1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "opto/valuetypenode.hpp"
  46 #include "utilities/align.hpp"
  47 #include "utilities/copy.hpp"
  48 #include "utilities/vmError.hpp"
  49 
  50 // Portions of code courtesy of Clifford Click
  51 
  52 // Optimization - Graph Style
  53 
  54 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  55 
  56 //=============================================================================
  57 uint MemNode::size_of() const { return sizeof(*this); }
  58 
  59 const TypePtr *MemNode::adr_type() const {
  60   Node* adr = in(Address);
  61   if (adr == NULL)  return NULL; // node is dead
  62   const TypePtr* cross_check = NULL;
  63   DEBUG_ONLY(cross_check = _adr_type);
  64   return calculate_adr_type(adr->bottom_type(), cross_check);
  65 }
  66 
  67 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  68   if (adr != NULL) {
  69     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  70       return true;
  71     }
  72   }
  73   return false;
  74 }
  75 
  76 #ifndef PRODUCT
  77 void MemNode::dump_spec(outputStream *st) const {
  78   if (in(Address) == NULL)  return; // node is dead
  79 #ifndef ASSERT
  80   // fake the missing field
  81   const TypePtr* _adr_type = NULL;
  82   if (in(Address) != NULL)
  83     _adr_type = in(Address)->bottom_type()->isa_ptr();
  84 #endif
  85   dump_adr_type(this, _adr_type, st);
  86 
  87   Compile* C = Compile::current();
  88   if (C->alias_type(_adr_type)->is_volatile()) {
  89     st->print(" Volatile!");
  90   }
  91   if (_unaligned_access) {
  92     st->print(" unaligned");
  93   }
  94   if (_mismatched_access) {
  95     st->print(" mismatched");
  96   }
  97 }
  98 
  99 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 100   st->print(" @");
 101   if (adr_type == NULL) {
 102     st->print("NULL");
 103   } else {
 104     adr_type->dump_on(st);
 105     Compile* C = Compile::current();
 106     Compile::AliasType* atp = NULL;
 107     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 108     if (atp == NULL)
 109       st->print(", idx=?\?;");
 110     else if (atp->index() == Compile::AliasIdxBot)
 111       st->print(", idx=Bot;");
 112     else if (atp->index() == Compile::AliasIdxTop)
 113       st->print(", idx=Top;");
 114     else if (atp->index() == Compile::AliasIdxRaw)
 115       st->print(", idx=Raw;");
 116     else {
 117       ciField* field = atp->field();
 118       if (field) {
 119         st->print(", name=");
 120         field->print_name_on(st);
 121       }
 122       st->print(", idx=%d;", atp->index());
 123     }
 124   }
 125 }
 126 
 127 extern void print_alias_types();
 128 
 129 #endif
 130 
 131 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 132   assert((t_oop != NULL), "sanity");
 133   bool is_instance = t_oop->is_known_instance_field();
 134   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 135                              (load != NULL) && load->is_Load() &&
 136                              (phase->is_IterGVN() != NULL);
 137   if (!(is_instance || is_boxed_value_load))
 138     return mchain;  // don't try to optimize non-instance types
 139   uint instance_id = t_oop->instance_id();
 140   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 141   Node *prev = NULL;
 142   Node *result = mchain;
 143   while (prev != result) {
 144     prev = result;
 145     if (result == start_mem)
 146       break;  // hit one of our sentinels
 147     // skip over a call which does not affect this memory slice
 148     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 149       Node *proj_in = result->in(0);
 150       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 151         break;  // hit one of our sentinels
 152       } else if (proj_in->is_Call()) {
 153         // ArrayCopyNodes processed here as well
 154         CallNode *call = proj_in->as_Call();
 155         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 156           result = call->in(TypeFunc::Memory);
 157         }
 158       } else if (proj_in->is_Initialize()) {
 159         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 160         // Stop if this is the initialization for the object instance which
 161         // contains this memory slice, otherwise skip over it.
 162         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 163           break;
 164         }
 165         if (is_instance) {
 166           result = proj_in->in(TypeFunc::Memory);
 167         } else if (is_boxed_value_load) {
 168           Node* klass = alloc->in(AllocateNode::KlassNode);
 169           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 170           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 171             result = proj_in->in(TypeFunc::Memory); // not related allocation
 172           }
 173         }
 174       } else if (proj_in->is_MemBar()) {
 175         ArrayCopyNode* ac = NULL;
 176         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 177           break;
 178         }
 179         result = proj_in->in(TypeFunc::Memory);
 180       } else {
 181         assert(false, "unexpected projection");
 182       }
 183     } else if (result->is_ClearArray()) {
 184       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 185         // Can not bypass initialization of the instance
 186         // we are looking for.
 187         break;
 188       }
 189       // Otherwise skip it (the call updated 'result' value).
 190     } else if (result->is_MergeMem()) {
 191       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 192     }
 193   }
 194   return result;
 195 }
 196 
 197 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 198   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 199   if (t_oop == NULL)
 200     return mchain;  // don't try to optimize non-oop types
 201   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 202   bool is_instance = t_oop->is_known_instance_field();
 203   PhaseIterGVN *igvn = phase->is_IterGVN();
 204   if (is_instance && igvn != NULL  && result->is_Phi()) {
 205     PhiNode *mphi = result->as_Phi();
 206     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 207     const TypePtr *t = mphi->adr_type();
 208     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 209         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 210          t->is_oopptr()->cast_to_exactness(true)
 211            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 212             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 213       // clone the Phi with our address type
 214       result = mphi->split_out_instance(t_adr, igvn);
 215     } else {
 216       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 217     }
 218   }
 219   return result;
 220 }
 221 
 222 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 223   uint alias_idx = phase->C->get_alias_index(tp);
 224   Node *mem = mmem;
 225 #ifdef ASSERT
 226   {
 227     // Check that current type is consistent with the alias index used during graph construction
 228     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 229     bool consistent =  adr_check == NULL || adr_check->empty() ||
 230                        phase->C->must_alias(adr_check, alias_idx );
 231     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 232     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 233         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 234         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 235         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 236           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 237           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 238       // don't assert if it is dead code.
 239       consistent = true;
 240     }
 241     if( !consistent ) {
 242       st->print("alias_idx==%d, adr_check==", alias_idx);
 243       if( adr_check == NULL ) {
 244         st->print("NULL");
 245       } else {
 246         adr_check->dump();
 247       }
 248       st->cr();
 249       print_alias_types();
 250       assert(consistent, "adr_check must match alias idx");
 251     }
 252   }
 253 #endif
 254   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 255   // means an array I have not precisely typed yet.  Do not do any
 256   // alias stuff with it any time soon.
 257   const TypeOopPtr *toop = tp->isa_oopptr();
 258   if( tp->base() != Type::AnyPtr &&
 259       !(toop &&
 260         toop->klass() != NULL &&
 261         toop->klass()->is_java_lang_Object() &&
 262         toop->offset() == Type::OffsetBot) ) {
 263     // compress paths and change unreachable cycles to TOP
 264     // If not, we can update the input infinitely along a MergeMem cycle
 265     // Equivalent code in PhiNode::Ideal
 266     Node* m  = phase->transform(mmem);
 267     // If transformed to a MergeMem, get the desired slice
 268     // Otherwise the returned node represents memory for every slice
 269     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 270     // Update input if it is progress over what we have now
 271   }
 272   return mem;
 273 }
 274 
 275 //--------------------------Ideal_common---------------------------------------
 276 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 277 // Unhook non-raw memories from complete (macro-expanded) initializations.
 278 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 279   // If our control input is a dead region, kill all below the region
 280   Node *ctl = in(MemNode::Control);
 281   if (ctl && remove_dead_region(phase, can_reshape))
 282     return this;
 283   ctl = in(MemNode::Control);
 284   // Don't bother trying to transform a dead node
 285   if (ctl && ctl->is_top())  return NodeSentinel;
 286 
 287   PhaseIterGVN *igvn = phase->is_IterGVN();
 288   // Wait if control on the worklist.
 289   if (ctl && can_reshape && igvn != NULL) {
 290     Node* bol = NULL;
 291     Node* cmp = NULL;
 292     if (ctl->in(0)->is_If()) {
 293       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 294       bol = ctl->in(0)->in(1);
 295       if (bol->is_Bool())
 296         cmp = ctl->in(0)->in(1)->in(1);
 297     }
 298     if (igvn->_worklist.member(ctl) ||
 299         (bol != NULL && igvn->_worklist.member(bol)) ||
 300         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 301       // This control path may be dead.
 302       // Delay this memory node transformation until the control is processed.
 303       phase->is_IterGVN()->_worklist.push(this);
 304       return NodeSentinel; // caller will return NULL
 305     }
 306   }
 307   // Ignore if memory is dead, or self-loop
 308   Node *mem = in(MemNode::Memory);
 309   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 310   assert(mem != this, "dead loop in MemNode::Ideal");
 311 
 312   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 313     // This memory slice may be dead.
 314     // Delay this mem node transformation until the memory is processed.
 315     phase->is_IterGVN()->_worklist.push(this);
 316     return NodeSentinel; // caller will return NULL
 317   }
 318 
 319   Node *address = in(MemNode::Address);
 320   const Type *t_adr = phase->type(address);
 321   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 322 
 323   if (can_reshape && igvn != NULL &&
 324       (igvn->_worklist.member(address) ||
 325        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 326     // The address's base and type may change when the address is processed.
 327     // Delay this mem node transformation until the address is processed.
 328     phase->is_IterGVN()->_worklist.push(this);
 329     return NodeSentinel; // caller will return NULL
 330   }
 331 
 332   // Do NOT remove or optimize the next lines: ensure a new alias index
 333   // is allocated for an oop pointer type before Escape Analysis.
 334   // Note: C++ will not remove it since the call has side effect.
 335   if (t_adr->isa_oopptr()) {
 336     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 337   }
 338 
 339   Node* base = NULL;
 340   if (address->is_AddP()) {
 341     base = address->in(AddPNode::Base);
 342   }
 343   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 344       !t_adr->isa_rawptr()) {
 345     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 346     // Skip this node optimization if its address has TOP base.
 347     return NodeSentinel; // caller will return NULL
 348   }
 349 
 350   // Avoid independent memory operations
 351   Node* old_mem = mem;
 352 
 353   // The code which unhooks non-raw memories from complete (macro-expanded)
 354   // initializations was removed. After macro-expansion all stores catched
 355   // by Initialize node became raw stores and there is no information
 356   // which memory slices they modify. So it is unsafe to move any memory
 357   // operation above these stores. Also in most cases hooked non-raw memories
 358   // were already unhooked by using information from detect_ptr_independence()
 359   // and find_previous_store().
 360 
 361   if (mem->is_MergeMem()) {
 362     MergeMemNode* mmem = mem->as_MergeMem();
 363     const TypePtr *tp = t_adr->is_ptr();
 364 
 365     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 366   }
 367 
 368   if (mem != old_mem) {
 369     set_req(MemNode::Memory, mem);
 370     if (can_reshape && old_mem->outcnt() == 0) {
 371         igvn->_worklist.push(old_mem);
 372     }
 373     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 374     return this;
 375   }
 376 
 377   // let the subclass continue analyzing...
 378   return NULL;
 379 }
 380 
 381 // Helper function for proving some simple control dominations.
 382 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 383 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 384 // is not a constant (dominated by the method's StartNode).
 385 // Used by MemNode::find_previous_store to prove that the
 386 // control input of a memory operation predates (dominates)
 387 // an allocation it wants to look past.
 388 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 389   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 390     return false; // Conservative answer for dead code
 391 
 392   // Check 'dom'. Skip Proj and CatchProj nodes.
 393   dom = dom->find_exact_control(dom);
 394   if (dom == NULL || dom->is_top())
 395     return false; // Conservative answer for dead code
 396 
 397   if (dom == sub) {
 398     // For the case when, for example, 'sub' is Initialize and the original
 399     // 'dom' is Proj node of the 'sub'.
 400     return false;
 401   }
 402 
 403   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 404     return true;
 405 
 406   // 'dom' dominates 'sub' if its control edge and control edges
 407   // of all its inputs dominate or equal to sub's control edge.
 408 
 409   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 410   // Or Region for the check in LoadNode::Ideal();
 411   // 'sub' should have sub->in(0) != NULL.
 412   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 413          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 414 
 415   // Get control edge of 'sub'.
 416   Node* orig_sub = sub;
 417   sub = sub->find_exact_control(sub->in(0));
 418   if (sub == NULL || sub->is_top())
 419     return false; // Conservative answer for dead code
 420 
 421   assert(sub->is_CFG(), "expecting control");
 422 
 423   if (sub == dom)
 424     return true;
 425 
 426   if (sub->is_Start() || sub->is_Root())
 427     return false;
 428 
 429   {
 430     // Check all control edges of 'dom'.
 431 
 432     ResourceMark rm;
 433     Arena* arena = Thread::current()->resource_area();
 434     Node_List nlist(arena);
 435     Unique_Node_List dom_list(arena);
 436 
 437     dom_list.push(dom);
 438     bool only_dominating_controls = false;
 439 
 440     for (uint next = 0; next < dom_list.size(); next++) {
 441       Node* n = dom_list.at(next);
 442       if (n == orig_sub)
 443         return false; // One of dom's inputs dominated by sub.
 444       if (!n->is_CFG() && n->pinned()) {
 445         // Check only own control edge for pinned non-control nodes.
 446         n = n->find_exact_control(n->in(0));
 447         if (n == NULL || n->is_top())
 448           return false; // Conservative answer for dead code
 449         assert(n->is_CFG(), "expecting control");
 450         dom_list.push(n);
 451       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 452         only_dominating_controls = true;
 453       } else if (n->is_CFG()) {
 454         if (n->dominates(sub, nlist))
 455           only_dominating_controls = true;
 456         else
 457           return false;
 458       } else {
 459         // First, own control edge.
 460         Node* m = n->find_exact_control(n->in(0));
 461         if (m != NULL) {
 462           if (m->is_top())
 463             return false; // Conservative answer for dead code
 464           dom_list.push(m);
 465         }
 466         // Now, the rest of edges.
 467         uint cnt = n->req();
 468         for (uint i = 1; i < cnt; i++) {
 469           m = n->find_exact_control(n->in(i));
 470           if (m == NULL || m->is_top())
 471             continue;
 472           dom_list.push(m);
 473         }
 474       }
 475     }
 476     return only_dominating_controls;
 477   }
 478 }
 479 
 480 //---------------------detect_ptr_independence---------------------------------
 481 // Used by MemNode::find_previous_store to prove that two base
 482 // pointers are never equal.
 483 // The pointers are accompanied by their associated allocations,
 484 // if any, which have been previously discovered by the caller.
 485 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 486                                       Node* p2, AllocateNode* a2,
 487                                       PhaseTransform* phase) {
 488   // Attempt to prove that these two pointers cannot be aliased.
 489   // They may both manifestly be allocations, and they should differ.
 490   // Or, if they are not both allocations, they can be distinct constants.
 491   // Otherwise, one is an allocation and the other a pre-existing value.
 492   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 493     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 494   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 495     return (a1 != a2);
 496   } else if (a1 != NULL) {                  // one allocation a1
 497     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 498     return all_controls_dominate(p2, a1);
 499   } else { //(a2 != NULL)                   // one allocation a2
 500     return all_controls_dominate(p1, a2);
 501   }
 502   return false;
 503 }
 504 
 505 
 506 // Find an arraycopy that must have set (can_see_stored_value=true) or
 507 // could have set (can_see_stored_value=false) the value for this load
 508 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 509   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 510                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 511     Node* mb = mem->in(0);
 512     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 513         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 514       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 515       if (ac->is_clonebasic()) {
 516         intptr_t offset;
 517         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 518         assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
 519         if (alloc == ld_alloc) {
 520           return ac;
 521         }
 522       }
 523     }
 524   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 525     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 526 
 527     if (ac->is_arraycopy_validated() ||
 528         ac->is_copyof_validated() ||
 529         ac->is_copyofrange_validated()) {
 530       Node* ld_addp = in(MemNode::Address);
 531       if (ld_addp->is_AddP()) {
 532         Node* ld_base = ld_addp->in(AddPNode::Address);
 533         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 534 
 535         Node* dest = ac->in(ArrayCopyNode::Dest);
 536 
 537         if (dest == ld_base) {
 538           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 539           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 540             return ac;
 541           }
 542           if (!can_see_stored_value) {
 543             mem = ac->in(TypeFunc::Memory);
 544           }
 545         }
 546       }
 547     }
 548   }
 549   return NULL;
 550 }
 551 
 552 // The logic for reordering loads and stores uses four steps:
 553 // (a) Walk carefully past stores and initializations which we
 554 //     can prove are independent of this load.
 555 // (b) Observe that the next memory state makes an exact match
 556 //     with self (load or store), and locate the relevant store.
 557 // (c) Ensure that, if we were to wire self directly to the store,
 558 //     the optimizer would fold it up somehow.
 559 // (d) Do the rewiring, and return, depending on some other part of
 560 //     the optimizer to fold up the load.
 561 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 562 // specific to loads and stores, so they are handled by the callers.
 563 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 564 //
 565 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 566   Node*         ctrl   = in(MemNode::Control);
 567   Node*         adr    = in(MemNode::Address);
 568   intptr_t      offset = 0;
 569   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 570   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 571 
 572   if (offset == Type::OffsetBot)
 573     return NULL;            // cannot unalias unless there are precise offsets
 574 
 575   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 576   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 577 
 578   intptr_t size_in_bytes = memory_size();
 579 
 580   Node* mem = in(MemNode::Memory);   // start searching here...
 581 
 582   int cnt = 50;             // Cycle limiter
 583   for (;;) {                // While we can dance past unrelated stores...
 584     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 585 
 586     Node* prev = mem;
 587     if (mem->is_Store()) {
 588       Node* st_adr = mem->in(MemNode::Address);
 589       intptr_t st_offset = 0;
 590       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 591       if (st_base == NULL)
 592         break;              // inscrutable pointer
 593 
 594       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 595       // We need the bases to be the equal in order for the offset check to make sense.
 596       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 597         break;
 598       }
 599 
 600       if (st_offset != offset && st_offset != Type::OffsetBot) {
 601         const int MAX_STORE = BytesPerLong;
 602         if (st_offset >= offset + size_in_bytes ||
 603             st_offset <= offset - MAX_STORE ||
 604             st_offset <= offset - mem->as_Store()->memory_size()) {
 605           // Success:  The offsets are provably independent.
 606           // (You may ask, why not just test st_offset != offset and be done?
 607           // The answer is that stores of different sizes can co-exist
 608           // in the same sequence of RawMem effects.  We sometimes initialize
 609           // a whole 'tile' of array elements with a single jint or jlong.)
 610           mem = mem->in(MemNode::Memory);
 611           continue;           // (a) advance through independent store memory
 612         }
 613       }
 614       if (st_base != base &&
 615           detect_ptr_independence(base, alloc,
 616                                   st_base,
 617                                   AllocateNode::Ideal_allocation(st_base, phase),
 618                                   phase)) {
 619         // Success:  The bases are provably independent.
 620         mem = mem->in(MemNode::Memory);
 621         continue;           // (a) advance through independent store memory
 622       }
 623 
 624       // (b) At this point, if the bases or offsets do not agree, we lose,
 625       // since we have not managed to prove 'this' and 'mem' independent.
 626       if (st_base == base && st_offset == offset) {
 627         return mem;         // let caller handle steps (c), (d)
 628       }
 629 
 630     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 631       InitializeNode* st_init = mem->in(0)->as_Initialize();
 632       AllocateNode*  st_alloc = st_init->allocation();
 633       if (st_alloc == NULL)
 634         break;              // something degenerated
 635       bool known_identical = false;
 636       bool known_independent = false;
 637       if (alloc == st_alloc)
 638         known_identical = true;
 639       else if (alloc != NULL)
 640         known_independent = true;
 641       else if (all_controls_dominate(this, st_alloc))
 642         known_independent = true;
 643 
 644       if (known_independent) {
 645         // The bases are provably independent: Either they are
 646         // manifestly distinct allocations, or else the control
 647         // of this load dominates the store's allocation.
 648         int alias_idx = phase->C->get_alias_index(adr_type());
 649         if (alias_idx == Compile::AliasIdxRaw) {
 650           mem = st_alloc->in(TypeFunc::Memory);
 651         } else {
 652           mem = st_init->memory(alias_idx);
 653         }
 654         continue;           // (a) advance through independent store memory
 655       }
 656 
 657       // (b) at this point, if we are not looking at a store initializing
 658       // the same allocation we are loading from, we lose.
 659       if (known_identical) {
 660         // From caller, can_see_stored_value will consult find_captured_store.
 661         return mem;         // let caller handle steps (c), (d)
 662       }
 663 
 664     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 665       if (prev != mem) {
 666         // Found an arraycopy but it doesn't affect that load
 667         continue;
 668       }
 669       // Found an arraycopy that may affect that load
 670       return mem;
 671     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 672       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 673       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 674         // ArrayCopyNodes processed here as well.
 675         CallNode *call = mem->in(0)->as_Call();
 676         if (!call->may_modify(addr_t, phase)) {
 677           mem = call->in(TypeFunc::Memory);
 678           continue;         // (a) advance through independent call memory
 679         }
 680       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 681         ArrayCopyNode* ac = NULL;
 682         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 683           break;
 684         }
 685         mem = mem->in(0)->in(TypeFunc::Memory);
 686         continue;           // (a) advance through independent MemBar memory
 687       } else if (mem->is_ClearArray()) {
 688         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 689           // (the call updated 'mem' value)
 690           continue;         // (a) advance through independent allocation memory
 691         } else {
 692           // Can not bypass initialization of the instance
 693           // we are looking for.
 694           return mem;
 695         }
 696       } else if (mem->is_MergeMem()) {
 697         int alias_idx = phase->C->get_alias_index(adr_type());
 698         mem = mem->as_MergeMem()->memory_at(alias_idx);
 699         continue;           // (a) advance through independent MergeMem memory
 700       }
 701     }
 702 
 703     // Unless there is an explicit 'continue', we must bail out here,
 704     // because 'mem' is an inscrutable memory state (e.g., a call).
 705     break;
 706   }
 707 
 708   return NULL;              // bail out
 709 }
 710 
 711 //----------------------calculate_adr_type-------------------------------------
 712 // Helper function.  Notices when the given type of address hits top or bottom.
 713 // Also, asserts a cross-check of the type against the expected address type.
 714 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 715   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 716   #ifdef PRODUCT
 717   cross_check = NULL;
 718   #else
 719   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 720   #endif
 721   const TypePtr* tp = t->isa_ptr();
 722   if (tp == NULL) {
 723     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 724     return TypePtr::BOTTOM;           // touches lots of memory
 725   } else {
 726     #ifdef ASSERT
 727     // %%%% [phh] We don't check the alias index if cross_check is
 728     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 729     if (cross_check != NULL &&
 730         cross_check != TypePtr::BOTTOM &&
 731         cross_check != TypeRawPtr::BOTTOM) {
 732       // Recheck the alias index, to see if it has changed (due to a bug).
 733       Compile* C = Compile::current();
 734       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 735              "must stay in the original alias category");
 736       // The type of the address must be contained in the adr_type,
 737       // disregarding "null"-ness.
 738       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 739       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 740       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 741              "real address must not escape from expected memory type");
 742     }
 743     #endif
 744     return tp;
 745   }
 746 }
 747 
 748 //=============================================================================
 749 // Should LoadNode::Ideal() attempt to remove control edges?
 750 bool LoadNode::can_remove_control() const {
 751   return true;
 752 }
 753 uint LoadNode::size_of() const { return sizeof(*this); }
 754 uint LoadNode::cmp( const Node &n ) const
 755 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 756 const Type *LoadNode::bottom_type() const { return _type; }
 757 uint LoadNode::ideal_reg() const {
 758   return _type->ideal_reg();
 759 }
 760 
 761 #ifndef PRODUCT
 762 void LoadNode::dump_spec(outputStream *st) const {
 763   MemNode::dump_spec(st);
 764   if( !Verbose && !WizardMode ) {
 765     // standard dump does this in Verbose and WizardMode
 766     st->print(" #"); _type->dump_on(st);
 767   }
 768   if (!depends_only_on_test()) {
 769     st->print(" (does not depend only on test)");
 770   }
 771 }
 772 #endif
 773 
 774 #ifdef ASSERT
 775 //----------------------------is_immutable_value-------------------------------
 776 // Helper function to allow a raw load without control edge for some cases
 777 bool LoadNode::is_immutable_value(Node* adr) {
 778   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 779           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 780           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 781            in_bytes(JavaThread::osthread_offset())));
 782 }
 783 #endif
 784 
 785 //----------------------------LoadNode::make-----------------------------------
 786 // Polymorphic factory method:
 787 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 788                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 789   Compile* C = gvn.C;
 790 
 791   // sanity check the alias category against the created node type
 792   assert(!(adr_type->isa_oopptr() &&
 793            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 794          "use LoadKlassNode instead");
 795   assert(!(adr_type->isa_aryptr() &&
 796            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 797          "use LoadRangeNode instead");
 798   // Check control edge of raw loads
 799   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 800           // oop will be recorded in oop map if load crosses safepoint
 801           rt->isa_oopptr() || is_immutable_value(adr),
 802           "raw memory operations should have control edge");
 803   LoadNode* load = NULL;
 804   switch (bt) {
 805   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 806   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 807   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 808   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 809   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 810   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 811   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 812   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 813   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 814   case T_VALUETYPE:
 815   case T_OBJECT:
 816 #ifdef _LP64
 817     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 818       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 819     } else
 820 #endif
 821     {
 822       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 823       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 824     }
 825     break;
 826   default:
 827     // ShouldNotReachHere(); ???
 828     break;
 829   }
 830   assert(load != NULL, "LoadNode should have been created");
 831   if (unaligned) {
 832     load->set_unaligned_access();
 833   }
 834   if (mismatched) {
 835     load->set_mismatched_access();
 836   }
 837   if (load->Opcode() == Op_LoadN) {
 838     Node* ld = gvn.transform(load);
 839     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 840   }
 841 
 842   return load;
 843 }
 844 
 845 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 846                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 847   bool require_atomic = true;
 848   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 849   if (unaligned) {
 850     load->set_unaligned_access();
 851   }
 852   if (mismatched) {
 853     load->set_mismatched_access();
 854   }
 855   return load;
 856 }
 857 
 858 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 859                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 860   bool require_atomic = true;
 861   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 862   if (unaligned) {
 863     load->set_unaligned_access();
 864   }
 865   if (mismatched) {
 866     load->set_mismatched_access();
 867   }
 868   return load;
 869 }
 870 
 871 
 872 
 873 //------------------------------hash-------------------------------------------
 874 uint LoadNode::hash() const {
 875   // unroll addition of interesting fields
 876   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 877 }
 878 
 879 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 880   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 881     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 882     bool is_stable_ary = FoldStableValues &&
 883                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 884                          tp->isa_aryptr()->is_stable();
 885 
 886     return (eliminate_boxing && non_volatile) || is_stable_ary;
 887   }
 888 
 889   return false;
 890 }
 891 
 892 // Is the value loaded previously stored by an arraycopy? If so return
 893 // a load node that reads from the source array so we may be able to
 894 // optimize out the ArrayCopy node later.
 895 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 896   Node* ld_adr = in(MemNode::Address);
 897   intptr_t ld_off = 0;
 898   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 899   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 900   if (ac != NULL) {
 901     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 902 
 903     Node* mem = ac->in(TypeFunc::Memory);
 904     Node* ctl = ac->in(0);
 905     Node* src = ac->in(ArrayCopyNode::Src);
 906 
 907     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 908       return NULL;
 909     }
 910 
 911     LoadNode* ld = clone()->as_Load();
 912     Node* addp = in(MemNode::Address)->clone();
 913     if (ac->as_ArrayCopy()->is_clonebasic()) {
 914       assert(ld_alloc != NULL, "need an alloc");
 915       assert(addp->is_AddP(), "address must be addp");
 916       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 917       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 918       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 919       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 920     } else {
 921       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 922              ac->as_ArrayCopy()->is_copyof_validated() ||
 923              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 924       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 925       addp->set_req(AddPNode::Base, src);
 926       addp->set_req(AddPNode::Address, src);
 927 
 928       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 929       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 930       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 931       uint shift  = exact_log2(type2aelembytes(ary_elem));
 932 
 933       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 934 #ifdef _LP64
 935       diff = phase->transform(new ConvI2LNode(diff));
 936 #endif
 937       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 938 
 939       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 940       addp->set_req(AddPNode::Offset, offset);
 941     }
 942     addp = phase->transform(addp);
 943 #ifdef ASSERT
 944     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 945     ld->_adr_type = adr_type;
 946 #endif
 947     ld->set_req(MemNode::Address, addp);
 948     ld->set_req(0, ctl);
 949     ld->set_req(MemNode::Memory, mem);
 950     // load depends on the tests that validate the arraycopy
 951     ld->_control_dependency = Pinned;
 952     return ld;
 953   }
 954   return NULL;
 955 }
 956 
 957 
 958 //---------------------------can_see_stored_value------------------------------
 959 // This routine exists to make sure this set of tests is done the same
 960 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 961 // will change the graph shape in a way which makes memory alive twice at the
 962 // same time (uses the Oracle model of aliasing), then some
 963 // LoadXNode::Identity will fold things back to the equivalence-class model
 964 // of aliasing.
 965 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 966   Node* ld_adr = in(MemNode::Address);
 967   intptr_t ld_off = 0;
 968   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 969   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 970   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 971   // This is more general than load from boxing objects.
 972   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 973     uint alias_idx = atp->index();
 974     bool final = !atp->is_rewritable();
 975     Node* result = NULL;
 976     Node* current = st;
 977     // Skip through chains of MemBarNodes checking the MergeMems for
 978     // new states for the slice of this load.  Stop once any other
 979     // kind of node is encountered.  Loads from final memory can skip
 980     // through any kind of MemBar but normal loads shouldn't skip
 981     // through MemBarAcquire since the could allow them to move out of
 982     // a synchronized region.
 983     while (current->is_Proj()) {
 984       int opc = current->in(0)->Opcode();
 985       if ((final && (opc == Op_MemBarAcquire ||
 986                      opc == Op_MemBarAcquireLock ||
 987                      opc == Op_LoadFence)) ||
 988           opc == Op_MemBarRelease ||
 989           opc == Op_StoreFence ||
 990           opc == Op_MemBarReleaseLock ||
 991           opc == Op_MemBarStoreStore ||
 992           opc == Op_MemBarCPUOrder) {
 993         Node* mem = current->in(0)->in(TypeFunc::Memory);
 994         if (mem->is_MergeMem()) {
 995           MergeMemNode* merge = mem->as_MergeMem();
 996           Node* new_st = merge->memory_at(alias_idx);
 997           if (new_st == merge->base_memory()) {
 998             // Keep searching
 999             current = new_st;
1000             continue;
1001           }
1002           // Save the new memory state for the slice and fall through
1003           // to exit.
1004           result = new_st;
1005         }
1006       }
1007       break;
1008     }
1009     if (result != NULL) {
1010       st = result;
1011     }
1012   }
1013 
1014   // Loop around twice in the case Load -> Initialize -> Store.
1015   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1016   for (int trip = 0; trip <= 1; trip++) {
1017 
1018     if (st->is_Store()) {
1019       Node* st_adr = st->in(MemNode::Address);
1020       if (!phase->eqv(st_adr, ld_adr)) {
1021         // Try harder before giving up...  Match raw and non-raw pointers.
1022         intptr_t st_off = 0;
1023         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1024         if (alloc == NULL)       return NULL;
1025         if (alloc != ld_alloc)   return NULL;
1026         if (ld_off != st_off)    return NULL;
1027         // At this point we have proven something like this setup:
1028         //  A = Allocate(...)
1029         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1030         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1031         // (Actually, we haven't yet proven the Q's are the same.)
1032         // In other words, we are loading from a casted version of
1033         // the same pointer-and-offset that we stored to.
1034         // Thus, we are able to replace L by V.
1035       }
1036       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1037       if (store_Opcode() != st->Opcode())
1038         return NULL;
1039       return st->in(MemNode::ValueIn);
1040     }
1041 
1042     // A load from a freshly-created object always returns zero.
1043     // (This can happen after LoadNode::Ideal resets the load's memory input
1044     // to find_captured_store, which returned InitializeNode::zero_memory.)
1045     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1046         (st->in(0) == ld_alloc) &&
1047         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1048       // return a zero value for the load's basic type
1049       // (This is one of the few places where a generic PhaseTransform
1050       // can create new nodes.  Think of it as lazily manifesting
1051       // virtually pre-existing constants.)
1052       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1053       return phase->zerocon(memory_type());
1054     }
1055 
1056     // A load from an initialization barrier can match a captured store.
1057     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1058       InitializeNode* init = st->in(0)->as_Initialize();
1059       AllocateNode* alloc = init->allocation();
1060       if ((alloc != NULL) && (alloc == ld_alloc)) {
1061         // examine a captured store value
1062         st = init->find_captured_store(ld_off, memory_size(), phase);
1063         if (st != NULL) {
1064           continue;             // take one more trip around
1065         }
1066       }
1067     }
1068 
1069     // Load boxed value from result of valueOf() call is input parameter.
1070     if (this->is_Load() && ld_adr->is_AddP() &&
1071         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1072       intptr_t ignore = 0;
1073       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1074       if (base != NULL && base->is_Proj() &&
1075           base->as_Proj()->_con == TypeFunc::Parms &&
1076           base->in(0)->is_CallStaticJava() &&
1077           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1078         return base->in(0)->in(TypeFunc::Parms);
1079       }
1080     }
1081 
1082     break;
1083   }
1084 
1085   return NULL;
1086 }
1087 
1088 //----------------------is_instance_field_load_with_local_phi------------------
1089 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1090   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1091       in(Address)->is_AddP() ) {
1092     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1093     // Only instances and boxed values.
1094     if( t_oop != NULL &&
1095         (t_oop->is_ptr_to_boxed_value() ||
1096          t_oop->is_known_instance_field()) &&
1097         t_oop->offset() != Type::OffsetBot &&
1098         t_oop->offset() != Type::OffsetTop) {
1099       return true;
1100     }
1101   }
1102   return false;
1103 }
1104 
1105 //------------------------------Identity---------------------------------------
1106 // Loads are identity if previous store is to same address
1107 Node* LoadNode::Identity(PhaseGVN* phase) {
1108   // Loading from a ValueTypePtr? The ValueTypePtr has the values of
1109   // all fields as input. Look for the field with matching offset.
1110   Node* addr = in(Address);
1111   intptr_t offset;
1112   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
1113   if (base != NULL && base->is_ValueTypePtr()) {
1114     Node* value = base->as_ValueTypePtr()->field_value_by_offset((int)offset, true);
1115     if (value->is_ValueType()) {
1116       // Non-flattened value type field
1117       ValueTypeNode* vt = value->as_ValueType();
1118       if (vt->is_allocated(phase)) {
1119         value = vt->get_oop();
1120       } else {
1121         // Not yet allocated, bail out
1122         value = NULL;
1123       }
1124     }
1125     if (value != NULL) {
1126       if (Opcode() == Op_LoadN) {
1127         // Encode oop value if we are loading a narrow oop
1128         assert(!phase->type(value)->isa_narrowoop(), "should already be decoded");
1129         value = phase->transform(new EncodePNode(value, bottom_type()));
1130       }
1131       return value;
1132     }
1133   }
1134 
1135   // If the previous store-maker is the right kind of Store, and the store is
1136   // to the same address, then we are equal to the value stored.
1137   Node* mem = in(Memory);
1138   Node* value = can_see_stored_value(mem, phase);
1139   if( value ) {
1140     // byte, short & char stores truncate naturally.
1141     // A load has to load the truncated value which requires
1142     // some sort of masking operation and that requires an
1143     // Ideal call instead of an Identity call.
1144     if (memory_size() < BytesPerInt) {
1145       // If the input to the store does not fit with the load's result type,
1146       // it must be truncated via an Ideal call.
1147       if (!phase->type(value)->higher_equal(phase->type(this)))
1148         return this;
1149     }
1150     // (This works even when value is a Con, but LoadNode::Value
1151     // usually runs first, producing the singleton type of the Con.)
1152     return value;
1153   }
1154 
1155   // Search for an existing data phi which was generated before for the same
1156   // instance's field to avoid infinite generation of phis in a loop.
1157   Node *region = mem->in(0);
1158   if (is_instance_field_load_with_local_phi(region)) {
1159     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1160     int this_index  = phase->C->get_alias_index(addr_t);
1161     int this_offset = addr_t->offset();
1162     int this_iid    = addr_t->instance_id();
1163     if (!addr_t->is_known_instance() &&
1164          addr_t->is_ptr_to_boxed_value()) {
1165       // Use _idx of address base (could be Phi node) for boxed values.
1166       intptr_t   ignore = 0;
1167       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1168       if (base == NULL) {
1169         return this;
1170       }
1171       this_iid = base->_idx;
1172     }
1173     const Type* this_type = bottom_type();
1174     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1175       Node* phi = region->fast_out(i);
1176       if (phi->is_Phi() && phi != mem &&
1177           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1178         return phi;
1179       }
1180     }
1181   }
1182 
1183   return this;
1184 }
1185 
1186 // Construct an equivalent unsigned load.
1187 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1188   BasicType bt = T_ILLEGAL;
1189   const Type* rt = NULL;
1190   switch (Opcode()) {
1191     case Op_LoadUB: return this;
1192     case Op_LoadUS: return this;
1193     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1194     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1195     default:
1196       assert(false, "no unsigned variant: %s", Name());
1197       return NULL;
1198   }
1199   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1200                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1201                         is_unaligned_access(), is_mismatched_access());
1202 }
1203 
1204 // Construct an equivalent signed load.
1205 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1206   BasicType bt = T_ILLEGAL;
1207   const Type* rt = NULL;
1208   switch (Opcode()) {
1209     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1210     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1211     case Op_LoadB: // fall through
1212     case Op_LoadS: // fall through
1213     case Op_LoadI: // fall through
1214     case Op_LoadL: return this;
1215     default:
1216       assert(false, "no signed variant: %s", Name());
1217       return NULL;
1218   }
1219   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1220                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1221                         is_unaligned_access(), is_mismatched_access());
1222 }
1223 
1224 // We're loading from an object which has autobox behaviour.
1225 // If this object is result of a valueOf call we'll have a phi
1226 // merging a newly allocated object and a load from the cache.
1227 // We want to replace this load with the original incoming
1228 // argument to the valueOf call.
1229 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1230   assert(phase->C->eliminate_boxing(), "sanity");
1231   intptr_t ignore = 0;
1232   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1233   if ((base == NULL) || base->is_Phi()) {
1234     // Push the loads from the phi that comes from valueOf up
1235     // through it to allow elimination of the loads and the recovery
1236     // of the original value. It is done in split_through_phi().
1237     return NULL;
1238   } else if (base->is_Load() ||
1239              (base->is_DecodeN() && base->in(1)->is_Load())) {
1240     // Eliminate the load of boxed value for integer types from the cache
1241     // array by deriving the value from the index into the array.
1242     // Capture the offset of the load and then reverse the computation.
1243 
1244     // Get LoadN node which loads a boxing object from 'cache' array.
1245     if (base->is_DecodeN()) {
1246       base = base->in(1);
1247     }
1248     if (!base->in(Address)->is_AddP()) {
1249       return NULL; // Complex address
1250     }
1251     AddPNode* address = base->in(Address)->as_AddP();
1252     Node* cache_base = address->in(AddPNode::Base);
1253     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1254       // Get ConP node which is static 'cache' field.
1255       cache_base = cache_base->in(1);
1256     }
1257     if ((cache_base != NULL) && cache_base->is_Con()) {
1258       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1259       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1260         Node* elements[4];
1261         int shift = exact_log2(type2aelembytes(T_OBJECT));
1262         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1263         if (count > 0 && elements[0]->is_Con() &&
1264             (count == 1 ||
1265              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1266                             elements[1]->in(2) == phase->intcon(shift)))) {
1267           ciObjArray* array = base_type->const_oop()->as_obj_array();
1268           // Fetch the box object cache[0] at the base of the array and get its value
1269           ciInstance* box = array->obj_at(0)->as_instance();
1270           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1271           assert(ik->is_box_klass(), "sanity");
1272           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1273           if (ik->nof_nonstatic_fields() == 1) {
1274             // This should be true nonstatic_field_at requires calling
1275             // nof_nonstatic_fields so check it anyway
1276             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1277             BasicType bt = c.basic_type();
1278             // Only integer types have boxing cache.
1279             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1280                    bt == T_BYTE    || bt == T_SHORT ||
1281                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1282             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1283             if (cache_low != (int)cache_low) {
1284               return NULL; // should not happen since cache is array indexed by value
1285             }
1286             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1287             if (offset != (int)offset) {
1288               return NULL; // should not happen since cache is array indexed by value
1289             }
1290            // Add up all the offsets making of the address of the load
1291             Node* result = elements[0];
1292             for (int i = 1; i < count; i++) {
1293               result = phase->transform(new AddXNode(result, elements[i]));
1294             }
1295             // Remove the constant offset from the address and then
1296             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1297             // remove the scaling of the offset to recover the original index.
1298             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1299               // Peel the shift off directly but wrap it in a dummy node
1300               // since Ideal can't return existing nodes
1301               result = new RShiftXNode(result->in(1), phase->intcon(0));
1302             } else if (result->is_Add() && result->in(2)->is_Con() &&
1303                        result->in(1)->Opcode() == Op_LShiftX &&
1304                        result->in(1)->in(2) == phase->intcon(shift)) {
1305               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1306               // but for boxing cache access we know that X<<Z will not overflow
1307               // (there is range check) so we do this optimizatrion by hand here.
1308               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1309               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1310             } else {
1311               result = new RShiftXNode(result, phase->intcon(shift));
1312             }
1313 #ifdef _LP64
1314             if (bt != T_LONG) {
1315               result = new ConvL2INode(phase->transform(result));
1316             }
1317 #else
1318             if (bt == T_LONG) {
1319               result = new ConvI2LNode(phase->transform(result));
1320             }
1321 #endif
1322             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1323             // Need to preserve unboxing load type if it is unsigned.
1324             switch(this->Opcode()) {
1325               case Op_LoadUB:
1326                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1327                 break;
1328               case Op_LoadUS:
1329                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1330                 break;
1331             }
1332             return result;
1333           }
1334         }
1335       }
1336     }
1337   }
1338   return NULL;
1339 }
1340 
1341 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1342   Node* region = phi->in(0);
1343   if (region == NULL) {
1344     return false; // Wait stable graph
1345   }
1346   uint cnt = phi->req();
1347   for (uint i = 1; i < cnt; i++) {
1348     Node* rc = region->in(i);
1349     if (rc == NULL || phase->type(rc) == Type::TOP)
1350       return false; // Wait stable graph
1351     Node* in = phi->in(i);
1352     if (in == NULL || phase->type(in) == Type::TOP)
1353       return false; // Wait stable graph
1354   }
1355   return true;
1356 }
1357 //------------------------------split_through_phi------------------------------
1358 // Split instance or boxed field load through Phi.
1359 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1360   Node* mem     = in(Memory);
1361   Node* address = in(Address);
1362   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1363 
1364   assert((t_oop != NULL) &&
1365          (t_oop->is_known_instance_field() ||
1366           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1367 
1368   Compile* C = phase->C;
1369   intptr_t ignore = 0;
1370   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1371   bool base_is_phi = (base != NULL) && base->is_Phi();
1372   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1373                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1374                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1375 
1376   if (!((mem->is_Phi() || base_is_phi) &&
1377         (load_boxed_values || t_oop->is_known_instance_field()))) {
1378     return NULL; // memory is not Phi
1379   }
1380 
1381   if (mem->is_Phi()) {
1382     if (!stable_phi(mem->as_Phi(), phase)) {
1383       return NULL; // Wait stable graph
1384     }
1385     uint cnt = mem->req();
1386     // Check for loop invariant memory.
1387     if (cnt == 3) {
1388       for (uint i = 1; i < cnt; i++) {
1389         Node* in = mem->in(i);
1390         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1391         if (m == mem) {
1392           set_req(Memory, mem->in(cnt - i));
1393           return this; // made change
1394         }
1395       }
1396     }
1397   }
1398   if (base_is_phi) {
1399     if (!stable_phi(base->as_Phi(), phase)) {
1400       return NULL; // Wait stable graph
1401     }
1402     uint cnt = base->req();
1403     // Check for loop invariant memory.
1404     if (cnt == 3) {
1405       for (uint i = 1; i < cnt; i++) {
1406         if (base->in(i) == base) {
1407           return NULL; // Wait stable graph
1408         }
1409       }
1410     }
1411   }
1412 
1413   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1414 
1415   // Split through Phi (see original code in loopopts.cpp).
1416   assert(C->have_alias_type(t_oop), "instance should have alias type");
1417 
1418   // Do nothing here if Identity will find a value
1419   // (to avoid infinite chain of value phis generation).
1420   if (!phase->eqv(this, this->Identity(phase)))
1421     return NULL;
1422 
1423   // Select Region to split through.
1424   Node* region;
1425   if (!base_is_phi) {
1426     assert(mem->is_Phi(), "sanity");
1427     region = mem->in(0);
1428     // Skip if the region dominates some control edge of the address.
1429     if (!MemNode::all_controls_dominate(address, region))
1430       return NULL;
1431   } else if (!mem->is_Phi()) {
1432     assert(base_is_phi, "sanity");
1433     region = base->in(0);
1434     // Skip if the region dominates some control edge of the memory.
1435     if (!MemNode::all_controls_dominate(mem, region))
1436       return NULL;
1437   } else if (base->in(0) != mem->in(0)) {
1438     assert(base_is_phi && mem->is_Phi(), "sanity");
1439     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1440       region = base->in(0);
1441     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1442       region = mem->in(0);
1443     } else {
1444       return NULL; // complex graph
1445     }
1446   } else {
1447     assert(base->in(0) == mem->in(0), "sanity");
1448     region = mem->in(0);
1449   }
1450 
1451   const Type* this_type = this->bottom_type();
1452   int this_index  = C->get_alias_index(t_oop);
1453   int this_offset = t_oop->offset();
1454   int this_iid    = t_oop->instance_id();
1455   if (!t_oop->is_known_instance() && load_boxed_values) {
1456     // Use _idx of address base for boxed values.
1457     this_iid = base->_idx;
1458   }
1459   PhaseIterGVN* igvn = phase->is_IterGVN();
1460   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1461   for (uint i = 1; i < region->req(); i++) {
1462     Node* x;
1463     Node* the_clone = NULL;
1464     if (region->in(i) == C->top()) {
1465       x = C->top();      // Dead path?  Use a dead data op
1466     } else {
1467       x = this->clone();        // Else clone up the data op
1468       the_clone = x;            // Remember for possible deletion.
1469       // Alter data node to use pre-phi inputs
1470       if (this->in(0) == region) {
1471         x->set_req(0, region->in(i));
1472       } else {
1473         x->set_req(0, NULL);
1474       }
1475       if (mem->is_Phi() && (mem->in(0) == region)) {
1476         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1477       }
1478       if (address->is_Phi() && address->in(0) == region) {
1479         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1480       }
1481       if (base_is_phi && (base->in(0) == region)) {
1482         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1483         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1484         x->set_req(Address, adr_x);
1485       }
1486     }
1487     // Check for a 'win' on some paths
1488     const Type *t = x->Value(igvn);
1489 
1490     bool singleton = t->singleton();
1491 
1492     // See comments in PhaseIdealLoop::split_thru_phi().
1493     if (singleton && t == Type::TOP) {
1494       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1495     }
1496 
1497     if (singleton) {
1498       x = igvn->makecon(t);
1499     } else {
1500       // We now call Identity to try to simplify the cloned node.
1501       // Note that some Identity methods call phase->type(this).
1502       // Make sure that the type array is big enough for
1503       // our new node, even though we may throw the node away.
1504       // (This tweaking with igvn only works because x is a new node.)
1505       igvn->set_type(x, t);
1506       // If x is a TypeNode, capture any more-precise type permanently into Node
1507       // otherwise it will be not updated during igvn->transform since
1508       // igvn->type(x) is set to x->Value() already.
1509       x->raise_bottom_type(t);
1510       Node *y = x->Identity(igvn);
1511       if (y != x) {
1512         x = y;
1513       } else {
1514         y = igvn->hash_find_insert(x);
1515         if (y) {
1516           x = y;
1517         } else {
1518           // Else x is a new node we are keeping
1519           // We do not need register_new_node_with_optimizer
1520           // because set_type has already been called.
1521           igvn->_worklist.push(x);
1522         }
1523       }
1524     }
1525     if (x != the_clone && the_clone != NULL) {
1526       igvn->remove_dead_node(the_clone);
1527     }
1528     phi->set_req(i, x);
1529   }
1530   // Record Phi
1531   igvn->register_new_node_with_optimizer(phi);
1532   return phi;
1533 }
1534 
1535 //------------------------------Ideal------------------------------------------
1536 // If the load is from Field memory and the pointer is non-null, it might be possible to
1537 // zero out the control input.
1538 // If the offset is constant and the base is an object allocation,
1539 // try to hook me up to the exact initializing store.
1540 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1541   Node* p = MemNode::Ideal_common(phase, can_reshape);
1542   if (p)  return (p == NodeSentinel) ? NULL : p;
1543 
1544   Node* ctrl    = in(MemNode::Control);
1545   Node* address = in(MemNode::Address);
1546   bool progress = false;
1547 
1548   // Skip up past a SafePoint control.  Cannot do this for Stores because
1549   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1550   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1551       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1552     ctrl = ctrl->in(0);
1553     set_req(MemNode::Control,ctrl);
1554     progress = true;
1555   }
1556 
1557   intptr_t ignore = 0;
1558   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1559   if (base != NULL
1560       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1561     // Check for useless control edge in some common special cases
1562     if (in(MemNode::Control) != NULL
1563         && can_remove_control()
1564         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1565         && all_controls_dominate(base, phase->C->start())) {
1566       // A method-invariant, non-null address (constant or 'this' argument).
1567       set_req(MemNode::Control, NULL);
1568       progress = true;
1569     }
1570   }
1571 
1572   Node* mem = in(MemNode::Memory);
1573   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1574 
1575   if (can_reshape && (addr_t != NULL)) {
1576     // try to optimize our memory input
1577     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1578     if (opt_mem != mem) {
1579       set_req(MemNode::Memory, opt_mem);
1580       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1581       return this;
1582     }
1583     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1584     if ((t_oop != NULL) &&
1585         (t_oop->is_known_instance_field() ||
1586          t_oop->is_ptr_to_boxed_value())) {
1587       PhaseIterGVN *igvn = phase->is_IterGVN();
1588       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1589         // Delay this transformation until memory Phi is processed.
1590         phase->is_IterGVN()->_worklist.push(this);
1591         return NULL;
1592       }
1593       // Split instance field load through Phi.
1594       Node* result = split_through_phi(phase);
1595       if (result != NULL) return result;
1596 
1597       if (t_oop->is_ptr_to_boxed_value()) {
1598         Node* result = eliminate_autobox(phase);
1599         if (result != NULL) return result;
1600       }
1601     }
1602   }
1603 
1604   // Is there a dominating load that loads the same value?  Leave
1605   // anything that is not a load of a field/array element (like
1606   // barriers etc.) alone
1607   if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1608     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1609       Node *use = mem->fast_out(i);
1610       if (use != this &&
1611           use->Opcode() == Opcode() &&
1612           use->in(0) != NULL &&
1613           use->in(0) != in(0) &&
1614           use->in(Address) == in(Address)) {
1615         Node* ctl = in(0);
1616         for (int i = 0; i < 10 && ctl != NULL; i++) {
1617           ctl = IfNode::up_one_dom(ctl);
1618           if (ctl == use->in(0)) {
1619             set_req(0, use->in(0));
1620             return this;
1621           }
1622         }
1623       }
1624     }
1625   }
1626 
1627   // Check for prior store with a different base or offset; make Load
1628   // independent.  Skip through any number of them.  Bail out if the stores
1629   // are in an endless dead cycle and report no progress.  This is a key
1630   // transform for Reflection.  However, if after skipping through the Stores
1631   // we can't then fold up against a prior store do NOT do the transform as
1632   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1633   // array memory alive twice: once for the hoisted Load and again after the
1634   // bypassed Store.  This situation only works if EVERYBODY who does
1635   // anti-dependence work knows how to bypass.  I.e. we need all
1636   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1637   // the alias index stuff.  So instead, peek through Stores and IFF we can
1638   // fold up, do so.
1639   Node* prev_mem = find_previous_store(phase);
1640   if (prev_mem != NULL) {
1641     Node* value = can_see_arraycopy_value(prev_mem, phase);
1642     if (value != NULL) {
1643       return value;
1644     }
1645   }
1646   // Steps (a), (b):  Walk past independent stores to find an exact match.
1647   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1648     // (c) See if we can fold up on the spot, but don't fold up here.
1649     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1650     // just return a prior value, which is done by Identity calls.
1651     if (can_see_stored_value(prev_mem, phase)) {
1652       // Make ready for step (d):
1653       set_req(MemNode::Memory, prev_mem);
1654       return this;
1655     }
1656   }
1657 
1658   return progress ? this : NULL;
1659 }
1660 
1661 // Helper to recognize certain Klass fields which are invariant across
1662 // some group of array types (e.g., int[] or all T[] where T < Object).
1663 const Type*
1664 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1665                                  ciKlass* klass) const {
1666   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1667     // The field is Klass::_modifier_flags.  Return its (constant) value.
1668     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1669     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1670     return TypeInt::make(klass->modifier_flags());
1671   }
1672   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1673     // The field is Klass::_access_flags.  Return its (constant) value.
1674     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1675     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1676     return TypeInt::make(klass->access_flags());
1677   }
1678   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1679     // The field is Klass::_layout_helper.  Return its constant value if known.
1680     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1681     return TypeInt::make(klass->layout_helper());
1682   }
1683 
1684   // No match.
1685   return NULL;
1686 }
1687 
1688 //------------------------------Value-----------------------------------------
1689 const Type* LoadNode::Value(PhaseGVN* phase) const {
1690   // Either input is TOP ==> the result is TOP
1691   Node* mem = in(MemNode::Memory);
1692   const Type *t1 = phase->type(mem);
1693   if (t1 == Type::TOP)  return Type::TOP;
1694   Node* adr = in(MemNode::Address);
1695   const TypePtr* tp = phase->type(adr)->isa_ptr();
1696   if (tp == NULL || tp->empty())  return Type::TOP;
1697   int off = tp->offset();
1698   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1699   Compile* C = phase->C;
1700 
1701   // Try to guess loaded type from pointer type
1702   if (tp->isa_aryptr()) {
1703     const TypeAryPtr* ary = tp->is_aryptr();
1704     const Type* t = ary->elem();
1705 
1706     // Determine whether the reference is beyond the header or not, by comparing
1707     // the offset against the offset of the start of the array's data.
1708     // Different array types begin at slightly different offsets (12 vs. 16).
1709     // We choose T_BYTE as an example base type that is least restrictive
1710     // as to alignment, which will therefore produce the smallest
1711     // possible base offset.
1712     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1713     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1714 
1715     // Try to constant-fold a stable array element.
1716     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1717       // Make sure the reference is not into the header and the offset is constant
1718       ciObject* aobj = ary->const_oop();
1719       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1720         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1721         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1722                                                                       stable_dimension,
1723                                                                       memory_type(), is_unsigned());
1724         if (con_type != NULL) {
1725           return con_type;
1726         }
1727       }
1728     }
1729 
1730     // Don't do this for integer types. There is only potential profit if
1731     // the element type t is lower than _type; that is, for int types, if _type is
1732     // more restrictive than t.  This only happens here if one is short and the other
1733     // char (both 16 bits), and in those cases we've made an intentional decision
1734     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1735     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1736     //
1737     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1738     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1739     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1740     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1741     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1742     // In fact, that could have been the original type of p1, and p1 could have
1743     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1744     // expression (LShiftL quux 3) independently optimized to the constant 8.
1745     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1746         && (_type->isa_vect() == NULL)
1747         && t->isa_valuetype() == NULL
1748         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1749       // t might actually be lower than _type, if _type is a unique
1750       // concrete subclass of abstract class t.
1751       if (off_beyond_header) {  // is the offset beyond the header?
1752         const Type* jt = t->join_speculative(_type);
1753         // In any case, do not allow the join, per se, to empty out the type.
1754         if (jt->empty() && !t->empty()) {
1755           // This can happen if a interface-typed array narrows to a class type.
1756           jt = _type;
1757         }
1758 #ifdef ASSERT
1759         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1760           // The pointers in the autobox arrays are always non-null
1761           Node* base = adr->in(AddPNode::Base);
1762           if ((base != NULL) && base->is_DecodeN()) {
1763             // Get LoadN node which loads IntegerCache.cache field
1764             base = base->in(1);
1765           }
1766           if ((base != NULL) && base->is_Con()) {
1767             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1768             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1769               // It could be narrow oop
1770               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1771             }
1772           }
1773         }
1774 #endif
1775         return jt;
1776       }
1777     }
1778   } else if (tp->base() == Type::InstPtr) {
1779     assert( off != Type::OffsetBot ||
1780             // arrays can be cast to Objects
1781             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1782             // unsafe field access may not have a constant offset
1783             C->has_unsafe_access(),
1784             "Field accesses must be precise" );
1785     // For oop loads, we expect the _type to be precise.
1786 
1787     // Optimize loads from constant fields.
1788     const TypeInstPtr* tinst = tp->is_instptr();
1789     ciObject* const_oop = tinst->const_oop();
1790     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1791       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1792       if (con_type != NULL) {
1793         return con_type;
1794       }
1795     }
1796   } else if (tp->base() == Type::KlassPtr) {
1797     assert( off != Type::OffsetBot ||
1798             // arrays can be cast to Objects
1799             tp->is_klassptr()->klass() == NULL ||
1800             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1801             // also allow array-loading from the primary supertype
1802             // array during subtype checks
1803             Opcode() == Op_LoadKlass,
1804             "Field accesses must be precise" );
1805     // For klass/static loads, we expect the _type to be precise
1806   }
1807 
1808   const TypeKlassPtr *tkls = tp->isa_klassptr();
1809   if (tkls != NULL && !StressReflectiveCode) {
1810     ciKlass* klass = tkls->klass();
1811     if (tkls->is_loaded() && tkls->klass_is_exact()) {
1812       // We are loading a field from a Klass metaobject whose identity
1813       // is known at compile time (the type is "exact" or "precise").
1814       // Check for fields we know are maintained as constants by the VM.
1815       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1816         // The field is Klass::_super_check_offset.  Return its (constant) value.
1817         // (Folds up type checking code.)
1818         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1819         return TypeInt::make(klass->super_check_offset());
1820       }
1821       // Compute index into primary_supers array
1822       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1823       // Check for overflowing; use unsigned compare to handle the negative case.
1824       if( depth < ciKlass::primary_super_limit() ) {
1825         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1826         // (Folds up type checking code.)
1827         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1828         ciKlass *ss = klass->super_of_depth(depth);
1829         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1830       }
1831       const Type* aift = load_array_final_field(tkls, klass);
1832       if (aift != NULL)  return aift;
1833       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1834         // The field is Klass::_java_mirror.  Return its (constant) value.
1835         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1836         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1837         return TypeInstPtr::make(klass->java_mirror());
1838       }
1839     }
1840 
1841     // We can still check if we are loading from the primary_supers array at a
1842     // shallow enough depth.  Even though the klass is not exact, entries less
1843     // than or equal to its super depth are correct.
1844     if (tkls->is_loaded()) {
1845       ciType *inner = klass;
1846       while( inner->is_obj_array_klass() )
1847         inner = inner->as_obj_array_klass()->base_element_type();
1848       if( inner->is_instance_klass() &&
1849           !inner->as_instance_klass()->flags().is_interface() ) {
1850         // Compute index into primary_supers array
1851         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1852         // Check for overflowing; use unsigned compare to handle the negative case.
1853         if( depth < ciKlass::primary_super_limit() &&
1854             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1855           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1856           // (Folds up type checking code.)
1857           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1858           ciKlass *ss = klass->super_of_depth(depth);
1859           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1860         }
1861       }
1862     }
1863 
1864     // If the type is enough to determine that the thing is not an array,
1865     // we can give the layout_helper a positive interval type.
1866     // This will help short-circuit some reflective code.
1867     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1868         && !klass->is_array_klass() // not directly typed as an array
1869         && !klass->is_interface()  // specifically not Serializable & Cloneable
1870         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1871         ) {
1872       // Note:  When interfaces are reliable, we can narrow the interface
1873       // test to (klass != Serializable && klass != Cloneable).
1874       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1875       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1876       // The key property of this type is that it folds up tests
1877       // for array-ness, since it proves that the layout_helper is positive.
1878       // Thus, a generic value like the basic object layout helper works fine.
1879       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1880     }
1881   }
1882 
1883   // If we are loading from a freshly-allocated object, produce a zero,
1884   // if the load is provably beyond the header of the object.
1885   // (Also allow a variable load from a fresh array to produce zero.)
1886   const TypeOopPtr *tinst = tp->isa_oopptr();
1887   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1888   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1889   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1890     Node* value = can_see_stored_value(mem,phase);
1891     if (value != NULL && value->is_Con()) {
1892       assert(value->bottom_type()->higher_equal(_type),"sanity");
1893       return value->bottom_type();
1894     }
1895   }
1896 
1897   if (is_instance) {
1898     // If we have an instance type and our memory input is the
1899     // programs's initial memory state, there is no matching store,
1900     // so just return a zero of the appropriate type
1901     Node *mem = in(MemNode::Memory);
1902     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1903       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1904       return Type::get_zero_type(_type->basic_type());
1905     }
1906   }
1907   return _type;
1908 }
1909 
1910 //------------------------------match_edge-------------------------------------
1911 // Do we Match on this edge index or not?  Match only the address.
1912 uint LoadNode::match_edge(uint idx) const {
1913   return idx == MemNode::Address;
1914 }
1915 
1916 //--------------------------LoadBNode::Ideal--------------------------------------
1917 //
1918 //  If the previous store is to the same address as this load,
1919 //  and the value stored was larger than a byte, replace this load
1920 //  with the value stored truncated to a byte.  If no truncation is
1921 //  needed, the replacement is done in LoadNode::Identity().
1922 //
1923 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1924   Node* mem = in(MemNode::Memory);
1925   Node* value = can_see_stored_value(mem,phase);
1926   if( value && !phase->type(value)->higher_equal( _type ) ) {
1927     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1928     return new RShiftINode(result, phase->intcon(24));
1929   }
1930   // Identity call will handle the case where truncation is not needed.
1931   return LoadNode::Ideal(phase, can_reshape);
1932 }
1933 
1934 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1935   Node* mem = in(MemNode::Memory);
1936   Node* value = can_see_stored_value(mem,phase);
1937   if (value != NULL && value->is_Con() &&
1938       !value->bottom_type()->higher_equal(_type)) {
1939     // If the input to the store does not fit with the load's result type,
1940     // it must be truncated. We can't delay until Ideal call since
1941     // a singleton Value is needed for split_thru_phi optimization.
1942     int con = value->get_int();
1943     return TypeInt::make((con << 24) >> 24);
1944   }
1945   return LoadNode::Value(phase);
1946 }
1947 
1948 //--------------------------LoadUBNode::Ideal-------------------------------------
1949 //
1950 //  If the previous store is to the same address as this load,
1951 //  and the value stored was larger than a byte, replace this load
1952 //  with the value stored truncated to a byte.  If no truncation is
1953 //  needed, the replacement is done in LoadNode::Identity().
1954 //
1955 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1956   Node* mem = in(MemNode::Memory);
1957   Node* value = can_see_stored_value(mem, phase);
1958   if (value && !phase->type(value)->higher_equal(_type))
1959     return new AndINode(value, phase->intcon(0xFF));
1960   // Identity call will handle the case where truncation is not needed.
1961   return LoadNode::Ideal(phase, can_reshape);
1962 }
1963 
1964 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1965   Node* mem = in(MemNode::Memory);
1966   Node* value = can_see_stored_value(mem,phase);
1967   if (value != NULL && value->is_Con() &&
1968       !value->bottom_type()->higher_equal(_type)) {
1969     // If the input to the store does not fit with the load's result type,
1970     // it must be truncated. We can't delay until Ideal call since
1971     // a singleton Value is needed for split_thru_phi optimization.
1972     int con = value->get_int();
1973     return TypeInt::make(con & 0xFF);
1974   }
1975   return LoadNode::Value(phase);
1976 }
1977 
1978 //--------------------------LoadUSNode::Ideal-------------------------------------
1979 //
1980 //  If the previous store is to the same address as this load,
1981 //  and the value stored was larger than a char, replace this load
1982 //  with the value stored truncated to a char.  If no truncation is
1983 //  needed, the replacement is done in LoadNode::Identity().
1984 //
1985 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1986   Node* mem = in(MemNode::Memory);
1987   Node* value = can_see_stored_value(mem,phase);
1988   if( value && !phase->type(value)->higher_equal( _type ) )
1989     return new AndINode(value,phase->intcon(0xFFFF));
1990   // Identity call will handle the case where truncation is not needed.
1991   return LoadNode::Ideal(phase, can_reshape);
1992 }
1993 
1994 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1995   Node* mem = in(MemNode::Memory);
1996   Node* value = can_see_stored_value(mem,phase);
1997   if (value != NULL && value->is_Con() &&
1998       !value->bottom_type()->higher_equal(_type)) {
1999     // If the input to the store does not fit with the load's result type,
2000     // it must be truncated. We can't delay until Ideal call since
2001     // a singleton Value is needed for split_thru_phi optimization.
2002     int con = value->get_int();
2003     return TypeInt::make(con & 0xFFFF);
2004   }
2005   return LoadNode::Value(phase);
2006 }
2007 
2008 //--------------------------LoadSNode::Ideal--------------------------------------
2009 //
2010 //  If the previous store is to the same address as this load,
2011 //  and the value stored was larger than a short, replace this load
2012 //  with the value stored truncated to a short.  If no truncation is
2013 //  needed, the replacement is done in LoadNode::Identity().
2014 //
2015 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2016   Node* mem = in(MemNode::Memory);
2017   Node* value = can_see_stored_value(mem,phase);
2018   if( value && !phase->type(value)->higher_equal( _type ) ) {
2019     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2020     return new RShiftINode(result, phase->intcon(16));
2021   }
2022   // Identity call will handle the case where truncation is not needed.
2023   return LoadNode::Ideal(phase, can_reshape);
2024 }
2025 
2026 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2027   Node* mem = in(MemNode::Memory);
2028   Node* value = can_see_stored_value(mem,phase);
2029   if (value != NULL && value->is_Con() &&
2030       !value->bottom_type()->higher_equal(_type)) {
2031     // If the input to the store does not fit with the load's result type,
2032     // it must be truncated. We can't delay until Ideal call since
2033     // a singleton Value is needed for split_thru_phi optimization.
2034     int con = value->get_int();
2035     return TypeInt::make((con << 16) >> 16);
2036   }
2037   return LoadNode::Value(phase);
2038 }
2039 
2040 //=============================================================================
2041 //----------------------------LoadKlassNode::make------------------------------
2042 // Polymorphic factory method:
2043 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2044   // sanity check the alias category against the created node type
2045   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2046   assert(adr_type != NULL, "expecting TypeKlassPtr");
2047 #ifdef _LP64
2048   if (adr_type->is_ptr_to_narrowklass()) {
2049     assert(UseCompressedClassPointers, "no compressed klasses");
2050     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2051     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2052   }
2053 #endif
2054   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2055   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2056 }
2057 
2058 //------------------------------Value------------------------------------------
2059 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2060   return klass_value_common(phase);
2061 }
2062 
2063 // In most cases, LoadKlassNode does not have the control input set. If the control
2064 // input is set, it must not be removed (by LoadNode::Ideal()).
2065 bool LoadKlassNode::can_remove_control() const {
2066   return false;
2067 }
2068 
2069 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2070   // Either input is TOP ==> the result is TOP
2071   const Type *t1 = phase->type( in(MemNode::Memory) );
2072   if (t1 == Type::TOP)  return Type::TOP;
2073   Node *adr = in(MemNode::Address);
2074   const Type *t2 = phase->type( adr );
2075   if (t2 == Type::TOP)  return Type::TOP;
2076   const TypePtr *tp = t2->is_ptr();
2077   if (TypePtr::above_centerline(tp->ptr()) ||
2078       tp->ptr() == TypePtr::Null)  return Type::TOP;
2079 
2080   // Return a more precise klass, if possible
2081   const TypeInstPtr *tinst = tp->isa_instptr();
2082   if (tinst != NULL) {
2083     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2084     int offset = tinst->offset();
2085     if (ik == phase->C->env()->Class_klass()
2086         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2087             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2088       // We are loading a special hidden field from a Class mirror object,
2089       // the field which points to the VM's Klass metaobject.
2090       ciType* t = tinst->java_mirror_type();
2091       // java_mirror_type returns non-null for compile-time Class constants.
2092       if (t != NULL) {
2093         // constant oop => constant klass
2094         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2095           if (t->is_void()) {
2096             // We cannot create a void array.  Since void is a primitive type return null
2097             // klass.  Users of this result need to do a null check on the returned klass.
2098             return TypePtr::NULL_PTR;
2099           }
2100           return TypeKlassPtr::make(ciArrayKlass::make(t));
2101         }
2102         if (!t->is_klass()) {
2103           // a primitive Class (e.g., int.class) has NULL for a klass field
2104           return TypePtr::NULL_PTR;
2105         }
2106         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2107         return TypeKlassPtr::make(t->as_klass());
2108       }
2109       // non-constant mirror, so we can't tell what's going on
2110     }
2111     if( !ik->is_loaded() )
2112       return _type;             // Bail out if not loaded
2113     if (offset == oopDesc::klass_offset_in_bytes()) {
2114       if (tinst->klass_is_exact()) {
2115         return TypeKlassPtr::make(ik);
2116       }
2117       // See if we can become precise: no subklasses and no interface
2118       // (Note:  We need to support verified interfaces.)
2119       if (!ik->is_interface() && !ik->has_subklass()) {
2120         //assert(!UseExactTypes, "this code should be useless with exact types");
2121         // Add a dependence; if any subclass added we need to recompile
2122         if (!ik->is_final()) {
2123           // %%% should use stronger assert_unique_concrete_subtype instead
2124           phase->C->dependencies()->assert_leaf_type(ik);
2125         }
2126         // Return precise klass
2127         return TypeKlassPtr::make(ik);
2128       }
2129 
2130       // Return root of possible klass
2131       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0));
2132     }
2133   }
2134 
2135   // Check for loading klass from an array
2136   const TypeAryPtr *tary = tp->isa_aryptr();
2137   if( tary != NULL ) {
2138     ciKlass *tary_klass = tary->klass();
2139     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2140         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2141       if (tary->klass_is_exact()) {
2142         return TypeKlassPtr::make(tary_klass);
2143       }
2144       ciArrayKlass *ak = tary->klass()->as_array_klass();
2145       // If the klass is an object array, we defer the question to the
2146       // array component klass.
2147       if( ak->is_obj_array_klass() ) {
2148         assert( ak->is_loaded(), "" );
2149         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2150         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2151           ciInstanceKlass* ik = base_k->as_instance_klass();
2152           // See if we can become precise: no subklasses and no interface
2153           if (!ik->is_interface() && !ik->has_subklass()) {
2154             //assert(!UseExactTypes, "this code should be useless with exact types");
2155             // Add a dependence; if any subclass added we need to recompile
2156             if (!ik->is_final()) {
2157               phase->C->dependencies()->assert_leaf_type(ik);
2158             }
2159             // Return precise array klass
2160             return TypeKlassPtr::make(ak);
2161           }
2162         }
2163         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
2164       } else {                  // Found a type-array?
2165         //assert(!UseExactTypes, "this code should be useless with exact types");
2166         assert( ak->is_type_array_klass(), "" );
2167         return TypeKlassPtr::make(ak); // These are always precise
2168       }
2169     }
2170   }
2171 
2172   // Check for loading klass from an array klass
2173   const TypeKlassPtr *tkls = tp->isa_klassptr();
2174   if (tkls != NULL && !StressReflectiveCode) {
2175     if (!tkls->is_loaded()) {
2176       return _type;             // Bail out if not loaded
2177     }
2178     ciKlass* klass = tkls->klass();
2179     if( klass->is_obj_array_klass() &&
2180         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2181       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2182       // // Always returning precise element type is incorrect,
2183       // // e.g., element type could be object and array may contain strings
2184       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2185 
2186       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2187       // according to the element type's subclassing.
2188       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0));
2189     }
2190     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2191         tkls->offset() == in_bytes(Klass::super_offset())) {
2192       ciKlass* sup = klass->as_instance_klass()->super();
2193       // The field is Klass::_super.  Return its (constant) value.
2194       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2195       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2196     }
2197   }
2198 
2199   // Bailout case
2200   return LoadNode::Value(phase);
2201 }
2202 
2203 //------------------------------Identity---------------------------------------
2204 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2205 // Also feed through the klass in Allocate(...klass...)._klass.
2206 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2207   return klass_identity_common(phase);
2208 }
2209 
2210 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2211   Node* x = LoadNode::Identity(phase);
2212   if (x != this)  return x;
2213 
2214   // Take apart the address into an oop and and offset.
2215   // Return 'this' if we cannot.
2216   Node*    adr    = in(MemNode::Address);
2217   intptr_t offset = 0;
2218   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2219   if (base == NULL)     return this;
2220   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2221   if (toop == NULL)     return this;
2222 
2223   // We can fetch the klass directly through an AllocateNode.
2224   // This works even if the klass is not constant (clone or newArray).
2225   if (offset == oopDesc::klass_offset_in_bytes()) {
2226     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2227     if (allocated_klass != NULL) {
2228       return allocated_klass;
2229     }
2230   }
2231 
2232   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2233   // See inline_native_Class_query for occurrences of these patterns.
2234   // Java Example:  x.getClass().isAssignableFrom(y)
2235   //
2236   // This improves reflective code, often making the Class
2237   // mirror go completely dead.  (Current exception:  Class
2238   // mirrors may appear in debug info, but we could clean them out by
2239   // introducing a new debug info operator for Klass*.java_mirror).
2240   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2241       && offset == java_lang_Class::klass_offset_in_bytes()) {
2242     // We are loading a special hidden field from a Class mirror,
2243     // the field which points to its Klass or ArrayKlass metaobject.
2244     if (base->is_Load()) {
2245       Node* adr2 = base->in(MemNode::Address);
2246       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2247       if (tkls != NULL && !tkls->empty()
2248           && (tkls->klass()->is_instance_klass() ||
2249               tkls->klass()->is_array_klass())
2250           && adr2->is_AddP()
2251           ) {
2252         int mirror_field = in_bytes(Klass::java_mirror_offset());
2253         if (tkls->offset() == mirror_field) {
2254           return adr2->in(AddPNode::Base);
2255         }
2256       }
2257     }
2258   }
2259 
2260   return this;
2261 }
2262 
2263 
2264 //------------------------------Value------------------------------------------
2265 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2266   const Type *t = klass_value_common(phase);
2267   if (t == Type::TOP)
2268     return t;
2269 
2270   return t->make_narrowklass();
2271 }
2272 
2273 //------------------------------Identity---------------------------------------
2274 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2275 // Also feed through the klass in Allocate(...klass...)._klass.
2276 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2277   Node *x = klass_identity_common(phase);
2278 
2279   const Type *t = phase->type( x );
2280   if( t == Type::TOP ) return x;
2281   if( t->isa_narrowklass()) return x;
2282   assert (!t->isa_narrowoop(), "no narrow oop here");
2283 
2284   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2285 }
2286 
2287 //------------------------------Value-----------------------------------------
2288 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2289   // Either input is TOP ==> the result is TOP
2290   const Type *t1 = phase->type( in(MemNode::Memory) );
2291   if( t1 == Type::TOP ) return Type::TOP;
2292   Node *adr = in(MemNode::Address);
2293   const Type *t2 = phase->type( adr );
2294   if( t2 == Type::TOP ) return Type::TOP;
2295   const TypePtr *tp = t2->is_ptr();
2296   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2297   const TypeAryPtr *tap = tp->isa_aryptr();
2298   if( !tap ) return _type;
2299   return tap->size();
2300 }
2301 
2302 //-------------------------------Ideal---------------------------------------
2303 // Feed through the length in AllocateArray(...length...)._length.
2304 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2305   Node* p = MemNode::Ideal_common(phase, can_reshape);
2306   if (p)  return (p == NodeSentinel) ? NULL : p;
2307 
2308   // Take apart the address into an oop and and offset.
2309   // Return 'this' if we cannot.
2310   Node*    adr    = in(MemNode::Address);
2311   intptr_t offset = 0;
2312   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2313   if (base == NULL)     return NULL;
2314   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2315   if (tary == NULL)     return NULL;
2316 
2317   // We can fetch the length directly through an AllocateArrayNode.
2318   // This works even if the length is not constant (clone or newArray).
2319   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2320     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2321     if (alloc != NULL) {
2322       Node* allocated_length = alloc->Ideal_length();
2323       Node* len = alloc->make_ideal_length(tary, phase);
2324       if (allocated_length != len) {
2325         // New CastII improves on this.
2326         return len;
2327       }
2328     }
2329   }
2330 
2331   return NULL;
2332 }
2333 
2334 //------------------------------Identity---------------------------------------
2335 // Feed through the length in AllocateArray(...length...)._length.
2336 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2337   Node* x = LoadINode::Identity(phase);
2338   if (x != this)  return x;
2339 
2340   // Take apart the address into an oop and and offset.
2341   // Return 'this' if we cannot.
2342   Node*    adr    = in(MemNode::Address);
2343   intptr_t offset = 0;
2344   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2345   if (base == NULL)     return this;
2346   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2347   if (tary == NULL)     return this;
2348 
2349   // We can fetch the length directly through an AllocateArrayNode.
2350   // This works even if the length is not constant (clone or newArray).
2351   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2352     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2353     if (alloc != NULL) {
2354       Node* allocated_length = alloc->Ideal_length();
2355       // Do not allow make_ideal_length to allocate a CastII node.
2356       Node* len = alloc->make_ideal_length(tary, phase, false);
2357       if (allocated_length == len) {
2358         // Return allocated_length only if it would not be improved by a CastII.
2359         return allocated_length;
2360       }
2361     }
2362   }
2363 
2364   return this;
2365 
2366 }
2367 
2368 //=============================================================================
2369 //---------------------------StoreNode::make-----------------------------------
2370 // Polymorphic factory method:
2371 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2372   assert((mo == unordered || mo == release), "unexpected");
2373   Compile* C = gvn.C;
2374   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2375          ctl != NULL, "raw memory operations should have control edge");
2376 
2377   switch (bt) {
2378   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2379   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2380   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2381   case T_CHAR:
2382   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2383   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2384   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2385   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2386   case T_METADATA:
2387   case T_ADDRESS:
2388   case T_VALUETYPE:
2389   case T_OBJECT:
2390 #ifdef _LP64
2391     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2392       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2393       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2394     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2395                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2396                 adr->bottom_type()->isa_rawptr())) {
2397       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2398       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2399     }
2400 #endif
2401     {
2402       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2403     }
2404   default:
2405     ShouldNotReachHere();
2406     return (StoreNode*)NULL;
2407   }
2408 }
2409 
2410 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2411   bool require_atomic = true;
2412   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2413 }
2414 
2415 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2416   bool require_atomic = true;
2417   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2418 }
2419 
2420 
2421 //--------------------------bottom_type----------------------------------------
2422 const Type *StoreNode::bottom_type() const {
2423   return Type::MEMORY;
2424 }
2425 
2426 //------------------------------hash-------------------------------------------
2427 uint StoreNode::hash() const {
2428   // unroll addition of interesting fields
2429   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2430 
2431   // Since they are not commoned, do not hash them:
2432   return NO_HASH;
2433 }
2434 
2435 //------------------------------Ideal------------------------------------------
2436 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2437 // When a store immediately follows a relevant allocation/initialization,
2438 // try to capture it into the initialization, or hoist it above.
2439 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2440   Node* p = MemNode::Ideal_common(phase, can_reshape);
2441   if (p)  return (p == NodeSentinel) ? NULL : p;
2442 
2443   Node* mem     = in(MemNode::Memory);
2444   Node* address = in(MemNode::Address);
2445   // Back-to-back stores to same address?  Fold em up.  Generally
2446   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2447   // since they must follow each StoreP operation.  Redundant StoreCMs
2448   // are eliminated just before matching in final_graph_reshape.
2449   {
2450     Node* st = mem;
2451     // If Store 'st' has more than one use, we cannot fold 'st' away.
2452     // For example, 'st' might be the final state at a conditional
2453     // return.  Or, 'st' might be used by some node which is live at
2454     // the same time 'st' is live, which might be unschedulable.  So,
2455     // require exactly ONE user until such time as we clone 'mem' for
2456     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2457     // true).
2458     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2459       // Looking at a dead closed cycle of memory?
2460       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2461       assert(Opcode() == st->Opcode() ||
2462              st->Opcode() == Op_StoreVector ||
2463              Opcode() == Op_StoreVector ||
2464              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2465              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2466              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2467              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2468              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2469 
2470       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2471           st->as_Store()->memory_size() <= this->memory_size()) {
2472         Node* use = st->raw_out(0);
2473         phase->igvn_rehash_node_delayed(use);
2474         if (can_reshape) {
2475           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2476         } else {
2477           // It's OK to do this in the parser, since DU info is always accurate,
2478           // and the parser always refers to nodes via SafePointNode maps.
2479           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2480         }
2481         return this;
2482       }
2483       st = st->in(MemNode::Memory);
2484     }
2485   }
2486 
2487 
2488   // Capture an unaliased, unconditional, simple store into an initializer.
2489   // Or, if it is independent of the allocation, hoist it above the allocation.
2490   if (ReduceFieldZeroing && /*can_reshape &&*/
2491       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2492     InitializeNode* init = mem->in(0)->as_Initialize();
2493     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2494     if (offset > 0) {
2495       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2496       // If the InitializeNode captured me, it made a raw copy of me,
2497       // and I need to disappear.
2498       if (moved != NULL) {
2499         // %%% hack to ensure that Ideal returns a new node:
2500         mem = MergeMemNode::make(mem);
2501         return mem;             // fold me away
2502       }
2503     }
2504   }
2505 
2506   return NULL;                  // No further progress
2507 }
2508 
2509 //------------------------------Value-----------------------------------------
2510 const Type* StoreNode::Value(PhaseGVN* phase) const {
2511   // Either input is TOP ==> the result is TOP
2512   const Type *t1 = phase->type( in(MemNode::Memory) );
2513   if( t1 == Type::TOP ) return Type::TOP;
2514   const Type *t2 = phase->type( in(MemNode::Address) );
2515   if( t2 == Type::TOP ) return Type::TOP;
2516   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2517   if( t3 == Type::TOP ) return Type::TOP;
2518   return Type::MEMORY;
2519 }
2520 
2521 //------------------------------Identity---------------------------------------
2522 // Remove redundant stores:
2523 //   Store(m, p, Load(m, p)) changes to m.
2524 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2525 Node* StoreNode::Identity(PhaseGVN* phase) {
2526   Node* mem = in(MemNode::Memory);
2527   Node* adr = in(MemNode::Address);
2528   Node* val = in(MemNode::ValueIn);
2529 
2530   // Load then Store?  Then the Store is useless
2531   if (val->is_Load() &&
2532       val->in(MemNode::Address)->eqv_uncast(adr) &&
2533       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2534       val->as_Load()->store_Opcode() == Opcode()) {
2535     return mem;
2536   }
2537 
2538   // Two stores in a row of the same value?
2539   if (mem->is_Store() &&
2540       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2541       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2542       mem->Opcode() == Opcode()) {
2543     return mem;
2544   }
2545 
2546   // Store of zero anywhere into a freshly-allocated object?
2547   // Then the store is useless.
2548   // (It must already have been captured by the InitializeNode.)
2549   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2550     // a newly allocated object is already all-zeroes everywhere
2551     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2552       return mem;
2553     }
2554 
2555     // the store may also apply to zero-bits in an earlier object
2556     Node* prev_mem = find_previous_store(phase);
2557     // Steps (a), (b):  Walk past independent stores to find an exact match.
2558     if (prev_mem != NULL) {
2559       Node* prev_val = can_see_stored_value(prev_mem, phase);
2560       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2561         // prev_val and val might differ by a cast; it would be good
2562         // to keep the more informative of the two.
2563         return mem;
2564       }
2565     }
2566   }
2567 
2568   return this;
2569 }
2570 
2571 //------------------------------match_edge-------------------------------------
2572 // Do we Match on this edge index or not?  Match only memory & value
2573 uint StoreNode::match_edge(uint idx) const {
2574   return idx == MemNode::Address || idx == MemNode::ValueIn;
2575 }
2576 
2577 //------------------------------cmp--------------------------------------------
2578 // Do not common stores up together.  They generally have to be split
2579 // back up anyways, so do not bother.
2580 uint StoreNode::cmp( const Node &n ) const {
2581   return (&n == this);          // Always fail except on self
2582 }
2583 
2584 //------------------------------Ideal_masked_input-----------------------------
2585 // Check for a useless mask before a partial-word store
2586 // (StoreB ... (AndI valIn conIa) )
2587 // If (conIa & mask == mask) this simplifies to
2588 // (StoreB ... (valIn) )
2589 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2590   Node *val = in(MemNode::ValueIn);
2591   if( val->Opcode() == Op_AndI ) {
2592     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2593     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2594       set_req(MemNode::ValueIn, val->in(1));
2595       return this;
2596     }
2597   }
2598   return NULL;
2599 }
2600 
2601 
2602 //------------------------------Ideal_sign_extended_input----------------------
2603 // Check for useless sign-extension before a partial-word store
2604 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2605 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2606 // (StoreB ... (valIn) )
2607 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2608   Node *val = in(MemNode::ValueIn);
2609   if( val->Opcode() == Op_RShiftI ) {
2610     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2611     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2612       Node *shl = val->in(1);
2613       if( shl->Opcode() == Op_LShiftI ) {
2614         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2615         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2616           set_req(MemNode::ValueIn, shl->in(1));
2617           return this;
2618         }
2619       }
2620     }
2621   }
2622   return NULL;
2623 }
2624 
2625 //------------------------------value_never_loaded-----------------------------------
2626 // Determine whether there are any possible loads of the value stored.
2627 // For simplicity, we actually check if there are any loads from the
2628 // address stored to, not just for loads of the value stored by this node.
2629 //
2630 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2631   Node *adr = in(Address);
2632   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2633   if (adr_oop == NULL)
2634     return false;
2635   if (!adr_oop->is_known_instance_field())
2636     return false; // if not a distinct instance, there may be aliases of the address
2637   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2638     Node *use = adr->fast_out(i);
2639     if (use->is_Load() || use->is_LoadStore()) {
2640       return false;
2641     }
2642   }
2643   return true;
2644 }
2645 
2646 //=============================================================================
2647 //------------------------------Ideal------------------------------------------
2648 // If the store is from an AND mask that leaves the low bits untouched, then
2649 // we can skip the AND operation.  If the store is from a sign-extension
2650 // (a left shift, then right shift) we can skip both.
2651 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2652   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2653   if( progress != NULL ) return progress;
2654 
2655   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2656   if( progress != NULL ) return progress;
2657 
2658   // Finally check the default case
2659   return StoreNode::Ideal(phase, can_reshape);
2660 }
2661 
2662 //=============================================================================
2663 //------------------------------Ideal------------------------------------------
2664 // If the store is from an AND mask that leaves the low bits untouched, then
2665 // we can skip the AND operation
2666 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2667   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2668   if( progress != NULL ) return progress;
2669 
2670   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2671   if( progress != NULL ) return progress;
2672 
2673   // Finally check the default case
2674   return StoreNode::Ideal(phase, can_reshape);
2675 }
2676 
2677 //=============================================================================
2678 //------------------------------Identity---------------------------------------
2679 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2680   // No need to card mark when storing a null ptr
2681   Node* my_store = in(MemNode::OopStore);
2682   if (my_store->is_Store()) {
2683     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2684     if( t1 == TypePtr::NULL_PTR ) {
2685       return in(MemNode::Memory);
2686     }
2687   }
2688   return this;
2689 }
2690 
2691 //=============================================================================
2692 //------------------------------Ideal---------------------------------------
2693 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2694   Node* progress = StoreNode::Ideal(phase, can_reshape);
2695   if (progress != NULL) return progress;
2696 
2697   Node* my_store = in(MemNode::OopStore);
2698   if (my_store->is_MergeMem()) {
2699     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2700     set_req(MemNode::OopStore, mem);
2701     return this;
2702   }
2703 
2704   return NULL;
2705 }
2706 
2707 //------------------------------Value-----------------------------------------
2708 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2709   // Either input is TOP ==> the result is TOP
2710   const Type *t = phase->type( in(MemNode::Memory) );
2711   if( t == Type::TOP ) return Type::TOP;
2712   t = phase->type( in(MemNode::Address) );
2713   if( t == Type::TOP ) return Type::TOP;
2714   t = phase->type( in(MemNode::ValueIn) );
2715   if( t == Type::TOP ) return Type::TOP;
2716   // If extra input is TOP ==> the result is TOP
2717   t = phase->type( in(MemNode::OopStore) );
2718   if( t == Type::TOP ) return Type::TOP;
2719 
2720   return StoreNode::Value( phase );
2721 }
2722 
2723 
2724 //=============================================================================
2725 //----------------------------------SCMemProjNode------------------------------
2726 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2727 {
2728   return bottom_type();
2729 }
2730 
2731 //=============================================================================
2732 //----------------------------------LoadStoreNode------------------------------
2733 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2734   : Node(required),
2735     _type(rt),
2736     _adr_type(at)
2737 {
2738   init_req(MemNode::Control, c  );
2739   init_req(MemNode::Memory , mem);
2740   init_req(MemNode::Address, adr);
2741   init_req(MemNode::ValueIn, val);
2742   init_class_id(Class_LoadStore);
2743 }
2744 
2745 uint LoadStoreNode::ideal_reg() const {
2746   return _type->ideal_reg();
2747 }
2748 
2749 bool LoadStoreNode::result_not_used() const {
2750   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2751     Node *x = fast_out(i);
2752     if (x->Opcode() == Op_SCMemProj) continue;
2753     return false;
2754   }
2755   return true;
2756 }
2757 
2758 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2759 
2760 //=============================================================================
2761 //----------------------------------LoadStoreConditionalNode--------------------
2762 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2763   init_req(ExpectedIn, ex );
2764 }
2765 
2766 //=============================================================================
2767 //-------------------------------adr_type--------------------------------------
2768 const TypePtr* ClearArrayNode::adr_type() const {
2769   Node *adr = in(3);
2770   if (adr == NULL)  return NULL; // node is dead
2771   return MemNode::calculate_adr_type(adr->bottom_type());
2772 }
2773 
2774 //------------------------------match_edge-------------------------------------
2775 // Do we Match on this edge index or not?  Do not match memory
2776 uint ClearArrayNode::match_edge(uint idx) const {
2777   return idx > 1;
2778 }
2779 
2780 //------------------------------Identity---------------------------------------
2781 // Clearing a zero length array does nothing
2782 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2783   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2784 }
2785 
2786 //------------------------------Idealize---------------------------------------
2787 // Clearing a short array is faster with stores
2788 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2789   // Already know this is a large node, do not try to ideal it
2790   if (!IdealizeClearArrayNode || _is_large) return NULL;
2791 
2792   const int unit = BytesPerLong;
2793   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2794   if (!t)  return NULL;
2795   if (!t->is_con())  return NULL;
2796   intptr_t raw_count = t->get_con();
2797   intptr_t size = raw_count;
2798   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2799   // Clearing nothing uses the Identity call.
2800   // Negative clears are possible on dead ClearArrays
2801   // (see jck test stmt114.stmt11402.val).
2802   if (size <= 0 || size % unit != 0)  return NULL;
2803   intptr_t count = size / unit;
2804   // Length too long; communicate this to matchers and assemblers.
2805   // Assemblers are responsible to produce fast hardware clears for it.
2806   if (size > InitArrayShortSize) {
2807     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2808   }
2809   Node *mem = in(1);
2810   if( phase->type(mem)==Type::TOP ) return NULL;
2811   Node *adr = in(3);
2812   const Type* at = phase->type(adr);
2813   if( at==Type::TOP ) return NULL;
2814   const TypePtr* atp = at->isa_ptr();
2815   // adjust atp to be the correct array element address type
2816   if (atp == NULL)  atp = TypePtr::BOTTOM;
2817   else              atp = atp->add_offset(Type::OffsetBot);
2818   // Get base for derived pointer purposes
2819   if( adr->Opcode() != Op_AddP ) Unimplemented();
2820   Node *base = adr->in(1);
2821 
2822   Node *zero = phase->makecon(TypeLong::ZERO);
2823   Node *off  = phase->MakeConX(BytesPerLong);
2824   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2825   count--;
2826   while( count-- ) {
2827     mem = phase->transform(mem);
2828     adr = phase->transform(new AddPNode(base,adr,off));
2829     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2830   }
2831   return mem;
2832 }
2833 
2834 //----------------------------step_through----------------------------------
2835 // Return allocation input memory edge if it is different instance
2836 // or itself if it is the one we are looking for.
2837 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2838   Node* n = *np;
2839   assert(n->is_ClearArray(), "sanity");
2840   intptr_t offset;
2841   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2842   // This method is called only before Allocate nodes are expanded
2843   // during macro nodes expansion. Before that ClearArray nodes are
2844   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2845   // Allocate nodes are expanded) which follows allocations.
2846   assert(alloc != NULL, "should have allocation");
2847   if (alloc->_idx == instance_id) {
2848     // Can not bypass initialization of the instance we are looking for.
2849     return false;
2850   }
2851   // Otherwise skip it.
2852   InitializeNode* init = alloc->initialization();
2853   if (init != NULL)
2854     *np = init->in(TypeFunc::Memory);
2855   else
2856     *np = alloc->in(TypeFunc::Memory);
2857   return true;
2858 }
2859 
2860 //----------------------------clear_memory-------------------------------------
2861 // Generate code to initialize object storage to zero.
2862 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2863                                    intptr_t start_offset,
2864                                    Node* end_offset,
2865                                    PhaseGVN* phase) {
2866   intptr_t offset = start_offset;
2867 
2868   int unit = BytesPerLong;
2869   if ((offset % unit) != 0) {
2870     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2871     adr = phase->transform(adr);
2872     const TypePtr* atp = TypeRawPtr::BOTTOM;
2873     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2874     mem = phase->transform(mem);
2875     offset += BytesPerInt;
2876   }
2877   assert((offset % unit) == 0, "");
2878 
2879   // Initialize the remaining stuff, if any, with a ClearArray.
2880   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2881 }
2882 
2883 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2884                                    Node* start_offset,
2885                                    Node* end_offset,
2886                                    PhaseGVN* phase) {
2887   if (start_offset == end_offset) {
2888     // nothing to do
2889     return mem;
2890   }
2891 
2892   int unit = BytesPerLong;
2893   Node* zbase = start_offset;
2894   Node* zend  = end_offset;
2895 
2896   // Scale to the unit required by the CPU:
2897   if (!Matcher::init_array_count_is_in_bytes) {
2898     Node* shift = phase->intcon(exact_log2(unit));
2899     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2900     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2901   }
2902 
2903   // Bulk clear double-words
2904   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2905   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2906   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2907   return phase->transform(mem);
2908 }
2909 
2910 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2911                                    intptr_t start_offset,
2912                                    intptr_t end_offset,
2913                                    PhaseGVN* phase) {
2914   if (start_offset == end_offset) {
2915     // nothing to do
2916     return mem;
2917   }
2918 
2919   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2920   intptr_t done_offset = end_offset;
2921   if ((done_offset % BytesPerLong) != 0) {
2922     done_offset -= BytesPerInt;
2923   }
2924   if (done_offset > start_offset) {
2925     mem = clear_memory(ctl, mem, dest,
2926                        start_offset, phase->MakeConX(done_offset), phase);
2927   }
2928   if (done_offset < end_offset) { // emit the final 32-bit store
2929     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2930     adr = phase->transform(adr);
2931     const TypePtr* atp = TypeRawPtr::BOTTOM;
2932     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2933     mem = phase->transform(mem);
2934     done_offset += BytesPerInt;
2935   }
2936   assert(done_offset == end_offset, "");
2937   return mem;
2938 }
2939 
2940 //=============================================================================
2941 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2942   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2943     _adr_type(C->get_adr_type(alias_idx))
2944 {
2945   init_class_id(Class_MemBar);
2946   Node* top = C->top();
2947   init_req(TypeFunc::I_O,top);
2948   init_req(TypeFunc::FramePtr,top);
2949   init_req(TypeFunc::ReturnAdr,top);
2950   if (precedent != NULL)
2951     init_req(TypeFunc::Parms, precedent);
2952 }
2953 
2954 //------------------------------cmp--------------------------------------------
2955 uint MemBarNode::hash() const { return NO_HASH; }
2956 uint MemBarNode::cmp( const Node &n ) const {
2957   return (&n == this);          // Always fail except on self
2958 }
2959 
2960 //------------------------------make-------------------------------------------
2961 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2962   switch (opcode) {
2963   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2964   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2965   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2966   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2967   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2968   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2969   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2970   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2971   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2972   case Op_Initialize:        return new InitializeNode(C, atp, pn);
2973   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2974   default: ShouldNotReachHere(); return NULL;
2975   }
2976 }
2977 
2978 //------------------------------Ideal------------------------------------------
2979 // Return a node which is more "ideal" than the current node.  Strip out
2980 // control copies
2981 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2982   if (remove_dead_region(phase, can_reshape)) return this;
2983   // Don't bother trying to transform a dead node
2984   if (in(0) && in(0)->is_top()) {
2985     return NULL;
2986   }
2987 
2988   bool progress = false;
2989   // Eliminate volatile MemBars for scalar replaced objects.
2990   if (can_reshape && req() == (Precedent+1)) {
2991     bool eliminate = false;
2992     int opc = Opcode();
2993     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2994       // Volatile field loads and stores.
2995       Node* my_mem = in(MemBarNode::Precedent);
2996       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2997       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2998         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2999         // replace this Precedent (decodeN) with the Load instead.
3000         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3001           Node* load_node = my_mem->in(1);
3002           set_req(MemBarNode::Precedent, load_node);
3003           phase->is_IterGVN()->_worklist.push(my_mem);
3004           my_mem = load_node;
3005         } else {
3006           assert(my_mem->unique_out() == this, "sanity");
3007           del_req(Precedent);
3008           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3009           my_mem = NULL;
3010         }
3011         progress = true;
3012       }
3013       if (my_mem != NULL && my_mem->is_Mem()) {
3014         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3015         // Check for scalar replaced object reference.
3016         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3017             t_oop->offset() != Type::OffsetBot &&
3018             t_oop->offset() != Type::OffsetTop) {
3019           eliminate = true;
3020         }
3021       }
3022     } else if (opc == Op_MemBarRelease) {
3023       // Final field stores.
3024       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3025       if ((alloc != NULL) && alloc->is_Allocate() &&
3026           alloc->as_Allocate()->does_not_escape_thread()) {
3027         // The allocated object does not escape.
3028         eliminate = true;
3029       }
3030     }
3031     if (eliminate) {
3032       // Replace MemBar projections by its inputs.
3033       PhaseIterGVN* igvn = phase->is_IterGVN();
3034       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3035       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3036       // Must return either the original node (now dead) or a new node
3037       // (Do not return a top here, since that would break the uniqueness of top.)
3038       return new ConINode(TypeInt::ZERO);
3039     }
3040   }
3041   return progress ? this : NULL;
3042 }
3043 
3044 //------------------------------Value------------------------------------------
3045 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3046   if( !in(0) ) return Type::TOP;
3047   if( phase->type(in(0)) == Type::TOP )
3048     return Type::TOP;
3049   return TypeTuple::MEMBAR;
3050 }
3051 
3052 //------------------------------match------------------------------------------
3053 // Construct projections for memory.
3054 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3055   switch (proj->_con) {
3056   case TypeFunc::Control:
3057   case TypeFunc::Memory:
3058     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3059   }
3060   ShouldNotReachHere();
3061   return NULL;
3062 }
3063 
3064 //===========================InitializeNode====================================
3065 // SUMMARY:
3066 // This node acts as a memory barrier on raw memory, after some raw stores.
3067 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3068 // The Initialize can 'capture' suitably constrained stores as raw inits.
3069 // It can coalesce related raw stores into larger units (called 'tiles').
3070 // It can avoid zeroing new storage for memory units which have raw inits.
3071 // At macro-expansion, it is marked 'complete', and does not optimize further.
3072 //
3073 // EXAMPLE:
3074 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3075 //   ctl = incoming control; mem* = incoming memory
3076 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3077 // First allocate uninitialized memory and fill in the header:
3078 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3079 //   ctl := alloc.Control; mem* := alloc.Memory*
3080 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3081 // Then initialize to zero the non-header parts of the raw memory block:
3082 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3083 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3084 // After the initialize node executes, the object is ready for service:
3085 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3086 // Suppose its body is immediately initialized as {1,2}:
3087 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3088 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3089 //   mem.SLICE(#short[*]) := store2
3090 //
3091 // DETAILS:
3092 // An InitializeNode collects and isolates object initialization after
3093 // an AllocateNode and before the next possible safepoint.  As a
3094 // memory barrier (MemBarNode), it keeps critical stores from drifting
3095 // down past any safepoint or any publication of the allocation.
3096 // Before this barrier, a newly-allocated object may have uninitialized bits.
3097 // After this barrier, it may be treated as a real oop, and GC is allowed.
3098 //
3099 // The semantics of the InitializeNode include an implicit zeroing of
3100 // the new object from object header to the end of the object.
3101 // (The object header and end are determined by the AllocateNode.)
3102 //
3103 // Certain stores may be added as direct inputs to the InitializeNode.
3104 // These stores must update raw memory, and they must be to addresses
3105 // derived from the raw address produced by AllocateNode, and with
3106 // a constant offset.  They must be ordered by increasing offset.
3107 // The first one is at in(RawStores), the last at in(req()-1).
3108 // Unlike most memory operations, they are not linked in a chain,
3109 // but are displayed in parallel as users of the rawmem output of
3110 // the allocation.
3111 //
3112 // (See comments in InitializeNode::capture_store, which continue
3113 // the example given above.)
3114 //
3115 // When the associated Allocate is macro-expanded, the InitializeNode
3116 // may be rewritten to optimize collected stores.  A ClearArrayNode
3117 // may also be created at that point to represent any required zeroing.
3118 // The InitializeNode is then marked 'complete', prohibiting further
3119 // capturing of nearby memory operations.
3120 //
3121 // During macro-expansion, all captured initializations which store
3122 // constant values of 32 bits or smaller are coalesced (if advantageous)
3123 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3124 // initialized in fewer memory operations.  Memory words which are
3125 // covered by neither tiles nor non-constant stores are pre-zeroed
3126 // by explicit stores of zero.  (The code shape happens to do all
3127 // zeroing first, then all other stores, with both sequences occurring
3128 // in order of ascending offsets.)
3129 //
3130 // Alternatively, code may be inserted between an AllocateNode and its
3131 // InitializeNode, to perform arbitrary initialization of the new object.
3132 // E.g., the object copying intrinsics insert complex data transfers here.
3133 // The initialization must then be marked as 'complete' disable the
3134 // built-in zeroing semantics and the collection of initializing stores.
3135 //
3136 // While an InitializeNode is incomplete, reads from the memory state
3137 // produced by it are optimizable if they match the control edge and
3138 // new oop address associated with the allocation/initialization.
3139 // They return a stored value (if the offset matches) or else zero.
3140 // A write to the memory state, if it matches control and address,
3141 // and if it is to a constant offset, may be 'captured' by the
3142 // InitializeNode.  It is cloned as a raw memory operation and rewired
3143 // inside the initialization, to the raw oop produced by the allocation.
3144 // Operations on addresses which are provably distinct (e.g., to
3145 // other AllocateNodes) are allowed to bypass the initialization.
3146 //
3147 // The effect of all this is to consolidate object initialization
3148 // (both arrays and non-arrays, both piecewise and bulk) into a
3149 // single location, where it can be optimized as a unit.
3150 //
3151 // Only stores with an offset less than TrackedInitializationLimit words
3152 // will be considered for capture by an InitializeNode.  This puts a
3153 // reasonable limit on the complexity of optimized initializations.
3154 
3155 //---------------------------InitializeNode------------------------------------
3156 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3157   : _is_complete(Incomplete), _does_not_escape(false),
3158     MemBarNode(C, adr_type, rawoop)
3159 {
3160   init_class_id(Class_Initialize);
3161 
3162   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3163   assert(in(RawAddress) == rawoop, "proper init");
3164   // Note:  allocation() can be NULL, for secondary initialization barriers
3165 }
3166 
3167 // Since this node is not matched, it will be processed by the
3168 // register allocator.  Declare that there are no constraints
3169 // on the allocation of the RawAddress edge.
3170 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3171   // This edge should be set to top, by the set_complete.  But be conservative.
3172   if (idx == InitializeNode::RawAddress)
3173     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3174   return RegMask::Empty;
3175 }
3176 
3177 Node* InitializeNode::memory(uint alias_idx) {
3178   Node* mem = in(Memory);
3179   if (mem->is_MergeMem()) {
3180     return mem->as_MergeMem()->memory_at(alias_idx);
3181   } else {
3182     // incoming raw memory is not split
3183     return mem;
3184   }
3185 }
3186 
3187 bool InitializeNode::is_non_zero() {
3188   if (is_complete())  return false;
3189   remove_extra_zeroes();
3190   return (req() > RawStores);
3191 }
3192 
3193 void InitializeNode::set_complete(PhaseGVN* phase) {
3194   assert(!is_complete(), "caller responsibility");
3195   _is_complete = Complete;
3196 
3197   // After this node is complete, it contains a bunch of
3198   // raw-memory initializations.  There is no need for
3199   // it to have anything to do with non-raw memory effects.
3200   // Therefore, tell all non-raw users to re-optimize themselves,
3201   // after skipping the memory effects of this initialization.
3202   PhaseIterGVN* igvn = phase->is_IterGVN();
3203   if (igvn)  igvn->add_users_to_worklist(this);
3204 }
3205 
3206 // convenience function
3207 // return false if the init contains any stores already
3208 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3209   InitializeNode* init = initialization();
3210   if (init == NULL || init->is_complete())  return false;
3211   init->remove_extra_zeroes();
3212   // for now, if this allocation has already collected any inits, bail:
3213   if (init->is_non_zero())  return false;
3214   init->set_complete(phase);
3215   return true;
3216 }
3217 
3218 void InitializeNode::remove_extra_zeroes() {
3219   if (req() == RawStores)  return;
3220   Node* zmem = zero_memory();
3221   uint fill = RawStores;
3222   for (uint i = fill; i < req(); i++) {
3223     Node* n = in(i);
3224     if (n->is_top() || n == zmem)  continue;  // skip
3225     if (fill < i)  set_req(fill, n);          // compact
3226     ++fill;
3227   }
3228   // delete any empty spaces created:
3229   while (fill < req()) {
3230     del_req(fill);
3231   }
3232 }
3233 
3234 // Helper for remembering which stores go with which offsets.
3235 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3236   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3237   intptr_t offset = -1;
3238   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3239                                                phase, offset);
3240   if (base == NULL)     return -1;  // something is dead,
3241   if (offset < 0)       return -1;  //        dead, dead
3242   return offset;
3243 }
3244 
3245 // Helper for proving that an initialization expression is
3246 // "simple enough" to be folded into an object initialization.
3247 // Attempts to prove that a store's initial value 'n' can be captured
3248 // within the initialization without creating a vicious cycle, such as:
3249 //     { Foo p = new Foo(); p.next = p; }
3250 // True for constants and parameters and small combinations thereof.
3251 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3252   if (n == NULL)      return true;   // (can this really happen?)
3253   if (n->is_Proj())   n = n->in(0);
3254   if (n == this)      return false;  // found a cycle
3255   if (n->is_Con())    return true;
3256   if (n->is_Start())  return true;   // params, etc., are OK
3257   if (n->is_Root())   return true;   // even better
3258 
3259   Node* ctl = n->in(0);
3260   if (ctl != NULL && !ctl->is_top()) {
3261     if (ctl->is_Proj())  ctl = ctl->in(0);
3262     if (ctl == this)  return false;
3263 
3264     // If we already know that the enclosing memory op is pinned right after
3265     // the init, then any control flow that the store has picked up
3266     // must have preceded the init, or else be equal to the init.
3267     // Even after loop optimizations (which might change control edges)
3268     // a store is never pinned *before* the availability of its inputs.
3269     if (!MemNode::all_controls_dominate(n, this))
3270       return false;                  // failed to prove a good control
3271   }
3272 
3273   // Check data edges for possible dependencies on 'this'.
3274   if ((count += 1) > 20)  return false;  // complexity limit
3275   for (uint i = 1; i < n->req(); i++) {
3276     Node* m = n->in(i);
3277     if (m == NULL || m == n || m->is_top())  continue;
3278     uint first_i = n->find_edge(m);
3279     if (i != first_i)  continue;  // process duplicate edge just once
3280     if (!detect_init_independence(m, count)) {
3281       return false;
3282     }
3283   }
3284 
3285   return true;
3286 }
3287 
3288 // Here are all the checks a Store must pass before it can be moved into
3289 // an initialization.  Returns zero if a check fails.
3290 // On success, returns the (constant) offset to which the store applies,
3291 // within the initialized memory.
3292 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3293   const int FAIL = 0;
3294   if (st->is_unaligned_access()) {
3295     return FAIL;
3296   }
3297   if (st->req() != MemNode::ValueIn + 1)
3298     return FAIL;                // an inscrutable StoreNode (card mark?)
3299   Node* ctl = st->in(MemNode::Control);
3300   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3301     return FAIL;                // must be unconditional after the initialization
3302   Node* mem = st->in(MemNode::Memory);
3303   if (!(mem->is_Proj() && mem->in(0) == this))
3304     return FAIL;                // must not be preceded by other stores
3305   Node* adr = st->in(MemNode::Address);
3306   intptr_t offset;
3307   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3308   if (alloc == NULL)
3309     return FAIL;                // inscrutable address
3310   if (alloc != allocation())
3311     return FAIL;                // wrong allocation!  (store needs to float up)
3312   Node* val = st->in(MemNode::ValueIn);
3313   int complexity_count = 0;
3314   if (!detect_init_independence(val, complexity_count))
3315     return FAIL;                // stored value must be 'simple enough'
3316 
3317   // The Store can be captured only if nothing after the allocation
3318   // and before the Store is using the memory location that the store
3319   // overwrites.
3320   bool failed = false;
3321   // If is_complete_with_arraycopy() is true the shape of the graph is
3322   // well defined and is safe so no need for extra checks.
3323   if (!is_complete_with_arraycopy()) {
3324     // We are going to look at each use of the memory state following
3325     // the allocation to make sure nothing reads the memory that the
3326     // Store writes.
3327     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3328     int alias_idx = phase->C->get_alias_index(t_adr);
3329     ResourceMark rm;
3330     Unique_Node_List mems;
3331     mems.push(mem);
3332     Node* unique_merge = NULL;
3333     for (uint next = 0; next < mems.size(); ++next) {
3334       Node *m  = mems.at(next);
3335       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3336         Node *n = m->fast_out(j);
3337         if (n->outcnt() == 0) {
3338           continue;
3339         }
3340         if (n == st) {
3341           continue;
3342         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3343           // If the control of this use is different from the control
3344           // of the Store which is right after the InitializeNode then
3345           // this node cannot be between the InitializeNode and the
3346           // Store.
3347           continue;
3348         } else if (n->is_MergeMem()) {
3349           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3350             // We can hit a MergeMemNode (that will likely go away
3351             // later) that is a direct use of the memory state
3352             // following the InitializeNode on the same slice as the
3353             // store node that we'd like to capture. We need to check
3354             // the uses of the MergeMemNode.
3355             mems.push(n);
3356           }
3357         } else if (n->is_Mem()) {
3358           Node* other_adr = n->in(MemNode::Address);
3359           if (other_adr == adr) {
3360             failed = true;
3361             break;
3362           } else {
3363             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3364             if (other_t_adr != NULL) {
3365               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3366               if (other_alias_idx == alias_idx) {
3367                 // A load from the same memory slice as the store right
3368                 // after the InitializeNode. We check the control of the
3369                 // object/array that is loaded from. If it's the same as
3370                 // the store control then we cannot capture the store.
3371                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3372                 Node* base = other_adr;
3373                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3374                 base = base->in(AddPNode::Base);
3375                 if (base != NULL) {
3376                   base = base->uncast();
3377                   if (base->is_Proj() && base->in(0) == alloc) {
3378                     failed = true;
3379                     break;
3380                   }
3381                 }
3382               }
3383             }
3384           }
3385         } else {
3386           failed = true;
3387           break;
3388         }
3389       }
3390     }
3391   }
3392   if (failed) {
3393     if (!can_reshape) {
3394       // We decided we couldn't capture the store during parsing. We
3395       // should try again during the next IGVN once the graph is
3396       // cleaner.
3397       phase->C->record_for_igvn(st);
3398     }
3399     return FAIL;
3400   }
3401 
3402   return offset;                // success
3403 }
3404 
3405 // Find the captured store in(i) which corresponds to the range
3406 // [start..start+size) in the initialized object.
3407 // If there is one, return its index i.  If there isn't, return the
3408 // negative of the index where it should be inserted.
3409 // Return 0 if the queried range overlaps an initialization boundary
3410 // or if dead code is encountered.
3411 // If size_in_bytes is zero, do not bother with overlap checks.
3412 int InitializeNode::captured_store_insertion_point(intptr_t start,
3413                                                    int size_in_bytes,
3414                                                    PhaseTransform* phase) {
3415   const int FAIL = 0, MAX_STORE = BytesPerLong;
3416 
3417   if (is_complete())
3418     return FAIL;                // arraycopy got here first; punt
3419 
3420   assert(allocation() != NULL, "must be present");
3421 
3422   // no negatives, no header fields:
3423   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3424 
3425   // after a certain size, we bail out on tracking all the stores:
3426   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3427   if (start >= ti_limit)  return FAIL;
3428 
3429   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3430     if (i >= limit)  return -(int)i; // not found; here is where to put it
3431 
3432     Node*    st     = in(i);
3433     intptr_t st_off = get_store_offset(st, phase);
3434     if (st_off < 0) {
3435       if (st != zero_memory()) {
3436         return FAIL;            // bail out if there is dead garbage
3437       }
3438     } else if (st_off > start) {
3439       // ...we are done, since stores are ordered
3440       if (st_off < start + size_in_bytes) {
3441         return FAIL;            // the next store overlaps
3442       }
3443       return -(int)i;           // not found; here is where to put it
3444     } else if (st_off < start) {
3445       if (size_in_bytes != 0 &&
3446           start < st_off + MAX_STORE &&
3447           start < st_off + st->as_Store()->memory_size()) {
3448         return FAIL;            // the previous store overlaps
3449       }
3450     } else {
3451       if (size_in_bytes != 0 &&
3452           st->as_Store()->memory_size() != size_in_bytes) {
3453         return FAIL;            // mismatched store size
3454       }
3455       return i;
3456     }
3457 
3458     ++i;
3459   }
3460 }
3461 
3462 // Look for a captured store which initializes at the offset 'start'
3463 // with the given size.  If there is no such store, and no other
3464 // initialization interferes, then return zero_memory (the memory
3465 // projection of the AllocateNode).
3466 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3467                                           PhaseTransform* phase) {
3468   assert(stores_are_sane(phase), "");
3469   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3470   if (i == 0) {
3471     return NULL;                // something is dead
3472   } else if (i < 0) {
3473     return zero_memory();       // just primordial zero bits here
3474   } else {
3475     Node* st = in(i);           // here is the store at this position
3476     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3477     return st;
3478   }
3479 }
3480 
3481 // Create, as a raw pointer, an address within my new object at 'offset'.
3482 Node* InitializeNode::make_raw_address(intptr_t offset,
3483                                        PhaseTransform* phase) {
3484   Node* addr = in(RawAddress);
3485   if (offset != 0) {
3486     Compile* C = phase->C;
3487     addr = phase->transform( new AddPNode(C->top(), addr,
3488                                                  phase->MakeConX(offset)) );
3489   }
3490   return addr;
3491 }
3492 
3493 // Clone the given store, converting it into a raw store
3494 // initializing a field or element of my new object.
3495 // Caller is responsible for retiring the original store,
3496 // with subsume_node or the like.
3497 //
3498 // From the example above InitializeNode::InitializeNode,
3499 // here are the old stores to be captured:
3500 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3501 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3502 //
3503 // Here is the changed code; note the extra edges on init:
3504 //   alloc = (Allocate ...)
3505 //   rawoop = alloc.RawAddress
3506 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3507 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3508 //   init = (Initialize alloc.Control alloc.Memory rawoop
3509 //                      rawstore1 rawstore2)
3510 //
3511 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3512                                     PhaseTransform* phase, bool can_reshape) {
3513   assert(stores_are_sane(phase), "");
3514 
3515   if (start < 0)  return NULL;
3516   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3517 
3518   Compile* C = phase->C;
3519   int size_in_bytes = st->memory_size();
3520   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3521   if (i == 0)  return NULL;     // bail out
3522   Node* prev_mem = NULL;        // raw memory for the captured store
3523   if (i > 0) {
3524     prev_mem = in(i);           // there is a pre-existing store under this one
3525     set_req(i, C->top());       // temporarily disconnect it
3526     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3527   } else {
3528     i = -i;                     // no pre-existing store
3529     prev_mem = zero_memory();   // a slice of the newly allocated object
3530     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3531       set_req(--i, C->top());   // reuse this edge; it has been folded away
3532     else
3533       ins_req(i, C->top());     // build a new edge
3534   }
3535   Node* new_st = st->clone();
3536   new_st->set_req(MemNode::Control, in(Control));
3537   new_st->set_req(MemNode::Memory,  prev_mem);
3538   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3539   new_st = phase->transform(new_st);
3540 
3541   // At this point, new_st might have swallowed a pre-existing store
3542   // at the same offset, or perhaps new_st might have disappeared,
3543   // if it redundantly stored the same value (or zero to fresh memory).
3544 
3545   // In any case, wire it in:
3546   phase->igvn_rehash_node_delayed(this);
3547   set_req(i, new_st);
3548 
3549   // The caller may now kill the old guy.
3550   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3551   assert(check_st == new_st || check_st == NULL, "must be findable");
3552   assert(!is_complete(), "");
3553   return new_st;
3554 }
3555 
3556 static bool store_constant(jlong* tiles, int num_tiles,
3557                            intptr_t st_off, int st_size,
3558                            jlong con) {
3559   if ((st_off & (st_size-1)) != 0)
3560     return false;               // strange store offset (assume size==2**N)
3561   address addr = (address)tiles + st_off;
3562   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3563   switch (st_size) {
3564   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3565   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3566   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3567   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3568   default: return false;        // strange store size (detect size!=2**N here)
3569   }
3570   return true;                  // return success to caller
3571 }
3572 
3573 // Coalesce subword constants into int constants and possibly
3574 // into long constants.  The goal, if the CPU permits,
3575 // is to initialize the object with a small number of 64-bit tiles.
3576 // Also, convert floating-point constants to bit patterns.
3577 // Non-constants are not relevant to this pass.
3578 //
3579 // In terms of the running example on InitializeNode::InitializeNode
3580 // and InitializeNode::capture_store, here is the transformation
3581 // of rawstore1 and rawstore2 into rawstore12:
3582 //   alloc = (Allocate ...)
3583 //   rawoop = alloc.RawAddress
3584 //   tile12 = 0x00010002
3585 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3586 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3587 //
3588 void
3589 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3590                                         Node* size_in_bytes,
3591                                         PhaseGVN* phase) {
3592   Compile* C = phase->C;
3593 
3594   assert(stores_are_sane(phase), "");
3595   // Note:  After this pass, they are not completely sane,
3596   // since there may be some overlaps.
3597 
3598   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3599 
3600   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3601   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3602   size_limit = MIN2(size_limit, ti_limit);
3603   size_limit = align_up(size_limit, BytesPerLong);
3604   int num_tiles = size_limit / BytesPerLong;
3605 
3606   // allocate space for the tile map:
3607   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3608   jlong  tiles_buf[small_len];
3609   Node*  nodes_buf[small_len];
3610   jlong  inits_buf[small_len];
3611   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3612                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3613   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3614                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3615   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3616                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3617   // tiles: exact bitwise model of all primitive constants
3618   // nodes: last constant-storing node subsumed into the tiles model
3619   // inits: which bytes (in each tile) are touched by any initializations
3620 
3621   //// Pass A: Fill in the tile model with any relevant stores.
3622 
3623   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3624   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3625   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3626   Node* zmem = zero_memory(); // initially zero memory state
3627   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3628     Node* st = in(i);
3629     intptr_t st_off = get_store_offset(st, phase);
3630 
3631     // Figure out the store's offset and constant value:
3632     if (st_off < header_size)             continue; //skip (ignore header)
3633     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3634     int st_size = st->as_Store()->memory_size();
3635     if (st_off + st_size > size_limit)    break;
3636 
3637     // Record which bytes are touched, whether by constant or not.
3638     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3639       continue;                 // skip (strange store size)
3640 
3641     const Type* val = phase->type(st->in(MemNode::ValueIn));
3642     if (!val->singleton())                continue; //skip (non-con store)
3643     BasicType type = val->basic_type();
3644 
3645     jlong con = 0;
3646     switch (type) {
3647     case T_INT:    con = val->is_int()->get_con();  break;
3648     case T_LONG:   con = val->is_long()->get_con(); break;
3649     case T_FLOAT:  con = jint_cast(val->getf());    break;
3650     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3651     default:                              continue; //skip (odd store type)
3652     }
3653 
3654     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3655         st->Opcode() == Op_StoreL) {
3656       continue;                 // This StoreL is already optimal.
3657     }
3658 
3659     // Store down the constant.
3660     store_constant(tiles, num_tiles, st_off, st_size, con);
3661 
3662     intptr_t j = st_off >> LogBytesPerLong;
3663 
3664     if (type == T_INT && st_size == BytesPerInt
3665         && (st_off & BytesPerInt) == BytesPerInt) {
3666       jlong lcon = tiles[j];
3667       if (!Matcher::isSimpleConstant64(lcon) &&
3668           st->Opcode() == Op_StoreI) {
3669         // This StoreI is already optimal by itself.
3670         jint* intcon = (jint*) &tiles[j];
3671         intcon[1] = 0;  // undo the store_constant()
3672 
3673         // If the previous store is also optimal by itself, back up and
3674         // undo the action of the previous loop iteration... if we can.
3675         // But if we can't, just let the previous half take care of itself.
3676         st = nodes[j];
3677         st_off -= BytesPerInt;
3678         con = intcon[0];
3679         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3680           assert(st_off >= header_size, "still ignoring header");
3681           assert(get_store_offset(st, phase) == st_off, "must be");
3682           assert(in(i-1) == zmem, "must be");
3683           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3684           assert(con == tcon->is_int()->get_con(), "must be");
3685           // Undo the effects of the previous loop trip, which swallowed st:
3686           intcon[0] = 0;        // undo store_constant()
3687           set_req(i-1, st);     // undo set_req(i, zmem)
3688           nodes[j] = NULL;      // undo nodes[j] = st
3689           --old_subword;        // undo ++old_subword
3690         }
3691         continue;               // This StoreI is already optimal.
3692       }
3693     }
3694 
3695     // This store is not needed.
3696     set_req(i, zmem);
3697     nodes[j] = st;              // record for the moment
3698     if (st_size < BytesPerLong) // something has changed
3699           ++old_subword;        // includes int/float, but who's counting...
3700     else  ++old_long;
3701   }
3702 
3703   if ((old_subword + old_long) == 0)
3704     return;                     // nothing more to do
3705 
3706   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3707   // Be sure to insert them before overlapping non-constant stores.
3708   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3709   for (int j = 0; j < num_tiles; j++) {
3710     jlong con  = tiles[j];
3711     jlong init = inits[j];
3712     if (con == 0)  continue;
3713     jint con0,  con1;           // split the constant, address-wise
3714     jint init0, init1;          // split the init map, address-wise
3715     { union { jlong con; jint intcon[2]; } u;
3716       u.con = con;
3717       con0  = u.intcon[0];
3718       con1  = u.intcon[1];
3719       u.con = init;
3720       init0 = u.intcon[0];
3721       init1 = u.intcon[1];
3722     }
3723 
3724     Node* old = nodes[j];
3725     assert(old != NULL, "need the prior store");
3726     intptr_t offset = (j * BytesPerLong);
3727 
3728     bool split = !Matcher::isSimpleConstant64(con);
3729 
3730     if (offset < header_size) {
3731       assert(offset + BytesPerInt >= header_size, "second int counts");
3732       assert(*(jint*)&tiles[j] == 0, "junk in header");
3733       split = true;             // only the second word counts
3734       // Example:  int a[] = { 42 ... }
3735     } else if (con0 == 0 && init0 == -1) {
3736       split = true;             // first word is covered by full inits
3737       // Example:  int a[] = { ... foo(), 42 ... }
3738     } else if (con1 == 0 && init1 == -1) {
3739       split = true;             // second word is covered by full inits
3740       // Example:  int a[] = { ... 42, foo() ... }
3741     }
3742 
3743     // Here's a case where init0 is neither 0 nor -1:
3744     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3745     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3746     // In this case the tile is not split; it is (jlong)42.
3747     // The big tile is stored down, and then the foo() value is inserted.
3748     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3749 
3750     Node* ctl = old->in(MemNode::Control);
3751     Node* adr = make_raw_address(offset, phase);
3752     const TypePtr* atp = TypeRawPtr::BOTTOM;
3753 
3754     // One or two coalesced stores to plop down.
3755     Node*    st[2];
3756     intptr_t off[2];
3757     int  nst = 0;
3758     if (!split) {
3759       ++new_long;
3760       off[nst] = offset;
3761       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3762                                   phase->longcon(con), T_LONG, MemNode::unordered);
3763     } else {
3764       // Omit either if it is a zero.
3765       if (con0 != 0) {
3766         ++new_int;
3767         off[nst]  = offset;
3768         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3769                                     phase->intcon(con0), T_INT, MemNode::unordered);
3770       }
3771       if (con1 != 0) {
3772         ++new_int;
3773         offset += BytesPerInt;
3774         adr = make_raw_address(offset, phase);
3775         off[nst]  = offset;
3776         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3777                                     phase->intcon(con1), T_INT, MemNode::unordered);
3778       }
3779     }
3780 
3781     // Insert second store first, then the first before the second.
3782     // Insert each one just before any overlapping non-constant stores.
3783     while (nst > 0) {
3784       Node* st1 = st[--nst];
3785       C->copy_node_notes_to(st1, old);
3786       st1 = phase->transform(st1);
3787       offset = off[nst];
3788       assert(offset >= header_size, "do not smash header");
3789       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3790       guarantee(ins_idx != 0, "must re-insert constant store");
3791       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3792       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3793         set_req(--ins_idx, st1);
3794       else
3795         ins_req(ins_idx, st1);
3796     }
3797   }
3798 
3799   if (PrintCompilation && WizardMode)
3800     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3801                   old_subword, old_long, new_int, new_long);
3802   if (C->log() != NULL)
3803     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3804                    old_subword, old_long, new_int, new_long);
3805 
3806   // Clean up any remaining occurrences of zmem:
3807   remove_extra_zeroes();
3808 }
3809 
3810 // Explore forward from in(start) to find the first fully initialized
3811 // word, and return its offset.  Skip groups of subword stores which
3812 // together initialize full words.  If in(start) is itself part of a
3813 // fully initialized word, return the offset of in(start).  If there
3814 // are no following full-word stores, or if something is fishy, return
3815 // a negative value.
3816 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3817   int       int_map = 0;
3818   intptr_t  int_map_off = 0;
3819   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3820 
3821   for (uint i = start, limit = req(); i < limit; i++) {
3822     Node* st = in(i);
3823 
3824     intptr_t st_off = get_store_offset(st, phase);
3825     if (st_off < 0)  break;  // return conservative answer
3826 
3827     int st_size = st->as_Store()->memory_size();
3828     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3829       return st_off;            // we found a complete word init
3830     }
3831 
3832     // update the map:
3833 
3834     intptr_t this_int_off = align_down(st_off, BytesPerInt);
3835     if (this_int_off != int_map_off) {
3836       // reset the map:
3837       int_map = 0;
3838       int_map_off = this_int_off;
3839     }
3840 
3841     int subword_off = st_off - this_int_off;
3842     int_map |= right_n_bits(st_size) << subword_off;
3843     if ((int_map & FULL_MAP) == FULL_MAP) {
3844       return this_int_off;      // we found a complete word init
3845     }
3846 
3847     // Did this store hit or cross the word boundary?
3848     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
3849     if (next_int_off == this_int_off + BytesPerInt) {
3850       // We passed the current int, without fully initializing it.
3851       int_map_off = next_int_off;
3852       int_map >>= BytesPerInt;
3853     } else if (next_int_off > this_int_off + BytesPerInt) {
3854       // We passed the current and next int.
3855       return this_int_off + BytesPerInt;
3856     }
3857   }
3858 
3859   return -1;
3860 }
3861 
3862 
3863 // Called when the associated AllocateNode is expanded into CFG.
3864 // At this point, we may perform additional optimizations.
3865 // Linearize the stores by ascending offset, to make memory
3866 // activity as coherent as possible.
3867 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3868                                       intptr_t header_size,
3869                                       Node* size_in_bytes,
3870                                       PhaseGVN* phase) {
3871   assert(!is_complete(), "not already complete");
3872   assert(stores_are_sane(phase), "");
3873   assert(allocation() != NULL, "must be present");
3874 
3875   remove_extra_zeroes();
3876 
3877   if (ReduceFieldZeroing || ReduceBulkZeroing)
3878     // reduce instruction count for common initialization patterns
3879     coalesce_subword_stores(header_size, size_in_bytes, phase);
3880 
3881   Node* zmem = zero_memory();   // initially zero memory state
3882   Node* inits = zmem;           // accumulating a linearized chain of inits
3883   #ifdef ASSERT
3884   intptr_t first_offset = allocation()->minimum_header_size();
3885   intptr_t last_init_off = first_offset;  // previous init offset
3886   intptr_t last_init_end = first_offset;  // previous init offset+size
3887   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3888   #endif
3889   intptr_t zeroes_done = header_size;
3890 
3891   bool do_zeroing = true;       // we might give up if inits are very sparse
3892   int  big_init_gaps = 0;       // how many large gaps have we seen?
3893 
3894   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3895   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3896 
3897   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3898     Node* st = in(i);
3899     intptr_t st_off = get_store_offset(st, phase);
3900     if (st_off < 0)
3901       break;                    // unknown junk in the inits
3902     if (st->in(MemNode::Memory) != zmem)
3903       break;                    // complicated store chains somehow in list
3904 
3905     int st_size = st->as_Store()->memory_size();
3906     intptr_t next_init_off = st_off + st_size;
3907 
3908     if (do_zeroing && zeroes_done < next_init_off) {
3909       // See if this store needs a zero before it or under it.
3910       intptr_t zeroes_needed = st_off;
3911 
3912       if (st_size < BytesPerInt) {
3913         // Look for subword stores which only partially initialize words.
3914         // If we find some, we must lay down some word-level zeroes first,
3915         // underneath the subword stores.
3916         //
3917         // Examples:
3918         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3919         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3920         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3921         //
3922         // Note:  coalesce_subword_stores may have already done this,
3923         // if it was prompted by constant non-zero subword initializers.
3924         // But this case can still arise with non-constant stores.
3925 
3926         intptr_t next_full_store = find_next_fullword_store(i, phase);
3927 
3928         // In the examples above:
3929         //   in(i)          p   q   r   s     x   y     z
3930         //   st_off        12  13  14  15    12  13    14
3931         //   st_size        1   1   1   1     1   1     1
3932         //   next_full_s.  12  16  16  16    16  16    16
3933         //   z's_done      12  16  16  16    12  16    12
3934         //   z's_needed    12  16  16  16    16  16    16
3935         //   zsize          0   0   0   0     4   0     4
3936         if (next_full_store < 0) {
3937           // Conservative tack:  Zero to end of current word.
3938           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
3939         } else {
3940           // Zero to beginning of next fully initialized word.
3941           // Or, don't zero at all, if we are already in that word.
3942           assert(next_full_store >= zeroes_needed, "must go forward");
3943           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3944           zeroes_needed = next_full_store;
3945         }
3946       }
3947 
3948       if (zeroes_needed > zeroes_done) {
3949         intptr_t zsize = zeroes_needed - zeroes_done;
3950         // Do some incremental zeroing on rawmem, in parallel with inits.
3951         zeroes_done = align_down(zeroes_done, BytesPerInt);
3952         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3953                                               zeroes_done, zeroes_needed,
3954                                               phase);
3955         zeroes_done = zeroes_needed;
3956         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3957           do_zeroing = false;   // leave the hole, next time
3958       }
3959     }
3960 
3961     // Collect the store and move on:
3962     st->set_req(MemNode::Memory, inits);
3963     inits = st;                 // put it on the linearized chain
3964     set_req(i, zmem);           // unhook from previous position
3965 
3966     if (zeroes_done == st_off)
3967       zeroes_done = next_init_off;
3968 
3969     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3970 
3971     #ifdef ASSERT
3972     // Various order invariants.  Weaker than stores_are_sane because
3973     // a large constant tile can be filled in by smaller non-constant stores.
3974     assert(st_off >= last_init_off, "inits do not reverse");
3975     last_init_off = st_off;
3976     const Type* val = NULL;
3977     if (st_size >= BytesPerInt &&
3978         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3979         (int)val->basic_type() < (int)T_OBJECT) {
3980       assert(st_off >= last_tile_end, "tiles do not overlap");
3981       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3982       last_tile_end = MAX2(last_tile_end, next_init_off);
3983     } else {
3984       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
3985       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3986       assert(st_off      >= last_init_end, "inits do not overlap");
3987       last_init_end = next_init_off;  // it's a non-tile
3988     }
3989     #endif //ASSERT
3990   }
3991 
3992   remove_extra_zeroes();        // clear out all the zmems left over
3993   add_req(inits);
3994 
3995   if (!(UseTLAB && ZeroTLAB)) {
3996     // If anything remains to be zeroed, zero it all now.
3997     zeroes_done = align_down(zeroes_done, BytesPerInt);
3998     // if it is the last unused 4 bytes of an instance, forget about it
3999     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4000     if (zeroes_done + BytesPerLong >= size_limit) {
4001       AllocateNode* alloc = allocation();
4002       assert(alloc != NULL, "must be present");
4003       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4004         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4005         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4006         if (zeroes_done == k->layout_helper())
4007           zeroes_done = size_limit;
4008       }
4009     }
4010     if (zeroes_done < size_limit) {
4011       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4012                                             zeroes_done, size_in_bytes, phase);
4013     }
4014   }
4015 
4016   set_complete(phase);
4017   return rawmem;
4018 }
4019 
4020 
4021 #ifdef ASSERT
4022 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4023   if (is_complete())
4024     return true;                // stores could be anything at this point
4025   assert(allocation() != NULL, "must be present");
4026   intptr_t last_off = allocation()->minimum_header_size();
4027   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4028     Node* st = in(i);
4029     intptr_t st_off = get_store_offset(st, phase);
4030     if (st_off < 0)  continue;  // ignore dead garbage
4031     if (last_off > st_off) {
4032       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4033       this->dump(2);
4034       assert(false, "ascending store offsets");
4035       return false;
4036     }
4037     last_off = st_off + st->as_Store()->memory_size();
4038   }
4039   return true;
4040 }
4041 #endif //ASSERT
4042 
4043 
4044 
4045 
4046 //============================MergeMemNode=====================================
4047 //
4048 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4049 // contributing store or call operations.  Each contributor provides the memory
4050 // state for a particular "alias type" (see Compile::alias_type).  For example,
4051 // if a MergeMem has an input X for alias category #6, then any memory reference
4052 // to alias category #6 may use X as its memory state input, as an exact equivalent
4053 // to using the MergeMem as a whole.
4054 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4055 //
4056 // (Here, the <N> notation gives the index of the relevant adr_type.)
4057 //
4058 // In one special case (and more cases in the future), alias categories overlap.
4059 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4060 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4061 // it is exactly equivalent to that state W:
4062 //   MergeMem(<Bot>: W) <==> W
4063 //
4064 // Usually, the merge has more than one input.  In that case, where inputs
4065 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4066 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4067 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4068 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4069 //
4070 // A merge can take a "wide" memory state as one of its narrow inputs.
4071 // This simply means that the merge observes out only the relevant parts of
4072 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4073 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4074 //
4075 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4076 // and that memory slices "leak through":
4077 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4078 //
4079 // But, in such a cascade, repeated memory slices can "block the leak":
4080 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4081 //
4082 // In the last example, Y is not part of the combined memory state of the
4083 // outermost MergeMem.  The system must, of course, prevent unschedulable
4084 // memory states from arising, so you can be sure that the state Y is somehow
4085 // a precursor to state Y'.
4086 //
4087 //
4088 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4089 // of each MergeMemNode array are exactly the numerical alias indexes, including
4090 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4091 // Compile::alias_type (and kin) produce and manage these indexes.
4092 //
4093 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4094 // (Note that this provides quick access to the top node inside MergeMem methods,
4095 // without the need to reach out via TLS to Compile::current.)
4096 //
4097 // As a consequence of what was just described, a MergeMem that represents a full
4098 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4099 // containing all alias categories.
4100 //
4101 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4102 //
4103 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4104 // a memory state for the alias type <N>, or else the top node, meaning that
4105 // there is no particular input for that alias type.  Note that the length of
4106 // a MergeMem is variable, and may be extended at any time to accommodate new
4107 // memory states at larger alias indexes.  When merges grow, they are of course
4108 // filled with "top" in the unused in() positions.
4109 //
4110 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4111 // (Top was chosen because it works smoothly with passes like GCM.)
4112 //
4113 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4114 // the type of random VM bits like TLS references.)  Since it is always the
4115 // first non-Bot memory slice, some low-level loops use it to initialize an
4116 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4117 //
4118 //
4119 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4120 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4121 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4122 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4123 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4124 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4125 //
4126 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4127 // really that different from the other memory inputs.  An abbreviation called
4128 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4129 //
4130 //
4131 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4132 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4133 // that "emerges though" the base memory will be marked as excluding the alias types
4134 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4135 //
4136 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4137 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4138 //
4139 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4140 // (It is currently unimplemented.)  As you can see, the resulting merge is
4141 // actually a disjoint union of memory states, rather than an overlay.
4142 //
4143 
4144 //------------------------------MergeMemNode-----------------------------------
4145 Node* MergeMemNode::make_empty_memory() {
4146   Node* empty_memory = (Node*) Compile::current()->top();
4147   assert(empty_memory->is_top(), "correct sentinel identity");
4148   return empty_memory;
4149 }
4150 
4151 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4152   init_class_id(Class_MergeMem);
4153   // all inputs are nullified in Node::Node(int)
4154   // set_input(0, NULL);  // no control input
4155 
4156   // Initialize the edges uniformly to top, for starters.
4157   Node* empty_mem = make_empty_memory();
4158   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4159     init_req(i,empty_mem);
4160   }
4161   assert(empty_memory() == empty_mem, "");
4162 
4163   if( new_base != NULL && new_base->is_MergeMem() ) {
4164     MergeMemNode* mdef = new_base->as_MergeMem();
4165     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4166     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4167       mms.set_memory(mms.memory2());
4168     }
4169     assert(base_memory() == mdef->base_memory(), "");
4170   } else {
4171     set_base_memory(new_base);
4172   }
4173 }
4174 
4175 // Make a new, untransformed MergeMem with the same base as 'mem'.
4176 // If mem is itself a MergeMem, populate the result with the same edges.
4177 MergeMemNode* MergeMemNode::make(Node* mem) {
4178   return new MergeMemNode(mem);
4179 }
4180 
4181 //------------------------------cmp--------------------------------------------
4182 uint MergeMemNode::hash() const { return NO_HASH; }
4183 uint MergeMemNode::cmp( const Node &n ) const {
4184   return (&n == this);          // Always fail except on self
4185 }
4186 
4187 //------------------------------Identity---------------------------------------
4188 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4189   // Identity if this merge point does not record any interesting memory
4190   // disambiguations.
4191   Node* base_mem = base_memory();
4192   Node* empty_mem = empty_memory();
4193   if (base_mem != empty_mem) {  // Memory path is not dead?
4194     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4195       Node* mem = in(i);
4196       if (mem != empty_mem && mem != base_mem) {
4197         return this;            // Many memory splits; no change
4198       }
4199     }
4200   }
4201   return base_mem;              // No memory splits; ID on the one true input
4202 }
4203 
4204 //------------------------------Ideal------------------------------------------
4205 // This method is invoked recursively on chains of MergeMem nodes
4206 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4207   // Remove chain'd MergeMems
4208   //
4209   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4210   // relative to the "in(Bot)".  Since we are patching both at the same time,
4211   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4212   // but rewrite each "in(i)" relative to the new "in(Bot)".
4213   Node *progress = NULL;
4214 
4215 
4216   Node* old_base = base_memory();
4217   Node* empty_mem = empty_memory();
4218   if (old_base == empty_mem)
4219     return NULL; // Dead memory path.
4220 
4221   MergeMemNode* old_mbase;
4222   if (old_base != NULL && old_base->is_MergeMem())
4223     old_mbase = old_base->as_MergeMem();
4224   else
4225     old_mbase = NULL;
4226   Node* new_base = old_base;
4227 
4228   // simplify stacked MergeMems in base memory
4229   if (old_mbase)  new_base = old_mbase->base_memory();
4230 
4231   // the base memory might contribute new slices beyond my req()
4232   if (old_mbase)  grow_to_match(old_mbase);
4233 
4234   // Look carefully at the base node if it is a phi.
4235   PhiNode* phi_base;
4236   if (new_base != NULL && new_base->is_Phi())
4237     phi_base = new_base->as_Phi();
4238   else
4239     phi_base = NULL;
4240 
4241   Node*    phi_reg = NULL;
4242   uint     phi_len = (uint)-1;
4243   if (phi_base != NULL && !phi_base->is_copy()) {
4244     // do not examine phi if degraded to a copy
4245     phi_reg = phi_base->region();
4246     phi_len = phi_base->req();
4247     // see if the phi is unfinished
4248     for (uint i = 1; i < phi_len; i++) {
4249       if (phi_base->in(i) == NULL) {
4250         // incomplete phi; do not look at it yet!
4251         phi_reg = NULL;
4252         phi_len = (uint)-1;
4253         break;
4254       }
4255     }
4256   }
4257 
4258   // Note:  We do not call verify_sparse on entry, because inputs
4259   // can normalize to the base_memory via subsume_node or similar
4260   // mechanisms.  This method repairs that damage.
4261 
4262   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4263 
4264   // Look at each slice.
4265   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4266     Node* old_in = in(i);
4267     // calculate the old memory value
4268     Node* old_mem = old_in;
4269     if (old_mem == empty_mem)  old_mem = old_base;
4270     assert(old_mem == memory_at(i), "");
4271 
4272     // maybe update (reslice) the old memory value
4273 
4274     // simplify stacked MergeMems
4275     Node* new_mem = old_mem;
4276     MergeMemNode* old_mmem;
4277     if (old_mem != NULL && old_mem->is_MergeMem())
4278       old_mmem = old_mem->as_MergeMem();
4279     else
4280       old_mmem = NULL;
4281     if (old_mmem == this) {
4282       // This can happen if loops break up and safepoints disappear.
4283       // A merge of BotPtr (default) with a RawPtr memory derived from a
4284       // safepoint can be rewritten to a merge of the same BotPtr with
4285       // the BotPtr phi coming into the loop.  If that phi disappears
4286       // also, we can end up with a self-loop of the mergemem.
4287       // In general, if loops degenerate and memory effects disappear,
4288       // a mergemem can be left looking at itself.  This simply means
4289       // that the mergemem's default should be used, since there is
4290       // no longer any apparent effect on this slice.
4291       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4292       //       from start.  Update the input to TOP.
4293       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4294     }
4295     else if (old_mmem != NULL) {
4296       new_mem = old_mmem->memory_at(i);
4297     }
4298     // else preceding memory was not a MergeMem
4299 
4300     // replace equivalent phis (unfortunately, they do not GVN together)
4301     if (new_mem != NULL && new_mem != new_base &&
4302         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4303       if (new_mem->is_Phi()) {
4304         PhiNode* phi_mem = new_mem->as_Phi();
4305         for (uint i = 1; i < phi_len; i++) {
4306           if (phi_base->in(i) != phi_mem->in(i)) {
4307             phi_mem = NULL;
4308             break;
4309           }
4310         }
4311         if (phi_mem != NULL) {
4312           // equivalent phi nodes; revert to the def
4313           new_mem = new_base;
4314         }
4315       }
4316     }
4317 
4318     // maybe store down a new value
4319     Node* new_in = new_mem;
4320     if (new_in == new_base)  new_in = empty_mem;
4321 
4322     if (new_in != old_in) {
4323       // Warning:  Do not combine this "if" with the previous "if"
4324       // A memory slice might have be be rewritten even if it is semantically
4325       // unchanged, if the base_memory value has changed.
4326       set_req(i, new_in);
4327       progress = this;          // Report progress
4328     }
4329   }
4330 
4331   if (new_base != old_base) {
4332     set_req(Compile::AliasIdxBot, new_base);
4333     // Don't use set_base_memory(new_base), because we need to update du.
4334     assert(base_memory() == new_base, "");
4335     progress = this;
4336   }
4337 
4338   if( base_memory() == this ) {
4339     // a self cycle indicates this memory path is dead
4340     set_req(Compile::AliasIdxBot, empty_mem);
4341   }
4342 
4343   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4344   // Recursion must occur after the self cycle check above
4345   if( base_memory()->is_MergeMem() ) {
4346     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4347     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4348     if( m != NULL &&
4349         (m->is_top() ||
4350          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4351       // propagate rollup of dead cycle to self
4352       set_req(Compile::AliasIdxBot, empty_mem);
4353     }
4354   }
4355 
4356   if( base_memory() == empty_mem ) {
4357     progress = this;
4358     // Cut inputs during Parse phase only.
4359     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4360     if( !can_reshape ) {
4361       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4362         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4363       }
4364     }
4365   }
4366 
4367   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4368     // Check if PhiNode::Ideal's "Split phis through memory merges"
4369     // transform should be attempted. Look for this->phi->this cycle.
4370     uint merge_width = req();
4371     if (merge_width > Compile::AliasIdxRaw) {
4372       PhiNode* phi = base_memory()->as_Phi();
4373       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4374         if (phi->in(i) == this) {
4375           phase->is_IterGVN()->_worklist.push(phi);
4376           break;
4377         }
4378       }
4379     }
4380   }
4381 
4382   assert(progress || verify_sparse(), "please, no dups of base");
4383   return progress;
4384 }
4385 
4386 //-------------------------set_base_memory-------------------------------------
4387 void MergeMemNode::set_base_memory(Node *new_base) {
4388   Node* empty_mem = empty_memory();
4389   set_req(Compile::AliasIdxBot, new_base);
4390   assert(memory_at(req()) == new_base, "must set default memory");
4391   // Clear out other occurrences of new_base:
4392   if (new_base != empty_mem) {
4393     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4394       if (in(i) == new_base)  set_req(i, empty_mem);
4395     }
4396   }
4397 }
4398 
4399 //------------------------------out_RegMask------------------------------------
4400 const RegMask &MergeMemNode::out_RegMask() const {
4401   return RegMask::Empty;
4402 }
4403 
4404 //------------------------------dump_spec--------------------------------------
4405 #ifndef PRODUCT
4406 void MergeMemNode::dump_spec(outputStream *st) const {
4407   st->print(" {");
4408   Node* base_mem = base_memory();
4409   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4410     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4411     if (mem == base_mem) { st->print(" -"); continue; }
4412     st->print( " N%d:", mem->_idx );
4413     Compile::current()->get_adr_type(i)->dump_on(st);
4414   }
4415   st->print(" }");
4416 }
4417 #endif // !PRODUCT
4418 
4419 
4420 #ifdef ASSERT
4421 static bool might_be_same(Node* a, Node* b) {
4422   if (a == b)  return true;
4423   if (!(a->is_Phi() || b->is_Phi()))  return false;
4424   // phis shift around during optimization
4425   return true;  // pretty stupid...
4426 }
4427 
4428 // verify a narrow slice (either incoming or outgoing)
4429 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4430   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4431   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4432   if (Node::in_dump())               return;  // muzzle asserts when printing
4433   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4434   assert(n != NULL, "");
4435   // Elide intervening MergeMem's
4436   while (n->is_MergeMem()) {
4437     n = n->as_MergeMem()->memory_at(alias_idx);
4438   }
4439   Compile* C = Compile::current();
4440   const TypePtr* n_adr_type = n->adr_type();
4441   if (n == m->empty_memory()) {
4442     // Implicit copy of base_memory()
4443   } else if (n_adr_type != TypePtr::BOTTOM) {
4444     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4445     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4446   } else {
4447     // A few places like make_runtime_call "know" that VM calls are narrow,
4448     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4449     bool expected_wide_mem = false;
4450     if (n == m->base_memory()) {
4451       expected_wide_mem = true;
4452     } else if (alias_idx == Compile::AliasIdxRaw ||
4453                n == m->memory_at(Compile::AliasIdxRaw)) {
4454       expected_wide_mem = true;
4455     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4456       // memory can "leak through" calls on channels that
4457       // are write-once.  Allow this also.
4458       expected_wide_mem = true;
4459     }
4460     assert(expected_wide_mem, "expected narrow slice replacement");
4461   }
4462 }
4463 #else // !ASSERT
4464 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4465 #endif
4466 
4467 
4468 //-----------------------------memory_at---------------------------------------
4469 Node* MergeMemNode::memory_at(uint alias_idx) const {
4470   assert(alias_idx >= Compile::AliasIdxRaw ||
4471          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4472          "must avoid base_memory and AliasIdxTop");
4473 
4474   // Otherwise, it is a narrow slice.
4475   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4476   Compile *C = Compile::current();
4477   if (is_empty_memory(n)) {
4478     // the array is sparse; empty slots are the "top" node
4479     n = base_memory();
4480     assert(Node::in_dump()
4481            || n == NULL || n->bottom_type() == Type::TOP
4482            || n->adr_type() == NULL // address is TOP
4483            || n->adr_type() == TypePtr::BOTTOM
4484            || n->adr_type() == TypeRawPtr::BOTTOM
4485            || Compile::current()->AliasLevel() == 0,
4486            "must be a wide memory");
4487     // AliasLevel == 0 if we are organizing the memory states manually.
4488     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4489   } else {
4490     // make sure the stored slice is sane
4491     #ifdef ASSERT
4492     if (VMError::is_error_reported() || Node::in_dump()) {
4493     } else if (might_be_same(n, base_memory())) {
4494       // Give it a pass:  It is a mostly harmless repetition of the base.
4495       // This can arise normally from node subsumption during optimization.
4496     } else {
4497       verify_memory_slice(this, alias_idx, n);
4498     }
4499     #endif
4500   }
4501   return n;
4502 }
4503 
4504 //---------------------------set_memory_at-------------------------------------
4505 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4506   verify_memory_slice(this, alias_idx, n);
4507   Node* empty_mem = empty_memory();
4508   if (n == base_memory())  n = empty_mem;  // collapse default
4509   uint need_req = alias_idx+1;
4510   if (req() < need_req) {
4511     if (n == empty_mem)  return;  // already the default, so do not grow me
4512     // grow the sparse array
4513     do {
4514       add_req(empty_mem);
4515     } while (req() < need_req);
4516   }
4517   set_req( alias_idx, n );
4518 }
4519 
4520 
4521 
4522 //--------------------------iteration_setup------------------------------------
4523 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4524   if (other != NULL) {
4525     grow_to_match(other);
4526     // invariant:  the finite support of mm2 is within mm->req()
4527     #ifdef ASSERT
4528     for (uint i = req(); i < other->req(); i++) {
4529       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4530     }
4531     #endif
4532   }
4533   // Replace spurious copies of base_memory by top.
4534   Node* base_mem = base_memory();
4535   if (base_mem != NULL && !base_mem->is_top()) {
4536     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4537       if (in(i) == base_mem)
4538         set_req(i, empty_memory());
4539     }
4540   }
4541 }
4542 
4543 //---------------------------grow_to_match-------------------------------------
4544 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4545   Node* empty_mem = empty_memory();
4546   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4547   // look for the finite support of the other memory
4548   for (uint i = other->req(); --i >= req(); ) {
4549     if (other->in(i) != empty_mem) {
4550       uint new_len = i+1;
4551       while (req() < new_len)  add_req(empty_mem);
4552       break;
4553     }
4554   }
4555 }
4556 
4557 //---------------------------verify_sparse-------------------------------------
4558 #ifndef PRODUCT
4559 bool MergeMemNode::verify_sparse() const {
4560   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4561   Node* base_mem = base_memory();
4562   // The following can happen in degenerate cases, since empty==top.
4563   if (is_empty_memory(base_mem))  return true;
4564   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4565     assert(in(i) != NULL, "sane slice");
4566     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4567   }
4568   return true;
4569 }
4570 
4571 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4572   Node* n;
4573   n = mm->in(idx);
4574   if (mem == n)  return true;  // might be empty_memory()
4575   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4576   if (mem == n)  return true;
4577   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4578     if (mem == n)  return true;
4579     if (n == NULL)  break;
4580   }
4581   return false;
4582 }
4583 #endif // !PRODUCT