1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "oops/valueArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/subnode.hpp"
  38 #include "opto/valuetypenode.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 
  42 //=============================================================================
  43 // Helper methods for _get* and _put* bytecodes
  44 //=============================================================================
  45 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  46   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  47   // Better to check now than to Deoptimize as soon as we execute
  48   assert( field->is_static(), "Only check if field is static");
  49   // is_being_initialized() is too generous.  It allows access to statics
  50   // by threads that are not running the <clinit> before the <clinit> finishes.
  51   // return field->holder()->is_being_initialized();
  52 
  53   // The following restriction is correct but conservative.
  54   // It is also desirable to allow compilation of methods called from <clinit>
  55   // but this generated code will need to be made safe for execution by
  56   // other threads, or the transition from interpreted to compiled code would
  57   // need to be guarded.
  58   ciInstanceKlass *field_holder = field->holder();
  59 
  60   bool access_OK = false;
  61   if (method->holder()->is_subclass_of(field_holder)) {
  62     if (method->is_static()) {
  63       if (method->name() == ciSymbol::class_initializer_name()) {
  64         // OK to access static fields inside initializer
  65         access_OK = true;
  66       }
  67     } else {
  68       if (method->name() == ciSymbol::object_initializer_name()) {
  69         // It's also OK to access static fields inside a constructor,
  70         // because any thread calling the constructor must first have
  71         // synchronized on the class by executing a '_new' bytecode.
  72         access_OK = true;
  73       }
  74     }
  75   }
  76 
  77   return access_OK;
  78 
  79 }
  80 
  81 
  82 void Parse::do_field_access(bool is_get, bool is_field) {
  83   bool will_link;
  84   ciField* field = iter().get_field(will_link);
  85   assert(will_link, "getfield: typeflow responsibility");
  86 
  87   ciInstanceKlass* field_holder = field->holder();
  88 
  89   if (is_field && field_holder->is_valuetype()) {
  90     assert(is_get, "value type field store not supported");
  91     BasicType bt = field->layout_type();
  92     ValueTypeNode* vt = pop()->as_ValueType();
  93     Node* value = vt->field_value_by_offset(field->offset());
  94     push_node(bt, value);
  95     return;
  96   }
  97 
  98   if (is_field == field->is_static()) {
  99     // Interpreter will throw java_lang_IncompatibleClassChangeError
 100     // Check this before allowing <clinit> methods to access static fields
 101     uncommon_trap(Deoptimization::Reason_unhandled,
 102                   Deoptimization::Action_none);
 103     return;
 104   }
 105 
 106   if (!is_field && !field_holder->is_initialized()) {
 107     if (!static_field_ok_in_clinit(field, method())) {
 108       uncommon_trap(Deoptimization::Reason_uninitialized,
 109                     Deoptimization::Action_reinterpret,
 110                     NULL, "!static_field_ok_in_clinit");
 111       return;
 112     }
 113   }
 114 
 115   // Deoptimize on putfield writes to call site target field.
 116   if (!is_get && field->is_call_site_target()) {
 117     uncommon_trap(Deoptimization::Reason_unhandled,
 118                   Deoptimization::Action_reinterpret,
 119                   NULL, "put to call site target field");
 120     return;
 121   }
 122 
 123   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 124 
 125   // Note:  We do not check for an unloaded field type here any more.
 126 
 127   // Generate code for the object pointer.
 128   Node* obj;
 129   if (is_field) {
 130     int obj_depth = is_get ? 0 : field->type()->size();
 131     obj = null_check(peek(obj_depth));
 132     // Compile-time detect of null-exception?
 133     if (stopped())  return;
 134 
 135 #ifdef ASSERT
 136     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 137     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 138 #endif
 139 
 140     if (is_get) {
 141       (void) pop();  // pop receiver before getting
 142       do_get_xxx(obj, field, is_field);
 143     } else {
 144       do_put_xxx(obj, field, is_field);
 145       (void) pop();  // pop receiver after putting
 146     }
 147   } else {
 148     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 149     obj = _gvn.makecon(tip);
 150     if (is_get) {
 151       do_get_xxx(obj, field, is_field);
 152     } else {
 153       do_put_xxx(obj, field, is_field);
 154     }
 155   }
 156 }
 157 
 158 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
 159   BasicType bt = field->layout_type();
 160 
 161   // Does this field have a constant value?  If so, just push the value.
 162   if (field->is_constant() &&
 163       // Keep consistent with types found by ciTypeFlow: for an
 164       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
 165       // speculates the field is null. The code in the rest of this
 166       // method does the same. We must not bypass it and use a non
 167       // null constant here.
 168       (bt != T_OBJECT || field->type()->is_loaded())) {
 169     // final or stable field
 170     Node* con = make_constant_from_field(field, obj);
 171     if (con != NULL) {
 172       push_node(field->layout_type(), con);
 173       return;
 174     }
 175   }
 176 
 177   ciType* field_klass = field->type();
 178   bool is_vol = field->is_volatile();
 179   bool flattened = field->is_flattened();
 180 
 181   // Compute address and memory type.
 182   int offset = field->offset_in_bytes();
 183   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 184   Node *adr = basic_plus_adr(obj, obj, offset);
 185 
 186   // Build the resultant type of the load
 187   const Type *type;
 188 
 189   bool must_assert_null = false;
 190   if (bt == T_OBJECT || bt == T_VALUETYPE) {
 191     if (!field->type()->is_loaded()) {
 192       type = TypeInstPtr::BOTTOM;
 193       must_assert_null = true;
 194     } else if (field->is_static_constant()) {
 195       // This can happen if the constant oop is non-perm.
 196       ciObject* con = field->constant_value().as_object();
 197       // Do not "join" in the previous type; it doesn't add value,
 198       // and may yield a vacuous result if the field is of interface type.
 199       if (con->is_null_object()) {
 200         type = TypePtr::NULL_PTR;
 201       } else {
 202         type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 203       }
 204       assert(type != NULL, "field singleton type must be consistent");
 205     } else {
 206       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 207       if (bt == T_VALUETYPE && !flattened) {
 208         // A non-flattened value type field may be NULL
 209         bool maybe_null = true;
 210         if (field->is_static()) {
 211           // Check if static field is already initialized
 212           ciInstance* mirror = field->holder()->java_mirror();
 213           ciObject* val = mirror->field_value(field).as_object();
 214           if (!val->is_null_object()) {
 215             maybe_null = false;
 216           }
 217         }
 218         if (maybe_null) {
 219           type = type->is_valuetypeptr()->cast_to_ptr_type(TypePtr::BotPTR);
 220         }
 221       }
 222     }
 223   } else {
 224     type = Type::get_const_basic_type(bt);
 225   }
 226   if (support_IRIW_for_not_multiple_copy_atomic_cpu && field->is_volatile()) {
 227     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
 228   }
 229 
 230   // Build the load.
 231   //
 232   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
 233   bool needs_atomic_access = is_vol || AlwaysAtomicAccesses;
 234   Node* ld = NULL;
 235    if (flattened) {
 236     // Load flattened value type
 237     ld = ValueTypeNode::make(this, field_klass->as_value_klass(), obj, obj, field->holder(), offset);
 238   } else {
 239     ld = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, needs_atomic_access);
 240   }
 241 
 242   // Adjust Java stack
 243   if (type2size[bt] == 1)
 244     push(ld);
 245   else
 246     push_pair(ld);
 247 
 248   if (must_assert_null) {
 249     // Do not take a trap here.  It's possible that the program
 250     // will never load the field's class, and will happily see
 251     // null values in this field forever.  Don't stumble into a
 252     // trap for such a program, or we might get a long series
 253     // of useless recompilations.  (Or, we might load a class
 254     // which should not be loaded.)  If we ever see a non-null
 255     // value, we will then trap and recompile.  (The trap will
 256     // not need to mention the class index, since the class will
 257     // already have been loaded if we ever see a non-null value.)
 258     // uncommon_trap(iter().get_field_signature_index());
 259     if (PrintOpto && (Verbose || WizardMode)) {
 260       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 261     }
 262     if (C->log() != NULL) {
 263       C->log()->elem("assert_null reason='field' klass='%d'",
 264                      C->log()->identify(field->type()));
 265     }
 266     // If there is going to be a trap, put it at the next bytecode:
 267     set_bci(iter().next_bci());
 268     null_assert(peek());
 269     set_bci(iter().cur_bci()); // put it back
 270   }
 271 
 272   // If reference is volatile, prevent following memory ops from
 273   // floating up past the volatile read.  Also prevents commoning
 274   // another volatile read.
 275   if (field->is_volatile()) {
 276     // Memory barrier includes bogus read of value to force load BEFORE membar
 277     insert_mem_bar(Op_MemBarAcquire, ld);
 278   }
 279 }
 280 
 281 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
 282   bool is_vol = field->is_volatile();
 283   bool is_flattened = field->is_flattened();
 284   // If reference is volatile, prevent following memory ops from
 285   // floating down past the volatile write.  Also prevents commoning
 286   // another volatile read.
 287   if (is_vol)  insert_mem_bar(Op_MemBarRelease);
 288 
 289   // Compute address and memory type.
 290   int offset = field->offset_in_bytes();
 291   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 292   Node* adr = basic_plus_adr(obj, obj, offset);
 293   BasicType bt = field->layout_type();
 294   // Value to be stored
 295   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 296   // Round doubles before storing
 297   if (bt == T_DOUBLE)  val = dstore_rounding(val);
 298 
 299   // Conservatively release stores of object references.
 300   const MemNode::MemOrd mo =
 301     is_vol ?
 302     // Volatile fields need releasing stores.
 303     MemNode::release :
 304     // Non-volatile fields also need releasing stores if they hold an
 305     // object reference, because the object reference might point to
 306     // a freshly created object.
 307     StoreNode::release_if_reference(bt);
 308 
 309   // Store the value.
 310   if (bt == T_OBJECT || bt == T_VALUETYPE) {
 311     const TypeOopPtr* field_type;
 312     if (!field->type()->is_loaded()) {
 313       field_type = TypeInstPtr::BOTTOM;
 314     } else {
 315       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 316     }
 317     if (is_flattened) {
 318       // Store flattened value type to a non-static field
 319       assert(bt == T_VALUETYPE, "flattening is only supported for value type fields");
 320       val->as_ValueType()->store_flattened(this, obj, obj, field->holder(), offset);
 321     } else {
 322       if (bt == T_VALUETYPE) {
 323         field_type = field_type->cast_to_ptr_type(TypePtr::BotPTR)->is_oopptr();
 324       }
 325       store_oop_to_object(control(), obj, adr, adr_type, val, field_type, bt, mo);
 326     }
 327   } else {
 328     bool needs_atomic_access = is_vol || AlwaysAtomicAccesses;
 329     store_to_memory(control(), adr, val, bt, adr_type, mo, needs_atomic_access);
 330   }
 331 
 332   // If reference is volatile, prevent following volatiles ops from
 333   // floating up before the volatile write.
 334   if (is_vol) {
 335     // If not multiple copy atomic, we do the MemBarVolatile before the load.
 336     if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
 337       insert_mem_bar(Op_MemBarVolatile); // Use fat membar
 338     }
 339     // Remember we wrote a volatile field.
 340     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
 341     // in constructors which have such stores. See do_exits() in parse1.cpp.
 342     if (is_field) {
 343       set_wrote_volatile(true);
 344     }
 345   }
 346 
 347   if (is_field) {
 348     set_wrote_fields(true);
 349   }
 350 
 351   // If the field is final, the rules of Java say we are in <init> or <clinit>.
 352   // Note the presence of writes to final non-static fields, so that we
 353   // can insert a memory barrier later on to keep the writes from floating
 354   // out of the constructor.
 355   // Any method can write a @Stable field; insert memory barriers after those also.
 356   if (is_field && (field->is_final() || field->is_stable())) {
 357     if (field->is_final()) {
 358         set_wrote_final(true);
 359     }
 360     if (field->is_stable()) {
 361         set_wrote_stable(true);
 362     }
 363 
 364     // Preserve allocation ptr to create precedent edge to it in membar
 365     // generated on exit from constructor.
 366     // Can't bind stable with its allocation, only record allocation for final field.
 367     if (field->is_final() && AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
 368       set_alloc_with_final(obj);
 369     }
 370   }
 371 }
 372 
 373 //=============================================================================
 374 
 375 void Parse::do_newarray() {
 376   bool will_link;
 377   ciKlass* klass = iter().get_klass(will_link);
 378 
 379   // Uncommon Trap when class that array contains is not loaded
 380   // we need the loaded class for the rest of graph; do not
 381   // initialize the container class (see Java spec)!!!
 382   assert(will_link, "newarray: typeflow responsibility");
 383 
 384   ciArrayKlass* array_klass = ciArrayKlass::make(klass);
 385   // Check that array_klass object is loaded
 386   if (!array_klass->is_loaded()) {
 387     // Generate uncommon_trap for unloaded array_class
 388     uncommon_trap(Deoptimization::Reason_unloaded,
 389                   Deoptimization::Action_reinterpret,
 390                   array_klass);
 391     return;
 392   } else if (array_klass->element_klass() != NULL &&
 393              array_klass->element_klass()->is_valuetype() &&
 394              !array_klass->element_klass()->as_value_klass()->is_initialized()) {
 395     uncommon_trap(Deoptimization::Reason_uninitialized,
 396                   Deoptimization::Action_reinterpret,
 397                   NULL);
 398     return;
 399   }
 400 
 401   kill_dead_locals();
 402 
 403   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 404   Node* count_val = pop();
 405   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 406   push(obj);
 407 }
 408 
 409 
 410 void Parse::do_newarray(BasicType elem_type) {
 411   kill_dead_locals();
 412 
 413   Node*   count_val = pop();
 414   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 415   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 416   // Push resultant oop onto stack
 417   push(obj);
 418 }
 419 
 420 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 421 // Also handle the degenerate 1-dimensional case of anewarray.
 422 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 423   Node* length = lengths[0];
 424   assert(length != NULL, "");
 425   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 426   if (ndimensions > 1) {
 427     jint length_con = find_int_con(length, -1);
 428     guarantee(length_con >= 0, "non-constant multianewarray");
 429     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 430     const TypePtr* adr_type = TypeAryPtr::OOPS;
 431     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 432     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 433     for (jint i = 0; i < length_con; i++) {
 434       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 435       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 436       Node*    eaddr  = basic_plus_adr(array, offset);
 437       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT, MemNode::unordered);
 438     }
 439   }
 440   return array;
 441 }
 442 
 443 void Parse::do_multianewarray() {
 444   int ndimensions = iter().get_dimensions();
 445 
 446   // the m-dimensional array
 447   bool will_link;
 448   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 449   assert(will_link, "multianewarray: typeflow responsibility");
 450 
 451   // Note:  Array classes are always initialized; no is_initialized check.
 452 
 453   kill_dead_locals();
 454 
 455   // get the lengths from the stack (first dimension is on top)
 456   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
 457   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 458   int j;
 459   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 460 
 461   // The original expression was of this form: new T[length0][length1]...
 462   // It is often the case that the lengths are small (except the last).
 463   // If that happens, use the fast 1-d creator a constant number of times.
 464   const jint expand_limit = MIN2((jint)MultiArrayExpandLimit, 100);
 465   jint expand_count = 1;        // count of allocations in the expansion
 466   jint expand_fanout = 1;       // running total fanout
 467   for (j = 0; j < ndimensions-1; j++) {
 468     jint dim_con = find_int_con(length[j], -1);
 469     expand_fanout *= dim_con;
 470     expand_count  += expand_fanout; // count the level-J sub-arrays
 471     if (dim_con <= 0
 472         || dim_con > expand_limit
 473         || expand_count > expand_limit) {
 474       expand_count = 0;
 475       break;
 476     }
 477   }
 478 
 479   // Can use multianewarray instead of [a]newarray if only one dimension,
 480   // or if all non-final dimensions are small constants.
 481   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 482     Node* obj = NULL;
 483     // Set the original stack and the reexecute bit for the interpreter
 484     // to reexecute the multianewarray bytecode if deoptimization happens.
 485     // Do it unconditionally even for one dimension multianewarray.
 486     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 487     // when AllocateArray node for newarray is created.
 488     { PreserveReexecuteState preexecs(this);
 489       inc_sp(ndimensions);
 490       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 491       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 492     } //original reexecute and sp are set back here
 493     push(obj);
 494     return;
 495   }
 496 
 497   address fun = NULL;
 498   switch (ndimensions) {
 499   case 1: ShouldNotReachHere(); break;
 500   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 501   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 502   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 503   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 504   };
 505   Node* c = NULL;
 506 
 507   if (fun != NULL) {
 508     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 509                           OptoRuntime::multianewarray_Type(ndimensions),
 510                           fun, NULL, TypeRawPtr::BOTTOM,
 511                           makecon(TypeKlassPtr::make(array_klass)),
 512                           length[0], length[1], length[2],
 513                           (ndimensions > 2) ? length[3] : NULL,
 514                           (ndimensions > 3) ? length[4] : NULL);
 515   } else {
 516     // Create a java array for dimension sizes
 517     Node* dims = NULL;
 518     { PreserveReexecuteState preexecs(this);
 519       inc_sp(ndimensions);
 520       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
 521       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
 522 
 523       // Fill-in it with values
 524       for (j = 0; j < ndimensions; j++) {
 525         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
 526         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
 527       }
 528     }
 529 
 530     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 531                           OptoRuntime::multianewarrayN_Type(),
 532                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
 533                           makecon(TypeKlassPtr::make(array_klass)),
 534                           dims);
 535   }
 536   make_slow_call_ex(c, env()->Throwable_klass(), false);
 537 
 538   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
 539 
 540   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 541 
 542   // Improve the type:  We know it's not null, exact, and of a given length.
 543   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 544   type = type->is_aryptr()->cast_to_exactness(true);
 545 
 546   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 547   if (ltype != NULL)
 548     type = type->is_aryptr()->cast_to_size(ltype);
 549 
 550     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 551 
 552   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
 553   push(cast);
 554 
 555   // Possible improvements:
 556   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 557   // - Issue CastII against length[*] values, to TypeInt::POS.
 558 }
 559 
 560 void Parse::do_vbox() {
 561   // Obtain target type (from bytecodes)
 562   bool will_link;
 563   ciKlass* target_klass = iter().get_klass(will_link);
 564   guarantee(will_link, "vbox: Value-capable class must be loaded");
 565   guarantee(target_klass->is_instance_klass(), "vbox: Target class must be an instance type");
 566 
 567   // Obtain source type
 568   ValueTypeNode* vt = peek()->as_ValueType();
 569   const TypeValueType* src_type = gvn().type(vt)->isa_valuetype();
 570   guarantee(src_type != NULL, "vbox: Source type must not be null");
 571   ciValueKlass* src_vk = src_type->value_klass();
 572   guarantee(src_vk != NULL && src_vk->is_loaded() && src_vk->exact_klass(),
 573             "vbox: Source class must be a value type and must be loaded and exact");
 574 
 575   kill_dead_locals();
 576 
 577   ciInstanceKlass* target_vcc_klass = target_klass->as_instance_klass();
 578   ciInstanceKlass* src_vcc_klass = src_vk->vcc_klass();
 579 
 580   // TODO: Extend type check below if (and once) value type class hierarchies become available.
 581   // (incl. extension to support dynamic type checks).
 582   if (!src_vcc_klass->equals(target_vcc_klass)) {
 583     builtin_throw(Deoptimization::Reason_class_check);
 584     guarantee(stopped(), "A ClassCastException must be always thrown on this path");
 585     return;
 586   }
 587   guarantee(src_vk->is_valuetype(), "vbox: Target DVT must be a value type");
 588   pop();
 589 
 590   // Create new object
 591   Node* kls = makecon(TypeKlassPtr::make(target_vcc_klass));
 592   Node* obj = new_instance(kls);
 593 
 594   // Store all field values to the newly created object.
 595   // The code below relies on the assumption that the VCC has the
 596   // same memory layout as the derived value type.
 597   // TODO: Once the layout of the two is not the same, update code below.
 598   vt->as_ValueType()->store(this, obj, obj, target_vcc_klass);
 599 
 600   // Push the new object onto the stack
 601   push(obj);
 602 }
 603 
 604 void Parse::do_vunbox() {
 605   kill_dead_locals();
 606 
 607   // Check if the VCC instance is null.
 608   Node* not_null_obj = null_check(peek());
 609 
 610   // Value determined to be null at compile time
 611   if (stopped()) {
 612     return;
 613   }
 614 
 615   // Obtain target type (from bytecodes)
 616   bool will_link;
 617   ciKlass* target_klass = iter().get_klass(will_link);
 618   guarantee(will_link, "vunbox: Derived value type must be loaded");
 619   guarantee(target_klass->is_instance_klass(), "vunbox: Target class must be an instance type");
 620 
 621   // Obtain source type
 622   const TypeOopPtr* source_type = gvn().type(not_null_obj)->isa_oopptr();
 623   guarantee(source_type != NULL && source_type->klass() != NULL &&
 624             source_type->klass()->is_instance_klass() && source_type->klass()->is_loaded(),
 625             "vunbox: Source class must be an instance type and must be loaded");
 626 
 627   ciInstanceKlass* target_dvt_klass = target_klass->as_instance_klass();
 628   ciInstanceKlass* target_vcc_klass = target_dvt_klass->vcc_klass();
 629 
 630   // Check if the class of the source is a subclass of the value-capable class
 631   // corresponding to the target.
 632   // TOOD: Implement profiling of vunbox bytecodes to enable type speculation.
 633   if (target_vcc_klass == NULL || !source_type->klass()->is_subclass_of(target_vcc_klass)) {
 634     // It is obvious at compile-time that source and target are unrelated.
 635     builtin_throw(Deoptimization::Reason_class_check);
 636     guarantee(stopped(), "A ClassCastException must be always thrown on this path");
 637     return;
 638   }
 639   guarantee(target_dvt_klass->is_valuetype(), "vunbox: Target DVT must be a value type");
 640 
 641   if (!target_vcc_klass->equals(source_type->klass()) || !source_type->klass_is_exact()) {
 642     Node* exact_obj = not_null_obj;
 643     Node* slow_ctl  = type_check_receiver(exact_obj, target_vcc_klass, 1.0, &exact_obj);
 644     {
 645       PreserveJVMState pjvms(this);
 646       set_control(slow_ctl);
 647       builtin_throw(Deoptimization::Reason_class_check);
 648     }
 649     replace_in_map(not_null_obj, exact_obj);
 650     not_null_obj = exact_obj;
 651   }
 652 
 653   // Remove object from the top of the stack
 654   pop();
 655 
 656   // Create a value type node with the corresponding type
 657   ciValueKlass* vk = target_dvt_klass->as_value_klass();
 658   Node* vt = ValueTypeNode::make(this, vk, not_null_obj, not_null_obj, target_vcc_klass, vk->first_field_offset());
 659 
 660   // Push the value type onto the stack
 661   push(vt);
 662 }