   for( uint i = 0; i < max; ++i ) {
 922     Node *n = _table.at(i);
 923     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 924       if( n->is_top() ) continue;
 925       assert( false, "Parse::remove_useless_nodes missed this node");
 926       hash_delete(n);
 927     }
 928   }
 929 
 930   // Any Phis or Regions on the worklist probably had uses that could not
 931   // make more progress because the uses were made while the Phis and Regions
 932   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 933   max = _worklist.size();
 934   for( uint j = 0; j < max; j++ ) {
 935     Node *n = _worklist.at(j);
 936     uint uop = n->Opcode();
 937     if( uop == Op_Phi || uop == Op_Region ||
 938         n->is_Type() ||
 939         n->is_Mem() )
 940       add_users_to_worklist(n);
 941   }
 942 }
 943 
 944 /**
 945  * Initialize worklist for each node.
 946  */
 947 void PhaseIterGVN::init_worklist(Node* first) {
 948   Unique_Node_List to_process;
 949   to_process.push(first);
 950 
 951   while (to_process.size() > 0) {
 952     Node* n = to_process.pop();
 953     if (!_worklist.member(n)) {
 954       _worklist.push(n);
 955 
 956       uint cnt = n->req();
 957       for(uint i = 0; i < cnt; i++) {
 958         Node* m = n->in(i);
 959         if (m != NULL) {
 960           to_process.push(m);
 961         }
 962       }
 963     }
 964   }
 965 }
 966 
 967 #ifndef PRODUCT
 968 void PhaseIterGVN::verify_step(Node* n) {
 969   if (VerifyIterativeGVN) {
 970     _verify_window[_verify_counter % _verify_window_size] = n;
 971     ++_verify_counter;
 972     ResourceMark rm;
 973     ResourceArea* area = Thread::current()->resource_area();
 974     VectorSet old_space(area), new_space(area);
 975     if (C->unique() < 1000 ||
 976         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 977       ++_verify_full_passes;
 978       Node::verify_recur(C->root(), -1, old_space, new_space);
 979     }
 980     const int verify_depth = 4;
 981     for ( int i = 0; i < _verify_window_size; i++ ) {
 982       Node* n = _verify_window[i];
 983       if ( n == NULL )  continue;
 984       if( n->in(0) == NodeSentinel ) {  // xform_idom
 985         _verify_window[i] = n->in(1);
 986         --i; continue;
 987       }
 988       // Typical fanout is 1-2, so this call visits about 6 nodes.
 989       Node::verify_recur(n, verify_depth, old_space, new_space);
 990     }
 991   }
 992 }
 993 
 994 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
 995   if (TraceIterativeGVN) {
 996     uint wlsize = _worklist.size();
 997     const Type* newtype = type_or_null(n);
 998     if (nn != n) {
 999       // print old node
1000       tty->print("< ");
1001       if (oldtype != newtype && oldtype != NULL) {
1002         oldtype->dump();
1003       }
1004       do { tty->print("\t"); } while (tty->position() < 16);
1005       tty->print("<");
1006       n->dump();
1007     }
1008     if (oldtype != newtype || nn != n) {
1009       // print new node and/or new type
1010       if (oldtype == NULL) {
1011         tty->print("* ");
1012       } else if (nn != n) {
1013         tty->print("> ");
1014       } else {
1015         tty->print("= ");
1016       }
1017       if (newtype == NULL) {
1018         tty->print("null");
1019       } else {
1020         newtype->dump();
1021       }
1022       do { tty->print("\t"); } while (tty->position() < 16);
1023       nn->dump();
1024     }
1025     if (Verbose && wlsize < _worklist.size()) {
1026       tty->print("  Push {");
1027       while (wlsize != _worklist.size()) {
1028         Node* pushed = _worklist.at(wlsize++);
1029         tty->print(" %d", pushed->_idx);
1030       }
1031       tty->print_cr(" }");
1032     }
1033     if (nn != n) {
1034       // ignore n, it might be subsumed
1035       verify_step((Node*) NULL);
1036     }
1037   }
1038 }
1039 
1040 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1041   _verify_counter = 0;
1042   _verify_full_passes = 0;
1043   for (int i = 0; i < _verify_window_size; i++) {
1044     _verify_window[i] = NULL;
1045   }
1046 #ifdef ASSERT
1047   // Verify that all modified nodes are on _worklist
1048   Unique_Node_List* modified_list = C->modified_nodes();
1049   while (modified_list != NULL && modified_list->size()) {
1050     Node* n = modified_list->pop();
1051     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1052       n->dump();
1053       assert(false, "modified node is not on IGVN._worklist");
1054     }
1055   }
1056 #endif
1057 }
1058 
1059 void PhaseIterGVN::verify_PhaseIterGVN() {
1060 #ifdef ASSERT
1061   // Verify nodes with changed inputs.
1062   Unique_Node_List* modified_list = C->modified_nodes();
1063   while (modified_list != NULL && modified_list->size()) {
1064     Node* n = modified_list->pop();
1065     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1066       n->dump();
1067       assert(false, "modified node was not processed by IGVN.transform_old()");
1068     }
1069   }
1070 #endif
1071 
1072   C->verify_graph_edges();
1073   if( VerifyOpto && allow_progress() ) {
1074     // Must turn off allow_progress to enable assert and break recursion
1075     C->root()->verify();
1076     { // Check if any progress was missed using IterGVN
1077       // Def-Use info enables transformations not attempted in wash-pass
1078       // e.g. Region/Phi cleanup, ...
1079       // Null-check elision -- may not have reached fixpoint
1080       //                       do not propagate to dominated nodes
1081       ResourceMark rm;
1082       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1083       // Fill worklist completely
1084       igvn2.init_worklist(C->root());
1085 
1086       igvn2.set_allow_progress(false);
1087       igvn2.optimize();
1088       igvn2.set_allow_progress(true);
1089     }
1090   }
1091   if (VerifyIterativeGVN && PrintOpto) {
1092     if (_verify_counter == _verify_full_passes) {
1093       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1094                     (int) _verify_full_passes);
1095     } else {
1096       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1097                   (int) _verify_counter, (int) _verify_full_passes);
1098     }
1099   }
1100 
1101 #ifdef ASSERT
1102   while (modified_list->size()) {
1103     Node* n = modified_list->pop();
1104     n->dump();
1105     assert(false, "VerifyIterativeGVN: new modified node was added");
1106   }
1107 #endif
1108 }
1109 #endif /* PRODUCT */
1110 
1111 #ifdef ASSERT
1112 /**
1113  * Dumps information that can help to debug the problem. A debug
1114  * build fails with an assert.
1115  */
1116 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1117   n->dump(4);
1118   _worklist.dump();
1119   assert(false, "infinite loop in PhaseIterGVN::optimize");
1120 }
1121 
1122 /**
1123  * Prints out information about IGVN if the 'verbose' option is used.
1124  */
1125 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1126   if (TraceIterativeGVN && Verbose) {
1127     tty->print("  Pop ");
1128     n->dump();
1129     if ((num_processed % 100) == 0) {
1130       _worklist.print_set();
1131     }
1132   }
1133 }
1134 #endif /* ASSERT */
1135 
1136 void PhaseIterGVN::optimize() {
1137   DEBUG_ONLY(uint num_processed  = 0;)
1138   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1139 
1140   uint loop_count = 0;
1141   // Pull from worklist and transform the node. If the node has changed,
1142   // update edge info and put uses on worklist.
1143   while(_worklist.size()) {
1144     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1145       return;
1146     }
1147     Node* n  = _worklist.pop();
1148     if (++loop_count >= K * C->live_nodes()) {
1149       DEBUG_ONLY(dump_infinite_loop_info(n);)
1150       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1151       return;
1152     }
1153     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1154     if (n->outcnt() != 0) {
1155       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1156       // Do the transformation
1157       Node* nn = transform_old(n);
1158       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1159     } else if (!n->is_top()) {
1160       remove_dead_node(n);
1161     }
1162   }
1163   NOT_PRODUCT(verify_PhaseIterGVN();)
1164 }
1165 
1166 
1167 /**
1168  * Register a new node with the optimizer.  Update the types array, the def-use
1169  * info.  Put on worklist.
1170  */
1171 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1172   set_type_bottom(n);
1173   _worklist.push(n);
1174   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1175   return n;
1176 }
1177 
1178 //------------------------------transform--------------------------------------
1179 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1180 Node *PhaseIterGVN::transform( Node *n ) {
1181   if (_delay_transform) {
1182     // Register the node but don't optimize for now
1183     register_new_node_with_optimizer(n);
1184     return n;
1185   }
1186 
1187   // If brand new node, make space in type array, and give it a type.
1188   ensure_type_or_null(n);
1189   if (type_or_null(n) == NULL) {
1190     set_type_bottom(n);
1191   }
1192 
1193   return transform_old(n);
1194 }
1195 
1196 Node *PhaseIterGVN::transform_old(Node* n) {
1197   DEBUG_ONLY(uint loop_count = 0;);
1198   NOT_PRODUCT(set_transforms());
1199 
1200   // Remove 'n' from hash table in case it gets modified
1201   _table.hash_delete(n);
1202   if (VerifyIterativeGVN) {
1203    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1204   }
1205 
1206   // Apply the Ideal call in a loop until it no longer applies
1207   Node* k = n;
1208   DEBUG_ONLY(dead_loop_check(k);)
1209   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1210   C->remove_modified_node(k);
1211   Node* i = k->Ideal(this, /*can_reshape=*/true);
1212   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1213 #ifndef PRODUCT
1214   verify_step(k);
1215   if (i && VerifyOpto ) {
1216     if (!allow_progress()) {
1217       if (i->is_Add() && (i->outcnt() == 1)) {
1218         // Switched input to left side because this is the only use
1219       } else if (i->is_If() && (i->in(0) == NULL)) {
1220         // This IF is dead because it is dominated by an equivalent IF When
1221         // dominating if changed, info is not propagated sparsely to 'this'
1222         // Propagating this info further will spuriously identify other
1223         // progress.
1224         return i;
1225       } else
1226         set_progress();
1227     } else {
1228       set_progress();
1229     }
1230   }
1231 #endif
1232 
1233   while (i != NULL) {
1234 #ifdef ASSERT
1235     if (loop_count >= K) {
1236       dump_infinite_loop_info(i);
1237     }
1238     loop_count++;
1239 #endif
1240     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1241     // Made a change; put users of original Node on worklist
1242     add_users_to_worklist(k);
1243     // Replacing root of transform tree?
1244     if (k != i) {
1245       // Make users of old Node now use new.
1246       subsume_node(k, i);
1247       k = i;
1248     }
1249     DEBUG_ONLY(dead_loop_check(k);)
1250     // Try idealizing again
1251     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1252     C->remove_modified_node(k);
1253     i = k->Ideal(this, /*can_reshape=*/true);
1254     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1255 #ifndef PRODUCT
1256     verify_step(k);
1257     if (i && VerifyOpto) {
1258       set_progress();
1259     }
1260 #endif
1261   }
1262 
1263   // If brand new node, make space in type array.
1264   ensure_type_or_null(k);
1265 
1266   // See what kind of values 'k' takes on at runtime
1267   const Type* t = k->Value(this);
1268   assert(t != NULL, "value sanity");
1269 
1270   // Since I just called 'Value' to compute the set of run-time values
1271   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1272   // cache Value.  Later requests for the local phase->type of this Node can
1273   // use the cached Value instead of suffering with 'bottom_type'.
1274   if (type_or_null(k) != t) {
1275 #ifndef PRODUCT
1276     inc_new_values();
1277     set_progress();
1278 #endif
1279     set_type(k, t);
1280     // If k is a TypeNode, capture any more-precise type permanently into Node
1281     k->raise_bottom_type(t);
1282     // Move users of node to worklist
1283     add_users_to_worklist(k);
1284   }
1285   // If 'k' computes a constant, replace it with a constant
1286   if (t->singleton() && !k->is_Con()) {
1287     NOT_PRODUCT(set_progress();)
1288     Node* con = makecon(t);     // Make a constant
1289     add_users_to_worklist(k);
1290     subsume_node(k, con);       // Everybody using k now uses con
1291     return con;
1292   }
1293 
1294   // Now check for Identities
1295   i = k->Identity(this);      // Look for a nearby replacement
1296   if (i != k) {                // Found? Return replacement!
1297     NOT_PRODUCT(set_progress();)
1298     add_users_to_worklist(k);
1299     subsume_node(k, i);       // Everybody using k now uses i
1300     return i;
1301   }
1302 
1303   // Global Value Numbering
1304   i = hash_find_insert(k);      // Check for pre-existing node
1305   if (i && (i != k)) {
1306     // Return the pre-existing node if it isn't dead
1307     NOT_PRODUCT(set_progress();)
1308     add_users_to_worklist(k);
1309     subsume_node(k, i);       // Everybody using k now uses i
1310     return i;
1311   }
1312 
1313   // Return Idealized original
1314   return k;
1315 }
1316 
1317 //---------------------------------saturate------------------------------------
1318 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1319                                    const Type* limit_type) const {
1320   return new_type->narrow(old_type);
1321 }
1322 
1323 //------------------------------remove_globally_dead_node----------------------
1324 // Kill a globally dead Node.  All uses are also globally dead and are
1325 // aggressively trimmed.
1326 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1327   enum DeleteProgress {
1328     PROCESS_INPUTS,
1329     PROCESS_OUTPUTS
1330   };
1331   assert(_stack.is_empty(), "not empty");
1332   _stack.push(dead, PROCESS_INPUTS);
1333 
1334   while (_stack.is_nonempty()) {
1335     dead = _stack.node();
1336     uint progress_state = _stack.index();
1337     assert(dead != C->root(), "killing root, eh?");
1338     assert(!dead->is_top(), "add check for top when pushing");
1339     NOT_PRODUCT( set_progress(); )
1340     if (progress_state == PROCESS_INPUTS) {
1341       // After following inputs, continue to outputs
1342       _stack.set_index(PROCESS_OUTPUTS);
1343       if (!dead->is_Con()) { // Don't kill cons but uses
1344         bool recurse = false;
1345         // Remove from hash table
1346         _table.hash_delete( dead );
1347         // Smash all inputs to 'dead', isolating him completely
1348         for (uint i = 0; i < dead->req(); i++) {
1349           Node *in = dead->in(i);
1350           if (in != NULL && in != C->top()) {  // Points to something?
1351             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1352             assert((nrep > 0), "sanity");
1353             if (in->outcnt() == 0) { // Made input go dead?
1354               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1355               recurse = true;
1356             } else if (in->outcnt() == 1 &&
1357                        in->has_special_unique_user()) {
1358               _worklist.push(in->unique_out());
1359             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1360               if (in->Opcode() == Op_Region) {
1361                 _worklist.push(in);
1362               } else if (in->is_Store()) {
1363                 DUIterator_Fast imax, i = in->fast_outs(imax);
1364                 _worklist.push(in->fast_out(i));
1365                 i++;
1366                 if (in->outcnt() == 2) {
1367                   _worklist.push(in->fast_out(i));
1368                   i++;
1369                 }
1370                 assert(!(i < imax), "sanity");
1371               }
1372             }
1373             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1374                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1375               // A Load that directly follows an InitializeNode is
1376               // going away. The Stores that follow are candidates
1377               // again to be captured by the InitializeNode.
1378               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1379                 Node *n = in->fast_out(j);
1380                 if (n->is_Store()) {
1381                   _worklist.push(n);
1382                 }
1383               }
1384             }
1385           } // if (in != NULL && in != C->top())
1386         } // for (uint i = 0; i < dead->req(); i++)
1387         if (recurse) {
1388           continue;
1389         }
1390       } // if (!dead->is_Con())
1391     } // if (progress_state == PROCESS_INPUTS)
1392 
1393     // Aggressively kill globally dead uses
1394     // (Rather than pushing all the outs at once, we push one at a time,
1395     // plus the parent to resume later, because of the indefinite number
1396     // of edge deletions per loop trip.)
1397     if (dead->outcnt() > 0) {
1398       // Recursively remove output edges
1399       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1400     } else {
1401       // Finished disconnecting all input and output edges.
1402       _stack.pop();
1403       // Remove dead node from iterative worklist
1404       _worklist.remove(dead);
1405       C->remove_modified_node(dead);
1406       // Constant node that has no out-edges and has only one in-edge from
1407       // root is usually dead. However, sometimes reshaping walk makes
1408       // it reachable by adding use edges. So, we will NOT count Con nodes
1409       // as dead to be conservative about the dead node count at any
1410       // given time.
1411       if (!dead->is_Con()) {
1412         C->record_dead_node(dead->_idx);
1413       }
1414       if (dead->is_macro()) {
1415         C->remove_macro_node(dead);
1416       }
1417       if (dead->is_expensive()) {
1418         C->remove_expensive_node(dead);
1419       }
1420       CastIINode* cast = dead->isa_CastII();
1421       if (cast != NULL && cast->has_range_check()) {
1422         C->remove_range_check_cast(cast);
1423       }
1424       if (dead->is_ValueTypePtr()) {
1425         C->remove_value_type_ptr(dead->as_ValueTypePtr());
1426       }
1427     }
1428   } // while (_stack.is_nonempty())
1429 }
1430 
1431 //------------------------------subsume_node-----------------------------------
1432 // Remove users from node 'old' and add them to node 'nn'.
1433 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1434   assert( old != hash_find(old), "should already been removed" );
1435   assert( old != C->top(), "cannot subsume top node");
1436   // Copy debug or profile information to the new version:
1437   C->copy_node_notes_to(nn, old);
1438   // Move users of node 'old' to node 'nn'
1439   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1440     Node* use = old->last_out(i);  // for each use...
1441     // use might need re-hashing (but it won't if it's a new node)
1442     rehash_node_delayed(use);
1443     // Update use-def info as well
1444     // We remove all occurrences of old within use->in,
1445     // so as to avoid rehashing any node more than once.
1446     // The hash table probe swamps any outer loop overhead.
1447     uint num_edges = 0;
1448     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1449       if (use->in(j) == old) {
1450         use->set_req(j, nn);
1451         ++num_edges;
1452       }
1453     }
1454     i -= num_edges;    // we deleted 1 or more copies of this edge
1455   }
1456 
1457   // Search for instance field data PhiNodes in the same region pointing to the old
1458   // memory PhiNode and update their instance memory ids to point to the new node.
1459   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1460     Node* region = old->in(0);
1461     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1462       PhiNode* phi = region->fast_out(i)->isa_Phi();
1463       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1464         phi->set_inst_mem_id((int)nn->_idx);
1465       }
1466     }
1467   }
1468 
1469   // Smash all inputs to 'old', isolating him completely
1470   Node *temp = new Node(1);
1471   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1472   remove_dead_node( old );
1473   temp->del_req(0);         // Yank bogus edge
1474 #ifndef PRODUCT
1475   if( VerifyIterativeGVN ) {
1476     for ( int i = 0; i < _verify_window_size; i++ ) {
1477       if ( _verify_window[i] == old )
1478         _verify_window[i] = nn;
1479     }
1480   }
1481 #endif
1482   _worklist.remove(temp);   // this can be necessary
1483   temp->destruct();         // reuse the _idx of this little guy
1484 }
1485 
1486 void PhaseIterGVN::replace_in_uses(Node* n, Node* m) {
1487   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1488     Node* u = n->fast_out(i);
1489     if (u != n) {
1490       rehash_node_delayed(u);
1491       int nb = u->replace_edge(n, m);
1492       --i, imax -= nb;
1493     }
1494   }
1495 }
1496 
1497 //------------------------------add_users_to_worklist--------------------------
1498 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1499   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1500     _worklist.push(n->fast_out(i));  // Push on worklist
1501   }
1502 }
1503 
1504 // Return counted loop Phi if as a counted loop exit condition, cmp
1505 // compares the the induction variable with n
1506 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1507   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1508     Node* bol = cmp->fast_out(i);
1509     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1510       Node* iff = bol->fast_out(i2);
1511       if (iff->is_CountedLoopEnd()) {
1512         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1513         if (cle->limit() == n) {
1514           PhiNode* phi = cle->phi();
1515           if (phi != NULL) {
1516             return phi;
1517           }
1518         }
1519       }
1520     }
1521   }
1522   return NULL;
1523 }
1524 
1525 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1526   add_users_to_worklist0(n);
1527 
1528   // Move users of node to worklist
1529   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1530     Node* use = n->fast_out(i); // Get use
1531 
1532     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1533         use->is_Store() )       // Enable store/load same address
1534       add_users_to_worklist0(use);
1535 
1536     // If we changed the receiver type to a call, we need to revisit
1537     // the Catch following the call.  It's looking for a non-NULL
1538     // receiver to know when to enable the regular fall-through path
1539     // in addition to the NullPtrException path.
1540     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1541       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1542       if (p != NULL) {
1543         add_users_to_worklist0(p);
1544       }
1545     }
1546 
1547     uint use_op = use->Opcode();
1548     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1549       add_users_to_worklist(use); // Put Bool on worklist
1550       if (use->outcnt() > 0) {
1551         Node* bol = use->raw_out(0);
1552         if (bol->outcnt() > 0) {
1553           Node* iff = bol->raw_out(0);
1554           if (iff->outcnt() == 2) {
1555             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1556             // phi merging either 0 or 1 onto the worklist
1557             Node* ifproj0 = iff->raw_out(0);
1558             Node* ifproj1 = iff->raw_out(1);
1559             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1560               Node* region0 = ifproj0->raw_out(0);
1561               Node* region1 = ifproj1->raw_out(0);
1562               if( region0 == region1 )
1563                 add_users_to_worklist0(region0);
1564             }
1565           }
1566         }
1567       }
1568       if (use_op == Op_CmpI) {
1569         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1570         if (phi != NULL) {
1571           // If an opaque node feeds into the limit condition of a
1572           // CountedLoop, we need to process the Phi node for the
1573           // induction variable when the opaque node is removed:
1574           // the range of values taken by the Phi is now known and
1575           // so its type is also known.
1576           _worklist.push(phi);
1577         }
1578         Node* in1 = use->in(1);
1579         for (uint i = 0; i < in1->outcnt(); i++) {
1580           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1581             Node* castii = in1->raw_out(i);
1582             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1583               Node* ifnode = castii->in(0)->in(0);
1584               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1585                 // Reprocess a CastII node that may depend on an
1586                 // opaque node value when the opaque node is
1587                 // removed. In case it carries a dependency we can do
1588                 // a better job of computing its type.
1589                 _worklist.push(castii);
1590               }
1591             }
1592           }
1593         }
1594       }
1595     }
1596 
1597     // If changed Cast input, check Phi users for simple cycles
1598     if (use->is_ConstraintCast()) {
1599       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1600         Node* u = use->fast_out(i2);
1601         if (u->is_Phi())
1602           _worklist.push(u);
1603       }
1604     }
1605     // If changed LShift inputs, check RShift users for useless sign-ext
1606     if( use_op == Op_LShiftI ) {
1607       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1608         Node* u = use->fast_out(i2);
1609         if (u->Opcode() == Op_RShiftI)
1610           _worklist.push(u);
1611       }
1612     }
1613     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1614     if (use_op == Op_AddI || use_op == Op_SubI) {
1615       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1616         Node* u = use->fast_out(i2);
1617         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1618           _worklist.push(u);
1619         }
1620       }
1621     }
1622     // If changed AddP inputs, check Stores for loop invariant
1623     if( use_op == Op_AddP ) {
1624       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1625         Node* u = use->fast_out(i2);
1626         if (u->is_Mem())
1627           _worklist.push(u);
1628       }
1629     }
1630     // If changed initialization activity, check dependent Stores
1631     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1632       InitializeNode* init = use->as_Allocate()->initialization();
1633       if (init != NULL) {
1634         Node* imem = init->proj_out(TypeFunc::Memory);
1635         if (imem != NULL)  add_users_to_worklist0(imem);
1636       }
1637     }
1638     if (use_op == Op_Initialize) {
1639       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1640       if (imem != NULL)  add_users_to_worklist0(imem);
1641     }
1642     if (use_op == Op_CastP2X) {
1643       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1644         Node* u = use->fast_out(i2);
1645         if (u->Opcode() == Op_AndX) {
1646           _worklist.push(u);
1647         }
1648       }
1649     }
1650   }
1651 }
1652 
1653 /**
1654  * Remove the speculative part of all types that we know of
1655  */
1656 void PhaseIterGVN::remove_speculative_types()  {
1657   assert(UseTypeSpeculation, "speculation is off");
1658   for (uint i = 0; i < _types.Size(); i++)  {
1659     const Type* t = _types.fast_lookup(i);
1660     if (t != NULL) {
1661       _types.map(i, t->remove_speculative());
1662     }
1663   }
1664   _table.check_no_speculative_types();
1665 }
1666 
1667 //=============================================================================
1668 #ifndef PRODUCT
1669 uint PhaseCCP::_total_invokes   = 0;
1670 uint PhaseCCP::_total_constants = 0;
1671 #endif
1672 //------------------------------PhaseCCP---------------------------------------
1673 // Conditional Constant Propagation, ala Wegman & Zadeck
1674 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1675   NOT_PRODUCT( clear_constants(); )
1676   assert( _worklist.size() == 0, "" );
1677   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1678   _nodes.clear();               // Clear out from IterGVN
1679   analyze();
1680 }
1681 
1682 #ifndef PRODUCT
1683 //------------------------------~PhaseCCP--------------------------------------
1684 PhaseCCP::~PhaseCCP() {
1685   inc_invokes();
1686   _total_constants += count_constants();
1687 }
1688 #endif
1689 
1690 
1691 #ifdef ASSERT
1692 static bool ccp_type_widens(const Type* t, const Type* t0) {
1693   assert(t->meet(t0) == t, "Not monotonic");
1694   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1695   case Type::Int:
1696     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1697     break;
1698   case Type::Long:
1699     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1700     break;
1701   default:
1702     break;
1703   }
1704   return true;
1705 }
1706 #endif //ASSERT
1707 
1708 //------------------------------analyze----------------------------------------
1709 void PhaseCCP::analyze() {
1710   // Initialize all types to TOP, optimistic analysis
1711   for (int i = C->unique() - 1; i >= 0; i--)  {
1712     _types.map(i,Type::TOP);
1713   }
1714 
1715   // Push root onto worklist
1716   Unique_Node_List worklist;
1717   worklist.push(C->root());
1718 
1719   // Pull from worklist; compute new value; push changes out.
1720   // This loop is the meat of CCP.
1721   while( worklist.size() ) {
1722     Node *n = worklist.pop();
1723     const Type *t = n->Value(this);
1724     if (t != type(n)) {
1725       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1726 #ifndef PRODUCT
1727       if( TracePhaseCCP ) {
1728         t->dump();
1729         do { tty->print("\t"); } while (tty->position() < 16);
1730         n->dump();
1731       }
1732 #endif
1733       set_type(n, t);
1734       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1735         Node* m = n->fast_out(i);   // Get user
1736         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1737           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1738             Node* p = m->fast_out(i2); // Propagate changes to uses
1739             if (p->bottom_type() != type(p)) { // If not already bottomed out
1740               worklist.push(p); // Propagate change to user
1741             }
1742           }
1743         }
1744         // If we changed the receiver type to a call, we need to revisit
1745         // the Catch following the call.  It's looking for a non-NULL
1746         // receiver to know when to enable the regular fall-through path
1747         // in addition to the NullPtrException path
1748         if (m->is_Call()) {
1749           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1750             Node* p = m->fast_out(i2);  // Propagate changes to uses
1751             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1752               worklist.push(p->unique_out());
1753             }
1754           }
1755         }
1756         if (m->bottom_type() != type(m)) { // If not already bottomed out
1757           worklist.push(m);     // Propagate change to user
1758         }
1759 
1760         // CmpU nodes can get their type information from two nodes up in the
1761         // graph (instead of from the nodes immediately above). Make sure they
1762         // are added to the worklist if nodes they depend on are updated, since
1763         // they could be missed and get wrong types otherwise.
1764         uint m_op = m->Opcode();
1765         if (m_op == Op_AddI || m_op == Op_SubI) {
1766           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1767             Node* p = m->fast_out(i2); // Propagate changes to uses
1768             if (p->Opcode() == Op_CmpU) {
1769               // Got a CmpU which might need the new type information from node n.
1770               if(p->bottom_type() != type(p)) { // If not already bottomed out
1771                 worklist.push(p); // Propagate change to user
1772               }
1773             }
1774           }
1775         }
1776         // If n is used in a counted loop exit condition then the type
1777         // of the counted loop's Phi depends on the type of n. See
1778         // PhiNode::Value().
1779         if (m_op == Op_CmpI) {
1780           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1781           if (phi != NULL) {
1782             worklist.push(phi);
1783           }
1784         }
1785         if (m_op == Op_CastP2X) {
1786           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1787             Node* u = m->fast_out(i2);
1788             if (u->Opcode() == Op_AndX) {
1789               worklist.push(u);
1790             }
1791           }
1792         }
1793       }
1794     }
1795   }
1796 }
1797 
1798 //------------------------------do_transform-----------------------------------
1799 // Top level driver for the recursive transformer
1800 void PhaseCCP::do_transform() {
1801   // Correct leaves of new-space Nodes; they point to old-space.
1802   C->set_root( transform(C->root())->as_Root() );
1803   assert( C->top(),  "missing TOP node" );
1804   assert( C->root(), "missing root" );
1805 }
1806 
1807 //------------------------------transform--------------------------------------
1808 // Given a Node in old-space, clone him into new-space.
1809 // Convert any of his old-space children into new-space children.
1810 Node *PhaseCCP::transform( Node *n ) {
1811   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1812   if( new_node != NULL )
1813     return new_node;                // Been there, done that, return old answer
1814   new_node = transform_once(n);     // Check for constant
1815   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1816 
1817   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1818   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1819 
1820   trstack.push(new_node);           // Process children of cloned node
1821   while ( trstack.is_nonempty() ) {
1822     Node *clone = trstack.pop();
1823     uint cnt = clone->req();
1824     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1825       Node *input = clone->in(i);
1826       if( input != NULL ) {                    // Ignore NULLs
1827         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1828         if( new_input == NULL ) {
1829           new_input = transform_once(input);   // Check for constant
1830           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1831           trstack.push(new_input);
1832         }
1833         assert( new_input == clone->in(i), "insanity check");
1834       }
1835     }
1836   }
1837   return new_node;
1838 }
1839 
1840 
1841 //------------------------------transform_once---------------------------------
1842 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1843 Node *PhaseCCP::transform_once( Node *n ) {
1844   const Type *t = type(n);
1845   // Constant?  Use constant Node instead
1846   if( t->singleton() ) {
1847     Node *nn = n;               // Default is to return the original constant
1848     if( t == Type::TOP ) {
1849       // cache my top node on the Compile instance
1850       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1851         C->set_cached_top_node(ConNode::make(Type::TOP));
1852         set_type(C->top(), Type::TOP);
1853       }
1854       nn = C->top();
1855     }
1856     if( !n->is_Con() ) {
1857       if( t != Type::TOP ) {
1858         nn = makecon(t);        // ConNode::make(t);
1859         NOT_PRODUCT( inc_constants(); )
1860       } else if( n->is_Region() ) { // Unreachable region
1861         // Note: nn == C->top()
1862         n->set_req(0, NULL);        // Cut selfreference
1863         // Eagerly remove dead phis to avoid phis copies creation.
1864         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1865           Node* m = n->out(i);
1866           if( m->is_Phi() ) {
1867             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1868             replace_node(m, nn);
1869             --i; // deleted this phi; rescan starting with next position
1870           }
1871         }
1872       }
1873       replace_node(n,nn);       // Update DefUse edges for new constant
1874     }
1875     return nn;
1876   }
1877 
1878   // If x is a TypeNode, capture any more-precise type permanently into Node
1879   if (t != n->bottom_type()) {
1880     hash_delete(n);             // changing bottom type may force a rehash
1881     n->raise_bottom_type(t);
1882     _worklist.push(n);          // n re-enters the hash table via the worklist
1883   }
1884 
1885   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1886   switch( n->Opcode() ) {
1887   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1888   case Op_If:
1889   case Op_CountedLoopEnd:
1890   case Op_Region:
1891   case Op_Loop:
1892   case Op_CountedLoop:
1893   case Op_Conv2B:
1894   case Op_Opaque1:
1895   case Op_Opaque2:
1896     _worklist.push(n);
1897     break;
1898   default:
1899     break;
1900   }
1901 
1902   return  n;
1903 }
1904 
1905 //---------------------------------saturate------------------------------------
1906 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1907                                const Type* limit_type) const {
1908   const Type* wide_type = new_type->widen(old_type, limit_type);
1909   if (wide_type != new_type) {          // did we widen?
1910     // If so, we may have widened beyond the limit type.  Clip it back down.
1911     new_type = wide_type->filter(limit_type);
1912   }
1913   return new_type;
1914 }
1915 
1916 //------------------------------print_statistics-------------------------------
1917 #ifndef PRODUCT
1918 void PhaseCCP::print_statistics() {
1919   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1920 }
1921 #endif
1922 
1923 
1924 //=============================================================================
1925 #ifndef PRODUCT
1926 uint PhasePeephole::_total_peepholes = 0;
1927 #endif
1928 //------------------------------PhasePeephole----------------------------------
1929 // Conditional Constant Propagation, ala Wegman & Zadeck
1930 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1931   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1932   NOT_PRODUCT( clear_peepholes(); )
1933 }
1934 
1935 #ifndef PRODUCT
1936 //------------------------------~PhasePeephole---------------------------------
1937 PhasePeephole::~PhasePeephole() {
1938   _total_peepholes += count_peepholes();
1939 }
1940 #endif
1941 
1942 //------------------------------transform--------------------------------------
1943 Node *PhasePeephole::transform( Node *n ) {
1944   ShouldNotCallThis();
1945   return NULL;
1946 }
1947 
1948 //------------------------------do_transform-----------------------------------
1949 void PhasePeephole::do_transform() {
1950   bool method_name_not_printed = true;
1951 
1952   // Examine each basic block
1953   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1954     Block* block = _cfg.get_block(block_number);
1955     bool block_not_printed = true;
1956 
1957     // and each instruction within a block
1958     uint end_index = block->number_of_nodes();
1959     // block->end_idx() not valid after PhaseRegAlloc
1960     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1961       Node     *n = block->get_node(instruction_index);
1962       if( n->is_Mach() ) {
1963         MachNode *m = n->as_Mach();
1964         int deleted_count = 0;
1965         // check for peephole opportunities
1966         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
1967         if( m2 != NULL ) {
1968 #ifndef PRODUCT
1969           if( PrintOptoPeephole ) {
1970             // Print method, first time only
1971             if( C->method() && method_name_not_printed ) {
1972               C->method()->print_short_name(); tty->cr();
1973               method_name_not_printed = false;
1974             }
1975             // Print this block
1976             if( Verbose && block_not_printed) {
1977               tty->print_cr("in block");
1978               block->dump();
1979               block_not_printed = false;
1980             }
1981             // Print instructions being deleted
1982             for( int i = (deleted_count - 1); i >= 0; --i ) {
1983               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1984             }
1985             tty->print_cr("replaced with");
1986             // Print new instruction
1987             m2->format(_regalloc);
1988             tty->print("\n\n");
1989           }
1990 #endif
1991           // Remove old nodes from basic block and update instruction_index
1992           // (old nodes still exist and may have edges pointing to them
1993           //  as register allocation info is stored in the allocator using
1994           //  the node index to live range mappings.)
1995           uint safe_instruction_index = (instruction_index - deleted_count);
1996           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1997             block->remove_node( instruction_index );
1998           }
1999           // install new node after safe_instruction_index
2000           block->insert_node(m2, safe_instruction_index + 1);
2001           end_index = block->number_of_nodes() - 1; // Recompute new block size
2002           NOT_PRODUCT( inc_peepholes(); )
2003         }
2004       }
2005     }
2006   }
2007 }
2008 
2009 //------------------------------print_statistics-------------------------------
2010 #ifndef PRODUCT
2011 void PhasePeephole::print_statistics() {
2012   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
2013 }
2014 #endif
2015 
2016 
2017 //=============================================================================
2018 //------------------------------set_req_X--------------------------------------
2019 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
2020   assert( is_not_dead(n), "can not use dead node");
2021   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
2022   Node *old = in(i);
2023   set_req(i, n);
2024 
2025   // old goes dead?
2026   if( old ) {
2027     switch (old->outcnt()) {
2028     case 0:
2029       // Put into the worklist to kill later. We do not kill it now because the
2030       // recursive kill will delete the current node (this) if dead-loop exists
2031       if (!old->is_top())
2032         igvn->_worklist.push( old );
2033       break;
2034     case 1:
2035       if( old->is_Store() || old->has_special_unique_user() )
2036         igvn->add_users_to_worklist( old );
2037       break;
2038     case 2:
2039       if( old->is_Store() )
2040         igvn->add_users_to_worklist( old );
2041       if( old->Opcode() == Op_Region )
2042         igvn->_worklist.push(old);
2043       break;
2044     case 3:
2045       if( old->Opcode() == Op_Region ) {
2046         igvn->_worklist.push(old);
2047         igvn->add_users_to_worklist( old );
2048       }
2049       break;
2050     default:
2051       break;
2052     }
2053   }
2054 
2055 }
2056 
2057 //-------------------------------replace_by-----------------------------------
2058 // Using def-use info, replace one node for another.  Follow the def-use info
2059 // to all users of the OLD node.  Then make all uses point to the NEW node.
2060 void Node::replace_by(Node *new_node) {
2061   assert(!is_top(), "top node has no DU info");
2062   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
2063     Node* use = last_out(i);
2064     uint uses_found = 0;
2065     for (uint j = 0; j < use->len(); j++) {
2066       if (use->in(j) == this) {
2067         if (j < use->req())
2068               use->set_req(j, new_node);
2069         else  use->set_prec(j, new_node);
2070         uses_found++;
2071       }
2072     }
2073     i -= uses_found;    // we deleted 1 or more copies of this edge
2074   }
2075 }
2076 
2077 //=============================================================================
2078 //-----------------------------------------------------------------------------
2079 void Type_Array::grow( uint i ) {
2080   if( !_max ) {
2081     _max = 1;
2082     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2083     _types[0] = NULL;
2084   }
2085   uint old = _max;
2086   while( i >= _max ) _max <<= 1;        // Double to fit
2087   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2088   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2089 }
2090 
2091 //------------------------------dump-------------------------------------------
2092 #ifndef PRODUCT
2093 void Type_Array::dump() const {
2094   uint max = Size();
2095   for( uint i = 0; i < max; i++ ) {
2096     if( _types[i] != NULL ) {
2097       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2098     }
2099   }
2100 }
2101 #endif