1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciCallSite.hpp"
  27 #include "ci/ciMethodHandle.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "interpreter/linkResolver.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/valuetypenode.hpp"
  42 #include "prims/nativeLookup.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 
  45 void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) {
  46   if (TraceTypeProfile || C->print_inlining()) {
  47     outputStream* out = tty;
  48     if (!C->print_inlining()) {
  49       if (!PrintOpto && !PrintCompilation) {
  50         method->print_short_name();
  51         tty->cr();
  52       }
  53       CompileTask::print_inlining_tty(prof_method, depth, bci);
  54     } else {
  55       out = C->print_inlining_stream();
  56     }
  57     CompileTask::print_inline_indent(depth, out);
  58     out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
  59     stringStream ss;
  60     prof_klass->name()->print_symbol_on(&ss);
  61     out->print("%s", ss.as_string());
  62     out->cr();
  63   }
  64 }
  65 
  66 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
  67                                        JVMState* jvms, bool allow_inline,
  68                                        float prof_factor, ciKlass* speculative_receiver_type,
  69                                        bool allow_intrinsics, bool delayed_forbidden) {
  70   ciMethod*       caller   = jvms->method();
  71   int             bci      = jvms->bci();
  72   Bytecodes::Code bytecode = caller->java_code_at_bci(bci);
  73   guarantee(callee != NULL, "failed method resolution");
  74 
  75   // Dtrace currently doesn't work unless all calls are vanilla
  76   if (env()->dtrace_method_probes()) {
  77     allow_inline = false;
  78   }
  79 
  80   // Note: When we get profiling during stage-1 compiles, we want to pull
  81   // from more specific profile data which pertains to this inlining.
  82   // Right now, ignore the information in jvms->caller(), and do method[bci].
  83   ciCallProfile profile = caller->call_profile_at_bci(bci);
  84 
  85   // See how many times this site has been invoked.
  86   int site_count = profile.count();
  87   int receiver_count = -1;
  88   if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
  89     // Receivers in the profile structure are ordered by call counts
  90     // so that the most called (major) receiver is profile.receiver(0).
  91     receiver_count = profile.receiver_count(0);
  92   }
  93 
  94   CompileLog* log = this->log();
  95   if (log != NULL) {
  96     int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
  97     int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
  98     log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
  99                     log->identify(callee), site_count, prof_factor);
 100     if (call_does_dispatch)  log->print(" virtual='1'");
 101     if (allow_inline)     log->print(" inline='1'");
 102     if (receiver_count >= 0) {
 103       log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
 104       if (profile.has_receiver(1)) {
 105         log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
 106       }
 107     }
 108     if (callee->is_method_handle_intrinsic()) {
 109       log->print(" method_handle_intrinsic='1'");
 110     }
 111     log->end_elem();
 112   }
 113 
 114   // Special case the handling of certain common, profitable library
 115   // methods.  If these methods are replaced with specialized code,
 116   // then we return it as the inlined version of the call.
 117   // We do this before the strict f.p. check below because the
 118   // intrinsics handle strict f.p. correctly.
 119   CallGenerator* cg_intrinsic = NULL;
 120   if (allow_inline && allow_intrinsics) {
 121     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 122     if (cg != NULL) {
 123       if (cg->is_predicated()) {
 124         // Code without intrinsic but, hopefully, inlined.
 125         CallGenerator* inline_cg = this->call_generator(callee,
 126               vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
 127         if (inline_cg != NULL) {
 128           cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
 129         }
 130       }
 131 
 132       // If intrinsic does the virtual dispatch, we try to use the type profile
 133       // first, and hopefully inline it as the regular virtual call below.
 134       // We will retry the intrinsic if nothing had claimed it afterwards.
 135       if (cg->does_virtual_dispatch()) {
 136         cg_intrinsic = cg;
 137         cg = NULL;
 138       } else {
 139         return cg;
 140       }
 141     }
 142   }
 143 
 144   // Do method handle calls.
 145   // NOTE: This must happen before normal inlining logic below since
 146   // MethodHandle.invoke* are native methods which obviously don't
 147   // have bytecodes and so normal inlining fails.
 148   if (callee->is_method_handle_intrinsic()) {
 149     CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, delayed_forbidden);
 150     assert(cg == NULL || !delayed_forbidden || !cg->is_late_inline() || cg->is_mh_late_inline(), "unexpected CallGenerator");
 151     return cg;
 152   }
 153 
 154   // Do not inline strict fp into non-strict code, or the reverse
 155   if (caller->is_strict() ^ callee->is_strict()) {
 156     allow_inline = false;
 157   }
 158 
 159   // Attempt to inline...
 160   if (allow_inline) {
 161     // The profile data is only partly attributable to this caller,
 162     // scale back the call site information.
 163     float past_uses = jvms->method()->scale_count(site_count, prof_factor);
 164     // This is the number of times we expect the call code to be used.
 165     float expected_uses = past_uses;
 166 
 167     // Try inlining a bytecoded method:
 168     if (!call_does_dispatch) {
 169       InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
 170       WarmCallInfo scratch_ci;
 171       bool should_delay = false;
 172       WarmCallInfo* ci = ilt->ok_to_inline(callee, jvms, profile, &scratch_ci, should_delay);
 173       assert(ci != &scratch_ci, "do not let this pointer escape");
 174       bool allow_inline   = (ci != NULL && !ci->is_cold());
 175       bool require_inline = (allow_inline && ci->is_hot());
 176 
 177       if (allow_inline) {
 178         CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
 179 
 180         if (require_inline && cg != NULL) {
 181           // Delay the inlining of this method to give us the
 182           // opportunity to perform some high level optimizations
 183           // first.
 184           if (should_delay_string_inlining(callee, jvms)) {
 185             assert(!delayed_forbidden, "strange");
 186             return CallGenerator::for_string_late_inline(callee, cg);
 187           } else if (should_delay_boxing_inlining(callee, jvms)) {
 188             assert(!delayed_forbidden, "strange");
 189             return CallGenerator::for_boxing_late_inline(callee, cg);
 190           } else if ((should_delay || AlwaysIncrementalInline) && !delayed_forbidden) {
 191             return CallGenerator::for_late_inline(callee, cg);
 192           }
 193         }
 194         if (cg == NULL || should_delay) {
 195           // Fall through.
 196         } else if (require_inline || !InlineWarmCalls) {
 197           return cg;
 198         } else {
 199           CallGenerator* cold_cg = call_generator(callee, vtable_index, call_does_dispatch, jvms, false, prof_factor);
 200           return CallGenerator::for_warm_call(ci, cold_cg, cg);
 201         }
 202       }
 203     }
 204 
 205     // Try using the type profile.
 206     if (call_does_dispatch && site_count > 0 && receiver_count > 0) {
 207       // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
 208       bool have_major_receiver = (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
 209       ciMethod* receiver_method = NULL;
 210 
 211       int morphism = profile.morphism();
 212       if (speculative_receiver_type != NULL) {
 213         if (!too_many_traps(caller, bci, Deoptimization::Reason_speculate_class_check)) {
 214           // We have a speculative type, we should be able to resolve
 215           // the call. We do that before looking at the profiling at
 216           // this invoke because it may lead to bimorphic inlining which
 217           // a speculative type should help us avoid.
 218           receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 219                                                    speculative_receiver_type);
 220           if (receiver_method == NULL) {
 221             speculative_receiver_type = NULL;
 222           } else {
 223             morphism = 1;
 224           }
 225         } else {
 226           // speculation failed before. Use profiling at the call
 227           // (could allow bimorphic inlining for instance).
 228           speculative_receiver_type = NULL;
 229         }
 230       }
 231       if (receiver_method == NULL &&
 232           (have_major_receiver || morphism == 1 ||
 233            (morphism == 2 && UseBimorphicInlining))) {
 234         // receiver_method = profile.method();
 235         // Profiles do not suggest methods now.  Look it up in the major receiver.
 236         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 237                                                       profile.receiver(0));
 238       }
 239       if (receiver_method != NULL) {
 240         // The single majority receiver sufficiently outweighs the minority.
 241         CallGenerator* hit_cg = this->call_generator(receiver_method,
 242               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 243         if (hit_cg != NULL) {
 244           // Look up second receiver.
 245           CallGenerator* next_hit_cg = NULL;
 246           ciMethod* next_receiver_method = NULL;
 247           if (morphism == 2 && UseBimorphicInlining) {
 248             next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 249                                                                profile.receiver(1));
 250             if (next_receiver_method != NULL) {
 251               next_hit_cg = this->call_generator(next_receiver_method,
 252                                   vtable_index, !call_does_dispatch, jvms,
 253                                   allow_inline, prof_factor);
 254               if (next_hit_cg != NULL && !next_hit_cg->is_inline() &&
 255                   have_major_receiver && UseOnlyInlinedBimorphic) {
 256                   // Skip if we can't inline second receiver's method
 257                   next_hit_cg = NULL;
 258               }
 259             }
 260           }
 261           CallGenerator* miss_cg;
 262           Deoptimization::DeoptReason reason = morphism == 2 ?
 263             Deoptimization::Reason_bimorphic : Deoptimization::reason_class_check(speculative_receiver_type != NULL);
 264           if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) &&
 265               !too_many_traps(caller, bci, reason)
 266              ) {
 267             // Generate uncommon trap for class check failure path
 268             // in case of monomorphic or bimorphic virtual call site.
 269             miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
 270                         Deoptimization::Action_maybe_recompile);
 271           } else {
 272             // Generate virtual call for class check failure path
 273             // in case of polymorphic virtual call site.
 274             miss_cg = CallGenerator::for_virtual_call(callee, vtable_index);
 275           }
 276           if (miss_cg != NULL) {
 277             if (next_hit_cg != NULL) {
 278               assert(speculative_receiver_type == NULL, "shouldn't end up here if we used speculation");
 279               trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
 280               // We don't need to record dependency on a receiver here and below.
 281               // Whenever we inline, the dependency is added by Parse::Parse().
 282               miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
 283             }
 284             if (miss_cg != NULL) {
 285               trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, profile.receiver(0), site_count, receiver_count);
 286               ciKlass* k = speculative_receiver_type != NULL ? speculative_receiver_type : profile.receiver(0);
 287               float hit_prob = speculative_receiver_type != NULL ? 1.0 : profile.receiver_prob(0);
 288               CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
 289               if (cg != NULL)  return cg;
 290             }
 291           }
 292         }
 293       }
 294     }
 295   }
 296 
 297   // Nothing claimed the intrinsic, we go with straight-forward inlining
 298   // for already discovered intrinsic.
 299   if (allow_inline && allow_intrinsics && cg_intrinsic != NULL) {
 300     assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
 301     return cg_intrinsic;
 302   }
 303 
 304   // There was no special inlining tactic, or it bailed out.
 305   // Use a more generic tactic, like a simple call.
 306   if (call_does_dispatch) {
 307     const char* msg = "virtual call";
 308     if (PrintInlining) print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg);
 309     C->log_inline_failure(msg);
 310     return CallGenerator::for_virtual_call(callee, vtable_index);
 311   } else {
 312     // Class Hierarchy Analysis or Type Profile reveals a unique target,
 313     // or it is a static or special call.
 314     return CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
 315   }
 316 }
 317 
 318 // Return true for methods that shouldn't be inlined early so that
 319 // they are easier to analyze and optimize as intrinsics.
 320 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
 321   if (has_stringbuilder()) {
 322 
 323     if ((call_method->holder() == C->env()->StringBuilder_klass() ||
 324          call_method->holder() == C->env()->StringBuffer_klass()) &&
 325         (jvms->method()->holder() == C->env()->StringBuilder_klass() ||
 326          jvms->method()->holder() == C->env()->StringBuffer_klass())) {
 327       // Delay SB calls only when called from non-SB code
 328       return false;
 329     }
 330 
 331     switch (call_method->intrinsic_id()) {
 332       case vmIntrinsics::_StringBuilder_void:
 333       case vmIntrinsics::_StringBuilder_int:
 334       case vmIntrinsics::_StringBuilder_String:
 335       case vmIntrinsics::_StringBuilder_append_char:
 336       case vmIntrinsics::_StringBuilder_append_int:
 337       case vmIntrinsics::_StringBuilder_append_String:
 338       case vmIntrinsics::_StringBuilder_toString:
 339       case vmIntrinsics::_StringBuffer_void:
 340       case vmIntrinsics::_StringBuffer_int:
 341       case vmIntrinsics::_StringBuffer_String:
 342       case vmIntrinsics::_StringBuffer_append_char:
 343       case vmIntrinsics::_StringBuffer_append_int:
 344       case vmIntrinsics::_StringBuffer_append_String:
 345       case vmIntrinsics::_StringBuffer_toString:
 346       case vmIntrinsics::_Integer_toString:
 347         return true;
 348 
 349       case vmIntrinsics::_String_String:
 350         {
 351           Node* receiver = jvms->map()->in(jvms->argoff() + 1);
 352           if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
 353             CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
 354             ciMethod* m = csj->method();
 355             if (m != NULL &&
 356                 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
 357                  m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
 358               // Delay String.<init>(new SB())
 359               return true;
 360           }
 361           return false;
 362         }
 363 
 364       default:
 365         return false;
 366     }
 367   }
 368   return false;
 369 }
 370 
 371 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
 372   if (eliminate_boxing() && call_method->is_boxing_method()) {
 373     set_has_boxed_value(true);
 374     return aggressive_unboxing();
 375   }
 376   return false;
 377 }
 378 
 379 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
 380 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
 381   // Additional inputs to consider...
 382   // bc      = bc()
 383   // caller  = method()
 384   // iter().get_method_holder_index()
 385   assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
 386   // Interface classes can be loaded & linked and never get around to
 387   // being initialized.  Uncommon-trap for not-initialized static or
 388   // v-calls.  Let interface calls happen.
 389   ciInstanceKlass* holder_klass = dest_method->holder();
 390   if (!holder_klass->is_being_initialized() &&
 391       !holder_klass->is_initialized() &&
 392       !holder_klass->is_interface()) {
 393     uncommon_trap(Deoptimization::Reason_uninitialized,
 394                   Deoptimization::Action_reinterpret,
 395                   holder_klass);
 396     return true;
 397   }
 398 
 399   assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
 400   return false;
 401 }
 402 
 403 #ifdef ASSERT
 404 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
 405   ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
 406   ciMethod* resolved_method = cg->method();
 407   if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) {
 408     tty->print_cr("JVMS:");
 409     jvms->dump();
 410     tty->print_cr("Bytecode info:");
 411     jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
 412     tty->print_cr("Resolved method:");
 413     cg->method()->print(); tty->cr();
 414     return false;
 415   }
 416   return true;
 417 }
 418 #endif // ASSERT
 419 
 420 //------------------------------do_call----------------------------------------
 421 // Handle your basic call.  Inline if we can & want to, else just setup call.
 422 void Parse::do_call() {
 423   // It's likely we are going to add debug info soon.
 424   // Also, if we inline a guy who eventually needs debug info for this JVMS,
 425   // our contribution to it is cleaned up right here.
 426   kill_dead_locals();
 427 
 428   C->print_inlining_assert_ready();
 429 
 430   // Set frequently used booleans
 431   const bool is_virtual = bc() == Bytecodes::_invokevirtual;
 432   const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
 433   const bool has_receiver = Bytecodes::has_receiver(bc());
 434 
 435   // Find target being called
 436   bool             will_link;
 437   ciSignature*     declared_signature = NULL;
 438   ciMethod*        orig_callee  = iter().get_method(will_link, &declared_signature);  // callee in the bytecode
 439   ciInstanceKlass* holder_klass = orig_callee->holder();
 440   ciKlass*         holder       = iter().get_declared_method_holder();
 441   ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
 442   assert(declared_signature != NULL, "cannot be null");
 443 
 444   // Bump max node limit for JSR292 users
 445   if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
 446     C->set_max_node_limit(3*MaxNodeLimit);
 447   }
 448 
 449   // uncommon-trap when callee is unloaded, uninitialized or will not link
 450   // bailout when too many arguments for register representation
 451   if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
 452     if (PrintOpto && (Verbose || WizardMode)) {
 453       method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
 454       orig_callee->print_name(); tty->cr();
 455     }
 456     return;
 457   }
 458   assert(holder_klass->is_loaded(), "");
 459   //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc");  // XXX invokehandle (cur_bc_raw)
 460   // Note: this takes into account invokeinterface of methods declared in java/lang/Object,
 461   // which should be invokevirtuals but according to the VM spec may be invokeinterfaces
 462   assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc");
 463   // Note:  In the absence of miranda methods, an abstract class K can perform
 464   // an invokevirtual directly on an interface method I.m if K implements I.
 465 
 466   // orig_callee is the resolved callee which's signature includes the
 467   // appendix argument.
 468   const int nargs = orig_callee->arg_size();
 469   const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
 470 
 471   // Push appendix argument (MethodType, CallSite, etc.), if one.
 472   if (iter().has_appendix()) {
 473     ciObject* appendix_arg = iter().get_appendix();
 474     const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg);
 475     Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
 476     push(appendix_arg_node);
 477   }
 478 
 479   // ---------------------
 480   // Does Class Hierarchy Analysis reveal only a single target of a v-call?
 481   // Then we may inline or make a static call, but become dependent on there being only 1 target.
 482   // Does the call-site type profile reveal only one receiver?
 483   // Then we may introduce a run-time check and inline on the path where it succeeds.
 484   // The other path may uncommon_trap, check for another receiver, or do a v-call.
 485 
 486   // Try to get the most accurate receiver type
 487   ciMethod* callee             = orig_callee;
 488   int       vtable_index       = Method::invalid_vtable_index;
 489   bool      call_does_dispatch = false;
 490 
 491   // Speculative type of the receiver if any
 492   ciKlass* speculative_receiver_type = NULL;
 493   if (is_virtual_or_interface) {
 494     Node* receiver_node             = stack(sp() - nargs);
 495     const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
 496     // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 497     // For arrays, klass below is Object. When vtable calls are used,
 498     // resolving the call with Object would allow an illegal call to
 499     // finalize() on an array. We use holder instead: illegal calls to
 500     // finalize() won't be compiled as vtable calls (IC call
 501     // resolution will catch the illegal call) and the few legal calls
 502     // on array types won't be either.
 503     callee = C->optimize_virtual_call(method(), bci(), klass, holder, orig_callee,
 504                                       receiver_type, is_virtual,
 505                                       call_does_dispatch, vtable_index);  // out-parameters
 506     speculative_receiver_type = receiver_type != NULL ? receiver_type->speculative_type() : NULL;
 507   }
 508 
 509   // invoke-super-special
 510   if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) {
 511     ciInstanceKlass* calling_klass = method()->holder();
 512     ciInstanceKlass* sender_klass =
 513         calling_klass->is_anonymous() ? calling_klass->host_klass() :
 514                                         calling_klass;
 515     if (sender_klass->is_interface()) {
 516       Node* receiver_node = stack(sp() - nargs);
 517       Node* cls_node = makecon(TypeKlassPtr::make(sender_klass));
 518       Node* bad_type_ctrl = NULL;
 519       Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl);
 520       if (bad_type_ctrl != NULL) {
 521         PreserveJVMState pjvms(this);
 522         set_control(bad_type_ctrl);
 523         uncommon_trap(Deoptimization::Reason_class_check,
 524                       Deoptimization::Action_none);
 525       }
 526       if (stopped()) {
 527         return; // MUST uncommon-trap?
 528       }
 529       set_stack(sp() - nargs, casted_receiver);
 530     }
 531   }
 532 
 533   // Note:  It's OK to try to inline a virtual call.
 534   // The call generator will not attempt to inline a polymorphic call
 535   // unless it knows how to optimize the receiver dispatch.
 536   bool try_inline = (C->do_inlining() || InlineAccessors);
 537 
 538   // ---------------------
 539   dec_sp(nargs);              // Temporarily pop args for JVM state of call
 540   JVMState* jvms = sync_jvms();
 541 
 542   // ---------------------
 543   // Decide call tactic.
 544   // This call checks with CHA, the interpreter profile, intrinsics table, etc.
 545   // It decides whether inlining is desirable or not.
 546   CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
 547 
 548   // NOTE:  Don't use orig_callee and callee after this point!  Use cg->method() instead.
 549   orig_callee = callee = NULL;
 550 
 551   // ---------------------
 552   // Round double arguments before call
 553   round_double_arguments(cg->method());
 554 
 555   // Feed profiling data for arguments to the type system so it can
 556   // propagate it as speculative types
 557   record_profiled_arguments_for_speculation(cg->method(), bc());
 558 
 559 #ifndef PRODUCT
 560   // bump global counters for calls
 561   count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
 562 
 563   // Record first part of parsing work for this call
 564   parse_histogram()->record_change();
 565 #endif // not PRODUCT
 566 
 567   assert(jvms == this->jvms(), "still operating on the right JVMS");
 568   assert(jvms_in_sync(),       "jvms must carry full info into CG");
 569 
 570   // save across call, for a subsequent cast_not_null.
 571   Node* receiver = has_receiver ? argument(0) : NULL;
 572 
 573   // The extra CheckCastPPs for speculative types mess with PhaseStringOpts
 574   if (receiver != NULL && !call_does_dispatch && !cg->is_string_late_inline()) {
 575     // Feed profiling data for a single receiver to the type system so
 576     // it can propagate it as a speculative type
 577     receiver = record_profiled_receiver_for_speculation(receiver);
 578   }
 579 
 580   // Bump method data counters (We profile *before* the call is made
 581   // because exceptions don't return to the call site.)
 582   profile_call(receiver);
 583 
 584   JVMState* new_jvms = cg->generate(jvms);
 585   if (new_jvms == NULL) {
 586     // When inlining attempt fails (e.g., too many arguments),
 587     // it may contaminate the current compile state, making it
 588     // impossible to pull back and try again.  Once we call
 589     // cg->generate(), we are committed.  If it fails, the whole
 590     // compilation task is compromised.
 591     if (failing())  return;
 592 
 593     // This can happen if a library intrinsic is available, but refuses
 594     // the call site, perhaps because it did not match a pattern the
 595     // intrinsic was expecting to optimize. Should always be possible to
 596     // get a normal java call that may inline in that case
 597     cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
 598     new_jvms = cg->generate(jvms);
 599     if (new_jvms == NULL) {
 600       guarantee(failing(), "call failed to generate:  calls should work");
 601       return;
 602     }
 603   }
 604 
 605   if (cg->is_inline()) {
 606     // Accumulate has_loops estimate
 607     C->set_has_loops(C->has_loops() || cg->method()->has_loops());
 608     C->env()->notice_inlined_method(cg->method());
 609   }
 610 
 611   // Reset parser state from [new_]jvms, which now carries results of the call.
 612   // Return value (if any) is already pushed on the stack by the cg.
 613   add_exception_states_from(new_jvms);
 614   if (new_jvms->map()->control() == top()) {
 615     stop_and_kill_map();
 616   } else {
 617     assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
 618     set_jvms(new_jvms);
 619   }
 620 
 621   assert(check_call_consistency(jvms, cg), "inconsistent info");
 622 
 623   if (!stopped()) {
 624     // This was some sort of virtual call, which did a null check for us.
 625     // Now we can assert receiver-not-null, on the normal return path.
 626     if (receiver != NULL && cg->is_virtual()) {
 627       Node* cast = cast_not_null(receiver);
 628       // %%% assert(receiver == cast, "should already have cast the receiver");
 629     }
 630 
 631     // Round double result after a call from strict to non-strict code
 632     round_double_result(cg->method());
 633 
 634     ciType* rtype = cg->method()->return_type();
 635     ciType* ctype = declared_signature->return_type();
 636 
 637     if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
 638       // Be careful here with return types.
 639       if (ctype != rtype) {
 640         BasicType rt = rtype->basic_type();
 641         BasicType ct = ctype->basic_type();
 642         if (ct == T_VOID) {
 643           // It's OK for a method  to return a value that is discarded.
 644           // The discarding does not require any special action from the caller.
 645           // The Java code knows this, at VerifyType.isNullConversion.
 646           pop_node(rt);  // whatever it was, pop it
 647         } else if (rt == T_INT || is_subword_type(rt)) {
 648           // Nothing.  These cases are handled in lambda form bytecode.
 649           assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
 650         } else if (rt == T_OBJECT || rt == T_ARRAY) {
 651           assert(ct == T_OBJECT || ct == T_ARRAY, "rt=%s, ct=%s", type2name(rt), type2name(ct));
 652           if (ctype->is_loaded()) {
 653             const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
 654             const Type*       sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 655             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 656               Node* retnode = pop();
 657               Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 658               push(cast_obj);
 659             }
 660           }
 661         } else if (rt == T_VALUETYPE) {
 662           assert(ct == T_VALUETYPE, "value type expected but got rt=%s, ct=%s", type2name(rt), type2name(ct));
 663           if (rtype == C->env()->___Value_klass()) {
 664             const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 665             Node* retnode = pop();
 666             Node* cast = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 667             Node* vt = ValueTypeNode::make(_gvn, merged_memory(), cast);
 668             push(vt);
 669           } else {
 670             assert(ctype == C->env()->___Value_klass(), "unexpected value type klass");
 671             Node* retnode = pop();
 672             assert(retnode->is_ValueType(), "inconsistent");
 673             ValueTypeNode* vt = retnode->as_ValueType();
 674             Node* alloc = vt->allocate(this);
 675             Node* vtptr = _gvn.transform(new ValueTypePtrNode(vt, alloc, C));
 676             push(vtptr);
 677           }
 678         } else {
 679           assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
 680           // push a zero; it's better than getting an oop/int mismatch
 681           pop_node(rt);
 682           Node* retnode = zerocon(ct);
 683           push_node(ct, retnode);
 684         }
 685         // Now that the value is well-behaved, continue with the call-site type.
 686         rtype = ctype;
 687       }
 688     } else {
 689       // Symbolic resolution enforces the types to be the same.
 690       // NOTE: We must relax the assert for unloaded types because two
 691       // different ciType instances of the same unloaded class type
 692       // can appear to be "loaded" by different loaders (depending on
 693       // the accessing class).
 694       assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
 695              "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
 696     }
 697 
 698     // If the return type of the method is not loaded, assert that the
 699     // value we got is a null.  Otherwise, we need to recompile.
 700     if (!rtype->is_loaded()) {
 701       if (PrintOpto && (Verbose || WizardMode)) {
 702         method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
 703         cg->method()->print_name(); tty->cr();
 704       }
 705       if (C->log() != NULL) {
 706         C->log()->elem("assert_null reason='return' klass='%d'",
 707                        C->log()->identify(rtype));
 708       }
 709       // If there is going to be a trap, put it at the next bytecode:
 710       set_bci(iter().next_bci());
 711       null_assert(peek());
 712       set_bci(iter().cur_bci()); // put it back
 713     }
 714     BasicType ct = ctype->basic_type();
 715     if (ct == T_OBJECT || ct == T_ARRAY) {
 716       record_profiled_return_for_speculation();
 717     }
 718   }
 719 
 720   // Restart record of parsing work after possible inlining of call
 721 #ifndef PRODUCT
 722   parse_histogram()->set_initial_state(bc());
 723 #endif
 724 }
 725 
 726 //---------------------------catch_call_exceptions-----------------------------
 727 // Put a Catch and CatchProj nodes behind a just-created call.
 728 // Send their caught exceptions to the proper handler.
 729 // This may be used after a call to the rethrow VM stub,
 730 // when it is needed to process unloaded exception classes.
 731 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
 732   // Exceptions are delivered through this channel:
 733   Node* i_o = this->i_o();
 734 
 735   // Add a CatchNode.
 736   GrowableArray<int>* bcis = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, -1);
 737   GrowableArray<const Type*>* extypes = new (C->node_arena()) GrowableArray<const Type*>(C->node_arena(), 8, 0, NULL);
 738   GrowableArray<int>* saw_unloaded = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, 0);
 739 
 740   bool default_handler = false;
 741   for (; !handlers.is_done(); handlers.next()) {
 742     ciExceptionHandler* h        = handlers.handler();
 743     int                 h_bci    = h->handler_bci();
 744     ciInstanceKlass*    h_klass  = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
 745     // Do not introduce unloaded exception types into the graph:
 746     if (!h_klass->is_loaded()) {
 747       if (saw_unloaded->contains(h_bci)) {
 748         /* We've already seen an unloaded exception with h_bci,
 749            so don't duplicate. Duplication will cause the CatchNode to be
 750            unnecessarily large. See 4713716. */
 751         continue;
 752       } else {
 753         saw_unloaded->append(h_bci);
 754       }
 755     }
 756     const Type*         h_extype = TypeOopPtr::make_from_klass(h_klass);
 757     // (We use make_from_klass because it respects UseUniqueSubclasses.)
 758     h_extype = h_extype->join(TypeInstPtr::NOTNULL);
 759     assert(!h_extype->empty(), "sanity");
 760     // Note:  It's OK if the BCIs repeat themselves.
 761     bcis->append(h_bci);
 762     extypes->append(h_extype);
 763     if (h_bci == -1) {
 764       default_handler = true;
 765     }
 766   }
 767 
 768   if (!default_handler) {
 769     bcis->append(-1);
 770     extypes->append(TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr());
 771   }
 772 
 773   int len = bcis->length();
 774   CatchNode *cn = new CatchNode(control(), i_o, len+1);
 775   Node *catch_ = _gvn.transform(cn);
 776 
 777   // now branch with the exception state to each of the (potential)
 778   // handlers
 779   for(int i=0; i < len; i++) {
 780     // Setup JVM state to enter the handler.
 781     PreserveJVMState pjvms(this);
 782     // Locals are just copied from before the call.
 783     // Get control from the CatchNode.
 784     int handler_bci = bcis->at(i);
 785     Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
 786     // This handler cannot happen?
 787     if (ctrl == top())  continue;
 788     set_control(ctrl);
 789 
 790     // Create exception oop
 791     const TypeInstPtr* extype = extypes->at(i)->is_instptr();
 792     Node *ex_oop = _gvn.transform(new CreateExNode(extypes->at(i), ctrl, i_o));
 793 
 794     // Handle unloaded exception classes.
 795     if (saw_unloaded->contains(handler_bci)) {
 796       // An unloaded exception type is coming here.  Do an uncommon trap.
 797 #ifndef PRODUCT
 798       // We do not expect the same handler bci to take both cold unloaded
 799       // and hot loaded exceptions.  But, watch for it.
 800       if ((Verbose || WizardMode) && extype->is_loaded()) {
 801         tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
 802         method()->print_name(); tty->cr();
 803       } else if (PrintOpto && (Verbose || WizardMode)) {
 804         tty->print("Bailing out on unloaded exception type ");
 805         extype->klass()->print_name();
 806         tty->print(" at bci:%d in ", bci());
 807         method()->print_name(); tty->cr();
 808       }
 809 #endif
 810       // Emit an uncommon trap instead of processing the block.
 811       set_bci(handler_bci);
 812       push_ex_oop(ex_oop);
 813       uncommon_trap(Deoptimization::Reason_unloaded,
 814                     Deoptimization::Action_reinterpret,
 815                     extype->klass(), "!loaded exception");
 816       set_bci(iter().cur_bci()); // put it back
 817       continue;
 818     }
 819 
 820     // go to the exception handler
 821     if (handler_bci < 0) {     // merge with corresponding rethrow node
 822       throw_to_exit(make_exception_state(ex_oop));
 823     } else {                      // Else jump to corresponding handle
 824       push_ex_oop(ex_oop);        // Clear stack and push just the oop.
 825       merge_exception(handler_bci);
 826     }
 827   }
 828 
 829   // The first CatchProj is for the normal return.
 830   // (Note:  If this is a call to rethrow_Java, this node goes dead.)
 831   set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
 832 }
 833 
 834 
 835 //----------------------------catch_inline_exceptions--------------------------
 836 // Handle all exceptions thrown by an inlined method or individual bytecode.
 837 // Common case 1: we have no handler, so all exceptions merge right into
 838 // the rethrow case.
 839 // Case 2: we have some handlers, with loaded exception klasses that have
 840 // no subklasses.  We do a Deutsch-Shiffman style type-check on the incoming
 841 // exception oop and branch to the handler directly.
 842 // Case 3: We have some handlers with subklasses or are not loaded at
 843 // compile-time.  We have to call the runtime to resolve the exception.
 844 // So we insert a RethrowCall and all the logic that goes with it.
 845 void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
 846   // Caller is responsible for saving away the map for normal control flow!
 847   assert(stopped(), "call set_map(NULL) first");
 848   assert(method()->has_exception_handlers(), "don't come here w/o work to do");
 849 
 850   Node* ex_node = saved_ex_oop(ex_map);
 851   if (ex_node == top()) {
 852     // No action needed.
 853     return;
 854   }
 855   const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
 856   NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr"));
 857   if (ex_type == NULL)
 858     ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 859 
 860   // determine potential exception handlers
 861   ciExceptionHandlerStream handlers(method(), bci(),
 862                                     ex_type->klass()->as_instance_klass(),
 863                                     ex_type->klass_is_exact());
 864 
 865   // Start executing from the given throw state.  (Keep its stack, for now.)
 866   // Get the exception oop as known at compile time.
 867   ex_node = use_exception_state(ex_map);
 868 
 869   // Get the exception oop klass from its header
 870   Node* ex_klass_node = NULL;
 871   if (has_ex_handler() && !ex_type->klass_is_exact()) {
 872     Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
 873     ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
 874 
 875     // Compute the exception klass a little more cleverly.
 876     // Obvious solution is to simple do a LoadKlass from the 'ex_node'.
 877     // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
 878     // each arm of the Phi.  If I know something clever about the exceptions
 879     // I'm loading the class from, I can replace the LoadKlass with the
 880     // klass constant for the exception oop.
 881     if (ex_node->is_Phi()) {
 882       ex_klass_node = new PhiNode(ex_node->in(0), TypeKlassPtr::OBJECT);
 883       for (uint i = 1; i < ex_node->req(); i++) {
 884         Node* ex_in = ex_node->in(i);
 885         if (ex_in == top() || ex_in == NULL) {
 886           // This path was not taken.
 887           ex_klass_node->init_req(i, top());
 888           continue;
 889         }
 890         Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
 891         Node* k = _gvn.transform( LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
 892         ex_klass_node->init_req( i, k );
 893       }
 894       _gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT);
 895 
 896     }
 897   }
 898 
 899   // Scan the exception table for applicable handlers.
 900   // If none, we can call rethrow() and be done!
 901   // If precise (loaded with no subklasses), insert a D.S. style
 902   // pointer compare to the correct handler and loop back.
 903   // If imprecise, switch to the Rethrow VM-call style handling.
 904 
 905   int remaining = handlers.count_remaining();
 906 
 907   // iterate through all entries sequentially
 908   for (;!handlers.is_done(); handlers.next()) {
 909     ciExceptionHandler* handler = handlers.handler();
 910 
 911     if (handler->is_rethrow()) {
 912       // If we fell off the end of the table without finding an imprecise
 913       // exception klass (and without finding a generic handler) then we
 914       // know this exception is not handled in this method.  We just rethrow
 915       // the exception into the caller.
 916       throw_to_exit(make_exception_state(ex_node));
 917       return;
 918     }
 919 
 920     // exception handler bci range covers throw_bci => investigate further
 921     int handler_bci = handler->handler_bci();
 922 
 923     if (remaining == 1) {
 924       push_ex_oop(ex_node);        // Push exception oop for handler
 925       if (PrintOpto && WizardMode) {
 926         tty->print_cr("  Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
 927       }
 928       merge_exception(handler_bci); // jump to handler
 929       return;                   // No more handling to be done here!
 930     }
 931 
 932     // Get the handler's klass
 933     ciInstanceKlass* klass = handler->catch_klass();
 934 
 935     if (!klass->is_loaded()) {  // klass is not loaded?
 936       // fall through into catch_call_exceptions which will emit a
 937       // handler with an uncommon trap.
 938       break;
 939     }
 940 
 941     if (klass->is_interface())  // should not happen, but...
 942       break;                    // bail out
 943 
 944     // Check the type of the exception against the catch type
 945     const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
 946     Node* con = _gvn.makecon(tk);
 947     Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
 948     if (!stopped()) {
 949       PreserveJVMState pjvms(this);
 950       const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
 951       assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
 952       Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
 953       push_ex_oop(ex_oop);      // Push exception oop for handler
 954       if (PrintOpto && WizardMode) {
 955         tty->print("  Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
 956         klass->print_name();
 957         tty->cr();
 958       }
 959       merge_exception(handler_bci);
 960     }
 961     set_control(not_subtype_ctrl);
 962 
 963     // Come here if exception does not match handler.
 964     // Carry on with more handler checks.
 965     --remaining;
 966   }
 967 
 968   assert(!stopped(), "you should return if you finish the chain");
 969 
 970   // Oops, need to call into the VM to resolve the klasses at runtime.
 971   // Note:  This call must not deoptimize, since it is not a real at this bci!
 972   kill_dead_locals();
 973 
 974   make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
 975                     OptoRuntime::rethrow_Type(),
 976                     OptoRuntime::rethrow_stub(),
 977                     NULL, NULL,
 978                     ex_node);
 979 
 980   // Rethrow is a pure call, no side effects, only a result.
 981   // The result cannot be allocated, so we use I_O
 982 
 983   // Catch exceptions from the rethrow
 984   catch_call_exceptions(handlers);
 985 }
 986 
 987 
 988 // (Note:  Moved add_debug_info into GraphKit::add_safepoint_edges.)
 989 
 990 
 991 #ifndef PRODUCT
 992 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
 993   if( CountCompiledCalls ) {
 994     if( at_method_entry ) {
 995       // bump invocation counter if top method (for statistics)
 996       if (CountCompiledCalls && depth() == 1) {
 997         const TypePtr* addr_type = TypeMetadataPtr::make(method());
 998         Node* adr1 = makecon(addr_type);
 999         Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1000         increment_counter(adr2);
1001       }
1002     } else if (is_inline) {
1003       switch (bc()) {
1004       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1005       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1006       case Bytecodes::_invokestatic:
1007       case Bytecodes::_invokedynamic:
1008       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1009       default: fatal("unexpected call bytecode");
1010       }
1011     } else {
1012       switch (bc()) {
1013       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1014       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1015       case Bytecodes::_invokestatic:
1016       case Bytecodes::_invokedynamic:
1017       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1018       default: fatal("unexpected call bytecode");
1019       }
1020     }
1021   }
1022 }
1023 #endif //PRODUCT
1024 
1025 
1026 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
1027                                          ciKlass* holder, ciMethod* callee,
1028                                          const TypeOopPtr* receiver_type, bool is_virtual,
1029                                          bool& call_does_dispatch, int& vtable_index,
1030                                          bool check_access) {
1031   // Set default values for out-parameters.
1032   call_does_dispatch = true;
1033   vtable_index       = Method::invalid_vtable_index;
1034 
1035   // Choose call strategy.
1036   ciMethod* optimized_virtual_method = optimize_inlining(caller, bci, klass, callee,
1037                                                          receiver_type, check_access);
1038 
1039   // Have the call been sufficiently improved such that it is no longer a virtual?
1040   if (optimized_virtual_method != NULL) {
1041     callee             = optimized_virtual_method;
1042     call_does_dispatch = false;
1043   } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1044     // We can make a vtable call at this site
1045     vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1046   }
1047   return callee;
1048 }
1049 
1050 // Identify possible target method and inlining style
1051 ciMethod* Compile::optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
1052                                      ciMethod* callee, const TypeOopPtr* receiver_type,
1053                                      bool check_access) {
1054   // only use for virtual or interface calls
1055 
1056   // If it is obviously final, do not bother to call find_monomorphic_target,
1057   // because the class hierarchy checks are not needed, and may fail due to
1058   // incompletely loaded classes.  Since we do our own class loading checks
1059   // in this module, we may confidently bind to any method.
1060   if (callee->can_be_statically_bound()) {
1061     return callee;
1062   }
1063 
1064   // Attempt to improve the receiver
1065   bool actual_receiver_is_exact = false;
1066   ciInstanceKlass* actual_receiver = klass;
1067   if (receiver_type != NULL) {
1068     // Array methods are all inherited from Object, and are monomorphic.
1069     // finalize() call on array is not allowed.
1070     if (receiver_type->isa_aryptr() &&
1071         callee->holder() == env()->Object_klass() &&
1072         callee->name() != ciSymbol::finalize_method_name()) {
1073       return callee;
1074     }
1075 
1076     // All other interesting cases are instance klasses.
1077     if (!receiver_type->isa_instptr()) {
1078       return NULL;
1079     }
1080 
1081     ciInstanceKlass *ikl = receiver_type->klass()->as_instance_klass();
1082     if (ikl->is_loaded() && ikl->is_initialized() && !ikl->is_interface() &&
1083         (ikl == actual_receiver || ikl->is_subtype_of(actual_receiver))) {
1084       // ikl is a same or better type than the original actual_receiver,
1085       // e.g. static receiver from bytecodes.
1086       actual_receiver = ikl;
1087       // Is the actual_receiver exact?
1088       actual_receiver_is_exact = receiver_type->klass_is_exact();
1089     }
1090   }
1091 
1092   ciInstanceKlass*   calling_klass = caller->holder();
1093   ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1094   if (cha_monomorphic_target != NULL) {
1095     assert(!cha_monomorphic_target->is_abstract(), "");
1096     // Look at the method-receiver type.  Does it add "too much information"?
1097     ciKlass*    mr_klass = cha_monomorphic_target->holder();
1098     const Type* mr_type  = TypeInstPtr::make(TypePtr::BotPTR, mr_klass);
1099     if (receiver_type == NULL || !receiver_type->higher_equal(mr_type)) {
1100       // Calling this method would include an implicit cast to its holder.
1101       // %%% Not yet implemented.  Would throw minor asserts at present.
1102       // %%% The most common wins are already gained by +UseUniqueSubclasses.
1103       // To fix, put the higher_equal check at the call of this routine,
1104       // and add a CheckCastPP to the receiver.
1105       if (TraceDependencies) {
1106         tty->print_cr("found unique CHA method, but could not cast up");
1107         tty->print("  method  = ");
1108         cha_monomorphic_target->print();
1109         tty->cr();
1110       }
1111       if (log() != NULL) {
1112         log()->elem("missed_CHA_opportunity klass='%d' method='%d'",
1113                        log()->identify(klass),
1114                        log()->identify(cha_monomorphic_target));
1115       }
1116       cha_monomorphic_target = NULL;
1117     }
1118   }
1119   if (cha_monomorphic_target != NULL) {
1120     // Hardwiring a virtual.
1121     // If we inlined because CHA revealed only a single target method,
1122     // then we are dependent on that target method not getting overridden
1123     // by dynamic class loading.  Be sure to test the "static" receiver
1124     // dest_method here, as opposed to the actual receiver, which may
1125     // falsely lead us to believe that the receiver is final or private.
1126     dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target);
1127     return cha_monomorphic_target;
1128   }
1129 
1130   // If the type is exact, we can still bind the method w/o a vcall.
1131   // (This case comes after CHA so we can see how much extra work it does.)
1132   if (actual_receiver_is_exact) {
1133     // In case of evolution, there is a dependence on every inlined method, since each
1134     // such method can be changed when its class is redefined.
1135     ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1136     if (exact_method != NULL) {
1137       if (PrintOpto) {
1138         tty->print("  Calling method via exact type @%d --- ", bci);
1139         exact_method->print_name();
1140         tty->cr();
1141       }
1142       return exact_method;
1143     }
1144   }
1145 
1146   return NULL;
1147 }