< prev index next >

src/share/vm/opto/valuetypenode.cpp

Print this page

        

*** 1,7 **** /* ! * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. --- 1,7 ---- /* ! * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation.
*** 37,46 **** --- 37,47 ---- assert(!has_phi_inputs(region), "already cloned with phis"); ValueTypeBaseNode* vt = clone()->as_ValueTypeBase(); // Create a PhiNode for merging the oop values const TypeValueTypePtr* vtptr = value_type_ptr(); + vtptr = vtptr->cast_to_ptr_type(TypePtr::BotPTR)->is_valuetypeptr(); PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr); gvn->set_type(oop, vtptr); vt->set_oop(oop); // Create a PhiNode each for merging the field values
*** 121,135 **** // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type. int index = value_klass()->field_index_by_offset(offset); int sub_offset = offset - field_offset(index); Node* value = field_value(index); if (recursive && value->is_ValueType()) { - // Flattened value type field ValueTypeNode* vt = value->as_ValueType(); sub_offset += vt->value_klass()->first_field_offset(); // Add header size ! return vt->field_value_by_offset(sub_offset); } assert(!(recursive && value->is_ValueType()), "should not be a value type"); assert(sub_offset == 0, "offset mismatch"); return value; } --- 122,142 ---- // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type. int index = value_klass()->field_index_by_offset(offset); int sub_offset = offset - field_offset(index); Node* value = field_value(index); + assert(value != NULL, "field value not found"); if (recursive && value->is_ValueType()) { ValueTypeNode* vt = value->as_ValueType(); + if (field_is_flattened(index)) { + // Flattened value type field sub_offset += vt->value_klass()->first_field_offset(); // Add header size ! return vt->field_value_by_offset(sub_offset, recursive); ! } else { ! assert(sub_offset == 0, "should not have a sub offset"); ! return vt; ! } } assert(!(recursive && value->is_ValueType()), "should not be a value type"); assert(sub_offset == 0, "offset mismatch"); return value; }
*** 139,159 **** set_req(Values + index, value); } int ValueTypeBaseNode::field_offset(uint index) const { assert(index < field_count(), "index out of bounds"); ! return value_klass()->field_offset_by_index(index); } ciType* ValueTypeBaseNode::field_type(uint index) const { assert(index < field_count(), "index out of bounds"); ! return value_klass()->field_type_by_index(index); } ! int ValueTypeBaseNode::make_scalar_in_safepoint(SafePointNode* sfpt, Node* root, PhaseGVN* gvn) { ciValueKlass* vk = value_klass(); ! uint nfields = vk->flattened_field_count(); JVMState* jvms = sfpt->jvms(); int start = jvms->debug_start(); int end = jvms->debug_end(); // Replace safepoint edge by SafePointScalarObjectNode and add field values assert(jvms != NULL, "missing JVMS"); --- 146,171 ---- set_req(Values + index, value); } int ValueTypeBaseNode::field_offset(uint index) const { assert(index < field_count(), "index out of bounds"); ! return value_klass()->declared_nonstatic_field_at(index)->offset(); } ciType* ValueTypeBaseNode::field_type(uint index) const { assert(index < field_count(), "index out of bounds"); ! return value_klass()->declared_nonstatic_field_at(index)->type(); } ! bool ValueTypeBaseNode::field_is_flattened(uint index) const { ! assert(index < field_count(), "index out of bounds"); ! return value_klass()->declared_nonstatic_field_at(index)->is_flattened(); ! } ! ! int ValueTypeBaseNode::make_scalar_in_safepoint(Unique_Node_List& worklist, SafePointNode* sfpt, Node* root, PhaseGVN* gvn) { ciValueKlass* vk = value_klass(); ! uint nfields = vk->nof_nonstatic_fields(); JVMState* jvms = sfpt->jvms(); int start = jvms->debug_start(); int end = jvms->debug_end(); // Replace safepoint edge by SafePointScalarObjectNode and add field values assert(jvms != NULL, "missing JVMS");
*** 168,178 **** // Iterate over the value type fields in order of increasing // offset and add the field values to the safepoint. for (uint j = 0; j < nfields; ++j) { int offset = vk->nonstatic_field_at(j)->offset(); Node* value = field_value_by_offset(offset, true /* include flattened value type fields */); ! assert(value != NULL, ""); sfpt->add_req(value); } jvms->set_endoff(sfpt->req()); if (gvn != NULL) { sobj = gvn->transform(sobj)->as_SafePointScalarObject(); --- 180,197 ---- // Iterate over the value type fields in order of increasing // offset and add the field values to the safepoint. for (uint j = 0; j < nfields; ++j) { int offset = vk->nonstatic_field_at(j)->offset(); Node* value = field_value_by_offset(offset, true /* include flattened value type fields */); ! if (value->is_ValueType()) { ! if (value->as_ValueType()->is_allocated(gvn)) { ! value = value->as_ValueType()->get_oop(); ! } else { ! // Add non-flattened value type field to the worklist to process later ! worklist.push(value); ! } ! } sfpt->add_req(value); } jvms->set_endoff(sfpt->req()); if (gvn != NULL) { sobj = gvn->transform(sobj)->as_SafePointScalarObject();
*** 180,211 **** } return sfpt->replace_edges_in_range(this, sobj, start, end); } void ValueTypeBaseNode::make_scalar_in_safepoints(Node* root, PhaseGVN* gvn) { for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { Node* u = fast_out(i); if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) { SafePointNode* sfpt = u->as_SafePoint(); Node* in_oop = get_oop(); const Type* oop_type = in_oop->bottom_type(); ! assert(Opcode() == Op_ValueTypePtr || TypePtr::NULL_PTR->higher_equal(oop_type), "already heap allocated value type should be linked directly"); ! int nb = make_scalar_in_safepoint(sfpt, root, gvn); --i; imax -= nb; } } } ! void ValueTypeBaseNode::make(PhaseGVN* gvn, Node* n, ValueTypeBaseNode* vt, ciValueKlass* base_vk, int base_offset, int base_input, bool in) { assert(base_offset >= 0, "offset in value type always positive"); for (uint i = 0; i < vt->field_count(); i++) { ciType* field_type = vt->field_type(i); int offset = base_offset + vt->field_offset(i); ! if (field_type->is_valuetype()) { ciValueKlass* embedded_vk = field_type->as_value_klass(); ValueTypeNode* embedded_vt = ValueTypeNode::make(*gvn, embedded_vk); ! ValueTypeBaseNode::make(gvn, n, embedded_vt, base_vk, offset - vt->value_klass()->first_field_offset(), base_input, in); vt->set_field_value(i, gvn->transform(embedded_vt)); } else { int j = 0; int extra = 0; for (; j < base_vk->nof_nonstatic_fields(); j++) { ciField* f = base_vk->nonstatic_field_at(j); --- 199,236 ---- } return sfpt->replace_edges_in_range(this, sobj, start, end); } void ValueTypeBaseNode::make_scalar_in_safepoints(Node* root, PhaseGVN* gvn) { + Unique_Node_List worklist; for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { Node* u = fast_out(i); if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) { SafePointNode* sfpt = u->as_SafePoint(); Node* in_oop = get_oop(); const Type* oop_type = in_oop->bottom_type(); ! assert(Opcode() == Op_ValueTypePtr || !isa_ValueType()->is_allocated(gvn), "already heap allocated value types should be linked directly"); ! int nb = make_scalar_in_safepoint(worklist, sfpt, root, gvn); --i; imax -= nb; } } + + for (uint next = 0; next < worklist.size(); ++next) { + Node* vt = worklist.at(next); + vt->as_ValueType()->make_scalar_in_safepoints(root, gvn); + } } ! void ValueTypeBaseNode::make(PhaseGVN* gvn, Node*& ctl, Node* mem, Node* n, ValueTypeBaseNode* vt, ciValueKlass* base_vk, int base_offset, int base_input, bool in) { assert(base_offset >= 0, "offset in value type always positive"); for (uint i = 0; i < vt->field_count(); i++) { ciType* field_type = vt->field_type(i); int offset = base_offset + vt->field_offset(i); ! if (field_type->is_valuetype() && vt->field_is_flattened(i)) { ciValueKlass* embedded_vk = field_type->as_value_klass(); ValueTypeNode* embedded_vt = ValueTypeNode::make(*gvn, embedded_vk); ! ValueTypeBaseNode::make(gvn, ctl, mem, n, embedded_vt, base_vk, offset - vt->value_klass()->first_field_offset(), base_input, in); vt->set_field_value(i, gvn->transform(embedded_vt)); } else { int j = 0; int extra = 0; for (; j < base_vk->nof_nonstatic_fields(); j++) { ciField* f = base_vk->nonstatic_field_at(j);
*** 229,255 **** parm = n->in(base_input + j + extra); } else { parm = gvn->transform(new ProjNode(n->as_Call(), base_input + j + extra)); } } vt->set_field_value(i, parm); // Record all these guys for later GVN. gvn->record_for_igvn(parm); } } } ! void ValueTypeBaseNode::load(PhaseGVN& gvn, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) { // Initialize the value type by loading its field values from // memory and adding the values as input edges to the node. for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); ciType* ftype = field_type(i); Node* value = NULL; ! if (ftype->is_valuetype()) { // Recursively load the flattened value type field ! value = ValueTypeNode::make(gvn, ftype->as_value_klass(), mem, base, ptr, holder, offset); } else { const Type* con_type = NULL; if (base->is_Con()) { // If the oop to the value type is constant (static final field), we can // also treat the fields as constants because the value type is immutable. --- 254,285 ---- parm = n->in(base_input + j + extra); } else { parm = gvn->transform(new ProjNode(n->as_Call(), base_input + j + extra)); } } + if (field_type->is_valuetype()) { + // Non-flattened value type field, check for null + parm = ValueTypeNode::make(*gvn, ctl, mem, parm, /* null_check */ true); + + } vt->set_field_value(i, parm); // Record all these guys for later GVN. gvn->record_for_igvn(parm); } } } ! void ValueTypeBaseNode::load(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) { // Initialize the value type by loading its field values from // memory and adding the values as input edges to the node. for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); ciType* ftype = field_type(i); Node* value = NULL; ! if (ftype->is_valuetype() && field_is_flattened(i)) { // Recursively load the flattened value type field ! value = ValueTypeNode::make(gvn, ftype->as_value_klass(), ctl, mem, base, ptr, holder, offset); } else { const Type* con_type = NULL; if (base->is_Con()) { // If the oop to the value type is constant (static final field), we can // also treat the fields as constants because the value type is immutable.
*** 259,335 **** ciConstant constant = constant_oop->as_instance()->field_value(field); con_type = Type::make_from_constant(constant, /*require_const=*/ true); } if (con_type != NULL) { // Found a constant field value ! value = gvn.makecon(con_type); } else { // Load field value from memory const Type* base_type = gvn.type(base); const TypePtr* adr_type = NULL; if (base_type->isa_aryptr()) { ! // In the case of a flattened value type array, each field ! // has its own slice adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); } else { ciField* field = holder->get_field_by_offset(offset, false); adr_type = gvn.C->alias_type(field)->adr_type(); } Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset))); BasicType bt = type2field[ftype->basic_type()]; ! value = LoadNode::make(gvn, NULL, mem, adr, adr_type, Type::get_const_type(ftype), bt, MemNode::unordered); } } ! set_field_value(i, gvn.transform(value)); } } ! void ValueTypeBaseNode::store_flattened(PhaseGVN* gvn, Node* ctl, MergeMemNode* mem, Node* base, ciValueKlass* holder, int holder_offset) const { // The value type is embedded into the object without an oop header. Subtract the // offset of the first field to account for the missing header when storing the values. holder_offset -= value_klass()->first_field_offset(); ! store(gvn, ctl, mem, base, holder, holder_offset); } ! void ValueTypeBaseNode::store(PhaseGVN* gvn, Node* ctl, MergeMemNode* mem, Node* base, ciValueKlass* holder, int holder_offset) const { if (holder == NULL) { holder = value_klass(); } // Write field values to memory for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); Node* value = field_value(i); ! if (value->is_ValueType()) { // Recursively store the flattened value type field ! value->isa_ValueTypeBase()->store_flattened(gvn, ctl, mem, base, holder, offset); } else { ! const Type* base_type = gvn->type(base); const TypePtr* adr_type = NULL; if (base_type->isa_aryptr()) { // In the case of a flattened value type array, each field has its own slice adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); } else { ciField* field = holder->get_field_by_offset(offset, false); ! adr_type = gvn->C->alias_type(field)->adr_type(); } ! Node* adr = gvn->transform(new AddPNode(base, base, gvn->MakeConX(offset))); BasicType bt = type2field[field_type(i)->basic_type()]; ! uint alias_idx = gvn->C->get_alias_index(adr_type); ! Node* st = StoreNode::make(*gvn, ctl, mem->memory_at(alias_idx), adr, adr_type, value, bt, MemNode::unordered); ! mem->set_memory_at(alias_idx, gvn->transform(st)); } } } // When a call returns multiple values, it has several result // projections, one per field. Replacing the result of the call by a // value type node (after late inlining) requires that for each result // projection, we find the corresponding value type field. ! void ValueTypeBaseNode::replace_call_results(Node* call, Compile* C) { ciValueKlass* vk = value_klass(); for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { ! ProjNode *pn = call->fast_out(i)->as_Proj(); uint con = pn->_con; if (con >= TypeFunc::Parms+1) { uint field_nb = con - (TypeFunc::Parms+1); int extra = 0; for (uint j = 0; j < field_nb - extra; j++) { --- 289,448 ---- ciConstant constant = constant_oop->as_instance()->field_value(field); con_type = Type::make_from_constant(constant, /*require_const=*/ true); } if (con_type != NULL) { // Found a constant field value ! value = gvn.transform(gvn.makecon(con_type)); ! if (con_type->isa_valuetypeptr()) { ! // Constant, non-flattened value type field ! value = ValueTypeNode::make(gvn, ctl, mem, value); ! } } else { // Load field value from memory const Type* base_type = gvn.type(base); const TypePtr* adr_type = NULL; if (base_type->isa_aryptr()) { ! // In the case of a flattened value type array, each field has its own slice adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); } else { ciField* field = holder->get_field_by_offset(offset, false); adr_type = gvn.C->alias_type(field)->adr_type(); } Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset))); BasicType bt = type2field[ftype->basic_type()]; ! const Type* ft = Type::get_const_type(ftype); ! if (bt == T_VALUETYPE) { ! ft = ft->is_valuetypeptr()->cast_to_ptr_type(TypePtr::BotPTR); ! } ! assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent"); ! value = gvn.transform(LoadNode::make(gvn, NULL, mem, adr, adr_type, ft, bt, MemNode::unordered)); ! if (bt == T_VALUETYPE) { ! // Non-flattened value type field, check for null ! value = ValueTypeNode::make(gvn, ctl, mem, value, /* null_check */ true); ! } } } ! set_field_value(i, value); } } ! void ValueTypeBaseNode::store_flattened(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const { // The value type is embedded into the object without an oop header. Subtract the // offset of the first field to account for the missing header when storing the values. holder_offset -= value_klass()->first_field_offset(); ! store(kit, base, ptr, holder, holder_offset); } ! void ValueTypeBaseNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const { if (holder == NULL) { holder = value_klass(); } // Write field values to memory for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); Node* value = field_value(i); ! if (value->is_ValueType() && field_is_flattened(i)) { // Recursively store the flattened value type field ! value->isa_ValueType()->store_flattened(kit, base, ptr, holder, offset); } else { ! const Type* base_type = kit->gvn().type(base); const TypePtr* adr_type = NULL; if (base_type->isa_aryptr()) { // In the case of a flattened value type array, each field has its own slice adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); } else { ciField* field = holder->get_field_by_offset(offset, false); ! adr_type = kit->C->alias_type(field)->adr_type(); } ! Node* adr = kit->basic_plus_adr(base, ptr, offset); BasicType bt = type2field[field_type(i)->basic_type()]; ! if (is_java_primitive(bt)) { ! kit->store_to_memory(kit->control(), adr, value, bt, adr_type, MemNode::unordered); ! } else { ! const TypeOopPtr* ft = TypeOopPtr::make_from_klass(field_type(i)->as_klass()); ! // Field may be NULL ! ft = ft->cast_to_ptr_type(TypePtr::BotPTR)->is_oopptr(); ! assert(adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent"); ! bool is_array = base_type->isa_aryptr() != NULL; ! kit->store_oop(kit->control(), base, adr, adr_type, value, ft, bt, is_array, MemNode::unordered); ! } ! } } + } + + ValueTypeBaseNode* ValueTypeBaseNode::allocate(GraphKit* kit) { + Node* in_oop = get_oop(); + Node* null_ctl = kit->top(); + // Check if value type is already allocated + Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl); + if (null_ctl->is_top()) { + // Value type is allocated + return this; + } + // Not able to prove that value type is allocated. + // Emit runtime check that may be folded later. + assert(!is_allocated(&kit->gvn()), "should not be allocated"); + const TypeValueTypePtr* vtptr_type = bottom_type()->isa_valuetypeptr(); + if (vtptr_type == NULL) { + vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull); } + RegionNode* region = new RegionNode(3); + PhiNode* oop = new PhiNode(region, vtptr_type); + PhiNode* io = new PhiNode(region, Type::ABIO); + PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); + + // Oop is non-NULL, use it + region->init_req(1, kit->control()); + oop ->init_req(1, not_null_oop); + io ->init_req(1, kit->i_o()); + mem ->init_req(1, kit->merged_memory()); + + // Oop is NULL, allocate value type + kit->set_control(null_ctl); + kit->kill_dead_locals(); + ciValueKlass* vk = value_klass(); + Node* klass_node = kit->makecon(TypeKlassPtr::make(vk)); + Node* alloc_oop = kit->new_instance(klass_node, NULL, NULL, false, this); + // Write field values to memory + store(kit, alloc_oop, alloc_oop, vk); + region->init_req(2, kit->control()); + oop ->init_req(2, alloc_oop); + io ->init_req(2, kit->i_o()); + mem ->init_req(2, kit->merged_memory()); + + // Update GraphKit + kit->set_control(kit->gvn().transform(region)); + kit->set_i_o(kit->gvn().transform(io)); + kit->set_all_memory(kit->gvn().transform(mem)); + kit->record_for_igvn(region); + kit->record_for_igvn(oop); + kit->record_for_igvn(io); + kit->record_for_igvn(mem); + + // Use cloned ValueTypeNode to propagate oop from now on + Node* res_oop = kit->gvn().transform(oop); + ValueTypeBaseNode* vt = clone()->as_ValueTypeBase(); + vt->set_oop(res_oop); + vt = kit->gvn().transform(vt)->as_ValueTypeBase(); + kit->replace_in_map(this, vt); + return vt; + } + + bool ValueTypeBaseNode::is_allocated(PhaseGVN* phase) const { + Node* oop = get_oop(); + const Type* oop_type = (phase != NULL) ? phase->type(oop) : oop->bottom_type(); + return oop_type->meet(TypePtr::NULL_PTR) != oop_type; } // When a call returns multiple values, it has several result // projections, one per field. Replacing the result of the call by a // value type node (after late inlining) requires that for each result // projection, we find the corresponding value type field. ! void ValueTypeBaseNode::replace_call_results(GraphKit* kit, Node* call, Compile* C) { ciValueKlass* vk = value_klass(); for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { ! ProjNode* pn = call->fast_out(i)->as_Proj(); uint con = pn->_con; if (con >= TypeFunc::Parms+1) { uint field_nb = con - (TypeFunc::Parms+1); int extra = 0; for (uint j = 0; j < field_nb - extra; j++) {
*** 339,430 **** extra++; } } ciField* f = vk->nonstatic_field_at(field_nb - extra); Node* field = field_value_by_offset(f->offset(), true); ! C->gvn_replace_by(pn, field); C->initial_gvn()->hash_delete(pn); pn->set_req(0, C->top()); --i; --imax; } } } - Node* ValueTypeBaseNode::allocate(const Type* type, Node*& ctl, Node*& mem, Node*& io, Node* frameptr, Node*& ex_ctl, Node*& ex_mem, Node*& ex_io, JVMState* jvms, PhaseIterGVN *igvn) { - ciValueKlass* vk = type->is_valuetypeptr()->value_type()->value_klass(); - Node* initial_mem = mem; - uint last = igvn->C->unique(); - MergeMemNode* all_mem = MergeMemNode::make(mem); - jint lhelper = vk->layout_helper(); - assert(lhelper != Klass::_lh_neutral_value, "unsupported"); - - AllocateNode* alloc = new AllocateNode(igvn->C, - AllocateNode::alloc_type(Type::TOP), - ctl, - mem, - io, - igvn->MakeConX(Klass::layout_helper_size_in_bytes(lhelper)), - igvn->makecon(TypeKlassPtr::make(vk)), - igvn->intcon(0), - NULL); - alloc->set_req(TypeFunc::FramePtr, frameptr); - igvn->C->add_safepoint_edges(alloc, jvms); - Node* n = igvn->transform(alloc); - assert(n == alloc, "node shouldn't go away"); - - ctl = igvn->transform(new ProjNode(alloc, TypeFunc::Control)); - mem = igvn->transform(new ProjNode(alloc, TypeFunc::Memory, true)); - all_mem->set_memory_at(Compile::AliasIdxRaw, mem); - - io = igvn->transform(new ProjNode(alloc, TypeFunc::I_O, true)); - Node* catc = igvn->transform(new CatchNode(ctl, io, 2)); - Node* norm = igvn->transform(new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); - Node* excp = igvn->transform(new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); - - ex_ctl = excp; - ex_mem = igvn->transform(all_mem); - ex_io = io; - - ctl = norm; - mem = igvn->transform(new ProjNode(alloc, TypeFunc::Memory)); - io = igvn->transform(new ProjNode(alloc, TypeFunc::I_O, false)); - Node* rawoop = igvn->transform(new ProjNode(alloc, TypeFunc::Parms)); - - MemBarNode* membar = MemBarNode::make(igvn->C, Op_Initialize, Compile::AliasIdxRaw, rawoop); - membar->set_req(TypeFunc::Control, ctl); - - InitializeNode* init = membar->as_Initialize(); - - const TypeOopPtr* oop_type = type->is_oopptr(); - MergeMemNode* minit_in = MergeMemNode::make(mem); - init->set_req(InitializeNode::Memory, minit_in); - n = igvn->transform(membar); - assert(n == membar, "node shouldn't go away"); - ctl = igvn->transform(new ProjNode(membar, TypeFunc::Control)); - mem = igvn->transform(new ProjNode(membar, TypeFunc::Memory)); - - MergeMemNode* out_mem_merge = MergeMemNode::make(initial_mem); - for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) { - ciField* field = vk->nonstatic_field_at(i); - if (field->offset() >= TrackedInitializationLimit * HeapWordSize) - continue; - int fieldidx = igvn->C->alias_type(field)->index(); - minit_in->set_memory_at(fieldidx, initial_mem); - out_mem_merge->set_memory_at(fieldidx, mem); - } - - n = igvn->transform(minit_in); - assert(n == minit_in, "node shouldn't go away"); - out_mem_merge->set_memory_at(Compile::AliasIdxRaw, mem); - - Node* javaoop = igvn->transform(new CheckCastPPNode(ctl, rawoop, oop_type)); - mem = igvn->transform(out_mem_merge); - - return javaoop; - } - ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) { // Create a new ValueTypeNode with uninitialized values and NULL oop const TypeValueType* type = TypeValueType::make(klass); return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE)); } --- 452,473 ---- extra++; } } ciField* f = vk->nonstatic_field_at(field_nb - extra); Node* field = field_value_by_offset(f->offset(), true); ! if (field->is_ValueType()) { ! assert(f->is_flattened(), "should be flattened"); ! field = field->as_ValueType()->allocate(kit)->get_oop(); ! } C->gvn_replace_by(pn, field); C->initial_gvn()->hash_delete(pn); pn->set_req(0, C->top()); --i; --imax; } } } ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) { // Create a new ValueTypeNode with uninitialized values and NULL oop const TypeValueType* type = TypeValueType::make(klass); return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE)); }
*** 444,485 **** vt->set_field_value(i, value); } return gvn.transform(vt); } ! Node* ValueTypeNode::make(PhaseGVN& gvn, Node* mem, Node* oop) { // Create and initialize a ValueTypeNode by loading all field // values from a heap-allocated version and also save the oop. const TypeValueType* type = gvn.type(oop)->is_valuetypeptr()->value_type(); ValueTypeNode* vt = new ValueTypeNode(type, oop); ! vt->load(gvn, mem, oop, oop, type->value_klass()); assert(vt->is_allocated(&gvn), "value type should be allocated"); ! assert(oop->is_Con() || oop->is_CheckCastPP() || oop->Opcode() == Op_ValueTypePtr || vt->is_loaded(&gvn, type) == oop, "value type should be loaded"); ! return gvn.transform(vt); } ! Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* vk, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) { // Create and initialize a ValueTypeNode by loading all field values from // a flattened value type field at 'holder_offset' or from a value type array. ValueTypeNode* vt = make(gvn, vk); // The value type is flattened into the object without an oop header. Subtract the // offset of the first field to account for the missing header when loading the values. holder_offset -= vk->first_field_offset(); ! vt->load(gvn, mem, obj, ptr, holder, holder_offset); assert(vt->is_loaded(&gvn, vt->type()->isa_valuetype()) != obj, "holder oop should not be used as flattened value type oop"); return gvn.transform(vt)->as_ValueType(); } ! Node* ValueTypeNode::make(PhaseGVN& gvn, Node* n, ciValueKlass* vk, int base_input, bool in) { ValueTypeNode* vt = ValueTypeNode::make(gvn, vk); ! ValueTypeBaseNode::make(&gvn, n, vt, vk, 0, base_input, in); return gvn.transform(vt); } Node* ValueTypeNode::is_loaded(PhaseGVN* phase, const TypeValueType* t, Node* base, int holder_offset) { if (field_count() == 0) { ! assert(t->value_klass() == phase->C->env()->___Value_klass(), "unexpected value type klass"); assert(is_allocated(phase), "must be allocated"); return get_oop(); } for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); --- 487,572 ---- vt->set_field_value(i, value); } return gvn.transform(vt); } ! Node* ValueTypeNode::make(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* oop, bool null_check) { // Create and initialize a ValueTypeNode by loading all field // values from a heap-allocated version and also save the oop. const TypeValueType* type = gvn.type(oop)->is_valuetypeptr()->value_type(); ValueTypeNode* vt = new ValueTypeNode(type, oop); ! ! if (null_check && !vt->is_allocated(&gvn)) { ! // Add oop null check ! Node* chk = gvn.transform(new CmpPNode(oop, gvn.zerocon(T_VALUETYPE))); ! Node* tst = gvn.transform(new BoolNode(chk, BoolTest::ne)); ! IfNode* iff = gvn.transform(new IfNode(ctl, tst, PROB_MAX, COUNT_UNKNOWN))->as_If(); ! Node* not_null = gvn.transform(new IfTrueNode(iff)); ! Node* null = gvn.transform(new IfFalseNode(iff)); ! Node* region = new RegionNode(3); ! ! // Load value type from memory if oop is non-null ! oop = new CastPPNode(oop, TypePtr::NOTNULL); ! oop->set_req(0, not_null); ! oop = gvn.transform(oop); ! vt->load(gvn, not_null, mem, oop, oop, type->value_klass()); ! region->init_req(1, not_null); ! ! // Use default value type if oop is null ! Node* def = make_default(gvn, type->value_klass()); ! region->init_req(2, null); ! ! // Merge the two value types and update control ! vt = vt->clone_with_phis(&gvn, region)->as_ValueType(); ! vt->merge_with(&gvn, def->as_ValueType(), 2, true); ! ctl = gvn.transform(region); ! } else { ! Node* init_ctl = ctl; ! vt->load(gvn, ctl, mem, oop, oop, type->value_klass()); ! vt = gvn.transform(vt)->as_ValueType(); assert(vt->is_allocated(&gvn), "value type should be allocated"); ! assert(init_ctl != ctl || oop->is_Con() || oop->is_CheckCastPP() || oop->Opcode() == Op_ValueTypePtr || ! vt->is_loaded(&gvn, type) == oop, "value type should be loaded"); ! } ! return vt; } ! Node* ValueTypeNode::make(GraphKit* kit, Node* oop, bool null_check) { ! Node* ctl = kit->control(); ! Node* vt = make(kit->gvn(), ctl, kit->merged_memory(), oop, null_check); ! kit->set_control(ctl); ! return vt; ! } ! ! Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* vk, Node*& ctl, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) { // Create and initialize a ValueTypeNode by loading all field values from // a flattened value type field at 'holder_offset' or from a value type array. ValueTypeNode* vt = make(gvn, vk); // The value type is flattened into the object without an oop header. Subtract the // offset of the first field to account for the missing header when loading the values. holder_offset -= vk->first_field_offset(); ! vt->load(gvn, ctl, mem, obj, ptr, holder, holder_offset); assert(vt->is_loaded(&gvn, vt->type()->isa_valuetype()) != obj, "holder oop should not be used as flattened value type oop"); return gvn.transform(vt)->as_ValueType(); } ! Node* ValueTypeNode::make(GraphKit* kit, ciValueKlass* vk, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) { ! Node* ctl = kit->control(); ! Node* vt = make(kit->gvn(), vk, ctl, kit->merged_memory(), obj, ptr, holder, holder_offset); ! kit->set_control(ctl); ! return vt; ! } ! ! Node* ValueTypeNode::make(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* n, ciValueKlass* vk, int base_input, bool in) { ValueTypeNode* vt = ValueTypeNode::make(gvn, vk); ! ValueTypeBaseNode::make(&gvn, ctl, mem, n, vt, vk, 0, base_input, in); return gvn.transform(vt); } Node* ValueTypeNode::is_loaded(PhaseGVN* phase, const TypeValueType* t, Node* base, int holder_offset) { if (field_count() == 0) { ! assert(t->value_klass()->is__Value(), "unexpected value type klass"); assert(is_allocated(phase), "must be allocated"); return get_oop(); } for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i);
*** 514,619 **** } } return base; } ! void ValueTypeNode::store_flattened(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const { ! // The value type is embedded into the object without an oop header. Subtract the ! // offset of the first field to account for the missing header when storing the values. ! holder_offset -= value_klass()->first_field_offset(); ! store(kit, base, ptr, holder, holder_offset); ! } ! ! void ValueTypeNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const { ! // Write field values to memory ! for (uint i = 0; i < field_count(); ++i) { ! int offset = holder_offset + field_offset(i); Node* value = field_value(i); if (value->is_ValueType()) { ! // Recursively store the flattened value type field ! value->isa_ValueType()->store_flattened(kit, base, ptr, holder, offset); } else { ! const Type* base_type = kit->gvn().type(base); ! const TypePtr* adr_type = NULL; ! if (base_type->isa_aryptr()) { ! // In the case of a flattened value type array, each field has its own slice ! adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); ! } else { ! ciField* field = holder->get_field_by_offset(offset, false); ! adr_type = kit->C->alias_type(field)->adr_type(); ! } ! Node* adr = kit->basic_plus_adr(base, ptr, offset); ! BasicType bt = type2field[field_type(i)->basic_type()]; ! if (is_java_primitive(bt)) { ! kit->store_to_memory(kit->control(), adr, value, bt, adr_type, MemNode::unordered); ! } else { ! const TypeOopPtr* ft = TypeOopPtr::make_from_klass(field_type(i)->as_klass()); ! assert(adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent"); ! bool is_array = base_type->isa_aryptr() != NULL; ! kit->store_oop(kit->control(), base, adr, adr_type, value, ft, bt, is_array, MemNode::unordered); ! } } } - } - - Node* ValueTypeNode::allocate(GraphKit* kit) { - Node* in_oop = get_oop(); - Node* null_ctl = kit->top(); - // Check if value type is already allocated - Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl); - if (null_ctl->is_top()) { - // Value type is allocated - return not_null_oop; } ! // Not able to prove that value type is allocated. ! // Emit runtime check that may be folded later. ! assert(!is_allocated(&kit->gvn()), "should not be allocated"); ! const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull); ! RegionNode* region = new RegionNode(3); ! PhiNode* oop = new PhiNode(region, vtptr_type); ! PhiNode* io = new PhiNode(region, Type::ABIO); ! PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); ! ! // Oop is non-NULL, use it ! region->init_req(1, kit->control()); ! oop ->init_req(1, not_null_oop); ! io ->init_req(1, kit->i_o()); ! mem ->init_req(1, kit->merged_memory()); ! ! // Oop is NULL, allocate value type ! kit->set_control(null_ctl); ! kit->kill_dead_locals(); ! ciValueKlass* vk = value_klass(); ! Node* klass_node = kit->makecon(TypeKlassPtr::make(vk)); ! Node* alloc_oop = kit->new_instance(klass_node, NULL, NULL, false, this); ! // Write field values to memory ! store(kit, alloc_oop, alloc_oop, vk); ! region->init_req(2, kit->control()); ! oop ->init_req(2, alloc_oop); ! io ->init_req(2, kit->i_o()); ! mem ->init_req(2, kit->merged_memory()); ! ! // Update GraphKit ! kit->set_control(kit->gvn().transform(region)); ! kit->set_i_o(kit->gvn().transform(io)); ! kit->set_all_memory(kit->gvn().transform(mem)); ! kit->record_for_igvn(region); ! kit->record_for_igvn(oop); ! kit->record_for_igvn(io); ! kit->record_for_igvn(mem); ! ! // Use cloned ValueTypeNode to propagate oop from now on ! Node* res_oop = kit->gvn().transform(oop); ! ValueTypeNode* vt = clone()->as_ValueType(); ! vt->set_oop(res_oop); ! kit->replace_in_map(this, kit->gvn().transform(vt)); ! return res_oop; ! } ! ! bool ValueTypeNode::is_allocated(PhaseGVN* phase) const { ! const Type* oop_type = phase->type(get_oop()); ! return oop_type->meet(TypePtr::NULL_PTR) != oop_type; } Node* ValueTypeNode::tagged_klass(PhaseGVN& gvn) { ciValueKlass* vk = value_klass(); const TypeKlassPtr* tk = TypeKlassPtr::make(vk); --- 601,627 ---- } } return base; } ! Node* ValueTypeNode::allocate_fields(GraphKit* kit) { ! ValueTypeNode* vt = clone()->as_ValueType(); ! for (uint i = 0; i < field_count(); i++) { Node* value = field_value(i); if (value->is_ValueType()) { ! if (field_is_flattened(i)) { ! value = value->as_ValueType()->allocate_fields(kit); } else { ! // Non-flattened value type field ! value = value->as_ValueType()->allocate(kit); } + vt->set_field_value(i, value); } } ! vt = kit->gvn().transform(vt)->as_ValueType(); ! kit->replace_in_map(this, vt); ! return vt; } Node* ValueTypeNode::tagged_klass(PhaseGVN& gvn) { ciValueKlass* vk = value_klass(); const TypeKlassPtr* tk = TypeKlassPtr::make(vk);
*** 624,646 **** void ValueTypeNode::pass_klass(Node* n, uint pos, const GraphKit& kit) { n->init_req(pos, tagged_klass(kit.gvn())); } ! uint ValueTypeNode::pass_fields(Node* n, int base_input, const GraphKit& kit, ciValueKlass* base_vk, int base_offset) { ciValueKlass* vk = value_klass(); if (base_vk == NULL) { base_vk = vk; } uint edges = 0; for (uint i = 0; i < field_count(); i++) { ciType* f_type = field_type(i); int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0); Node* arg = field_value(i); ! if (f_type->is_valuetype()) { ciValueKlass* embedded_vk = f_type->as_value_klass(); ! edges += arg->as_ValueType()->pass_fields(n, base_input, kit, base_vk, offset); } else { int j = 0; int extra = 0; for (; j < base_vk->nof_nonstatic_fields(); j++) { ciField* f = base_vk->nonstatic_field_at(j); if (offset == f->offset()) { --- 632,654 ---- void ValueTypeNode::pass_klass(Node* n, uint pos, const GraphKit& kit) { n->init_req(pos, tagged_klass(kit.gvn())); } ! uint ValueTypeNode::pass_fields(Node* n, int base_input, GraphKit& kit, bool assert_allocated, ciValueKlass* base_vk, int base_offset) { ciValueKlass* vk = value_klass(); if (base_vk == NULL) { base_vk = vk; } uint edges = 0; for (uint i = 0; i < field_count(); i++) { ciType* f_type = field_type(i); int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0); Node* arg = field_value(i); ! if (f_type->is_valuetype() && field_is_flattened(i)) { ciValueKlass* embedded_vk = f_type->as_value_klass(); ! edges += arg->as_ValueType()->pass_fields(n, base_input, kit, assert_allocated, base_vk, offset); } else { int j = 0; int extra = 0; for (; j < base_vk->nof_nonstatic_fields(); j++) { ciField* f = base_vk->nonstatic_field_at(j); if (offset == f->offset()) {
*** 650,659 **** --- 658,673 ---- BasicType bt = f->type()->basic_type(); if (bt == T_LONG || bt == T_DOUBLE) { extra++; } } + if (arg->is_ValueType()) { + // non-flattened value type field + ValueTypeNode* vt = arg->as_ValueType(); + assert(!assert_allocated || vt->is_allocated(&kit.gvn()), "value type field should be allocated"); + arg = vt->allocate(&kit)->get_oop(); + } n->init_req(base_input + j + extra, arg); edges++; BasicType bt = f_type->basic_type(); if (bt == T_LONG || bt == T_DOUBLE) { n->init_req(base_input + j + extra + 1, kit.top());
*** 698,710 **** void ValueTypeNode::remove_redundant_allocations(PhaseIterGVN* igvn, PhaseIdealLoop* phase) { assert(EliminateAllocations, "allocation elimination should be enabled"); Node_List dead_allocations; // Search for allocations of this value type for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { ! Node* out1 = fast_out(i); ! if (out1->is_Allocate() && out1->in(AllocateNode::ValueNode) == this) { ! AllocateNode* alloc = out1->as_Allocate(); Node* res_dom = NULL; if (is_allocated(igvn)) { // The value type is already allocated but still connected to an AllocateNode. // This can happen with late inlining when we first allocate a value type argument // but later decide to inline the call with the callee code also allocating. --- 712,723 ---- void ValueTypeNode::remove_redundant_allocations(PhaseIterGVN* igvn, PhaseIdealLoop* phase) { assert(EliminateAllocations, "allocation elimination should be enabled"); Node_List dead_allocations; // Search for allocations of this value type for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { ! AllocateNode* alloc = fast_out(i)->isa_Allocate(); ! if (alloc != NULL && alloc->result_cast() != NULL && alloc->in(AllocateNode::ValueNode) == this) { Node* res_dom = NULL; if (is_allocated(igvn)) { // The value type is already allocated but still connected to an AllocateNode. // This can happen with late inlining when we first allocate a value type argument // but later decide to inline the call with the callee code also allocating.
*** 721,734 **** break; } } } if (res_dom != NULL) { - // Found a dominating allocation - Node* res = alloc->result_cast(); - assert(res != NULL, "value type allocation should not be dead"); // Move users to dominating allocation igvn->replace_node(res, res_dom); // The dominated allocation is now dead, remove the // value type node connection and adjust the iterator. dead_allocations.push(alloc); igvn->replace_input_of(alloc, AllocateNode::ValueNode, NULL); --- 734,745 ---- break; } } } if (res_dom != NULL) { // Move users to dominating allocation + Node* res = alloc->result_cast(); igvn->replace_node(res, res_dom); // The dominated allocation is now dead, remove the // value type node connection and adjust the iterator. dead_allocations.push(alloc); igvn->replace_input_of(alloc, AllocateNode::ValueNode, NULL);
*** 758,788 **** phase->lazy_replace(projs.catchall_catchproj, phase->C->top()); phase->lazy_replace(projs.resproj, phase->C->top()); } } - #ifndef PRODUCT void ValueTypeNode::dump_spec(outputStream* st) const { TypeNode::dump_spec(st); } #endif ! ValueTypePtrNode* ValueTypePtrNode::make(PhaseGVN* gvn, CheckCastPPNode* cast) { ! ciValueKlass* vk = cast->type()->is_valuetypeptr()->value_type()->value_klass(); ! ValueTypePtrNode* vt = new ValueTypePtrNode(vk, gvn->C); ! assert(cast->in(1)->is_Proj(), "bad graph shape"); ! ValueTypeBaseNode::make(gvn, cast->in(1)->in(0), vt, vk, 0, TypeFunc::Parms+1, false); return vt; } ! ValueTypePtrNode* ValueTypePtrNode::make(PhaseGVN& gvn, Node* mem, Node* oop) { // Create and initialize a ValueTypePtrNode by loading all field // values from a heap-allocated version and also save the oop. ciValueKlass* vk = gvn.type(oop)->is_valuetypeptr()->value_type()->value_klass(); ! ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, gvn.C); ! vtptr->set_oop(oop); ! vtptr->load(gvn, mem, oop, oop, vk); return vtptr; } --- 769,797 ---- phase->lazy_replace(projs.catchall_catchproj, phase->C->top()); phase->lazy_replace(projs.resproj, phase->C->top()); } } #ifndef PRODUCT void ValueTypeNode::dump_spec(outputStream* st) const { TypeNode::dump_spec(st); } #endif ! ValueTypePtrNode* ValueTypePtrNode::make(GraphKit* kit, ciValueKlass* vk, CallNode* call) { ! ValueTypePtrNode* vt = new ValueTypePtrNode(vk, kit->zerocon(T_VALUETYPE), kit->C); ! Node* ctl = kit->control(); ! ValueTypeBaseNode::make(&kit->gvn(), ctl, kit->merged_memory(), call, vt, vk, 0, TypeFunc::Parms+1, false); ! kit->set_control(ctl); return vt; } ! ValueTypePtrNode* ValueTypePtrNode::make(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* oop) { // Create and initialize a ValueTypePtrNode by loading all field // values from a heap-allocated version and also save the oop. ciValueKlass* vk = gvn.type(oop)->is_valuetypeptr()->value_type()->value_klass(); ! ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, oop, gvn.C); ! vtptr->load(gvn, ctl, mem, oop, oop, vk); return vtptr; }
< prev index next >