1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/valueArrayKlass.hpp"
  43 #include "oops/valueArrayOop.hpp"
  44 #include "oops/valueKlass.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvm.h"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/compilationPolicy.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/signature.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/thread.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "runtime/vframe_hp.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 
  62 #if INCLUDE_JVMCI
  63 #include "jvmci/jvmciRuntime.hpp"
  64 #include "jvmci/jvmciJavaClasses.hpp"
  65 #endif
  66 
  67 
  68 bool DeoptimizationMarker::_is_active = false;
  69 
  70 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  71                                          int  caller_adjustment,
  72                                          int  caller_actual_parameters,
  73                                          int  number_of_frames,
  74                                          intptr_t* frame_sizes,
  75                                          address* frame_pcs,
  76                                          BasicType return_type,
  77                                          int exec_mode) {
  78   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  79   _caller_adjustment         = caller_adjustment;
  80   _caller_actual_parameters  = caller_actual_parameters;
  81   _number_of_frames          = number_of_frames;
  82   _frame_sizes               = frame_sizes;
  83   _frame_pcs                 = frame_pcs;
  84   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  85   _return_type               = return_type;
  86   _initial_info              = 0;
  87   // PD (x86 only)
  88   _counter_temp              = 0;
  89   _unpack_kind               = exec_mode;
  90   _sender_sp_temp            = 0;
  91 
  92   _total_frame_sizes         = size_of_frames();
  93   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  94 }
  95 
  96 
  97 Deoptimization::UnrollBlock::~UnrollBlock() {
  98   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  99   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 100   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 101 }
 102 
 103 
 104 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 105   assert(register_number < RegisterMap::reg_count, "checking register number");
 106   return &_register_block[register_number * 2];
 107 }
 108 
 109 
 110 
 111 int Deoptimization::UnrollBlock::size_of_frames() const {
 112   // Acount first for the adjustment of the initial frame
 113   int result = _caller_adjustment;
 114   for (int index = 0; index < number_of_frames(); index++) {
 115     result += frame_sizes()[index];
 116   }
 117   return result;
 118 }
 119 
 120 
 121 void Deoptimization::UnrollBlock::print() {
 122   ttyLocker ttyl;
 123   tty->print_cr("UnrollBlock");
 124   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 125   tty->print(   "  frame_sizes: ");
 126   for (int index = 0; index < number_of_frames(); index++) {
 127     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 128   }
 129   tty->cr();
 130 }
 131 
 132 
 133 // In order to make fetch_unroll_info work properly with escape
 134 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 135 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 136 // of previously eliminated objects occurs in realloc_objects, which is
 137 // called from the method fetch_unroll_info_helper below.
 138 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 139   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 140   // but makes the entry a little slower. There is however a little dance we have to
 141   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 142 
 143   // fetch_unroll_info() is called at the beginning of the deoptimization
 144   // handler. Note this fact before we start generating temporary frames
 145   // that can confuse an asynchronous stack walker. This counter is
 146   // decremented at the end of unpack_frames().
 147   if (TraceDeoptimization) {
 148     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 149   }
 150   thread->inc_in_deopt_handler();
 151 
 152   return fetch_unroll_info_helper(thread, exec_mode);
 153 JRT_END
 154 
 155 
 156 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 157 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 158 
 159   // Note: there is a safepoint safety issue here. No matter whether we enter
 160   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 161   // the vframeArray is created.
 162   //
 163 
 164   // Allocate our special deoptimization ResourceMark
 165   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 166   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 167   thread->set_deopt_mark(dmark);
 168 
 169   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 170   RegisterMap map(thread, true);
 171   RegisterMap dummy_map(thread, false);
 172   // Now get the deoptee with a valid map
 173   frame deoptee = stub_frame.sender(&map);
 174   // Set the deoptee nmethod
 175   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 176   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 177   thread->set_deopt_compiled_method(cm);
 178 
 179   if (VerifyStack) {
 180     thread->validate_frame_layout();
 181   }
 182 
 183   // Create a growable array of VFrames where each VFrame represents an inlined
 184   // Java frame.  This storage is allocated with the usual system arena.
 185   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 186   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 187   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 188   while (!vf->is_top()) {
 189     assert(vf->is_compiled_frame(), "Wrong frame type");
 190     chunk->push(compiledVFrame::cast(vf));
 191     vf = vf->sender();
 192   }
 193   assert(vf->is_compiled_frame(), "Wrong frame type");
 194   chunk->push(compiledVFrame::cast(vf));
 195 
 196   bool realloc_failures = false;
 197 
 198 #if defined(COMPILER2) || INCLUDE_JVMCI
 199   // Reallocate the non-escaping objects and restore their fields. Then
 200   // relock objects if synchronization on them was eliminated.
 201 #ifndef INCLUDE_JVMCI
 202   if (DoEscapeAnalysis || EliminateNestedLocks) {
 203     if (EliminateAllocations) {
 204 #endif // INCLUDE_JVMCI
 205       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 206       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 207 
 208       // The flag return_oop() indicates call sites which return oop
 209       // in compiled code. Such sites include java method calls,
 210       // runtime calls (for example, used to allocate new objects/arrays
 211       // on slow code path) and any other calls generated in compiled code.
 212       // It is not guaranteed that we can get such information here only
 213       // by analyzing bytecode in deoptimized frames. This is why this flag
 214       // is set during method compilation (see Compile::Process_OopMap_Node()).
 215       // If the previous frame was popped or if we are dispatching an exception,
 216       // we don't have an oop result.
 217       ScopeDesc* scope = chunk->at(0)->scope();
 218       bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 219       // In case of the return of multiple values, we must take care
 220       // of all oop return values.
 221       GrowableArray<Handle> return_oops;
 222       ValueKlass* vk = NULL;
 223       if (save_oop_result) {
 224         if (scope->return_vt()) {
 225           vk = ValueKlass::returned_value_type(map);
 226           if (vk != NULL) {
 227             bool success = vk->save_oop_results(map, return_oops);
 228             assert(success, "found klass ptr being returned: saving oops can't fail");
 229             save_oop_result = false;
 230           } else {
 231             vk = NULL;
 232           }
 233         }
 234       }
 235       if (save_oop_result) {
 236         // Reallocation may trigger GC. If deoptimization happened on return from
 237         // call which returns oop we need to save it since it is not in oopmap.
 238         oop result = deoptee.saved_oop_result(&map);
 239         assert(oopDesc::is_oop_or_null(result), "must be oop");
 240         return_oops.push(Handle(thread, result));
 241         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 242         if (TraceDeoptimization) {
 243           ttyLocker ttyl;
 244           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 245         }
 246       }
 247       if (objects != NULL || vk != NULL) {
 248         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 249         JRT_BLOCK
 250           if (vk != NULL) {
 251             realloc_failures = realloc_value_type_result(vk, map, return_oops, THREAD);
 252           }
 253           if (objects != NULL) {
 254             realloc_failures = realloc_failures || realloc_objects(thread, &deoptee, objects, THREAD);
 255             reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 256           }
 257         JRT_END
 258 #ifndef PRODUCT
 259         if (TraceDeoptimization) {
 260           ttyLocker ttyl;
 261           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 262           print_objects(objects, realloc_failures);
 263         }
 264 #endif
 265       }
 266       if (save_oop_result || vk != NULL) {
 267         // Restore result.
 268         assert(return_oops.length() == 1, "no value type");
 269         deoptee.set_saved_oop_result(&map, return_oops.pop()());
 270       }
 271 #ifndef INCLUDE_JVMCI
 272     }
 273     if (EliminateLocks) {
 274 #endif // INCLUDE_JVMCI
 275 #ifndef PRODUCT
 276       bool first = true;
 277 #endif
 278       for (int i = 0; i < chunk->length(); i++) {
 279         compiledVFrame* cvf = chunk->at(i);
 280         assert (cvf->scope() != NULL,"expect only compiled java frames");
 281         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 282         if (monitors->is_nonempty()) {
 283           relock_objects(monitors, thread, realloc_failures);
 284 #ifndef PRODUCT
 285           if (PrintDeoptimizationDetails) {
 286             ttyLocker ttyl;
 287             for (int j = 0; j < monitors->length(); j++) {
 288               MonitorInfo* mi = monitors->at(j);
 289               if (mi->eliminated()) {
 290                 if (first) {
 291                   first = false;
 292                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 293                 }
 294                 if (mi->owner_is_scalar_replaced()) {
 295                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 296                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 297                 } else {
 298                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 299                 }
 300               }
 301             }
 302           }
 303 #endif // !PRODUCT
 304         }
 305       }
 306 #ifndef INCLUDE_JVMCI
 307     }
 308   }
 309 #endif // INCLUDE_JVMCI
 310 #endif // COMPILER2 || INCLUDE_JVMCI
 311 
 312   ScopeDesc* trap_scope = chunk->at(0)->scope();
 313   Handle exceptionObject;
 314   if (trap_scope->rethrow_exception()) {
 315     if (PrintDeoptimizationDetails) {
 316       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 317     }
 318     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 319     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 320     ScopeValue* topOfStack = expressions->top();
 321     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 322     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 323   }
 324 
 325   // Ensure that no safepoint is taken after pointers have been stored
 326   // in fields of rematerialized objects.  If a safepoint occurs from here on
 327   // out the java state residing in the vframeArray will be missed.
 328   NoSafepointVerifier no_safepoint;
 329 
 330   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 331 #if defined(COMPILER2) || INCLUDE_JVMCI
 332   if (realloc_failures) {
 333     pop_frames_failed_reallocs(thread, array);
 334   }
 335 #endif
 336 
 337   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 338   thread->set_vframe_array_head(array);
 339 
 340   // Now that the vframeArray has been created if we have any deferred local writes
 341   // added by jvmti then we can free up that structure as the data is now in the
 342   // vframeArray
 343 
 344   if (thread->deferred_locals() != NULL) {
 345     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 346     int i = 0;
 347     do {
 348       // Because of inlining we could have multiple vframes for a single frame
 349       // and several of the vframes could have deferred writes. Find them all.
 350       if (list->at(i)->id() == array->original().id()) {
 351         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 352         list->remove_at(i);
 353         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 354         delete dlv;
 355       } else {
 356         i++;
 357       }
 358     } while ( i < list->length() );
 359     if (list->length() == 0) {
 360       thread->set_deferred_locals(NULL);
 361       // free the list and elements back to C heap.
 362       delete list;
 363     }
 364 
 365   }
 366 
 367 #ifndef SHARK
 368   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 369   CodeBlob* cb = stub_frame.cb();
 370   // Verify we have the right vframeArray
 371   assert(cb->frame_size() >= 0, "Unexpected frame size");
 372   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 373 
 374   // If the deopt call site is a MethodHandle invoke call site we have
 375   // to adjust the unpack_sp.
 376   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 377   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 378     unpack_sp = deoptee.unextended_sp();
 379 
 380 #ifdef ASSERT
 381   assert(cb->is_deoptimization_stub() ||
 382          cb->is_uncommon_trap_stub() ||
 383          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 384          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 385          "unexpected code blob: %s", cb->name());
 386 #endif
 387 #else
 388   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 389 #endif // !SHARK
 390 
 391   // This is a guarantee instead of an assert because if vframe doesn't match
 392   // we will unpack the wrong deoptimized frame and wind up in strange places
 393   // where it will be very difficult to figure out what went wrong. Better
 394   // to die an early death here than some very obscure death later when the
 395   // trail is cold.
 396   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 397   // in that it will fail to detect a problem when there is one. This needs
 398   // more work in tiger timeframe.
 399   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 400 
 401   int number_of_frames = array->frames();
 402 
 403   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 404   // virtual activation, which is the reverse of the elements in the vframes array.
 405   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 406   // +1 because we always have an interpreter return address for the final slot.
 407   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 408   int popframe_extra_args = 0;
 409   // Create an interpreter return address for the stub to use as its return
 410   // address so the skeletal frames are perfectly walkable
 411   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 412 
 413   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 414   // activation be put back on the expression stack of the caller for reexecution
 415   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 416     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 417   }
 418 
 419   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 420   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 421   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 422   //
 423   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 424   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 425 
 426   // It's possible that the number of parameters at the call site is
 427   // different than number of arguments in the callee when method
 428   // handles are used.  If the caller is interpreted get the real
 429   // value so that the proper amount of space can be added to it's
 430   // frame.
 431   bool caller_was_method_handle = false;
 432   if (deopt_sender.is_interpreted_frame()) {
 433     methodHandle method = deopt_sender.interpreter_frame_method();
 434     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 435     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 436       // Method handle invokes may involve fairly arbitrary chains of
 437       // calls so it's impossible to know how much actual space the
 438       // caller has for locals.
 439       caller_was_method_handle = true;
 440     }
 441   }
 442 
 443   //
 444   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 445   // frame_sizes/frame_pcs[1] next oldest frame (int)
 446   // frame_sizes/frame_pcs[n] youngest frame (int)
 447   //
 448   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 449   // owns the space for the return address to it's caller).  Confusing ain't it.
 450   //
 451   // The vframe array can address vframes with indices running from
 452   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 453   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 454   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 455   // so things look a little strange in this loop.
 456   //
 457   int callee_parameters = 0;
 458   int callee_locals = 0;
 459   for (int index = 0; index < array->frames(); index++ ) {
 460     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 461     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 462     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 463     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 464                                                                                                     callee_locals,
 465                                                                                                     index == 0,
 466                                                                                                     popframe_extra_args);
 467     // This pc doesn't have to be perfect just good enough to identify the frame
 468     // as interpreted so the skeleton frame will be walkable
 469     // The correct pc will be set when the skeleton frame is completely filled out
 470     // The final pc we store in the loop is wrong and will be overwritten below
 471     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 472 
 473     callee_parameters = array->element(index)->method()->size_of_parameters();
 474     callee_locals = array->element(index)->method()->max_locals();
 475     popframe_extra_args = 0;
 476   }
 477 
 478   // Compute whether the root vframe returns a float or double value.
 479   BasicType return_type;
 480   {
 481     methodHandle method(thread, array->element(0)->method());
 482     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 483     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 484   }
 485 
 486   // Compute information for handling adapters and adjusting the frame size of the caller.
 487   int caller_adjustment = 0;
 488 
 489   // Compute the amount the oldest interpreter frame will have to adjust
 490   // its caller's stack by. If the caller is a compiled frame then
 491   // we pretend that the callee has no parameters so that the
 492   // extension counts for the full amount of locals and not just
 493   // locals-parms. This is because without a c2i adapter the parm
 494   // area as created by the compiled frame will not be usable by
 495   // the interpreter. (Depending on the calling convention there
 496   // may not even be enough space).
 497 
 498   // QQQ I'd rather see this pushed down into last_frame_adjust
 499   // and have it take the sender (aka caller).
 500 
 501   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 502     caller_adjustment = last_frame_adjust(0, callee_locals);
 503   } else if (callee_locals > callee_parameters) {
 504     // The caller frame may need extending to accommodate
 505     // non-parameter locals of the first unpacked interpreted frame.
 506     // Compute that adjustment.
 507     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 508   }
 509 
 510   // If the sender is deoptimized the we must retrieve the address of the handler
 511   // since the frame will "magically" show the original pc before the deopt
 512   // and we'd undo the deopt.
 513 
 514   frame_pcs[0] = deopt_sender.raw_pc();
 515 
 516 #ifndef SHARK
 517   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 518 #endif // SHARK
 519 
 520 #ifdef INCLUDE_JVMCI
 521   if (exceptionObject() != NULL) {
 522     thread->set_exception_oop(exceptionObject());
 523     exec_mode = Unpack_exception;
 524   }
 525 #endif
 526 
 527   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 528     assert(thread->has_pending_exception(), "should have thrown OOME");
 529     thread->set_exception_oop(thread->pending_exception());
 530     thread->clear_pending_exception();
 531     exec_mode = Unpack_exception;
 532   }
 533 
 534 #if INCLUDE_JVMCI
 535   if (thread->frames_to_pop_failed_realloc() > 0) {
 536     thread->set_pending_monitorenter(false);
 537   }
 538 #endif
 539 
 540   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 541                                       caller_adjustment * BytesPerWord,
 542                                       caller_was_method_handle ? 0 : callee_parameters,
 543                                       number_of_frames,
 544                                       frame_sizes,
 545                                       frame_pcs,
 546                                       return_type,
 547                                       exec_mode);
 548   // On some platforms, we need a way to pass some platform dependent
 549   // information to the unpacking code so the skeletal frames come out
 550   // correct (initial fp value, unextended sp, ...)
 551   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 552 
 553   if (array->frames() > 1) {
 554     if (VerifyStack && TraceDeoptimization) {
 555       ttyLocker ttyl;
 556       tty->print_cr("Deoptimizing method containing inlining");
 557     }
 558   }
 559 
 560   array->set_unroll_block(info);
 561   return info;
 562 }
 563 
 564 // Called to cleanup deoptimization data structures in normal case
 565 // after unpacking to stack and when stack overflow error occurs
 566 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 567                                         vframeArray *array) {
 568 
 569   // Get array if coming from exception
 570   if (array == NULL) {
 571     array = thread->vframe_array_head();
 572   }
 573   thread->set_vframe_array_head(NULL);
 574 
 575   // Free the previous UnrollBlock
 576   vframeArray* old_array = thread->vframe_array_last();
 577   thread->set_vframe_array_last(array);
 578 
 579   if (old_array != NULL) {
 580     UnrollBlock* old_info = old_array->unroll_block();
 581     old_array->set_unroll_block(NULL);
 582     delete old_info;
 583     delete old_array;
 584   }
 585 
 586   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 587   // inside the vframeArray (StackValueCollections)
 588 
 589   delete thread->deopt_mark();
 590   thread->set_deopt_mark(NULL);
 591   thread->set_deopt_compiled_method(NULL);
 592 
 593 
 594   if (JvmtiExport::can_pop_frame()) {
 595 #ifndef CC_INTERP
 596     // Regardless of whether we entered this routine with the pending
 597     // popframe condition bit set, we should always clear it now
 598     thread->clear_popframe_condition();
 599 #else
 600     // C++ interpreter will clear has_pending_popframe when it enters
 601     // with method_resume. For deopt_resume2 we clear it now.
 602     if (thread->popframe_forcing_deopt_reexecution())
 603         thread->clear_popframe_condition();
 604 #endif /* CC_INTERP */
 605   }
 606 
 607   // unpack_frames() is called at the end of the deoptimization handler
 608   // and (in C2) at the end of the uncommon trap handler. Note this fact
 609   // so that an asynchronous stack walker can work again. This counter is
 610   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 611   // the beginning of uncommon_trap().
 612   thread->dec_in_deopt_handler();
 613 }
 614 
 615 // Moved from cpu directories because none of the cpus has callee save values.
 616 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 617 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 618 
 619   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 620   // the days we had adapter frames. When we deoptimize a situation where a
 621   // compiled caller calls a compiled caller will have registers it expects
 622   // to survive the call to the callee. If we deoptimize the callee the only
 623   // way we can restore these registers is to have the oldest interpreter
 624   // frame that we create restore these values. That is what this routine
 625   // will accomplish.
 626 
 627   // At the moment we have modified c2 to not have any callee save registers
 628   // so this problem does not exist and this routine is just a place holder.
 629 
 630   assert(f->is_interpreted_frame(), "must be interpreted");
 631 }
 632 
 633 // Return BasicType of value being returned
 634 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 635 
 636   // We are already active int he special DeoptResourceMark any ResourceObj's we
 637   // allocate will be freed at the end of the routine.
 638 
 639   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 640   // but makes the entry a little slower. There is however a little dance we have to
 641   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 642   ResetNoHandleMark rnhm; // No-op in release/product versions
 643   HandleMark hm;
 644 
 645   frame stub_frame = thread->last_frame();
 646 
 647   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 648   // must point to the vframeArray for the unpack frame.
 649   vframeArray* array = thread->vframe_array_head();
 650 
 651 #ifndef PRODUCT
 652   if (TraceDeoptimization) {
 653     ttyLocker ttyl;
 654     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 655                   p2i(thread), p2i(array), exec_mode);
 656   }
 657 #endif
 658   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 659               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 660 
 661   UnrollBlock* info = array->unroll_block();
 662 
 663   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 664   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 665 
 666   BasicType bt = info->return_type();
 667 
 668   // If we have an exception pending, claim that the return type is an oop
 669   // so the deopt_blob does not overwrite the exception_oop.
 670 
 671   if (exec_mode == Unpack_exception)
 672     bt = T_OBJECT;
 673 
 674   // Cleanup thread deopt data
 675   cleanup_deopt_info(thread, array);
 676 
 677 #ifndef PRODUCT
 678   if (VerifyStack) {
 679     ResourceMark res_mark;
 680 
 681     thread->validate_frame_layout();
 682 
 683     // Verify that the just-unpacked frames match the interpreter's
 684     // notions of expression stack and locals
 685     vframeArray* cur_array = thread->vframe_array_last();
 686     RegisterMap rm(thread, false);
 687     rm.set_include_argument_oops(false);
 688     bool is_top_frame = true;
 689     int callee_size_of_parameters = 0;
 690     int callee_max_locals = 0;
 691     for (int i = 0; i < cur_array->frames(); i++) {
 692       vframeArrayElement* el = cur_array->element(i);
 693       frame* iframe = el->iframe();
 694       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 695 
 696       // Get the oop map for this bci
 697       InterpreterOopMap mask;
 698       int cur_invoke_parameter_size = 0;
 699       bool try_next_mask = false;
 700       int next_mask_expression_stack_size = -1;
 701       int top_frame_expression_stack_adjustment = 0;
 702       methodHandle mh(thread, iframe->interpreter_frame_method());
 703       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 704       BytecodeStream str(mh);
 705       str.set_start(iframe->interpreter_frame_bci());
 706       int max_bci = mh->code_size();
 707       // Get to the next bytecode if possible
 708       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 709       // Check to see if we can grab the number of outgoing arguments
 710       // at an uncommon trap for an invoke (where the compiler
 711       // generates debug info before the invoke has executed)
 712       Bytecodes::Code cur_code = str.next();
 713       if (cur_code == Bytecodes::_invokevirtual   ||
 714           cur_code == Bytecodes::_invokespecial   ||
 715           cur_code == Bytecodes::_invokestatic    ||
 716           cur_code == Bytecodes::_invokeinterface ||
 717           cur_code == Bytecodes::_invokedynamic) {
 718         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 719         Symbol* signature = invoke.signature();
 720         ArgumentSizeComputer asc(signature);
 721         cur_invoke_parameter_size = asc.size();
 722         if (invoke.has_receiver()) {
 723           // Add in receiver
 724           ++cur_invoke_parameter_size;
 725         }
 726         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 727           callee_size_of_parameters++;
 728         }
 729       }
 730       if (str.bci() < max_bci) {
 731         Bytecodes::Code bc = str.next();
 732         if (bc >= 0) {
 733           // The interpreter oop map generator reports results before
 734           // the current bytecode has executed except in the case of
 735           // calls. It seems to be hard to tell whether the compiler
 736           // has emitted debug information matching the "state before"
 737           // a given bytecode or the state after, so we try both
 738           switch (cur_code) {
 739             case Bytecodes::_invokevirtual:
 740             case Bytecodes::_invokespecial:
 741             case Bytecodes::_invokestatic:
 742             case Bytecodes::_invokeinterface:
 743             case Bytecodes::_invokedynamic:
 744             case Bytecodes::_athrow:
 745               break;
 746             default: {
 747               InterpreterOopMap next_mask;
 748               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 749               next_mask_expression_stack_size = next_mask.expression_stack_size();
 750               // Need to subtract off the size of the result type of
 751               // the bytecode because this is not described in the
 752               // debug info but returned to the interpreter in the TOS
 753               // caching register
 754               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 755               if (bytecode_result_type != T_ILLEGAL) {
 756                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 757               }
 758               assert(top_frame_expression_stack_adjustment >= 0, "");
 759               try_next_mask = true;
 760               break;
 761             }
 762           }
 763         }
 764       }
 765 
 766       // Verify stack depth and oops in frame
 767       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 768       if (!(
 769             /* SPARC */
 770             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 771             /* x86 */
 772             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 773             (try_next_mask &&
 774              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 775                                                                     top_frame_expression_stack_adjustment))) ||
 776             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 777             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 778              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 779             )) {
 780         ttyLocker ttyl;
 781 
 782         // Print out some information that will help us debug the problem
 783         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 784         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 785         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 786                       iframe->interpreter_frame_expression_stack_size());
 787         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 788         tty->print_cr("  try_next_mask = %d", try_next_mask);
 789         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 790         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 791         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 792         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 793         tty->print_cr("  exec_mode = %d", exec_mode);
 794         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 795         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 796         tty->print_cr("  Interpreted frames:");
 797         for (int k = 0; k < cur_array->frames(); k++) {
 798           vframeArrayElement* el = cur_array->element(k);
 799           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 800         }
 801         cur_array->print_on_2(tty);
 802         guarantee(false, "wrong number of expression stack elements during deopt");
 803       }
 804       VerifyOopClosure verify;
 805       iframe->oops_interpreted_do(&verify, &rm, false);
 806       callee_size_of_parameters = mh->size_of_parameters();
 807       callee_max_locals = mh->max_locals();
 808       is_top_frame = false;
 809     }
 810   }
 811 #endif /* !PRODUCT */
 812 
 813 
 814   return bt;
 815 JRT_END
 816 
 817 
 818 int Deoptimization::deoptimize_dependents() {
 819   Threads::deoptimized_wrt_marked_nmethods();
 820   return 0;
 821 }
 822 
 823 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 824   = Deoptimization::Action_reinterpret;
 825 
 826 #if defined(COMPILER2) || INCLUDE_JVMCI
 827 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 828   Handle pending_exception(THREAD, thread->pending_exception());
 829   const char* exception_file = thread->exception_file();
 830   int exception_line = thread->exception_line();
 831   thread->clear_pending_exception();
 832 
 833   bool failures = false;
 834 
 835   for (int i = 0; i < objects->length(); i++) {
 836     assert(objects->at(i)->is_object(), "invalid debug information");
 837     ObjectValue* sv = (ObjectValue*) objects->at(i);
 838 
 839     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 840     oop obj = NULL;
 841 
 842     if (k->is_instance_klass()) {
 843       InstanceKlass* ik = InstanceKlass::cast(k);
 844       obj = ik->allocate_instance(THREAD);
 845     } else if (k->is_valueArray_klass()) {
 846       ValueArrayKlass* ak = ValueArrayKlass::cast(k);
 847       // Value type array must be zeroed because not all memory is reassigned
 848       obj = ak->allocate(sv->field_size(), true, THREAD);
 849     } else if (k->is_typeArray_klass()) {
 850       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 851       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 852       int len = sv->field_size() / type2size[ak->element_type()];
 853       obj = ak->allocate(len, THREAD);
 854     } else if (k->is_objArray_klass()) {
 855       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 856       obj = ak->allocate(sv->field_size(), THREAD);
 857     }
 858 
 859     if (obj == NULL) {
 860       failures = true;
 861     }
 862 
 863     assert(sv->value().is_null(), "redundant reallocation");
 864     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 865     CLEAR_PENDING_EXCEPTION;
 866     sv->set_value(obj);
 867   }
 868 
 869   if (failures) {
 870     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 871   } else if (pending_exception.not_null()) {
 872     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 873   }
 874 
 875   return failures;
 876 }
 877 
 878 // We're deoptimizing at the return of a call, value type fields are
 879 // in registers. When we go back to the interpreter, it will expect a
 880 // reference to a value type instance. Allocate and initialize it from
 881 // the register values here.
 882 bool Deoptimization::realloc_value_type_result(ValueKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) {
 883   oop new_vt = vk->realloc_result(map, return_oops, false, THREAD);
 884   if (new_vt == NULL) {
 885     CLEAR_PENDING_EXCEPTION;
 886     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true);
 887   }
 888   return_oops.clear();
 889   return_oops.push(Handle(THREAD, new_vt));
 890   return false;
 891 }
 892 
 893 // restore elements of an eliminated type array
 894 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 895   int index = 0;
 896   intptr_t val;
 897 
 898   for (int i = 0; i < sv->field_size(); i++) {
 899     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 900     switch(type) {
 901     case T_LONG: case T_DOUBLE: {
 902       assert(value->type() == T_INT, "Agreement.");
 903       StackValue* low =
 904         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 905 #ifdef _LP64
 906       jlong res = (jlong)low->get_int();
 907 #else
 908 #ifdef SPARC
 909       // For SPARC we have to swap high and low words.
 910       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 911 #else
 912       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 913 #endif //SPARC
 914 #endif
 915       obj->long_at_put(index, res);
 916       break;
 917     }
 918 
 919     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 920     case T_INT: case T_FLOAT: { // 4 bytes.
 921       assert(value->type() == T_INT, "Agreement.");
 922       bool big_value = false;
 923       if (i + 1 < sv->field_size() && type == T_INT) {
 924         if (sv->field_at(i)->is_location()) {
 925           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 926           if (type == Location::dbl || type == Location::lng) {
 927             big_value = true;
 928           }
 929         } else if (sv->field_at(i)->is_constant_int()) {
 930           ScopeValue* next_scope_field = sv->field_at(i + 1);
 931           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 932             big_value = true;
 933           }
 934         }
 935       }
 936 
 937       if (big_value) {
 938         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 939   #ifdef _LP64
 940         jlong res = (jlong)low->get_int();
 941   #else
 942   #ifdef SPARC
 943         // For SPARC we have to swap high and low words.
 944         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 945   #else
 946         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 947   #endif //SPARC
 948   #endif
 949         obj->int_at_put(index, (jint)*((jint*)&res));
 950         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 951       } else {
 952         val = value->get_int();
 953         obj->int_at_put(index, (jint)*((jint*)&val));
 954       }
 955       break;
 956     }
 957 
 958     case T_SHORT:
 959       assert(value->type() == T_INT, "Agreement.");
 960       val = value->get_int();
 961       obj->short_at_put(index, (jshort)*((jint*)&val));
 962       break;
 963 
 964     case T_CHAR:
 965       assert(value->type() == T_INT, "Agreement.");
 966       val = value->get_int();
 967       obj->char_at_put(index, (jchar)*((jint*)&val));
 968       break;
 969 
 970     case T_BYTE:
 971       assert(value->type() == T_INT, "Agreement.");
 972       val = value->get_int();
 973       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 974       break;
 975 
 976     case T_BOOLEAN:
 977       assert(value->type() == T_INT, "Agreement.");
 978       val = value->get_int();
 979       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 980       break;
 981 
 982       default:
 983         ShouldNotReachHere();
 984     }
 985     index++;
 986   }
 987 }
 988 
 989 
 990 // restore fields of an eliminated object array
 991 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 992   for (int i = 0; i < sv->field_size(); i++) {
 993     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 994     assert(value->type() == T_OBJECT, "object element expected");
 995     obj->obj_at_put(i, value->get_obj()());
 996   }
 997 }
 998 
 999 class ReassignedField {
1000 public:
1001   int _offset;
1002   BasicType _type;
1003   InstanceKlass* _klass;
1004 public:
1005   ReassignedField() {
1006     _offset = 0;
1007     _type = T_ILLEGAL;
1008     _klass = NULL;
1009   }
1010 };
1011 
1012 int compare(ReassignedField* left, ReassignedField* right) {
1013   return left->_offset - right->_offset;
1014 }
1015 
1016 // Restore fields of an eliminated instance object using the same field order
1017 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1018 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
1019   if (klass->superklass() != NULL) {
1020     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
1021   }
1022 
1023   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1024   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1025     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1026       ReassignedField field;
1027       field._offset = fs.offset();
1028       field._type = FieldType::basic_type(fs.signature());
1029       if (field._type == T_VALUETYPE) {
1030         // Resolve klass of flattened value type field
1031         SignatureStream ss(fs.signature(), false);
1032         Klass* vk = ss.as_klass(Handle(THREAD, klass->class_loader()), Handle(THREAD, klass->protection_domain()), SignatureStream::NCDFError, THREAD);
1033         guarantee(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1034         assert(vk->is_value(), "must be a ValueKlass");
1035         field._klass = InstanceKlass::cast(vk);
1036       }
1037       fields->append(field);
1038     }
1039   }
1040   fields->sort(compare);
1041   for (int i = 0; i < fields->length(); i++) {
1042     intptr_t val;
1043     ScopeValue* scope_field = sv->field_at(svIndex);
1044     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1045     int offset = base_offset + fields->at(i)._offset;
1046     BasicType type = fields->at(i)._type;
1047     switch (type) {
1048       case T_OBJECT: case T_ARRAY:
1049         assert(value->type() == T_OBJECT, "Agreement.");
1050         obj->obj_field_put(offset, value->get_obj()());
1051         break;
1052 
1053       case T_VALUETYPE: {
1054         // Recursively re-assign flattened value type fields
1055         InstanceKlass* vk = fields->at(i)._klass;
1056         assert(vk != NULL, "must be resolved");
1057         offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1058         svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1059         continue; // Continue because we don't need to increment svIndex
1060       }
1061 
1062       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1063       case T_INT: case T_FLOAT: { // 4 bytes.
1064         assert(value->type() == T_INT, "Agreement.");
1065         bool big_value = false;
1066         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1067           if (scope_field->is_location()) {
1068             Location::Type type = ((LocationValue*) scope_field)->location().type();
1069             if (type == Location::dbl || type == Location::lng) {
1070               big_value = true;
1071             }
1072           }
1073           if (scope_field->is_constant_int()) {
1074             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1075             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1076               big_value = true;
1077             }
1078           }
1079         }
1080 
1081         if (big_value) {
1082           i++;
1083           assert(i < fields->length(), "second T_INT field needed");
1084           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1085         } else {
1086           val = value->get_int();
1087           obj->int_field_put(offset, (jint)*((jint*)&val));
1088           break;
1089         }
1090       }
1091         /* no break */
1092 
1093       case T_LONG: case T_DOUBLE: {
1094         assert(value->type() == T_INT, "Agreement.");
1095         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1096 #ifdef _LP64
1097         jlong res = (jlong)low->get_int();
1098 #else
1099 #ifdef SPARC
1100         // For SPARC we have to swap high and low words.
1101         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1102 #else
1103         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1104 #endif //SPARC
1105 #endif
1106         obj->long_field_put(offset, res);
1107         break;
1108       }
1109 
1110       case T_SHORT:
1111         assert(value->type() == T_INT, "Agreement.");
1112         val = value->get_int();
1113         obj->short_field_put(offset, (jshort)*((jint*)&val));
1114         break;
1115 
1116       case T_CHAR:
1117         assert(value->type() == T_INT, "Agreement.");
1118         val = value->get_int();
1119         obj->char_field_put(offset, (jchar)*((jint*)&val));
1120         break;
1121 
1122       case T_BYTE:
1123         assert(value->type() == T_INT, "Agreement.");
1124         val = value->get_int();
1125         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1126         break;
1127 
1128       case T_BOOLEAN:
1129         assert(value->type() == T_INT, "Agreement.");
1130         val = value->get_int();
1131         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1132         break;
1133 
1134       default:
1135         ShouldNotReachHere();
1136     }
1137     svIndex++;
1138   }
1139   return svIndex;
1140 }
1141 
1142 // restore fields of an eliminated value type array
1143 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) {
1144   ValueKlass* vk = vak->element_klass();
1145   assert(vk->flatten_array(), "should only be used for flattened value type arrays");
1146   // Adjust offset to omit oop header
1147   int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset();
1148   // Initialize all elements of the flattened value type array
1149   for (int i = 0; i < sv->field_size(); i++) {
1150     ScopeValue* val = sv->field_at(i);
1151     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1152     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK);
1153   }
1154 }
1155 
1156 // restore fields of all eliminated objects and arrays
1157 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1158   for (int i = 0; i < objects->length(); i++) {
1159     ObjectValue* sv = (ObjectValue*) objects->at(i);
1160     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1161     Handle obj = sv->value();
1162     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1163     if (PrintDeoptimizationDetails) {
1164       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1165     }
1166     if (obj.is_null()) {
1167       continue;
1168     }
1169 
1170     if (k->is_instance_klass()) {
1171       InstanceKlass* ik = InstanceKlass::cast(k);
1172       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1173     } else if (k->is_valueArray_klass()) {
1174       ValueArrayKlass* vak = ValueArrayKlass::cast(k);
1175       reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK);
1176     } else if (k->is_typeArray_klass()) {
1177       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1178       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1179     } else if (k->is_objArray_klass()) {
1180       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1181     }
1182   }
1183 }
1184 
1185 
1186 // relock objects for which synchronization was eliminated
1187 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1188   for (int i = 0; i < monitors->length(); i++) {
1189     MonitorInfo* mon_info = monitors->at(i);
1190     if (mon_info->eliminated()) {
1191       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1192       if (!mon_info->owner_is_scalar_replaced()) {
1193         Handle obj(thread, mon_info->owner());
1194         markOop mark = obj->mark();
1195         if (UseBiasedLocking && mark->has_bias_pattern()) {
1196           // New allocated objects may have the mark set to anonymously biased.
1197           // Also the deoptimized method may called methods with synchronization
1198           // where the thread-local object is bias locked to the current thread.
1199           assert(mark->is_biased_anonymously() ||
1200                  mark->biased_locker() == thread, "should be locked to current thread");
1201           // Reset mark word to unbiased prototype.
1202           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1203           obj->set_mark(unbiased_prototype);
1204         }
1205         BasicLock* lock = mon_info->lock();
1206         ObjectSynchronizer::slow_enter(obj, lock, thread);
1207         assert(mon_info->owner()->is_locked(), "object must be locked now");
1208       }
1209     }
1210   }
1211 }
1212 
1213 
1214 #ifndef PRODUCT
1215 // print information about reallocated objects
1216 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1217   fieldDescriptor fd;
1218 
1219   for (int i = 0; i < objects->length(); i++) {
1220     ObjectValue* sv = (ObjectValue*) objects->at(i);
1221     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1222     Handle obj = sv->value();
1223 
1224     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1225     k->print_value();
1226     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1227     if (obj.is_null()) {
1228       tty->print(" allocation failed");
1229     } else {
1230       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1231     }
1232     tty->cr();
1233 
1234     if (Verbose && !obj.is_null()) {
1235       k->oop_print_on(obj(), tty);
1236     }
1237   }
1238 }
1239 #endif
1240 #endif // COMPILER2 || INCLUDE_JVMCI
1241 
1242 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1243   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1244 
1245 #ifndef PRODUCT
1246   if (PrintDeoptimizationDetails) {
1247     ttyLocker ttyl;
1248     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1249     fr.print_on(tty);
1250     tty->print_cr("     Virtual frames (innermost first):");
1251     for (int index = 0; index < chunk->length(); index++) {
1252       compiledVFrame* vf = chunk->at(index);
1253       tty->print("       %2d - ", index);
1254       vf->print_value();
1255       int bci = chunk->at(index)->raw_bci();
1256       const char* code_name;
1257       if (bci == SynchronizationEntryBCI) {
1258         code_name = "sync entry";
1259       } else {
1260         Bytecodes::Code code = vf->method()->code_at(bci);
1261         code_name = Bytecodes::name(code);
1262       }
1263       tty->print(" - %s", code_name);
1264       tty->print_cr(" @ bci %d ", bci);
1265       if (Verbose) {
1266         vf->print();
1267         tty->cr();
1268       }
1269     }
1270   }
1271 #endif
1272 
1273   // Register map for next frame (used for stack crawl).  We capture
1274   // the state of the deopt'ing frame's caller.  Thus if we need to
1275   // stuff a C2I adapter we can properly fill in the callee-save
1276   // register locations.
1277   frame caller = fr.sender(reg_map);
1278   int frame_size = caller.sp() - fr.sp();
1279 
1280   frame sender = caller;
1281 
1282   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1283   // the vframeArray containing the unpacking information is allocated in the C heap.
1284   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1285   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1286 
1287   // Compare the vframeArray to the collected vframes
1288   assert(array->structural_compare(thread, chunk), "just checking");
1289 
1290 #ifndef PRODUCT
1291   if (PrintDeoptimizationDetails) {
1292     ttyLocker ttyl;
1293     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1294   }
1295 #endif // PRODUCT
1296 
1297   return array;
1298 }
1299 
1300 #if defined(COMPILER2) || INCLUDE_JVMCI
1301 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1302   // Reallocation of some scalar replaced objects failed. Record
1303   // that we need to pop all the interpreter frames for the
1304   // deoptimized compiled frame.
1305   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1306   thread->set_frames_to_pop_failed_realloc(array->frames());
1307   // Unlock all monitors here otherwise the interpreter will see a
1308   // mix of locked and unlocked monitors (because of failed
1309   // reallocations of synchronized objects) and be confused.
1310   for (int i = 0; i < array->frames(); i++) {
1311     MonitorChunk* monitors = array->element(i)->monitors();
1312     if (monitors != NULL) {
1313       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1314         BasicObjectLock* src = monitors->at(j);
1315         if (src->obj() != NULL) {
1316           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1317         }
1318       }
1319       array->element(i)->free_monitors(thread);
1320 #ifdef ASSERT
1321       array->element(i)->set_removed_monitors();
1322 #endif
1323     }
1324   }
1325 }
1326 #endif
1327 
1328 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1329   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1330   Thread* thread = Thread::current();
1331   for (int i = 0; i < monitors->length(); i++) {
1332     MonitorInfo* mon_info = monitors->at(i);
1333     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1334       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1335     }
1336   }
1337 }
1338 
1339 
1340 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1341   if (!UseBiasedLocking) {
1342     return;
1343   }
1344 
1345   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1346 
1347   // Unfortunately we don't have a RegisterMap available in most of
1348   // the places we want to call this routine so we need to walk the
1349   // stack again to update the register map.
1350   if (map == NULL || !map->update_map()) {
1351     StackFrameStream sfs(thread, true);
1352     bool found = false;
1353     while (!found && !sfs.is_done()) {
1354       frame* cur = sfs.current();
1355       sfs.next();
1356       found = cur->id() == fr.id();
1357     }
1358     assert(found, "frame to be deoptimized not found on target thread's stack");
1359     map = sfs.register_map();
1360   }
1361 
1362   vframe* vf = vframe::new_vframe(&fr, map, thread);
1363   compiledVFrame* cvf = compiledVFrame::cast(vf);
1364   // Revoke monitors' biases in all scopes
1365   while (!cvf->is_top()) {
1366     collect_monitors(cvf, objects_to_revoke);
1367     cvf = compiledVFrame::cast(cvf->sender());
1368   }
1369   collect_monitors(cvf, objects_to_revoke);
1370 
1371   if (SafepointSynchronize::is_at_safepoint()) {
1372     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1373   } else {
1374     BiasedLocking::revoke(objects_to_revoke);
1375   }
1376 }
1377 
1378 
1379 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1380   if (!UseBiasedLocking) {
1381     return;
1382   }
1383 
1384   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1385   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1386   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1387     if (jt->has_last_Java_frame()) {
1388       StackFrameStream sfs(jt, true);
1389       while (!sfs.is_done()) {
1390         frame* cur = sfs.current();
1391         if (cb->contains(cur->pc())) {
1392           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1393           compiledVFrame* cvf = compiledVFrame::cast(vf);
1394           // Revoke monitors' biases in all scopes
1395           while (!cvf->is_top()) {
1396             collect_monitors(cvf, objects_to_revoke);
1397             cvf = compiledVFrame::cast(cvf->sender());
1398           }
1399           collect_monitors(cvf, objects_to_revoke);
1400         }
1401         sfs.next();
1402       }
1403     }
1404   }
1405   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1406 }
1407 
1408 
1409 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1410   assert(fr.can_be_deoptimized(), "checking frame type");
1411 
1412   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1413 
1414   if (LogCompilation && xtty != NULL) {
1415     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1416     assert(cm != NULL, "only compiled methods can deopt");
1417 
1418     ttyLocker ttyl;
1419     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1420     cm->log_identity(xtty);
1421     xtty->end_head();
1422     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1423       xtty->begin_elem("jvms bci='%d'", sd->bci());
1424       xtty->method(sd->method());
1425       xtty->end_elem();
1426       if (sd->is_top())  break;
1427     }
1428     xtty->tail("deoptimized");
1429   }
1430 
1431   // Patch the compiled method so that when execution returns to it we will
1432   // deopt the execution state and return to the interpreter.
1433   fr.deoptimize(thread);
1434 }
1435 
1436 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1437   deoptimize(thread, fr, map, Reason_constraint);
1438 }
1439 
1440 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1441   // Deoptimize only if the frame comes from compile code.
1442   // Do not deoptimize the frame which is already patched
1443   // during the execution of the loops below.
1444   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1445     return;
1446   }
1447   ResourceMark rm;
1448   DeoptimizationMarker dm;
1449   if (UseBiasedLocking) {
1450     revoke_biases_of_monitors(thread, fr, map);
1451   }
1452   deoptimize_single_frame(thread, fr, reason);
1453 
1454 }
1455 
1456 
1457 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1458   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1459          "can only deoptimize other thread at a safepoint");
1460   // Compute frame and register map based on thread and sp.
1461   RegisterMap reg_map(thread, UseBiasedLocking);
1462   frame fr = thread->last_frame();
1463   while (fr.id() != id) {
1464     fr = fr.sender(&reg_map);
1465   }
1466   deoptimize(thread, fr, &reg_map, reason);
1467 }
1468 
1469 
1470 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1471   if (thread == Thread::current()) {
1472     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1473   } else {
1474     VM_DeoptimizeFrame deopt(thread, id, reason);
1475     VMThread::execute(&deopt);
1476   }
1477 }
1478 
1479 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1480   deoptimize_frame(thread, id, Reason_constraint);
1481 }
1482 
1483 // JVMTI PopFrame support
1484 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1485 {
1486   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1487 }
1488 JRT_END
1489 
1490 MethodData*
1491 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1492                                 bool create_if_missing) {
1493   Thread* THREAD = thread;
1494   MethodData* mdo = m()->method_data();
1495   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1496     // Build an MDO.  Ignore errors like OutOfMemory;
1497     // that simply means we won't have an MDO to update.
1498     Method::build_interpreter_method_data(m, THREAD);
1499     if (HAS_PENDING_EXCEPTION) {
1500       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1501       CLEAR_PENDING_EXCEPTION;
1502     }
1503     mdo = m()->method_data();
1504   }
1505   return mdo;
1506 }
1507 
1508 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1509 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1510   // in case of an unresolved klass entry, load the class.
1511   if (constant_pool->tag_at(index).is_unresolved_klass() ||
1512       constant_pool->tag_at(index).is_unresolved_value_type()) {
1513     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1514     return;
1515   }
1516 
1517   if (!constant_pool->tag_at(index).is_symbol()) return;
1518 
1519   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1520   Symbol*  symbol  = constant_pool->symbol_at(index);
1521 
1522   // class name?
1523   if (symbol->byte_at(0) != '(') {
1524     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1525     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1526     return;
1527   }
1528 
1529   // then it must be a signature!
1530   ResourceMark rm(THREAD);
1531   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1532     if (ss.is_object()) {
1533       Symbol* class_name = ss.as_symbol(CHECK);
1534       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1535       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1536     }
1537   }
1538 }
1539 
1540 
1541 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1542   EXCEPTION_MARK;
1543   load_class_by_index(constant_pool, index, THREAD);
1544   if (HAS_PENDING_EXCEPTION) {
1545     // Exception happened during classloading. We ignore the exception here, since it
1546     // is going to be rethrown since the current activation is going to be deoptimized and
1547     // the interpreter will re-execute the bytecode.
1548     CLEAR_PENDING_EXCEPTION;
1549     // Class loading called java code which may have caused a stack
1550     // overflow. If the exception was thrown right before the return
1551     // to the runtime the stack is no longer guarded. Reguard the
1552     // stack otherwise if we return to the uncommon trap blob and the
1553     // stack bang causes a stack overflow we crash.
1554     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1555     JavaThread* thread = (JavaThread*)THREAD;
1556     bool guard_pages_enabled = thread->stack_guards_enabled();
1557     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1558     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1559   }
1560 }
1561 
1562 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1563   HandleMark hm;
1564 
1565   // uncommon_trap() is called at the beginning of the uncommon trap
1566   // handler. Note this fact before we start generating temporary frames
1567   // that can confuse an asynchronous stack walker. This counter is
1568   // decremented at the end of unpack_frames().
1569   thread->inc_in_deopt_handler();
1570 
1571   // We need to update the map if we have biased locking.
1572 #if INCLUDE_JVMCI
1573   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1574   RegisterMap reg_map(thread, true);
1575 #else
1576   RegisterMap reg_map(thread, UseBiasedLocking);
1577 #endif
1578   frame stub_frame = thread->last_frame();
1579   frame fr = stub_frame.sender(&reg_map);
1580   // Make sure the calling nmethod is not getting deoptimized and removed
1581   // before we are done with it.
1582   nmethodLocker nl(fr.pc());
1583 
1584   // Log a message
1585   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1586               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1587 
1588   {
1589     ResourceMark rm;
1590 
1591     // Revoke biases of any monitors in the frame to ensure we can migrate them
1592     revoke_biases_of_monitors(thread, fr, &reg_map);
1593 
1594     DeoptReason reason = trap_request_reason(trap_request);
1595     DeoptAction action = trap_request_action(trap_request);
1596 #if INCLUDE_JVMCI
1597     int debug_id = trap_request_debug_id(trap_request);
1598 #endif
1599     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1600 
1601     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1602     compiledVFrame* cvf = compiledVFrame::cast(vf);
1603 
1604     CompiledMethod* nm = cvf->code();
1605 
1606     ScopeDesc*      trap_scope  = cvf->scope();
1607 
1608     if (TraceDeoptimization) {
1609       ttyLocker ttyl;
1610       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1611 #if INCLUDE_JVMCI
1612           , debug_id
1613 #endif
1614           );
1615     }
1616 
1617     methodHandle    trap_method = trap_scope->method();
1618     int             trap_bci    = trap_scope->bci();
1619 #if INCLUDE_JVMCI
1620     oop speculation = thread->pending_failed_speculation();
1621     if (nm->is_compiled_by_jvmci()) {
1622       if (speculation != NULL) {
1623         oop speculation_log = nm->as_nmethod()->speculation_log();
1624         if (speculation_log != NULL) {
1625           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1626             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1627               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1628             }
1629           }
1630           if (TraceDeoptimization) {
1631             tty->print_cr("Saving speculation to speculation log");
1632           }
1633           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1634         } else {
1635           if (TraceDeoptimization) {
1636             tty->print_cr("Speculation present but no speculation log");
1637           }
1638         }
1639         thread->set_pending_failed_speculation(NULL);
1640       } else {
1641         if (TraceDeoptimization) {
1642           tty->print_cr("No speculation");
1643         }
1644       }
1645     } else {
1646       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1647     }
1648 
1649     if (trap_bci == SynchronizationEntryBCI) {
1650       trap_bci = 0;
1651       thread->set_pending_monitorenter(true);
1652     }
1653 
1654     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1655       thread->set_pending_transfer_to_interpreter(true);
1656     }
1657 #endif
1658 
1659     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1660     // Record this event in the histogram.
1661     gather_statistics(reason, action, trap_bc);
1662 
1663     // Ensure that we can record deopt. history:
1664     // Need MDO to record RTM code generation state.
1665     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1666 
1667     methodHandle profiled_method;
1668 #if INCLUDE_JVMCI
1669     if (nm->is_compiled_by_jvmci()) {
1670       profiled_method = nm->method();
1671     } else {
1672       profiled_method = trap_method;
1673     }
1674 #else
1675     profiled_method = trap_method;
1676 #endif
1677 
1678     MethodData* trap_mdo =
1679       get_method_data(thread, profiled_method, create_if_missing);
1680 
1681     // Log a message
1682     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1683                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1684                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1685 
1686     // Print a bunch of diagnostics, if requested.
1687     if (TraceDeoptimization || LogCompilation) {
1688       ResourceMark rm;
1689       ttyLocker ttyl;
1690       char buf[100];
1691       if (xtty != NULL) {
1692         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1693                          os::current_thread_id(),
1694                          format_trap_request(buf, sizeof(buf), trap_request));
1695         nm->log_identity(xtty);
1696       }
1697       Symbol* class_name = NULL;
1698       bool unresolved = false;
1699       if (unloaded_class_index >= 0) {
1700         constantPoolHandle constants (THREAD, trap_method->constants());
1701         if (constants->tag_at(unloaded_class_index).is_unresolved_klass() ||
1702             constants->tag_at(unloaded_class_index).is_unresolved_value_type()) {
1703           class_name = constants->klass_name_at(unloaded_class_index);
1704           unresolved = true;
1705           if (xtty != NULL)
1706             xtty->print(" unresolved='1'");
1707         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1708           class_name = constants->symbol_at(unloaded_class_index);
1709         }
1710         if (xtty != NULL)
1711           xtty->name(class_name);
1712       }
1713       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1714         // Dump the relevant MDO state.
1715         // This is the deopt count for the current reason, any previous
1716         // reasons or recompiles seen at this point.
1717         int dcnt = trap_mdo->trap_count(reason);
1718         if (dcnt != 0)
1719           xtty->print(" count='%d'", dcnt);
1720         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1721         int dos = (pdata == NULL)? 0: pdata->trap_state();
1722         if (dos != 0) {
1723           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1724           if (trap_state_is_recompiled(dos)) {
1725             int recnt2 = trap_mdo->overflow_recompile_count();
1726             if (recnt2 != 0)
1727               xtty->print(" recompiles2='%d'", recnt2);
1728           }
1729         }
1730       }
1731       if (xtty != NULL) {
1732         xtty->stamp();
1733         xtty->end_head();
1734       }
1735       if (TraceDeoptimization) {  // make noise on the tty
1736         tty->print("Uncommon trap occurred in");
1737         nm->method()->print_short_name(tty);
1738         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1739 #if INCLUDE_JVMCI
1740         if (nm->is_nmethod()) {
1741           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1742           if (installedCode != NULL) {
1743             oop installedCodeName = NULL;
1744             if (installedCode->is_a(InstalledCode::klass())) {
1745               installedCodeName = InstalledCode::name(installedCode);
1746             }
1747             if (installedCodeName != NULL) {
1748               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1749             } else {
1750               tty->print(" (JVMCI: installed code has no name) ");
1751             }
1752           } else if (nm->is_compiled_by_jvmci()) {
1753             tty->print(" (JVMCI: no installed code) ");
1754           }
1755         }
1756 #endif
1757         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1758                    p2i(fr.pc()),
1759                    os::current_thread_id(),
1760                    trap_reason_name(reason),
1761                    trap_action_name(action),
1762                    unloaded_class_index
1763 #if INCLUDE_JVMCI
1764                    , debug_id
1765 #endif
1766                    );
1767         if (class_name != NULL) {
1768           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1769           class_name->print_symbol_on(tty);
1770         }
1771         tty->cr();
1772       }
1773       if (xtty != NULL) {
1774         // Log the precise location of the trap.
1775         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1776           xtty->begin_elem("jvms bci='%d'", sd->bci());
1777           xtty->method(sd->method());
1778           xtty->end_elem();
1779           if (sd->is_top())  break;
1780         }
1781         xtty->tail("uncommon_trap");
1782       }
1783     }
1784     // (End diagnostic printout.)
1785 
1786     // Load class if necessary
1787     if (unloaded_class_index >= 0) {
1788       constantPoolHandle constants(THREAD, trap_method->constants());
1789       load_class_by_index(constants, unloaded_class_index);
1790     }
1791 
1792     // Flush the nmethod if necessary and desirable.
1793     //
1794     // We need to avoid situations where we are re-flushing the nmethod
1795     // because of a hot deoptimization site.  Repeated flushes at the same
1796     // point need to be detected by the compiler and avoided.  If the compiler
1797     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1798     // module must take measures to avoid an infinite cycle of recompilation
1799     // and deoptimization.  There are several such measures:
1800     //
1801     //   1. If a recompilation is ordered a second time at some site X
1802     //   and for the same reason R, the action is adjusted to 'reinterpret',
1803     //   to give the interpreter time to exercise the method more thoroughly.
1804     //   If this happens, the method's overflow_recompile_count is incremented.
1805     //
1806     //   2. If the compiler fails to reduce the deoptimization rate, then
1807     //   the method's overflow_recompile_count will begin to exceed the set
1808     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1809     //   is adjusted to 'make_not_compilable', and the method is abandoned
1810     //   to the interpreter.  This is a performance hit for hot methods,
1811     //   but is better than a disastrous infinite cycle of recompilations.
1812     //   (Actually, only the method containing the site X is abandoned.)
1813     //
1814     //   3. In parallel with the previous measures, if the total number of
1815     //   recompilations of a method exceeds the much larger set limit
1816     //   PerMethodRecompilationCutoff, the method is abandoned.
1817     //   This should only happen if the method is very large and has
1818     //   many "lukewarm" deoptimizations.  The code which enforces this
1819     //   limit is elsewhere (class nmethod, class Method).
1820     //
1821     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1822     // to recompile at each bytecode independently of the per-BCI cutoff.
1823     //
1824     // The decision to update code is up to the compiler, and is encoded
1825     // in the Action_xxx code.  If the compiler requests Action_none
1826     // no trap state is changed, no compiled code is changed, and the
1827     // computation suffers along in the interpreter.
1828     //
1829     // The other action codes specify various tactics for decompilation
1830     // and recompilation.  Action_maybe_recompile is the loosest, and
1831     // allows the compiled code to stay around until enough traps are seen,
1832     // and until the compiler gets around to recompiling the trapping method.
1833     //
1834     // The other actions cause immediate removal of the present code.
1835 
1836     // Traps caused by injected profile shouldn't pollute trap counts.
1837     bool injected_profile_trap = trap_method->has_injected_profile() &&
1838                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1839 
1840     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1841     bool make_not_entrant = false;
1842     bool make_not_compilable = false;
1843     bool reprofile = false;
1844     switch (action) {
1845     case Action_none:
1846       // Keep the old code.
1847       update_trap_state = false;
1848       break;
1849     case Action_maybe_recompile:
1850       // Do not need to invalidate the present code, but we can
1851       // initiate another
1852       // Start compiler without (necessarily) invalidating the nmethod.
1853       // The system will tolerate the old code, but new code should be
1854       // generated when possible.
1855       break;
1856     case Action_reinterpret:
1857       // Go back into the interpreter for a while, and then consider
1858       // recompiling form scratch.
1859       make_not_entrant = true;
1860       // Reset invocation counter for outer most method.
1861       // This will allow the interpreter to exercise the bytecodes
1862       // for a while before recompiling.
1863       // By contrast, Action_make_not_entrant is immediate.
1864       //
1865       // Note that the compiler will track null_check, null_assert,
1866       // range_check, and class_check events and log them as if they
1867       // had been traps taken from compiled code.  This will update
1868       // the MDO trap history so that the next compilation will
1869       // properly detect hot trap sites.
1870       reprofile = true;
1871       break;
1872     case Action_make_not_entrant:
1873       // Request immediate recompilation, and get rid of the old code.
1874       // Make them not entrant, so next time they are called they get
1875       // recompiled.  Unloaded classes are loaded now so recompile before next
1876       // time they are called.  Same for uninitialized.  The interpreter will
1877       // link the missing class, if any.
1878       make_not_entrant = true;
1879       break;
1880     case Action_make_not_compilable:
1881       // Give up on compiling this method at all.
1882       make_not_entrant = true;
1883       make_not_compilable = true;
1884       break;
1885     default:
1886       ShouldNotReachHere();
1887     }
1888 
1889     // Setting +ProfileTraps fixes the following, on all platforms:
1890     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1891     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1892     // recompile relies on a MethodData* to record heroic opt failures.
1893 
1894     // Whether the interpreter is producing MDO data or not, we also need
1895     // to use the MDO to detect hot deoptimization points and control
1896     // aggressive optimization.
1897     bool inc_recompile_count = false;
1898     ProfileData* pdata = NULL;
1899     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1900       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1901       uint this_trap_count = 0;
1902       bool maybe_prior_trap = false;
1903       bool maybe_prior_recompile = false;
1904       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1905 #if INCLUDE_JVMCI
1906                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1907 #endif
1908                                    nm->method(),
1909                                    //outputs:
1910                                    this_trap_count,
1911                                    maybe_prior_trap,
1912                                    maybe_prior_recompile);
1913       // Because the interpreter also counts null, div0, range, and class
1914       // checks, these traps from compiled code are double-counted.
1915       // This is harmless; it just means that the PerXTrapLimit values
1916       // are in effect a little smaller than they look.
1917 
1918       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1919       if (per_bc_reason != Reason_none) {
1920         // Now take action based on the partially known per-BCI history.
1921         if (maybe_prior_trap
1922             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1923           // If there are too many traps at this BCI, force a recompile.
1924           // This will allow the compiler to see the limit overflow, and
1925           // take corrective action, if possible.  The compiler generally
1926           // does not use the exact PerBytecodeTrapLimit value, but instead
1927           // changes its tactics if it sees any traps at all.  This provides
1928           // a little hysteresis, delaying a recompile until a trap happens
1929           // several times.
1930           //
1931           // Actually, since there is only one bit of counter per BCI,
1932           // the possible per-BCI counts are {0,1,(per-method count)}.
1933           // This produces accurate results if in fact there is only
1934           // one hot trap site, but begins to get fuzzy if there are
1935           // many sites.  For example, if there are ten sites each
1936           // trapping two or more times, they each get the blame for
1937           // all of their traps.
1938           make_not_entrant = true;
1939         }
1940 
1941         // Detect repeated recompilation at the same BCI, and enforce a limit.
1942         if (make_not_entrant && maybe_prior_recompile) {
1943           // More than one recompile at this point.
1944           inc_recompile_count = maybe_prior_trap;
1945         }
1946       } else {
1947         // For reasons which are not recorded per-bytecode, we simply
1948         // force recompiles unconditionally.
1949         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1950         make_not_entrant = true;
1951       }
1952 
1953       // Go back to the compiler if there are too many traps in this method.
1954       if (this_trap_count >= per_method_trap_limit(reason)) {
1955         // If there are too many traps in this method, force a recompile.
1956         // This will allow the compiler to see the limit overflow, and
1957         // take corrective action, if possible.
1958         // (This condition is an unlikely backstop only, because the
1959         // PerBytecodeTrapLimit is more likely to take effect first,
1960         // if it is applicable.)
1961         make_not_entrant = true;
1962       }
1963 
1964       // Here's more hysteresis:  If there has been a recompile at
1965       // this trap point already, run the method in the interpreter
1966       // for a while to exercise it more thoroughly.
1967       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1968         reprofile = true;
1969       }
1970     }
1971 
1972     // Take requested actions on the method:
1973 
1974     // Recompile
1975     if (make_not_entrant) {
1976       if (!nm->make_not_entrant()) {
1977         return; // the call did not change nmethod's state
1978       }
1979 
1980       if (pdata != NULL) {
1981         // Record the recompilation event, if any.
1982         int tstate0 = pdata->trap_state();
1983         int tstate1 = trap_state_set_recompiled(tstate0, true);
1984         if (tstate1 != tstate0)
1985           pdata->set_trap_state(tstate1);
1986       }
1987 
1988 #if INCLUDE_RTM_OPT
1989       // Restart collecting RTM locking abort statistic if the method
1990       // is recompiled for a reason other than RTM state change.
1991       // Assume that in new recompiled code the statistic could be different,
1992       // for example, due to different inlining.
1993       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1994           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1995         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1996       }
1997 #endif
1998       // For code aging we count traps separately here, using make_not_entrant()
1999       // as a guard against simultaneous deopts in multiple threads.
2000       if (reason == Reason_tenured && trap_mdo != NULL) {
2001         trap_mdo->inc_tenure_traps();
2002       }
2003     }
2004 
2005     if (inc_recompile_count) {
2006       trap_mdo->inc_overflow_recompile_count();
2007       if ((uint)trap_mdo->overflow_recompile_count() >
2008           (uint)PerBytecodeRecompilationCutoff) {
2009         // Give up on the method containing the bad BCI.
2010         if (trap_method() == nm->method()) {
2011           make_not_compilable = true;
2012         } else {
2013           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
2014           // But give grace to the enclosing nm->method().
2015         }
2016       }
2017     }
2018 
2019     // Reprofile
2020     if (reprofile) {
2021       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2022     }
2023 
2024     // Give up compiling
2025     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2026       assert(make_not_entrant, "consistent");
2027       nm->method()->set_not_compilable(CompLevel_full_optimization);
2028     }
2029 
2030   } // Free marked resources
2031 
2032 }
2033 JRT_END
2034 
2035 ProfileData*
2036 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2037                                          int trap_bci,
2038                                          Deoptimization::DeoptReason reason,
2039                                          bool update_total_trap_count,
2040 #if INCLUDE_JVMCI
2041                                          bool is_osr,
2042 #endif
2043                                          Method* compiled_method,
2044                                          //outputs:
2045                                          uint& ret_this_trap_count,
2046                                          bool& ret_maybe_prior_trap,
2047                                          bool& ret_maybe_prior_recompile) {
2048   bool maybe_prior_trap = false;
2049   bool maybe_prior_recompile = false;
2050   uint this_trap_count = 0;
2051   if (update_total_trap_count) {
2052     uint idx = reason;
2053 #if INCLUDE_JVMCI
2054     if (is_osr) {
2055       idx += Reason_LIMIT;
2056     }
2057 #endif
2058     uint prior_trap_count = trap_mdo->trap_count(idx);
2059     this_trap_count  = trap_mdo->inc_trap_count(idx);
2060 
2061     // If the runtime cannot find a place to store trap history,
2062     // it is estimated based on the general condition of the method.
2063     // If the method has ever been recompiled, or has ever incurred
2064     // a trap with the present reason , then this BCI is assumed
2065     // (pessimistically) to be the culprit.
2066     maybe_prior_trap      = (prior_trap_count != 0);
2067     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2068   }
2069   ProfileData* pdata = NULL;
2070 
2071 
2072   // For reasons which are recorded per bytecode, we check per-BCI data.
2073   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2074   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2075   if (per_bc_reason != Reason_none) {
2076     // Find the profile data for this BCI.  If there isn't one,
2077     // try to allocate one from the MDO's set of spares.
2078     // This will let us detect a repeated trap at this point.
2079     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2080 
2081     if (pdata != NULL) {
2082       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2083         if (LogCompilation && xtty != NULL) {
2084           ttyLocker ttyl;
2085           // no more room for speculative traps in this MDO
2086           xtty->elem("speculative_traps_oom");
2087         }
2088       }
2089       // Query the trap state of this profile datum.
2090       int tstate0 = pdata->trap_state();
2091       if (!trap_state_has_reason(tstate0, per_bc_reason))
2092         maybe_prior_trap = false;
2093       if (!trap_state_is_recompiled(tstate0))
2094         maybe_prior_recompile = false;
2095 
2096       // Update the trap state of this profile datum.
2097       int tstate1 = tstate0;
2098       // Record the reason.
2099       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2100       // Store the updated state on the MDO, for next time.
2101       if (tstate1 != tstate0)
2102         pdata->set_trap_state(tstate1);
2103     } else {
2104       if (LogCompilation && xtty != NULL) {
2105         ttyLocker ttyl;
2106         // Missing MDP?  Leave a small complaint in the log.
2107         xtty->elem("missing_mdp bci='%d'", trap_bci);
2108       }
2109     }
2110   }
2111 
2112   // Return results:
2113   ret_this_trap_count = this_trap_count;
2114   ret_maybe_prior_trap = maybe_prior_trap;
2115   ret_maybe_prior_recompile = maybe_prior_recompile;
2116   return pdata;
2117 }
2118 
2119 void
2120 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2121   ResourceMark rm;
2122   // Ignored outputs:
2123   uint ignore_this_trap_count;
2124   bool ignore_maybe_prior_trap;
2125   bool ignore_maybe_prior_recompile;
2126   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2127   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2128   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2129   query_update_method_data(trap_mdo, trap_bci,
2130                            (DeoptReason)reason,
2131                            update_total_counts,
2132 #if INCLUDE_JVMCI
2133                            false,
2134 #endif
2135                            NULL,
2136                            ignore_this_trap_count,
2137                            ignore_maybe_prior_trap,
2138                            ignore_maybe_prior_recompile);
2139 }
2140 
2141 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2142   if (TraceDeoptimization) {
2143     tty->print("Uncommon trap ");
2144   }
2145   // Still in Java no safepoints
2146   {
2147     // This enters VM and may safepoint
2148     uncommon_trap_inner(thread, trap_request);
2149   }
2150   return fetch_unroll_info_helper(thread, exec_mode);
2151 }
2152 
2153 // Local derived constants.
2154 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2155 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2156 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2157 
2158 //---------------------------trap_state_reason---------------------------------
2159 Deoptimization::DeoptReason
2160 Deoptimization::trap_state_reason(int trap_state) {
2161   // This assert provides the link between the width of DataLayout::trap_bits
2162   // and the encoding of "recorded" reasons.  It ensures there are enough
2163   // bits to store all needed reasons in the per-BCI MDO profile.
2164   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2165   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2166   trap_state -= recompile_bit;
2167   if (trap_state == DS_REASON_MASK) {
2168     return Reason_many;
2169   } else {
2170     assert((int)Reason_none == 0, "state=0 => Reason_none");
2171     return (DeoptReason)trap_state;
2172   }
2173 }
2174 //-------------------------trap_state_has_reason-------------------------------
2175 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2176   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2177   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2178   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2179   trap_state -= recompile_bit;
2180   if (trap_state == DS_REASON_MASK) {
2181     return -1;  // true, unspecifically (bottom of state lattice)
2182   } else if (trap_state == reason) {
2183     return 1;   // true, definitely
2184   } else if (trap_state == 0) {
2185     return 0;   // false, definitely (top of state lattice)
2186   } else {
2187     return 0;   // false, definitely
2188   }
2189 }
2190 //-------------------------trap_state_add_reason-------------------------------
2191 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2192   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2193   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2194   trap_state -= recompile_bit;
2195   if (trap_state == DS_REASON_MASK) {
2196     return trap_state + recompile_bit;     // already at state lattice bottom
2197   } else if (trap_state == reason) {
2198     return trap_state + recompile_bit;     // the condition is already true
2199   } else if (trap_state == 0) {
2200     return reason + recompile_bit;          // no condition has yet been true
2201   } else {
2202     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2203   }
2204 }
2205 //-----------------------trap_state_is_recompiled------------------------------
2206 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2207   return (trap_state & DS_RECOMPILE_BIT) != 0;
2208 }
2209 //-----------------------trap_state_set_recompiled-----------------------------
2210 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2211   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2212   else    return trap_state & ~DS_RECOMPILE_BIT;
2213 }
2214 //---------------------------format_trap_state---------------------------------
2215 // This is used for debugging and diagnostics, including LogFile output.
2216 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2217                                               int trap_state) {
2218   assert(buflen > 0, "sanity");
2219   DeoptReason reason      = trap_state_reason(trap_state);
2220   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2221   // Re-encode the state from its decoded components.
2222   int decoded_state = 0;
2223   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2224     decoded_state = trap_state_add_reason(decoded_state, reason);
2225   if (recomp_flag)
2226     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2227   // If the state re-encodes properly, format it symbolically.
2228   // Because this routine is used for debugging and diagnostics,
2229   // be robust even if the state is a strange value.
2230   size_t len;
2231   if (decoded_state != trap_state) {
2232     // Random buggy state that doesn't decode??
2233     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2234   } else {
2235     len = jio_snprintf(buf, buflen, "%s%s",
2236                        trap_reason_name(reason),
2237                        recomp_flag ? " recompiled" : "");
2238   }
2239   return buf;
2240 }
2241 
2242 
2243 //--------------------------------statics--------------------------------------
2244 const char* Deoptimization::_trap_reason_name[] = {
2245   // Note:  Keep this in sync. with enum DeoptReason.
2246   "none",
2247   "null_check",
2248   "null_assert" JVMCI_ONLY("_or_unreached0"),
2249   "range_check",
2250   "class_check",
2251   "array_check",
2252   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2253   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2254   "unloaded",
2255   "uninitialized",
2256   "unreached",
2257   "unhandled",
2258   "constraint",
2259   "div0_check",
2260   "age",
2261   "predicate",
2262   "loop_limit_check",
2263   "speculate_class_check",
2264   "speculate_null_check",
2265   "speculate_null_assert",
2266   "rtm_state_change",
2267   "unstable_if",
2268   "unstable_fused_if",
2269 #if INCLUDE_JVMCI
2270   "aliasing",
2271   "transfer_to_interpreter",
2272   "not_compiled_exception_handler",
2273   "unresolved",
2274   "jsr_mismatch",
2275 #endif
2276   "tenured"
2277 };
2278 const char* Deoptimization::_trap_action_name[] = {
2279   // Note:  Keep this in sync. with enum DeoptAction.
2280   "none",
2281   "maybe_recompile",
2282   "reinterpret",
2283   "make_not_entrant",
2284   "make_not_compilable"
2285 };
2286 
2287 const char* Deoptimization::trap_reason_name(int reason) {
2288   // Check that every reason has a name
2289   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2290 
2291   if (reason == Reason_many)  return "many";
2292   if ((uint)reason < Reason_LIMIT)
2293     return _trap_reason_name[reason];
2294   static char buf[20];
2295   sprintf(buf, "reason%d", reason);
2296   return buf;
2297 }
2298 const char* Deoptimization::trap_action_name(int action) {
2299   // Check that every action has a name
2300   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2301 
2302   if ((uint)action < Action_LIMIT)
2303     return _trap_action_name[action];
2304   static char buf[20];
2305   sprintf(buf, "action%d", action);
2306   return buf;
2307 }
2308 
2309 // This is used for debugging and diagnostics, including LogFile output.
2310 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2311                                                 int trap_request) {
2312   jint unloaded_class_index = trap_request_index(trap_request);
2313   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2314   const char* action = trap_action_name(trap_request_action(trap_request));
2315 #if INCLUDE_JVMCI
2316   int debug_id = trap_request_debug_id(trap_request);
2317 #endif
2318   size_t len;
2319   if (unloaded_class_index < 0) {
2320     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2321                        reason, action
2322 #if INCLUDE_JVMCI
2323                        ,debug_id
2324 #endif
2325                        );
2326   } else {
2327     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2328                        reason, action, unloaded_class_index
2329 #if INCLUDE_JVMCI
2330                        ,debug_id
2331 #endif
2332                        );
2333   }
2334   return buf;
2335 }
2336 
2337 juint Deoptimization::_deoptimization_hist
2338         [Deoptimization::Reason_LIMIT]
2339     [1 + Deoptimization::Action_LIMIT]
2340         [Deoptimization::BC_CASE_LIMIT]
2341   = {0};
2342 
2343 enum {
2344   LSB_BITS = 8,
2345   LSB_MASK = right_n_bits(LSB_BITS)
2346 };
2347 
2348 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2349                                        Bytecodes::Code bc) {
2350   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2351   assert(action >= 0 && action < Action_LIMIT, "oob");
2352   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2353   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2354   juint* cases = _deoptimization_hist[reason][1+action];
2355   juint* bc_counter_addr = NULL;
2356   juint  bc_counter      = 0;
2357   // Look for an unused counter, or an exact match to this BC.
2358   if (bc != Bytecodes::_illegal) {
2359     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2360       juint* counter_addr = &cases[bc_case];
2361       juint  counter = *counter_addr;
2362       if ((counter == 0 && bc_counter_addr == NULL)
2363           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2364         // this counter is either free or is already devoted to this BC
2365         bc_counter_addr = counter_addr;
2366         bc_counter = counter | bc;
2367       }
2368     }
2369   }
2370   if (bc_counter_addr == NULL) {
2371     // Overflow, or no given bytecode.
2372     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2373     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2374   }
2375   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2376 }
2377 
2378 jint Deoptimization::total_deoptimization_count() {
2379   return _deoptimization_hist[Reason_none][0][0];
2380 }
2381 
2382 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2383   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2384   return _deoptimization_hist[reason][0][0];
2385 }
2386 
2387 void Deoptimization::print_statistics() {
2388   juint total = total_deoptimization_count();
2389   juint account = total;
2390   if (total != 0) {
2391     ttyLocker ttyl;
2392     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2393     tty->print_cr("Deoptimization traps recorded:");
2394     #define PRINT_STAT_LINE(name, r) \
2395       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2396     PRINT_STAT_LINE("total", total);
2397     // For each non-zero entry in the histogram, print the reason,
2398     // the action, and (if specifically known) the type of bytecode.
2399     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2400       for (int action = 0; action < Action_LIMIT; action++) {
2401         juint* cases = _deoptimization_hist[reason][1+action];
2402         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2403           juint counter = cases[bc_case];
2404           if (counter != 0) {
2405             char name[1*K];
2406             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2407             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2408               bc = Bytecodes::_illegal;
2409             sprintf(name, "%s/%s/%s",
2410                     trap_reason_name(reason),
2411                     trap_action_name(action),
2412                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2413             juint r = counter >> LSB_BITS;
2414             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2415             account -= r;
2416           }
2417         }
2418       }
2419     }
2420     if (account != 0) {
2421       PRINT_STAT_LINE("unaccounted", account);
2422     }
2423     #undef PRINT_STAT_LINE
2424     if (xtty != NULL)  xtty->tail("statistics");
2425   }
2426 }
2427 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2428 
2429 
2430 // Stubs for C1 only system.
2431 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2432   return false;
2433 }
2434 
2435 const char* Deoptimization::trap_reason_name(int reason) {
2436   return "unknown";
2437 }
2438 
2439 void Deoptimization::print_statistics() {
2440   // no output
2441 }
2442 
2443 void
2444 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2445   // no udpate
2446 }
2447 
2448 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2449   return 0;
2450 }
2451 
2452 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2453                                        Bytecodes::Code bc) {
2454   // no update
2455 }
2456 
2457 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2458                                               int trap_state) {
2459   jio_snprintf(buf, buflen, "#%d", trap_state);
2460   return buf;
2461 }
2462 
2463 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI