1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/narrowptrnode.hpp"
  39 #include "opto/mulnode.hpp"
  40 #include "opto/phaseX.hpp"
  41 #include "opto/regmask.hpp"
  42 #include "opto/runtime.hpp"
  43 #include "opto/subnode.hpp"
  44 #include "opto/valuetypenode.hpp"
  45 #include "utilities/vmError.hpp"
  46 
  47 // Portions of code courtesy of Clifford Click
  48 
  49 // Optimization - Graph Style
  50 
  51 //=============================================================================
  52 //------------------------------Value------------------------------------------
  53 // Compute the type of the RegionNode.
  54 const Type* RegionNode::Value(PhaseGVN* phase) const {
  55   for( uint i=1; i<req(); ++i ) {       // For all paths in
  56     Node *n = in(i);            // Get Control source
  57     if( !n ) continue;          // Missing inputs are TOP
  58     if( phase->type(n) == Type::CONTROL )
  59       return Type::CONTROL;
  60   }
  61   return Type::TOP;             // All paths dead?  Then so are we
  62 }
  63 
  64 //------------------------------Identity---------------------------------------
  65 // Check for Region being Identity.
  66 Node* RegionNode::Identity(PhaseGVN* phase) {
  67   // Cannot have Region be an identity, even if it has only 1 input.
  68   // Phi users cannot have their Region input folded away for them,
  69   // since they need to select the proper data input
  70   return this;
  71 }
  72 
  73 //------------------------------merge_region-----------------------------------
  74 // If a Region flows into a Region, merge into one big happy merge.  This is
  75 // hard to do if there is stuff that has to happen
  76 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  77   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  78     return NULL;
  79   Node *progress = NULL;        // Progress flag
  80   PhaseIterGVN *igvn = phase->is_IterGVN();
  81 
  82   uint rreq = region->req();
  83   for( uint i = 1; i < rreq; i++ ) {
  84     Node *r = region->in(i);
  85     if( r && r->Opcode() == Op_Region && // Found a region?
  86         r->in(0) == r &&        // Not already collapsed?
  87         r != region &&          // Avoid stupid situations
  88         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  89       assert(!r->as_Region()->has_phi(), "no phi users");
  90       if( !progress ) {         // No progress
  91         if (region->has_phi()) {
  92           return NULL;        // Only flatten if no Phi users
  93           // igvn->hash_delete( phi );
  94         }
  95         igvn->hash_delete( region );
  96         progress = region;      // Making progress
  97       }
  98       igvn->hash_delete( r );
  99 
 100       // Append inputs to 'r' onto 'region'
 101       for( uint j = 1; j < r->req(); j++ ) {
 102         // Move an input from 'r' to 'region'
 103         region->add_req(r->in(j));
 104         r->set_req(j, phase->C->top());
 105         // Update phis of 'region'
 106         //for( uint k = 0; k < max; k++ ) {
 107         //  Node *phi = region->out(k);
 108         //  if( phi->is_Phi() ) {
 109         //    phi->add_req(phi->in(i));
 110         //  }
 111         //}
 112 
 113         rreq++;                 // One more input to Region
 114       } // Found a region to merge into Region
 115       igvn->_worklist.push(r);
 116       // Clobber pointer to the now dead 'r'
 117       region->set_req(i, phase->C->top());
 118     }
 119   }
 120 
 121   return progress;
 122 }
 123 
 124 
 125 
 126 //--------------------------------has_phi--------------------------------------
 127 // Helper function: Return any PhiNode that uses this region or NULL
 128 PhiNode* RegionNode::has_phi() const {
 129   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 130     Node* phi = fast_out(i);
 131     if (phi->is_Phi()) {   // Check for Phi users
 132       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 133       return phi->as_Phi();  // this one is good enough
 134     }
 135   }
 136 
 137   return NULL;
 138 }
 139 
 140 
 141 //-----------------------------has_unique_phi----------------------------------
 142 // Helper function: Return the only PhiNode that uses this region or NULL
 143 PhiNode* RegionNode::has_unique_phi() const {
 144   // Check that only one use is a Phi
 145   PhiNode* only_phi = NULL;
 146   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 147     Node* phi = fast_out(i);
 148     if (phi->is_Phi()) {   // Check for Phi users
 149       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 150       if (only_phi == NULL) {
 151         only_phi = phi->as_Phi();
 152       } else {
 153         return NULL;  // multiple phis
 154       }
 155     }
 156   }
 157 
 158   return only_phi;
 159 }
 160 
 161 
 162 //------------------------------check_phi_clipping-----------------------------
 163 // Helper function for RegionNode's identification of FP clipping
 164 // Check inputs to the Phi
 165 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 166   min     = NULL;
 167   max     = NULL;
 168   val     = NULL;
 169   min_idx = 0;
 170   max_idx = 0;
 171   val_idx = 0;
 172   uint  phi_max = phi->req();
 173   if( phi_max == 4 ) {
 174     for( uint j = 1; j < phi_max; ++j ) {
 175       Node *n = phi->in(j);
 176       int opcode = n->Opcode();
 177       switch( opcode ) {
 178       case Op_ConI:
 179         {
 180           if( min == NULL ) {
 181             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 182             min_idx = j;
 183           } else {
 184             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 185             max_idx = j;
 186             if( min->get_int() > max->get_int() ) {
 187               // Swap min and max
 188               ConNode *temp;
 189               uint     temp_idx;
 190               temp     = min;     min     = max;     max     = temp;
 191               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 192             }
 193           }
 194         }
 195         break;
 196       default:
 197         {
 198           val = n;
 199           val_idx = j;
 200         }
 201         break;
 202       }
 203     }
 204   }
 205   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 206 }
 207 
 208 
 209 //------------------------------check_if_clipping------------------------------
 210 // Helper function for RegionNode's identification of FP clipping
 211 // Check that inputs to Region come from two IfNodes,
 212 //
 213 //            If
 214 //      False    True
 215 //       If        |
 216 //  False  True    |
 217 //    |      |     |
 218 //  RegionNode_inputs
 219 //
 220 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 221   top_if = NULL;
 222   bot_if = NULL;
 223 
 224   // Check control structure above RegionNode for (if  ( if  ) )
 225   Node *in1 = region->in(1);
 226   Node *in2 = region->in(2);
 227   Node *in3 = region->in(3);
 228   // Check that all inputs are projections
 229   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 230     Node *in10 = in1->in(0);
 231     Node *in20 = in2->in(0);
 232     Node *in30 = in3->in(0);
 233     // Check that #1 and #2 are ifTrue and ifFalse from same If
 234     if( in10 != NULL && in10->is_If() &&
 235         in20 != NULL && in20->is_If() &&
 236         in30 != NULL && in30->is_If() && in10 == in20 &&
 237         (in1->Opcode() != in2->Opcode()) ) {
 238       Node  *in100 = in10->in(0);
 239       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 240       // Check that control for in10 comes from other branch of IF from in3
 241       if( in1000 != NULL && in1000->is_If() &&
 242           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 243         // Control pattern checks
 244         top_if = (IfNode*)in1000;
 245         bot_if = (IfNode*)in10;
 246       }
 247     }
 248   }
 249 
 250   return (top_if != NULL);
 251 }
 252 
 253 
 254 //------------------------------check_convf2i_clipping-------------------------
 255 // Helper function for RegionNode's identification of FP clipping
 256 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 257 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 258   convf2i = NULL;
 259 
 260   // Check for the RShiftNode
 261   Node *rshift = phi->in(idx);
 262   assert( rshift, "Previous checks ensure phi input is present");
 263   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 264 
 265   // Check for the LShiftNode
 266   Node *lshift = rshift->in(1);
 267   assert( lshift, "Previous checks ensure phi input is present");
 268   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 269 
 270   // Check for the ConvF2INode
 271   Node *conv = lshift->in(1);
 272   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 273 
 274   // Check that shift amounts are only to get sign bits set after F2I
 275   jint max_cutoff     = max->get_int();
 276   jint min_cutoff     = min->get_int();
 277   jint left_shift     = lshift->in(2)->get_int();
 278   jint right_shift    = rshift->in(2)->get_int();
 279   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 280   if( left_shift != right_shift ||
 281       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 282       max_post_shift < max_cutoff ||
 283       max_post_shift < -min_cutoff ) {
 284     // Shifts are necessary but current transformation eliminates them
 285     return false;
 286   }
 287 
 288   // OK to return the result of ConvF2I without shifting
 289   convf2i = (ConvF2INode*)conv;
 290   return true;
 291 }
 292 
 293 
 294 //------------------------------check_compare_clipping-------------------------
 295 // Helper function for RegionNode's identification of FP clipping
 296 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 297   Node *i1 = iff->in(1);
 298   if ( !i1->is_Bool() ) { return false; }
 299   BoolNode *bool1 = i1->as_Bool();
 300   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 301   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 302   const Node *cmpF = bool1->in(1);
 303   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 304   // Test that the float value being compared against
 305   // is equivalent to the int value used as a limit
 306   Node *nodef = cmpF->in(2);
 307   if( nodef->Opcode() != Op_ConF ) { return false; }
 308   jfloat conf = nodef->getf();
 309   jint   coni = limit->get_int();
 310   if( ((int)conf) != coni )        { return false; }
 311   input = cmpF->in(1);
 312   return true;
 313 }
 314 
 315 //------------------------------is_unreachable_region--------------------------
 316 // Find if the Region node is reachable from the root.
 317 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 318   assert(req() == 2, "");
 319 
 320   // First, cut the simple case of fallthrough region when NONE of
 321   // region's phis references itself directly or through a data node.
 322   uint max = outcnt();
 323   uint i;
 324   for (i = 0; i < max; i++) {
 325     Node* phi = raw_out(i);
 326     if (phi != NULL && phi->is_Phi()) {
 327       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 328       if (phi->outcnt() == 0)
 329         continue; // Safe case - no loops
 330       if (phi->outcnt() == 1) {
 331         Node* u = phi->raw_out(0);
 332         // Skip if only one use is an other Phi or Call or Uncommon trap.
 333         // It is safe to consider this case as fallthrough.
 334         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 335           continue;
 336       }
 337       // Check when phi references itself directly or through an other node.
 338       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 339         break; // Found possible unsafe data loop.
 340     }
 341   }
 342   if (i >= max)
 343     return false; // An unsafe case was NOT found - don't need graph walk.
 344 
 345   // Unsafe case - check if the Region node is reachable from root.
 346   ResourceMark rm;
 347 
 348   Arena *a = Thread::current()->resource_area();
 349   Node_List nstack(a);
 350   VectorSet visited(a);
 351 
 352   // Mark all control nodes reachable from root outputs
 353   Node *n = (Node*)phase->C->root();
 354   nstack.push(n);
 355   visited.set(n->_idx);
 356   while (nstack.size() != 0) {
 357     n = nstack.pop();
 358     uint max = n->outcnt();
 359     for (uint i = 0; i < max; i++) {
 360       Node* m = n->raw_out(i);
 361       if (m != NULL && m->is_CFG()) {
 362         if (phase->eqv(m, this)) {
 363           return false; // We reached the Region node - it is not dead.
 364         }
 365         if (!visited.test_set(m->_idx))
 366           nstack.push(m);
 367       }
 368     }
 369   }
 370 
 371   return true; // The Region node is unreachable - it is dead.
 372 }
 373 
 374 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 375   // Incremental inlining + PhaseStringOpts sometimes produce:
 376   //
 377   // cmpP with 1 top input
 378   //           |
 379   //          If
 380   //         /  \
 381   //   IfFalse  IfTrue  /- Some Node
 382   //         \  /      /    /
 383   //        Region    / /-MergeMem
 384   //             \---Phi
 385   //
 386   //
 387   // It's expected by PhaseStringOpts that the Region goes away and is
 388   // replaced by If's control input but because there's still a Phi,
 389   // the Region stays in the graph. The top input from the cmpP is
 390   // propagated forward and a subgraph that is useful goes away. The
 391   // code below replaces the Phi with the MergeMem so that the Region
 392   // is simplified.
 393 
 394   PhiNode* phi = has_unique_phi();
 395   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 396     MergeMemNode* m = NULL;
 397     assert(phi->req() == 3, "same as region");
 398     for (uint i = 1; i < 3; ++i) {
 399       Node *mem = phi->in(i);
 400       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 401         // Nothing is control-dependent on path #i except the region itself.
 402         m = mem->as_MergeMem();
 403         uint j = 3 - i;
 404         Node* other = phi->in(j);
 405         if (other && other == m->base_memory()) {
 406           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 407           // This will allow the diamond to collapse completely.
 408           phase->is_IterGVN()->replace_node(phi, m);
 409           return true;
 410         }
 411       }
 412     }
 413   }
 414   return false;
 415 }
 416 
 417 //------------------------------Ideal------------------------------------------
 418 // Return a node which is more "ideal" than the current node.  Must preserve
 419 // the CFG, but we can still strip out dead paths.
 420 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 421   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 422   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 423 
 424   // Check for RegionNode with no Phi users and both inputs come from either
 425   // arm of the same IF.  If found, then the control-flow split is useless.
 426   bool has_phis = false;
 427   if (can_reshape) {            // Need DU info to check for Phi users
 428     has_phis = (has_phi() != NULL);       // Cache result
 429     if (has_phis && try_clean_mem_phi(phase)) {
 430       has_phis = false;
 431     }
 432 
 433     if (!has_phis) {            // No Phi users?  Nothing merging?
 434       for (uint i = 1; i < req()-1; i++) {
 435         Node *if1 = in(i);
 436         if( !if1 ) continue;
 437         Node *iff = if1->in(0);
 438         if( !iff || !iff->is_If() ) continue;
 439         for( uint j=i+1; j<req(); j++ ) {
 440           if( in(j) && in(j)->in(0) == iff &&
 441               if1->Opcode() != in(j)->Opcode() ) {
 442             // Add the IF Projections to the worklist. They (and the IF itself)
 443             // will be eliminated if dead.
 444             phase->is_IterGVN()->add_users_to_worklist(iff);
 445             set_req(i, iff->in(0));// Skip around the useless IF diamond
 446             set_req(j, NULL);
 447             return this;      // Record progress
 448           }
 449         }
 450       }
 451     }
 452   }
 453 
 454   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 455   // degrades to a copy.
 456   bool add_to_worklist = false;
 457   bool modified = false;
 458   int cnt = 0;                  // Count of values merging
 459   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 460   int del_it = 0;               // The last input path we delete
 461   // For all inputs...
 462   for( uint i=1; i<req(); ++i ){// For all paths in
 463     Node *n = in(i);            // Get the input
 464     if( n != NULL ) {
 465       // Remove useless control copy inputs
 466       if( n->is_Region() && n->as_Region()->is_copy() ) {
 467         set_req(i, n->nonnull_req());
 468         modified = true;
 469         i--;
 470         continue;
 471       }
 472       if( n->is_Proj() ) {      // Remove useless rethrows
 473         Node *call = n->in(0);
 474         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 475           set_req(i, call->in(0));
 476           modified = true;
 477           i--;
 478           continue;
 479         }
 480       }
 481       if( phase->type(n) == Type::TOP ) {
 482         set_req(i, NULL);       // Ignore TOP inputs
 483         modified = true;
 484         i--;
 485         continue;
 486       }
 487       cnt++;                    // One more value merging
 488 
 489     } else if (can_reshape) {   // Else found dead path with DU info
 490       PhaseIterGVN *igvn = phase->is_IterGVN();
 491       del_req(i);               // Yank path from self
 492       del_it = i;
 493       uint max = outcnt();
 494       DUIterator j;
 495       bool progress = true;
 496       while(progress) {         // Need to establish property over all users
 497         progress = false;
 498         for (j = outs(); has_out(j); j++) {
 499           Node *n = out(j);
 500           if( n->req() != req() && n->is_Phi() ) {
 501             assert( n->in(0) == this, "" );
 502             igvn->hash_delete(n); // Yank from hash before hacking edges
 503             n->set_req_X(i,NULL,igvn);// Correct DU info
 504             n->del_req(i);        // Yank path from Phis
 505             if( max != outcnt() ) {
 506               progress = true;
 507               j = refresh_out_pos(j);
 508               max = outcnt();
 509             }
 510           }
 511         }
 512       }
 513       add_to_worklist = true;
 514       i--;
 515     }
 516   }
 517 
 518   if (can_reshape && cnt == 1) {
 519     // Is it dead loop?
 520     // If it is LoopNopde it had 2 (+1 itself) inputs and
 521     // one of them was cut. The loop is dead if it was EntryContol.
 522     // Loop node may have only one input because entry path
 523     // is removed in PhaseIdealLoop::Dominators().
 524     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 525     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
 526                              (del_it == 0 && is_unreachable_region(phase)))) ||
 527         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
 528       // Yes,  the region will be removed during the next step below.
 529       // Cut the backedge input and remove phis since no data paths left.
 530       // We don't cut outputs to other nodes here since we need to put them
 531       // on the worklist.
 532       PhaseIterGVN *igvn = phase->is_IterGVN();
 533       if (in(1)->outcnt() == 1) {
 534         igvn->_worklist.push(in(1));
 535       }
 536       del_req(1);
 537       cnt = 0;
 538       assert( req() == 1, "no more inputs expected" );
 539       uint max = outcnt();
 540       bool progress = true;
 541       Node *top = phase->C->top();
 542       DUIterator j;
 543       while(progress) {
 544         progress = false;
 545         for (j = outs(); has_out(j); j++) {
 546           Node *n = out(j);
 547           if( n->is_Phi() ) {
 548             assert( igvn->eqv(n->in(0), this), "" );
 549             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 550             // Break dead loop data path.
 551             // Eagerly replace phis with top to avoid phis copies generation.
 552             igvn->replace_node(n, top);
 553             if( max != outcnt() ) {
 554               progress = true;
 555               j = refresh_out_pos(j);
 556               max = outcnt();
 557             }
 558           }
 559         }
 560       }
 561       add_to_worklist = true;
 562     }
 563   }
 564   if (add_to_worklist) {
 565     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 566   }
 567 
 568   if( cnt <= 1 ) {              // Only 1 path in?
 569     set_req(0, NULL);           // Null control input for region copy
 570     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 571       // No inputs or all inputs are NULL.
 572       return NULL;
 573     } else if (can_reshape) {   // Optimization phase - remove the node
 574       PhaseIterGVN *igvn = phase->is_IterGVN();
 575       Node *parent_ctrl;
 576       if( cnt == 0 ) {
 577         assert( req() == 1, "no inputs expected" );
 578         // During IGVN phase such region will be subsumed by TOP node
 579         // so region's phis will have TOP as control node.
 580         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 581         // Also set other user's input to top.
 582         parent_ctrl = phase->C->top();
 583       } else {
 584         // The fallthrough case since we already checked dead loops above.
 585         parent_ctrl = in(1);
 586         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 587         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 588       }
 589       if (!add_to_worklist)
 590         igvn->add_users_to_worklist(this); // Check for further allowed opts
 591       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 592         Node* n = last_out(i);
 593         igvn->hash_delete(n); // Remove from worklist before modifying edges
 594         if( n->is_Phi() ) {   // Collapse all Phis
 595           // Eagerly replace phis to avoid copies generation.
 596           Node* in;
 597           if( cnt == 0 ) {
 598             assert( n->req() == 1, "No data inputs expected" );
 599             in = parent_ctrl; // replaced by top
 600           } else {
 601             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 602             in = n->in(1);               // replaced by unique input
 603             if( n->as_Phi()->is_unsafe_data_reference(in) )
 604               in = phase->C->top();      // replaced by top
 605           }
 606           igvn->replace_node(n, in);
 607         }
 608         else if( n->is_Region() ) { // Update all incoming edges
 609           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 610           uint uses_found = 0;
 611           for( uint k=1; k < n->req(); k++ ) {
 612             if( n->in(k) == this ) {
 613               n->set_req(k, parent_ctrl);
 614               uses_found++;
 615             }
 616           }
 617           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 618             i -= (uses_found - 1);
 619           }
 620         }
 621         else {
 622           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 623           n->set_req(0, parent_ctrl);
 624         }
 625 #ifdef ASSERT
 626         for( uint k=0; k < n->req(); k++ ) {
 627           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 628         }
 629 #endif
 630       }
 631       // Remove the RegionNode itself from DefUse info
 632       igvn->remove_dead_node(this);
 633       return NULL;
 634     }
 635     return this;                // Record progress
 636   }
 637 
 638 
 639   // If a Region flows into a Region, merge into one big happy merge.
 640   if (can_reshape) {
 641     Node *m = merge_region(this, phase);
 642     if (m != NULL)  return m;
 643   }
 644 
 645   // Check if this region is the root of a clipping idiom on floats
 646   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 647     // Check that only one use is a Phi and that it simplifies to two constants +
 648     PhiNode* phi = has_unique_phi();
 649     if (phi != NULL) {          // One Phi user
 650       // Check inputs to the Phi
 651       ConNode *min;
 652       ConNode *max;
 653       Node    *val;
 654       uint     min_idx;
 655       uint     max_idx;
 656       uint     val_idx;
 657       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 658         IfNode *top_if;
 659         IfNode *bot_if;
 660         if( check_if_clipping( this, bot_if, top_if ) ) {
 661           // Control pattern checks, now verify compares
 662           Node   *top_in = NULL;   // value being compared against
 663           Node   *bot_in = NULL;
 664           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 665               check_compare_clipping( false, top_if, max, top_in ) ) {
 666             if( bot_in == top_in ) {
 667               PhaseIterGVN *gvn = phase->is_IterGVN();
 668               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 669               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 670 
 671               // Check for the ConvF2INode
 672               ConvF2INode *convf2i;
 673               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 674                 convf2i->in(1) == bot_in ) {
 675                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 676                 // max test
 677                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 678                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 679                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 680                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 681                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 682                 // min test
 683                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 684                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 685                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 686                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 687                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 688                 // update input edges to region node
 689                 set_req_X( min_idx, if_min, gvn );
 690                 set_req_X( max_idx, if_max, gvn );
 691                 set_req_X( val_idx, ifF,    gvn );
 692                 // remove unnecessary 'LShiftI; RShiftI' idiom
 693                 gvn->hash_delete(phi);
 694                 phi->set_req_X( val_idx, convf2i, gvn );
 695                 gvn->hash_find_insert(phi);
 696                 // Return transformed region node
 697                 return this;
 698               }
 699             }
 700           }
 701         }
 702       }
 703     }
 704   }
 705 
 706   return modified ? this : NULL;
 707 }
 708 
 709 
 710 
 711 const RegMask &RegionNode::out_RegMask() const {
 712   return RegMask::Empty;
 713 }
 714 
 715 // Find the one non-null required input.  RegionNode only
 716 Node *Node::nonnull_req() const {
 717   assert( is_Region(), "" );
 718   for( uint i = 1; i < _cnt; i++ )
 719     if( in(i) )
 720       return in(i);
 721   ShouldNotReachHere();
 722   return NULL;
 723 }
 724 
 725 
 726 //=============================================================================
 727 // note that these functions assume that the _adr_type field is flattened
 728 uint PhiNode::hash() const {
 729   const Type* at = _adr_type;
 730   return TypeNode::hash() + (at ? at->hash() : 0);
 731 }
 732 uint PhiNode::cmp( const Node &n ) const {
 733   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 734 }
 735 static inline
 736 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 737   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 738   return Compile::current()->alias_type(at)->adr_type();
 739 }
 740 
 741 //----------------------------make---------------------------------------------
 742 // create a new phi with edges matching r and set (initially) to x
 743 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 744   uint preds = r->req();   // Number of predecessor paths
 745   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 746   PhiNode* p = new PhiNode(r, t, at);
 747   for (uint j = 1; j < preds; j++) {
 748     // Fill in all inputs, except those which the region does not yet have
 749     if (r->in(j) != NULL)
 750       p->init_req(j, x);
 751   }
 752   return p;
 753 }
 754 PhiNode* PhiNode::make(Node* r, Node* x) {
 755   const Type*    t  = x->bottom_type();
 756   const TypePtr* at = NULL;
 757   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 758   return make(r, x, t, at);
 759 }
 760 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 761   const Type*    t  = x->bottom_type();
 762   const TypePtr* at = NULL;
 763   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 764   return new PhiNode(r, t, at);
 765 }
 766 
 767 
 768 //------------------------slice_memory-----------------------------------------
 769 // create a new phi with narrowed memory type
 770 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 771   PhiNode* mem = (PhiNode*) clone();
 772   *(const TypePtr**)&mem->_adr_type = adr_type;
 773   // convert self-loops, or else we get a bad graph
 774   for (uint i = 1; i < req(); i++) {
 775     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 776   }
 777   mem->verify_adr_type();
 778   return mem;
 779 }
 780 
 781 //------------------------split_out_instance-----------------------------------
 782 // Split out an instance type from a bottom phi.
 783 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 784   const TypeOopPtr *t_oop = at->isa_oopptr();
 785   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 786   const TypePtr *t = adr_type();
 787   assert(type() == Type::MEMORY &&
 788          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 789           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 790           t->is_oopptr()->cast_to_exactness(true)
 791            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 792            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 793          "bottom or raw memory required");
 794 
 795   // Check if an appropriate node already exists.
 796   Node *region = in(0);
 797   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 798     Node* use = region->fast_out(k);
 799     if( use->is_Phi()) {
 800       PhiNode *phi2 = use->as_Phi();
 801       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 802         return phi2;
 803       }
 804     }
 805   }
 806   Compile *C = igvn->C;
 807   Arena *a = Thread::current()->resource_area();
 808   Node_Array node_map = new Node_Array(a);
 809   Node_Stack stack(a, C->live_nodes() >> 4);
 810   PhiNode *nphi = slice_memory(at);
 811   igvn->register_new_node_with_optimizer( nphi );
 812   node_map.map(_idx, nphi);
 813   stack.push((Node *)this, 1);
 814   while(!stack.is_empty()) {
 815     PhiNode *ophi = stack.node()->as_Phi();
 816     uint i = stack.index();
 817     assert(i >= 1, "not control edge");
 818     stack.pop();
 819     nphi = node_map[ophi->_idx]->as_Phi();
 820     for (; i < ophi->req(); i++) {
 821       Node *in = ophi->in(i);
 822       if (in == NULL || igvn->type(in) == Type::TOP)
 823         continue;
 824       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 825       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 826       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 827         opt = node_map[optphi->_idx];
 828         if (opt == NULL) {
 829           stack.push(ophi, i);
 830           nphi = optphi->slice_memory(at);
 831           igvn->register_new_node_with_optimizer( nphi );
 832           node_map.map(optphi->_idx, nphi);
 833           ophi = optphi;
 834           i = 0; // will get incremented at top of loop
 835           continue;
 836         }
 837       }
 838       nphi->set_req(i, opt);
 839     }
 840   }
 841   return nphi;
 842 }
 843 
 844 //------------------------verify_adr_type--------------------------------------
 845 #ifdef ASSERT
 846 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 847   if (visited.test_set(_idx))  return;  //already visited
 848 
 849   // recheck constructor invariants:
 850   verify_adr_type(false);
 851 
 852   // recheck local phi/phi consistency:
 853   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 854          "adr_type must be consistent across phi nest");
 855 
 856   // walk around
 857   for (uint i = 1; i < req(); i++) {
 858     Node* n = in(i);
 859     if (n == NULL)  continue;
 860     const Node* np = in(i);
 861     if (np->is_Phi()) {
 862       np->as_Phi()->verify_adr_type(visited, at);
 863     } else if (n->bottom_type() == Type::TOP
 864                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 865       // ignore top inputs
 866     } else {
 867       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 868       // recheck phi/non-phi consistency at leaves:
 869       assert((nat != NULL) == (at != NULL), "");
 870       assert(nat == at || nat == TypePtr::BOTTOM,
 871              "adr_type must be consistent at leaves of phi nest");
 872     }
 873   }
 874 }
 875 
 876 // Verify a whole nest of phis rooted at this one.
 877 void PhiNode::verify_adr_type(bool recursive) const {
 878   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
 879   if (Node::in_dump())               return;  // muzzle asserts when printing
 880 
 881   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 882 
 883   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 884 
 885   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 886          "Phi::adr_type must be pre-normalized");
 887 
 888   if (recursive) {
 889     VectorSet visited(Thread::current()->resource_area());
 890     verify_adr_type(visited, _adr_type);
 891   }
 892 }
 893 #endif
 894 
 895 
 896 //------------------------------Value------------------------------------------
 897 // Compute the type of the PhiNode
 898 const Type* PhiNode::Value(PhaseGVN* phase) const {
 899   Node *r = in(0);              // RegionNode
 900   if( !r )                      // Copy or dead
 901     return in(1) ? phase->type(in(1)) : Type::TOP;
 902 
 903   // Note: During parsing, phis are often transformed before their regions.
 904   // This means we have to use type_or_null to defend against untyped regions.
 905   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 906     return Type::TOP;
 907 
 908   // Check for trip-counted loop.  If so, be smarter.
 909   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 910   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
 911     // protect against init_trip() or limit() returning NULL
 912     if (l->can_be_counted_loop(phase)) {
 913       const Node *init   = l->init_trip();
 914       const Node *limit  = l->limit();
 915       const Node* stride = l->stride();
 916       if (init != NULL && limit != NULL && stride != NULL) {
 917         const TypeInt* lo = phase->type(init)->isa_int();
 918         const TypeInt* hi = phase->type(limit)->isa_int();
 919         const TypeInt* stride_t = phase->type(stride)->isa_int();
 920         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
 921           assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
 922           if (stride_t->_hi < 0) {          // Down-counter loop
 923             swap(lo, hi);
 924             return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
 925           } else if (stride_t->_lo >= 0) {
 926             return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
 927           }
 928         }
 929       }
 930     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
 931                in(LoopNode::EntryControl) != NULL &&
 932                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
 933       // During CCP, if we saturate the type of a counted loop's Phi
 934       // before the special code for counted loop above has a chance
 935       // to run (that is as long as the type of the backedge's control
 936       // is top), we might end up with non monotonic types
 937       return phase->type(in(LoopNode::EntryControl));
 938     }
 939   }
 940 
 941   // Until we have harmony between classes and interfaces in the type
 942   // lattice, we must tread carefully around phis which implicitly
 943   // convert the one to the other.
 944   const TypePtr* ttp = _type->make_ptr();
 945   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 946   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 947   bool is_intf = false;
 948   if (ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
 949     is_intf = true;
 950   } else if (ttkp != NULL && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
 951     is_intf = true;
 952   }
 953 
 954   // Default case: merge all inputs
 955   const Type *t = Type::TOP;        // Merged type starting value
 956   for (uint i = 1; i < req(); ++i) {// For all paths in
 957     // Reachable control path?
 958     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 959       const Type* ti = phase->type(in(i));
 960       // We assume that each input of an interface-valued Phi is a true
 961       // subtype of that interface.  This might not be true of the meet
 962       // of all the input types.  The lattice is not distributive in
 963       // such cases.  Ward off asserts in type.cpp by refusing to do
 964       // meets between interfaces and proper classes.
 965       const TypePtr* tip = ti->make_ptr();
 966       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 967       if (tiip) {
 968         bool ti_is_intf = false;
 969         ciKlass* k = tiip->klass();
 970         if (k->is_loaded() && k->is_interface())
 971           ti_is_intf = true;
 972         if (is_intf != ti_is_intf)
 973           { t = _type; break; }
 974       }
 975       t = t->meet_speculative(ti);
 976     }
 977   }
 978 
 979   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 980   // That is, we expect that "t->higher_equal(_type)" holds true.
 981   // There are various exceptions:
 982   // - Inputs which are phis might in fact be widened unnecessarily.
 983   //   For example, an input might be a widened int while the phi is a short.
 984   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 985   //   and postCCP has removed the cast which encodes the result of the check.
 986   // - The type of this phi is an interface, and the inputs are classes.
 987   // - Value calls on inputs might produce fuzzy results.
 988   //   (Occurrences of this case suggest improvements to Value methods.)
 989   //
 990   // It is not possible to see Type::BOTTOM values as phi inputs,
 991   // because the ciTypeFlow pre-pass produces verifier-quality types.
 992   const Type* ft = t->filter_speculative(_type);  // Worst case type
 993 
 994 #ifdef ASSERT
 995   // The following logic has been moved into TypeOopPtr::filter.
 996   const Type* jt = t->join_speculative(_type);
 997   if (jt->empty()) {           // Emptied out???
 998 
 999     // Check for evil case of 't' being a class and '_type' expecting an
1000     // interface.  This can happen because the bytecodes do not contain
1001     // enough type info to distinguish a Java-level interface variable
1002     // from a Java-level object variable.  If we meet 2 classes which
1003     // both implement interface I, but their meet is at 'j/l/O' which
1004     // doesn't implement I, we have no way to tell if the result should
1005     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1006     // into a Phi which "knows" it's an Interface type we'll have to
1007     // uplift the type.
1008     if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1009       assert(ft == _type, ""); // Uplift to interface
1010     } else if (!t->empty() && ttkp != NULL && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1011       assert(ft == _type, ""); // Uplift to interface
1012     } else {
1013       // We also have to handle 'evil cases' of interface- vs. class-arrays
1014       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1015       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1016           assert(ft == _type, "");   // Uplift to array of interface
1017       } else {
1018         // Otherwise it's something stupid like non-overlapping int ranges
1019         // found on dying counted loops.
1020         assert(ft == Type::TOP, ""); // Canonical empty value
1021       }
1022     }
1023   }
1024 
1025   else {
1026 
1027     // If we have an interface-typed Phi and we narrow to a class type, the join
1028     // should report back the class.  However, if we have a J/L/Object
1029     // class-typed Phi and an interface flows in, it's possible that the meet &
1030     // join report an interface back out.  This isn't possible but happens
1031     // because the type system doesn't interact well with interfaces.
1032     const TypePtr *jtp = jt->make_ptr();
1033     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1034     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1035     if( jtip && ttip ) {
1036       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1037           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1038         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1039                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1040         jt = ft;
1041       }
1042     }
1043     if( jtkp && ttkp ) {
1044       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1045           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1046           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1047         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1048                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1049         jt = ft;
1050       }
1051     }
1052     if (jt != ft && jt->base() == ft->base()) {
1053       if (jt->isa_int() &&
1054           jt->is_int()->_lo == ft->is_int()->_lo &&
1055           jt->is_int()->_hi == ft->is_int()->_hi)
1056         jt = ft;
1057       if (jt->isa_long() &&
1058           jt->is_long()->_lo == ft->is_long()->_lo &&
1059           jt->is_long()->_hi == ft->is_long()->_hi)
1060         jt = ft;
1061     }
1062     if (jt != ft) {
1063       tty->print("merge type:  "); t->dump(); tty->cr();
1064       tty->print("kill type:   "); _type->dump(); tty->cr();
1065       tty->print("join type:   "); jt->dump(); tty->cr();
1066       tty->print("filter type: "); ft->dump(); tty->cr();
1067     }
1068     assert(jt == ft, "");
1069   }
1070 #endif //ASSERT
1071 
1072   // Deal with conversion problems found in data loops.
1073   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1074 
1075   return ft;
1076 }
1077 
1078 
1079 //------------------------------is_diamond_phi---------------------------------
1080 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1081 // index of the true path or 0 otherwise.
1082 // If check_control_only is true, do not inspect the If node at the
1083 // top, and return -1 (not an edge number) on success.
1084 int PhiNode::is_diamond_phi(bool check_control_only) const {
1085   // Check for a 2-path merge
1086   Node *region = in(0);
1087   if( !region ) return 0;
1088   if( region->req() != 3 ) return 0;
1089   if(         req() != 3 ) return 0;
1090   // Check that both paths come from the same If
1091   Node *ifp1 = region->in(1);
1092   Node *ifp2 = region->in(2);
1093   if( !ifp1 || !ifp2 ) return 0;
1094   Node *iff = ifp1->in(0);
1095   if( !iff || !iff->is_If() ) return 0;
1096   if( iff != ifp2->in(0) ) return 0;
1097   if (check_control_only)  return -1;
1098   // Check for a proper bool/cmp
1099   const Node *b = iff->in(1);
1100   if( !b->is_Bool() ) return 0;
1101   const Node *cmp = b->in(1);
1102   if( !cmp->is_Cmp() ) return 0;
1103 
1104   // Check for branching opposite expected
1105   if( ifp2->Opcode() == Op_IfTrue ) {
1106     assert( ifp1->Opcode() == Op_IfFalse, "" );
1107     return 2;
1108   } else {
1109     assert( ifp1->Opcode() == Op_IfTrue, "" );
1110     return 1;
1111   }
1112 }
1113 
1114 //----------------------------check_cmove_id-----------------------------------
1115 // Check for CMove'ing a constant after comparing against the constant.
1116 // Happens all the time now, since if we compare equality vs a constant in
1117 // the parser, we "know" the variable is constant on one path and we force
1118 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1119 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1120 // general in that we don't need constants.  Since CMove's are only inserted
1121 // in very special circumstances, we do it here on generic Phi's.
1122 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1123   assert(true_path !=0, "only diamond shape graph expected");
1124 
1125   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1126   // phi->region->if_proj->ifnode->bool->cmp
1127   Node*     region = in(0);
1128   Node*     iff    = region->in(1)->in(0);
1129   BoolNode* b      = iff->in(1)->as_Bool();
1130   Node*     cmp    = b->in(1);
1131   Node*     tval   = in(true_path);
1132   Node*     fval   = in(3-true_path);
1133   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1134   if (id == NULL)
1135     return NULL;
1136 
1137   // Either value might be a cast that depends on a branch of 'iff'.
1138   // Since the 'id' value will float free of the diamond, either
1139   // decast or return failure.
1140   Node* ctl = id->in(0);
1141   if (ctl != NULL && ctl->in(0) == iff) {
1142     if (id->is_ConstraintCast()) {
1143       return id->in(1);
1144     } else {
1145       // Don't know how to disentangle this value.
1146       return NULL;
1147     }
1148   }
1149 
1150   return id;
1151 }
1152 
1153 //------------------------------Identity---------------------------------------
1154 // Check for Region being Identity.
1155 Node* PhiNode::Identity(PhaseGVN* phase) {
1156   // Check for no merging going on
1157   // (There used to be special-case code here when this->region->is_Loop.
1158   // It would check for a tributary phi on the backedge that the main phi
1159   // trivially, perhaps with a single cast.  The unique_input method
1160   // does all this and more, by reducing such tributaries to 'this'.)
1161   Node* uin = unique_input(phase, false);
1162   if (uin != NULL) {
1163     return uin;
1164   }
1165 
1166   int true_path = is_diamond_phi();
1167   if (true_path != 0) {
1168     Node* id = is_cmove_id(phase, true_path);
1169     if (id != NULL)  return id;
1170   }
1171 
1172   return this;                     // No identity
1173 }
1174 
1175 //-----------------------------unique_input------------------------------------
1176 // Find the unique value, discounting top, self-loops, and casts.
1177 // Return top if there are no inputs, and self if there are multiple.
1178 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1179   //  1) One unique direct input,
1180   // or if uncast is true:
1181   //  2) some of the inputs have an intervening ConstraintCast
1182   //  3) an input is a self loop
1183   //
1184   //  1) input   or   2) input     or   3) input __
1185   //     /   \           /   \               \  /  \
1186   //     \   /          |    cast             phi  cast
1187   //      phi            \   /               /  \  /
1188   //                      phi               /    --
1189 
1190   Node* r = in(0);                      // RegionNode
1191   if (r == NULL)  return in(1);         // Already degraded to a Copy
1192   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1193 
1194   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1195     Node* rc = r->in(i);
1196     if (rc == NULL || phase->type(rc) == Type::TOP)
1197       continue;                 // ignore unreachable control path
1198     Node* n = in(i);
1199     if (n == NULL)
1200       continue;
1201     Node* un = n;
1202     if (uncast) {
1203 #ifdef ASSERT
1204       Node* m = un->uncast();
1205 #endif
1206       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1207         Node* next = un->in(1);
1208         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1209           // risk exposing raw ptr at safepoint
1210           break;
1211         }
1212         un = next;
1213       }
1214       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1215     }
1216     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1217       continue; // ignore if top, or in(i) and "this" are in a data cycle
1218     }
1219     // Check for a unique input (maybe uncasted)
1220     if (input == NULL) {
1221       input = un;
1222     } else if (input != un) {
1223       input = NodeSentinel; // no unique input
1224     }
1225   }
1226   if (input == NULL) {
1227     return phase->C->top();        // no inputs
1228   }
1229 
1230   if (input != NodeSentinel) {
1231     return input;           // one unique direct input
1232   }
1233 
1234   // Nothing.
1235   return NULL;
1236 }
1237 
1238 //------------------------------is_x2logic-------------------------------------
1239 // Check for simple convert-to-boolean pattern
1240 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1241 // Convert Phi to an ConvIB.
1242 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1243   assert(true_path !=0, "only diamond shape graph expected");
1244   // Convert the true/false index into an expected 0/1 return.
1245   // Map 2->0 and 1->1.
1246   int flipped = 2-true_path;
1247 
1248   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1249   // phi->region->if_proj->ifnode->bool->cmp
1250   Node *region = phi->in(0);
1251   Node *iff = region->in(1)->in(0);
1252   BoolNode *b = (BoolNode*)iff->in(1);
1253   const CmpNode *cmp = (CmpNode*)b->in(1);
1254 
1255   Node *zero = phi->in(1);
1256   Node *one  = phi->in(2);
1257   const Type *tzero = phase->type( zero );
1258   const Type *tone  = phase->type( one  );
1259 
1260   // Check for compare vs 0
1261   const Type *tcmp = phase->type(cmp->in(2));
1262   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1263     // Allow cmp-vs-1 if the other input is bounded by 0-1
1264     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1265       return NULL;
1266     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1267   }
1268 
1269   // Check for setting zero/one opposite expected
1270   if( tzero == TypeInt::ZERO ) {
1271     if( tone == TypeInt::ONE ) {
1272     } else return NULL;
1273   } else if( tzero == TypeInt::ONE ) {
1274     if( tone == TypeInt::ZERO ) {
1275       flipped = 1-flipped;
1276     } else return NULL;
1277   } else return NULL;
1278 
1279   // Check for boolean test backwards
1280   if( b->_test._test == BoolTest::ne ) {
1281   } else if( b->_test._test == BoolTest::eq ) {
1282     flipped = 1-flipped;
1283   } else return NULL;
1284 
1285   // Build int->bool conversion
1286   Node *n = new Conv2BNode( cmp->in(1) );
1287   if( flipped )
1288     n = new XorINode( phase->transform(n), phase->intcon(1) );
1289 
1290   return n;
1291 }
1292 
1293 //------------------------------is_cond_add------------------------------------
1294 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1295 // To be profitable the control flow has to disappear; there can be no other
1296 // values merging here.  We replace the test-and-branch with:
1297 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1298 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1299 // Then convert Y to 0-or-Y and finally add.
1300 // This is a key transform for SpecJava _201_compress.
1301 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1302   assert(true_path !=0, "only diamond shape graph expected");
1303 
1304   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1305   // phi->region->if_proj->ifnode->bool->cmp
1306   RegionNode *region = (RegionNode*)phi->in(0);
1307   Node *iff = region->in(1)->in(0);
1308   BoolNode* b = iff->in(1)->as_Bool();
1309   const CmpNode *cmp = (CmpNode*)b->in(1);
1310 
1311   // Make sure only merging this one phi here
1312   if (region->has_unique_phi() != phi)  return NULL;
1313 
1314   // Make sure each arm of the diamond has exactly one output, which we assume
1315   // is the region.  Otherwise, the control flow won't disappear.
1316   if (region->in(1)->outcnt() != 1) return NULL;
1317   if (region->in(2)->outcnt() != 1) return NULL;
1318 
1319   // Check for "(P < Q)" of type signed int
1320   if (b->_test._test != BoolTest::lt)  return NULL;
1321   if (cmp->Opcode() != Op_CmpI)        return NULL;
1322 
1323   Node *p = cmp->in(1);
1324   Node *q = cmp->in(2);
1325   Node *n1 = phi->in(  true_path);
1326   Node *n2 = phi->in(3-true_path);
1327 
1328   int op = n1->Opcode();
1329   if( op != Op_AddI           // Need zero as additive identity
1330       /*&&op != Op_SubI &&
1331       op != Op_AddP &&
1332       op != Op_XorI &&
1333       op != Op_OrI*/ )
1334     return NULL;
1335 
1336   Node *x = n2;
1337   Node *y = NULL;
1338   if( x == n1->in(1) ) {
1339     y = n1->in(2);
1340   } else if( x == n1->in(2) ) {
1341     y = n1->in(1);
1342   } else return NULL;
1343 
1344   // Not so profitable if compare and add are constants
1345   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1346     return NULL;
1347 
1348   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1349   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1350   return new AddINode(j_and,x);
1351 }
1352 
1353 //------------------------------is_absolute------------------------------------
1354 // Check for absolute value.
1355 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1356   assert(true_path !=0, "only diamond shape graph expected");
1357 
1358   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1359   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1360 
1361   // ABS ends with the merge of 2 control flow paths.
1362   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1363   int false_path = 3 - true_path;
1364 
1365   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1366   // phi->region->if_proj->ifnode->bool->cmp
1367   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1368 
1369   // Check bool sense
1370   switch( bol->_test._test ) {
1371   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1372   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1373   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1374   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1375   default:           return NULL;                              break;
1376   }
1377 
1378   // Test is next
1379   Node *cmp = bol->in(1);
1380   const Type *tzero = NULL;
1381   switch( cmp->Opcode() ) {
1382   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1383   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1384   default: return NULL;
1385   }
1386 
1387   // Find zero input of compare; the other input is being abs'd
1388   Node *x = NULL;
1389   bool flip = false;
1390   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1391     x = cmp->in(3 - cmp_zero_idx);
1392   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1393     // The test is inverted, we should invert the result...
1394     x = cmp->in(cmp_zero_idx);
1395     flip = true;
1396   } else {
1397     return NULL;
1398   }
1399 
1400   // Next get the 2 pieces being selected, one is the original value
1401   // and the other is the negated value.
1402   if( phi_root->in(phi_x_idx) != x ) return NULL;
1403 
1404   // Check other phi input for subtract node
1405   Node *sub = phi_root->in(3 - phi_x_idx);
1406 
1407   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1408   if( tzero == TypeF::ZERO ) {
1409     if( sub->Opcode() != Op_SubF ||
1410         sub->in(2) != x ||
1411         phase->type(sub->in(1)) != tzero ) return NULL;
1412     x = new AbsFNode(x);
1413     if (flip) {
1414       x = new SubFNode(sub->in(1), phase->transform(x));
1415     }
1416   } else {
1417     if( sub->Opcode() != Op_SubD ||
1418         sub->in(2) != x ||
1419         phase->type(sub->in(1)) != tzero ) return NULL;
1420     x = new AbsDNode(x);
1421     if (flip) {
1422       x = new SubDNode(sub->in(1), phase->transform(x));
1423     }
1424   }
1425 
1426   return x;
1427 }
1428 
1429 //------------------------------split_once-------------------------------------
1430 // Helper for split_flow_path
1431 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1432   igvn->hash_delete(n);         // Remove from hash before hacking edges
1433 
1434   uint j = 1;
1435   for (uint i = phi->req()-1; i > 0; i--) {
1436     if (phi->in(i) == val) {   // Found a path with val?
1437       // Add to NEW Region/Phi, no DU info
1438       newn->set_req( j++, n->in(i) );
1439       // Remove from OLD Region/Phi
1440       n->del_req(i);
1441     }
1442   }
1443 
1444   // Register the new node but do not transform it.  Cannot transform until the
1445   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1446   igvn->register_new_node_with_optimizer( newn );
1447 
1448   // Now I can point to the new node.
1449   n->add_req(newn);
1450   igvn->_worklist.push(n);
1451 }
1452 
1453 //------------------------------split_flow_path--------------------------------
1454 // Check for merging identical values and split flow paths
1455 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1456   BasicType bt = phi->type()->basic_type();
1457   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1458     return NULL;                // Bail out on funny non-value stuff
1459   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1460     return NULL;                // third unequal input to be worth doing
1461 
1462   // Scan for a constant
1463   uint i;
1464   for( i = 1; i < phi->req()-1; i++ ) {
1465     Node *n = phi->in(i);
1466     if( !n ) return NULL;
1467     if( phase->type(n) == Type::TOP ) return NULL;
1468     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1469       break;
1470   }
1471   if( i >= phi->req() )         // Only split for constants
1472     return NULL;
1473 
1474   Node *val = phi->in(i);       // Constant to split for
1475   uint hit = 0;                 // Number of times it occurs
1476   Node *r = phi->region();
1477 
1478   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1479     Node *n = phi->in(i);
1480     if( !n ) return NULL;
1481     if( phase->type(n) == Type::TOP ) return NULL;
1482     if( phi->in(i) == val ) {
1483       hit++;
1484       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1485         return NULL;            // don't split loop entry path
1486       }
1487     }
1488   }
1489 
1490   if( hit <= 1 ||               // Make sure we find 2 or more
1491       hit == phi->req()-1 )     // and not ALL the same value
1492     return NULL;
1493 
1494   // Now start splitting out the flow paths that merge the same value.
1495   // Split first the RegionNode.
1496   PhaseIterGVN *igvn = phase->is_IterGVN();
1497   RegionNode *newr = new RegionNode(hit+1);
1498   split_once(igvn, phi, val, r, newr);
1499 
1500   // Now split all other Phis than this one
1501   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1502     Node* phi2 = r->fast_out(k);
1503     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1504       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1505       split_once(igvn, phi, val, phi2, newphi);
1506     }
1507   }
1508 
1509   // Clean up this guy
1510   igvn->hash_delete(phi);
1511   for( i = phi->req()-1; i > 0; i-- ) {
1512     if( phi->in(i) == val ) {
1513       phi->del_req(i);
1514     }
1515   }
1516   phi->add_req(val);
1517 
1518   return phi;
1519 }
1520 
1521 //=============================================================================
1522 //------------------------------simple_data_loop_check-------------------------
1523 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1524 //  Returns:
1525 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1526 // Safe       - safe case when the phi and it's inputs reference only safe data
1527 //              nodes;
1528 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1529 //              is no reference back to the phi - need a graph walk
1530 //              to determine if it is in a loop;
1531 // UnsafeLoop - unsafe case when the phi references itself directly or through
1532 //              unsafe data node.
1533 //  Note: a safe data node is a node which could/never reference itself during
1534 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1535 //  I mark Phi nodes as safe node not only because they can reference itself
1536 //  but also to prevent mistaking the fallthrough case inside an outer loop
1537 //  as dead loop when the phi references itselfs through an other phi.
1538 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1539   // It is unsafe loop if the phi node references itself directly.
1540   if (in == (Node*)this)
1541     return UnsafeLoop; // Unsafe loop
1542   // Unsafe loop if the phi node references itself through an unsafe data node.
1543   // Exclude cases with null inputs or data nodes which could reference
1544   // itself (safe for dead loops).
1545   if (in != NULL && !in->is_dead_loop_safe()) {
1546     // Check inputs of phi's inputs also.
1547     // It is much less expensive then full graph walk.
1548     uint cnt = in->req();
1549     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1550     for (; i < cnt; ++i) {
1551       Node* m = in->in(i);
1552       if (m == (Node*)this)
1553         return UnsafeLoop; // Unsafe loop
1554       if (m != NULL && !m->is_dead_loop_safe()) {
1555         // Check the most common case (about 30% of all cases):
1556         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1557         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1558         if (m1 == (Node*)this)
1559           return UnsafeLoop; // Unsafe loop
1560         if (m1 != NULL && m1 == m->in(2) &&
1561             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1562           continue; // Safe case
1563         }
1564         // The phi references an unsafe node - need full analysis.
1565         return Unsafe;
1566       }
1567     }
1568   }
1569   return Safe; // Safe case - we can optimize the phi node.
1570 }
1571 
1572 //------------------------------is_unsafe_data_reference-----------------------
1573 // If phi can be reached through the data input - it is data loop.
1574 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1575   assert(req() > 1, "");
1576   // First, check simple cases when phi references itself directly or
1577   // through an other node.
1578   LoopSafety safety = simple_data_loop_check(in);
1579   if (safety == UnsafeLoop)
1580     return true;  // phi references itself - unsafe loop
1581   else if (safety == Safe)
1582     return false; // Safe case - phi could be replaced with the unique input.
1583 
1584   // Unsafe case when we should go through data graph to determine
1585   // if the phi references itself.
1586 
1587   ResourceMark rm;
1588 
1589   Arena *a = Thread::current()->resource_area();
1590   Node_List nstack(a);
1591   VectorSet visited(a);
1592 
1593   nstack.push(in); // Start with unique input.
1594   visited.set(in->_idx);
1595   while (nstack.size() != 0) {
1596     Node* n = nstack.pop();
1597     uint cnt = n->req();
1598     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1599     for (; i < cnt; i++) {
1600       Node* m = n->in(i);
1601       if (m == (Node*)this) {
1602         return true;    // Data loop
1603       }
1604       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1605         if (!visited.test_set(m->_idx))
1606           nstack.push(m);
1607       }
1608     }
1609   }
1610   return false; // The phi is not reachable from its inputs
1611 }
1612 
1613 
1614 //------------------------------Ideal------------------------------------------
1615 // Return a node which is more "ideal" than the current node.  Must preserve
1616 // the CFG, but we can still strip out dead paths.
1617 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1618   // The next should never happen after 6297035 fix.
1619   if( is_copy() )               // Already degraded to a Copy ?
1620     return NULL;                // No change
1621 
1622   Node *r = in(0);              // RegionNode
1623   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1624 
1625   // Note: During parsing, phis are often transformed before their regions.
1626   // This means we have to use type_or_null to defend against untyped regions.
1627   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1628     return NULL;                // No change
1629 
1630   // If all inputs are value types, push the value type node down through the
1631   // phi because value type nodes should be merged through their input values.
1632   if (req() > 2 && in(1) != NULL && in(1)->is_ValueTypeBase() && (can_reshape || in(1)->is_ValueType())) {
1633     int opcode = in(1)->Opcode();
1634     uint i = 2;
1635     for (; i < req() && in(i) && in(i)->is_ValueTypeBase(); i++) {
1636       assert(in(i)->Opcode() == opcode, "mixing pointers and values?");
1637     }
1638     if (i == req()) {
1639       ValueTypeBaseNode* vt = in(1)->as_ValueTypeBase()->clone_with_phis(phase, in(0));
1640       for (uint i = 2; i < req(); ++i) {
1641         vt->merge_with(phase, in(i)->as_ValueTypeBase(), i, i == (req()-1));
1642       }
1643       return vt;
1644     }
1645   }
1646 
1647   if (type()->isa_valuetypeptr() && can_reshape) {
1648     // If the Phi merges the result from a mix of constant and non
1649     // constant method handles, only some of its inputs are
1650     // ValueTypePtr nodes and we can't push the ValueTypePtr node down
1651     // to remove the need for allocations. This if fixed by transforming:
1652     //
1653     // (Phi ValueTypePtr#1 Node#2) to (Phi ValueTypePtr#1 CheckCastPP#2)
1654     //
1655     // Then pushing the CheckCastPP up through Phis until it reaches
1656     // the non constant method handle call. The type of the return
1657     // value is then known from the type of the CheckCastPP. A
1658     // ValueTypePtr can be created by adding projections to the call
1659     // for all values being returned. See
1660     // CheckCastPPNode::Ideal(). That ValueTypePtr node can then be
1661     // pushed down through Phis.
1662     const TypeValueTypePtr* vtptr = NULL;
1663     for (uint i = 1; i < req(); i++) {
1664       if (in(i) != NULL && in(i)->is_ValueTypePtr()) {
1665         const TypeValueTypePtr* t = phase->type(in(i))->is_valuetypeptr();
1666         t = t->cast_to_ptr_type(TypePtr::BotPTR)->is_valuetypeptr();
1667         if (vtptr == NULL) {
1668           vtptr = t;
1669         } else {
1670           assert(vtptr == t, "Phi should merge identical value types");
1671         }
1672       } else {
1673         assert(in(i) == NULL || vtptr == NULL || phase->type(in(i))->higher_equal(vtptr) || phase->type(in(i)) == Type::TOP ||
1674                phase->type(in(i))->is_valuetypeptr()->is__Value(), "bad type");
1675       }
1676     }
1677     if (vtptr != NULL) {
1678       // One input is a value type. All inputs must have the same type.
1679       bool progress = false;
1680       PhaseIterGVN* igvn = phase->is_IterGVN();
1681       for (uint i = 1; i < req(); i++) {
1682         if (in(i) != NULL && !in(i)->is_Con() && !phase->type(in(i))->higher_equal(vtptr)) {
1683           // Can't transform because CheckCastPPNode::Identity can
1684           // push the cast up through another Phi and cause this same
1685           // transformation to run again, indefinitely
1686           Node* cast = igvn->register_new_node_with_optimizer(new CheckCastPPNode(NULL, in(i), vtptr));
1687           set_req(i, cast);
1688           progress = true;
1689         }
1690       }
1691       if (progress) {
1692         return this;
1693       }
1694     }
1695   }
1696 
1697   Node *top = phase->C->top();
1698   bool new_phi = (outcnt() == 0); // transforming new Phi
1699   // No change for igvn if new phi is not hooked
1700   if (new_phi && can_reshape)
1701     return NULL;
1702 
1703   // The are 2 situations when only one valid phi's input is left
1704   // (in addition to Region input).
1705   // One: region is not loop - replace phi with this input.
1706   // Two: region is loop - replace phi with top since this data path is dead
1707   //                       and we need to break the dead data loop.
1708   Node* progress = NULL;        // Record if any progress made
1709   for( uint j = 1; j < req(); ++j ){ // For all paths in
1710     // Check unreachable control paths
1711     Node* rc = r->in(j);
1712     Node* n = in(j);            // Get the input
1713     if (rc == NULL || phase->type(rc) == Type::TOP) {
1714       if (n != top) {           // Not already top?
1715         PhaseIterGVN *igvn = phase->is_IterGVN();
1716         if (can_reshape && igvn != NULL) {
1717           igvn->_worklist.push(r);
1718         }
1719         set_req(j, top);        // Nuke it down
1720         progress = this;        // Record progress
1721       }
1722     }
1723   }
1724 
1725   if (can_reshape && outcnt() == 0) {
1726     // set_req() above may kill outputs if Phi is referenced
1727     // only by itself on the dead (top) control path.
1728     return top;
1729   }
1730 
1731   bool uncasted = false;
1732   Node* uin = unique_input(phase, false);
1733   if (uin == NULL && can_reshape) {
1734     uncasted = true;
1735     uin = unique_input(phase, true);
1736   }
1737   if (uin == top) {             // Simplest case: no alive inputs.
1738     if (can_reshape)            // IGVN transformation
1739       return top;
1740     else
1741       return NULL;              // Identity will return TOP
1742   } else if (uin != NULL) {
1743     // Only one not-NULL unique input path is left.
1744     // Determine if this input is backedge of a loop.
1745     // (Skip new phis which have no uses and dead regions).
1746     if (outcnt() > 0 && r->in(0) != NULL) {
1747       // First, take the short cut when we know it is a loop and
1748       // the EntryControl data path is dead.
1749       // Loop node may have only one input because entry path
1750       // is removed in PhaseIdealLoop::Dominators().
1751       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1752       bool is_loop = (r->is_Loop() && r->req() == 3);
1753       // Then, check if there is a data loop when phi references itself directly
1754       // or through other data nodes.
1755       if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1756           (!is_loop && is_unsafe_data_reference(uin))) {
1757         // Break this data loop to avoid creation of a dead loop.
1758         if (can_reshape) {
1759           return top;
1760         } else {
1761           // We can't return top if we are in Parse phase - cut inputs only
1762           // let Identity to handle the case.
1763           replace_edge(uin, top);
1764           return NULL;
1765         }
1766       }
1767     }
1768 
1769     if (uncasted) {
1770       // Add cast nodes between the phi to be removed and its unique input.
1771       // Wait until after parsing for the type information to propagate from the casts.
1772       assert(can_reshape, "Invalid during parsing");
1773       const Type* phi_type = bottom_type();
1774       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1775       // Add casts to carry the control dependency of the Phi that is
1776       // going away
1777       Node* cast = NULL;
1778       if (phi_type->isa_int()) {
1779         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1780       } else {
1781         const Type* uin_type = phase->type(uin);
1782         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1783           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1784         } else {
1785           // Use a CastPP for a cast to not null and a CheckCastPP for
1786           // a cast to a new klass (and both if both null-ness and
1787           // klass change).
1788 
1789           // If the type of phi is not null but the type of uin may be
1790           // null, uin's type must be casted to not null
1791           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1792               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1793             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1794           }
1795 
1796           // If the type of phi and uin, both casted to not null,
1797           // differ the klass of uin must be (check)cast'ed to match
1798           // that of phi
1799           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1800             Node* n = uin;
1801             if (cast != NULL) {
1802               cast = phase->transform(cast);
1803               n = cast;
1804             }
1805             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1806           }
1807           if (cast == NULL) {
1808             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1809           }
1810         }
1811       }
1812       assert(cast != NULL, "cast should be set");
1813       cast = phase->transform(cast);
1814       // set all inputs to the new cast(s) so the Phi is removed by Identity
1815       PhaseIterGVN* igvn = phase->is_IterGVN();
1816       for (uint i = 1; i < req(); i++) {
1817         set_req_X(i, cast, igvn);
1818       }
1819       uin = cast;
1820     }
1821 
1822     // One unique input.
1823     debug_only(Node* ident = Identity(phase));
1824     // The unique input must eventually be detected by the Identity call.
1825 #ifdef ASSERT
1826     if (ident != uin && !ident->is_top()) {
1827       // print this output before failing assert
1828       r->dump(3);
1829       this->dump(3);
1830       ident->dump();
1831       uin->dump();
1832     }
1833 #endif
1834     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1835     return NULL;
1836   }
1837 
1838   Node* opt = NULL;
1839   int true_path = is_diamond_phi();
1840   if( true_path != 0 ) {
1841     // Check for CMove'ing identity. If it would be unsafe,
1842     // handle it here. In the safe case, let Identity handle it.
1843     Node* unsafe_id = is_cmove_id(phase, true_path);
1844     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1845       opt = unsafe_id;
1846 
1847     // Check for simple convert-to-boolean pattern
1848     if( opt == NULL )
1849       opt = is_x2logic(phase, this, true_path);
1850 
1851     // Check for absolute value
1852     if( opt == NULL )
1853       opt = is_absolute(phase, this, true_path);
1854 
1855     // Check for conditional add
1856     if( opt == NULL && can_reshape )
1857       opt = is_cond_add(phase, this, true_path);
1858 
1859     // These 4 optimizations could subsume the phi:
1860     // have to check for a dead data loop creation.
1861     if( opt != NULL ) {
1862       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1863         // Found dead loop.
1864         if( can_reshape )
1865           return top;
1866         // We can't return top if we are in Parse phase - cut inputs only
1867         // to stop further optimizations for this phi. Identity will return TOP.
1868         assert(req() == 3, "only diamond merge phi here");
1869         set_req(1, top);
1870         set_req(2, top);
1871         return NULL;
1872       } else {
1873         return opt;
1874       }
1875     }
1876   }
1877 
1878   // Check for merging identical values and split flow paths
1879   if (can_reshape) {
1880     opt = split_flow_path(phase, this);
1881     // This optimization only modifies phi - don't need to check for dead loop.
1882     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1883     if (opt != NULL)  return opt;
1884   }
1885 
1886   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1887     // Try to undo Phi of AddP:
1888     // (Phi (AddP base base y) (AddP base2 base2 y))
1889     // becomes:
1890     // newbase := (Phi base base2)
1891     // (AddP newbase newbase y)
1892     //
1893     // This occurs as a result of unsuccessful split_thru_phi and
1894     // interferes with taking advantage of addressing modes. See the
1895     // clone_shift_expressions code in matcher.cpp
1896     Node* addp = in(1);
1897     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1898     Node* y = addp->in(AddPNode::Offset);
1899     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1900       // make sure that all the inputs are similar to the first one,
1901       // i.e. AddP with base == address and same offset as first AddP
1902       bool doit = true;
1903       for (uint i = 2; i < req(); i++) {
1904         if (in(i) == NULL ||
1905             in(i)->Opcode() != Op_AddP ||
1906             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1907             in(i)->in(AddPNode::Offset) != y) {
1908           doit = false;
1909           break;
1910         }
1911         // Accumulate type for resulting Phi
1912         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1913       }
1914       Node* base = NULL;
1915       if (doit) {
1916         // Check for neighboring AddP nodes in a tree.
1917         // If they have a base, use that it.
1918         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1919           Node* u = this->fast_out(k);
1920           if (u->is_AddP()) {
1921             Node* base2 = u->in(AddPNode::Base);
1922             if (base2 != NULL && !base2->is_top()) {
1923               if (base == NULL)
1924                 base = base2;
1925               else if (base != base2)
1926                 { doit = false; break; }
1927             }
1928           }
1929         }
1930       }
1931       if (doit) {
1932         if (base == NULL) {
1933           base = new PhiNode(in(0), type, NULL);
1934           for (uint i = 1; i < req(); i++) {
1935             base->init_req(i, in(i)->in(AddPNode::Base));
1936           }
1937           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1938         }
1939         return new AddPNode(base, base, y);
1940       }
1941     }
1942   }
1943 
1944   // Split phis through memory merges, so that the memory merges will go away.
1945   // Piggy-back this transformation on the search for a unique input....
1946   // It will be as if the merged memory is the unique value of the phi.
1947   // (Do not attempt this optimization unless parsing is complete.
1948   // It would make the parser's memory-merge logic sick.)
1949   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1950   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1951     // see if this phi should be sliced
1952     uint merge_width = 0;
1953     bool saw_self = false;
1954     for( uint i=1; i<req(); ++i ) {// For all paths in
1955       Node *ii = in(i);
1956       // TOP inputs should not be counted as safe inputs because if the
1957       // Phi references itself through all other inputs then splitting the
1958       // Phi through memory merges would create dead loop at later stage.
1959       if (ii == top) {
1960         return NULL; // Delay optimization until graph is cleaned.
1961       }
1962       if (ii->is_MergeMem()) {
1963         MergeMemNode* n = ii->as_MergeMem();
1964         merge_width = MAX2(merge_width, n->req());
1965         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1966       }
1967     }
1968 
1969     // This restriction is temporarily necessary to ensure termination:
1970     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1971 
1972     if (merge_width > Compile::AliasIdxRaw) {
1973       // found at least one non-empty MergeMem
1974       const TypePtr* at = adr_type();
1975       if (at != TypePtr::BOTTOM) {
1976         // Patch the existing phi to select an input from the merge:
1977         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1978         //     Phi:AT1(...m1...)
1979         int alias_idx = phase->C->get_alias_index(at);
1980         for (uint i=1; i<req(); ++i) {
1981           Node *ii = in(i);
1982           if (ii->is_MergeMem()) {
1983             MergeMemNode* n = ii->as_MergeMem();
1984             // compress paths and change unreachable cycles to TOP
1985             // If not, we can update the input infinitely along a MergeMem cycle
1986             // Equivalent code is in MemNode::Ideal_common
1987             Node *m  = phase->transform(n);
1988             if (outcnt() == 0) {  // Above transform() may kill us!
1989               return top;
1990             }
1991             // If transformed to a MergeMem, get the desired slice
1992             // Otherwise the returned node represents memory for every slice
1993             Node *new_mem = (m->is_MergeMem()) ?
1994                              m->as_MergeMem()->memory_at(alias_idx) : m;
1995             // Update input if it is progress over what we have now
1996             if (new_mem != ii) {
1997               set_req(i, new_mem);
1998               progress = this;
1999             }
2000           }
2001         }
2002       } else {
2003         // We know that at least one MergeMem->base_memory() == this
2004         // (saw_self == true). If all other inputs also references this phi
2005         // (directly or through data nodes) - it is dead loop.
2006         bool saw_safe_input = false;
2007         for (uint j = 1; j < req(); ++j) {
2008           Node *n = in(j);
2009           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
2010             continue;              // skip known cases
2011           if (!is_unsafe_data_reference(n)) {
2012             saw_safe_input = true; // found safe input
2013             break;
2014           }
2015         }
2016         if (!saw_safe_input)
2017           return top; // all inputs reference back to this phi - dead loop
2018 
2019         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2020         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2021         PhaseIterGVN *igvn = phase->is_IterGVN();
2022         Node* hook = new Node(1);
2023         PhiNode* new_base = (PhiNode*) clone();
2024         // Must eagerly register phis, since they participate in loops.
2025         if (igvn) {
2026           igvn->register_new_node_with_optimizer(new_base);
2027           hook->add_req(new_base);
2028         }
2029         MergeMemNode* result = MergeMemNode::make(new_base);
2030         for (uint i = 1; i < req(); ++i) {
2031           Node *ii = in(i);
2032           if (ii->is_MergeMem()) {
2033             MergeMemNode* n = ii->as_MergeMem();
2034             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2035               // If we have not seen this slice yet, make a phi for it.
2036               bool made_new_phi = false;
2037               if (mms.is_empty()) {
2038                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2039                 made_new_phi = true;
2040                 if (igvn) {
2041                   igvn->register_new_node_with_optimizer(new_phi);
2042                   hook->add_req(new_phi);
2043                 }
2044                 mms.set_memory(new_phi);
2045               }
2046               Node* phi = mms.memory();
2047               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2048               phi->set_req(i, mms.memory2());
2049             }
2050           }
2051         }
2052         // Distribute all self-loops.
2053         { // (Extra braces to hide mms.)
2054           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2055             Node* phi = mms.memory();
2056             for (uint i = 1; i < req(); ++i) {
2057               if (phi->in(i) == this)  phi->set_req(i, phi);
2058             }
2059           }
2060         }
2061         // now transform the new nodes, and return the mergemem
2062         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2063           Node* phi = mms.memory();
2064           mms.set_memory(phase->transform(phi));
2065         }
2066         if (igvn) { // Unhook.
2067           igvn->hash_delete(hook);
2068           for (uint i = 1; i < hook->req(); i++) {
2069             hook->set_req(i, NULL);
2070           }
2071         }
2072         // Replace self with the result.
2073         return result;
2074       }
2075     }
2076     //
2077     // Other optimizations on the memory chain
2078     //
2079     const TypePtr* at = adr_type();
2080     for( uint i=1; i<req(); ++i ) {// For all paths in
2081       Node *ii = in(i);
2082       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2083       if (ii != new_in ) {
2084         set_req(i, new_in);
2085         progress = this;
2086       }
2087     }
2088   }
2089 
2090 #ifdef _LP64
2091   // Push DecodeN/DecodeNKlass down through phi.
2092   // The rest of phi graph will transform by split EncodeP node though phis up.
2093   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2094     bool may_push = true;
2095     bool has_decodeN = false;
2096     bool is_decodeN = false;
2097     for (uint i=1; i<req(); ++i) {// For all paths in
2098       Node *ii = in(i);
2099       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2100         // Do optimization if a non dead path exist.
2101         if (ii->in(1)->bottom_type() != Type::TOP) {
2102           has_decodeN = true;
2103           is_decodeN = ii->is_DecodeN();
2104         }
2105       } else if (!ii->is_Phi()) {
2106         may_push = false;
2107       }
2108     }
2109 
2110     if (has_decodeN && may_push) {
2111       PhaseIterGVN *igvn = phase->is_IterGVN();
2112       // Make narrow type for new phi.
2113       const Type* narrow_t;
2114       if (is_decodeN) {
2115         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2116       } else {
2117         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2118       }
2119       PhiNode* new_phi = new PhiNode(r, narrow_t);
2120       uint orig_cnt = req();
2121       for (uint i=1; i<req(); ++i) {// For all paths in
2122         Node *ii = in(i);
2123         Node* new_ii = NULL;
2124         if (ii->is_DecodeNarrowPtr()) {
2125           assert(ii->bottom_type() == bottom_type(), "sanity");
2126           new_ii = ii->in(1);
2127         } else {
2128           assert(ii->is_Phi(), "sanity");
2129           if (ii->as_Phi() == this) {
2130             new_ii = new_phi;
2131           } else {
2132             if (is_decodeN) {
2133               new_ii = new EncodePNode(ii, narrow_t);
2134             } else {
2135               new_ii = new EncodePKlassNode(ii, narrow_t);
2136             }
2137             igvn->register_new_node_with_optimizer(new_ii);
2138           }
2139         }
2140         new_phi->set_req(i, new_ii);
2141       }
2142       igvn->register_new_node_with_optimizer(new_phi, this);
2143       if (is_decodeN) {
2144         progress = new DecodeNNode(new_phi, bottom_type());
2145       } else {
2146         progress = new DecodeNKlassNode(new_phi, bottom_type());
2147       }
2148     }
2149   }
2150 #endif
2151 
2152   return progress;              // Return any progress
2153 }
2154 
2155 //------------------------------is_tripcount-----------------------------------
2156 bool PhiNode::is_tripcount() const {
2157   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2158           in(0)->as_CountedLoop()->phi() == this);
2159 }
2160 
2161 //------------------------------out_RegMask------------------------------------
2162 const RegMask &PhiNode::in_RegMask(uint i) const {
2163   return i ? out_RegMask() : RegMask::Empty;
2164 }
2165 
2166 const RegMask &PhiNode::out_RegMask() const {
2167   uint ideal_reg = _type->ideal_reg();
2168   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2169   if( ideal_reg == 0 ) return RegMask::Empty;
2170   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2171   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2172 }
2173 
2174 #ifndef PRODUCT
2175 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2176   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2177   // and all outputs till level 1. In compact mode, inputs till level 1 are
2178   // collected.
2179   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2180   this->collect_nodes(out_rel, -1, false, false);
2181 }
2182 
2183 void PhiNode::dump_spec(outputStream *st) const {
2184   TypeNode::dump_spec(st);
2185   if (is_tripcount()) {
2186     st->print(" #tripcount");
2187   }
2188 }
2189 #endif
2190 
2191 
2192 //=============================================================================
2193 const Type* GotoNode::Value(PhaseGVN* phase) const {
2194   // If the input is reachable, then we are executed.
2195   // If the input is not reachable, then we are not executed.
2196   return phase->type(in(0));
2197 }
2198 
2199 Node* GotoNode::Identity(PhaseGVN* phase) {
2200   return in(0);                // Simple copy of incoming control
2201 }
2202 
2203 const RegMask &GotoNode::out_RegMask() const {
2204   return RegMask::Empty;
2205 }
2206 
2207 #ifndef PRODUCT
2208 //-----------------------------related-----------------------------------------
2209 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2210 // outputs at level 1. This is regardless of compact mode.
2211 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2212   this->collect_nodes(in_rel, 1, false, false);
2213   this->collect_nodes(out_rel, -1, false, false);
2214 }
2215 #endif
2216 
2217 
2218 //=============================================================================
2219 const RegMask &JumpNode::out_RegMask() const {
2220   return RegMask::Empty;
2221 }
2222 
2223 #ifndef PRODUCT
2224 //-----------------------------related-----------------------------------------
2225 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2226 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2227 // This is regardless of compact mode.
2228 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2229   this->collect_nodes(in_rel, 1, false, false);
2230   this->collect_nodes(out_rel, -2, false, false);
2231 }
2232 #endif
2233 
2234 //=============================================================================
2235 const RegMask &JProjNode::out_RegMask() const {
2236   return RegMask::Empty;
2237 }
2238 
2239 //=============================================================================
2240 const RegMask &CProjNode::out_RegMask() const {
2241   return RegMask::Empty;
2242 }
2243 
2244 
2245 
2246 //=============================================================================
2247 
2248 uint PCTableNode::hash() const { return Node::hash() + _size; }
2249 uint PCTableNode::cmp( const Node &n ) const
2250 { return _size == ((PCTableNode&)n)._size; }
2251 
2252 const Type *PCTableNode::bottom_type() const {
2253   const Type** f = TypeTuple::fields(_size);
2254   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2255   return TypeTuple::make(_size, f);
2256 }
2257 
2258 //------------------------------Value------------------------------------------
2259 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2260 // Control, otherwise the table targets are not reachable
2261 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2262   if( phase->type(in(0)) == Type::CONTROL )
2263     return bottom_type();
2264   return Type::TOP;             // All paths dead?  Then so are we
2265 }
2266 
2267 //------------------------------Ideal------------------------------------------
2268 // Return a node which is more "ideal" than the current node.  Strip out
2269 // control copies
2270 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2271   return remove_dead_region(phase, can_reshape) ? this : NULL;
2272 }
2273 
2274 //=============================================================================
2275 uint JumpProjNode::hash() const {
2276   return Node::hash() + _dest_bci;
2277 }
2278 
2279 uint JumpProjNode::cmp( const Node &n ) const {
2280   return ProjNode::cmp(n) &&
2281     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2282 }
2283 
2284 #ifndef PRODUCT
2285 void JumpProjNode::dump_spec(outputStream *st) const {
2286   ProjNode::dump_spec(st);
2287   st->print("@bci %d ",_dest_bci);
2288 }
2289 
2290 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2291   ProjNode::dump_compact_spec(st);
2292   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2293 }
2294 
2295 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2296   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2297   this->collect_nodes(in_rel, 1, false, false);
2298   this->collect_nodes(out_rel, -1, false, false);
2299 }
2300 #endif
2301 
2302 //=============================================================================
2303 //------------------------------Value------------------------------------------
2304 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2305 // have the default "fall_through_index" path.
2306 const Type* CatchNode::Value(PhaseGVN* phase) const {
2307   // Unreachable?  Then so are all paths from here.
2308   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2309   // First assume all paths are reachable
2310   const Type** f = TypeTuple::fields(_size);
2311   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2312   // Identify cases that will always throw an exception
2313   // () rethrow call
2314   // () virtual or interface call with NULL receiver
2315   // () call is a check cast with incompatible arguments
2316   if( in(1)->is_Proj() ) {
2317     Node *i10 = in(1)->in(0);
2318     if( i10->is_Call() ) {
2319       CallNode *call = i10->as_Call();
2320       // Rethrows always throw exceptions, never return
2321       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2322         f[CatchProjNode::fall_through_index] = Type::TOP;
2323       } else if( call->req() > TypeFunc::Parms ) {
2324         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2325         // Check for null receiver to virtual or interface calls
2326         if( call->is_CallDynamicJava() &&
2327             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2328           f[CatchProjNode::fall_through_index] = Type::TOP;
2329         }
2330       } // End of if not a runtime stub
2331     } // End of if have call above me
2332   } // End of slot 1 is not a projection
2333   return TypeTuple::make(_size, f);
2334 }
2335 
2336 //=============================================================================
2337 uint CatchProjNode::hash() const {
2338   return Node::hash() + _handler_bci;
2339 }
2340 
2341 
2342 uint CatchProjNode::cmp( const Node &n ) const {
2343   return ProjNode::cmp(n) &&
2344     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2345 }
2346 
2347 
2348 //------------------------------Identity---------------------------------------
2349 // If only 1 target is possible, choose it if it is the main control
2350 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2351   // If my value is control and no other value is, then treat as ID
2352   const TypeTuple *t = phase->type(in(0))->is_tuple();
2353   if (t->field_at(_con) != Type::CONTROL)  return this;
2354   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2355   // also remove any exception table entry.  Thus we must know the call
2356   // feeding the Catch will not really throw an exception.  This is ok for
2357   // the main fall-thru control (happens when we know a call can never throw
2358   // an exception) or for "rethrow", because a further optimization will
2359   // yank the rethrow (happens when we inline a function that can throw an
2360   // exception and the caller has no handler).  Not legal, e.g., for passing
2361   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2362   // These cases MUST throw an exception via the runtime system, so the VM
2363   // will be looking for a table entry.
2364   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2365   CallNode *call;
2366   if (_con != TypeFunc::Control && // Bail out if not the main control.
2367       !(proj->is_Proj() &&      // AND NOT a rethrow
2368         proj->in(0)->is_Call() &&
2369         (call = proj->in(0)->as_Call()) &&
2370         call->entry_point() == OptoRuntime::rethrow_stub()))
2371     return this;
2372 
2373   // Search for any other path being control
2374   for (uint i = 0; i < t->cnt(); i++) {
2375     if (i != _con && t->field_at(i) == Type::CONTROL)
2376       return this;
2377   }
2378   // Only my path is possible; I am identity on control to the jump
2379   return in(0)->in(0);
2380 }
2381 
2382 
2383 #ifndef PRODUCT
2384 void CatchProjNode::dump_spec(outputStream *st) const {
2385   ProjNode::dump_spec(st);
2386   st->print("@bci %d ",_handler_bci);
2387 }
2388 #endif
2389 
2390 //=============================================================================
2391 //------------------------------Identity---------------------------------------
2392 // Check for CreateEx being Identity.
2393 Node* CreateExNode::Identity(PhaseGVN* phase) {
2394   if( phase->type(in(1)) == Type::TOP ) return in(1);
2395   if( phase->type(in(0)) == Type::TOP ) return in(0);
2396   // We only come from CatchProj, unless the CatchProj goes away.
2397   // If the CatchProj is optimized away, then we just carry the
2398   // exception oop through.
2399 
2400   // CheckCastPPNode::Ideal() for value types reuses the exception
2401   // paths of a call to perform an allocation: we can see a Phi here.
2402   if (in(1)->is_Phi()) {
2403     return this;
2404   }
2405   CallNode *call = in(1)->in(0)->as_Call();
2406 
2407   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2408     ? this
2409     : call->in(TypeFunc::Parms);
2410 }
2411 
2412 //=============================================================================
2413 //------------------------------Value------------------------------------------
2414 // Check for being unreachable.
2415 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2416   if (!in(0) || in(0)->is_top()) return Type::TOP;
2417   return bottom_type();
2418 }
2419 
2420 //------------------------------Ideal------------------------------------------
2421 // Check for no longer being part of a loop
2422 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2423   if (can_reshape && !in(0)->is_Loop()) {
2424     // Dead code elimination can sometimes delete this projection so
2425     // if it's not there, there's nothing to do.
2426     Node* fallthru = proj_out(0);
2427     if (fallthru != NULL) {
2428       phase->is_IterGVN()->replace_node(fallthru, in(0));
2429     }
2430     return phase->C->top();
2431   }
2432   return NULL;
2433 }
2434 
2435 #ifndef PRODUCT
2436 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2437   st->print("%s", Name());
2438 }
2439 #endif