1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 // This file holds all globally used constants & types, class (forward)
  43 // declarations and a few frequently used utility functions.
  44 
  45 //----------------------------------------------------------------------------------------------------
  46 // Printf-style formatters for fixed- and variable-width types as pointers and
  47 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  48 // doesn't provide appropriate definitions, they should be provided in
  49 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  50 
  51 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  52 
  53 // Format 32-bit quantities.
  54 #define INT32_FORMAT           "%" PRId32
  55 #define UINT32_FORMAT          "%" PRIu32
  56 #define INT32_FORMAT_W(width)  "%" #width PRId32
  57 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  58 
  59 #define PTR32_FORMAT           "0x%08" PRIx32
  60 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  61 
  62 // Format 64-bit quantities.
  63 #define INT64_FORMAT           "%" PRId64
  64 #define UINT64_FORMAT          "%" PRIu64
  65 #define UINT64_FORMAT_X        "%" PRIx64
  66 #define INT64_FORMAT_W(width)  "%" #width PRId64
  67 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  68 
  69 #define PTR64_FORMAT           "0x%016" PRIx64
  70 
  71 // Format jlong, if necessary
  72 #ifndef JLONG_FORMAT
  73 #define JLONG_FORMAT           INT64_FORMAT
  74 #endif
  75 #ifndef JULONG_FORMAT
  76 #define JULONG_FORMAT          UINT64_FORMAT
  77 #endif
  78 #ifndef JULONG_FORMAT_X
  79 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  80 #endif
  81 
  82 // Format pointers which change size between 32- and 64-bit.
  83 #ifdef  _LP64
  84 #define INTPTR_FORMAT "0x%016" PRIxPTR
  85 #define PTR_FORMAT    "0x%016" PRIxPTR
  86 #else   // !_LP64
  87 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  88 #define PTR_FORMAT    "0x%08"  PRIxPTR
  89 #endif  // _LP64
  90 
  91 // Format pointers without leading zeros
  92 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  93 
  94 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  95 
  96 #define SSIZE_FORMAT             "%"   PRIdPTR
  97 #define SIZE_FORMAT              "%"   PRIuPTR
  98 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
  99 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 100 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 101 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 102 
 103 #define INTX_FORMAT           "%" PRIdPTR
 104 #define UINTX_FORMAT          "%" PRIuPTR
 105 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 106 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 107 
 108 //----------------------------------------------------------------------------------------------------
 109 // Constants
 110 
 111 const int LogBytesPerShort   = 1;
 112 const int LogBytesPerInt     = 2;
 113 #ifdef _LP64
 114 const int LogBytesPerWord    = 3;
 115 #else
 116 const int LogBytesPerWord    = 2;
 117 #endif
 118 const int LogBytesPerLong    = 3;
 119 
 120 const int BytesPerShort      = 1 << LogBytesPerShort;
 121 const int BytesPerInt        = 1 << LogBytesPerInt;
 122 const int BytesPerWord       = 1 << LogBytesPerWord;
 123 const int BytesPerLong       = 1 << LogBytesPerLong;
 124 
 125 const int LogBitsPerByte     = 3;
 126 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 127 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 128 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 129 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 130 
 131 const int BitsPerByte        = 1 << LogBitsPerByte;
 132 const int BitsPerShort       = 1 << LogBitsPerShort;
 133 const int BitsPerInt         = 1 << LogBitsPerInt;
 134 const int BitsPerWord        = 1 << LogBitsPerWord;
 135 const int BitsPerLong        = 1 << LogBitsPerLong;
 136 
 137 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 138 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 139 
 140 const int WordsPerLong       = 2;       // Number of stack entries for longs
 141 
 142 const int oopSize            = sizeof(char*); // Full-width oop
 143 extern int heapOopSize;                       // Oop within a java object
 144 const int wordSize           = sizeof(char*);
 145 const int longSize           = sizeof(jlong);
 146 const int jintSize           = sizeof(jint);
 147 const int size_tSize         = sizeof(size_t);
 148 
 149 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 150 
 151 extern int LogBytesPerHeapOop;                // Oop within a java object
 152 extern int LogBitsPerHeapOop;
 153 extern int BytesPerHeapOop;
 154 extern int BitsPerHeapOop;
 155 
 156 const int BitsPerJavaInteger = 32;
 157 const int BitsPerJavaLong    = 64;
 158 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 159 
 160 // Size of a char[] needed to represent a jint as a string in decimal.
 161 const int jintAsStringSize = 12;
 162 
 163 // In fact this should be
 164 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 165 // see os::set_memory_serialize_page()
 166 #ifdef _LP64
 167 const int SerializePageShiftCount = 4;
 168 #else
 169 const int SerializePageShiftCount = 3;
 170 #endif
 171 
 172 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 173 // pointer into the heap.  We require that object sizes be measured in
 174 // units of heap words, so that that
 175 //   HeapWord* hw;
 176 //   hw += oop(hw)->foo();
 177 // works, where foo is a method (like size or scavenge) that returns the
 178 // object size.
 179 class HeapWord {
 180   friend class VMStructs;
 181  private:
 182   char* i;
 183 #ifndef PRODUCT
 184  public:
 185   char* value() { return i; }
 186 #endif
 187 };
 188 
 189 // Analogous opaque struct for metadata allocated from
 190 // metaspaces.
 191 class MetaWord {
 192  private:
 193   char* i;
 194 };
 195 
 196 // HeapWordSize must be 2^LogHeapWordSize.
 197 const int HeapWordSize        = sizeof(HeapWord);
 198 #ifdef _LP64
 199 const int LogHeapWordSize     = 3;
 200 #else
 201 const int LogHeapWordSize     = 2;
 202 #endif
 203 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 204 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 205 
 206 // The minimum number of native machine words necessary to contain "byte_size"
 207 // bytes.
 208 inline size_t heap_word_size(size_t byte_size) {
 209   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 210 }
 211 
 212 //-------------------------------------------
 213 // Constant for jlong (standardized by C++11)
 214 
 215 // Build a 64bit integer constant
 216 #define CONST64(x)  (x ## LL)
 217 #define UCONST64(x) (x ## ULL)
 218 
 219 const jlong min_jlong = CONST64(0x8000000000000000);
 220 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 221 
 222 const size_t K                  = 1024;
 223 const size_t M                  = K*K;
 224 const size_t G                  = M*K;
 225 const size_t HWperKB            = K / sizeof(HeapWord);
 226 
 227 // Constants for converting from a base unit to milli-base units.  For
 228 // example from seconds to milliseconds and microseconds
 229 
 230 const int MILLIUNITS    = 1000;         // milli units per base unit
 231 const int MICROUNITS    = 1000000;      // micro units per base unit
 232 const int NANOUNITS     = 1000000000;   // nano units per base unit
 233 
 234 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 235 const jint  NANOSECS_PER_MILLISEC = 1000000;
 236 
 237 inline const char* proper_unit_for_byte_size(size_t s) {
 238 #ifdef _LP64
 239   if (s >= 10*G) {
 240     return "G";
 241   }
 242 #endif
 243   if (s >= 10*M) {
 244     return "M";
 245   } else if (s >= 10*K) {
 246     return "K";
 247   } else {
 248     return "B";
 249   }
 250 }
 251 
 252 template <class T>
 253 inline T byte_size_in_proper_unit(T s) {
 254 #ifdef _LP64
 255   if (s >= 10*G) {
 256     return (T)(s/G);
 257   }
 258 #endif
 259   if (s >= 10*M) {
 260     return (T)(s/M);
 261   } else if (s >= 10*K) {
 262     return (T)(s/K);
 263   } else {
 264     return s;
 265   }
 266 }
 267 
 268 inline const char* exact_unit_for_byte_size(size_t s) {
 269 #ifdef _LP64
 270   if (s >= G && (s % G) == 0) {
 271     return "G";
 272   }
 273 #endif
 274   if (s >= M && (s % M) == 0) {
 275     return "M";
 276   }
 277   if (s >= K && (s % K) == 0) {
 278     return "K";
 279   }
 280   return "B";
 281 }
 282 
 283 inline size_t byte_size_in_exact_unit(size_t s) {
 284 #ifdef _LP64
 285   if (s >= G && (s % G) == 0) {
 286     return s / G;
 287   }
 288 #endif
 289   if (s >= M && (s % M) == 0) {
 290     return s / M;
 291   }
 292   if (s >= K && (s % K) == 0) {
 293     return s / K;
 294   }
 295   return s;
 296 }
 297 
 298 //----------------------------------------------------------------------------------------------------
 299 // VM type definitions
 300 
 301 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 302 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 303 
 304 typedef intptr_t  intx;
 305 typedef uintptr_t uintx;
 306 
 307 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 308 const intx  max_intx  = (uintx)min_intx - 1;
 309 const uintx max_uintx = (uintx)-1;
 310 
 311 // Table of values:
 312 //      sizeof intx         4               8
 313 // min_intx             0x80000000      0x8000000000000000
 314 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 315 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 316 
 317 typedef unsigned int uint;   NEEDS_CLEANUP
 318 
 319 
 320 //----------------------------------------------------------------------------------------------------
 321 // Java type definitions
 322 
 323 // All kinds of 'plain' byte addresses
 324 typedef   signed char s_char;
 325 typedef unsigned char u_char;
 326 typedef u_char*       address;
 327 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 328                                     // except for some implementations of a C++
 329                                     // linkage pointer to function. Should never
 330                                     // need one of those to be placed in this
 331                                     // type anyway.
 332 
 333 //  Utility functions to "portably" (?) bit twiddle pointers
 334 //  Where portable means keep ANSI C++ compilers quiet
 335 
 336 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 337 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 338 
 339 //  Utility functions to "portably" make cast to/from function pointers.
 340 
 341 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 342 inline address_word  castable_address(address x)              { return address_word(x) ; }
 343 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 344 
 345 // Pointer subtraction.
 346 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 347 // the range we might need to find differences from one end of the heap
 348 // to the other.
 349 // A typical use might be:
 350 //     if (pointer_delta(end(), top()) >= size) {
 351 //       // enough room for an object of size
 352 //       ...
 353 // and then additions like
 354 //       ... top() + size ...
 355 // are safe because we know that top() is at least size below end().
 356 inline size_t pointer_delta(const volatile void* left,
 357                             const volatile void* right,
 358                             size_t element_size) {
 359   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 360 }
 361 
 362 // A version specialized for HeapWord*'s.
 363 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 364   return pointer_delta(left, right, sizeof(HeapWord));
 365 }
 366 // A version specialized for MetaWord*'s.
 367 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 368   return pointer_delta(left, right, sizeof(MetaWord));
 369 }
 370 
 371 //
 372 // ANSI C++ does not allow casting from one pointer type to a function pointer
 373 // directly without at best a warning. This macro accomplishes it silently
 374 // In every case that is present at this point the value be cast is a pointer
 375 // to a C linkage function. In some case the type used for the cast reflects
 376 // that linkage and a picky compiler would not complain. In other cases because
 377 // there is no convenient place to place a typedef with extern C linkage (i.e
 378 // a platform dependent header file) it doesn't. At this point no compiler seems
 379 // picky enough to catch these instances (which are few). It is possible that
 380 // using templates could fix these for all cases. This use of templates is likely
 381 // so far from the middle of the road that it is likely to be problematic in
 382 // many C++ compilers.
 383 //
 384 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 385 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 386 
 387 // Unsigned byte types for os and stream.hpp
 388 
 389 // Unsigned one, two, four and eigth byte quantities used for describing
 390 // the .class file format. See JVM book chapter 4.
 391 
 392 typedef jubyte  u1;
 393 typedef jushort u2;
 394 typedef juint   u4;
 395 typedef julong  u8;
 396 
 397 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 398 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 399 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 400 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 401 
 402 typedef jbyte  s1;
 403 typedef jshort s2;
 404 typedef jint   s4;
 405 typedef jlong  s8;
 406 
 407 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 408 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 409 const jshort min_jshort = -(1 << 15);    // smallest jshort
 410 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 411 
 412 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 413 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 414 
 415 //----------------------------------------------------------------------------------------------------
 416 // JVM spec restrictions
 417 
 418 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 419 
 420 //----------------------------------------------------------------------------------------------------
 421 // Default and minimum StringTableSize values
 422 
 423 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 424 const int minimumStringTableSize = 1009;
 425 
 426 const int defaultSymbolTableSize = 20011;
 427 const int minimumSymbolTableSize = 1009;
 428 
 429 
 430 //----------------------------------------------------------------------------------------------------
 431 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 432 //
 433 // Determines whether on-the-fly class replacement and frame popping are enabled.
 434 
 435 #define HOTSWAP
 436 
 437 //----------------------------------------------------------------------------------------------------
 438 // Object alignment, in units of HeapWords.
 439 //
 440 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 441 // reference fields can be naturally aligned.
 442 
 443 extern int MinObjAlignment;
 444 extern int MinObjAlignmentInBytes;
 445 extern int MinObjAlignmentInBytesMask;
 446 
 447 extern int LogMinObjAlignment;
 448 extern int LogMinObjAlignmentInBytes;
 449 
 450 const int LogKlassAlignmentInBytes = 3;
 451 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 452 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 453 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 454 
 455 // Maximal size of heap where unscaled compression can be used. Also upper bound
 456 // for heap placement: 4GB.
 457 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 458 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 459 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 460 extern uint64_t OopEncodingHeapMax;
 461 
 462 // Maximal size of compressed class space. Above this limit compression is not possible.
 463 // Also upper bound for placement of zero based class space. (Class space is further limited
 464 // to be < 3G, see arguments.cpp.)
 465 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 466 
 467 // Machine dependent stuff
 468 
 469 // The maximum size of the code cache.  Can be overridden by targets.
 470 #define CODE_CACHE_SIZE_LIMIT (2*G)
 471 // Allow targets to reduce the default size of the code cache.
 472 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 473 
 474 #include CPU_HEADER(globalDefinitions)
 475 
 476 // To assure the IRIW property on processors that are not multiple copy
 477 // atomic, sync instructions must be issued between volatile reads to
 478 // assure their ordering, instead of after volatile stores.
 479 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 480 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 481 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 482 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 483 #else
 484 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 485 #endif
 486 
 487 // The expected size in bytes of a cache line, used to pad data structures.
 488 #ifndef DEFAULT_CACHE_LINE_SIZE
 489   #define DEFAULT_CACHE_LINE_SIZE 64
 490 #endif
 491 
 492 
 493 //----------------------------------------------------------------------------------------------------
 494 // Utility macros for compilers
 495 // used to silence compiler warnings
 496 
 497 #define Unused_Variable(var) var
 498 
 499 
 500 //----------------------------------------------------------------------------------------------------
 501 // Prototyping
 502 // "Code Missing Here" macro, un-define when integrating back from prototyping stage and break
 503 // compilation on purpose (i.e. "forget me not")
 504 #define PROTOTYPE
 505 #ifdef PROTOTYPE
 506 #define CMH(m)
 507 #endif
 508 
 509 //----------------------------------------------------------------------------------------------------
 510 // Miscellaneous
 511 
 512 // 6302670 Eliminate Hotspot __fabsf dependency
 513 // All fabs() callers should call this function instead, which will implicitly
 514 // convert the operand to double, avoiding a dependency on __fabsf which
 515 // doesn't exist in early versions of Solaris 8.
 516 inline double fabsd(double value) {
 517   return fabs(value);
 518 }
 519 
 520 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 521 // is zero, return 0.0.
 522 template<typename T>
 523 inline double percent_of(T numerator, T denominator) {
 524   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 525 }
 526 
 527 //----------------------------------------------------------------------------------------------------
 528 // Special casts
 529 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 530 typedef union {
 531   jfloat f;
 532   jint i;
 533 } FloatIntConv;
 534 
 535 typedef union {
 536   jdouble d;
 537   jlong l;
 538   julong ul;
 539 } DoubleLongConv;
 540 
 541 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 542 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 543 
 544 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 545 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 546 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 547 
 548 inline jint low (jlong value)                    { return jint(value); }
 549 inline jint high(jlong value)                    { return jint(value >> 32); }
 550 
 551 // the fancy casts are a hopefully portable way
 552 // to do unsigned 32 to 64 bit type conversion
 553 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 554                                                    *value |= (jlong)(julong)(juint)low; }
 555 
 556 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 557                                                    *value |= (jlong)high       << 32; }
 558 
 559 inline jlong jlong_from(jint h, jint l) {
 560   jlong result = 0; // initialization to avoid warning
 561   set_high(&result, h);
 562   set_low(&result,  l);
 563   return result;
 564 }
 565 
 566 union jlong_accessor {
 567   jint  words[2];
 568   jlong long_value;
 569 };
 570 
 571 void basic_types_init(); // cannot define here; uses assert
 572 
 573 
 574 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 575 enum BasicType {
 576   T_BOOLEAN     =  4,
 577   T_CHAR        =  5,
 578   T_FLOAT       =  6,
 579   T_DOUBLE      =  7,
 580   T_BYTE        =  8,
 581   T_SHORT       =  9,
 582   T_INT         = 10,
 583   T_LONG        = 11,
 584   T_OBJECT      = 12,
 585   T_ARRAY       = 13,
 586   T_VALUETYPE   = 14,
 587   T_VOID        = 15,
 588   T_ADDRESS     = 16,
 589   T_NARROWOOP   = 17,
 590   T_METADATA    = 18,
 591   T_NARROWKLASS = 19,
 592   T_VALUETYPEPTR= 20, // the compiler needs a way to identify buffered values
 593   T_CONFLICT    = 21, // for stack value type with conflicting contents
 594   T_ILLEGAL     = 99
 595 };
 596 
 597 inline bool is_java_primitive(BasicType t) {
 598   return T_BOOLEAN <= t && t <= T_LONG;
 599 }
 600 
 601 inline bool is_subword_type(BasicType t) {
 602   // these guys are processed exactly like T_INT in calling sequences:
 603   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 604 }
 605 
 606 inline bool is_signed_subword_type(BasicType t) {
 607   return (t == T_BYTE || t == T_SHORT);
 608 }
 609 
 610 // Convert a char from a classfile signature to a BasicType
 611 inline BasicType char2type(char c) {
 612   switch( c ) {
 613   case 'B': return T_BYTE;
 614   case 'C': return T_CHAR;
 615   case 'D': return T_DOUBLE;
 616   case 'F': return T_FLOAT;
 617   case 'I': return T_INT;
 618   case 'J': return T_LONG;
 619   case 'S': return T_SHORT;
 620   case 'Z': return T_BOOLEAN;
 621   case 'V': return T_VOID;
 622   case 'L': return T_OBJECT;
 623   case '[': return T_ARRAY;
 624   case 'Q':return T_VALUETYPE;
 625   }
 626   return T_ILLEGAL;
 627 }
 628 
 629 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 630 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 631 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 632 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 633 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 634 extern BasicType name2type(const char* name);
 635 
 636 // Auxiliary math routines
 637 // least common multiple
 638 extern size_t lcm(size_t a, size_t b);
 639 
 640 
 641 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 642 enum BasicTypeSize {
 643   T_BOOLEAN_size     = 1,
 644   T_CHAR_size        = 1,
 645   T_FLOAT_size       = 1,
 646   T_DOUBLE_size      = 2,
 647   T_BYTE_size        = 1,
 648   T_SHORT_size       = 1,
 649   T_INT_size         = 1,
 650   T_LONG_size        = 2,
 651   T_OBJECT_size      = 1,
 652   T_ARRAY_size       = 1,
 653   T_NARROWOOP_size   = 1,
 654   T_NARROWKLASS_size = 1,
 655   T_VOID_size        = 0,
 656   T_VALUETYPE_size   = 1
 657 };
 658 
 659 
 660 // maps a BasicType to its instance field storage type:
 661 // all sub-word integral types are widened to T_INT
 662 extern BasicType type2field[T_CONFLICT+1];
 663 extern BasicType type2wfield[T_CONFLICT+1];
 664 
 665 
 666 // size in bytes
 667 enum ArrayElementSize {
 668   T_BOOLEAN_aelem_bytes     = 1,
 669   T_CHAR_aelem_bytes        = 2,
 670   T_FLOAT_aelem_bytes       = 4,
 671   T_DOUBLE_aelem_bytes      = 8,
 672   T_BYTE_aelem_bytes        = 1,
 673   T_SHORT_aelem_bytes       = 2,
 674   T_INT_aelem_bytes         = 4,
 675   T_LONG_aelem_bytes        = 8,
 676 #ifdef _LP64
 677   T_OBJECT_aelem_bytes      = 8,
 678   T_ARRAY_aelem_bytes       = 8,
 679   T_VALUETYPE_aelem_bytes   = 8,
 680 #else
 681   T_OBJECT_aelem_bytes      = 4,
 682   T_ARRAY_aelem_bytes       = 4,
 683   T_VALUETYPE_aelem_bytes   = 4,
 684 #endif
 685   T_NARROWOOP_aelem_bytes   = 4,
 686   T_NARROWKLASS_aelem_bytes = 4,
 687   T_VOID_aelem_bytes        = 0,
 688 #ifdef _LP64
 689   T_VALUETYPEPTR_aelem_bytes= 4
 690 #else
 691   T_VALUETYPEPTR_aelem_bytes= 8
 692 #endif
 693 };
 694 
 695 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 696 #ifdef ASSERT
 697 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 698 #else
 699 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 700 #endif
 701 
 702 
 703 // JavaValue serves as a container for arbitrary Java values.
 704 
 705 class JavaValue {
 706 
 707  public:
 708   typedef union JavaCallValue {
 709     jfloat   f;
 710     jdouble  d;
 711     jint     i;
 712     jlong    l;
 713     jobject  h;
 714     jvaluetype q;
 715   } JavaCallValue;
 716 
 717  private:
 718   BasicType _type;
 719   JavaCallValue _value;
 720 
 721  public:
 722   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 723 
 724   JavaValue(jfloat value) {
 725     _type    = T_FLOAT;
 726     _value.f = value;
 727   }
 728 
 729   JavaValue(jdouble value) {
 730     _type    = T_DOUBLE;
 731     _value.d = value;
 732   }
 733 
 734  jfloat get_jfloat() const { return _value.f; }
 735  jdouble get_jdouble() const { return _value.d; }
 736  jint get_jint() const { return _value.i; }
 737  jlong get_jlong() const { return _value.l; }
 738  jobject get_jobject() const { return _value.h; }
 739  JavaCallValue* get_value_addr() { return &_value; }
 740  BasicType get_type() const { return _type; }
 741 
 742  void set_jfloat(jfloat f) { _value.f = f;}
 743  void set_jdouble(jdouble d) { _value.d = d;}
 744  void set_jint(jint i) { _value.i = i;}
 745  void set_jlong(jlong l) { _value.l = l;}
 746  void set_jobject(jobject h) { _value.h = h;}
 747  void set_type(BasicType t) { _type = t; }
 748 
 749  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 750  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 751  jchar get_jchar() const { return (jchar) (_value.i);}
 752  jshort get_jshort() const { return (jshort) (_value.i);}
 753 
 754 };
 755 
 756 
 757 #define STACK_BIAS      0
 758 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 759 // in order to extend the reach of the stack pointer.
 760 #if defined(SPARC) && defined(_LP64)
 761 #undef STACK_BIAS
 762 #define STACK_BIAS      0x7ff
 763 #endif
 764 
 765 
 766 // TosState describes the top-of-stack state before and after the execution of
 767 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 768 // registers. The TosState corresponds to the 'machine representation' of this cached
 769 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 770 // as well as a 5th state in case the top-of-stack value is actually on the top
 771 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 772 // state when it comes to machine representation but is used separately for (oop)
 773 // type specific operations (e.g. verification code).
 774 
 775 enum TosState {         // describes the tos cache contents
 776   btos = 0,             // byte, bool tos cached
 777   ztos = 1,             // byte, bool tos cached
 778   ctos = 2,             // char tos cached
 779   stos = 3,             // short tos cached
 780   itos = 4,             // int tos cached
 781   ltos = 5,             // long tos cached
 782   ftos = 6,             // float tos cached
 783   dtos = 7,             // double tos cached
 784   atos = 8,             // object cached
 785   qtos = 9,             // value type cached
 786   vtos = 10,            // tos not cached,
 787   number_of_states,
 788   ptos = 12,            // polymorphic tos cache (atos or qtos)
 789   ilgl                  // illegal state: should not occur
 790 };
 791 
 792 
 793 inline TosState as_TosState(BasicType type) {
 794   switch (type) {
 795     case T_BYTE   : return btos;
 796     case T_BOOLEAN: return ztos;
 797     case T_CHAR   : return ctos;
 798     case T_SHORT  : return stos;
 799     case T_INT    : return itos;
 800     case T_LONG   : return ltos;
 801     case T_FLOAT  : return ftos;
 802     case T_DOUBLE : return dtos;
 803     case T_VALUETYPE : return qtos;
 804     case T_VOID   : return vtos;
 805     case T_ARRAY  : // fall through
 806     case T_OBJECT : return atos;
 807     default       : return ilgl;
 808   }
 809 }
 810 
 811 inline BasicType as_BasicType(TosState state) {
 812   switch (state) {
 813     case btos : return T_BYTE;
 814     case ztos : return T_BOOLEAN;
 815     case ctos : return T_CHAR;
 816     case stos : return T_SHORT;
 817     case itos : return T_INT;
 818     case ltos : return T_LONG;
 819     case ftos : return T_FLOAT;
 820     case dtos : return T_DOUBLE;
 821     case atos : return T_OBJECT;
 822     case qtos : return T_VALUETYPE;
 823     case vtos : return T_VOID;
 824     default   : return T_ILLEGAL;
 825   }
 826 }
 827 
 828 
 829 // Helper function to convert BasicType info into TosState
 830 // Note: Cannot define here as it uses global constant at the time being.
 831 TosState as_TosState(BasicType type);
 832 
 833 
 834 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 835 // information is needed by the safepoint code.
 836 //
 837 // There are 4 essential states:
 838 //
 839 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 840 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 841 //  _thread_in_vm       : Executing in the vm
 842 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 843 //
 844 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 845 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 846 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 847 //
 848 // Given a state, the xxxx_trans state can always be found by adding 1.
 849 //
 850 enum JavaThreadState {
 851   _thread_uninitialized     =  0, // should never happen (missing initialization)
 852   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 853   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 854   _thread_in_native         =  4, // running in native code
 855   _thread_in_native_trans   =  5, // corresponding transition state
 856   _thread_in_vm             =  6, // running in VM
 857   _thread_in_vm_trans       =  7, // corresponding transition state
 858   _thread_in_Java           =  8, // running in Java or in stub code
 859   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 860   _thread_blocked           = 10, // blocked in vm
 861   _thread_blocked_trans     = 11, // corresponding transition state
 862   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 863 };
 864 
 865 
 866 
 867 //----------------------------------------------------------------------------------------------------
 868 // 'Forward' declarations of frequently used classes
 869 // (in order to reduce interface dependencies & reduce
 870 // number of unnecessary compilations after changes)
 871 
 872 class ClassFileStream;
 873 
 874 class Event;
 875 
 876 class Thread;
 877 class  VMThread;
 878 class  JavaThread;
 879 class Threads;
 880 
 881 class VM_Operation;
 882 class VMOperationQueue;
 883 
 884 class CodeBlob;
 885 class  CompiledMethod;
 886 class   nmethod;
 887 class RuntimeBlob;
 888 class  OSRAdapter;
 889 class  I2CAdapter;
 890 class  C2IAdapter;
 891 class CompiledIC;
 892 class relocInfo;
 893 class ScopeDesc;
 894 class PcDesc;
 895 
 896 class Recompiler;
 897 class Recompilee;
 898 class RecompilationPolicy;
 899 class RFrame;
 900 class  CompiledRFrame;
 901 class  InterpretedRFrame;
 902 
 903 class vframe;
 904 class   javaVFrame;
 905 class     interpretedVFrame;
 906 class     compiledVFrame;
 907 class     deoptimizedVFrame;
 908 class   externalVFrame;
 909 class     entryVFrame;
 910 
 911 class RegisterMap;
 912 
 913 class Mutex;
 914 class Monitor;
 915 class BasicLock;
 916 class BasicObjectLock;
 917 
 918 class PeriodicTask;
 919 
 920 class JavaCallWrapper;
 921 
 922 class   oopDesc;
 923 class   metaDataOopDesc;
 924 
 925 class NativeCall;
 926 
 927 class zone;
 928 
 929 class StubQueue;
 930 
 931 class outputStream;
 932 
 933 class ResourceArea;
 934 
 935 class DebugInformationRecorder;
 936 class ScopeValue;
 937 class CompressedStream;
 938 class   DebugInfoReadStream;
 939 class   DebugInfoWriteStream;
 940 class LocationValue;
 941 class ConstantValue;
 942 class IllegalValue;
 943 
 944 class PrivilegedElement;
 945 class MonitorArray;
 946 
 947 class MonitorInfo;
 948 
 949 class OffsetClosure;
 950 class OopMapCache;
 951 class InterpreterOopMap;
 952 class OopMapCacheEntry;
 953 class OSThread;
 954 
 955 typedef int (*OSThreadStartFunc)(void*);
 956 
 957 class Space;
 958 
 959 class JavaValue;
 960 class methodHandle;
 961 class JavaCallArguments;
 962 
 963 // Basic support for errors.
 964 extern void basic_fatal(const char* msg);
 965 
 966 //----------------------------------------------------------------------------------------------------
 967 // Special constants for debugging
 968 
 969 const jint     badInt           = -3;                       // generic "bad int" value
 970 const long     badAddressVal    = -2;                       // generic "bad address" value
 971 const long     badOopVal        = -1;                       // generic "bad oop" value
 972 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 973 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 974 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 975 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 976 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 977 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 978 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 979 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 980 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 981 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 982 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 983 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 984 
 985 
 986 // (These must be implemented as #defines because C++ compilers are
 987 // not obligated to inline non-integral constants!)
 988 #define       badAddress        ((address)::badAddressVal)
 989 #define       badOop            (cast_to_oop(::badOopVal))
 990 #define       badHeapWord       (::badHeapWordVal)
 991 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
 992 
 993 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 994 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 995 
 996 //----------------------------------------------------------------------------------------------------
 997 // Utility functions for bitfield manipulations
 998 
 999 const intptr_t AllBits    = ~0; // all bits set in a word
1000 const intptr_t NoBits     =  0; // no bits set in a word
1001 const jlong    NoLongBits =  0; // no bits set in a long
1002 const intptr_t OneBit     =  1; // only right_most bit set in a word
1003 
1004 // get a word with the n.th or the right-most or left-most n bits set
1005 // (note: #define used only so that they can be used in enum constant definitions)
1006 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1007 #define right_n_bits(n)   (nth_bit(n) - 1)
1008 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1009 
1010 // bit-operations using a mask m
1011 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1012 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1013 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1014 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1015 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1016 
1017 // bit-operations using the n.th bit
1018 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1019 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1020 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1021 
1022 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1023 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1024   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1025 }
1026 
1027 
1028 //----------------------------------------------------------------------------------------------------
1029 // Utility functions for integers
1030 
1031 // Avoid use of global min/max macros which may cause unwanted double
1032 // evaluation of arguments.
1033 #ifdef max
1034 #undef max
1035 #endif
1036 
1037 #ifdef min
1038 #undef min
1039 #endif
1040 
1041 // The following defines serve the purpose of preventing use of accidentally
1042 // included min max macros from compiling, while continuing to allow innocent
1043 // min and max identifiers in the code to compile as intended.
1044 #define max max
1045 #define min min
1046 
1047 // It is necessary to use templates here. Having normal overloaded
1048 // functions does not work because it is necessary to provide both 32-
1049 // and 64-bit overloaded functions, which does not work, and having
1050 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1051 // will be even more error-prone than macros.
1052 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1053 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1054 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1055 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1056 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1057 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1058 
1059 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1060 
1061 // true if x is a power of 2, false otherwise
1062 inline bool is_power_of_2(intptr_t x) {
1063   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1064 }
1065 
1066 // long version of is_power_of_2
1067 inline bool is_power_of_2_long(jlong x) {
1068   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1069 }
1070 
1071 // Returns largest i such that 2^i <= x.
1072 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1073 // If x == 0, the function returns -1.
1074 inline int log2_intptr(intptr_t x) {
1075   int i = -1;
1076   uintptr_t p = 1;
1077   while (p != 0 && p <= (uintptr_t)x) {
1078     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1079     i++; p *= 2;
1080   }
1081   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1082   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1083   return i;
1084 }
1085 
1086 //* largest i such that 2^i <= x
1087 //  A negative value of 'x' will return '63'
1088 inline int log2_long(jlong x) {
1089   int i = -1;
1090   julong p =  1;
1091   while (p != 0 && p <= (julong)x) {
1092     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1093     i++; p *= 2;
1094   }
1095   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1096   // (if p = 0 then overflow occurred and i = 63)
1097   return i;
1098 }
1099 
1100 //* the argument must be exactly a power of 2
1101 inline int exact_log2(intptr_t x) {
1102   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1103   return log2_intptr(x);
1104 }
1105 
1106 // the argument doesn't need to be a power of two
1107 inline int upper_log2(intptr_t x) {
1108   int shift = log2_intptr(x);
1109   intptr_t y = 1 << shift;
1110   if (y < x) {
1111     shift++;
1112   }
1113   return shift;
1114 }
1115 
1116 //* the argument must be exactly a power of 2
1117 inline int exact_log2_long(jlong x) {
1118   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1119   return log2_long(x);
1120 }
1121 
1122 inline bool is_odd (intx x) { return x & 1;      }
1123 inline bool is_even(intx x) { return !is_odd(x); }
1124 
1125 // "to" should be greater than "from."
1126 inline intx byte_size(void* from, void* to) {
1127   return (address)to - (address)from;
1128 }
1129 
1130 //----------------------------------------------------------------------------------------------------
1131 // Avoid non-portable casts with these routines (DEPRECATED)
1132 
1133 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1134 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1135 
1136 // Given sequence of four bytes, build into a 32-bit word
1137 // following the conventions used in class files.
1138 // On the 386, this could be realized with a simple address cast.
1139 //
1140 
1141 // This routine takes eight bytes:
1142 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1143   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1144        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1145        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1146        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1147        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1148        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1149        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1150        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1151 }
1152 
1153 // This routine takes four bytes:
1154 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1155   return  (( u4(c1) << 24 )  &  0xff000000)
1156        |  (( u4(c2) << 16 )  &  0x00ff0000)
1157        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1158        |  (( u4(c4) <<  0 )  &  0x000000ff);
1159 }
1160 
1161 // And this one works if the four bytes are contiguous in memory:
1162 inline u4 build_u4_from( u1* p ) {
1163   return  build_u4_from( p[0], p[1], p[2], p[3] );
1164 }
1165 
1166 // Ditto for two-byte ints:
1167 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1168   return  u2((( u2(c1) <<  8 )  &  0xff00)
1169           |  (( u2(c2) <<  0 )  &  0x00ff));
1170 }
1171 
1172 // And this one works if the two bytes are contiguous in memory:
1173 inline u2 build_u2_from( u1* p ) {
1174   return  build_u2_from( p[0], p[1] );
1175 }
1176 
1177 // Ditto for floats:
1178 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1179   u4 u = build_u4_from( c1, c2, c3, c4 );
1180   return  *(jfloat*)&u;
1181 }
1182 
1183 inline jfloat build_float_from( u1* p ) {
1184   u4 u = build_u4_from( p );
1185   return  *(jfloat*)&u;
1186 }
1187 
1188 
1189 // now (64-bit) longs
1190 
1191 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1192   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1193        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1194        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1195        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1196        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1197        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1198        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1199        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1200 }
1201 
1202 inline jlong build_long_from( u1* p ) {
1203   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1204 }
1205 
1206 
1207 // Doubles, too!
1208 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1209   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1210   return  *(jdouble*)&u;
1211 }
1212 
1213 inline jdouble build_double_from( u1* p ) {
1214   jlong u = build_long_from( p );
1215   return  *(jdouble*)&u;
1216 }
1217 
1218 
1219 // Portable routines to go the other way:
1220 
1221 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1222   c1 = u1(x >> 8);
1223   c2 = u1(x);
1224 }
1225 
1226 inline void explode_short_to( u2 x, u1* p ) {
1227   explode_short_to( x, p[0], p[1]);
1228 }
1229 
1230 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1231   c1 = u1(x >> 24);
1232   c2 = u1(x >> 16);
1233   c3 = u1(x >>  8);
1234   c4 = u1(x);
1235 }
1236 
1237 inline void explode_int_to( u4 x, u1* p ) {
1238   explode_int_to( x, p[0], p[1], p[2], p[3]);
1239 }
1240 
1241 
1242 // Pack and extract shorts to/from ints:
1243 
1244 inline int extract_low_short_from_int(jint x) {
1245   return x & 0xffff;
1246 }
1247 
1248 inline int extract_high_short_from_int(jint x) {
1249   return (x >> 16) & 0xffff;
1250 }
1251 
1252 inline int build_int_from_shorts( jushort low, jushort high ) {
1253   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1254 }
1255 
1256 // Convert pointer to intptr_t, for use in printing pointers.
1257 inline intptr_t p2i(const void * p) {
1258   return (intptr_t) p;
1259 }
1260 
1261 // swap a & b
1262 template<class T> static void swap(T& a, T& b) {
1263   T tmp = a;
1264   a = b;
1265   b = tmp;
1266 }
1267 
1268 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1269 
1270 //----------------------------------------------------------------------------------------------------
1271 // Sum and product which can never overflow: they wrap, just like the
1272 // Java operations.  Note that we don't intend these to be used for
1273 // general-purpose arithmetic: their purpose is to emulate Java
1274 // operations.
1275 
1276 // The goal of this code to avoid undefined or implementation-defined
1277 // behavior.  The use of an lvalue to reference cast is explicitly
1278 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1279 // 15 in C++03]
1280 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1281 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1282   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1283   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1284   return reinterpret_cast<TYPE&>(ures);                 \
1285 }
1286 
1287 JAVA_INTEGER_OP(+, java_add, jint, juint)
1288 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1289 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1290 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1291 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1292 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1293 
1294 #undef JAVA_INTEGER_OP
1295 
1296 // Dereference vptr
1297 // All C++ compilers that we know of have the vtbl pointer in the first
1298 // word.  If there are exceptions, this function needs to be made compiler
1299 // specific.
1300 static inline void* dereference_vptr(const void* addr) {
1301   return *(void**)addr;
1302 }
1303 
1304 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP