1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/fieldStreams.hpp"
  46 #include "oops/klass.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/objArrayOop.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/valueKlass.hpp"
  51 #include "prims/forte.hpp"
  52 #include "prims/jvm.h"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/methodHandles.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/vframe.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 
  80 // Shared stub locations
  81 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  82 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  83 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  87 address             SharedRuntime::_resolve_static_call_entry;
  88 
  89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  93 
  94 #ifdef COMPILER2
  95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  96 #endif // COMPILER2
  97 
  98 
  99 //----------------------------generate_stubs-----------------------------------
 100 void SharedRuntime::generate_stubs() {
 101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 102   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 107   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 108 
 109 #if defined(COMPILER2) || INCLUDE_JVMCI
 110   // Vectors are generated only by C2 and JVMCI.
 111   bool support_wide = is_wide_vector(MaxVectorSize);
 112   if (support_wide) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2 || INCLUDE_JVMCI
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 // Implementation of SharedRuntime
 129 
 130 #ifndef PRODUCT
 131 // For statistics
 132 int SharedRuntime::_ic_miss_ctr = 0;
 133 int SharedRuntime::_wrong_method_ctr = 0;
 134 int SharedRuntime::_resolve_static_ctr = 0;
 135 int SharedRuntime::_resolve_virtual_ctr = 0;
 136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 137 int SharedRuntime::_implicit_null_throws = 0;
 138 int SharedRuntime::_implicit_div0_throws = 0;
 139 int SharedRuntime::_throw_null_ctr = 0;
 140 
 141 int SharedRuntime::_nof_normal_calls = 0;
 142 int SharedRuntime::_nof_optimized_calls = 0;
 143 int SharedRuntime::_nof_inlined_calls = 0;
 144 int SharedRuntime::_nof_megamorphic_calls = 0;
 145 int SharedRuntime::_nof_static_calls = 0;
 146 int SharedRuntime::_nof_inlined_static_calls = 0;
 147 int SharedRuntime::_nof_interface_calls = 0;
 148 int SharedRuntime::_nof_optimized_interface_calls = 0;
 149 int SharedRuntime::_nof_inlined_interface_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 151 int SharedRuntime::_nof_removable_exceptions = 0;
 152 
 153 int SharedRuntime::_new_instance_ctr=0;
 154 int SharedRuntime::_new_array_ctr=0;
 155 int SharedRuntime::_multi1_ctr=0;
 156 int SharedRuntime::_multi2_ctr=0;
 157 int SharedRuntime::_multi3_ctr=0;
 158 int SharedRuntime::_multi4_ctr=0;
 159 int SharedRuntime::_multi5_ctr=0;
 160 int SharedRuntime::_mon_enter_stub_ctr=0;
 161 int SharedRuntime::_mon_exit_stub_ctr=0;
 162 int SharedRuntime::_mon_enter_ctr=0;
 163 int SharedRuntime::_mon_exit_ctr=0;
 164 int SharedRuntime::_partial_subtype_ctr=0;
 165 int SharedRuntime::_jbyte_array_copy_ctr=0;
 166 int SharedRuntime::_jshort_array_copy_ctr=0;
 167 int SharedRuntime::_jint_array_copy_ctr=0;
 168 int SharedRuntime::_jlong_array_copy_ctr=0;
 169 int SharedRuntime::_oop_array_copy_ctr=0;
 170 int SharedRuntime::_checkcast_array_copy_ctr=0;
 171 int SharedRuntime::_unsafe_array_copy_ctr=0;
 172 int SharedRuntime::_generic_array_copy_ctr=0;
 173 int SharedRuntime::_slow_array_copy_ctr=0;
 174 int SharedRuntime::_find_handler_ctr=0;
 175 int SharedRuntime::_rethrow_ctr=0;
 176 
 177 int     SharedRuntime::_ICmiss_index                    = 0;
 178 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 180 
 181 
 182 void SharedRuntime::trace_ic_miss(address at) {
 183   for (int i = 0; i < _ICmiss_index; i++) {
 184     if (_ICmiss_at[i] == at) {
 185       _ICmiss_count[i]++;
 186       return;
 187     }
 188   }
 189   int index = _ICmiss_index++;
 190   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 191   _ICmiss_at[index] = at;
 192   _ICmiss_count[index] = 1;
 193 }
 194 
 195 void SharedRuntime::print_ic_miss_histogram() {
 196   if (ICMissHistogram) {
 197     tty->print_cr("IC Miss Histogram:");
 198     int tot_misses = 0;
 199     for (int i = 0; i < _ICmiss_index; i++) {
 200       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 201       tot_misses += _ICmiss_count[i];
 202     }
 203     tty->print_cr("Total IC misses: %7d", tot_misses);
 204   }
 205 }
 206 #endif // PRODUCT
 207 
 208 #if INCLUDE_ALL_GCS
 209 
 210 // G1 write-barrier pre: executed before a pointer store.
 211 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 212   if (orig == NULL) {
 213     assert(false, "should be optimized out");
 214     return;
 215   }
 216   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 217   // store the original value that was in the field reference
 218   thread->satb_mark_queue().enqueue(orig);
 219 JRT_END
 220 
 221 // G1 write-barrier post: executed after a pointer store.
 222 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 223   thread->dirty_card_queue().enqueue(card_addr);
 224 JRT_END
 225 
 226 #endif // INCLUDE_ALL_GCS
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 230   return x * y;
 231 JRT_END
 232 
 233 
 234 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 235   if (x == min_jlong && y == CONST64(-1)) {
 236     return x;
 237   } else {
 238     return x / y;
 239   }
 240 JRT_END
 241 
 242 
 243 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 244   if (x == min_jlong && y == CONST64(-1)) {
 245     return 0;
 246   } else {
 247     return x % y;
 248   }
 249 JRT_END
 250 
 251 
 252 const juint  float_sign_mask  = 0x7FFFFFFF;
 253 const juint  float_infinity   = 0x7F800000;
 254 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 255 const julong double_infinity  = CONST64(0x7FF0000000000000);
 256 
 257 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 258 #ifdef _WIN64
 259   // 64-bit Windows on amd64 returns the wrong values for
 260   // infinity operands.
 261   union { jfloat f; juint i; } xbits, ybits;
 262   xbits.f = x;
 263   ybits.f = y;
 264   // x Mod Infinity == x unless x is infinity
 265   if (((xbits.i & float_sign_mask) != float_infinity) &&
 266        ((ybits.i & float_sign_mask) == float_infinity) ) {
 267     return x;
 268   }
 269   return ((jfloat)fmod_winx64((double)x, (double)y));
 270 #else
 271   return ((jfloat)fmod((double)x,(double)y));
 272 #endif
 273 JRT_END
 274 
 275 
 276 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 277 #ifdef _WIN64
 278   union { jdouble d; julong l; } xbits, ybits;
 279   xbits.d = x;
 280   ybits.d = y;
 281   // x Mod Infinity == x unless x is infinity
 282   if (((xbits.l & double_sign_mask) != double_infinity) &&
 283        ((ybits.l & double_sign_mask) == double_infinity) ) {
 284     return x;
 285   }
 286   return ((jdouble)fmod_winx64((double)x, (double)y));
 287 #else
 288   return ((jdouble)fmod((double)x,(double)y));
 289 #endif
 290 JRT_END
 291 
 292 #ifdef __SOFTFP__
 293 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 310   return x + y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 314   return x - y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 318   return x * y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 322   return x / y;
 323 JRT_END
 324 
 325 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 326   return (jfloat)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 334   return (jdouble)x;
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 338   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 342   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 346   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 // Functions to return the opposite of the aeabi functions for nan.
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 // Intrinsics make gcc generate code for these.
 387 float  SharedRuntime::fneg(float f)   {
 388   return -f;
 389 }
 390 
 391 double SharedRuntime::dneg(double f)  {
 392   return -f;
 393 }
 394 
 395 #endif // __SOFTFP__
 396 
 397 #if defined(__SOFTFP__) || defined(E500V2)
 398 // Intrinsics make gcc generate code for these.
 399 double SharedRuntime::dabs(double f)  {
 400   return (f <= (double)0.0) ? (double)0.0 - f : f;
 401 }
 402 
 403 #endif
 404 
 405 #if defined(__SOFTFP__) || defined(PPC)
 406 double SharedRuntime::dsqrt(double f) {
 407   return sqrt(f);
 408 }
 409 #endif
 410 
 411 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 412   if (g_isnan(x))
 413     return 0;
 414   if (x >= (jfloat) max_jint)
 415     return max_jint;
 416   if (x <= (jfloat) min_jint)
 417     return min_jint;
 418   return (jint) x;
 419 JRT_END
 420 
 421 
 422 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 423   if (g_isnan(x))
 424     return 0;
 425   if (x >= (jfloat) max_jlong)
 426     return max_jlong;
 427   if (x <= (jfloat) min_jlong)
 428     return min_jlong;
 429   return (jlong) x;
 430 JRT_END
 431 
 432 
 433 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 434   if (g_isnan(x))
 435     return 0;
 436   if (x >= (jdouble) max_jint)
 437     return max_jint;
 438   if (x <= (jdouble) min_jint)
 439     return min_jint;
 440   return (jint) x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 445   if (g_isnan(x))
 446     return 0;
 447   if (x >= (jdouble) max_jlong)
 448     return max_jlong;
 449   if (x <= (jdouble) min_jlong)
 450     return min_jlong;
 451   return (jlong) x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 456   return (jfloat)x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 461   return (jfloat)x;
 462 JRT_END
 463 
 464 
 465 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 466   return (jdouble)x;
 467 JRT_END
 468 
 469 // Exception handling across interpreter/compiler boundaries
 470 //
 471 // exception_handler_for_return_address(...) returns the continuation address.
 472 // The continuation address is the entry point of the exception handler of the
 473 // previous frame depending on the return address.
 474 
 475 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 476   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 477   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 478 
 479   // Reset method handle flag.
 480   thread->set_is_method_handle_return(false);
 481 
 482 #if INCLUDE_JVMCI
 483   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 484   // and other exception handler continuations do not read it
 485   thread->set_exception_pc(NULL);
 486 #endif // INCLUDE_JVMCI
 487 
 488   // The fastest case first
 489   CodeBlob* blob = CodeCache::find_blob(return_address);
 490   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 491   if (nm != NULL) {
 492     // Set flag if return address is a method handle call site.
 493     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 494     // native nmethods don't have exception handlers
 495     assert(!nm->is_native_method(), "no exception handler");
 496     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 497     if (nm->is_deopt_pc(return_address)) {
 498       // If we come here because of a stack overflow, the stack may be
 499       // unguarded. Reguard the stack otherwise if we return to the
 500       // deopt blob and the stack bang causes a stack overflow we
 501       // crash.
 502       bool guard_pages_enabled = thread->stack_guards_enabled();
 503       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 504       if (thread->reserved_stack_activation() != thread->stack_base()) {
 505         thread->set_reserved_stack_activation(thread->stack_base());
 506       }
 507       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 508       return SharedRuntime::deopt_blob()->unpack_with_exception();
 509     } else {
 510       return nm->exception_begin();
 511     }
 512   }
 513 
 514   // Entry code
 515   if (StubRoutines::returns_to_call_stub(return_address)) {
 516     return StubRoutines::catch_exception_entry();
 517   }
 518   // Interpreted code
 519   if (Interpreter::contains(return_address)) {
 520     return Interpreter::rethrow_exception_entry();
 521   }
 522 
 523   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 524   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 525 
 526 #ifndef PRODUCT
 527   { ResourceMark rm;
 528     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 529     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 530     tty->print_cr("b) other problem");
 531   }
 532 #endif // PRODUCT
 533 
 534   ShouldNotReachHere();
 535   return NULL;
 536 }
 537 
 538 
 539 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 540   return raw_exception_handler_for_return_address(thread, return_address);
 541 JRT_END
 542 
 543 
 544 address SharedRuntime::get_poll_stub(address pc) {
 545   address stub;
 546   // Look up the code blob
 547   CodeBlob *cb = CodeCache::find_blob(pc);
 548 
 549   // Should be an nmethod
 550   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 551 
 552   // Look up the relocation information
 553   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 554     "safepoint polling: type must be poll");
 555 
 556 #ifdef ASSERT
 557   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 558     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 559     Disassembler::decode(cb);
 560     fatal("Only polling locations are used for safepoint");
 561   }
 562 #endif
 563 
 564   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 565   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 566   if (at_poll_return) {
 567     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 568            "polling page return stub not created yet");
 569     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 570   } else if (has_wide_vectors) {
 571     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 572            "polling page vectors safepoint stub not created yet");
 573     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 574   } else {
 575     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 576            "polling page safepoint stub not created yet");
 577     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 578   }
 579   log_debug(safepoint)("... found polling page %s exception at pc = "
 580                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 581                        at_poll_return ? "return" : "loop",
 582                        (intptr_t)pc, (intptr_t)stub);
 583   return stub;
 584 }
 585 
 586 
 587 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 588   assert(caller.is_interpreted_frame(), "");
 589   int args_size = ArgumentSizeComputer(sig).size() + 1;
 590   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 591   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 592   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 593   return result;
 594 }
 595 
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 598   if (JvmtiExport::can_post_on_exceptions()) {
 599     vframeStream vfst(thread, true);
 600     methodHandle method = methodHandle(thread, vfst.method());
 601     address bcp = method()->bcp_from(vfst.bci());
 602     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 603   }
 604   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 605 }
 606 
 607 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 608   Handle h_exception = Exceptions::new_exception(thread, name, message);
 609   throw_and_post_jvmti_exception(thread, h_exception);
 610 }
 611 
 612 // The interpreter code to call this tracing function is only
 613 // called/generated when UL is on for redefine, class and has the right level
 614 // and tags. Since obsolete methods are never compiled, we don't have
 615 // to modify the compilers to generate calls to this function.
 616 //
 617 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 618     JavaThread* thread, Method* method))
 619   if (method->is_obsolete()) {
 620     // We are calling an obsolete method, but this is not necessarily
 621     // an error. Our method could have been redefined just after we
 622     // fetched the Method* from the constant pool.
 623     ResourceMark rm;
 624     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 625   }
 626   return 0;
 627 JRT_END
 628 
 629 // ret_pc points into caller; we are returning caller's exception handler
 630 // for given exception
 631 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 632                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 633   assert(cm != NULL, "must exist");
 634   ResourceMark rm;
 635 
 636 #if INCLUDE_JVMCI
 637   if (cm->is_compiled_by_jvmci()) {
 638     // lookup exception handler for this pc
 639     int catch_pco = ret_pc - cm->code_begin();
 640     ExceptionHandlerTable table(cm);
 641     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 642     if (t != NULL) {
 643       return cm->code_begin() + t->pco();
 644     } else {
 645       // there is no exception handler for this pc => deoptimize
 646       cm->make_not_entrant();
 647 
 648       // Use Deoptimization::deoptimize for all of its side-effects:
 649       // revoking biases of monitors, gathering traps statistics, logging...
 650       // it also patches the return pc but we do not care about that
 651       // since we return a continuation to the deopt_blob below.
 652       JavaThread* thread = JavaThread::current();
 653       RegisterMap reg_map(thread, UseBiasedLocking);
 654       frame runtime_frame = thread->last_frame();
 655       frame caller_frame = runtime_frame.sender(&reg_map);
 656       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 657 
 658       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 659     }
 660   }
 661 #endif // INCLUDE_JVMCI
 662 
 663   nmethod* nm = cm->as_nmethod();
 664   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 665   // determine handler bci, if any
 666   EXCEPTION_MARK;
 667 
 668   int handler_bci = -1;
 669   int scope_depth = 0;
 670   if (!force_unwind) {
 671     int bci = sd->bci();
 672     bool recursive_exception = false;
 673     do {
 674       bool skip_scope_increment = false;
 675       // exception handler lookup
 676       Klass* ek = exception->klass();
 677       methodHandle mh(THREAD, sd->method());
 678       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 679       if (HAS_PENDING_EXCEPTION) {
 680         recursive_exception = true;
 681         // We threw an exception while trying to find the exception handler.
 682         // Transfer the new exception to the exception handle which will
 683         // be set into thread local storage, and do another lookup for an
 684         // exception handler for this exception, this time starting at the
 685         // BCI of the exception handler which caused the exception to be
 686         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 687         // argument to ensure that the correct exception is thrown (4870175).
 688         recursive_exception_occurred = true;
 689         exception = Handle(THREAD, PENDING_EXCEPTION);
 690         CLEAR_PENDING_EXCEPTION;
 691         if (handler_bci >= 0) {
 692           bci = handler_bci;
 693           handler_bci = -1;
 694           skip_scope_increment = true;
 695         }
 696       }
 697       else {
 698         recursive_exception = false;
 699       }
 700       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 701         sd = sd->sender();
 702         if (sd != NULL) {
 703           bci = sd->bci();
 704         }
 705         ++scope_depth;
 706       }
 707     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 708   }
 709 
 710   // found handling method => lookup exception handler
 711   int catch_pco = ret_pc - nm->code_begin();
 712 
 713   ExceptionHandlerTable table(nm);
 714   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 715   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 716     // Allow abbreviated catch tables.  The idea is to allow a method
 717     // to materialize its exceptions without committing to the exact
 718     // routing of exceptions.  In particular this is needed for adding
 719     // a synthetic handler to unlock monitors when inlining
 720     // synchronized methods since the unlock path isn't represented in
 721     // the bytecodes.
 722     t = table.entry_for(catch_pco, -1, 0);
 723   }
 724 
 725 #ifdef COMPILER1
 726   if (t == NULL && nm->is_compiled_by_c1()) {
 727     assert(nm->unwind_handler_begin() != NULL, "");
 728     return nm->unwind_handler_begin();
 729   }
 730 #endif
 731 
 732   if (t == NULL) {
 733     ttyLocker ttyl;
 734     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 735     tty->print_cr("   Exception:");
 736     exception->print();
 737     tty->cr();
 738     tty->print_cr(" Compiled exception table :");
 739     table.print();
 740     nm->print_code();
 741     guarantee(false, "missing exception handler");
 742     return NULL;
 743   }
 744 
 745   return nm->code_begin() + t->pco();
 746 }
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 754   // These errors occur only at call sites
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 759   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 760 JRT_END
 761 
 762 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 763   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 764 JRT_END
 765 
 766 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 767   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 768   // cache sites (when the callee activation is not yet set up) so we are at a call site
 769   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 770 JRT_END
 771 
 772 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 773   throw_StackOverflowError_common(thread, false);
 774 JRT_END
 775 
 776 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 777   throw_StackOverflowError_common(thread, true);
 778 JRT_END
 779 
 780 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 781   // We avoid using the normal exception construction in this case because
 782   // it performs an upcall to Java, and we're already out of stack space.
 783   Thread* THREAD = thread;
 784   Klass* k = SystemDictionary::StackOverflowError_klass();
 785   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 786   if (delayed) {
 787     java_lang_Throwable::set_message(exception_oop,
 788                                      Universe::delayed_stack_overflow_error_message());
 789   }
 790   Handle exception (thread, exception_oop);
 791   if (StackTraceInThrowable) {
 792     java_lang_Throwable::fill_in_stack_trace(exception);
 793   }
 794   // Increment counter for hs_err file reporting
 795   Atomic::inc(&Exceptions::_stack_overflow_errors);
 796   throw_and_post_jvmti_exception(thread, exception);
 797 }
 798 
 799 #if INCLUDE_JVMCI
 800 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 801   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 802   thread->set_jvmci_implicit_exception_pc(pc);
 803   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 804   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 805 }
 806 #endif // INCLUDE_JVMCI
 807 
 808 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 809                                                            address pc,
 810                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 811 {
 812   address target_pc = NULL;
 813 
 814   if (Interpreter::contains(pc)) {
 815 #ifdef CC_INTERP
 816     // C++ interpreter doesn't throw implicit exceptions
 817     ShouldNotReachHere();
 818 #else
 819     switch (exception_kind) {
 820       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 821       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 822       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 823       default:                      ShouldNotReachHere();
 824     }
 825 #endif // !CC_INTERP
 826   } else {
 827     switch (exception_kind) {
 828       case STACK_OVERFLOW: {
 829         // Stack overflow only occurs upon frame setup; the callee is
 830         // going to be unwound. Dispatch to a shared runtime stub
 831         // which will cause the StackOverflowError to be fabricated
 832         // and processed.
 833         // Stack overflow should never occur during deoptimization:
 834         // the compiled method bangs the stack by as much as the
 835         // interpreter would need in case of a deoptimization. The
 836         // deoptimization blob and uncommon trap blob bang the stack
 837         // in a debug VM to verify the correctness of the compiled
 838         // method stack banging.
 839         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 840         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 841         return StubRoutines::throw_StackOverflowError_entry();
 842       }
 843 
 844       case IMPLICIT_NULL: {
 845         if (VtableStubs::contains(pc)) {
 846           // We haven't yet entered the callee frame. Fabricate an
 847           // exception and begin dispatching it in the caller. Since
 848           // the caller was at a call site, it's safe to destroy all
 849           // caller-saved registers, as these entry points do.
 850           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 851 
 852           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 853           if (vt_stub == NULL) return NULL;
 854 
 855           if (vt_stub->is_abstract_method_error(pc)) {
 856             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 857             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_AbstractMethodError_entry();
 859           } else {
 860             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863         } else {
 864           CodeBlob* cb = CodeCache::find_blob(pc);
 865 
 866           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 867           if (cb == NULL) return NULL;
 868 
 869           // Exception happened in CodeCache. Must be either:
 870           // 1. Inline-cache check in C2I handler blob,
 871           // 2. Inline-cache check in nmethod, or
 872           // 3. Implicit null exception in nmethod
 873 
 874           if (!cb->is_compiled()) {
 875             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 876             if (!is_in_blob) {
 877               // Allow normal crash reporting to handle this
 878               return NULL;
 879             }
 880             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 881             // There is no handler here, so we will simply unwind.
 882             return StubRoutines::throw_NullPointerException_at_call_entry();
 883           }
 884 
 885           // Otherwise, it's a compiled method.  Consult its exception handlers.
 886           CompiledMethod* cm = (CompiledMethod*)cb;
 887           if (cm->inlinecache_check_contains(pc)) {
 888             // exception happened inside inline-cache check code
 889             // => the nmethod is not yet active (i.e., the frame
 890             // is not set up yet) => use return address pushed by
 891             // caller => don't push another return address
 892             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 893             return StubRoutines::throw_NullPointerException_at_call_entry();
 894           }
 895 
 896           if (cm->method()->is_method_handle_intrinsic()) {
 897             // exception happened inside MH dispatch code, similar to a vtable stub
 898             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 899             return StubRoutines::throw_NullPointerException_at_call_entry();
 900           }
 901 
 902 #ifndef PRODUCT
 903           _implicit_null_throws++;
 904 #endif
 905 #if INCLUDE_JVMCI
 906           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 907             // If there's no PcDesc then we'll die way down inside of
 908             // deopt instead of just getting normal error reporting,
 909             // so only go there if it will succeed.
 910             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 911           } else {
 912 #endif // INCLUDE_JVMCI
 913           assert (cm->is_nmethod(), "Expect nmethod");
 914           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 915 #if INCLUDE_JVMCI
 916           }
 917 #endif // INCLUDE_JVMCI
 918           // If there's an unexpected fault, target_pc might be NULL,
 919           // in which case we want to fall through into the normal
 920           // error handling code.
 921         }
 922 
 923         break; // fall through
 924       }
 925 
 926 
 927       case IMPLICIT_DIVIDE_BY_ZERO: {
 928         CompiledMethod* cm = CodeCache::find_compiled(pc);
 929         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 930 #ifndef PRODUCT
 931         _implicit_div0_throws++;
 932 #endif
 933 #if INCLUDE_JVMCI
 934         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 935           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 936         } else {
 937 #endif // INCLUDE_JVMCI
 938         target_pc = cm->continuation_for_implicit_exception(pc);
 939 #if INCLUDE_JVMCI
 940         }
 941 #endif // INCLUDE_JVMCI
 942         // If there's an unexpected fault, target_pc might be NULL,
 943         // in which case we want to fall through into the normal
 944         // error handling code.
 945         break; // fall through
 946       }
 947 
 948       default: ShouldNotReachHere();
 949     }
 950 
 951     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 952 
 953     if (exception_kind == IMPLICIT_NULL) {
 954 #ifndef PRODUCT
 955       // for AbortVMOnException flag
 956       Exceptions::debug_check_abort("java.lang.NullPointerException");
 957 #endif //PRODUCT
 958       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 959     } else {
 960 #ifndef PRODUCT
 961       // for AbortVMOnException flag
 962       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 963 #endif //PRODUCT
 964       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 965     }
 966     return target_pc;
 967   }
 968 
 969   ShouldNotReachHere();
 970   return NULL;
 971 }
 972 
 973 
 974 /**
 975  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 976  * installed in the native function entry of all native Java methods before
 977  * they get linked to their actual native methods.
 978  *
 979  * \note
 980  * This method actually never gets called!  The reason is because
 981  * the interpreter's native entries call NativeLookup::lookup() which
 982  * throws the exception when the lookup fails.  The exception is then
 983  * caught and forwarded on the return from NativeLookup::lookup() call
 984  * before the call to the native function.  This might change in the future.
 985  */
 986 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 987 {
 988   // We return a bad value here to make sure that the exception is
 989   // forwarded before we look at the return value.
 990   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 991 }
 992 JNI_END
 993 
 994 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 995   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 996 }
 997 
 998 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 999 #if INCLUDE_JVMCI
1000   if (!obj->klass()->has_finalizer()) {
1001     return;
1002   }
1003 #endif // INCLUDE_JVMCI
1004   assert(oopDesc::is_oop(obj), "must be a valid oop");
1005   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1006   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1007 JRT_END
1008 
1009 
1010 jlong SharedRuntime::get_java_tid(Thread* thread) {
1011   if (thread != NULL) {
1012     if (thread->is_Java_thread()) {
1013       oop obj = ((JavaThread*)thread)->threadObj();
1014       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1015     }
1016   }
1017   return 0;
1018 }
1019 
1020 /**
1021  * This function ought to be a void function, but cannot be because
1022  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1023  * 6254741.  Once that is fixed we can remove the dummy return value.
1024  */
1025 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1026   return dtrace_object_alloc_base(Thread::current(), o, size);
1027 }
1028 
1029 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1030   assert(DTraceAllocProbes, "wrong call");
1031   Klass* klass = o->klass();
1032   Symbol* name = klass->name();
1033   HOTSPOT_OBJECT_ALLOC(
1034                    get_java_tid(thread),
1035                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1036   return 0;
1037 }
1038 
1039 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1040     JavaThread* thread, Method* method))
1041   assert(DTraceMethodProbes, "wrong call");
1042   Symbol* kname = method->klass_name();
1043   Symbol* name = method->name();
1044   Symbol* sig = method->signature();
1045   HOTSPOT_METHOD_ENTRY(
1046       get_java_tid(thread),
1047       (char *) kname->bytes(), kname->utf8_length(),
1048       (char *) name->bytes(), name->utf8_length(),
1049       (char *) sig->bytes(), sig->utf8_length());
1050   return 0;
1051 JRT_END
1052 
1053 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1054     JavaThread* thread, Method* method))
1055   assert(DTraceMethodProbes, "wrong call");
1056   Symbol* kname = method->klass_name();
1057   Symbol* name = method->name();
1058   Symbol* sig = method->signature();
1059   HOTSPOT_METHOD_RETURN(
1060       get_java_tid(thread),
1061       (char *) kname->bytes(), kname->utf8_length(),
1062       (char *) name->bytes(), name->utf8_length(),
1063       (char *) sig->bytes(), sig->utf8_length());
1064   return 0;
1065 JRT_END
1066 
1067 
1068 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1069 // for a call current in progress, i.e., arguments has been pushed on stack
1070 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1071 // vtable updates, etc.  Caller frame must be compiled.
1072 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1073   ResourceMark rm(THREAD);
1074 
1075   // last java frame on stack (which includes native call frames)
1076   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1077 
1078   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1079 }
1080 
1081 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1082   CompiledMethod* caller = vfst.nm();
1083 
1084   nmethodLocker caller_lock(caller);
1085 
1086   address pc = vfst.frame_pc();
1087   { // Get call instruction under lock because another thread may be busy patching it.
1088     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1089     return caller->attached_method_before_pc(pc);
1090   }
1091   return NULL;
1092 }
1093 
1094 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1095 // for a call current in progress, i.e., arguments has been pushed on stack
1096 // but callee has not been invoked yet.  Caller frame must be compiled.
1097 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1098                                               vframeStream& vfst,
1099                                               Bytecodes::Code& bc,
1100                                               CallInfo& callinfo, TRAPS) {
1101   Handle receiver;
1102   Handle nullHandle;  //create a handy null handle for exception returns
1103 
1104   assert(!vfst.at_end(), "Java frame must exist");
1105 
1106   // Find caller and bci from vframe
1107   methodHandle caller(THREAD, vfst.method());
1108   int          bci   = vfst.bci();
1109 
1110   Bytecode_invoke bytecode(caller, bci);
1111   int bytecode_index = bytecode.index();
1112   bc = bytecode.invoke_code();
1113 
1114   methodHandle attached_method = extract_attached_method(vfst);
1115   if (attached_method.not_null()) {
1116     methodHandle callee = bytecode.static_target(CHECK_NH);
1117     vmIntrinsics::ID id = callee->intrinsic_id();
1118     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1119     // it attaches statically resolved method to the call site.
1120     if (MethodHandles::is_signature_polymorphic(id) &&
1121         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1122       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1123 
1124       // Adjust invocation mode according to the attached method.
1125       switch (bc) {
1126         case Bytecodes::_invokeinterface:
1127           if (!attached_method->method_holder()->is_interface()) {
1128             bc = Bytecodes::_invokevirtual;
1129           }
1130           break;
1131         case Bytecodes::_invokehandle:
1132           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1133             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1134                                               : Bytecodes::_invokevirtual;
1135           }
1136           break;
1137         default:
1138           break;
1139       }
1140     } else {
1141       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1142       if (bc != Bytecodes::_invokevirtual) {
1143         // Ignore the attached method in this case to not confuse below code
1144         attached_method = NULL;
1145       }
1146     }
1147   }
1148 
1149   bool has_receiver = bc != Bytecodes::_invokestatic &&
1150                       bc != Bytecodes::_invokedynamic &&
1151                       bc != Bytecodes::_invokehandle;
1152 
1153   // Find receiver for non-static call
1154   if (has_receiver) {
1155     // This register map must be update since we need to find the receiver for
1156     // compiled frames. The receiver might be in a register.
1157     RegisterMap reg_map2(thread);
1158     frame stubFrame   = thread->last_frame();
1159     // Caller-frame is a compiled frame
1160     frame callerFrame = stubFrame.sender(&reg_map2);
1161 
1162     methodHandle callee = attached_method;
1163     if (callee.is_null()) {
1164       callee = bytecode.static_target(CHECK_NH);
1165       if (callee.is_null()) {
1166         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1167       }
1168     }
1169     if (ValueTypePassFieldsAsArgs && callee->method_holder()->is_value()) {
1170       // If the receiver is a value type that is passed as fields, no oop is available.
1171       // Resolve the call without receiver null checking.
1172       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1173       assert(!attached_method.is_null(), "must have attached method");
1174       constantPoolHandle constants(THREAD, caller->constants());
1175       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1176       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1177       return receiver; // is null
1178     } else {
1179       // Retrieve from a compiled argument list
1180       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1181 
1182       if (receiver.is_null()) {
1183         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1184       }
1185     }
1186   }
1187 
1188   // Resolve method
1189   if (attached_method.not_null()) {
1190     // Parameterized by attached method.
1191     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1192   } else {
1193     // Parameterized by bytecode.
1194     constantPoolHandle constants(THREAD, caller->constants());
1195     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1196   }
1197 
1198 #ifdef ASSERT
1199   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1200   if (has_receiver) {
1201     assert(receiver.not_null(), "should have thrown exception");
1202     Klass* receiver_klass = receiver->klass();
1203     Klass* rk = NULL;
1204     if (attached_method.not_null()) {
1205       // In case there's resolved method attached, use its holder during the check.
1206       rk = attached_method->method_holder();
1207     } else {
1208       // Klass is already loaded.
1209       constantPoolHandle constants(THREAD, caller->constants());
1210       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1211     }
1212     Klass* static_receiver_klass = rk;
1213     methodHandle callee = callinfo.selected_method();
1214     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1215            "actual receiver must be subclass of static receiver klass");
1216     if (receiver_klass->is_instance_klass()) {
1217       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1218         tty->print_cr("ERROR: Klass not yet initialized!!");
1219         receiver_klass->print();
1220       }
1221       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1222     }
1223   }
1224 #endif
1225 
1226   return receiver;
1227 }
1228 
1229 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1230   ResourceMark rm(THREAD);
1231   // We need first to check if any Java activations (compiled, interpreted)
1232   // exist on the stack since last JavaCall.  If not, we need
1233   // to get the target method from the JavaCall wrapper.
1234   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1235   methodHandle callee_method;
1236   if (vfst.at_end()) {
1237     // No Java frames were found on stack since we did the JavaCall.
1238     // Hence the stack can only contain an entry_frame.  We need to
1239     // find the target method from the stub frame.
1240     RegisterMap reg_map(thread, false);
1241     frame fr = thread->last_frame();
1242     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1243     fr = fr.sender(&reg_map);
1244     assert(fr.is_entry_frame(), "must be");
1245     // fr is now pointing to the entry frame.
1246     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1247   } else {
1248     Bytecodes::Code bc;
1249     CallInfo callinfo;
1250     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1251     callee_method = callinfo.selected_method();
1252   }
1253   assert(callee_method()->is_method(), "must be");
1254   return callee_method;
1255 }
1256 
1257 // Resolves a call.
1258 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1259                                            bool is_virtual,
1260                                            bool is_optimized, TRAPS) {
1261   methodHandle callee_method;
1262   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1263   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1264     int retry_count = 0;
1265     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1266            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1267       // If has a pending exception then there is no need to re-try to
1268       // resolve this method.
1269       // If the method has been redefined, we need to try again.
1270       // Hack: we have no way to update the vtables of arrays, so don't
1271       // require that java.lang.Object has been updated.
1272 
1273       // It is very unlikely that method is redefined more than 100 times
1274       // in the middle of resolve. If it is looping here more than 100 times
1275       // means then there could be a bug here.
1276       guarantee((retry_count++ < 100),
1277                 "Could not resolve to latest version of redefined method");
1278       // method is redefined in the middle of resolve so re-try.
1279       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1280     }
1281   }
1282   return callee_method;
1283 }
1284 
1285 // Resolves a call.  The compilers generate code for calls that go here
1286 // and are patched with the real destination of the call.
1287 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1288                                            bool is_virtual,
1289                                            bool is_optimized, TRAPS) {
1290 
1291   ResourceMark rm(thread);
1292   RegisterMap cbl_map(thread, false);
1293   frame caller_frame = thread->last_frame().sender(&cbl_map);
1294 
1295   CodeBlob* caller_cb = caller_frame.cb();
1296   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1297   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1298 
1299   // make sure caller is not getting deoptimized
1300   // and removed before we are done with it.
1301   // CLEANUP - with lazy deopt shouldn't need this lock
1302   nmethodLocker caller_lock(caller_nm);
1303 
1304   // determine call info & receiver
1305   // note: a) receiver is NULL for static calls
1306   //       b) an exception is thrown if receiver is NULL for non-static calls
1307   CallInfo call_info;
1308   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1309   Handle receiver = find_callee_info(thread, invoke_code,
1310                                      call_info, CHECK_(methodHandle()));
1311   methodHandle callee_method = call_info.selected_method();
1312 
1313   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1314          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1315          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1316          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1317          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1318 
1319   assert(caller_nm->is_alive(), "It should be alive");
1320 
1321 #ifndef PRODUCT
1322   // tracing/debugging/statistics
1323   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1324                 (is_virtual) ? (&_resolve_virtual_ctr) :
1325                                (&_resolve_static_ctr);
1326   Atomic::inc(addr);
1327 
1328   if (TraceCallFixup) {
1329     ResourceMark rm(thread);
1330     tty->print("resolving %s%s (%s) call to",
1331       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1332       Bytecodes::name(invoke_code));
1333     callee_method->print_short_name(tty);
1334     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1335                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1336   }
1337 #endif
1338 
1339   // JSR 292 key invariant:
1340   // If the resolved method is a MethodHandle invoke target, the call
1341   // site must be a MethodHandle call site, because the lambda form might tail-call
1342   // leaving the stack in a state unknown to either caller or callee
1343   // TODO detune for now but we might need it again
1344 //  assert(!callee_method->is_compiled_lambda_form() ||
1345 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1346 
1347   // Compute entry points. This might require generation of C2I converter
1348   // frames, so we cannot be holding any locks here. Furthermore, the
1349   // computation of the entry points is independent of patching the call.  We
1350   // always return the entry-point, but we only patch the stub if the call has
1351   // not been deoptimized.  Return values: For a virtual call this is an
1352   // (cached_oop, destination address) pair. For a static call/optimized
1353   // virtual this is just a destination address.
1354 
1355   StaticCallInfo static_call_info;
1356   CompiledICInfo virtual_call_info;
1357 
1358   // Make sure the callee nmethod does not get deoptimized and removed before
1359   // we are done patching the code.
1360   CompiledMethod* callee = callee_method->code();
1361 
1362   if (callee != NULL) {
1363     assert(callee->is_compiled(), "must be nmethod for patching");
1364   }
1365 
1366   if (callee != NULL && !callee->is_in_use()) {
1367     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1368     callee = NULL;
1369   }
1370   nmethodLocker nl_callee(callee);
1371 #ifdef ASSERT
1372   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1373 #endif
1374 
1375   bool is_nmethod = caller_nm->is_nmethod();
1376 
1377   if (is_virtual) {
1378     Klass* receiver_klass = NULL;
1379     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1380       // If the receiver is a value type that is passed as fields, no oop is available
1381       receiver_klass = callee_method->method_holder();
1382     } else {
1383       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1384       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1385     }
1386     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1387     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1388                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1389                      CHECK_(methodHandle()));
1390   } else {
1391     // static call
1392     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1393   }
1394 
1395   // grab lock, check for deoptimization and potentially patch caller
1396   {
1397     MutexLocker ml_patch(CompiledIC_lock);
1398 
1399     // Lock blocks for safepoint during which both nmethods can change state.
1400 
1401     // Now that we are ready to patch if the Method* was redefined then
1402     // don't update call site and let the caller retry.
1403     // Don't update call site if callee nmethod was unloaded or deoptimized.
1404     // Don't update call site if callee nmethod was replaced by an other nmethod
1405     // which may happen when multiply alive nmethod (tiered compilation)
1406     // will be supported.
1407     if (!callee_method->is_old() &&
1408         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1409 #ifdef ASSERT
1410       // We must not try to patch to jump to an already unloaded method.
1411       if (dest_entry_point != 0) {
1412         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1413         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1414                "should not call unloaded nmethod");
1415       }
1416 #endif
1417       if (is_virtual) {
1418         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1419         if (inline_cache->is_clean()) {
1420           inline_cache->set_to_monomorphic(virtual_call_info);
1421         }
1422       } else {
1423         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1424         if (ssc->is_clean()) ssc->set(static_call_info);
1425       }
1426     }
1427 
1428   } // unlock CompiledIC_lock
1429 
1430   return callee_method;
1431 }
1432 
1433 
1434 // Inline caches exist only in compiled code
1435 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1436 #ifdef ASSERT
1437   RegisterMap reg_map(thread, false);
1438   frame stub_frame = thread->last_frame();
1439   assert(stub_frame.is_runtime_frame(), "sanity check");
1440   frame caller_frame = stub_frame.sender(&reg_map);
1441   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1442 #endif /* ASSERT */
1443 
1444   methodHandle callee_method;
1445   JRT_BLOCK
1446     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1447     // Return Method* through TLS
1448     thread->set_vm_result_2(callee_method());
1449   JRT_BLOCK_END
1450   // return compiled code entry point after potential safepoints
1451   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1452   return callee_method->verified_code_entry();
1453 JRT_END
1454 
1455 
1456 // Handle call site that has been made non-entrant
1457 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1458   // 6243940 We might end up in here if the callee is deoptimized
1459   // as we race to call it.  We don't want to take a safepoint if
1460   // the caller was interpreted because the caller frame will look
1461   // interpreted to the stack walkers and arguments are now
1462   // "compiled" so it is much better to make this transition
1463   // invisible to the stack walking code. The i2c path will
1464   // place the callee method in the callee_target. It is stashed
1465   // there because if we try and find the callee by normal means a
1466   // safepoint is possible and have trouble gc'ing the compiled args.
1467   RegisterMap reg_map(thread, false);
1468   frame stub_frame = thread->last_frame();
1469   assert(stub_frame.is_runtime_frame(), "sanity check");
1470   frame caller_frame = stub_frame.sender(&reg_map);
1471 
1472   if (caller_frame.is_interpreted_frame() ||
1473       caller_frame.is_entry_frame()) {
1474     Method* callee = thread->callee_target();
1475     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1476     thread->set_vm_result_2(callee);
1477     thread->set_callee_target(NULL);
1478     return callee->get_c2i_entry();
1479   }
1480 
1481   // Must be compiled to compiled path which is safe to stackwalk
1482   methodHandle callee_method;
1483   JRT_BLOCK
1484     // Force resolving of caller (if we called from compiled frame)
1485     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1486     thread->set_vm_result_2(callee_method());
1487   JRT_BLOCK_END
1488   // return compiled code entry point after potential safepoints
1489   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1490   return callee_method->verified_code_entry();
1491 JRT_END
1492 
1493 // Handle abstract method call
1494 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1495   return StubRoutines::throw_AbstractMethodError_entry();
1496 JRT_END
1497 
1498 
1499 // resolve a static call and patch code
1500 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1501   methodHandle callee_method;
1502   JRT_BLOCK
1503     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1504     thread->set_vm_result_2(callee_method());
1505   JRT_BLOCK_END
1506   // return compiled code entry point after potential safepoints
1507   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1508   return callee_method->verified_code_entry();
1509 JRT_END
1510 
1511 
1512 // resolve virtual call and update inline cache to monomorphic
1513 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1514   methodHandle callee_method;
1515   JRT_BLOCK
1516     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1517     thread->set_vm_result_2(callee_method());
1518   JRT_BLOCK_END
1519   // return compiled code entry point after potential safepoints
1520   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1521   return callee_method->verified_code_entry();
1522 JRT_END
1523 
1524 
1525 // Resolve a virtual call that can be statically bound (e.g., always
1526 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1527 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1528   methodHandle callee_method;
1529   JRT_BLOCK
1530     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1531     thread->set_vm_result_2(callee_method());
1532   JRT_BLOCK_END
1533   // return compiled code entry point after potential safepoints
1534   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1535   return callee_method->verified_code_entry();
1536 JRT_END
1537 
1538 
1539 
1540 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1541   ResourceMark rm(thread);
1542   CallInfo call_info;
1543   Bytecodes::Code bc;
1544 
1545   // receiver is NULL for static calls. An exception is thrown for NULL
1546   // receivers for non-static calls
1547   Handle receiver = find_callee_info(thread, bc, call_info,
1548                                      CHECK_(methodHandle()));
1549   // Compiler1 can produce virtual call sites that can actually be statically bound
1550   // If we fell thru to below we would think that the site was going megamorphic
1551   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1552   // we'd try and do a vtable dispatch however methods that can be statically bound
1553   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1554   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1555   // plain ic_miss) and the site will be converted to an optimized virtual call site
1556   // never to miss again. I don't believe C2 will produce code like this but if it
1557   // did this would still be the correct thing to do for it too, hence no ifdef.
1558   //
1559   if (call_info.resolved_method()->can_be_statically_bound()) {
1560     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1561     if (TraceCallFixup) {
1562       RegisterMap reg_map(thread, false);
1563       frame caller_frame = thread->last_frame().sender(&reg_map);
1564       ResourceMark rm(thread);
1565       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1566       callee_method->print_short_name(tty);
1567       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1568       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1569     }
1570     return callee_method;
1571   }
1572 
1573   methodHandle callee_method = call_info.selected_method();
1574 
1575   bool should_be_mono = false;
1576 
1577 #ifndef PRODUCT
1578   Atomic::inc(&_ic_miss_ctr);
1579 
1580   // Statistics & Tracing
1581   if (TraceCallFixup) {
1582     ResourceMark rm(thread);
1583     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1584     callee_method->print_short_name(tty);
1585     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1586   }
1587 
1588   if (ICMissHistogram) {
1589     MutexLocker m(VMStatistic_lock);
1590     RegisterMap reg_map(thread, false);
1591     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1592     // produce statistics under the lock
1593     trace_ic_miss(f.pc());
1594   }
1595 #endif
1596 
1597   // install an event collector so that when a vtable stub is created the
1598   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1599   // event can't be posted when the stub is created as locks are held
1600   // - instead the event will be deferred until the event collector goes
1601   // out of scope.
1602   JvmtiDynamicCodeEventCollector event_collector;
1603 
1604   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1605   { MutexLocker ml_patch (CompiledIC_lock);
1606     RegisterMap reg_map(thread, false);
1607     frame caller_frame = thread->last_frame().sender(&reg_map);
1608     CodeBlob* cb = caller_frame.cb();
1609     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1610     if (cb->is_compiled()) {
1611       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1612       bool should_be_mono = false;
1613       if (inline_cache->is_optimized()) {
1614         if (TraceCallFixup) {
1615           ResourceMark rm(thread);
1616           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1617           callee_method->print_short_name(tty);
1618           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1619         }
1620         should_be_mono = true;
1621       } else if (inline_cache->is_icholder_call()) {
1622         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1623         if (ic_oop != NULL) {
1624 
1625           if (receiver()->klass() == ic_oop->holder_klass()) {
1626             // This isn't a real miss. We must have seen that compiled code
1627             // is now available and we want the call site converted to a
1628             // monomorphic compiled call site.
1629             // We can't assert for callee_method->code() != NULL because it
1630             // could have been deoptimized in the meantime
1631             if (TraceCallFixup) {
1632               ResourceMark rm(thread);
1633               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1634               callee_method->print_short_name(tty);
1635               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1636             }
1637             should_be_mono = true;
1638           }
1639         }
1640       }
1641 
1642       if (should_be_mono) {
1643 
1644         // We have a path that was monomorphic but was going interpreted
1645         // and now we have (or had) a compiled entry. We correct the IC
1646         // by using a new icBuffer.
1647         CompiledICInfo info;
1648         Klass* receiver_klass = receiver()->klass();
1649         inline_cache->compute_monomorphic_entry(callee_method,
1650                                                 receiver_klass,
1651                                                 inline_cache->is_optimized(),
1652                                                 false, caller_nm->is_nmethod(),
1653                                                 info, CHECK_(methodHandle()));
1654         inline_cache->set_to_monomorphic(info);
1655       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1656         // Potential change to megamorphic
1657         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1658         if (!successful) {
1659           inline_cache->set_to_clean();
1660         }
1661       } else {
1662         // Either clean or megamorphic
1663       }
1664     } else {
1665       fatal("Unimplemented");
1666     }
1667   } // Release CompiledIC_lock
1668 
1669   return callee_method;
1670 }
1671 
1672 //
1673 // Resets a call-site in compiled code so it will get resolved again.
1674 // This routines handles both virtual call sites, optimized virtual call
1675 // sites, and static call sites. Typically used to change a call sites
1676 // destination from compiled to interpreted.
1677 //
1678 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1679   ResourceMark rm(thread);
1680   RegisterMap reg_map(thread, false);
1681   frame stub_frame = thread->last_frame();
1682   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1683   frame caller = stub_frame.sender(&reg_map);
1684 
1685   // Do nothing if the frame isn't a live compiled frame.
1686   // nmethod could be deoptimized by the time we get here
1687   // so no update to the caller is needed.
1688 
1689   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1690 
1691     address pc = caller.pc();
1692 
1693     // Check for static or virtual call
1694     bool is_static_call = false;
1695     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1696 
1697     // Default call_addr is the location of the "basic" call.
1698     // Determine the address of the call we a reresolving. With
1699     // Inline Caches we will always find a recognizable call.
1700     // With Inline Caches disabled we may or may not find a
1701     // recognizable call. We will always find a call for static
1702     // calls and for optimized virtual calls. For vanilla virtual
1703     // calls it depends on the state of the UseInlineCaches switch.
1704     //
1705     // With Inline Caches disabled we can get here for a virtual call
1706     // for two reasons:
1707     //   1 - calling an abstract method. The vtable for abstract methods
1708     //       will run us thru handle_wrong_method and we will eventually
1709     //       end up in the interpreter to throw the ame.
1710     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1711     //       call and between the time we fetch the entry address and
1712     //       we jump to it the target gets deoptimized. Similar to 1
1713     //       we will wind up in the interprter (thru a c2i with c2).
1714     //
1715     address call_addr = NULL;
1716     {
1717       // Get call instruction under lock because another thread may be
1718       // busy patching it.
1719       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1720       // Location of call instruction
1721       call_addr = caller_nm->call_instruction_address(pc);
1722     }
1723     // Make sure nmethod doesn't get deoptimized and removed until
1724     // this is done with it.
1725     // CLEANUP - with lazy deopt shouldn't need this lock
1726     nmethodLocker nmlock(caller_nm);
1727 
1728     if (call_addr != NULL) {
1729       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1730       int ret = iter.next(); // Get item
1731       if (ret) {
1732         assert(iter.addr() == call_addr, "must find call");
1733         if (iter.type() == relocInfo::static_call_type) {
1734           is_static_call = true;
1735         } else {
1736           assert(iter.type() == relocInfo::virtual_call_type ||
1737                  iter.type() == relocInfo::opt_virtual_call_type
1738                 , "unexpected relocInfo. type");
1739         }
1740       } else {
1741         assert(!UseInlineCaches, "relocation info. must exist for this address");
1742       }
1743 
1744       // Cleaning the inline cache will force a new resolve. This is more robust
1745       // than directly setting it to the new destination, since resolving of calls
1746       // is always done through the same code path. (experience shows that it
1747       // leads to very hard to track down bugs, if an inline cache gets updated
1748       // to a wrong method). It should not be performance critical, since the
1749       // resolve is only done once.
1750 
1751       bool is_nmethod = caller_nm->is_nmethod();
1752       MutexLocker ml(CompiledIC_lock);
1753       if (is_static_call) {
1754         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1755         ssc->set_to_clean();
1756       } else {
1757         // compiled, dispatched call (which used to call an interpreted method)
1758         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1759         inline_cache->set_to_clean();
1760       }
1761     }
1762   }
1763 
1764   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1765 
1766 
1767 #ifndef PRODUCT
1768   Atomic::inc(&_wrong_method_ctr);
1769 
1770   if (TraceCallFixup) {
1771     ResourceMark rm(thread);
1772     tty->print("handle_wrong_method reresolving call to");
1773     callee_method->print_short_name(tty);
1774     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1775   }
1776 #endif
1777 
1778   return callee_method;
1779 }
1780 
1781 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1782   // The faulting unsafe accesses should be changed to throw the error
1783   // synchronously instead. Meanwhile the faulting instruction will be
1784   // skipped over (effectively turning it into a no-op) and an
1785   // asynchronous exception will be raised which the thread will
1786   // handle at a later point. If the instruction is a load it will
1787   // return garbage.
1788 
1789   // Request an async exception.
1790   thread->set_pending_unsafe_access_error();
1791 
1792   // Return address of next instruction to execute.
1793   return next_pc;
1794 }
1795 
1796 #ifdef ASSERT
1797 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1798                                                                 const BasicType* sig_bt,
1799                                                                 const VMRegPair* regs) {
1800   ResourceMark rm;
1801   const int total_args_passed = method->size_of_parameters();
1802   const VMRegPair*    regs_with_member_name = regs;
1803         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1804 
1805   const int member_arg_pos = total_args_passed - 1;
1806   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1807   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1808 
1809   const bool is_outgoing = method->is_method_handle_intrinsic();
1810   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1811 
1812   for (int i = 0; i < member_arg_pos; i++) {
1813     VMReg a =    regs_with_member_name[i].first();
1814     VMReg b = regs_without_member_name[i].first();
1815     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1816   }
1817   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1818 }
1819 #endif
1820 
1821 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1822   if (destination != entry_point) {
1823     CodeBlob* callee = CodeCache::find_blob(destination);
1824     // callee == cb seems weird. It means calling interpreter thru stub.
1825     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1826       // static call or optimized virtual
1827       if (TraceCallFixup) {
1828         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1829         moop->print_short_name(tty);
1830         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1831       }
1832       return true;
1833     } else {
1834       if (TraceCallFixup) {
1835         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1836         moop->print_short_name(tty);
1837         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1838       }
1839       // assert is too strong could also be resolve destinations.
1840       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1841     }
1842   } else {
1843     if (TraceCallFixup) {
1844       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1845       moop->print_short_name(tty);
1846       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1847     }
1848   }
1849   return false;
1850 }
1851 
1852 // ---------------------------------------------------------------------------
1853 // We are calling the interpreter via a c2i. Normally this would mean that
1854 // we were called by a compiled method. However we could have lost a race
1855 // where we went int -> i2c -> c2i and so the caller could in fact be
1856 // interpreted. If the caller is compiled we attempt to patch the caller
1857 // so he no longer calls into the interpreter.
1858 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1859   Method* moop(method);
1860 
1861   address entry_point = moop->from_compiled_entry_no_trampoline();
1862 
1863   // It's possible that deoptimization can occur at a call site which hasn't
1864   // been resolved yet, in which case this function will be called from
1865   // an nmethod that has been patched for deopt and we can ignore the
1866   // request for a fixup.
1867   // Also it is possible that we lost a race in that from_compiled_entry
1868   // is now back to the i2c in that case we don't need to patch and if
1869   // we did we'd leap into space because the callsite needs to use
1870   // "to interpreter" stub in order to load up the Method*. Don't
1871   // ask me how I know this...
1872 
1873   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1874   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1875     return;
1876   }
1877 
1878   // The check above makes sure this is a nmethod.
1879   CompiledMethod* nm = cb->as_compiled_method_or_null();
1880   assert(nm, "must be");
1881 
1882   // Get the return PC for the passed caller PC.
1883   address return_pc = caller_pc + frame::pc_return_offset;
1884 
1885   // There is a benign race here. We could be attempting to patch to a compiled
1886   // entry point at the same time the callee is being deoptimized. If that is
1887   // the case then entry_point may in fact point to a c2i and we'd patch the
1888   // call site with the same old data. clear_code will set code() to NULL
1889   // at the end of it. If we happen to see that NULL then we can skip trying
1890   // to patch. If we hit the window where the callee has a c2i in the
1891   // from_compiled_entry and the NULL isn't present yet then we lose the race
1892   // and patch the code with the same old data. Asi es la vida.
1893 
1894   if (moop->code() == NULL) return;
1895 
1896   if (nm->is_in_use()) {
1897 
1898     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1899     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1900     if (NativeCall::is_call_before(return_pc)) {
1901       ResourceMark mark;
1902       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1903       //
1904       // bug 6281185. We might get here after resolving a call site to a vanilla
1905       // virtual call. Because the resolvee uses the verified entry it may then
1906       // see compiled code and attempt to patch the site by calling us. This would
1907       // then incorrectly convert the call site to optimized and its downhill from
1908       // there. If you're lucky you'll get the assert in the bugid, if not you've
1909       // just made a call site that could be megamorphic into a monomorphic site
1910       // for the rest of its life! Just another racing bug in the life of
1911       // fixup_callers_callsite ...
1912       //
1913       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1914       iter.next();
1915       assert(iter.has_current(), "must have a reloc at java call site");
1916       relocInfo::relocType typ = iter.reloc()->type();
1917       if (typ != relocInfo::static_call_type &&
1918            typ != relocInfo::opt_virtual_call_type &&
1919            typ != relocInfo::static_stub_type) {
1920         return;
1921       }
1922       address destination = call->destination();
1923       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1924         call->set_destination_mt_safe(entry_point);
1925       }
1926     }
1927   }
1928 IRT_END
1929 
1930 
1931 // same as JVM_Arraycopy, but called directly from compiled code
1932 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1933                                                 oopDesc* dest, jint dest_pos,
1934                                                 jint length,
1935                                                 JavaThread* thread)) {
1936 #ifndef PRODUCT
1937   _slow_array_copy_ctr++;
1938 #endif
1939   // Check if we have null pointers
1940   if (src == NULL || dest == NULL) {
1941     THROW(vmSymbols::java_lang_NullPointerException());
1942   }
1943   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1944   // even though the copy_array API also performs dynamic checks to ensure
1945   // that src and dest are truly arrays (and are conformable).
1946   // The copy_array mechanism is awkward and could be removed, but
1947   // the compilers don't call this function except as a last resort,
1948   // so it probably doesn't matter.
1949   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1950                                         (arrayOopDesc*)dest, dest_pos,
1951                                         length, thread);
1952 }
1953 JRT_END
1954 
1955 // The caller of generate_class_cast_message() (or one of its callers)
1956 // must use a ResourceMark in order to correctly free the result.
1957 char* SharedRuntime::generate_class_cast_message(
1958     JavaThread* thread, Klass* caster_klass) {
1959 
1960   // Get target class name from the checkcast instruction
1961   vframeStream vfst(thread, true);
1962   assert(!vfst.at_end(), "Java frame must exist");
1963   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1964   Klass* target_klass = vfst.method()->constants()->klass_at(
1965     cc.index(), thread);
1966   return generate_class_cast_message(caster_klass, target_klass);
1967 }
1968 
1969 // The caller of class_loader_and_module_name() (or one of its callers)
1970 // must use a ResourceMark in order to correctly free the result.
1971 const char* class_loader_and_module_name(Klass* klass) {
1972   const char* delim = "/";
1973   size_t delim_len = strlen(delim);
1974 
1975   const char* fqn = klass->external_name();
1976   // Length of message to return; always include FQN
1977   size_t msglen = strlen(fqn) + 1;
1978 
1979   bool has_cl_name = false;
1980   bool has_mod_name = false;
1981   bool has_version = false;
1982 
1983   // Use class loader name, if exists and not builtin
1984   const char* class_loader_name = "";
1985   ClassLoaderData* cld = klass->class_loader_data();
1986   assert(cld != NULL, "class_loader_data should not be NULL");
1987   if (!cld->is_builtin_class_loader_data()) {
1988     // If not builtin, look for name
1989     oop loader = klass->class_loader();
1990     if (loader != NULL) {
1991       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1992       if (class_loader_name_oop != NULL) {
1993         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1994         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1995           has_cl_name = true;
1996           msglen += strlen(class_loader_name) + delim_len;
1997         }
1998       }
1999     }
2000   }
2001 
2002   const char* module_name = "";
2003   const char* version = "";
2004   Klass* bottom_klass = klass->is_objArray_klass() ?
2005     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
2006   if (bottom_klass->is_instance_klass()) {
2007     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
2008     // Use module name, if exists
2009     if (module->is_named()) {
2010       has_mod_name = true;
2011       module_name = module->name()->as_C_string();
2012       msglen += strlen(module_name);
2013       // Use version if exists and is not a jdk module
2014       if (module->is_non_jdk_module() && module->version() != NULL) {
2015         has_version = true;
2016         version = module->version()->as_C_string();
2017         msglen += strlen("@") + strlen(version);
2018       }
2019     }
2020   } else {
2021     // klass is an array of primitives, so its module is java.base
2022     module_name = JAVA_BASE_NAME;
2023   }
2024 
2025   if (has_cl_name || has_mod_name) {
2026     msglen += delim_len;
2027   }
2028 
2029   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2030 
2031   // Just return the FQN if error in allocating string
2032   if (message == NULL) {
2033     return fqn;
2034   }
2035 
2036   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2037                class_loader_name,
2038                (has_cl_name) ? delim : "",
2039                (has_mod_name) ? module_name : "",
2040                (has_version) ? "@" : "",
2041                (has_version) ? version : "",
2042                (has_cl_name || has_mod_name) ? delim : "",
2043                fqn);
2044   return message;
2045 }
2046 
2047 char* SharedRuntime::generate_class_cast_message(
2048     Klass* caster_klass, Klass* target_klass) {
2049 
2050   const char* caster_name = class_loader_and_module_name(caster_klass);
2051 
2052   const char* target_name = class_loader_and_module_name(target_klass);
2053 
2054   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2055 
2056   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2057   if (message == NULL) {
2058     // Shouldn't happen, but don't cause even more problems if it does
2059     message = const_cast<char*>(caster_klass->external_name());
2060   } else {
2061     jio_snprintf(message,
2062                  msglen,
2063                  "%s cannot be cast to %s",
2064                  caster_name,
2065                  target_name);
2066   }
2067   return message;
2068 }
2069 
2070 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2071   (void) JavaThread::current()->reguard_stack();
2072 JRT_END
2073 
2074 
2075 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2076 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2077   // Disable ObjectSynchronizer::quick_enter() in default config
2078   // on AARCH64 and ARM until JDK-8153107 is resolved.
2079   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2080       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2081       !SafepointSynchronize::is_synchronizing()) {
2082     // Only try quick_enter() if we're not trying to reach a safepoint
2083     // so that the calling thread reaches the safepoint more quickly.
2084     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2085   }
2086   // NO_ASYNC required because an async exception on the state transition destructor
2087   // would leave you with the lock held and it would never be released.
2088   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2089   // and the model is that an exception implies the method failed.
2090   JRT_BLOCK_NO_ASYNC
2091   oop obj(_obj);
2092   if (PrintBiasedLockingStatistics) {
2093     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2094   }
2095   Handle h_obj(THREAD, obj);
2096   if (UseBiasedLocking) {
2097     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2098     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2099   } else {
2100     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2101   }
2102   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2103   JRT_BLOCK_END
2104 JRT_END
2105 
2106 // Handles the uncommon cases of monitor unlocking in compiled code
2107 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2108    oop obj(_obj);
2109   assert(JavaThread::current() == THREAD, "invariant");
2110   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2111   // testing was unable to ever fire the assert that guarded it so I have removed it.
2112   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2113 #undef MIGHT_HAVE_PENDING
2114 #ifdef MIGHT_HAVE_PENDING
2115   // Save and restore any pending_exception around the exception mark.
2116   // While the slow_exit must not throw an exception, we could come into
2117   // this routine with one set.
2118   oop pending_excep = NULL;
2119   const char* pending_file;
2120   int pending_line;
2121   if (HAS_PENDING_EXCEPTION) {
2122     pending_excep = PENDING_EXCEPTION;
2123     pending_file  = THREAD->exception_file();
2124     pending_line  = THREAD->exception_line();
2125     CLEAR_PENDING_EXCEPTION;
2126   }
2127 #endif /* MIGHT_HAVE_PENDING */
2128 
2129   {
2130     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2131     EXCEPTION_MARK;
2132     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2133   }
2134 
2135 #ifdef MIGHT_HAVE_PENDING
2136   if (pending_excep != NULL) {
2137     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2138   }
2139 #endif /* MIGHT_HAVE_PENDING */
2140 JRT_END
2141 
2142 #ifndef PRODUCT
2143 
2144 void SharedRuntime::print_statistics() {
2145   ttyLocker ttyl;
2146   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2147 
2148   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2149 
2150   SharedRuntime::print_ic_miss_histogram();
2151 
2152   if (CountRemovableExceptions) {
2153     if (_nof_removable_exceptions > 0) {
2154       Unimplemented(); // this counter is not yet incremented
2155       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2156     }
2157   }
2158 
2159   // Dump the JRT_ENTRY counters
2160   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2161   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2162   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2163   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2164   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2165   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2166   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2167 
2168   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2169   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2170   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2171   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2172   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2173 
2174   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2175   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2176   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2177   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2178   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2179   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2180   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2181   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2182   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2183   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2184   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2185   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2186   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2187   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2188   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2189   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2190 
2191   AdapterHandlerLibrary::print_statistics();
2192 
2193   if (xtty != NULL)  xtty->tail("statistics");
2194 }
2195 
2196 inline double percent(int x, int y) {
2197   return 100.0 * x / MAX2(y, 1);
2198 }
2199 
2200 class MethodArityHistogram {
2201  public:
2202   enum { MAX_ARITY = 256 };
2203  private:
2204   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2205   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2206   static int _max_arity;                      // max. arity seen
2207   static int _max_size;                       // max. arg size seen
2208 
2209   static void add_method_to_histogram(nmethod* nm) {
2210     Method* m = nm->method();
2211     ArgumentCount args(m->signature());
2212     int arity   = args.size() + (m->is_static() ? 0 : 1);
2213     int argsize = m->size_of_parameters();
2214     arity   = MIN2(arity, MAX_ARITY-1);
2215     argsize = MIN2(argsize, MAX_ARITY-1);
2216     int count = nm->method()->compiled_invocation_count();
2217     _arity_histogram[arity]  += count;
2218     _size_histogram[argsize] += count;
2219     _max_arity = MAX2(_max_arity, arity);
2220     _max_size  = MAX2(_max_size, argsize);
2221   }
2222 
2223   void print_histogram_helper(int n, int* histo, const char* name) {
2224     const int N = MIN2(5, n);
2225     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2226     double sum = 0;
2227     double weighted_sum = 0;
2228     int i;
2229     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2230     double rest = sum;
2231     double percent = sum / 100;
2232     for (i = 0; i <= N; i++) {
2233       rest -= histo[i];
2234       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2235     }
2236     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2237     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2238   }
2239 
2240   void print_histogram() {
2241     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2242     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2243     tty->print_cr("\nSame for parameter size (in words):");
2244     print_histogram_helper(_max_size, _size_histogram, "size");
2245     tty->cr();
2246   }
2247 
2248  public:
2249   MethodArityHistogram() {
2250     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2251     _max_arity = _max_size = 0;
2252     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2253     CodeCache::nmethods_do(add_method_to_histogram);
2254     print_histogram();
2255   }
2256 };
2257 
2258 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2259 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2260 int MethodArityHistogram::_max_arity;
2261 int MethodArityHistogram::_max_size;
2262 
2263 void SharedRuntime::print_call_statistics(int comp_total) {
2264   tty->print_cr("Calls from compiled code:");
2265   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2266   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2267   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2268   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2269   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2270   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2271   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2272   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2273   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2274   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2275   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2276   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2277   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2278   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2279   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2280   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2281   tty->cr();
2282   tty->print_cr("Note 1: counter updates are not MT-safe.");
2283   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2284   tty->print_cr("        %% in nested categories are relative to their category");
2285   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2286   tty->cr();
2287 
2288   MethodArityHistogram h;
2289 }
2290 #endif
2291 
2292 
2293 // A simple wrapper class around the calling convention information
2294 // that allows sharing of adapters for the same calling convention.
2295 class AdapterFingerPrint : public CHeapObj<mtCode> {
2296  private:
2297   enum {
2298     _basic_type_bits = 4,
2299     _basic_type_mask = right_n_bits(_basic_type_bits),
2300     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2301     _compact_int_count = 3
2302   };
2303   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2304   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2305 
2306   union {
2307     int  _compact[_compact_int_count];
2308     int* _fingerprint;
2309   } _value;
2310   int _length; // A negative length indicates the fingerprint is in the compact form,
2311                // Otherwise _value._fingerprint is the array.
2312 
2313   // Remap BasicTypes that are handled equivalently by the adapters.
2314   // These are correct for the current system but someday it might be
2315   // necessary to make this mapping platform dependent.
2316   static int adapter_encoding(BasicType in, bool is_valuetype) {
2317     switch (in) {
2318       case T_BOOLEAN:
2319       case T_BYTE:
2320       case T_SHORT:
2321       case T_CHAR: {
2322         if (is_valuetype) {
2323           // Do not widen value type field types
2324           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2325           return in;
2326         } else {
2327           // They are all promoted to T_INT in the calling convention
2328           return T_INT;
2329         }
2330       }
2331 
2332       case T_VALUETYPE: {
2333         // If value types are passed as fields, return 'in' to differentiate
2334         // between a T_VALUETYPE and a T_OBJECT in the signature.
2335         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2336       }
2337       case T_VALUETYPEPTR:
2338       case T_OBJECT:
2339       case T_ARRAY:
2340         // In other words, we assume that any register good enough for
2341         // an int or long is good enough for a managed pointer.
2342 #ifdef _LP64
2343         return T_LONG;
2344 #else
2345         return T_INT;
2346 #endif
2347 
2348       case T_INT:
2349       case T_LONG:
2350       case T_FLOAT:
2351       case T_DOUBLE:
2352       case T_VOID:
2353         return in;
2354 
2355       default:
2356         ShouldNotReachHere();
2357         return T_CONFLICT;
2358     }
2359   }
2360 
2361  public:
2362   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2363     // The fingerprint is based on the BasicType signature encoded
2364     // into an array of ints with eight entries per int.
2365     int* ptr;
2366     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2367     if (len <= _compact_int_count) {
2368       assert(_compact_int_count == 3, "else change next line");
2369       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2370       // Storing the signature encoded as signed chars hits about 98%
2371       // of the time.
2372       _length = -len;
2373       ptr = _value._compact;
2374     } else {
2375       _length = len;
2376       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2377       ptr = _value._fingerprint;
2378     }
2379 
2380     // Now pack the BasicTypes with 8 per int
2381     int sig_index = 0;
2382     BasicType prev_sbt = T_ILLEGAL;
2383     int vt_count = 0;
2384     for (int index = 0; index < len; index++) {
2385       int value = 0;
2386       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2387         int bt = 0;
2388         if (sig_index < total_args_passed) {
2389           BasicType sbt = sig_bt[sig_index++];
2390           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2391             // Found start of value type in signature
2392             vt_count++;
2393           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2394                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2395             // Found end of value type in signature
2396             vt_count--;
2397             assert(vt_count >= 0, "invalid vt_count");
2398           }
2399           bt = adapter_encoding(sbt, vt_count > 0);
2400           prev_sbt = sbt;
2401         }
2402         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2403         value = (value << _basic_type_bits) | bt;
2404       }
2405       ptr[index] = value;
2406     }
2407     assert(vt_count == 0, "invalid vt_count");
2408   }
2409 
2410   ~AdapterFingerPrint() {
2411     if (_length > 0) {
2412       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2413     }
2414   }
2415 
2416   int value(int index) {
2417     if (_length < 0) {
2418       return _value._compact[index];
2419     }
2420     return _value._fingerprint[index];
2421   }
2422   int length() {
2423     if (_length < 0) return -_length;
2424     return _length;
2425   }
2426 
2427   bool is_compact() {
2428     return _length <= 0;
2429   }
2430 
2431   unsigned int compute_hash() {
2432     int hash = 0;
2433     for (int i = 0; i < length(); i++) {
2434       int v = value(i);
2435       hash = (hash << 8) ^ v ^ (hash >> 5);
2436     }
2437     return (unsigned int)hash;
2438   }
2439 
2440   const char* as_string() {
2441     stringStream st;
2442     st.print("0x");
2443     for (int i = 0; i < length(); i++) {
2444       st.print("%08x", value(i));
2445     }
2446     return st.as_string();
2447   }
2448 
2449   bool equals(AdapterFingerPrint* other) {
2450     if (other->_length != _length) {
2451       return false;
2452     }
2453     if (_length < 0) {
2454       assert(_compact_int_count == 3, "else change next line");
2455       return _value._compact[0] == other->_value._compact[0] &&
2456              _value._compact[1] == other->_value._compact[1] &&
2457              _value._compact[2] == other->_value._compact[2];
2458     } else {
2459       for (int i = 0; i < _length; i++) {
2460         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2461           return false;
2462         }
2463       }
2464     }
2465     return true;
2466   }
2467 };
2468 
2469 
2470 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2471 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2472   friend class AdapterHandlerTableIterator;
2473 
2474  private:
2475 
2476 #ifndef PRODUCT
2477   static int _lookups; // number of calls to lookup
2478   static int _buckets; // number of buckets checked
2479   static int _equals;  // number of buckets checked with matching hash
2480   static int _hits;    // number of successful lookups
2481   static int _compact; // number of equals calls with compact signature
2482 #endif
2483 
2484   AdapterHandlerEntry* bucket(int i) {
2485     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2486   }
2487 
2488  public:
2489   AdapterHandlerTable()
2490     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2491 
2492   // Create a new entry suitable for insertion in the table
2493   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2494     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2495     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2496     if (DumpSharedSpaces) {
2497       ((CDSAdapterHandlerEntry*)entry)->init();
2498     }
2499     return entry;
2500   }
2501 
2502   // Insert an entry into the table
2503   void add(AdapterHandlerEntry* entry) {
2504     int index = hash_to_index(entry->hash());
2505     add_entry(index, entry);
2506   }
2507 
2508   void free_entry(AdapterHandlerEntry* entry) {
2509     entry->deallocate();
2510     BasicHashtable<mtCode>::free_entry(entry);
2511   }
2512 
2513   // Find a entry with the same fingerprint if it exists
2514   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2515     NOT_PRODUCT(_lookups++);
2516     AdapterFingerPrint fp(total_args_passed, sig_bt);
2517     unsigned int hash = fp.compute_hash();
2518     int index = hash_to_index(hash);
2519     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2520       NOT_PRODUCT(_buckets++);
2521       if (e->hash() == hash) {
2522         NOT_PRODUCT(_equals++);
2523         if (fp.equals(e->fingerprint())) {
2524 #ifndef PRODUCT
2525           if (fp.is_compact()) _compact++;
2526           _hits++;
2527 #endif
2528           return e;
2529         }
2530       }
2531     }
2532     return NULL;
2533   }
2534 
2535 #ifndef PRODUCT
2536   void print_statistics() {
2537     ResourceMark rm;
2538     int longest = 0;
2539     int empty = 0;
2540     int total = 0;
2541     int nonempty = 0;
2542     for (int index = 0; index < table_size(); index++) {
2543       int count = 0;
2544       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2545         count++;
2546       }
2547       if (count != 0) nonempty++;
2548       if (count == 0) empty++;
2549       if (count > longest) longest = count;
2550       total += count;
2551     }
2552     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2553                   empty, longest, total, total / (double)nonempty);
2554     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2555                   _lookups, _buckets, _equals, _hits, _compact);
2556   }
2557 #endif
2558 };
2559 
2560 
2561 #ifndef PRODUCT
2562 
2563 int AdapterHandlerTable::_lookups;
2564 int AdapterHandlerTable::_buckets;
2565 int AdapterHandlerTable::_equals;
2566 int AdapterHandlerTable::_hits;
2567 int AdapterHandlerTable::_compact;
2568 
2569 #endif
2570 
2571 class AdapterHandlerTableIterator : public StackObj {
2572  private:
2573   AdapterHandlerTable* _table;
2574   int _index;
2575   AdapterHandlerEntry* _current;
2576 
2577   void scan() {
2578     while (_index < _table->table_size()) {
2579       AdapterHandlerEntry* a = _table->bucket(_index);
2580       _index++;
2581       if (a != NULL) {
2582         _current = a;
2583         return;
2584       }
2585     }
2586   }
2587 
2588  public:
2589   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2590     scan();
2591   }
2592   bool has_next() {
2593     return _current != NULL;
2594   }
2595   AdapterHandlerEntry* next() {
2596     if (_current != NULL) {
2597       AdapterHandlerEntry* result = _current;
2598       _current = _current->next();
2599       if (_current == NULL) scan();
2600       return result;
2601     } else {
2602       return NULL;
2603     }
2604   }
2605 };
2606 
2607 
2608 // ---------------------------------------------------------------------------
2609 // Implementation of AdapterHandlerLibrary
2610 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2611 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2612 const int AdapterHandlerLibrary_size = 16*K;
2613 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2614 
2615 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2616   // Should be called only when AdapterHandlerLibrary_lock is active.
2617   if (_buffer == NULL) // Initialize lazily
2618       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2619   return _buffer;
2620 }
2621 
2622 extern "C" void unexpected_adapter_call() {
2623   ShouldNotCallThis();
2624 }
2625 
2626 void AdapterHandlerLibrary::initialize() {
2627   if (_adapters != NULL) return;
2628   _adapters = new AdapterHandlerTable();
2629 
2630   // Create a special handler for abstract methods.  Abstract methods
2631   // are never compiled so an i2c entry is somewhat meaningless, but
2632   // throw AbstractMethodError just in case.
2633   // Pass wrong_method_abstract for the c2i transitions to return
2634   // AbstractMethodError for invalid invocations.
2635   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2636   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2637                                                               StubRoutines::throw_AbstractMethodError_entry(),
2638                                                               wrong_method_abstract, wrong_method_abstract);
2639 }
2640 
2641 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2642                                                       address i2c_entry,
2643                                                       address c2i_entry,
2644                                                       address c2i_unverified_entry,
2645                                                       Symbol* sig_extended) {
2646   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2647 }
2648 
2649 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2650   AdapterHandlerEntry* entry = get_adapter0(method);
2651   if (method->is_shared()) {
2652     // See comments around Method::link_method()
2653     MutexLocker mu(AdapterHandlerLibrary_lock);
2654     if (method->adapter() == NULL) {
2655       method->update_adapter_trampoline(entry);
2656     }
2657     address trampoline = method->from_compiled_entry();
2658     if (*(int*)trampoline == 0) {
2659       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2660       MacroAssembler _masm(&buffer);
2661       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2662       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2663 
2664       if (PrintInterpreter) {
2665         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2666       }
2667     }
2668   }
2669 
2670   return entry;
2671 }
2672 
2673 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2674   // Use customized signature handler.  Need to lock around updates to
2675   // the AdapterHandlerTable (it is not safe for concurrent readers
2676   // and a single writer: this could be fixed if it becomes a
2677   // problem).
2678 
2679   ResourceMark rm;
2680 
2681   NOT_PRODUCT(int insts_size = 0);
2682   AdapterBlob* new_adapter = NULL;
2683   AdapterHandlerEntry* entry = NULL;
2684   AdapterFingerPrint* fingerprint = NULL;
2685   {
2686     MutexLocker mu(AdapterHandlerLibrary_lock);
2687     // make sure data structure is initialized
2688     initialize();
2689 
2690     if (method->is_abstract()) {
2691       return _abstract_method_handler;
2692     }
2693 
2694     // Fill in the signature array, for the calling-convention call.
2695     GrowableArray<SigEntry> sig_extended;
2696     {
2697       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2698       Thread* THREAD = Thread::current();
2699       Klass* holder = method->method_holder();
2700       GrowableArray<BasicType> sig_bt_tmp;
2701 
2702       int i = 0;
2703       if (!method->is_static()) {  // Pass in receiver first
2704         if (ValueTypePassFieldsAsArgs && holder->is_value()) {
2705           ValueKlass* vk = ValueKlass::cast(holder);
2706           if (vk == SystemDictionary::___Value_klass()) {
2707             // If the holder of the method is __Value, we must pass a
2708             // reference.
2709             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2710           } else {
2711             const Array<SigEntry>* sig_vk = vk->extended_sig();
2712             sig_extended.appendAll(sig_vk);
2713           }
2714         } else {
2715           sig_extended.push(SigEntry(T_OBJECT));
2716         }
2717       }
2718       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2719         if (ValueTypePassFieldsAsArgs && ss.type() == T_VALUETYPE) {
2720           Symbol* name = ss.as_symbol_or_null();
2721           assert(name != NULL, "should not be null");
2722           if (name == vmSymbols::java_lang____Value()) {
2723             assert(method->is_compiled_lambda_form() || method->is_method_handle_intrinsic(),
2724                    "should not use __Value for a value type argument");
2725             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2726           } else {
2727             // Method handle intrinsics with a __Value argument may be created during
2728             // compilation. Only do a full system dictionary lookup if the argument name
2729             // is not __Value, to avoid lookups from the compiler thread.
2730             Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2731                                    Handle(THREAD, holder->protection_domain()),
2732                                    SignatureStream::ReturnNull, THREAD);
2733             assert(k != NULL && !HAS_PENDING_EXCEPTION, "can resolve klass?");
2734             const Array<SigEntry>* sig_vk = ValueKlass::cast(k)->extended_sig();
2735             sig_extended.appendAll(sig_vk);
2736           }
2737         } else {
2738           sig_extended.push(SigEntry(ss.type()));
2739           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2740             sig_extended.push(SigEntry(T_VOID));
2741           }
2742         }
2743       }
2744     }
2745 
2746     int total_args_passed_cc = ValueTypePassFieldsAsArgs ? SigEntry::count_fields(sig_extended) : sig_extended.length();
2747     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2748     SigEntry::fill_sig_bt(sig_extended, sig_bt_cc, total_args_passed_cc, ValueTypePassFieldsAsArgs);
2749 
2750     int total_args_passed_fp = sig_extended.length();
2751     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2752     for (int i = 0; i < sig_extended.length(); i++) {
2753       sig_bt_fp[i] = sig_extended.at(i)._bt;
2754     }
2755 
2756     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2757 
2758     // Lookup method signature's fingerprint
2759     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2760 
2761 #ifdef ASSERT
2762     AdapterHandlerEntry* shared_entry = NULL;
2763     // Start adapter sharing verification only after the VM is booted.
2764     if (VerifyAdapterSharing && (entry != NULL)) {
2765       shared_entry = entry;
2766       entry = NULL;
2767     }
2768 #endif
2769 
2770     if (entry != NULL) {
2771       return entry;
2772     }
2773 
2774     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2775     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2776 
2777     // Make a C heap allocated version of the fingerprint to store in the adapter
2778     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2779 
2780     // StubRoutines::code2() is initialized after this function can be called. As a result,
2781     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2782     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2783     // stub that ensure that an I2C stub is called from an interpreter frame.
2784     bool contains_all_checks = StubRoutines::code2() != NULL;
2785 
2786     // Create I2C & C2I handlers
2787     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2788     if (buf != NULL) {
2789       CodeBuffer buffer(buf);
2790       short buffer_locs[20];
2791       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2792                                              sizeof(buffer_locs)/sizeof(relocInfo));
2793 
2794       MacroAssembler _masm(&buffer);
2795       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2796                                                      comp_args_on_stack,
2797                                                      sig_extended,
2798                                                      regs,
2799                                                      fingerprint,
2800                                                      new_adapter);
2801 #ifdef ASSERT
2802       if (VerifyAdapterSharing) {
2803         if (shared_entry != NULL) {
2804           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2805           // Release the one just created and return the original
2806           _adapters->free_entry(entry);
2807           return shared_entry;
2808         } else  {
2809           entry->save_code(buf->code_begin(), buffer.insts_size());
2810         }
2811       }
2812 #endif
2813 
2814       NOT_PRODUCT(insts_size = buffer.insts_size());
2815     }
2816     if (new_adapter == NULL) {
2817       // CodeCache is full, disable compilation
2818       // Ought to log this but compile log is only per compile thread
2819       // and we're some non descript Java thread.
2820       return NULL; // Out of CodeCache space
2821     }
2822     entry->relocate(new_adapter->content_begin());
2823 #ifndef PRODUCT
2824     // debugging suppport
2825     if (PrintAdapterHandlers || PrintStubCode) {
2826       ttyLocker ttyl;
2827       entry->print_adapter_on(tty);
2828       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2829                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2830                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2831       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2832       if (Verbose || PrintStubCode) {
2833         address first_pc = entry->base_address();
2834         if (first_pc != NULL) {
2835           Disassembler::decode(first_pc, first_pc + insts_size);
2836           tty->cr();
2837         }
2838       }
2839     }
2840 #endif
2841     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2842     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2843     if (contains_all_checks || !VerifyAdapterCalls) {
2844       _adapters->add(entry);
2845     }
2846   }
2847   // Outside of the lock
2848   if (new_adapter != NULL) {
2849     char blob_id[256];
2850     jio_snprintf(blob_id,
2851                  sizeof(blob_id),
2852                  "%s(%s)@" PTR_FORMAT,
2853                  new_adapter->name(),
2854                  fingerprint->as_string(),
2855                  new_adapter->content_begin());
2856     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2857 
2858     if (JvmtiExport::should_post_dynamic_code_generated()) {
2859       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2860     }
2861   }
2862   return entry;
2863 }
2864 
2865 address AdapterHandlerEntry::base_address() {
2866   address base = _i2c_entry;
2867   if (base == NULL)  base = _c2i_entry;
2868   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2869   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2870   return base;
2871 }
2872 
2873 void AdapterHandlerEntry::relocate(address new_base) {
2874   address old_base = base_address();
2875   assert(old_base != NULL, "");
2876   ptrdiff_t delta = new_base - old_base;
2877   if (_i2c_entry != NULL)
2878     _i2c_entry += delta;
2879   if (_c2i_entry != NULL)
2880     _c2i_entry += delta;
2881   if (_c2i_unverified_entry != NULL)
2882     _c2i_unverified_entry += delta;
2883   assert(base_address() == new_base, "");
2884 }
2885 
2886 
2887 void AdapterHandlerEntry::deallocate() {
2888   delete _fingerprint;
2889 #ifdef ASSERT
2890   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2891 #endif
2892 }
2893 
2894 
2895 #ifdef ASSERT
2896 // Capture the code before relocation so that it can be compared
2897 // against other versions.  If the code is captured after relocation
2898 // then relative instructions won't be equivalent.
2899 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2900   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2901   _saved_code_length = length;
2902   memcpy(_saved_code, buffer, length);
2903 }
2904 
2905 
2906 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2907   if (length != _saved_code_length) {
2908     return false;
2909   }
2910 
2911   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2912 }
2913 #endif
2914 
2915 
2916 /**
2917  * Create a native wrapper for this native method.  The wrapper converts the
2918  * Java-compiled calling convention to the native convention, handles
2919  * arguments, and transitions to native.  On return from the native we transition
2920  * back to java blocking if a safepoint is in progress.
2921  */
2922 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2923   ResourceMark rm;
2924   nmethod* nm = NULL;
2925 
2926   assert(method->is_native(), "must be native");
2927   assert(method->is_method_handle_intrinsic() ||
2928          method->has_native_function(), "must have something valid to call!");
2929 
2930   {
2931     // Perform the work while holding the lock, but perform any printing outside the lock
2932     MutexLocker mu(AdapterHandlerLibrary_lock);
2933     // See if somebody beat us to it
2934     if (method->code() != NULL) {
2935       return;
2936     }
2937 
2938     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2939     assert(compile_id > 0, "Must generate native wrapper");
2940 
2941 
2942     ResourceMark rm;
2943     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2944     if (buf != NULL) {
2945       CodeBuffer buffer(buf);
2946       double locs_buf[20];
2947       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2948       MacroAssembler _masm(&buffer);
2949 
2950       // Fill in the signature array, for the calling-convention call.
2951       const int total_args_passed = method->size_of_parameters();
2952 
2953       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2954       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2955       int i=0;
2956       if (!method->is_static())  // Pass in receiver first
2957         sig_bt[i++] = T_OBJECT;
2958       SignatureStream ss(method->signature());
2959       for (; !ss.at_return_type(); ss.next()) {
2960         BasicType bt = ss.type();
2961         if (bt == T_VALUETYPE) {
2962 #ifdef ASSERT
2963           Thread* THREAD = Thread::current();
2964           // Avoid class loading from compiler thread
2965           if (THREAD->can_call_java()) {
2966             Handle class_loader(THREAD, method->method_holder()->class_loader());
2967             Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2968             Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2969             assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
2970             assert(k == SystemDictionary::___Value_klass(), "other values not supported");
2971           }
2972 #endif
2973           bt = T_VALUETYPEPTR;
2974         }
2975         sig_bt[i++] = bt;  // Collect remaining bits of signature
2976         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2977           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2978       }
2979       assert(i == total_args_passed, "");
2980       BasicType ret_type = ss.type();
2981 
2982       // Now get the compiled-Java layout as input (or output) arguments.
2983       // NOTE: Stubs for compiled entry points of method handle intrinsics
2984       // are just trampolines so the argument registers must be outgoing ones.
2985       const bool is_outgoing = method->is_method_handle_intrinsic();
2986       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2987 
2988       // Generate the compiled-to-native wrapper code
2989       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2990 
2991       if (nm != NULL) {
2992         method->set_code(method, nm);
2993 
2994         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2995         if (directive->PrintAssemblyOption) {
2996           nm->print_code();
2997         }
2998         DirectivesStack::release(directive);
2999       }
3000     }
3001   } // Unlock AdapterHandlerLibrary_lock
3002 
3003 
3004   // Install the generated code.
3005   if (nm != NULL) {
3006     const char *msg = method->is_static() ? "(static)" : "";
3007     CompileTask::print_ul(nm, msg);
3008     if (PrintCompilation) {
3009       ttyLocker ttyl;
3010       CompileTask::print(tty, nm, msg);
3011     }
3012     nm->post_compiled_method_load_event();
3013   }
3014 }
3015 
3016 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3017   assert(thread == JavaThread::current(), "must be");
3018   // The code is about to enter a JNI lazy critical native method and
3019   // _needs_gc is true, so if this thread is already in a critical
3020   // section then just return, otherwise this thread should block
3021   // until needs_gc has been cleared.
3022   if (thread->in_critical()) {
3023     return;
3024   }
3025   // Lock and unlock a critical section to give the system a chance to block
3026   GCLocker::lock_critical(thread);
3027   GCLocker::unlock_critical(thread);
3028 JRT_END
3029 
3030 // -------------------------------------------------------------------------
3031 // Java-Java calling convention
3032 // (what you use when Java calls Java)
3033 
3034 //------------------------------name_for_receiver----------------------------------
3035 // For a given signature, return the VMReg for parameter 0.
3036 VMReg SharedRuntime::name_for_receiver() {
3037   VMRegPair regs;
3038   BasicType sig_bt = T_OBJECT;
3039   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3040   // Return argument 0 register.  In the LP64 build pointers
3041   // take 2 registers, but the VM wants only the 'main' name.
3042   return regs.first();
3043 }
3044 
3045 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3046   // This method is returning a data structure allocating as a
3047   // ResourceObject, so do not put any ResourceMarks in here.
3048   char *s = sig->as_C_string();
3049   int len = (int)strlen(s);
3050   s++; len--;                   // Skip opening paren
3051 
3052   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3053   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3054   int cnt = 0;
3055   if (has_receiver) {
3056     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3057   }
3058 
3059   while (*s != ')') {          // Find closing right paren
3060     switch (*s++) {            // Switch on signature character
3061     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3062     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3063     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3064     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3065     case 'I': sig_bt[cnt++] = T_INT;     break;
3066     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3067     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3068     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3069     case 'V': sig_bt[cnt++] = T_VOID;    break;
3070     case 'Q':
3071     case 'L':                   // Oop
3072       while (*s++ != ';');   // Skip signature
3073       sig_bt[cnt++] = T_OBJECT;
3074       break;
3075     case '[': {                 // Array
3076       do {                      // Skip optional size
3077         while (*s >= '0' && *s <= '9') s++;
3078       } while (*s++ == '[');   // Nested arrays?
3079       // Skip element type
3080       if (s[-1] == 'L' || s[-1] == 'Q')
3081         while (*s++ != ';'); // Skip signature
3082       sig_bt[cnt++] = T_ARRAY;
3083       break;
3084     }
3085     default : ShouldNotReachHere();
3086     }
3087   }
3088 
3089   if (has_appendix) {
3090     sig_bt[cnt++] = T_OBJECT;
3091   }
3092 
3093   assert(cnt < 256, "grow table size");
3094 
3095   int comp_args_on_stack;
3096   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3097 
3098   // the calling convention doesn't count out_preserve_stack_slots so
3099   // we must add that in to get "true" stack offsets.
3100 
3101   if (comp_args_on_stack) {
3102     for (int i = 0; i < cnt; i++) {
3103       VMReg reg1 = regs[i].first();
3104       if (reg1->is_stack()) {
3105         // Yuck
3106         reg1 = reg1->bias(out_preserve_stack_slots());
3107       }
3108       VMReg reg2 = regs[i].second();
3109       if (reg2->is_stack()) {
3110         // Yuck
3111         reg2 = reg2->bias(out_preserve_stack_slots());
3112       }
3113       regs[i].set_pair(reg2, reg1);
3114     }
3115   }
3116 
3117   // results
3118   *arg_size = cnt;
3119   return regs;
3120 }
3121 
3122 // OSR Migration Code
3123 //
3124 // This code is used convert interpreter frames into compiled frames.  It is
3125 // called from very start of a compiled OSR nmethod.  A temp array is
3126 // allocated to hold the interesting bits of the interpreter frame.  All
3127 // active locks are inflated to allow them to move.  The displaced headers and
3128 // active interpreter locals are copied into the temp buffer.  Then we return
3129 // back to the compiled code.  The compiled code then pops the current
3130 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3131 // copies the interpreter locals and displaced headers where it wants.
3132 // Finally it calls back to free the temp buffer.
3133 //
3134 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3135 
3136 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3137 
3138   //
3139   // This code is dependent on the memory layout of the interpreter local
3140   // array and the monitors. On all of our platforms the layout is identical
3141   // so this code is shared. If some platform lays the their arrays out
3142   // differently then this code could move to platform specific code or
3143   // the code here could be modified to copy items one at a time using
3144   // frame accessor methods and be platform independent.
3145 
3146   frame fr = thread->last_frame();
3147   assert(fr.is_interpreted_frame(), "");
3148   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3149 
3150   // Figure out how many monitors are active.
3151   int active_monitor_count = 0;
3152   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3153        kptr < fr.interpreter_frame_monitor_begin();
3154        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3155     if (kptr->obj() != NULL) active_monitor_count++;
3156   }
3157 
3158   // QQQ we could place number of active monitors in the array so that compiled code
3159   // could double check it.
3160 
3161   Method* moop = fr.interpreter_frame_method();
3162   int max_locals = moop->max_locals();
3163   // Allocate temp buffer, 1 word per local & 2 per active monitor
3164   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3165   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3166 
3167   // Copy the locals.  Order is preserved so that loading of longs works.
3168   // Since there's no GC I can copy the oops blindly.
3169   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3170   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3171                        (HeapWord*)&buf[0],
3172                        max_locals);
3173 
3174   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3175   int i = max_locals;
3176   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3177        kptr2 < fr.interpreter_frame_monitor_begin();
3178        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3179     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3180       BasicLock *lock = kptr2->lock();
3181       // Inflate so the displaced header becomes position-independent
3182       if (lock->displaced_header()->is_unlocked())
3183         ObjectSynchronizer::inflate_helper(kptr2->obj());
3184       // Now the displaced header is free to move
3185       buf[i++] = (intptr_t)lock->displaced_header();
3186       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3187     }
3188   }
3189   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3190 
3191   return buf;
3192 JRT_END
3193 
3194 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3195   FREE_C_HEAP_ARRAY(intptr_t, buf);
3196 JRT_END
3197 
3198 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3199   AdapterHandlerTableIterator iter(_adapters);
3200   while (iter.has_next()) {
3201     AdapterHandlerEntry* a = iter.next();
3202     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3203   }
3204   return false;
3205 }
3206 
3207 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3208   AdapterHandlerTableIterator iter(_adapters);
3209   while (iter.has_next()) {
3210     AdapterHandlerEntry* a = iter.next();
3211     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3212       st->print("Adapter for signature: ");
3213       a->print_adapter_on(tty);
3214       return;
3215     }
3216   }
3217   assert(false, "Should have found handler");
3218 }
3219 
3220 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3221   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3222                p2i(this), fingerprint()->as_string(),
3223                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3224 
3225 }
3226 
3227 #if INCLUDE_CDS
3228 
3229 void CDSAdapterHandlerEntry::init() {
3230   assert(DumpSharedSpaces, "used during dump time only");
3231   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3232   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3233 };
3234 
3235 #endif // INCLUDE_CDS
3236 
3237 
3238 #ifndef PRODUCT
3239 
3240 void AdapterHandlerLibrary::print_statistics() {
3241   _adapters->print_statistics();
3242 }
3243 
3244 #endif /* PRODUCT */
3245 
3246 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3247   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3248   if (thread->stack_reserved_zone_disabled()) {
3249   thread->enable_stack_reserved_zone();
3250   }
3251   thread->set_reserved_stack_activation(thread->stack_base());
3252 JRT_END
3253 
3254 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3255   ResourceMark rm(thread);
3256   frame activation;
3257   CompiledMethod* nm = NULL;
3258   int count = 1;
3259 
3260   assert(fr.is_java_frame(), "Must start on Java frame");
3261 
3262   while (true) {
3263     Method* method = NULL;
3264     bool found = false;
3265     if (fr.is_interpreted_frame()) {
3266       method = fr.interpreter_frame_method();
3267       if (method != NULL && method->has_reserved_stack_access()) {
3268         found = true;
3269       }
3270     } else {
3271       CodeBlob* cb = fr.cb();
3272       if (cb != NULL && cb->is_compiled()) {
3273         nm = cb->as_compiled_method();
3274         method = nm->method();
3275         // scope_desc_near() must be used, instead of scope_desc_at() because on
3276         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3277         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3278           method = sd->method();
3279           if (method != NULL && method->has_reserved_stack_access()) {
3280             found = true;
3281       }
3282     }
3283       }
3284     }
3285     if (found) {
3286       activation = fr;
3287       warning("Potentially dangerous stack overflow in "
3288               "ReservedStackAccess annotated method %s [%d]",
3289               method->name_and_sig_as_C_string(), count++);
3290       EventReservedStackActivation event;
3291       if (event.should_commit()) {
3292         event.set_method(method);
3293         event.commit();
3294       }
3295     }
3296     if (fr.is_first_java_frame()) {
3297       break;
3298     } else {
3299       fr = fr.java_sender();
3300     }
3301   }
3302   return activation;
3303 }
3304 
3305 // We are at a compiled code to interpreter call. We need backing
3306 // buffers for all value type arguments. Allocate an object array to
3307 // hold them (convenient because once we're done with it we don't have
3308 // to worry about freeing it).
3309 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3310 {
3311   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3312   ResourceMark rm;
3313   JavaThread* THREAD = thread;
3314   methodHandle callee(callee_method);
3315 
3316   int nb_slots = 0;
3317   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3318   if (has_value_receiver) {
3319     nb_slots++;
3320   }
3321   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3322   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3323   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3324     if (ss.type() == T_VALUETYPE) {
3325       nb_slots++;
3326     }
3327   }
3328   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3329   objArrayHandle array(THREAD, array_oop);
3330   int i = 0;
3331   if (has_value_receiver) {
3332     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3333     oop res = vk->allocate_instance(CHECK);
3334     array->obj_at_put(i, res);
3335     i++;
3336   }
3337   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3338     if (ss.type() == T_VALUETYPE) {
3339       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3340       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3341       ValueKlass* vk = ValueKlass::cast(k);
3342       oop res = vk->allocate_instance(CHECK);
3343       array->obj_at_put(i, res);
3344       i++;
3345     }
3346   }
3347   thread->set_vm_result(array());
3348   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3349 }
3350 JRT_END
3351 
3352 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3353 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3354 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3355 {
3356   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3357   assert(oopDesc::is_oop(array), "should be oop");
3358   for (int i = 0; i < array->length(); ++i) {
3359     instanceOop valueOop = (instanceOop)array->obj_at(i);
3360     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3361     if (vk->contains_oops()) {
3362       const address dst_oop_addr = ((address) (void*) valueOop);
3363       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3364       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3365       while (map != end) {
3366         address doop_address = dst_oop_addr + map->offset();
3367         oopDesc::bs()->write_ref_array((HeapWord*) doop_address, map->count());
3368         map++;
3369       }
3370     }
3371   }
3372 }
3373 JRT_END
3374 
3375 // We're returning from an interpreted method: load each field into a
3376 // register following the calling convention
3377 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3378 {
3379   assert(res->klass()->is_value(), "only value types here");
3380   ResourceMark rm;
3381   RegisterMap reg_map(thread);
3382   frame stubFrame = thread->last_frame();
3383   frame callerFrame = stubFrame.sender(&reg_map);
3384   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3385 
3386   ValueKlass* vk = ValueKlass::cast(res->klass());
3387 
3388   const Array<SigEntry>* sig_vk = vk->extended_sig() ;
3389   const Array<VMRegPair>* regs = vk->return_regs();
3390 
3391   if (regs == NULL) {
3392     // The fields of the value klass don't fit in registers, bail out
3393     return;
3394   }
3395 
3396   int j = 1;
3397   for (int i = 0; i < sig_vk->length(); i++) {
3398     BasicType bt = sig_vk->at(i)._bt;
3399     if (bt == T_VALUETYPE) {
3400       continue;
3401     }
3402     if (bt == T_VOID) {
3403       if (sig_vk->at(i-1)._bt == T_LONG ||
3404           sig_vk->at(i-1)._bt == T_DOUBLE) {
3405         j++;
3406       }
3407       continue;
3408     }
3409     int off = sig_vk->at(i)._offset;
3410     VMRegPair pair = regs->at(j);
3411     address loc = reg_map.location(pair.first());
3412     switch(bt) {
3413     case T_BOOLEAN:
3414       *(intptr_t*)loc = *(jboolean*)((address)res + off);
3415       break;
3416     case T_CHAR:
3417       *(intptr_t*)loc = *(jchar*)((address)res + off);
3418       break;
3419     case T_BYTE:
3420       *(intptr_t*)loc = *(jbyte*)((address)res + off);
3421       break;
3422     case T_SHORT:
3423       *(intptr_t*)loc = *(jshort*)((address)res + off);
3424       break;
3425     case T_INT: {
3426       jint v = *(jint*)((address)res + off);
3427       *(intptr_t*)loc = v;
3428       break;
3429     }
3430     case T_LONG:
3431 #ifdef _LP64
3432       *(intptr_t*)loc = *(jlong*)((address)res + off);
3433 #else
3434       Unimplemented();
3435 #endif
3436       break;
3437     case T_OBJECT:
3438     case T_ARRAY: {
3439       oop v = NULL;
3440       if (!UseCompressedOops) {
3441         oop* p = (oop*)((address)res + off);
3442         v = oopDesc::load_heap_oop(p);
3443       } else {
3444         narrowOop* p = (narrowOop*)((address)res + off);
3445         v = oopDesc::load_decode_heap_oop(p);
3446       }
3447       *(oop*)loc = v;
3448       break;
3449     }
3450     case T_FLOAT:
3451       *(jfloat*)loc = *(jfloat*)((address)res + off);
3452       break;
3453     case T_DOUBLE:
3454       *(jdouble*)loc = *(jdouble*)((address)res + off);
3455       break;
3456     default:
3457       ShouldNotReachHere();
3458     }
3459     j++;
3460   }
3461   assert(j == regs->length(), "missed a field?");
3462 
3463 #ifdef ASSERT
3464   VMRegPair pair = regs->at(0);
3465   address loc = reg_map.location(pair.first());
3466   assert(*(oopDesc**)loc == res, "overwritten object");
3467 #endif
3468 
3469   thread->set_vm_result(res);
3470 }
3471 JRT_END
3472 
3473 // We've returned to an interpreted method, the interpreter needs a
3474 // reference to a value type instance. Allocate it and initialize it
3475 // from field's values in registers.
3476 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3477 {
3478   ResourceMark rm;
3479   RegisterMap reg_map(thread);
3480   frame stubFrame = thread->last_frame();
3481   frame callerFrame = stubFrame.sender(&reg_map);
3482 
3483 #ifdef ASSERT
3484   ValueKlass* verif_vk = ValueKlass::returned_value_type(reg_map);
3485 #endif
3486 
3487   if (!is_set_nth_bit(res, 0)) {
3488     // We're not returning with value type fields in registers (the
3489     // calling convention didn't allow it for this value klass)
3490     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3491     thread->set_vm_result((oopDesc*)res);
3492     assert(verif_vk == NULL, "broken calling convention");
3493     return;
3494   }
3495 
3496   clear_nth_bit(res, 0);
3497   ValueKlass* vk = (ValueKlass*)res;
3498   assert(verif_vk == vk, "broken calling convention");
3499   assert(Metaspace::contains((void*)res), "should be klass");
3500 
3501   // Allocate handles for every oop fields so they are safe in case of
3502   // a safepoint when allocating
3503   GrowableArray<Handle> handles;
3504   vk->save_oop_fields(reg_map, handles);
3505 
3506   // It's unsafe to safepoint until we are here
3507 
3508   Handle new_vt;
3509   JRT_BLOCK;
3510   {
3511     Thread* THREAD = thread;
3512     oop vt = vk->realloc_result(reg_map, handles, callerFrame.is_interpreted_frame(), CHECK);
3513     new_vt = Handle(thread, vt);
3514 
3515 #ifdef ASSERT
3516     javaVFrame* vf = javaVFrame::cast(vframe::new_vframe(&callerFrame, &reg_map, thread));
3517     Method* m = vf->method();
3518     int bci = vf->bci();
3519     Bytecode_invoke inv(m, bci);
3520 
3521     methodHandle callee = inv.static_target(thread);
3522     assert(!thread->has_pending_exception(), "call resolution should work");
3523     ValueKlass* verif_vk2 = callee->returned_value_type(thread);
3524     assert(verif_vk == verif_vk2 || verif_vk2 == SystemDictionary::___Value_klass(), "Bad value klass");
3525 #endif
3526   }
3527   JRT_BLOCK_END;
3528 
3529   thread->set_vm_result(new_vt());
3530 }
3531 JRT_END
3532