1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 const Type::Offset Type::Offset::top(Type::OffsetTop);
  53 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  54 
  55 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  56   // Either is 'TOP' offset?  Return the other offset!
  57   int offset = other._offset;
  58   if (_offset == OffsetTop) return Offset(offset);
  59   if (offset == OffsetTop) return Offset(_offset);
  60   // If either is different, return 'BOTTOM' offset
  61   if (_offset != offset) return bottom;
  62   return Offset(_offset);
  63 }
  64 
  65 const Type::Offset Type::Offset::dual() const {
  66   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  67   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  68   return Offset(_offset);               // Map everything else into self
  69 }
  70 
  71 const Type::Offset Type::Offset::add(intptr_t offset) const {
  72   // Adding to 'TOP' offset?  Return 'TOP'!
  73   if (_offset == OffsetTop || offset == OffsetTop) return top;
  74   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  75   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  76   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  77   offset += (intptr_t)_offset;
  78   if (offset != (int)offset || offset == OffsetTop) return bottom;
  79 
  80   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  81   // It is possible to construct a negative offset during PhaseCCP
  82 
  83   return Offset((int)offset);        // Sum valid offsets
  84 }
  85 
  86 void Type::Offset::dump2(outputStream *st) const {
  87   if (_offset == 0) {
  88     return;
  89   } else if (_offset == OffsetTop) {
  90     st->print("+top");
  91   }
  92   else if (_offset == OffsetBot) {
  93     st->print("+bot");
  94   } else if (_offset) {
  95     st->print("+%d", _offset);
  96   }
  97 }
  98 
  99 // Array which maps compiler types to Basic Types
 100 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 101   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 102   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 103   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 104   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 105   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 106   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 107   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 108   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 109   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 110   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 111 
 112 #ifdef SPARC
 113   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 114   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 115   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 116   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 117   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 118 #elif defined(PPC64) || defined(S390)
 119   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 120   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 121   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 122   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 123   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 124 #else // all other
 125   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 126   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 127   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 128   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 129   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 130 #endif
 131   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 132   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 133   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 134   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 135   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 136   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 137   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 138   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 139   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 140   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 141   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 142   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 143   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 144   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 145   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 146   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 147   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 148   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 149   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 150   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 151 };
 152 
 153 // Map ideal registers (machine types) to ideal types
 154 const Type *Type::mreg2type[_last_machine_leaf];
 155 
 156 // Map basic types to canonical Type* pointers.
 157 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 158 
 159 // Map basic types to constant-zero Types.
 160 const Type* Type::            _zero_type[T_CONFLICT+1];
 161 
 162 // Map basic types to array-body alias types.
 163 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 164 
 165 //=============================================================================
 166 // Convenience common pre-built types.
 167 const Type *Type::ABIO;         // State-of-machine only
 168 const Type *Type::BOTTOM;       // All values
 169 const Type *Type::CONTROL;      // Control only
 170 const Type *Type::DOUBLE;       // All doubles
 171 const Type *Type::FLOAT;        // All floats
 172 const Type *Type::HALF;         // Placeholder half of doublewide type
 173 const Type *Type::MEMORY;       // Abstract store only
 174 const Type *Type::RETURN_ADDRESS;
 175 const Type *Type::TOP;          // No values in set
 176 
 177 //------------------------------get_const_type---------------------------
 178 const Type* Type::get_const_type(ciType* type) {
 179   if (type == NULL) {
 180     return NULL;
 181   } else if (type->is_primitive_type()) {
 182     return get_const_basic_type(type->basic_type());
 183   } else {
 184     return TypeOopPtr::make_from_klass(type->as_klass());
 185   }
 186 }
 187 
 188 //---------------------------array_element_basic_type---------------------------------
 189 // Mapping to the array element's basic type.
 190 BasicType Type::array_element_basic_type() const {
 191   BasicType bt = basic_type();
 192   if (bt == T_INT) {
 193     if (this == TypeInt::INT)   return T_INT;
 194     if (this == TypeInt::CHAR)  return T_CHAR;
 195     if (this == TypeInt::BYTE)  return T_BYTE;
 196     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 197     if (this == TypeInt::SHORT) return T_SHORT;
 198     return T_VOID;
 199   }
 200   return bt;
 201 }
 202 
 203 // For two instance arrays of same dimension, return the base element types.
 204 // Otherwise or if the arrays have different dimensions, return NULL.
 205 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 206                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 207 
 208   if (e1) *e1 = NULL;
 209   if (e2) *e2 = NULL;
 210   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 211   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 212 
 213   if (a1tap != NULL && a2tap != NULL) {
 214     // Handle multidimensional arrays
 215     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 216     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 217     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 218       a1tap = a1tp->is_aryptr();
 219       a2tap = a2tp->is_aryptr();
 220       a1tp = a1tap->elem()->make_ptr();
 221       a2tp = a2tap->elem()->make_ptr();
 222     }
 223     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 224       if (e1) *e1 = a1tp->is_instptr();
 225       if (e2) *e2 = a2tp->is_instptr();
 226     }
 227   }
 228 }
 229 
 230 //---------------------------get_typeflow_type---------------------------------
 231 // Import a type produced by ciTypeFlow.
 232 const Type* Type::get_typeflow_type(ciType* type) {
 233   switch (type->basic_type()) {
 234 
 235   case ciTypeFlow::StateVector::T_BOTTOM:
 236     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 237     return Type::BOTTOM;
 238 
 239   case ciTypeFlow::StateVector::T_TOP:
 240     assert(type == ciTypeFlow::StateVector::top_type(), "");
 241     return Type::TOP;
 242 
 243   case ciTypeFlow::StateVector::T_NULL:
 244     assert(type == ciTypeFlow::StateVector::null_type(), "");
 245     return TypePtr::NULL_PTR;
 246 
 247   case ciTypeFlow::StateVector::T_LONG2:
 248     // The ciTypeFlow pass pushes a long, then the half.
 249     // We do the same.
 250     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 251     return TypeInt::TOP;
 252 
 253   case ciTypeFlow::StateVector::T_DOUBLE2:
 254     // The ciTypeFlow pass pushes double, then the half.
 255     // Our convention is the same.
 256     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 257     return Type::TOP;
 258 
 259   case T_ADDRESS:
 260     assert(type->is_return_address(), "");
 261     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 262 
 263   case T_VALUETYPE:
 264     if (type == ciEnv::current()->___Value_klass()) {
 265       return TypeValueTypePtr::NOTNULL;
 266     } else {
 267       return TypeValueType::make(type->as_value_klass());
 268     }
 269 
 270   default:
 271     // make sure we did not mix up the cases:
 272     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 273     assert(type != ciTypeFlow::StateVector::top_type(), "");
 274     assert(type != ciTypeFlow::StateVector::null_type(), "");
 275     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 276     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 277     assert(!type->is_return_address(), "");
 278 
 279     return Type::get_const_type(type);
 280   }
 281 }
 282 
 283 
 284 //-----------------------make_from_constant------------------------------------
 285 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 286                                      int stable_dimension, bool is_narrow_oop,
 287                                      bool is_autobox_cache) {
 288   switch (constant.basic_type()) {
 289     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 290     case T_CHAR:     return TypeInt::make(constant.as_char());
 291     case T_BYTE:     return TypeInt::make(constant.as_byte());
 292     case T_SHORT:    return TypeInt::make(constant.as_short());
 293     case T_INT:      return TypeInt::make(constant.as_int());
 294     case T_LONG:     return TypeLong::make(constant.as_long());
 295     case T_FLOAT:    return TypeF::make(constant.as_float());
 296     case T_DOUBLE:   return TypeD::make(constant.as_double());
 297     case T_ARRAY:
 298     case T_VALUETYPE:
 299     case T_OBJECT: {
 300         // cases:
 301         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 302         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 303         // An oop is not scavengable if it is in the perm gen.
 304         const Type* con_type = NULL;
 305         ciObject* oop_constant = constant.as_object();
 306         if (oop_constant->is_null_object()) {
 307           con_type = Type::get_zero_type(T_OBJECT);
 308         } else if (require_constant || oop_constant->should_be_constant()) {
 309           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 310           if (con_type != NULL) {
 311             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 312               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 313             }
 314             if (stable_dimension > 0) {
 315               assert(FoldStableValues, "sanity");
 316               assert(!con_type->is_zero_type(), "default value for stable field");
 317               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 318             }
 319           }
 320         }
 321         if (is_narrow_oop) {
 322           con_type = con_type->make_narrowoop();
 323         }
 324         return con_type;
 325       }
 326     case T_ILLEGAL:
 327       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 328       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 329       return NULL;
 330     default:
 331       // Fall through to failure
 332       return NULL;
 333   }
 334 }
 335 
 336 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 337   BasicType conbt = con.basic_type();
 338   switch (conbt) {
 339     case T_BOOLEAN: conbt = T_BYTE;   break;
 340     case T_ARRAY:   conbt = T_OBJECT; break;
 341     case T_VALUETYPE: conbt = T_OBJECT; break;
 342     default:                          break;
 343   }
 344   switch (loadbt) {
 345     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 346     case T_NARROWOOP: loadbt = T_OBJECT; break;
 347     case T_ARRAY:     loadbt = T_OBJECT; break;
 348     case T_VALUETYPE: loadbt = T_OBJECT; break;
 349     case T_ADDRESS:   loadbt = T_OBJECT; break;
 350     default:                             break;
 351   }
 352   if (conbt == loadbt) {
 353     if (is_unsigned && conbt == T_BYTE) {
 354       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 355       return ciConstant(T_INT, con.as_int() & 0xFF);
 356     } else {
 357       return con;
 358     }
 359   }
 360   if (conbt == T_SHORT && loadbt == T_CHAR) {
 361     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 362     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 363   }
 364   return ciConstant(); // T_ILLEGAL
 365 }
 366 
 367 // Try to constant-fold a stable array element.
 368 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 369                                                    BasicType loadbt, bool is_unsigned_load) {
 370   // Decode the results of GraphKit::array_element_address.
 371   ciConstant element_value = array->element_value_by_offset(off);
 372   if (element_value.basic_type() == T_ILLEGAL) {
 373     return NULL; // wrong offset
 374   }
 375   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 376 
 377   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 378          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 379 
 380   if (con.is_valid() &&          // not a mismatched access
 381       !con.is_null_or_zero()) {  // not a default value
 382     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 383     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 384   }
 385   return NULL;
 386 }
 387 
 388 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 389   ciField* field;
 390   ciType* type = holder->java_mirror_type();
 391   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 392     // Static field
 393     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 394   } else {
 395     // Instance field
 396     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 397   }
 398   if (field == NULL) {
 399     return NULL; // Wrong offset
 400   }
 401   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 402 }
 403 
 404 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 405                                            BasicType loadbt, bool is_unsigned_load) {
 406   if (!field->is_constant()) {
 407     return NULL; // Non-constant field
 408   }
 409   ciConstant field_value;
 410   if (field->is_static()) {
 411     // final static field
 412     field_value = field->constant_value();
 413   } else if (holder != NULL) {
 414     // final or stable non-static field
 415     // Treat final non-static fields of trusted classes (classes in
 416     // java.lang.invoke and sun.invoke packages and subpackages) as
 417     // compile time constants.
 418     field_value = field->constant_value_of(holder);
 419   }
 420   if (!field_value.is_valid()) {
 421     return NULL; // Not a constant
 422   }
 423 
 424   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 425 
 426   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 427          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 428 
 429   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 430   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 431   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 432 
 433   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 434                                             stable_dimension, is_narrow_oop,
 435                                             field->is_autobox_cache());
 436   if (con_type != NULL && field->is_call_site_target()) {
 437     ciCallSite* call_site = holder->as_call_site();
 438     if (!call_site->is_constant_call_site()) {
 439       ciMethodHandle* target = con.as_object()->as_method_handle();
 440       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 441     }
 442   }
 443   return con_type;
 444 }
 445 
 446 //------------------------------make-------------------------------------------
 447 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 448 // and look for an existing copy in the type dictionary.
 449 const Type *Type::make( enum TYPES t ) {
 450   return (new Type(t))->hashcons();
 451 }
 452 
 453 //------------------------------cmp--------------------------------------------
 454 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 455   if( t1->_base != t2->_base )
 456     return 1;                   // Missed badly
 457   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 458   return !t1->eq(t2);           // Return ZERO if equal
 459 }
 460 
 461 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 462   if (!include_speculative) {
 463     return remove_speculative();
 464   }
 465   return this;
 466 }
 467 
 468 //------------------------------hash-------------------------------------------
 469 int Type::uhash( const Type *const t ) {
 470   return t->hash();
 471 }
 472 
 473 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 474 
 475 //--------------------------Initialize_shared----------------------------------
 476 void Type::Initialize_shared(Compile* current) {
 477   // This method does not need to be locked because the first system
 478   // compilations (stub compilations) occur serially.  If they are
 479   // changed to proceed in parallel, then this section will need
 480   // locking.
 481 
 482   Arena* save = current->type_arena();
 483   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 484 
 485   current->set_type_arena(shared_type_arena);
 486   _shared_type_dict =
 487     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 488                                   shared_type_arena, 128 );
 489   current->set_type_dict(_shared_type_dict);
 490 
 491   // Make shared pre-built types.
 492   CONTROL = make(Control);      // Control only
 493   TOP     = make(Top);          // No values in set
 494   MEMORY  = make(Memory);       // Abstract store only
 495   ABIO    = make(Abio);         // State-of-machine only
 496   RETURN_ADDRESS=make(Return_Address);
 497   FLOAT   = make(FloatBot);     // All floats
 498   DOUBLE  = make(DoubleBot);    // All doubles
 499   BOTTOM  = make(Bottom);       // Everything
 500   HALF    = make(Half);         // Placeholder half of doublewide type
 501 
 502   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 503   TypeF::ONE  = TypeF::make(1.0); // Float 1
 504 
 505   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 506   TypeD::ONE  = TypeD::make(1.0); // Double 1
 507 
 508   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 509   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 510   TypeInt::ONE     = TypeInt::make( 1);  //  1
 511   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 512   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 513   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 514   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 515   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 516   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 517   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 518   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 519   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 520   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 521   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 522   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 523   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 524   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 525   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 526   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 527   // CmpL is overloaded both as the bytecode computation returning
 528   // a trinary (-1,0,+1) integer result AND as an efficient long
 529   // compare returning optimizer ideal-type flags.
 530   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 531   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 532   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 533   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 534   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 535 
 536   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 537   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 538   TypeLong::ONE     = TypeLong::make( 1);        //  1
 539   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 540   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 541   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 542   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 543   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 544 
 545   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 546   fboth[0] = Type::CONTROL;
 547   fboth[1] = Type::CONTROL;
 548   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 549 
 550   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 551   ffalse[0] = Type::CONTROL;
 552   ffalse[1] = Type::TOP;
 553   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 554 
 555   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 556   fneither[0] = Type::TOP;
 557   fneither[1] = Type::TOP;
 558   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 559 
 560   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 561   ftrue[0] = Type::TOP;
 562   ftrue[1] = Type::CONTROL;
 563   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 564 
 565   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 566   floop[0] = Type::CONTROL;
 567   floop[1] = TypeInt::INT;
 568   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 569 
 570   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 571   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 572   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 573 
 574   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 575   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 576 
 577   const Type **fmembar = TypeTuple::fields(0);
 578   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 579 
 580   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 581   fsc[0] = TypeInt::CC;
 582   fsc[1] = Type::MEMORY;
 583   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 584 
 585   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 586   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 587   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 588   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 589                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 590   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 591                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 592   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 593 
 594   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 595 
 596   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 597   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 598 
 599   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 600 
 601   TypeValueTypePtr::NOTNULL = (EnableValhalla || EnableMVT) ? TypeValueTypePtr::make(TypePtr::NotNull, current->env()->___Value_klass()->as_value_klass()) : NULL;
 602 
 603   mreg2type[Op_Node] = Type::BOTTOM;
 604   mreg2type[Op_Set ] = 0;
 605   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 606   mreg2type[Op_RegI] = TypeInt::INT;
 607   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 608   mreg2type[Op_RegF] = Type::FLOAT;
 609   mreg2type[Op_RegD] = Type::DOUBLE;
 610   mreg2type[Op_RegL] = TypeLong::LONG;
 611   mreg2type[Op_RegFlags] = TypeInt::CC;
 612 
 613   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 614 
 615   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 616 
 617 #ifdef _LP64
 618   if (UseCompressedOops) {
 619     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 620     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 621   } else
 622 #endif
 623   {
 624     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 625     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 626   }
 627   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 628   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 629   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 630   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 631   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 632   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 633   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 634 
 635   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 636   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 637   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 638   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 639   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 640   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 641   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 642   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 643   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 644   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 645   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 646   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 647   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 648 
 649   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 650   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 651   TypeKlassPtr::BOTTOM = (EnableValhalla | EnableMVT) ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 652   TypeKlassPtr::VALUE = TypeKlassPtr::make(TypePtr::NotNull, current->env()->___Value_klass(), Offset(0));
 653 
 654   const Type **fi2c = TypeTuple::fields(2);
 655   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 656   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 657   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 658 
 659   const Type **intpair = TypeTuple::fields(2);
 660   intpair[0] = TypeInt::INT;
 661   intpair[1] = TypeInt::INT;
 662   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 663 
 664   const Type **longpair = TypeTuple::fields(2);
 665   longpair[0] = TypeLong::LONG;
 666   longpair[1] = TypeLong::LONG;
 667   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 668 
 669   const Type **intccpair = TypeTuple::fields(2);
 670   intccpair[0] = TypeInt::INT;
 671   intccpair[1] = TypeInt::CC;
 672   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 673 
 674   const Type **longccpair = TypeTuple::fields(2);
 675   longccpair[0] = TypeLong::LONG;
 676   longccpair[1] = TypeInt::CC;
 677   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 678 
 679   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 680   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 681   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 682   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 683   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 684   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 685   _const_basic_type[T_INT]         = TypeInt::INT;
 686   _const_basic_type[T_LONG]        = TypeLong::LONG;
 687   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 688   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 689   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 690   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 691   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 692   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 693   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 694   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 695 
 696   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 697   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 698   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 699   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 700   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 701   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 702   _zero_type[T_INT]         = TypeInt::ZERO;
 703   _zero_type[T_LONG]        = TypeLong::ZERO;
 704   _zero_type[T_FLOAT]       = TypeF::ZERO;
 705   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 706   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 707   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 708   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 709   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 710   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 711 
 712   // get_zero_type() should not happen for T_CONFLICT
 713   _zero_type[T_CONFLICT]= NULL;
 714 
 715   // Vector predefined types, it needs initialized _const_basic_type[].
 716   if (Matcher::vector_size_supported(T_BYTE,4)) {
 717     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 718   }
 719   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 720     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 721   }
 722   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 723     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 724   }
 725   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 726     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 727   }
 728   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 729     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 730   }
 731   mreg2type[Op_VecS] = TypeVect::VECTS;
 732   mreg2type[Op_VecD] = TypeVect::VECTD;
 733   mreg2type[Op_VecX] = TypeVect::VECTX;
 734   mreg2type[Op_VecY] = TypeVect::VECTY;
 735   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 736 
 737   // Restore working type arena.
 738   current->set_type_arena(save);
 739   current->set_type_dict(NULL);
 740 }
 741 
 742 //------------------------------Initialize-------------------------------------
 743 void Type::Initialize(Compile* current) {
 744   assert(current->type_arena() != NULL, "must have created type arena");
 745 
 746   if (_shared_type_dict == NULL) {
 747     Initialize_shared(current);
 748   }
 749 
 750   Arena* type_arena = current->type_arena();
 751 
 752   // Create the hash-cons'ing dictionary with top-level storage allocation
 753   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 754   current->set_type_dict(tdic);
 755 
 756   // Transfer the shared types.
 757   DictI i(_shared_type_dict);
 758   for( ; i.test(); ++i ) {
 759     Type* t = (Type*)i._value;
 760     tdic->Insert(t,t);  // New Type, insert into Type table
 761   }
 762 }
 763 
 764 //------------------------------hashcons---------------------------------------
 765 // Do the hash-cons trick.  If the Type already exists in the type table,
 766 // delete the current Type and return the existing Type.  Otherwise stick the
 767 // current Type in the Type table.
 768 const Type *Type::hashcons(void) {
 769   debug_only(base());           // Check the assertion in Type::base().
 770   // Look up the Type in the Type dictionary
 771   Dict *tdic = type_dict();
 772   Type* old = (Type*)(tdic->Insert(this, this, false));
 773   if( old ) {                   // Pre-existing Type?
 774     if( old != this )           // Yes, this guy is not the pre-existing?
 775       delete this;              // Yes, Nuke this guy
 776     assert( old->_dual, "" );
 777     return old;                 // Return pre-existing
 778   }
 779 
 780   // Every type has a dual (to make my lattice symmetric).
 781   // Since we just discovered a new Type, compute its dual right now.
 782   assert( !_dual, "" );         // No dual yet
 783   _dual = xdual();              // Compute the dual
 784   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 785     _dual = this;
 786     return this;
 787   }
 788   assert( !_dual->_dual, "" );  // No reverse dual yet
 789   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 790   // New Type, insert into Type table
 791   tdic->Insert((void*)_dual,(void*)_dual);
 792   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 793 #ifdef ASSERT
 794   Type *dual_dual = (Type*)_dual->xdual();
 795   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 796   delete dual_dual;
 797 #endif
 798   return this;                  // Return new Type
 799 }
 800 
 801 //------------------------------eq---------------------------------------------
 802 // Structural equality check for Type representations
 803 bool Type::eq( const Type * ) const {
 804   return true;                  // Nothing else can go wrong
 805 }
 806 
 807 //------------------------------hash-------------------------------------------
 808 // Type-specific hashing function.
 809 int Type::hash(void) const {
 810   return _base;
 811 }
 812 
 813 //------------------------------is_finite--------------------------------------
 814 // Has a finite value
 815 bool Type::is_finite() const {
 816   return false;
 817 }
 818 
 819 //------------------------------is_nan-----------------------------------------
 820 // Is not a number (NaN)
 821 bool Type::is_nan()    const {
 822   return false;
 823 }
 824 
 825 //----------------------interface_vs_oop---------------------------------------
 826 #ifdef ASSERT
 827 bool Type::interface_vs_oop_helper(const Type *t) const {
 828   bool result = false;
 829 
 830   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 831   const TypePtr*    t_ptr =    t->make_ptr();
 832   if( this_ptr == NULL || t_ptr == NULL )
 833     return result;
 834 
 835   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 836   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 837   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 838     bool this_interface = this_inst->klass()->is_interface();
 839     bool    t_interface =    t_inst->klass()->is_interface();
 840     result = this_interface ^ t_interface;
 841   }
 842 
 843   return result;
 844 }
 845 
 846 bool Type::interface_vs_oop(const Type *t) const {
 847   if (interface_vs_oop_helper(t)) {
 848     return true;
 849   }
 850   // Now check the speculative parts as well
 851   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 852   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 853   if (this_spec != NULL && t_spec != NULL) {
 854     if (this_spec->interface_vs_oop_helper(t_spec)) {
 855       return true;
 856     }
 857     return false;
 858   }
 859   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 860     return true;
 861   }
 862   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 863     return true;
 864   }
 865   return false;
 866 }
 867 
 868 #endif
 869 
 870 //------------------------------meet-------------------------------------------
 871 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 872 // commutative and the lattice is symmetric.
 873 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 874   if (isa_narrowoop() && t->isa_narrowoop()) {
 875     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 876     return result->make_narrowoop();
 877   }
 878   if (isa_narrowklass() && t->isa_narrowklass()) {
 879     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 880     return result->make_narrowklass();
 881   }
 882 
 883   const Type *this_t = maybe_remove_speculative(include_speculative);
 884   t = t->maybe_remove_speculative(include_speculative);
 885 
 886   const Type *mt = this_t->xmeet(t);
 887   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 888   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 889 #ifdef ASSERT
 890   assert(mt == t->xmeet(this_t), "meet not commutative");
 891   const Type* dual_join = mt->_dual;
 892   const Type *t2t    = dual_join->xmeet(t->_dual);
 893   const Type *t2this = dual_join->xmeet(this_t->_dual);
 894 
 895   // Interface meet Oop is Not Symmetric:
 896   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 897   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 898 
 899   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 900     tty->print_cr("=== Meet Not Symmetric ===");
 901     tty->print("t   =                   ");              t->dump(); tty->cr();
 902     tty->print("this=                   ");         this_t->dump(); tty->cr();
 903     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 904 
 905     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 906     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 907     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 908 
 909     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 910     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 911 
 912     fatal("meet not symmetric" );
 913   }
 914 #endif
 915   return mt;
 916 }
 917 
 918 //------------------------------xmeet------------------------------------------
 919 // Compute the MEET of two types.  It returns a new Type object.
 920 const Type *Type::xmeet( const Type *t ) const {
 921   // Perform a fast test for common case; meeting the same types together.
 922   if( this == t ) return this;  // Meeting same type-rep?
 923 
 924   // Meeting TOP with anything?
 925   if( _base == Top ) return t;
 926 
 927   // Meeting BOTTOM with anything?
 928   if( _base == Bottom ) return BOTTOM;
 929 
 930   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 931   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 932   switch (t->base()) {  // Switch on original type
 933 
 934   // Cut in half the number of cases I must handle.  Only need cases for when
 935   // the given enum "t->type" is less than or equal to the local enum "type".
 936   case FloatCon:
 937   case DoubleCon:
 938   case Int:
 939   case Long:
 940     return t->xmeet(this);
 941 
 942   case OopPtr:
 943     return t->xmeet(this);
 944 
 945   case InstPtr:
 946   case ValueTypePtr:
 947     return t->xmeet(this);
 948 
 949   case MetadataPtr:
 950   case KlassPtr:
 951     return t->xmeet(this);
 952 
 953   case AryPtr:
 954     return t->xmeet(this);
 955 
 956   case NarrowOop:
 957     return t->xmeet(this);
 958 
 959   case NarrowKlass:
 960     return t->xmeet(this);
 961 
 962   case ValueType:
 963     return t->xmeet(this);
 964 
 965   case Bad:                     // Type check
 966   default:                      // Bogus type not in lattice
 967     typerr(t);
 968     return Type::BOTTOM;
 969 
 970   case Bottom:                  // Ye Olde Default
 971     return t;
 972 
 973   case FloatTop:
 974     if( _base == FloatTop ) return this;
 975   case FloatBot:                // Float
 976     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 977     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 978     typerr(t);
 979     return Type::BOTTOM;
 980 
 981   case DoubleTop:
 982     if( _base == DoubleTop ) return this;
 983   case DoubleBot:               // Double
 984     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 985     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 986     typerr(t);
 987     return Type::BOTTOM;
 988 
 989   // These next few cases must match exactly or it is a compile-time error.
 990   case Control:                 // Control of code
 991   case Abio:                    // State of world outside of program
 992   case Memory:
 993     if( _base == t->_base )  return this;
 994     typerr(t);
 995     return Type::BOTTOM;
 996 
 997   case Top:                     // Top of the lattice
 998     return this;
 999   }
1000 
1001   // The type is unchanged
1002   return this;
1003 }
1004 
1005 //-----------------------------filter------------------------------------------
1006 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1007   const Type* ft = join_helper(kills, include_speculative);
1008   if (ft->empty())
1009     return Type::TOP;           // Canonical empty value
1010   return ft;
1011 }
1012 
1013 //------------------------------xdual------------------------------------------
1014 // Compute dual right now.
1015 const Type::TYPES Type::dual_type[Type::lastype] = {
1016   Bad,          // Bad
1017   Control,      // Control
1018   Bottom,       // Top
1019   Bad,          // Int - handled in v-call
1020   Bad,          // Long - handled in v-call
1021   Half,         // Half
1022   Bad,          // NarrowOop - handled in v-call
1023   Bad,          // NarrowKlass - handled in v-call
1024 
1025   Bad,          // Tuple - handled in v-call
1026   Bad,          // Array - handled in v-call
1027   Bad,          // VectorS - handled in v-call
1028   Bad,          // VectorD - handled in v-call
1029   Bad,          // VectorX - handled in v-call
1030   Bad,          // VectorY - handled in v-call
1031   Bad,          // VectorZ - handled in v-call
1032   Bad,          // ValueType - handled in v-call
1033 
1034   Bad,          // AnyPtr - handled in v-call
1035   Bad,          // RawPtr - handled in v-call
1036   Bad,          // OopPtr - handled in v-call
1037   Bad,          // InstPtr - handled in v-call
1038   Bad,          // ValueTypePtr - handled in v-call
1039   Bad,          // AryPtr - handled in v-call
1040 
1041   Bad,          //  MetadataPtr - handled in v-call
1042   Bad,          // KlassPtr - handled in v-call
1043 
1044   Bad,          // Function - handled in v-call
1045   Abio,         // Abio
1046   Return_Address,// Return_Address
1047   Memory,       // Memory
1048   FloatBot,     // FloatTop
1049   FloatCon,     // FloatCon
1050   FloatTop,     // FloatBot
1051   DoubleBot,    // DoubleTop
1052   DoubleCon,    // DoubleCon
1053   DoubleTop,    // DoubleBot
1054   Top           // Bottom
1055 };
1056 
1057 const Type *Type::xdual() const {
1058   // Note: the base() accessor asserts the sanity of _base.
1059   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1060   return new Type(_type_info[_base].dual_type);
1061 }
1062 
1063 //------------------------------has_memory-------------------------------------
1064 bool Type::has_memory() const {
1065   Type::TYPES tx = base();
1066   if (tx == Memory) return true;
1067   if (tx == Tuple) {
1068     const TypeTuple *t = is_tuple();
1069     for (uint i=0; i < t->cnt(); i++) {
1070       tx = t->field_at(i)->base();
1071       if (tx == Memory)  return true;
1072     }
1073   }
1074   return false;
1075 }
1076 
1077 #ifndef PRODUCT
1078 //------------------------------dump2------------------------------------------
1079 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1080   st->print("%s", _type_info[_base].msg);
1081 }
1082 
1083 //------------------------------dump-------------------------------------------
1084 void Type::dump_on(outputStream *st) const {
1085   ResourceMark rm;
1086   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1087   dump2(d,1, st);
1088   if (is_ptr_to_narrowoop()) {
1089     st->print(" [narrow]");
1090   } else if (is_ptr_to_narrowklass()) {
1091     st->print(" [narrowklass]");
1092   }
1093 }
1094 
1095 //-----------------------------------------------------------------------------
1096 const char* Type::str(const Type* t) {
1097   stringStream ss;
1098   t->dump_on(&ss);
1099   return ss.as_string();
1100 }
1101 #endif
1102 
1103 //------------------------------singleton--------------------------------------
1104 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1105 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1106 bool Type::singleton(void) const {
1107   return _base == Top || _base == Half;
1108 }
1109 
1110 //------------------------------empty------------------------------------------
1111 // TRUE if Type is a type with no values, FALSE otherwise.
1112 bool Type::empty(void) const {
1113   switch (_base) {
1114   case DoubleTop:
1115   case FloatTop:
1116   case Top:
1117     return true;
1118 
1119   case Half:
1120   case Abio:
1121   case Return_Address:
1122   case Memory:
1123   case Bottom:
1124   case FloatBot:
1125   case DoubleBot:
1126     return false;  // never a singleton, therefore never empty
1127 
1128   default:
1129     ShouldNotReachHere();
1130     return false;
1131   }
1132 }
1133 
1134 //------------------------------dump_stats-------------------------------------
1135 // Dump collected statistics to stderr
1136 #ifndef PRODUCT
1137 void Type::dump_stats() {
1138   tty->print("Types made: %d\n", type_dict()->Size());
1139 }
1140 #endif
1141 
1142 //------------------------------typerr-----------------------------------------
1143 void Type::typerr( const Type *t ) const {
1144 #ifndef PRODUCT
1145   tty->print("\nError mixing types: ");
1146   dump();
1147   tty->print(" and ");
1148   t->dump();
1149   tty->print("\n");
1150 #endif
1151   ShouldNotReachHere();
1152 }
1153 
1154 
1155 //=============================================================================
1156 // Convenience common pre-built types.
1157 const TypeF *TypeF::ZERO;       // Floating point zero
1158 const TypeF *TypeF::ONE;        // Floating point one
1159 
1160 //------------------------------make-------------------------------------------
1161 // Create a float constant
1162 const TypeF *TypeF::make(float f) {
1163   return (TypeF*)(new TypeF(f))->hashcons();
1164 }
1165 
1166 //------------------------------meet-------------------------------------------
1167 // Compute the MEET of two types.  It returns a new Type object.
1168 const Type *TypeF::xmeet( const Type *t ) const {
1169   // Perform a fast test for common case; meeting the same types together.
1170   if( this == t ) return this;  // Meeting same type-rep?
1171 
1172   // Current "this->_base" is FloatCon
1173   switch (t->base()) {          // Switch on original type
1174   case AnyPtr:                  // Mixing with oops happens when javac
1175   case RawPtr:                  // reuses local variables
1176   case OopPtr:
1177   case InstPtr:
1178   case ValueTypePtr:
1179   case AryPtr:
1180   case MetadataPtr:
1181   case KlassPtr:
1182   case NarrowOop:
1183   case NarrowKlass:
1184   case Int:
1185   case Long:
1186   case DoubleTop:
1187   case DoubleCon:
1188   case DoubleBot:
1189   case Bottom:                  // Ye Olde Default
1190     return Type::BOTTOM;
1191 
1192   case FloatBot:
1193     return t;
1194 
1195   default:                      // All else is a mistake
1196     typerr(t);
1197 
1198   case FloatCon:                // Float-constant vs Float-constant?
1199     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1200                                 // must compare bitwise as positive zero, negative zero and NaN have
1201                                 // all the same representation in C++
1202       return FLOAT;             // Return generic float
1203                                 // Equal constants
1204   case Top:
1205   case FloatTop:
1206     break;                      // Return the float constant
1207   }
1208   return this;                  // Return the float constant
1209 }
1210 
1211 //------------------------------xdual------------------------------------------
1212 // Dual: symmetric
1213 const Type *TypeF::xdual() const {
1214   return this;
1215 }
1216 
1217 //------------------------------eq---------------------------------------------
1218 // Structural equality check for Type representations
1219 bool TypeF::eq(const Type *t) const {
1220   // Bitwise comparison to distinguish between +/-0. These values must be treated
1221   // as different to be consistent with C1 and the interpreter.
1222   return (jint_cast(_f) == jint_cast(t->getf()));
1223 }
1224 
1225 //------------------------------hash-------------------------------------------
1226 // Type-specific hashing function.
1227 int TypeF::hash(void) const {
1228   return *(int*)(&_f);
1229 }
1230 
1231 //------------------------------is_finite--------------------------------------
1232 // Has a finite value
1233 bool TypeF::is_finite() const {
1234   return g_isfinite(getf()) != 0;
1235 }
1236 
1237 //------------------------------is_nan-----------------------------------------
1238 // Is not a number (NaN)
1239 bool TypeF::is_nan()    const {
1240   return g_isnan(getf()) != 0;
1241 }
1242 
1243 //------------------------------dump2------------------------------------------
1244 // Dump float constant Type
1245 #ifndef PRODUCT
1246 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1247   Type::dump2(d,depth, st);
1248   st->print("%f", _f);
1249 }
1250 #endif
1251 
1252 //------------------------------singleton--------------------------------------
1253 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1254 // constants (Ldi nodes).  Singletons are integer, float or double constants
1255 // or a single symbol.
1256 bool TypeF::singleton(void) const {
1257   return true;                  // Always a singleton
1258 }
1259 
1260 bool TypeF::empty(void) const {
1261   return false;                 // always exactly a singleton
1262 }
1263 
1264 //=============================================================================
1265 // Convenience common pre-built types.
1266 const TypeD *TypeD::ZERO;       // Floating point zero
1267 const TypeD *TypeD::ONE;        // Floating point one
1268 
1269 //------------------------------make-------------------------------------------
1270 const TypeD *TypeD::make(double d) {
1271   return (TypeD*)(new TypeD(d))->hashcons();
1272 }
1273 
1274 //------------------------------meet-------------------------------------------
1275 // Compute the MEET of two types.  It returns a new Type object.
1276 const Type *TypeD::xmeet( const Type *t ) const {
1277   // Perform a fast test for common case; meeting the same types together.
1278   if( this == t ) return this;  // Meeting same type-rep?
1279 
1280   // Current "this->_base" is DoubleCon
1281   switch (t->base()) {          // Switch on original type
1282   case AnyPtr:                  // Mixing with oops happens when javac
1283   case RawPtr:                  // reuses local variables
1284   case OopPtr:
1285   case InstPtr:
1286   case ValueTypePtr:
1287   case AryPtr:
1288   case MetadataPtr:
1289   case KlassPtr:
1290   case NarrowOop:
1291   case NarrowKlass:
1292   case Int:
1293   case Long:
1294   case FloatTop:
1295   case FloatCon:
1296   case FloatBot:
1297   case Bottom:                  // Ye Olde Default
1298     return Type::BOTTOM;
1299 
1300   case DoubleBot:
1301     return t;
1302 
1303   default:                      // All else is a mistake
1304     typerr(t);
1305 
1306   case DoubleCon:               // Double-constant vs Double-constant?
1307     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1308       return DOUBLE;            // Return generic double
1309   case Top:
1310   case DoubleTop:
1311     break;
1312   }
1313   return this;                  // Return the double constant
1314 }
1315 
1316 //------------------------------xdual------------------------------------------
1317 // Dual: symmetric
1318 const Type *TypeD::xdual() const {
1319   return this;
1320 }
1321 
1322 //------------------------------eq---------------------------------------------
1323 // Structural equality check for Type representations
1324 bool TypeD::eq(const Type *t) const {
1325   // Bitwise comparison to distinguish between +/-0. These values must be treated
1326   // as different to be consistent with C1 and the interpreter.
1327   return (jlong_cast(_d) == jlong_cast(t->getd()));
1328 }
1329 
1330 //------------------------------hash-------------------------------------------
1331 // Type-specific hashing function.
1332 int TypeD::hash(void) const {
1333   return *(int*)(&_d);
1334 }
1335 
1336 //------------------------------is_finite--------------------------------------
1337 // Has a finite value
1338 bool TypeD::is_finite() const {
1339   return g_isfinite(getd()) != 0;
1340 }
1341 
1342 //------------------------------is_nan-----------------------------------------
1343 // Is not a number (NaN)
1344 bool TypeD::is_nan()    const {
1345   return g_isnan(getd()) != 0;
1346 }
1347 
1348 //------------------------------dump2------------------------------------------
1349 // Dump double constant Type
1350 #ifndef PRODUCT
1351 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1352   Type::dump2(d,depth,st);
1353   st->print("%f", _d);
1354 }
1355 #endif
1356 
1357 //------------------------------singleton--------------------------------------
1358 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1359 // constants (Ldi nodes).  Singletons are integer, float or double constants
1360 // or a single symbol.
1361 bool TypeD::singleton(void) const {
1362   return true;                  // Always a singleton
1363 }
1364 
1365 bool TypeD::empty(void) const {
1366   return false;                 // always exactly a singleton
1367 }
1368 
1369 //=============================================================================
1370 // Convience common pre-built types.
1371 const TypeInt *TypeInt::MINUS_1;// -1
1372 const TypeInt *TypeInt::ZERO;   // 0
1373 const TypeInt *TypeInt::ONE;    // 1
1374 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1375 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1376 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1377 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1378 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1379 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1380 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1381 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1382 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1383 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1384 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1385 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1386 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1387 const TypeInt *TypeInt::INT;    // 32-bit integers
1388 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1389 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1390 
1391 //------------------------------TypeInt----------------------------------------
1392 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1393 }
1394 
1395 //------------------------------make-------------------------------------------
1396 const TypeInt *TypeInt::make( jint lo ) {
1397   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1398 }
1399 
1400 static int normalize_int_widen( jint lo, jint hi, int w ) {
1401   // Certain normalizations keep us sane when comparing types.
1402   // The 'SMALLINT' covers constants and also CC and its relatives.
1403   if (lo <= hi) {
1404     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1405     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1406   } else {
1407     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1408     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1409   }
1410   return w;
1411 }
1412 
1413 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1414   w = normalize_int_widen(lo, hi, w);
1415   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1416 }
1417 
1418 //------------------------------meet-------------------------------------------
1419 // Compute the MEET of two types.  It returns a new Type representation object
1420 // with reference count equal to the number of Types pointing at it.
1421 // Caller should wrap a Types around it.
1422 const Type *TypeInt::xmeet( const Type *t ) const {
1423   // Perform a fast test for common case; meeting the same types together.
1424   if( this == t ) return this;  // Meeting same type?
1425 
1426   // Currently "this->_base" is a TypeInt
1427   switch (t->base()) {          // Switch on original type
1428   case AnyPtr:                  // Mixing with oops happens when javac
1429   case RawPtr:                  // reuses local variables
1430   case OopPtr:
1431   case InstPtr:
1432   case ValueTypePtr:
1433   case AryPtr:
1434   case MetadataPtr:
1435   case KlassPtr:
1436   case NarrowOop:
1437   case NarrowKlass:
1438   case Long:
1439   case FloatTop:
1440   case FloatCon:
1441   case FloatBot:
1442   case DoubleTop:
1443   case DoubleCon:
1444   case DoubleBot:
1445   case Bottom:                  // Ye Olde Default
1446     return Type::BOTTOM;
1447   default:                      // All else is a mistake
1448     typerr(t);
1449   case Top:                     // No change
1450     return this;
1451   case Int:                     // Int vs Int?
1452     break;
1453   }
1454 
1455   // Expand covered set
1456   const TypeInt *r = t->is_int();
1457   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1458 }
1459 
1460 //------------------------------xdual------------------------------------------
1461 // Dual: reverse hi & lo; flip widen
1462 const Type *TypeInt::xdual() const {
1463   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1464   return new TypeInt(_hi,_lo,w);
1465 }
1466 
1467 //------------------------------widen------------------------------------------
1468 // Only happens for optimistic top-down optimizations.
1469 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1470   // Coming from TOP or such; no widening
1471   if( old->base() != Int ) return this;
1472   const TypeInt *ot = old->is_int();
1473 
1474   // If new guy is equal to old guy, no widening
1475   if( _lo == ot->_lo && _hi == ot->_hi )
1476     return old;
1477 
1478   // If new guy contains old, then we widened
1479   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1480     // New contains old
1481     // If new guy is already wider than old, no widening
1482     if( _widen > ot->_widen ) return this;
1483     // If old guy was a constant, do not bother
1484     if (ot->_lo == ot->_hi)  return this;
1485     // Now widen new guy.
1486     // Check for widening too far
1487     if (_widen == WidenMax) {
1488       int max = max_jint;
1489       int min = min_jint;
1490       if (limit->isa_int()) {
1491         max = limit->is_int()->_hi;
1492         min = limit->is_int()->_lo;
1493       }
1494       if (min < _lo && _hi < max) {
1495         // If neither endpoint is extremal yet, push out the endpoint
1496         // which is closer to its respective limit.
1497         if (_lo >= 0 ||                 // easy common case
1498             (juint)(_lo - min) >= (juint)(max - _hi)) {
1499           // Try to widen to an unsigned range type of 31 bits:
1500           return make(_lo, max, WidenMax);
1501         } else {
1502           return make(min, _hi, WidenMax);
1503         }
1504       }
1505       return TypeInt::INT;
1506     }
1507     // Returned widened new guy
1508     return make(_lo,_hi,_widen+1);
1509   }
1510 
1511   // If old guy contains new, then we probably widened too far & dropped to
1512   // bottom.  Return the wider fellow.
1513   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1514     return old;
1515 
1516   //fatal("Integer value range is not subset");
1517   //return this;
1518   return TypeInt::INT;
1519 }
1520 
1521 //------------------------------narrow---------------------------------------
1522 // Only happens for pessimistic optimizations.
1523 const Type *TypeInt::narrow( const Type *old ) const {
1524   if (_lo >= _hi)  return this;   // already narrow enough
1525   if (old == NULL)  return this;
1526   const TypeInt* ot = old->isa_int();
1527   if (ot == NULL)  return this;
1528   jint olo = ot->_lo;
1529   jint ohi = ot->_hi;
1530 
1531   // If new guy is equal to old guy, no narrowing
1532   if (_lo == olo && _hi == ohi)  return old;
1533 
1534   // If old guy was maximum range, allow the narrowing
1535   if (olo == min_jint && ohi == max_jint)  return this;
1536 
1537   if (_lo < olo || _hi > ohi)
1538     return this;                // doesn't narrow; pretty wierd
1539 
1540   // The new type narrows the old type, so look for a "death march".
1541   // See comments on PhaseTransform::saturate.
1542   juint nrange = (juint)_hi - _lo;
1543   juint orange = (juint)ohi - olo;
1544   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1545     // Use the new type only if the range shrinks a lot.
1546     // We do not want the optimizer computing 2^31 point by point.
1547     return old;
1548   }
1549 
1550   return this;
1551 }
1552 
1553 //-----------------------------filter------------------------------------------
1554 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1555   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1556   if (ft == NULL || ft->empty())
1557     return Type::TOP;           // Canonical empty value
1558   if (ft->_widen < this->_widen) {
1559     // Do not allow the value of kill->_widen to affect the outcome.
1560     // The widen bits must be allowed to run freely through the graph.
1561     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1562   }
1563   return ft;
1564 }
1565 
1566 //------------------------------eq---------------------------------------------
1567 // Structural equality check for Type representations
1568 bool TypeInt::eq( const Type *t ) const {
1569   const TypeInt *r = t->is_int(); // Handy access
1570   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1571 }
1572 
1573 //------------------------------hash-------------------------------------------
1574 // Type-specific hashing function.
1575 int TypeInt::hash(void) const {
1576   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1577 }
1578 
1579 //------------------------------is_finite--------------------------------------
1580 // Has a finite value
1581 bool TypeInt::is_finite() const {
1582   return true;
1583 }
1584 
1585 //------------------------------dump2------------------------------------------
1586 // Dump TypeInt
1587 #ifndef PRODUCT
1588 static const char* intname(char* buf, jint n) {
1589   if (n == min_jint)
1590     return "min";
1591   else if (n < min_jint + 10000)
1592     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1593   else if (n == max_jint)
1594     return "max";
1595   else if (n > max_jint - 10000)
1596     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1597   else
1598     sprintf(buf, INT32_FORMAT, n);
1599   return buf;
1600 }
1601 
1602 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1603   char buf[40], buf2[40];
1604   if (_lo == min_jint && _hi == max_jint)
1605     st->print("int");
1606   else if (is_con())
1607     st->print("int:%s", intname(buf, get_con()));
1608   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1609     st->print("bool");
1610   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1611     st->print("byte");
1612   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1613     st->print("char");
1614   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1615     st->print("short");
1616   else if (_hi == max_jint)
1617     st->print("int:>=%s", intname(buf, _lo));
1618   else if (_lo == min_jint)
1619     st->print("int:<=%s", intname(buf, _hi));
1620   else
1621     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1622 
1623   if (_widen != 0 && this != TypeInt::INT)
1624     st->print(":%.*s", _widen, "wwww");
1625 }
1626 #endif
1627 
1628 //------------------------------singleton--------------------------------------
1629 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1630 // constants.
1631 bool TypeInt::singleton(void) const {
1632   return _lo >= _hi;
1633 }
1634 
1635 bool TypeInt::empty(void) const {
1636   return _lo > _hi;
1637 }
1638 
1639 //=============================================================================
1640 // Convenience common pre-built types.
1641 const TypeLong *TypeLong::MINUS_1;// -1
1642 const TypeLong *TypeLong::ZERO; // 0
1643 const TypeLong *TypeLong::ONE;  // 1
1644 const TypeLong *TypeLong::POS;  // >=0
1645 const TypeLong *TypeLong::LONG; // 64-bit integers
1646 const TypeLong *TypeLong::INT;  // 32-bit subrange
1647 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1648 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1649 
1650 //------------------------------TypeLong---------------------------------------
1651 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1652 }
1653 
1654 //------------------------------make-------------------------------------------
1655 const TypeLong *TypeLong::make( jlong lo ) {
1656   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1657 }
1658 
1659 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1660   // Certain normalizations keep us sane when comparing types.
1661   // The 'SMALLINT' covers constants.
1662   if (lo <= hi) {
1663     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1664     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1665   } else {
1666     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1667     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1668   }
1669   return w;
1670 }
1671 
1672 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1673   w = normalize_long_widen(lo, hi, w);
1674   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1675 }
1676 
1677 
1678 //------------------------------meet-------------------------------------------
1679 // Compute the MEET of two types.  It returns a new Type representation object
1680 // with reference count equal to the number of Types pointing at it.
1681 // Caller should wrap a Types around it.
1682 const Type *TypeLong::xmeet( const Type *t ) const {
1683   // Perform a fast test for common case; meeting the same types together.
1684   if( this == t ) return this;  // Meeting same type?
1685 
1686   // Currently "this->_base" is a TypeLong
1687   switch (t->base()) {          // Switch on original type
1688   case AnyPtr:                  // Mixing with oops happens when javac
1689   case RawPtr:                  // reuses local variables
1690   case OopPtr:
1691   case InstPtr:
1692   case ValueTypePtr:
1693   case AryPtr:
1694   case MetadataPtr:
1695   case KlassPtr:
1696   case NarrowOop:
1697   case NarrowKlass:
1698   case Int:
1699   case FloatTop:
1700   case FloatCon:
1701   case FloatBot:
1702   case DoubleTop:
1703   case DoubleCon:
1704   case DoubleBot:
1705   case Bottom:                  // Ye Olde Default
1706     return Type::BOTTOM;
1707   default:                      // All else is a mistake
1708     typerr(t);
1709   case Top:                     // No change
1710     return this;
1711   case Long:                    // Long vs Long?
1712     break;
1713   }
1714 
1715   // Expand covered set
1716   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1717   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1718 }
1719 
1720 //------------------------------xdual------------------------------------------
1721 // Dual: reverse hi & lo; flip widen
1722 const Type *TypeLong::xdual() const {
1723   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1724   return new TypeLong(_hi,_lo,w);
1725 }
1726 
1727 //------------------------------widen------------------------------------------
1728 // Only happens for optimistic top-down optimizations.
1729 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1730   // Coming from TOP or such; no widening
1731   if( old->base() != Long ) return this;
1732   const TypeLong *ot = old->is_long();
1733 
1734   // If new guy is equal to old guy, no widening
1735   if( _lo == ot->_lo && _hi == ot->_hi )
1736     return old;
1737 
1738   // If new guy contains old, then we widened
1739   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1740     // New contains old
1741     // If new guy is already wider than old, no widening
1742     if( _widen > ot->_widen ) return this;
1743     // If old guy was a constant, do not bother
1744     if (ot->_lo == ot->_hi)  return this;
1745     // Now widen new guy.
1746     // Check for widening too far
1747     if (_widen == WidenMax) {
1748       jlong max = max_jlong;
1749       jlong min = min_jlong;
1750       if (limit->isa_long()) {
1751         max = limit->is_long()->_hi;
1752         min = limit->is_long()->_lo;
1753       }
1754       if (min < _lo && _hi < max) {
1755         // If neither endpoint is extremal yet, push out the endpoint
1756         // which is closer to its respective limit.
1757         if (_lo >= 0 ||                 // easy common case
1758             ((julong)_lo - min) >= ((julong)max - _hi)) {
1759           // Try to widen to an unsigned range type of 32/63 bits:
1760           if (max >= max_juint && _hi < max_juint)
1761             return make(_lo, max_juint, WidenMax);
1762           else
1763             return make(_lo, max, WidenMax);
1764         } else {
1765           return make(min, _hi, WidenMax);
1766         }
1767       }
1768       return TypeLong::LONG;
1769     }
1770     // Returned widened new guy
1771     return make(_lo,_hi,_widen+1);
1772   }
1773 
1774   // If old guy contains new, then we probably widened too far & dropped to
1775   // bottom.  Return the wider fellow.
1776   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1777     return old;
1778 
1779   //  fatal("Long value range is not subset");
1780   // return this;
1781   return TypeLong::LONG;
1782 }
1783 
1784 //------------------------------narrow----------------------------------------
1785 // Only happens for pessimistic optimizations.
1786 const Type *TypeLong::narrow( const Type *old ) const {
1787   if (_lo >= _hi)  return this;   // already narrow enough
1788   if (old == NULL)  return this;
1789   const TypeLong* ot = old->isa_long();
1790   if (ot == NULL)  return this;
1791   jlong olo = ot->_lo;
1792   jlong ohi = ot->_hi;
1793 
1794   // If new guy is equal to old guy, no narrowing
1795   if (_lo == olo && _hi == ohi)  return old;
1796 
1797   // If old guy was maximum range, allow the narrowing
1798   if (olo == min_jlong && ohi == max_jlong)  return this;
1799 
1800   if (_lo < olo || _hi > ohi)
1801     return this;                // doesn't narrow; pretty wierd
1802 
1803   // The new type narrows the old type, so look for a "death march".
1804   // See comments on PhaseTransform::saturate.
1805   julong nrange = _hi - _lo;
1806   julong orange = ohi - olo;
1807   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1808     // Use the new type only if the range shrinks a lot.
1809     // We do not want the optimizer computing 2^31 point by point.
1810     return old;
1811   }
1812 
1813   return this;
1814 }
1815 
1816 //-----------------------------filter------------------------------------------
1817 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1818   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1819   if (ft == NULL || ft->empty())
1820     return Type::TOP;           // Canonical empty value
1821   if (ft->_widen < this->_widen) {
1822     // Do not allow the value of kill->_widen to affect the outcome.
1823     // The widen bits must be allowed to run freely through the graph.
1824     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1825   }
1826   return ft;
1827 }
1828 
1829 //------------------------------eq---------------------------------------------
1830 // Structural equality check for Type representations
1831 bool TypeLong::eq( const Type *t ) const {
1832   const TypeLong *r = t->is_long(); // Handy access
1833   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1834 }
1835 
1836 //------------------------------hash-------------------------------------------
1837 // Type-specific hashing function.
1838 int TypeLong::hash(void) const {
1839   return (int)(_lo+_hi+_widen+(int)Type::Long);
1840 }
1841 
1842 //------------------------------is_finite--------------------------------------
1843 // Has a finite value
1844 bool TypeLong::is_finite() const {
1845   return true;
1846 }
1847 
1848 //------------------------------dump2------------------------------------------
1849 // Dump TypeLong
1850 #ifndef PRODUCT
1851 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1852   if (n > x) {
1853     if (n >= x + 10000)  return NULL;
1854     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1855   } else if (n < x) {
1856     if (n <= x - 10000)  return NULL;
1857     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1858   } else {
1859     return xname;
1860   }
1861   return buf;
1862 }
1863 
1864 static const char* longname(char* buf, jlong n) {
1865   const char* str;
1866   if (n == min_jlong)
1867     return "min";
1868   else if (n < min_jlong + 10000)
1869     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1870   else if (n == max_jlong)
1871     return "max";
1872   else if (n > max_jlong - 10000)
1873     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1874   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1875     return str;
1876   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1877     return str;
1878   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1879     return str;
1880   else
1881     sprintf(buf, JLONG_FORMAT, n);
1882   return buf;
1883 }
1884 
1885 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1886   char buf[80], buf2[80];
1887   if (_lo == min_jlong && _hi == max_jlong)
1888     st->print("long");
1889   else if (is_con())
1890     st->print("long:%s", longname(buf, get_con()));
1891   else if (_hi == max_jlong)
1892     st->print("long:>=%s", longname(buf, _lo));
1893   else if (_lo == min_jlong)
1894     st->print("long:<=%s", longname(buf, _hi));
1895   else
1896     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1897 
1898   if (_widen != 0 && this != TypeLong::LONG)
1899     st->print(":%.*s", _widen, "wwww");
1900 }
1901 #endif
1902 
1903 //------------------------------singleton--------------------------------------
1904 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1905 // constants
1906 bool TypeLong::singleton(void) const {
1907   return _lo >= _hi;
1908 }
1909 
1910 bool TypeLong::empty(void) const {
1911   return _lo > _hi;
1912 }
1913 
1914 //=============================================================================
1915 // Convenience common pre-built types.
1916 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1917 const TypeTuple *TypeTuple::IFFALSE;
1918 const TypeTuple *TypeTuple::IFTRUE;
1919 const TypeTuple *TypeTuple::IFNEITHER;
1920 const TypeTuple *TypeTuple::LOOPBODY;
1921 const TypeTuple *TypeTuple::MEMBAR;
1922 const TypeTuple *TypeTuple::STORECONDITIONAL;
1923 const TypeTuple *TypeTuple::START_I2C;
1924 const TypeTuple *TypeTuple::INT_PAIR;
1925 const TypeTuple *TypeTuple::LONG_PAIR;
1926 const TypeTuple *TypeTuple::INT_CC_PAIR;
1927 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1928 
1929 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1930   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1931     ciField* f = vk->nonstatic_field_at(j);
1932     BasicType bt = f->type()->basic_type();
1933     assert(bt < T_VALUETYPE && bt >= T_BOOLEAN, "not yet supported");
1934     field_array[pos++] = Type::get_const_type(f->type());
1935     if (bt == T_LONG || bt == T_DOUBLE) {
1936       field_array[pos++] = Type::HALF;
1937     }
1938   }
1939 }
1940 
1941 //------------------------------make-------------------------------------------
1942 // Make a TypeTuple from the range of a method signature
1943 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1944   ciType* return_type = sig->return_type();
1945   return make_range(return_type, ret_vt_fields);
1946 }
1947 
1948 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool ret_vt_fields) {
1949   uint arg_cnt = 0;
1950   if (ret_vt_fields) {
1951     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1952   }
1953   if (ret_vt_fields) {
1954     ciValueKlass* vk = (ciValueKlass*)return_type;
1955     arg_cnt = vk->value_arg_slots()+1;
1956   } else {
1957     arg_cnt = return_type->size();
1958   }
1959 
1960   const Type **field_array = fields(arg_cnt);
1961   switch (return_type->basic_type()) {
1962   case T_LONG:
1963     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1964     field_array[TypeFunc::Parms+1] = Type::HALF;
1965     break;
1966   case T_DOUBLE:
1967     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1968     field_array[TypeFunc::Parms+1] = Type::HALF;
1969     break;
1970   case T_OBJECT:
1971   case T_ARRAY:
1972   case T_BOOLEAN:
1973   case T_CHAR:
1974   case T_FLOAT:
1975   case T_BYTE:
1976   case T_SHORT:
1977   case T_INT:
1978     field_array[TypeFunc::Parms] = get_const_type(return_type);
1979     break;
1980   case T_VALUETYPE:
1981     if (ret_vt_fields) {
1982       ciValueKlass* vk = (ciValueKlass*)return_type;
1983       uint pos = TypeFunc::Parms;
1984       field_array[pos] = TypePtr::BOTTOM;
1985       pos++;
1986       collect_value_fields(vk, field_array, pos);
1987     } else {
1988       field_array[TypeFunc::Parms] = get_const_type(return_type);
1989     }
1990     break;
1991   case T_VOID:
1992     break;
1993   default:
1994     ShouldNotReachHere();
1995   }
1996   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1997 }
1998 
1999 // Make a TypeTuple from the domain of a method signature
2000 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2001   uint arg_cnt = sig->size();
2002 
2003   int vt_extra = 0;
2004   if (vt_fields_as_args) {
2005     for (int i = 0; i < sig->count(); i++) {
2006       ciType* type = sig->type_at(i);
2007       if (type->basic_type() == T_VALUETYPE && type != ciEnv::current()->___Value_klass()) {
2008         assert(type->is_valuetype(), "inconsistent type");
2009         ciValueKlass* vk = (ciValueKlass*)type;
2010         vt_extra += vk->value_arg_slots()-1;
2011       }
2012     }
2013     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2014   }
2015 
2016   uint pos = TypeFunc::Parms;
2017   const Type **field_array;
2018   if (recv != NULL) {
2019     arg_cnt++;
2020     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype() &&
2021       recv != ciEnv::current()->___Value_klass();
2022     if (vt_fields_for_recv) {
2023       ciValueKlass* vk = (ciValueKlass*)recv;
2024       vt_extra += vk->value_arg_slots()-1;
2025     }
2026     field_array = fields(arg_cnt + vt_extra);
2027     // Use get_const_type here because it respects UseUniqueSubclasses:
2028     if (vt_fields_for_recv) {
2029       ciValueKlass* vk = (ciValueKlass*)recv;
2030       collect_value_fields(vk, field_array, pos);
2031     } else {
2032       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2033     }
2034   } else {
2035     field_array = fields(arg_cnt + vt_extra);
2036   }
2037 
2038   int i = 0;
2039   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2040     ciType* type = sig->type_at(i);
2041 
2042     switch (type->basic_type()) {
2043     case T_LONG:
2044       field_array[pos++] = TypeLong::LONG;
2045       field_array[pos++] = Type::HALF;
2046       break;
2047     case T_DOUBLE:
2048       field_array[pos++] = Type::DOUBLE;
2049       field_array[pos++] = Type::HALF;
2050       break;
2051     case T_OBJECT:
2052     case T_ARRAY:
2053     case T_FLOAT:
2054     case T_INT:
2055       field_array[pos++] = get_const_type(type);
2056       break;
2057     case T_BOOLEAN:
2058     case T_CHAR:
2059     case T_BYTE:
2060     case T_SHORT:
2061       field_array[pos++] = TypeInt::INT;
2062       break;
2063     case T_VALUETYPE: {
2064       assert(type->is_valuetype(), "inconsistent type");
2065       if (vt_fields_as_args && type != ciEnv::current()->___Value_klass()) {
2066         ciValueKlass* vk = (ciValueKlass*)type;
2067         collect_value_fields(vk, field_array, pos);
2068       } else {
2069         field_array[pos++] = get_const_type(type);
2070       }
2071       break;
2072     }
2073     default:
2074       ShouldNotReachHere();
2075     }
2076     i++;
2077   }
2078   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2079 
2080   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2081 }
2082 
2083 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2084   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2085 }
2086 
2087 //------------------------------fields-----------------------------------------
2088 // Subroutine call type with space allocated for argument types
2089 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2090 const Type **TypeTuple::fields( uint arg_cnt ) {
2091   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2092   flds[TypeFunc::Control  ] = Type::CONTROL;
2093   flds[TypeFunc::I_O      ] = Type::ABIO;
2094   flds[TypeFunc::Memory   ] = Type::MEMORY;
2095   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2096   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2097 
2098   return flds;
2099 }
2100 
2101 //------------------------------meet-------------------------------------------
2102 // Compute the MEET of two types.  It returns a new Type object.
2103 const Type *TypeTuple::xmeet( const Type *t ) const {
2104   // Perform a fast test for common case; meeting the same types together.
2105   if( this == t ) return this;  // Meeting same type-rep?
2106 
2107   // Current "this->_base" is Tuple
2108   switch (t->base()) {          // switch on original type
2109 
2110   case Bottom:                  // Ye Olde Default
2111     return t;
2112 
2113   default:                      // All else is a mistake
2114     typerr(t);
2115 
2116   case Tuple: {                 // Meeting 2 signatures?
2117     const TypeTuple *x = t->is_tuple();
2118     assert( _cnt == x->_cnt, "" );
2119     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2120     for( uint i=0; i<_cnt; i++ )
2121       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2122     return TypeTuple::make(_cnt,fields);
2123   }
2124   case Top:
2125     break;
2126   }
2127   return this;                  // Return the double constant
2128 }
2129 
2130 //------------------------------xdual------------------------------------------
2131 // Dual: compute field-by-field dual
2132 const Type *TypeTuple::xdual() const {
2133   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2134   for( uint i=0; i<_cnt; i++ )
2135     fields[i] = _fields[i]->dual();
2136   return new TypeTuple(_cnt,fields);
2137 }
2138 
2139 //------------------------------eq---------------------------------------------
2140 // Structural equality check for Type representations
2141 bool TypeTuple::eq( const Type *t ) const {
2142   const TypeTuple *s = (const TypeTuple *)t;
2143   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2144   for (uint i = 0; i < _cnt; i++)
2145     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2146       return false;             // Missed
2147   return true;
2148 }
2149 
2150 //------------------------------hash-------------------------------------------
2151 // Type-specific hashing function.
2152 int TypeTuple::hash(void) const {
2153   intptr_t sum = _cnt;
2154   for( uint i=0; i<_cnt; i++ )
2155     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2156   return sum;
2157 }
2158 
2159 //------------------------------dump2------------------------------------------
2160 // Dump signature Type
2161 #ifndef PRODUCT
2162 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2163   st->print("{");
2164   if( !depth || d[this] ) {     // Check for recursive print
2165     st->print("...}");
2166     return;
2167   }
2168   d.Insert((void*)this, (void*)this);   // Stop recursion
2169   if( _cnt ) {
2170     uint i;
2171     for( i=0; i<_cnt-1; i++ ) {
2172       st->print("%d:", i);
2173       _fields[i]->dump2(d, depth-1, st);
2174       st->print(", ");
2175     }
2176     st->print("%d:", i);
2177     _fields[i]->dump2(d, depth-1, st);
2178   }
2179   st->print("}");
2180 }
2181 #endif
2182 
2183 //------------------------------singleton--------------------------------------
2184 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2185 // constants (Ldi nodes).  Singletons are integer, float or double constants
2186 // or a single symbol.
2187 bool TypeTuple::singleton(void) const {
2188   return false;                 // Never a singleton
2189 }
2190 
2191 bool TypeTuple::empty(void) const {
2192   for( uint i=0; i<_cnt; i++ ) {
2193     if (_fields[i]->empty())  return true;
2194   }
2195   return false;
2196 }
2197 
2198 //=============================================================================
2199 // Convenience common pre-built types.
2200 
2201 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2202   // Certain normalizations keep us sane when comparing types.
2203   // We do not want arrayOop variables to differ only by the wideness
2204   // of their index types.  Pick minimum wideness, since that is the
2205   // forced wideness of small ranges anyway.
2206   if (size->_widen != Type::WidenMin)
2207     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2208   else
2209     return size;
2210 }
2211 
2212 //------------------------------make-------------------------------------------
2213 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2214   if (UseCompressedOops && elem->isa_oopptr()) {
2215     elem = elem->make_narrowoop();
2216   }
2217   size = normalize_array_size(size);
2218   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2219 }
2220 
2221 //------------------------------meet-------------------------------------------
2222 // Compute the MEET of two types.  It returns a new Type object.
2223 const Type *TypeAry::xmeet( const Type *t ) const {
2224   // Perform a fast test for common case; meeting the same types together.
2225   if( this == t ) return this;  // Meeting same type-rep?
2226 
2227   // Current "this->_base" is Ary
2228   switch (t->base()) {          // switch on original type
2229 
2230   case Bottom:                  // Ye Olde Default
2231     return t;
2232 
2233   default:                      // All else is a mistake
2234     typerr(t);
2235 
2236   case Array: {                 // Meeting 2 arrays?
2237     const TypeAry *a = t->is_ary();
2238     return TypeAry::make(_elem->meet_speculative(a->_elem),
2239                          _size->xmeet(a->_size)->is_int(),
2240                          _stable & a->_stable);
2241   }
2242   case Top:
2243     break;
2244   }
2245   return this;                  // Return the double constant
2246 }
2247 
2248 //------------------------------xdual------------------------------------------
2249 // Dual: compute field-by-field dual
2250 const Type *TypeAry::xdual() const {
2251   const TypeInt* size_dual = _size->dual()->is_int();
2252   size_dual = normalize_array_size(size_dual);
2253   return new TypeAry(_elem->dual(), size_dual, !_stable);
2254 }
2255 
2256 //------------------------------eq---------------------------------------------
2257 // Structural equality check for Type representations
2258 bool TypeAry::eq( const Type *t ) const {
2259   const TypeAry *a = (const TypeAry*)t;
2260   return _elem == a->_elem &&
2261     _stable == a->_stable &&
2262     _size == a->_size;
2263 }
2264 
2265 //------------------------------hash-------------------------------------------
2266 // Type-specific hashing function.
2267 int TypeAry::hash(void) const {
2268   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2269 }
2270 
2271 /**
2272  * Return same type without a speculative part in the element
2273  */
2274 const Type* TypeAry::remove_speculative() const {
2275   return make(_elem->remove_speculative(), _size, _stable);
2276 }
2277 
2278 /**
2279  * Return same type with cleaned up speculative part of element
2280  */
2281 const Type* TypeAry::cleanup_speculative() const {
2282   return make(_elem->cleanup_speculative(), _size, _stable);
2283 }
2284 
2285 /**
2286  * Return same type but with a different inline depth (used for speculation)
2287  *
2288  * @param depth  depth to meet with
2289  */
2290 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2291   if (!UseInlineDepthForSpeculativeTypes) {
2292     return this;
2293   }
2294   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2295 }
2296 
2297 //----------------------interface_vs_oop---------------------------------------
2298 #ifdef ASSERT
2299 bool TypeAry::interface_vs_oop(const Type *t) const {
2300   const TypeAry* t_ary = t->is_ary();
2301   if (t_ary) {
2302     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2303     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2304     if(this_ptr != NULL && t_ptr != NULL) {
2305       return this_ptr->interface_vs_oop(t_ptr);
2306     }
2307   }
2308   return false;
2309 }
2310 #endif
2311 
2312 //------------------------------dump2------------------------------------------
2313 #ifndef PRODUCT
2314 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2315   if (_stable)  st->print("stable:");
2316   _elem->dump2(d, depth, st);
2317   st->print("[");
2318   _size->dump2(d, depth, st);
2319   st->print("]");
2320 }
2321 #endif
2322 
2323 //------------------------------singleton--------------------------------------
2324 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2325 // constants (Ldi nodes).  Singletons are integer, float or double constants
2326 // or a single symbol.
2327 bool TypeAry::singleton(void) const {
2328   return false;                 // Never a singleton
2329 }
2330 
2331 bool TypeAry::empty(void) const {
2332   return _elem->empty() || _size->empty();
2333 }
2334 
2335 //--------------------------ary_must_be_exact----------------------------------
2336 bool TypeAry::ary_must_be_exact() const {
2337   if (!UseExactTypes)       return false;
2338   // This logic looks at the element type of an array, and returns true
2339   // if the element type is either a primitive or a final instance class.
2340   // In such cases, an array built on this ary must have no subclasses.
2341   if (_elem == BOTTOM)      return false;  // general array not exact
2342   if (_elem == TOP   )      return false;  // inverted general array not exact
2343   const TypeOopPtr*  toop = NULL;
2344   if (UseCompressedOops && _elem->isa_narrowoop()) {
2345     toop = _elem->make_ptr()->isa_oopptr();
2346   } else {
2347     toop = _elem->isa_oopptr();
2348   }
2349   if (!toop)                return true;   // a primitive type, like int
2350   ciKlass* tklass = toop->klass();
2351   if (tklass == NULL)       return false;  // unloaded class
2352   if (!tklass->is_loaded()) return false;  // unloaded class
2353   const TypeInstPtr* tinst;
2354   if (_elem->isa_narrowoop())
2355     tinst = _elem->make_ptr()->isa_instptr();
2356   else
2357     tinst = _elem->isa_instptr();
2358   if (tinst)
2359     return tklass->as_instance_klass()->is_final();
2360   const TypeAryPtr*  tap;
2361   if (_elem->isa_narrowoop())
2362     tap = _elem->make_ptr()->isa_aryptr();
2363   else
2364     tap = _elem->isa_aryptr();
2365   if (tap)
2366     return tap->ary()->ary_must_be_exact();
2367   return false;
2368 }
2369 
2370 //==============================TypeValueType=======================================
2371 
2372 //------------------------------make-------------------------------------------
2373 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2374   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2375 }
2376 
2377 //------------------------------meet-------------------------------------------
2378 // Compute the MEET of two types.  It returns a new Type object.
2379 const Type* TypeValueType::xmeet(const Type* t) const {
2380   // Perform a fast test for common case; meeting the same types together.
2381   if(this == t) return this;  // Meeting same type-rep?
2382 
2383   // Current "this->_base" is ValueType
2384   switch (t->base()) {          // switch on original type
2385 
2386   case Top:
2387     break;
2388 
2389   case Bottom:
2390     return t;
2391 
2392   default:                      // All else is a mistake
2393     typerr(t);
2394 
2395   }
2396   return this;
2397 }
2398 
2399 //------------------------------xdual------------------------------------------
2400 const Type* TypeValueType::xdual() const {
2401   // FIXME
2402   return new TypeValueType(_vk);
2403 }
2404 
2405 //------------------------------eq---------------------------------------------
2406 // Structural equality check for Type representations
2407 bool TypeValueType::eq(const Type* t) const {
2408   const TypeValueType* vt = t->is_valuetype();
2409   return (_vk == vt->value_klass());
2410 }
2411 
2412 //------------------------------hash-------------------------------------------
2413 // Type-specific hashing function.
2414 int TypeValueType::hash(void) const {
2415   return (intptr_t)_vk;
2416 }
2417 
2418 //------------------------------singleton--------------------------------------
2419 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2420 bool TypeValueType::singleton(void) const {
2421   // FIXME
2422   return false;
2423 }
2424 
2425 //------------------------------empty------------------------------------------
2426 // TRUE if Type is a type with no values, FALSE otherwise.
2427 bool TypeValueType::empty(void) const {
2428   // FIXME
2429   return false;
2430 }
2431 
2432 //------------------------------dump2------------------------------------------
2433 #ifndef PRODUCT
2434 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2435   st->print("valuetype[%d]:{", _vk->field_count());
2436   st->print("%s", _vk->field_count() != 0 ? _vk->field_type_by_index(0)->name() : "empty");
2437   for (int i = 1; i < _vk->field_count(); ++i) {
2438     st->print(", %s", _vk->field_type_by_index(i)->name());
2439   }
2440   st->print("}");
2441 }
2442 #endif
2443 
2444 //==============================TypeVect=======================================
2445 // Convenience common pre-built types.
2446 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2447 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2448 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2449 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2450 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2451 
2452 //------------------------------make-------------------------------------------
2453 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2454   BasicType elem_bt = elem->array_element_basic_type();
2455   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2456   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2457   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2458   int size = length * type2aelembytes(elem_bt);
2459   switch (Matcher::vector_ideal_reg(size)) {
2460   case Op_VecS:
2461     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2462   case Op_RegL:
2463   case Op_VecD:
2464   case Op_RegD:
2465     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2466   case Op_VecX:
2467     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2468   case Op_VecY:
2469     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2470   case Op_VecZ:
2471     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2472   }
2473  ShouldNotReachHere();
2474   return NULL;
2475 }
2476 
2477 //------------------------------meet-------------------------------------------
2478 // Compute the MEET of two types.  It returns a new Type object.
2479 const Type *TypeVect::xmeet( const Type *t ) const {
2480   // Perform a fast test for common case; meeting the same types together.
2481   if( this == t ) return this;  // Meeting same type-rep?
2482 
2483   // Current "this->_base" is Vector
2484   switch (t->base()) {          // switch on original type
2485 
2486   case Bottom:                  // Ye Olde Default
2487     return t;
2488 
2489   default:                      // All else is a mistake
2490     typerr(t);
2491 
2492   case VectorS:
2493   case VectorD:
2494   case VectorX:
2495   case VectorY:
2496   case VectorZ: {                // Meeting 2 vectors?
2497     const TypeVect* v = t->is_vect();
2498     assert(  base() == v->base(), "");
2499     assert(length() == v->length(), "");
2500     assert(element_basic_type() == v->element_basic_type(), "");
2501     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2502   }
2503   case Top:
2504     break;
2505   }
2506   return this;
2507 }
2508 
2509 //------------------------------xdual------------------------------------------
2510 // Dual: compute field-by-field dual
2511 const Type *TypeVect::xdual() const {
2512   return new TypeVect(base(), _elem->dual(), _length);
2513 }
2514 
2515 //------------------------------eq---------------------------------------------
2516 // Structural equality check for Type representations
2517 bool TypeVect::eq(const Type *t) const {
2518   const TypeVect *v = t->is_vect();
2519   return (_elem == v->_elem) && (_length == v->_length);
2520 }
2521 
2522 //------------------------------hash-------------------------------------------
2523 // Type-specific hashing function.
2524 int TypeVect::hash(void) const {
2525   return (intptr_t)_elem + (intptr_t)_length;
2526 }
2527 
2528 //------------------------------singleton--------------------------------------
2529 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2530 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2531 // constant value (when vector is created with Replicate code).
2532 bool TypeVect::singleton(void) const {
2533 // There is no Con node for vectors yet.
2534 //  return _elem->singleton();
2535   return false;
2536 }
2537 
2538 bool TypeVect::empty(void) const {
2539   return _elem->empty();
2540 }
2541 
2542 //------------------------------dump2------------------------------------------
2543 #ifndef PRODUCT
2544 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2545   switch (base()) {
2546   case VectorS:
2547     st->print("vectors["); break;
2548   case VectorD:
2549     st->print("vectord["); break;
2550   case VectorX:
2551     st->print("vectorx["); break;
2552   case VectorY:
2553     st->print("vectory["); break;
2554   case VectorZ:
2555     st->print("vectorz["); break;
2556   default:
2557     ShouldNotReachHere();
2558   }
2559   st->print("%d]:{", _length);
2560   _elem->dump2(d, depth, st);
2561   st->print("}");
2562 }
2563 #endif
2564 
2565 
2566 //=============================================================================
2567 // Convenience common pre-built types.
2568 const TypePtr *TypePtr::NULL_PTR;
2569 const TypePtr *TypePtr::NOTNULL;
2570 const TypePtr *TypePtr::BOTTOM;
2571 
2572 //------------------------------meet-------------------------------------------
2573 // Meet over the PTR enum
2574 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2575   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2576   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2577   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2578   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2579   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2580   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2581   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2582 };
2583 
2584 //------------------------------make-------------------------------------------
2585 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2586   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2587 }
2588 
2589 //------------------------------cast_to_ptr_type-------------------------------
2590 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2591   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2592   if( ptr == _ptr ) return this;
2593   return make(_base, ptr, _offset, _speculative, _inline_depth);
2594 }
2595 
2596 //------------------------------get_con----------------------------------------
2597 intptr_t TypePtr::get_con() const {
2598   assert( _ptr == Null, "" );
2599   return offset();
2600 }
2601 
2602 //------------------------------meet-------------------------------------------
2603 // Compute the MEET of two types.  It returns a new Type object.
2604 const Type *TypePtr::xmeet(const Type *t) const {
2605   const Type* res = xmeet_helper(t);
2606   if (res->isa_ptr() == NULL) {
2607     return res;
2608   }
2609 
2610   const TypePtr* res_ptr = res->is_ptr();
2611   if (res_ptr->speculative() != NULL) {
2612     // type->speculative() == NULL means that speculation is no better
2613     // than type, i.e. type->speculative() == type. So there are 2
2614     // ways to represent the fact that we have no useful speculative
2615     // data and we should use a single one to be able to test for
2616     // equality between types. Check whether type->speculative() ==
2617     // type and set speculative to NULL if it is the case.
2618     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2619       return res_ptr->remove_speculative();
2620     }
2621   }
2622 
2623   return res;
2624 }
2625 
2626 const Type *TypePtr::xmeet_helper(const Type *t) const {
2627   // Perform a fast test for common case; meeting the same types together.
2628   if( this == t ) return this;  // Meeting same type-rep?
2629 
2630   // Current "this->_base" is AnyPtr
2631   switch (t->base()) {          // switch on original type
2632   case Int:                     // Mixing ints & oops happens when javac
2633   case Long:                    // reuses local variables
2634   case FloatTop:
2635   case FloatCon:
2636   case FloatBot:
2637   case DoubleTop:
2638   case DoubleCon:
2639   case DoubleBot:
2640   case NarrowOop:
2641   case NarrowKlass:
2642   case Bottom:                  // Ye Olde Default
2643     return Type::BOTTOM;
2644   case Top:
2645     return this;
2646 
2647   case AnyPtr: {                // Meeting to AnyPtrs
2648     const TypePtr *tp = t->is_ptr();
2649     const TypePtr* speculative = xmeet_speculative(tp);
2650     int depth = meet_inline_depth(tp->inline_depth());
2651     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2652   }
2653   case RawPtr:                  // For these, flip the call around to cut down
2654   case OopPtr:
2655   case InstPtr:                 // on the cases I have to handle.
2656   case ValueTypePtr:
2657   case AryPtr:
2658   case MetadataPtr:
2659   case KlassPtr:
2660     return t->xmeet(this);      // Call in reverse direction
2661   default:                      // All else is a mistake
2662     typerr(t);
2663 
2664   }
2665   return this;
2666 }
2667 
2668 //------------------------------meet_offset------------------------------------
2669 Type::Offset TypePtr::meet_offset(int offset) const {
2670   return _offset.meet(Offset(offset));
2671 }
2672 
2673 //------------------------------dual_offset------------------------------------
2674 Type::Offset TypePtr::dual_offset() const {
2675   return _offset.dual();
2676 }
2677 
2678 //------------------------------xdual------------------------------------------
2679 // Dual: compute field-by-field dual
2680 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2681   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2682 };
2683 const Type *TypePtr::xdual() const {
2684   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2685 }
2686 
2687 //------------------------------xadd_offset------------------------------------
2688 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2689   return _offset.add(offset);
2690 }
2691 
2692 //------------------------------add_offset-------------------------------------
2693 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2694   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2695 }
2696 
2697 //------------------------------eq---------------------------------------------
2698 // Structural equality check for Type representations
2699 bool TypePtr::eq( const Type *t ) const {
2700   const TypePtr *a = (const TypePtr*)t;
2701   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2702 }
2703 
2704 //------------------------------hash-------------------------------------------
2705 // Type-specific hashing function.
2706 int TypePtr::hash(void) const {
2707   return java_add(java_add(_ptr, offset()), java_add( hash_speculative(), _inline_depth));
2708 ;
2709 }
2710 
2711 /**
2712  * Return same type without a speculative part
2713  */
2714 const Type* TypePtr::remove_speculative() const {
2715   if (_speculative == NULL) {
2716     return this;
2717   }
2718   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2719   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2720 }
2721 
2722 /**
2723  * Return same type but drop speculative part if we know we won't use
2724  * it
2725  */
2726 const Type* TypePtr::cleanup_speculative() const {
2727   if (speculative() == NULL) {
2728     return this;
2729   }
2730   const Type* no_spec = remove_speculative();
2731   // If this is NULL_PTR then we don't need the speculative type
2732   // (with_inline_depth in case the current type inline depth is
2733   // InlineDepthTop)
2734   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2735     return no_spec;
2736   }
2737   if (above_centerline(speculative()->ptr())) {
2738     return no_spec;
2739   }
2740   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2741   // If the speculative may be null and is an inexact klass then it
2742   // doesn't help
2743   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2744       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2745     return no_spec;
2746   }
2747   return this;
2748 }
2749 
2750 /**
2751  * dual of the speculative part of the type
2752  */
2753 const TypePtr* TypePtr::dual_speculative() const {
2754   if (_speculative == NULL) {
2755     return NULL;
2756   }
2757   return _speculative->dual()->is_ptr();
2758 }
2759 
2760 /**
2761  * meet of the speculative parts of 2 types
2762  *
2763  * @param other  type to meet with
2764  */
2765 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2766   bool this_has_spec = (_speculative != NULL);
2767   bool other_has_spec = (other->speculative() != NULL);
2768 
2769   if (!this_has_spec && !other_has_spec) {
2770     return NULL;
2771   }
2772 
2773   // If we are at a point where control flow meets and one branch has
2774   // a speculative type and the other has not, we meet the speculative
2775   // type of one branch with the actual type of the other. If the
2776   // actual type is exact and the speculative is as well, then the
2777   // result is a speculative type which is exact and we can continue
2778   // speculation further.
2779   const TypePtr* this_spec = _speculative;
2780   const TypePtr* other_spec = other->speculative();
2781 
2782   if (!this_has_spec) {
2783     this_spec = this;
2784   }
2785 
2786   if (!other_has_spec) {
2787     other_spec = other;
2788   }
2789 
2790   return this_spec->meet(other_spec)->is_ptr();
2791 }
2792 
2793 /**
2794  * dual of the inline depth for this type (used for speculation)
2795  */
2796 int TypePtr::dual_inline_depth() const {
2797   return -inline_depth();
2798 }
2799 
2800 /**
2801  * meet of 2 inline depths (used for speculation)
2802  *
2803  * @param depth  depth to meet with
2804  */
2805 int TypePtr::meet_inline_depth(int depth) const {
2806   return MAX2(inline_depth(), depth);
2807 }
2808 
2809 /**
2810  * Are the speculative parts of 2 types equal?
2811  *
2812  * @param other  type to compare this one to
2813  */
2814 bool TypePtr::eq_speculative(const TypePtr* other) const {
2815   if (_speculative == NULL || other->speculative() == NULL) {
2816     return _speculative == other->speculative();
2817   }
2818 
2819   if (_speculative->base() != other->speculative()->base()) {
2820     return false;
2821   }
2822 
2823   return _speculative->eq(other->speculative());
2824 }
2825 
2826 /**
2827  * Hash of the speculative part of the type
2828  */
2829 int TypePtr::hash_speculative() const {
2830   if (_speculative == NULL) {
2831     return 0;
2832   }
2833 
2834   return _speculative->hash();
2835 }
2836 
2837 /**
2838  * add offset to the speculative part of the type
2839  *
2840  * @param offset  offset to add
2841  */
2842 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2843   if (_speculative == NULL) {
2844     return NULL;
2845   }
2846   return _speculative->add_offset(offset)->is_ptr();
2847 }
2848 
2849 /**
2850  * return exact klass from the speculative type if there's one
2851  */
2852 ciKlass* TypePtr::speculative_type() const {
2853   if (_speculative != NULL && _speculative->isa_oopptr()) {
2854     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2855     if (speculative->klass_is_exact()) {
2856       return speculative->klass();
2857     }
2858   }
2859   return NULL;
2860 }
2861 
2862 /**
2863  * return true if speculative type may be null
2864  */
2865 bool TypePtr::speculative_maybe_null() const {
2866   if (_speculative != NULL) {
2867     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2868     return speculative->maybe_null();
2869   }
2870   return true;
2871 }
2872 
2873 bool TypePtr::speculative_always_null() const {
2874   if (_speculative != NULL) {
2875     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2876     return speculative == TypePtr::NULL_PTR;
2877   }
2878   return false;
2879 }
2880 
2881 /**
2882  * Same as TypePtr::speculative_type() but return the klass only if
2883  * the speculative tells us is not null
2884  */
2885 ciKlass* TypePtr::speculative_type_not_null() const {
2886   if (speculative_maybe_null()) {
2887     return NULL;
2888   }
2889   return speculative_type();
2890 }
2891 
2892 /**
2893  * Check whether new profiling would improve speculative type
2894  *
2895  * @param   exact_kls    class from profiling
2896  * @param   inline_depth inlining depth of profile point
2897  *
2898  * @return  true if type profile is valuable
2899  */
2900 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2901   // no profiling?
2902   if (exact_kls == NULL) {
2903     return false;
2904   }
2905   if (speculative() == TypePtr::NULL_PTR) {
2906     return false;
2907   }
2908   // no speculative type or non exact speculative type?
2909   if (speculative_type() == NULL) {
2910     return true;
2911   }
2912   // If the node already has an exact speculative type keep it,
2913   // unless it was provided by profiling that is at a deeper
2914   // inlining level. Profiling at a higher inlining depth is
2915   // expected to be less accurate.
2916   if (_speculative->inline_depth() == InlineDepthBottom) {
2917     return false;
2918   }
2919   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2920   return inline_depth < _speculative->inline_depth();
2921 }
2922 
2923 /**
2924  * Check whether new profiling would improve ptr (= tells us it is non
2925  * null)
2926  *
2927  * @param   ptr_kind always null or not null?
2928  *
2929  * @return  true if ptr profile is valuable
2930  */
2931 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2932   // profiling doesn't tell us anything useful
2933   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2934     return false;
2935   }
2936   // We already know this is not null
2937   if (!this->maybe_null()) {
2938     return false;
2939   }
2940   // We already know the speculative type cannot be null
2941   if (!speculative_maybe_null()) {
2942     return false;
2943   }
2944   // We already know this is always null
2945   if (this == TypePtr::NULL_PTR) {
2946     return false;
2947   }
2948   // We already know the speculative type is always null
2949   if (speculative_always_null()) {
2950     return false;
2951   }
2952   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2953     return false;
2954   }
2955   return true;
2956 }
2957 
2958 //------------------------------dump2------------------------------------------
2959 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2960   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2961 };
2962 
2963 #ifndef PRODUCT
2964 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2965   if( _ptr == Null ) st->print("NULL");
2966   else st->print("%s *", ptr_msg[_ptr]);
2967   _offset.dump2(st);
2968   dump_inline_depth(st);
2969   dump_speculative(st);
2970 }
2971 
2972 /**
2973  *dump the speculative part of the type
2974  */
2975 void TypePtr::dump_speculative(outputStream *st) const {
2976   if (_speculative != NULL) {
2977     st->print(" (speculative=");
2978     _speculative->dump_on(st);
2979     st->print(")");
2980   }
2981 }
2982 
2983 /**
2984  *dump the inline depth of the type
2985  */
2986 void TypePtr::dump_inline_depth(outputStream *st) const {
2987   if (_inline_depth != InlineDepthBottom) {
2988     if (_inline_depth == InlineDepthTop) {
2989       st->print(" (inline_depth=InlineDepthTop)");
2990     } else {
2991       st->print(" (inline_depth=%d)", _inline_depth);
2992     }
2993   }
2994 }
2995 #endif
2996 
2997 //------------------------------singleton--------------------------------------
2998 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2999 // constants
3000 bool TypePtr::singleton(void) const {
3001   // TopPTR, Null, AnyNull, Constant are all singletons
3002   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3003 }
3004 
3005 bool TypePtr::empty(void) const {
3006   return (_offset == Offset::top) || above_centerline(_ptr);
3007 }
3008 
3009 //=============================================================================
3010 // Convenience common pre-built types.
3011 const TypeRawPtr *TypeRawPtr::BOTTOM;
3012 const TypeRawPtr *TypeRawPtr::NOTNULL;
3013 
3014 //------------------------------make-------------------------------------------
3015 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3016   assert( ptr != Constant, "what is the constant?" );
3017   assert( ptr != Null, "Use TypePtr for NULL" );
3018   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3019 }
3020 
3021 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3022   assert( bits, "Use TypePtr for NULL" );
3023   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3024 }
3025 
3026 //------------------------------cast_to_ptr_type-------------------------------
3027 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3028   assert( ptr != Constant, "what is the constant?" );
3029   assert( ptr != Null, "Use TypePtr for NULL" );
3030   assert( _bits==0, "Why cast a constant address?");
3031   if( ptr == _ptr ) return this;
3032   return make(ptr);
3033 }
3034 
3035 //------------------------------get_con----------------------------------------
3036 intptr_t TypeRawPtr::get_con() const {
3037   assert( _ptr == Null || _ptr == Constant, "" );
3038   return (intptr_t)_bits;
3039 }
3040 
3041 //------------------------------meet-------------------------------------------
3042 // Compute the MEET of two types.  It returns a new Type object.
3043 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3044   // Perform a fast test for common case; meeting the same types together.
3045   if( this == t ) return this;  // Meeting same type-rep?
3046 
3047   // Current "this->_base" is RawPtr
3048   switch( t->base() ) {         // switch on original type
3049   case Bottom:                  // Ye Olde Default
3050     return t;
3051   case Top:
3052     return this;
3053   case AnyPtr:                  // Meeting to AnyPtrs
3054     break;
3055   case RawPtr: {                // might be top, bot, any/not or constant
3056     enum PTR tptr = t->is_ptr()->ptr();
3057     enum PTR ptr = meet_ptr( tptr );
3058     if( ptr == Constant ) {     // Cannot be equal constants, so...
3059       if( tptr == Constant && _ptr != Constant)  return t;
3060       if( _ptr == Constant && tptr != Constant)  return this;
3061       ptr = NotNull;            // Fall down in lattice
3062     }
3063     return make( ptr );
3064   }
3065 
3066   case OopPtr:
3067   case InstPtr:
3068   case ValueTypePtr:
3069   case AryPtr:
3070   case MetadataPtr:
3071   case KlassPtr:
3072     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3073   default:                      // All else is a mistake
3074     typerr(t);
3075   }
3076 
3077   // Found an AnyPtr type vs self-RawPtr type
3078   const TypePtr *tp = t->is_ptr();
3079   switch (tp->ptr()) {
3080   case TypePtr::TopPTR:  return this;
3081   case TypePtr::BotPTR:  return t;
3082   case TypePtr::Null:
3083     if( _ptr == TypePtr::TopPTR ) return t;
3084     return TypeRawPtr::BOTTOM;
3085   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3086   case TypePtr::AnyNull:
3087     if( _ptr == TypePtr::Constant) return this;
3088     return make( meet_ptr(TypePtr::AnyNull) );
3089   default: ShouldNotReachHere();
3090   }
3091   return this;
3092 }
3093 
3094 //------------------------------xdual------------------------------------------
3095 // Dual: compute field-by-field dual
3096 const Type *TypeRawPtr::xdual() const {
3097   return new TypeRawPtr( dual_ptr(), _bits );
3098 }
3099 
3100 //------------------------------add_offset-------------------------------------
3101 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3102   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3103   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3104   if( offset == 0 ) return this; // No change
3105   switch (_ptr) {
3106   case TypePtr::TopPTR:
3107   case TypePtr::BotPTR:
3108   case TypePtr::NotNull:
3109     return this;
3110   case TypePtr::Null:
3111   case TypePtr::Constant: {
3112     address bits = _bits+offset;
3113     if ( bits == 0 ) return TypePtr::NULL_PTR;
3114     return make( bits );
3115   }
3116   default:  ShouldNotReachHere();
3117   }
3118   return NULL;                  // Lint noise
3119 }
3120 
3121 //------------------------------eq---------------------------------------------
3122 // Structural equality check for Type representations
3123 bool TypeRawPtr::eq( const Type *t ) const {
3124   const TypeRawPtr *a = (const TypeRawPtr*)t;
3125   return _bits == a->_bits && TypePtr::eq(t);
3126 }
3127 
3128 //------------------------------hash-------------------------------------------
3129 // Type-specific hashing function.
3130 int TypeRawPtr::hash(void) const {
3131   return (intptr_t)_bits + TypePtr::hash();
3132 }
3133 
3134 //------------------------------dump2------------------------------------------
3135 #ifndef PRODUCT
3136 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3137   if( _ptr == Constant )
3138     st->print(INTPTR_FORMAT, p2i(_bits));
3139   else
3140     st->print("rawptr:%s", ptr_msg[_ptr]);
3141 }
3142 #endif
3143 
3144 //=============================================================================
3145 // Convenience common pre-built type.
3146 const TypeOopPtr *TypeOopPtr::BOTTOM;
3147 
3148 //------------------------------TypeOopPtr-------------------------------------
3149 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3150                        int instance_id, const TypePtr* speculative, int inline_depth)
3151   : TypePtr(t, ptr, offset, speculative, inline_depth),
3152     _const_oop(o), _klass(k),
3153     _klass_is_exact(xk),
3154     _is_ptr_to_narrowoop(false),
3155     _is_ptr_to_narrowklass(false),
3156     _is_ptr_to_boxed_value(false),
3157     _instance_id(instance_id) {
3158   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3159       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3160     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3161   }
3162 #ifdef _LP64
3163   if (this->offset() != 0) {
3164     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3165       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3166     } else if (klass() == NULL) {
3167       // Array with unknown body type
3168       assert(this->isa_aryptr(), "only arrays without klass");
3169       _is_ptr_to_narrowoop = UseCompressedOops;
3170     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3171       if (klass()->is_obj_array_klass()) {
3172         _is_ptr_to_narrowoop = true;
3173       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3174         // Check if the field of the value type array element contains oops
3175         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3176         int foffset = field_offset.get() + vk->first_field_offset();
3177         ciField* field = vk->get_field_by_offset(foffset, false);
3178         assert(field != NULL, "missing field");
3179         BasicType bt = field->layout_type();
3180         assert(bt != T_VALUETYPE, "should be flattened");
3181         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY);
3182       }
3183     } else if (klass()->is_instance_klass()) {
3184       ciInstanceKlass* ik = klass()->as_instance_klass();
3185       ciField* field = NULL;
3186       if (this->isa_klassptr()) {
3187         // Perm objects don't use compressed references
3188       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3189         // unsafe access
3190         _is_ptr_to_narrowoop = UseCompressedOops;
3191       } else { // exclude unsafe ops
3192         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3193 
3194         if (klass() == ciEnv::current()->Class_klass() &&
3195             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3196              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3197           // Special hidden fields from the Class.
3198           assert(this->isa_instptr(), "must be an instance ptr.");
3199           _is_ptr_to_narrowoop = false;
3200         } else if (klass() == ciEnv::current()->Class_klass() &&
3201                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3202           // Static fields
3203           assert(o != NULL, "must be constant");
3204           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3205           ciField* field = k->get_field_by_offset(this->offset(), true);
3206           assert(field != NULL, "missing field");
3207           BasicType basic_elem_type = field->layout_type();
3208           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3209                                                        basic_elem_type == T_ARRAY);
3210         } else {
3211           // Instance fields which contains a compressed oop references.
3212           field = ik->get_field_by_offset(this->offset(), false);
3213           if (field != NULL) {
3214             BasicType basic_elem_type = field->layout_type();
3215             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3216                                                          basic_elem_type == T_ARRAY);
3217           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3218             // Compile::find_alias_type() cast exactness on all types to verify
3219             // that it does not affect alias type.
3220             _is_ptr_to_narrowoop = UseCompressedOops;
3221           } else {
3222             // Type for the copy start in LibraryCallKit::inline_native_clone().
3223             _is_ptr_to_narrowoop = UseCompressedOops;
3224           }
3225         }
3226       }
3227     }
3228   }
3229 #endif
3230 }
3231 
3232 //------------------------------make-------------------------------------------
3233 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3234                                    const TypePtr* speculative, int inline_depth) {
3235   assert(ptr != Constant, "no constant generic pointers");
3236   ciKlass*  k = Compile::current()->env()->Object_klass();
3237   bool      xk = false;
3238   ciObject* o = NULL;
3239   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3240 }
3241 
3242 
3243 //------------------------------cast_to_ptr_type-------------------------------
3244 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3245   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3246   if( ptr == _ptr ) return this;
3247   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3248 }
3249 
3250 //-----------------------------cast_to_instance_id----------------------------
3251 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3252   // There are no instances of a general oop.
3253   // Return self unchanged.
3254   return this;
3255 }
3256 
3257 //-----------------------------cast_to_exactness-------------------------------
3258 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3259   // There is no such thing as an exact general oop.
3260   // Return self unchanged.
3261   return this;
3262 }
3263 
3264 
3265 //------------------------------as_klass_type----------------------------------
3266 // Return the klass type corresponding to this instance or array type.
3267 // It is the type that is loaded from an object of this type.
3268 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3269   ciKlass* k = klass();
3270   bool    xk = klass_is_exact();
3271   if (k == NULL)
3272     return TypeKlassPtr::OBJECT;
3273   else
3274     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3275 }
3276 
3277 //------------------------------meet-------------------------------------------
3278 // Compute the MEET of two types.  It returns a new Type object.
3279 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3280   // Perform a fast test for common case; meeting the same types together.
3281   if( this == t ) return this;  // Meeting same type-rep?
3282 
3283   // Current "this->_base" is OopPtr
3284   switch (t->base()) {          // switch on original type
3285 
3286   case Int:                     // Mixing ints & oops happens when javac
3287   case Long:                    // reuses local variables
3288   case FloatTop:
3289   case FloatCon:
3290   case FloatBot:
3291   case DoubleTop:
3292   case DoubleCon:
3293   case DoubleBot:
3294   case NarrowOop:
3295   case NarrowKlass:
3296   case Bottom:                  // Ye Olde Default
3297     return Type::BOTTOM;
3298   case Top:
3299     return this;
3300 
3301   default:                      // All else is a mistake
3302     typerr(t);
3303 
3304   case RawPtr:
3305   case MetadataPtr:
3306   case KlassPtr:
3307     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3308 
3309   case AnyPtr: {
3310     // Found an AnyPtr type vs self-OopPtr type
3311     const TypePtr *tp = t->is_ptr();
3312     Offset offset = meet_offset(tp->offset());
3313     PTR ptr = meet_ptr(tp->ptr());
3314     const TypePtr* speculative = xmeet_speculative(tp);
3315     int depth = meet_inline_depth(tp->inline_depth());
3316     switch (tp->ptr()) {
3317     case Null:
3318       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3319       // else fall through:
3320     case TopPTR:
3321     case AnyNull: {
3322       int instance_id = meet_instance_id(InstanceTop);
3323       return make(ptr, offset, instance_id, speculative, depth);
3324     }
3325     case BotPTR:
3326     case NotNull:
3327       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3328     default: typerr(t);
3329     }
3330   }
3331 
3332   case OopPtr: {                 // Meeting to other OopPtrs
3333     const TypeOopPtr *tp = t->is_oopptr();
3334     int instance_id = meet_instance_id(tp->instance_id());
3335     const TypePtr* speculative = xmeet_speculative(tp);
3336     int depth = meet_inline_depth(tp->inline_depth());
3337     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3338   }
3339 
3340   case InstPtr:                  // For these, flip the call around to cut down
3341   case ValueTypePtr:
3342   case AryPtr:
3343     return t->xmeet(this);      // Call in reverse direction
3344 
3345   } // End of switch
3346   return this;                  // Return the double constant
3347 }
3348 
3349 
3350 //------------------------------xdual------------------------------------------
3351 // Dual of a pure heap pointer.  No relevant klass or oop information.
3352 const Type *TypeOopPtr::xdual() const {
3353   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3354   assert(const_oop() == NULL,             "no constants here");
3355   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3356 }
3357 
3358 //--------------------------make_from_klass_common-----------------------------
3359 // Computes the element-type given a klass.
3360 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3361   if (klass->is_valuetype()) {
3362     return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3363   } else if (klass->is_instance_klass()) {
3364     Compile* C = Compile::current();
3365     Dependencies* deps = C->dependencies();
3366     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3367     // Element is an instance
3368     bool klass_is_exact = false;
3369     if (klass->is_loaded()) {
3370       // Try to set klass_is_exact.
3371       ciInstanceKlass* ik = klass->as_instance_klass();
3372       klass_is_exact = ik->is_final();
3373       if (!klass_is_exact && klass_change
3374           && deps != NULL && UseUniqueSubclasses) {
3375         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3376         if (sub != NULL) {
3377           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3378           klass = ik = sub;
3379           klass_is_exact = sub->is_final();
3380         }
3381       }
3382       if (!klass_is_exact && try_for_exact
3383           && deps != NULL && UseExactTypes) {
3384         if (!ik->is_interface() && !ik->has_subklass()) {
3385           // Add a dependence; if concrete subclass added we need to recompile
3386           deps->assert_leaf_type(ik);
3387           klass_is_exact = true;
3388         }
3389       }
3390     }
3391     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3392   } else if (klass->is_obj_array_klass()) {
3393     // Element is an object or value array. Recursively call ourself.
3394     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3395     bool xk = etype->klass_is_exact();
3396     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3397     // We used to pass NotNull in here, asserting that the sub-arrays
3398     // are all not-null.  This is not true in generally, as code can
3399     // slam NULLs down in the subarrays.
3400     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3401     return arr;
3402   } else if (klass->is_type_array_klass()) {
3403     // Element is an typeArray
3404     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3405     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3406     // We used to pass NotNull in here, asserting that the array pointer
3407     // is not-null. That was not true in general.
3408     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3409     return arr;
3410   } else if (klass->is_value_array_klass()) {
3411     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3412     const Type* etype = NULL;
3413     bool xk = false;
3414     if (vk->flatten_array()) {
3415       etype = TypeValueType::make(vk);
3416       xk = true;
3417     } else {
3418       const TypeOopPtr* etype_oop = TypeOopPtr::make_from_klass_common(vk, false, try_for_exact);
3419       xk = etype_oop->klass_is_exact();
3420       etype = etype_oop;
3421     }
3422     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3423     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3424     return arr;
3425   } else {
3426     ShouldNotReachHere();
3427     return NULL;
3428   }
3429 }
3430 
3431 //------------------------------make_from_constant-----------------------------
3432 // Make a java pointer from an oop constant
3433 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3434   assert(!o->is_null_object(), "null object not yet handled here.");
3435   ciKlass* klass = o->klass();
3436   if (klass->is_valuetype()) {
3437     // Element is a value type
3438     if (require_constant) {
3439       if (!o->can_be_constant())  return NULL;
3440     } else if (!o->should_be_constant()) {
3441       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3442     }
3443     return TypeValueTypePtr::make(o);
3444   } else if (klass->is_instance_klass()) {
3445     // Element is an instance
3446     if (require_constant) {
3447       if (!o->can_be_constant())  return NULL;
3448     } else if (!o->should_be_constant()) {
3449       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3450     }
3451     return TypeInstPtr::make(o);
3452   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3453     // Element is an object array. Recursively call ourself.
3454     const TypeOopPtr *etype =
3455       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3456     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3457     // We used to pass NotNull in here, asserting that the sub-arrays
3458     // are all not-null.  This is not true in generally, as code can
3459     // slam NULLs down in the subarrays.
3460     if (require_constant) {
3461       if (!o->can_be_constant())  return NULL;
3462     } else if (!o->should_be_constant()) {
3463       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3464     }
3465     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3466     return arr;
3467   } else if (klass->is_type_array_klass()) {
3468     // Element is an typeArray
3469     const Type* etype =
3470       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3471     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3472     // We used to pass NotNull in here, asserting that the array pointer
3473     // is not-null. That was not true in general.
3474     if (require_constant) {
3475       if (!o->can_be_constant())  return NULL;
3476     } else if (!o->should_be_constant()) {
3477       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3478     }
3479     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3480     return arr;
3481   }
3482 
3483   fatal("unhandled object type");
3484   return NULL;
3485 }
3486 
3487 //------------------------------get_con----------------------------------------
3488 intptr_t TypeOopPtr::get_con() const {
3489   assert( _ptr == Null || _ptr == Constant, "" );
3490   assert(offset() >= 0, "");
3491 
3492   if (offset() != 0) {
3493     // After being ported to the compiler interface, the compiler no longer
3494     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3495     // to a handle at compile time.  This handle is embedded in the generated
3496     // code and dereferenced at the time the nmethod is made.  Until that time,
3497     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3498     // have access to the addresses!).  This does not seem to currently happen,
3499     // but this assertion here is to help prevent its occurence.
3500     tty->print_cr("Found oop constant with non-zero offset");
3501     ShouldNotReachHere();
3502   }
3503 
3504   return (intptr_t)const_oop()->constant_encoding();
3505 }
3506 
3507 
3508 //-----------------------------filter------------------------------------------
3509 // Do not allow interface-vs.-noninterface joins to collapse to top.
3510 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3511 
3512   const Type* ft = join_helper(kills, include_speculative);
3513   const TypeInstPtr* ftip = ft->isa_instptr();
3514   const TypeInstPtr* ktip = kills->isa_instptr();
3515 
3516   if (ft->empty()) {
3517     // Check for evil case of 'this' being a class and 'kills' expecting an
3518     // interface.  This can happen because the bytecodes do not contain
3519     // enough type info to distinguish a Java-level interface variable
3520     // from a Java-level object variable.  If we meet 2 classes which
3521     // both implement interface I, but their meet is at 'j/l/O' which
3522     // doesn't implement I, we have no way to tell if the result should
3523     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3524     // into a Phi which "knows" it's an Interface type we'll have to
3525     // uplift the type.
3526     if (!empty()) {
3527       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3528         return kills;           // Uplift to interface
3529       }
3530       // Also check for evil cases of 'this' being a class array
3531       // and 'kills' expecting an array of interfaces.
3532       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3533       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3534         return kills;           // Uplift to array of interface
3535       }
3536     }
3537 
3538     return Type::TOP;           // Canonical empty value
3539   }
3540 
3541   // If we have an interface-typed Phi or cast and we narrow to a class type,
3542   // the join should report back the class.  However, if we have a J/L/Object
3543   // class-typed Phi and an interface flows in, it's possible that the meet &
3544   // join report an interface back out.  This isn't possible but happens
3545   // because the type system doesn't interact well with interfaces.
3546   if (ftip != NULL && ktip != NULL &&
3547       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3548       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3549     assert(!ftip->klass_is_exact(), "interface could not be exact");
3550     return ktip->cast_to_ptr_type(ftip->ptr());
3551   }
3552 
3553   return ft;
3554 }
3555 
3556 //------------------------------eq---------------------------------------------
3557 // Structural equality check for Type representations
3558 bool TypeOopPtr::eq( const Type *t ) const {
3559   const TypeOopPtr *a = (const TypeOopPtr*)t;
3560   if (_klass_is_exact != a->_klass_is_exact ||
3561       _instance_id != a->_instance_id)  return false;
3562   ciObject* one = const_oop();
3563   ciObject* two = a->const_oop();
3564   if (one == NULL || two == NULL) {
3565     return (one == two) && TypePtr::eq(t);
3566   } else {
3567     return one->equals(two) && TypePtr::eq(t);
3568   }
3569 }
3570 
3571 //------------------------------hash-------------------------------------------
3572 // Type-specific hashing function.
3573 int TypeOopPtr::hash(void) const {
3574   return
3575     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3576              java_add(_instance_id, TypePtr::hash()));
3577 }
3578 
3579 //------------------------------dump2------------------------------------------
3580 #ifndef PRODUCT
3581 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3582   st->print("oopptr:%s", ptr_msg[_ptr]);
3583   if( _klass_is_exact ) st->print(":exact");
3584   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3585   _offset.dump2(st);
3586   if (_instance_id == InstanceTop)
3587     st->print(",iid=top");
3588   else if (_instance_id != InstanceBot)
3589     st->print(",iid=%d",_instance_id);
3590 
3591   dump_inline_depth(st);
3592   dump_speculative(st);
3593 }
3594 #endif
3595 
3596 //------------------------------singleton--------------------------------------
3597 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3598 // constants
3599 bool TypeOopPtr::singleton(void) const {
3600   // detune optimizer to not generate constant oop + constant offset as a constant!
3601   // TopPTR, Null, AnyNull, Constant are all singletons
3602   return (offset() == 0) && !below_centerline(_ptr);
3603 }
3604 
3605 //------------------------------add_offset-------------------------------------
3606 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3607   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3608 }
3609 
3610 /**
3611  * Return same type without a speculative part
3612  */
3613 const Type* TypeOopPtr::remove_speculative() const {
3614   if (_speculative == NULL) {
3615     return this;
3616   }
3617   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3618   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3619 }
3620 
3621 /**
3622  * Return same type but drop speculative part if we know we won't use
3623  * it
3624  */
3625 const Type* TypeOopPtr::cleanup_speculative() const {
3626   // If the klass is exact and the ptr is not null then there's
3627   // nothing that the speculative type can help us with
3628   if (klass_is_exact() && !maybe_null()) {
3629     return remove_speculative();
3630   }
3631   return TypePtr::cleanup_speculative();
3632 }
3633 
3634 /**
3635  * Return same type but with a different inline depth (used for speculation)
3636  *
3637  * @param depth  depth to meet with
3638  */
3639 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3640   if (!UseInlineDepthForSpeculativeTypes) {
3641     return this;
3642   }
3643   return make(_ptr, _offset, _instance_id, _speculative, depth);
3644 }
3645 
3646 //------------------------------meet_instance_id--------------------------------
3647 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3648   // Either is 'TOP' instance?  Return the other instance!
3649   if( _instance_id == InstanceTop ) return  instance_id;
3650   if(  instance_id == InstanceTop ) return _instance_id;
3651   // If either is different, return 'BOTTOM' instance
3652   if( _instance_id != instance_id ) return InstanceBot;
3653   return _instance_id;
3654 }
3655 
3656 //------------------------------dual_instance_id--------------------------------
3657 int TypeOopPtr::dual_instance_id( ) const {
3658   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3659   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3660   return _instance_id;              // Map everything else into self
3661 }
3662 
3663 /**
3664  * Check whether new profiling would improve speculative type
3665  *
3666  * @param   exact_kls    class from profiling
3667  * @param   inline_depth inlining depth of profile point
3668  *
3669  * @return  true if type profile is valuable
3670  */
3671 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3672   // no way to improve an already exact type
3673   if (klass_is_exact()) {
3674     return false;
3675   }
3676   return TypePtr::would_improve_type(exact_kls, inline_depth);
3677 }
3678 
3679 //=============================================================================
3680 // Convenience common pre-built types.
3681 const TypeInstPtr *TypeInstPtr::NOTNULL;
3682 const TypeInstPtr *TypeInstPtr::BOTTOM;
3683 const TypeInstPtr *TypeInstPtr::MIRROR;
3684 const TypeInstPtr *TypeInstPtr::MARK;
3685 const TypeInstPtr *TypeInstPtr::KLASS;
3686 
3687 //------------------------------TypeInstPtr-------------------------------------
3688 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3689                          int instance_id, const TypePtr* speculative, int inline_depth)
3690   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3691     _name(k->name()) {
3692    assert(k != NULL &&
3693           (k->is_loaded() || o == NULL),
3694           "cannot have constants with non-loaded klass");
3695 };
3696 
3697 //------------------------------make-------------------------------------------
3698 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3699                                      ciKlass* k,
3700                                      bool xk,
3701                                      ciObject* o,
3702                                      Offset offset,
3703                                      int instance_id,
3704                                      const TypePtr* speculative,
3705                                      int inline_depth) {
3706   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3707   // Either const_oop() is NULL or else ptr is Constant
3708   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3709           "constant pointers must have a value supplied" );
3710   // Ptr is never Null
3711   assert( ptr != Null, "NULL pointers are not typed" );
3712 
3713   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3714   if (!UseExactTypes)  xk = false;
3715   if (ptr == Constant) {
3716     // Note:  This case includes meta-object constants, such as methods.
3717     xk = true;
3718   } else if (k->is_loaded()) {
3719     ciInstanceKlass* ik = k->as_instance_klass();
3720     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3721     if (xk && ik->is_interface())  xk = false;  // no exact interface
3722   }
3723 
3724   // Now hash this baby
3725   TypeInstPtr *result =
3726     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3727 
3728   return result;
3729 }
3730 
3731 /**
3732  *  Create constant type for a constant boxed value
3733  */
3734 const Type* TypeInstPtr::get_const_boxed_value() const {
3735   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3736   assert((const_oop() != NULL), "should be called only for constant object");
3737   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3738   BasicType bt = constant.basic_type();
3739   switch (bt) {
3740     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3741     case T_INT:      return TypeInt::make(constant.as_int());
3742     case T_CHAR:     return TypeInt::make(constant.as_char());
3743     case T_BYTE:     return TypeInt::make(constant.as_byte());
3744     case T_SHORT:    return TypeInt::make(constant.as_short());
3745     case T_FLOAT:    return TypeF::make(constant.as_float());
3746     case T_DOUBLE:   return TypeD::make(constant.as_double());
3747     case T_LONG:     return TypeLong::make(constant.as_long());
3748     default:         break;
3749   }
3750   fatal("Invalid boxed value type '%s'", type2name(bt));
3751   return NULL;
3752 }
3753 
3754 //------------------------------cast_to_ptr_type-------------------------------
3755 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3756   if( ptr == _ptr ) return this;
3757   // Reconstruct _sig info here since not a problem with later lazy
3758   // construction, _sig will show up on demand.
3759   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3760 }
3761 
3762 
3763 //-----------------------------cast_to_exactness-------------------------------
3764 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3765   if( klass_is_exact == _klass_is_exact ) return this;
3766   if (!UseExactTypes)  return this;
3767   if (!_klass->is_loaded())  return this;
3768   ciInstanceKlass* ik = _klass->as_instance_klass();
3769   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3770   if( ik->is_interface() )              return this;  // cannot set xk
3771   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3772 }
3773 
3774 //-----------------------------cast_to_instance_id----------------------------
3775 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3776   if( instance_id == _instance_id ) return this;
3777   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3778 }
3779 
3780 //------------------------------xmeet_unloaded---------------------------------
3781 // Compute the MEET of two InstPtrs when at least one is unloaded.
3782 // Assume classes are different since called after check for same name/class-loader
3783 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3784     Offset off = meet_offset(tinst->offset());
3785     PTR ptr = meet_ptr(tinst->ptr());
3786     int instance_id = meet_instance_id(tinst->instance_id());
3787     const TypePtr* speculative = xmeet_speculative(tinst);
3788     int depth = meet_inline_depth(tinst->inline_depth());
3789 
3790     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3791     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3792     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3793       //
3794       // Meet unloaded class with java/lang/Object
3795       //
3796       // Meet
3797       //          |                     Unloaded Class
3798       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3799       //  ===================================================================
3800       //   TOP    | ..........................Unloaded......................|
3801       //  AnyNull |  U-AN    |................Unloaded......................|
3802       // Constant | ... O-NN .................................. |   O-BOT   |
3803       //  NotNull | ... O-NN .................................. |   O-BOT   |
3804       //  BOTTOM  | ........................Object-BOTTOM ..................|
3805       //
3806       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3807       //
3808       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3809       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3810       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3811       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3812         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3813         else                                      { return TypeInstPtr::NOTNULL; }
3814       }
3815       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3816 
3817       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3818     }
3819 
3820     // Both are unloaded, not the same class, not Object
3821     // Or meet unloaded with a different loaded class, not java/lang/Object
3822     if( ptr != TypePtr::BotPTR ) {
3823       return TypeInstPtr::NOTNULL;
3824     }
3825     return TypeInstPtr::BOTTOM;
3826 }
3827 
3828 
3829 //------------------------------meet-------------------------------------------
3830 // Compute the MEET of two types.  It returns a new Type object.
3831 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3832   // Perform a fast test for common case; meeting the same types together.
3833   if( this == t ) return this;  // Meeting same type-rep?
3834 
3835   // Current "this->_base" is Pointer
3836   switch (t->base()) {          // switch on original type
3837 
3838   case Int:                     // Mixing ints & oops happens when javac
3839   case Long:                    // reuses local variables
3840   case FloatTop:
3841   case FloatCon:
3842   case FloatBot:
3843   case DoubleTop:
3844   case DoubleCon:
3845   case DoubleBot:
3846   case NarrowOop:
3847   case NarrowKlass:
3848   case Bottom:                  // Ye Olde Default
3849     return Type::BOTTOM;
3850   case Top:
3851     return this;
3852 
3853   default:                      // All else is a mistake
3854     typerr(t);
3855 
3856   case MetadataPtr:
3857   case KlassPtr:
3858   case RawPtr: return TypePtr::BOTTOM;
3859 
3860   case AryPtr: {                // All arrays inherit from Object class
3861     const TypeAryPtr *tp = t->is_aryptr();
3862     Offset offset = meet_offset(tp->offset());
3863     PTR ptr = meet_ptr(tp->ptr());
3864     int instance_id = meet_instance_id(tp->instance_id());
3865     const TypePtr* speculative = xmeet_speculative(tp);
3866     int depth = meet_inline_depth(tp->inline_depth());
3867     switch (ptr) {
3868     case TopPTR:
3869     case AnyNull:                // Fall 'down' to dual of object klass
3870       // For instances when a subclass meets a superclass we fall
3871       // below the centerline when the superclass is exact. We need to
3872       // do the same here.
3873       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3874         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3875       } else {
3876         // cannot subclass, so the meet has to fall badly below the centerline
3877         ptr = NotNull;
3878         instance_id = InstanceBot;
3879         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3880       }
3881     case Constant:
3882     case NotNull:
3883     case BotPTR:                // Fall down to object klass
3884       // LCA is object_klass, but if we subclass from the top we can do better
3885       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3886         // If 'this' (InstPtr) is above the centerline and it is Object class
3887         // then we can subclass in the Java class hierarchy.
3888         // For instances when a subclass meets a superclass we fall
3889         // below the centerline when the superclass is exact. We need
3890         // to do the same here.
3891         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3892           // that is, tp's array type is a subtype of my klass
3893           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3894                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3895         }
3896       }
3897       // The other case cannot happen, since I cannot be a subtype of an array.
3898       // The meet falls down to Object class below centerline.
3899       if( ptr == Constant )
3900          ptr = NotNull;
3901       instance_id = InstanceBot;
3902       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3903     default: typerr(t);
3904     }
3905   }
3906 
3907   case OopPtr: {                // Meeting to OopPtrs
3908     // Found a OopPtr type vs self-InstPtr type
3909     const TypeOopPtr *tp = t->is_oopptr();
3910     Offset offset = meet_offset(tp->offset());
3911     PTR ptr = meet_ptr(tp->ptr());
3912     switch (tp->ptr()) {
3913     case TopPTR:
3914     case AnyNull: {
3915       int instance_id = meet_instance_id(InstanceTop);
3916       const TypePtr* speculative = xmeet_speculative(tp);
3917       int depth = meet_inline_depth(tp->inline_depth());
3918       return make(ptr, klass(), klass_is_exact(),
3919                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3920     }
3921     case NotNull:
3922     case BotPTR: {
3923       int instance_id = meet_instance_id(tp->instance_id());
3924       const TypePtr* speculative = xmeet_speculative(tp);
3925       int depth = meet_inline_depth(tp->inline_depth());
3926       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3927     }
3928     default: typerr(t);
3929     }
3930   }
3931 
3932   case AnyPtr: {                // Meeting to AnyPtrs
3933     // Found an AnyPtr type vs self-InstPtr type
3934     const TypePtr *tp = t->is_ptr();
3935     Offset offset = meet_offset(tp->offset());
3936     PTR ptr = meet_ptr(tp->ptr());
3937     int instance_id = meet_instance_id(InstanceTop);
3938     const TypePtr* speculative = xmeet_speculative(tp);
3939     int depth = meet_inline_depth(tp->inline_depth());
3940     switch (tp->ptr()) {
3941     case Null:
3942       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3943       // else fall through to AnyNull
3944     case TopPTR:
3945     case AnyNull: {
3946       return make(ptr, klass(), klass_is_exact(),
3947                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3948     }
3949     case NotNull:
3950     case BotPTR:
3951       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3952     default: typerr(t);
3953     }
3954   }
3955 
3956   /*
3957                  A-top         }
3958                /   |   \       }  Tops
3959            B-top A-any C-top   }
3960               | /  |  \ |      }  Any-nulls
3961            B-any   |   C-any   }
3962               |    |    |
3963            B-con A-con C-con   } constants; not comparable across classes
3964               |    |    |
3965            B-not   |   C-not   }
3966               | \  |  / |      }  not-nulls
3967            B-bot A-not C-bot   }
3968                \   |   /       }  Bottoms
3969                  A-bot         }
3970   */
3971 
3972   case InstPtr: {                // Meeting 2 Oops?
3973     // Found an InstPtr sub-type vs self-InstPtr type
3974     const TypeInstPtr *tinst = t->is_instptr();
3975     Offset off = meet_offset( tinst->offset() );
3976     PTR ptr = meet_ptr( tinst->ptr() );
3977     int instance_id = meet_instance_id(tinst->instance_id());
3978     const TypePtr* speculative = xmeet_speculative(tinst);
3979     int depth = meet_inline_depth(tinst->inline_depth());
3980 
3981     // Check for easy case; klasses are equal (and perhaps not loaded!)
3982     // If we have constants, then we created oops so classes are loaded
3983     // and we can handle the constants further down.  This case handles
3984     // both-not-loaded or both-loaded classes
3985     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3986       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3987     }
3988 
3989     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3990     ciKlass* tinst_klass = tinst->klass();
3991     ciKlass* this_klass  = this->klass();
3992     bool tinst_xk = tinst->klass_is_exact();
3993     bool this_xk  = this->klass_is_exact();
3994     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3995       // One of these classes has not been loaded
3996       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3997 #ifndef PRODUCT
3998       if( PrintOpto && Verbose ) {
3999         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4000         tty->print("  this == "); this->dump(); tty->cr();
4001         tty->print(" tinst == "); tinst->dump(); tty->cr();
4002       }
4003 #endif
4004       return unloaded_meet;
4005     }
4006 
4007     // Handle mixing oops and interfaces first.
4008     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4009                                         tinst_klass == ciEnv::current()->Object_klass())) {
4010       ciKlass *tmp = tinst_klass; // Swap interface around
4011       tinst_klass = this_klass;
4012       this_klass = tmp;
4013       bool tmp2 = tinst_xk;
4014       tinst_xk = this_xk;
4015       this_xk = tmp2;
4016     }
4017     if (tinst_klass->is_interface() &&
4018         !(this_klass->is_interface() ||
4019           // Treat java/lang/Object as an honorary interface,
4020           // because we need a bottom for the interface hierarchy.
4021           this_klass == ciEnv::current()->Object_klass())) {
4022       // Oop meets interface!
4023 
4024       // See if the oop subtypes (implements) interface.
4025       ciKlass *k;
4026       bool xk;
4027       if( this_klass->is_subtype_of( tinst_klass ) ) {
4028         // Oop indeed subtypes.  Now keep oop or interface depending
4029         // on whether we are both above the centerline or either is
4030         // below the centerline.  If we are on the centerline
4031         // (e.g., Constant vs. AnyNull interface), use the constant.
4032         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4033         // If we are keeping this_klass, keep its exactness too.
4034         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4035       } else {                  // Does not implement, fall to Object
4036         // Oop does not implement interface, so mixing falls to Object
4037         // just like the verifier does (if both are above the
4038         // centerline fall to interface)
4039         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4040         xk = above_centerline(ptr) ? tinst_xk : false;
4041         // Watch out for Constant vs. AnyNull interface.
4042         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4043         instance_id = InstanceBot;
4044       }
4045       ciObject* o = NULL;  // the Constant value, if any
4046       if (ptr == Constant) {
4047         // Find out which constant.
4048         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4049       }
4050       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4051     }
4052 
4053     // Either oop vs oop or interface vs interface or interface vs Object
4054 
4055     // !!! Here's how the symmetry requirement breaks down into invariants:
4056     // If we split one up & one down AND they subtype, take the down man.
4057     // If we split one up & one down AND they do NOT subtype, "fall hard".
4058     // If both are up and they subtype, take the subtype class.
4059     // If both are up and they do NOT subtype, "fall hard".
4060     // If both are down and they subtype, take the supertype class.
4061     // If both are down and they do NOT subtype, "fall hard".
4062     // Constants treated as down.
4063 
4064     // Now, reorder the above list; observe that both-down+subtype is also
4065     // "fall hard"; "fall hard" becomes the default case:
4066     // If we split one up & one down AND they subtype, take the down man.
4067     // If both are up and they subtype, take the subtype class.
4068 
4069     // If both are down and they subtype, "fall hard".
4070     // If both are down and they do NOT subtype, "fall hard".
4071     // If both are up and they do NOT subtype, "fall hard".
4072     // If we split one up & one down AND they do NOT subtype, "fall hard".
4073 
4074     // If a proper subtype is exact, and we return it, we return it exactly.
4075     // If a proper supertype is exact, there can be no subtyping relationship!
4076     // If both types are equal to the subtype, exactness is and-ed below the
4077     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4078 
4079     // Check for subtyping:
4080     ciKlass *subtype = NULL;
4081     bool subtype_exact = false;
4082     if( tinst_klass->equals(this_klass) ) {
4083       subtype = this_klass;
4084       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4085     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4086       subtype = this_klass;     // Pick subtyping class
4087       subtype_exact = this_xk;
4088     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4089       subtype = tinst_klass;    // Pick subtyping class
4090       subtype_exact = tinst_xk;
4091     }
4092 
4093     if( subtype ) {
4094       if( above_centerline(ptr) ) { // both are up?
4095         this_klass = tinst_klass = subtype;
4096         this_xk = tinst_xk = subtype_exact;
4097       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4098         this_klass = tinst_klass; // tinst is down; keep down man
4099         this_xk = tinst_xk;
4100       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4101         tinst_klass = this_klass; // this is down; keep down man
4102         tinst_xk = this_xk;
4103       } else {
4104         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4105       }
4106     }
4107 
4108     // Check for classes now being equal
4109     if (tinst_klass->equals(this_klass)) {
4110       // If the klasses are equal, the constants may still differ.  Fall to
4111       // NotNull if they do (neither constant is NULL; that is a special case
4112       // handled elsewhere).
4113       ciObject* o = NULL;             // Assume not constant when done
4114       ciObject* this_oop  = const_oop();
4115       ciObject* tinst_oop = tinst->const_oop();
4116       if( ptr == Constant ) {
4117         if (this_oop != NULL && tinst_oop != NULL &&
4118             this_oop->equals(tinst_oop) )
4119           o = this_oop;
4120         else if (above_centerline(this ->_ptr))
4121           o = tinst_oop;
4122         else if (above_centerline(tinst ->_ptr))
4123           o = this_oop;
4124         else
4125           ptr = NotNull;
4126       }
4127       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4128     } // Else classes are not equal
4129 
4130     // Since klasses are different, we require a LCA in the Java
4131     // class hierarchy - which means we have to fall to at least NotNull.
4132     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4133       ptr = NotNull;
4134 
4135     instance_id = InstanceBot;
4136 
4137     // Now we find the LCA of Java classes
4138     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4139     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4140   } // End of case InstPtr
4141 
4142   } // End of switch
4143   return this;                  // Return the double constant
4144 }
4145 
4146 
4147 //------------------------java_mirror_type--------------------------------------
4148 ciType* TypeInstPtr::java_mirror_type() const {
4149   // must be a singleton type
4150   if( const_oop() == NULL )  return NULL;
4151 
4152   // must be of type java.lang.Class
4153   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4154 
4155   return const_oop()->as_instance()->java_mirror_type();
4156 }
4157 
4158 
4159 //------------------------------xdual------------------------------------------
4160 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4161 // inheritance mechanism.
4162 const Type *TypeInstPtr::xdual() const {
4163   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4164 }
4165 
4166 //------------------------------eq---------------------------------------------
4167 // Structural equality check for Type representations
4168 bool TypeInstPtr::eq( const Type *t ) const {
4169   const TypeInstPtr *p = t->is_instptr();
4170   return
4171     klass()->equals(p->klass()) &&
4172     TypeOopPtr::eq(p);          // Check sub-type stuff
4173 }
4174 
4175 //------------------------------hash-------------------------------------------
4176 // Type-specific hashing function.
4177 int TypeInstPtr::hash(void) const {
4178   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
4179   return hash;
4180 }
4181 
4182 //------------------------------dump2------------------------------------------
4183 // Dump oop Type
4184 #ifndef PRODUCT
4185 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4186   // Print the name of the klass.
4187   klass()->print_name_on(st);
4188 
4189   switch( _ptr ) {
4190   case Constant:
4191     // TO DO: Make CI print the hex address of the underlying oop.
4192     if (WizardMode || Verbose) {
4193       const_oop()->print_oop(st);
4194     }
4195   case BotPTR:
4196     if (!WizardMode && !Verbose) {
4197       if( _klass_is_exact ) st->print(":exact");
4198       break;
4199     }
4200   case TopPTR:
4201   case AnyNull:
4202   case NotNull:
4203     st->print(":%s", ptr_msg[_ptr]);
4204     if( _klass_is_exact ) st->print(":exact");
4205     break;
4206   default:
4207     break;
4208   }
4209 
4210   _offset.dump2(st);
4211 
4212   st->print(" *");
4213   if (_instance_id == InstanceTop)
4214     st->print(",iid=top");
4215   else if (_instance_id != InstanceBot)
4216     st->print(",iid=%d",_instance_id);
4217 
4218   dump_inline_depth(st);
4219   dump_speculative(st);
4220 }
4221 #endif
4222 
4223 //------------------------------add_offset-------------------------------------
4224 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4225   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4226               _instance_id, add_offset_speculative(offset), _inline_depth);
4227 }
4228 
4229 const Type *TypeInstPtr::remove_speculative() const {
4230   if (_speculative == NULL) {
4231     return this;
4232   }
4233   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4234   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4235               _instance_id, NULL, _inline_depth);
4236 }
4237 
4238 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4239   if (!UseInlineDepthForSpeculativeTypes) {
4240     return this;
4241   }
4242   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4243 }
4244 
4245 //=============================================================================
4246 // Convenience common pre-built types.
4247 const TypeAryPtr *TypeAryPtr::RANGE;
4248 const TypeAryPtr *TypeAryPtr::OOPS;
4249 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4250 const TypeAryPtr *TypeAryPtr::BYTES;
4251 const TypeAryPtr *TypeAryPtr::SHORTS;
4252 const TypeAryPtr *TypeAryPtr::CHARS;
4253 const TypeAryPtr *TypeAryPtr::INTS;
4254 const TypeAryPtr *TypeAryPtr::LONGS;
4255 const TypeAryPtr *TypeAryPtr::FLOATS;
4256 const TypeAryPtr *TypeAryPtr::DOUBLES;
4257 
4258 //------------------------------make-------------------------------------------
4259 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4260                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4261   assert(!(k == NULL && ary->_elem->isa_int()),
4262          "integral arrays must be pre-equipped with a class");
4263   if (!xk)  xk = ary->ary_must_be_exact();
4264   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4265   if (!UseExactTypes)  xk = (ptr == Constant);
4266   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4267 }
4268 
4269 //------------------------------make-------------------------------------------
4270 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4271                                    int instance_id, const TypePtr* speculative, int inline_depth,
4272                                    bool is_autobox_cache) {
4273   assert(!(k == NULL && ary->_elem->isa_int()),
4274          "integral arrays must be pre-equipped with a class");
4275   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4276   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4277   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4278   if (!UseExactTypes)  xk = (ptr == Constant);
4279   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4280 }
4281 
4282 //------------------------------cast_to_ptr_type-------------------------------
4283 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4284   if( ptr == _ptr ) return this;
4285   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4286 }
4287 
4288 
4289 //-----------------------------cast_to_exactness-------------------------------
4290 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4291   if( klass_is_exact == _klass_is_exact ) return this;
4292   if (!UseExactTypes)  return this;
4293   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4294   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4295 }
4296 
4297 //-----------------------------cast_to_instance_id----------------------------
4298 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4299   if( instance_id == _instance_id ) return this;
4300   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4301 }
4302 
4303 //-----------------------------narrow_size_type-------------------------------
4304 // Local cache for arrayOopDesc::max_array_length(etype),
4305 // which is kind of slow (and cached elsewhere by other users).
4306 static jint max_array_length_cache[T_CONFLICT+1];
4307 static jint max_array_length(BasicType etype) {
4308   jint& cache = max_array_length_cache[etype];
4309   jint res = cache;
4310   if (res == 0) {
4311     switch (etype) {
4312     case T_NARROWOOP:
4313       etype = T_OBJECT;
4314       break;
4315     case T_NARROWKLASS:
4316     case T_CONFLICT:
4317     case T_ILLEGAL:
4318     case T_VOID:
4319       etype = T_BYTE;           // will produce conservatively high value
4320       break;
4321     default:
4322       break;
4323     }
4324     cache = res = arrayOopDesc::max_array_length(etype);
4325   }
4326   return res;
4327 }
4328 
4329 // Narrow the given size type to the index range for the given array base type.
4330 // Return NULL if the resulting int type becomes empty.
4331 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4332   jint hi = size->_hi;
4333   jint lo = size->_lo;
4334   jint min_lo = 0;
4335   jint max_hi = max_array_length(elem()->basic_type());
4336   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4337   bool chg = false;
4338   if (lo < min_lo) {
4339     lo = min_lo;
4340     if (size->is_con()) {
4341       hi = lo;
4342     }
4343     chg = true;
4344   }
4345   if (hi > max_hi) {
4346     hi = max_hi;
4347     if (size->is_con()) {
4348       lo = hi;
4349     }
4350     chg = true;
4351   }
4352   // Negative length arrays will produce weird intermediate dead fast-path code
4353   if (lo > hi)
4354     return TypeInt::ZERO;
4355   if (!chg)
4356     return size;
4357   return TypeInt::make(lo, hi, Type::WidenMin);
4358 }
4359 
4360 //-------------------------------cast_to_size----------------------------------
4361 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4362   assert(new_size != NULL, "");
4363   new_size = narrow_size_type(new_size);
4364   if (new_size == size())  return this;
4365   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4366   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4367 }
4368 
4369 //------------------------------cast_to_stable---------------------------------
4370 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4371   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4372     return this;
4373 
4374   const Type* elem = this->elem();
4375   const TypePtr* elem_ptr = elem->make_ptr();
4376 
4377   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4378     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4379     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4380   }
4381 
4382   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4383 
4384   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4385 }
4386 
4387 //-----------------------------stable_dimension--------------------------------
4388 int TypeAryPtr::stable_dimension() const {
4389   if (!is_stable())  return 0;
4390   int dim = 1;
4391   const TypePtr* elem_ptr = elem()->make_ptr();
4392   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4393     dim += elem_ptr->is_aryptr()->stable_dimension();
4394   return dim;
4395 }
4396 
4397 //----------------------cast_to_autobox_cache-----------------------------------
4398 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4399   if (is_autobox_cache() == cache)  return this;
4400   const TypeOopPtr* etype = elem()->make_oopptr();
4401   if (etype == NULL)  return this;
4402   // The pointers in the autobox arrays are always non-null.
4403   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4404   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4405   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4406   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4407 }
4408 
4409 //------------------------------eq---------------------------------------------
4410 // Structural equality check for Type representations
4411 bool TypeAryPtr::eq( const Type *t ) const {
4412   const TypeAryPtr *p = t->is_aryptr();
4413   return
4414     _ary == p->_ary &&  // Check array
4415     TypeOopPtr::eq(p) &&// Check sub-parts
4416     _field_offset == p->_field_offset;
4417 }
4418 
4419 //------------------------------hash-------------------------------------------
4420 // Type-specific hashing function.
4421 int TypeAryPtr::hash(void) const {
4422   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4423 }
4424 
4425 //------------------------------meet-------------------------------------------
4426 // Compute the MEET of two types.  It returns a new Type object.
4427 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4428   // Perform a fast test for common case; meeting the same types together.
4429   if( this == t ) return this;  // Meeting same type-rep?
4430   // Current "this->_base" is Pointer
4431   switch (t->base()) {          // switch on original type
4432 
4433   // Mixing ints & oops happens when javac reuses local variables
4434   case Int:
4435   case Long:
4436   case FloatTop:
4437   case FloatCon:
4438   case FloatBot:
4439   case DoubleTop:
4440   case DoubleCon:
4441   case DoubleBot:
4442   case NarrowOop:
4443   case NarrowKlass:
4444   case Bottom:                  // Ye Olde Default
4445     return Type::BOTTOM;
4446   case Top:
4447     return this;
4448 
4449   default:                      // All else is a mistake
4450     typerr(t);
4451 
4452   case OopPtr: {                // Meeting to OopPtrs
4453     // Found a OopPtr type vs self-AryPtr type
4454     const TypeOopPtr *tp = t->is_oopptr();
4455     Offset offset = meet_offset(tp->offset());
4456     PTR ptr = meet_ptr(tp->ptr());
4457     int depth = meet_inline_depth(tp->inline_depth());
4458     const TypePtr* speculative = xmeet_speculative(tp);
4459     switch (tp->ptr()) {
4460     case TopPTR:
4461     case AnyNull: {
4462       int instance_id = meet_instance_id(InstanceTop);
4463       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4464                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4465     }
4466     case BotPTR:
4467     case NotNull: {
4468       int instance_id = meet_instance_id(tp->instance_id());
4469       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4470     }
4471     default: ShouldNotReachHere();
4472     }
4473   }
4474 
4475   case AnyPtr: {                // Meeting two AnyPtrs
4476     // Found an AnyPtr type vs self-AryPtr type
4477     const TypePtr *tp = t->is_ptr();
4478     Offset offset = meet_offset(tp->offset());
4479     PTR ptr = meet_ptr(tp->ptr());
4480     const TypePtr* speculative = xmeet_speculative(tp);
4481     int depth = meet_inline_depth(tp->inline_depth());
4482     switch (tp->ptr()) {
4483     case TopPTR:
4484       return this;
4485     case BotPTR:
4486     case NotNull:
4487       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4488     case Null:
4489       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4490       // else fall through to AnyNull
4491     case AnyNull: {
4492       int instance_id = meet_instance_id(InstanceTop);
4493       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4494                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4495     }
4496     default: ShouldNotReachHere();
4497     }
4498   }
4499 
4500   case MetadataPtr:
4501   case KlassPtr:
4502   case RawPtr: return TypePtr::BOTTOM;
4503 
4504   case AryPtr: {                // Meeting 2 references?
4505     const TypeAryPtr *tap = t->is_aryptr();
4506     Offset off = meet_offset(tap->offset());
4507     Offset field_off = meet_field_offset(tap->field_offset());
4508     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4509     PTR ptr = meet_ptr(tap->ptr());
4510     int instance_id = meet_instance_id(tap->instance_id());
4511     const TypePtr* speculative = xmeet_speculative(tap);
4512     int depth = meet_inline_depth(tap->inline_depth());
4513     ciKlass* lazy_klass = NULL;
4514     if (tary->_elem->isa_int()) {
4515       // Integral array element types have irrelevant lattice relations.
4516       // It is the klass that determines array layout, not the element type.
4517       if (_klass == NULL)
4518         lazy_klass = tap->_klass;
4519       else if (tap->_klass == NULL || tap->_klass == _klass) {
4520         lazy_klass = _klass;
4521       } else {
4522         // Something like byte[int+] meets char[int+].
4523         // This must fall to bottom, not (int[-128..65535])[int+].
4524         instance_id = InstanceBot;
4525         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4526       }
4527     } else // Non integral arrays.
4528       // Must fall to bottom if exact klasses in upper lattice
4529       // are not equal or super klass is exact.
4530       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4531           // meet with top[] and bottom[] are processed further down:
4532           tap->_klass != NULL  && this->_klass != NULL   &&
4533           // both are exact and not equal:
4534           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4535            // 'tap'  is exact and super or unrelated:
4536            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4537            // 'this' is exact and super or unrelated:
4538            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4539       if (above_centerline(ptr)) {
4540         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4541       }
4542       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4543     }
4544 
4545     bool xk = false;
4546     switch (tap->ptr()) {
4547     case AnyNull:
4548     case TopPTR:
4549       // Compute new klass on demand, do not use tap->_klass
4550       if (below_centerline(this->_ptr)) {
4551         xk = this->_klass_is_exact;
4552       } else {
4553         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4554       }
4555       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4556     case Constant: {
4557       ciObject* o = const_oop();
4558       if( _ptr == Constant ) {
4559         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4560           xk = (klass() == tap->klass());
4561           ptr = NotNull;
4562           o = NULL;
4563           instance_id = InstanceBot;
4564         } else {
4565           xk = true;
4566         }
4567       } else if(above_centerline(_ptr)) {
4568         o = tap->const_oop();
4569         xk = true;
4570       } else {
4571         // Only precise for identical arrays
4572         xk = this->_klass_is_exact && (klass() == tap->klass());
4573       }
4574       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4575     }
4576     case NotNull:
4577     case BotPTR:
4578       // Compute new klass on demand, do not use tap->_klass
4579       if (above_centerline(this->_ptr))
4580             xk = tap->_klass_is_exact;
4581       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4582               (klass() == tap->klass()); // Only precise for identical arrays
4583       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4584     default: ShouldNotReachHere();
4585     }
4586   }
4587 
4588   // All arrays inherit from Object class
4589   case InstPtr: {
4590     const TypeInstPtr *tp = t->is_instptr();
4591     Offset offset = meet_offset(tp->offset());
4592     PTR ptr = meet_ptr(tp->ptr());
4593     int instance_id = meet_instance_id(tp->instance_id());
4594     const TypePtr* speculative = xmeet_speculative(tp);
4595     int depth = meet_inline_depth(tp->inline_depth());
4596     switch (ptr) {
4597     case TopPTR:
4598     case AnyNull:                // Fall 'down' to dual of object klass
4599       // For instances when a subclass meets a superclass we fall
4600       // below the centerline when the superclass is exact. We need to
4601       // do the same here.
4602       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4603         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4604       } else {
4605         // cannot subclass, so the meet has to fall badly below the centerline
4606         ptr = NotNull;
4607         instance_id = InstanceBot;
4608         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4609       }
4610     case Constant:
4611     case NotNull:
4612     case BotPTR:                // Fall down to object klass
4613       // LCA is object_klass, but if we subclass from the top we can do better
4614       if (above_centerline(tp->ptr())) {
4615         // If 'tp'  is above the centerline and it is Object class
4616         // then we can subclass in the Java class hierarchy.
4617         // For instances when a subclass meets a superclass we fall
4618         // below the centerline when the superclass is exact. We need
4619         // to do the same here.
4620         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4621           // that is, my array type is a subtype of 'tp' klass
4622           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4623                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4624         }
4625       }
4626       // The other case cannot happen, since t cannot be a subtype of an array.
4627       // The meet falls down to Object class below centerline.
4628       if( ptr == Constant )
4629          ptr = NotNull;
4630       instance_id = InstanceBot;
4631       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4632     default: typerr(t);
4633     }
4634   }
4635   }
4636   return this;                  // Lint noise
4637 }
4638 
4639 //------------------------------xdual------------------------------------------
4640 // Dual: compute field-by-field dual
4641 const Type *TypeAryPtr::xdual() const {
4642   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4643 }
4644 
4645 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4646   return _field_offset.meet(offset);
4647 }
4648 
4649 //------------------------------dual_offset------------------------------------
4650 Type::Offset TypeAryPtr::dual_field_offset() const {
4651   return _field_offset.dual();
4652 }
4653 
4654 //----------------------interface_vs_oop---------------------------------------
4655 #ifdef ASSERT
4656 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4657   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4658   if (t_aryptr) {
4659     return _ary->interface_vs_oop(t_aryptr->_ary);
4660   }
4661   return false;
4662 }
4663 #endif
4664 
4665 //------------------------------dump2------------------------------------------
4666 #ifndef PRODUCT
4667 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4668   _ary->dump2(d,depth,st);
4669   switch( _ptr ) {
4670   case Constant:
4671     const_oop()->print(st);
4672     break;
4673   case BotPTR:
4674     if (!WizardMode && !Verbose) {
4675       if( _klass_is_exact ) st->print(":exact");
4676       break;
4677     }
4678   case TopPTR:
4679   case AnyNull:
4680   case NotNull:
4681     st->print(":%s", ptr_msg[_ptr]);
4682     if( _klass_is_exact ) st->print(":exact");
4683     break;
4684   default:
4685     break;
4686   }
4687 
4688   if (elem()->isa_valuetype()) {
4689     st->print("(");
4690     _field_offset.dump2(st);
4691     st->print(")");
4692   }
4693   if (offset() != 0) {
4694     int header_size = objArrayOopDesc::header_size() * wordSize;
4695     if( _offset == Offset::top )       st->print("+undefined");
4696     else if( _offset == Offset::bottom )  st->print("+any");
4697     else if( offset() < header_size ) st->print("+%d", offset());
4698     else {
4699       BasicType basic_elem_type = elem()->basic_type();
4700       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4701       int elem_size = type2aelembytes(basic_elem_type);
4702       st->print("[%d]", (offset() - array_base)/elem_size);
4703     }
4704   }
4705   st->print(" *");
4706   if (_instance_id == InstanceTop)
4707     st->print(",iid=top");
4708   else if (_instance_id != InstanceBot)
4709     st->print(",iid=%d",_instance_id);
4710 
4711   dump_inline_depth(st);
4712   dump_speculative(st);
4713 }
4714 #endif
4715 
4716 bool TypeAryPtr::empty(void) const {
4717   if (_ary->empty())       return true;
4718   return TypeOopPtr::empty();
4719 }
4720 
4721 //------------------------------add_offset-------------------------------------
4722 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4723   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4724 }
4725 
4726 const Type *TypeAryPtr::remove_speculative() const {
4727   if (_speculative == NULL) {
4728     return this;
4729   }
4730   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4731   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4732 }
4733 
4734 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4735   if (!UseInlineDepthForSpeculativeTypes) {
4736     return this;
4737   }
4738   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4739 }
4740 
4741 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4742   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4743 }
4744 
4745 const TypePtr* TypeAryPtr::with_field_offset_and_offset(intptr_t offset) const {
4746   if (offset != Type::OffsetBot) {
4747     const Type* elemtype = elem();
4748     if (elemtype->isa_valuetype()) {
4749       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4750       if (offset >= (intptr_t)header) {
4751         ciKlass* arytype_klass = klass();
4752         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4753         int shift = vak->log2_element_size();
4754         intptr_t field_offset = ((offset - header) & ((1 << shift) - 1));
4755 
4756         return with_field_offset(field_offset)->add_offset(offset - field_offset);
4757       }
4758     }
4759   }
4760   return add_offset(offset);
4761 }
4762 
4763 //=============================================================================
4764 
4765 
4766 //=============================================================================
4767 
4768 const TypeValueTypePtr* TypeValueTypePtr::NOTNULL;
4769 //------------------------------make-------------------------------------------
4770 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4771   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, o, offset, instance_id, speculative, inline_depth))->hashcons();
4772 }
4773 
4774 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4775   return make(_vt, _ptr, _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4776 }
4777 
4778 //------------------------------cast_to_ptr_type-------------------------------
4779 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4780   if (ptr == _ptr) return this;
4781   return make(_vt, ptr, _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4782 }
4783 
4784 //-----------------------------cast_to_instance_id----------------------------
4785 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4786   if (instance_id == _instance_id) return this;
4787   return make(_vt, _ptr, _const_oop, _offset, instance_id, _speculative, _inline_depth);
4788 }
4789 
4790 //------------------------------meet-------------------------------------------
4791 // Compute the MEET of two types.  It returns a new Type object.
4792 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4793   // Perform a fast test for common case; meeting the same types together.
4794   if (this == t) return this;  // Meeting same type-rep?
4795 
4796   switch (t->base()) {          // switch on original type
4797     case Int:                     // Mixing ints & oops happens when javac
4798     case Long:                    // reuses local variables
4799     case FloatTop:
4800     case FloatCon:
4801     case FloatBot:
4802     case DoubleTop:
4803     case DoubleCon:
4804     case DoubleBot:
4805     case NarrowOop:
4806     case NarrowKlass:
4807     case Bottom:                  // Ye Olde Default
4808       return Type::BOTTOM;
4809 
4810     case MetadataPtr:
4811     case KlassPtr:
4812     case RawPtr:
4813     case AryPtr:
4814     case InstPtr:
4815       return TypePtr::BOTTOM;
4816 
4817     case Top:
4818       return this;
4819 
4820     default:                      // All else is a mistake
4821       typerr(t);
4822 
4823     case OopPtr: {
4824       // Found a OopPtr type vs self-ValueTypePtr type
4825       const TypeOopPtr* tp = t->is_oopptr();
4826       Offset offset = meet_offset(tp->offset());
4827       PTR ptr = meet_ptr(tp->ptr());
4828       int instance_id = meet_instance_id(tp->instance_id());
4829       const TypePtr* speculative = xmeet_speculative(tp);
4830       int depth = meet_inline_depth(tp->inline_depth());
4831       switch (tp->ptr()) {
4832       case TopPTR:
4833       case AnyNull: {
4834         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4835       }
4836       case NotNull:
4837       case BotPTR: {
4838         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4839       }
4840       default: typerr(t);
4841       }
4842     }
4843 
4844     case AnyPtr: {
4845       // Found an AnyPtr type vs self-ValueTypePtr type
4846       const TypePtr* tp = t->is_ptr();
4847       Offset offset = meet_offset(tp->offset());
4848       PTR ptr = meet_ptr(tp->ptr());
4849       int instance_id = meet_instance_id(InstanceTop);
4850       const TypePtr* speculative = xmeet_speculative(tp);
4851       int depth = meet_inline_depth(tp->inline_depth());
4852       switch (tp->ptr()) {
4853       case Null:
4854         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4855         // else fall through to AnyNull
4856       case TopPTR:
4857       case AnyNull: {
4858         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4859       }
4860       case NotNull:
4861       case BotPTR:
4862         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4863       default: typerr(t);
4864       }
4865     }
4866 
4867     case ValueTypePtr: {
4868       // Found an ValueTypePtr type vs self-ValueTypePtr type
4869       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4870       Offset offset = meet_offset(tp->offset());
4871       PTR ptr = meet_ptr(tp->ptr());
4872       int instance_id = meet_instance_id(InstanceTop);
4873       const TypePtr* speculative = xmeet_speculative(tp);
4874       int depth = meet_inline_depth(tp->inline_depth());
4875       // Compute constant oop
4876       ciObject* o = NULL;
4877       ciObject* this_oop  = const_oop();
4878       ciObject* tp_oop = tp->const_oop();
4879       const TypeValueType* vt = NULL;
4880       if (_vt != tp->_vt) {
4881         ciKlass* __value_klass = ciEnv::current()->___Value_klass();
4882         assert(klass() == __value_klass || tp->klass() == __value_klass, "impossible meet");
4883         if (above_centerline(ptr)) {
4884           vt = klass() == __value_klass ? tp->_vt : _vt;
4885         } else if (above_centerline(this->_ptr) && !above_centerline(tp->_ptr)) {
4886           vt = tp->_vt;
4887         } else if (above_centerline(tp->_ptr) && !above_centerline(this->_ptr)) {
4888           vt = _vt;
4889         } else {
4890           vt = klass() == __value_klass ? _vt : tp->_vt;
4891         }
4892       } else {
4893         vt = _vt;
4894       }
4895       if (ptr == Constant) {
4896         if (this_oop != NULL && tp_oop != NULL &&
4897             this_oop->equals(tp_oop) ) {
4898           o = this_oop;
4899         } else if (above_centerline(this ->_ptr)) {
4900           o = tp_oop;
4901         } else if (above_centerline(tp ->_ptr)) {
4902           o = this_oop;
4903         } else {
4904           ptr = NotNull;
4905         }
4906       }
4907       return make(vt, ptr, o, offset, instance_id, speculative, depth);
4908     }
4909     }
4910 }
4911 
4912 // Dual: compute field-by-field dual
4913 const Type* TypeValueTypePtr::xdual() const {
4914   return new TypeValueTypePtr(_vt, dual_ptr(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4915 }
4916 
4917 //------------------------------eq---------------------------------------------
4918 // Structural equality check for Type representations
4919 bool TypeValueTypePtr::eq(const Type* t) const {
4920   const TypeValueTypePtr* p = t->is_valuetypeptr();
4921   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4922 }
4923 
4924 //------------------------------hash-------------------------------------------
4925 // Type-specific hashing function.
4926 int TypeValueTypePtr::hash(void) const {
4927   return java_add(_vt->hash(), TypeOopPtr::hash());
4928 }
4929 
4930 //------------------------------empty------------------------------------------
4931 // TRUE if Type is a type with no values, FALSE otherwise.
4932 bool TypeValueTypePtr::empty(void) const {
4933   // FIXME
4934   return false;
4935 }
4936 
4937 //------------------------------dump2------------------------------------------
4938 #ifndef PRODUCT
4939 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4940   st->print("valuetype* ");
4941   klass()->print_name_on(st);
4942   st->print(":%s", ptr_msg[_ptr]);
4943   _offset.dump2(st);
4944 }
4945 #endif
4946 
4947 //=============================================================================
4948 
4949 //------------------------------hash-------------------------------------------
4950 // Type-specific hashing function.
4951 int TypeNarrowPtr::hash(void) const {
4952   return _ptrtype->hash() + 7;
4953 }
4954 
4955 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4956   return _ptrtype->singleton();
4957 }
4958 
4959 bool TypeNarrowPtr::empty(void) const {
4960   return _ptrtype->empty();
4961 }
4962 
4963 intptr_t TypeNarrowPtr::get_con() const {
4964   return _ptrtype->get_con();
4965 }
4966 
4967 bool TypeNarrowPtr::eq( const Type *t ) const {
4968   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4969   if (tc != NULL) {
4970     if (_ptrtype->base() != tc->_ptrtype->base()) {
4971       return false;
4972     }
4973     return tc->_ptrtype->eq(_ptrtype);
4974   }
4975   return false;
4976 }
4977 
4978 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4979   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4980   return make_same_narrowptr(odual);
4981 }
4982 
4983 
4984 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4985   if (isa_same_narrowptr(kills)) {
4986     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4987     if (ft->empty())
4988       return Type::TOP;           // Canonical empty value
4989     if (ft->isa_ptr()) {
4990       return make_hash_same_narrowptr(ft->isa_ptr());
4991     }
4992     return ft;
4993   } else if (kills->isa_ptr()) {
4994     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4995     if (ft->empty())
4996       return Type::TOP;           // Canonical empty value
4997     return ft;
4998   } else {
4999     return Type::TOP;
5000   }
5001 }
5002 
5003 //------------------------------xmeet------------------------------------------
5004 // Compute the MEET of two types.  It returns a new Type object.
5005 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5006   // Perform a fast test for common case; meeting the same types together.
5007   if( this == t ) return this;  // Meeting same type-rep?
5008 
5009   if (t->base() == base()) {
5010     const Type* result = _ptrtype->xmeet(t->make_ptr());
5011     if (result->isa_ptr()) {
5012       return make_hash_same_narrowptr(result->is_ptr());
5013     }
5014     return result;
5015   }
5016 
5017   // Current "this->_base" is NarrowKlass or NarrowOop
5018   switch (t->base()) {          // switch on original type
5019 
5020   case Int:                     // Mixing ints & oops happens when javac
5021   case Long:                    // reuses local variables
5022   case FloatTop:
5023   case FloatCon:
5024   case FloatBot:
5025   case DoubleTop:
5026   case DoubleCon:
5027   case DoubleBot:
5028   case AnyPtr:
5029   case RawPtr:
5030   case OopPtr:
5031   case InstPtr:
5032   case ValueTypePtr:
5033   case AryPtr:
5034   case MetadataPtr:
5035   case KlassPtr:
5036   case NarrowOop:
5037   case NarrowKlass:
5038 
5039   case Bottom:                  // Ye Olde Default
5040     return Type::BOTTOM;
5041   case Top:
5042     return this;
5043 
5044   default:                      // All else is a mistake
5045     typerr(t);
5046 
5047   } // End of switch
5048 
5049   return this;
5050 }
5051 
5052 #ifndef PRODUCT
5053 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5054   _ptrtype->dump2(d, depth, st);
5055 }
5056 #endif
5057 
5058 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5059 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5060 
5061 
5062 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5063   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5064 }
5065 
5066 const Type* TypeNarrowOop::remove_speculative() const {
5067   return make(_ptrtype->remove_speculative()->is_ptr());
5068 }
5069 
5070 const Type* TypeNarrowOop::cleanup_speculative() const {
5071   return make(_ptrtype->cleanup_speculative()->is_ptr());
5072 }
5073 
5074 #ifndef PRODUCT
5075 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5076   st->print("narrowoop: ");
5077   TypeNarrowPtr::dump2(d, depth, st);
5078 }
5079 #endif
5080 
5081 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5082 
5083 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5084   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5085 }
5086 
5087 #ifndef PRODUCT
5088 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5089   st->print("narrowklass: ");
5090   TypeNarrowPtr::dump2(d, depth, st);
5091 }
5092 #endif
5093 
5094 
5095 //------------------------------eq---------------------------------------------
5096 // Structural equality check for Type representations
5097 bool TypeMetadataPtr::eq( const Type *t ) const {
5098   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5099   ciMetadata* one = metadata();
5100   ciMetadata* two = a->metadata();
5101   if (one == NULL || two == NULL) {
5102     return (one == two) && TypePtr::eq(t);
5103   } else {
5104     return one->equals(two) && TypePtr::eq(t);
5105   }
5106 }
5107 
5108 //------------------------------hash-------------------------------------------
5109 // Type-specific hashing function.
5110 int TypeMetadataPtr::hash(void) const {
5111   return
5112     (metadata() ? metadata()->hash() : 0) +
5113     TypePtr::hash();
5114 }
5115 
5116 //------------------------------singleton--------------------------------------
5117 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5118 // constants
5119 bool TypeMetadataPtr::singleton(void) const {
5120   // detune optimizer to not generate constant metadata + constant offset as a constant!
5121   // TopPTR, Null, AnyNull, Constant are all singletons
5122   return (offset() == 0) && !below_centerline(_ptr);
5123 }
5124 
5125 //------------------------------add_offset-------------------------------------
5126 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5127   return make( _ptr, _metadata, xadd_offset(offset));
5128 }
5129 
5130 //-----------------------------filter------------------------------------------
5131 // Do not allow interface-vs.-noninterface joins to collapse to top.
5132 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5133   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5134   if (ft == NULL || ft->empty())
5135     return Type::TOP;           // Canonical empty value
5136   return ft;
5137 }
5138 
5139  //------------------------------get_con----------------------------------------
5140 intptr_t TypeMetadataPtr::get_con() const {
5141   assert( _ptr == Null || _ptr == Constant, "" );
5142   assert(offset() >= 0, "");
5143 
5144   if (offset() != 0) {
5145     // After being ported to the compiler interface, the compiler no longer
5146     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5147     // to a handle at compile time.  This handle is embedded in the generated
5148     // code and dereferenced at the time the nmethod is made.  Until that time,
5149     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5150     // have access to the addresses!).  This does not seem to currently happen,
5151     // but this assertion here is to help prevent its occurence.
5152     tty->print_cr("Found oop constant with non-zero offset");
5153     ShouldNotReachHere();
5154   }
5155 
5156   return (intptr_t)metadata()->constant_encoding();
5157 }
5158 
5159 //------------------------------cast_to_ptr_type-------------------------------
5160 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5161   if( ptr == _ptr ) return this;
5162   return make(ptr, metadata(), _offset);
5163 }
5164 
5165 //------------------------------meet-------------------------------------------
5166 // Compute the MEET of two types.  It returns a new Type object.
5167 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5168   // Perform a fast test for common case; meeting the same types together.
5169   if( this == t ) return this;  // Meeting same type-rep?
5170 
5171   // Current "this->_base" is OopPtr
5172   switch (t->base()) {          // switch on original type
5173 
5174   case Int:                     // Mixing ints & oops happens when javac
5175   case Long:                    // reuses local variables
5176   case FloatTop:
5177   case FloatCon:
5178   case FloatBot:
5179   case DoubleTop:
5180   case DoubleCon:
5181   case DoubleBot:
5182   case NarrowOop:
5183   case NarrowKlass:
5184   case Bottom:                  // Ye Olde Default
5185     return Type::BOTTOM;
5186   case Top:
5187     return this;
5188 
5189   default:                      // All else is a mistake
5190     typerr(t);
5191 
5192   case AnyPtr: {
5193     // Found an AnyPtr type vs self-OopPtr type
5194     const TypePtr *tp = t->is_ptr();
5195     Offset offset = meet_offset(tp->offset());
5196     PTR ptr = meet_ptr(tp->ptr());
5197     switch (tp->ptr()) {
5198     case Null:
5199       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5200       // else fall through:
5201     case TopPTR:
5202     case AnyNull: {
5203       return make(ptr, _metadata, offset);
5204     }
5205     case BotPTR:
5206     case NotNull:
5207       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5208     default: typerr(t);
5209     }
5210   }
5211 
5212   case RawPtr:
5213   case KlassPtr:
5214   case OopPtr:
5215   case InstPtr:
5216   case ValueTypePtr:
5217   case AryPtr:
5218     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5219 
5220   case MetadataPtr: {
5221     const TypeMetadataPtr *tp = t->is_metadataptr();
5222     Offset offset = meet_offset(tp->offset());
5223     PTR tptr = tp->ptr();
5224     PTR ptr = meet_ptr(tptr);
5225     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5226     if (tptr == TopPTR || _ptr == TopPTR ||
5227         metadata()->equals(tp->metadata())) {
5228       return make(ptr, md, offset);
5229     }
5230     // metadata is different
5231     if( ptr == Constant ) {  // Cannot be equal constants, so...
5232       if( tptr == Constant && _ptr != Constant)  return t;
5233       if( _ptr == Constant && tptr != Constant)  return this;
5234       ptr = NotNull;            // Fall down in lattice
5235     }
5236     return make(ptr, NULL, offset);
5237     break;
5238   }
5239   } // End of switch
5240   return this;                  // Return the double constant
5241 }
5242 
5243 
5244 //------------------------------xdual------------------------------------------
5245 // Dual of a pure metadata pointer.
5246 const Type *TypeMetadataPtr::xdual() const {
5247   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5248 }
5249 
5250 //------------------------------dump2------------------------------------------
5251 #ifndef PRODUCT
5252 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5253   st->print("metadataptr:%s", ptr_msg[_ptr]);
5254   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5255   switch (offset()) {
5256   case OffsetTop: st->print("+top"); break;
5257   case OffsetBot: st->print("+any"); break;
5258   case         0: break;
5259   default:        st->print("+%d",offset()); break;
5260   }
5261 }
5262 #endif
5263 
5264 
5265 //=============================================================================
5266 // Convenience common pre-built type.
5267 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5268 
5269 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5270   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5271 }
5272 
5273 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5274   return make(Constant, m, Offset(0));
5275 }
5276 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5277   return make(Constant, m, Offset(0));
5278 }
5279 
5280 //------------------------------make-------------------------------------------
5281 // Create a meta data constant
5282 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5283   assert(m == NULL || !m->is_klass(), "wrong type");
5284   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5285 }
5286 
5287 
5288 //=============================================================================
5289 // Convenience common pre-built types.
5290 
5291 // Not-null object klass or below
5292 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5293 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5294 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5295 const TypeKlassPtr *TypeKlassPtr::VALUE;
5296 
5297 //------------------------------TypeKlassPtr-----------------------------------
5298 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5299   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5300 }
5301 
5302 //------------------------------make-------------------------------------------
5303 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5304 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5305   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5306   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5307 }
5308 
5309 //------------------------------eq---------------------------------------------
5310 // Structural equality check for Type representations
5311 bool TypeKlassPtr::eq( const Type *t ) const {
5312   const TypeKlassPtr *p = t->is_klassptr();
5313   return klass() == p->klass() && TypePtr::eq(p);
5314 }
5315 
5316 //------------------------------hash-------------------------------------------
5317 // Type-specific hashing function.
5318 int TypeKlassPtr::hash(void) const {
5319   return java_add(klass() != NULL ? klass()->hash() : 0, TypePtr::hash());
5320 }
5321 
5322 //------------------------------singleton--------------------------------------
5323 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5324 // constants
5325 bool TypeKlassPtr::singleton(void) const {
5326   // detune optimizer to not generate constant klass + constant offset as a constant!
5327   // TopPTR, Null, AnyNull, Constant are all singletons
5328   return (offset() == 0) && !below_centerline(_ptr);
5329 }
5330 
5331 // Do not allow interface-vs.-noninterface joins to collapse to top.
5332 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5333   // logic here mirrors the one from TypeOopPtr::filter. See comments
5334   // there.
5335   const Type* ft = join_helper(kills, include_speculative);
5336   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5337   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5338 
5339   if (ft->empty()) {
5340     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5341       return kills;             // Uplift to interface
5342 
5343     return Type::TOP;           // Canonical empty value
5344   }
5345 
5346   // Interface klass type could be exact in opposite to interface type,
5347   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5348   if (ftkp != NULL && ktkp != NULL &&
5349       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5350       !ftkp->klass_is_exact() && // Keep exact interface klass
5351       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5352     return ktkp->cast_to_ptr_type(ftkp->ptr());
5353   }
5354 
5355   return ft;
5356 }
5357 
5358 //----------------------compute_klass------------------------------------------
5359 // Compute the defining klass for this class
5360 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5361   // Compute _klass based on element type.
5362   ciKlass* k_ary = NULL;
5363   const TypeAryPtr *tary;
5364   const Type* el = elem();
5365   if (el->isa_narrowoop()) {
5366     el = el->make_ptr();
5367   }
5368 
5369   // Get element klass
5370   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5371     // Compute object array klass from element klass
5372     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5373   } else if (el->isa_valuetype()) {
5374     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5375   } else if ((tary = el->isa_aryptr()) != NULL) {
5376     // Compute array klass from element klass
5377     ciKlass* k_elem = tary->klass();
5378     // If element type is something like bottom[], k_elem will be null.
5379     if (k_elem != NULL)
5380       k_ary = ciObjArrayKlass::make(k_elem);
5381   } else if ((el->base() == Type::Top) ||
5382              (el->base() == Type::Bottom)) {
5383     // element type of Bottom occurs from meet of basic type
5384     // and object; Top occurs when doing join on Bottom.
5385     // Leave k_ary at NULL.
5386   } else {
5387     // Cannot compute array klass directly from basic type,
5388     // since subtypes of TypeInt all have basic type T_INT.
5389 #ifdef ASSERT
5390     if (verify && el->isa_int()) {
5391       // Check simple cases when verifying klass.
5392       BasicType bt = T_ILLEGAL;
5393       if (el == TypeInt::BYTE) {
5394         bt = T_BYTE;
5395       } else if (el == TypeInt::SHORT) {
5396         bt = T_SHORT;
5397       } else if (el == TypeInt::CHAR) {
5398         bt = T_CHAR;
5399       } else if (el == TypeInt::INT) {
5400         bt = T_INT;
5401       } else {
5402         return _klass; // just return specified klass
5403       }
5404       return ciTypeArrayKlass::make(bt);
5405     }
5406 #endif
5407     assert(!el->isa_int(),
5408            "integral arrays must be pre-equipped with a class");
5409     // Compute array klass directly from basic type
5410     k_ary = ciTypeArrayKlass::make(el->basic_type());
5411   }
5412   return k_ary;
5413 }
5414 
5415 //------------------------------klass------------------------------------------
5416 // Return the defining klass for this class
5417 ciKlass* TypeAryPtr::klass() const {
5418   if( _klass ) return _klass;   // Return cached value, if possible
5419 
5420   // Oops, need to compute _klass and cache it
5421   ciKlass* k_ary = compute_klass();
5422 
5423   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5424     // The _klass field acts as a cache of the underlying
5425     // ciKlass for this array type.  In order to set the field,
5426     // we need to cast away const-ness.
5427     //
5428     // IMPORTANT NOTE: we *never* set the _klass field for the
5429     // type TypeAryPtr::OOPS.  This Type is shared between all
5430     // active compilations.  However, the ciKlass which represents
5431     // this Type is *not* shared between compilations, so caching
5432     // this value would result in fetching a dangling pointer.
5433     //
5434     // Recomputing the underlying ciKlass for each request is
5435     // a bit less efficient than caching, but calls to
5436     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5437     ((TypeAryPtr*)this)->_klass = k_ary;
5438     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5439         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5440       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5441     }
5442   }
5443   return k_ary;
5444 }
5445 
5446 
5447 //------------------------------add_offset-------------------------------------
5448 // Access internals of klass object
5449 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5450   return make( _ptr, klass(), xadd_offset(offset) );
5451 }
5452 
5453 //------------------------------cast_to_ptr_type-------------------------------
5454 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5455   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5456   if( ptr == _ptr ) return this;
5457   return make(ptr, _klass, _offset);
5458 }
5459 
5460 
5461 //-----------------------------cast_to_exactness-------------------------------
5462 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5463   if( klass_is_exact == _klass_is_exact ) return this;
5464   if (!UseExactTypes)  return this;
5465   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5466 }
5467 
5468 
5469 //-----------------------------as_instance_type--------------------------------
5470 // Corresponding type for an instance of the given class.
5471 // It will be NotNull, and exact if and only if the klass type is exact.
5472 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5473   ciKlass* k = klass();
5474   assert(k != NULL, "klass should not be NULL");
5475   bool    xk = klass_is_exact();
5476   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5477   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5478   guarantee(toop != NULL, "need type for given klass");
5479   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5480   return toop->cast_to_exactness(xk)->is_oopptr();
5481 }
5482 
5483 
5484 //------------------------------xmeet------------------------------------------
5485 // Compute the MEET of two types, return a new Type object.
5486 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5487   // Perform a fast test for common case; meeting the same types together.
5488   if( this == t ) return this;  // Meeting same type-rep?
5489 
5490   // Current "this->_base" is Pointer
5491   switch (t->base()) {          // switch on original type
5492 
5493   case Int:                     // Mixing ints & oops happens when javac
5494   case Long:                    // reuses local variables
5495   case FloatTop:
5496   case FloatCon:
5497   case FloatBot:
5498   case DoubleTop:
5499   case DoubleCon:
5500   case DoubleBot:
5501   case NarrowOop:
5502   case NarrowKlass:
5503   case Bottom:                  // Ye Olde Default
5504     return Type::BOTTOM;
5505   case Top:
5506     return this;
5507 
5508   default:                      // All else is a mistake
5509     typerr(t);
5510 
5511   case AnyPtr: {                // Meeting to AnyPtrs
5512     // Found an AnyPtr type vs self-KlassPtr type
5513     const TypePtr *tp = t->is_ptr();
5514     Offset offset = meet_offset(tp->offset());
5515     PTR ptr = meet_ptr(tp->ptr());
5516     switch (tp->ptr()) {
5517     case TopPTR:
5518       return this;
5519     case Null:
5520       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5521     case AnyNull:
5522       return make( ptr, klass(), offset );
5523     case BotPTR:
5524     case NotNull:
5525       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5526     default: typerr(t);
5527     }
5528   }
5529 
5530   case RawPtr:
5531   case MetadataPtr:
5532   case OopPtr:
5533   case AryPtr:                  // Meet with AryPtr
5534   case InstPtr:                 // Meet with InstPtr
5535   case ValueTypePtr:
5536     return TypePtr::BOTTOM;
5537 
5538   //
5539   //             A-top         }
5540   //           /   |   \       }  Tops
5541   //       B-top A-any C-top   }
5542   //          | /  |  \ |      }  Any-nulls
5543   //       B-any   |   C-any   }
5544   //          |    |    |
5545   //       B-con A-con C-con   } constants; not comparable across classes
5546   //          |    |    |
5547   //       B-not   |   C-not   }
5548   //          | \  |  / |      }  not-nulls
5549   //       B-bot A-not C-bot   }
5550   //           \   |   /       }  Bottoms
5551   //             A-bot         }
5552   //
5553 
5554   case KlassPtr: {  // Meet two KlassPtr types
5555     const TypeKlassPtr *tkls = t->is_klassptr();
5556     Offset  off  = meet_offset(tkls->offset());
5557     PTR  ptr     = meet_ptr(tkls->ptr());
5558 
5559     if (klass() == NULL || tkls->klass() == NULL) {
5560       ciKlass* k = NULL;
5561       if (ptr == Constant) {
5562         k = (klass() == NULL) ? tkls->klass() : klass();
5563       }
5564       return make(ptr, k, off);
5565     }
5566 
5567     // Check for easy case; klasses are equal (and perhaps not loaded!)
5568     // If we have constants, then we created oops so classes are loaded
5569     // and we can handle the constants further down.  This case handles
5570     // not-loaded classes
5571     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5572       return make( ptr, klass(), off );
5573     }
5574 
5575     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5576     ciKlass* tkls_klass = tkls->klass();
5577     ciKlass* this_klass = this->klass();
5578     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5579     assert( this_klass->is_loaded(), "This class should have been loaded.");
5580 
5581     // If 'this' type is above the centerline and is a superclass of the
5582     // other, we can treat 'this' as having the same type as the other.
5583     if ((above_centerline(this->ptr())) &&
5584         tkls_klass->is_subtype_of(this_klass)) {
5585       this_klass = tkls_klass;
5586     }
5587     // If 'tinst' type is above the centerline and is a superclass of the
5588     // other, we can treat 'tinst' as having the same type as the other.
5589     if ((above_centerline(tkls->ptr())) &&
5590         this_klass->is_subtype_of(tkls_klass)) {
5591       tkls_klass = this_klass;
5592     }
5593 
5594     // Check for classes now being equal
5595     if (tkls_klass->equals(this_klass)) {
5596       // If the klasses are equal, the constants may still differ.  Fall to
5597       // NotNull if they do (neither constant is NULL; that is a special case
5598       // handled elsewhere).
5599       if( ptr == Constant ) {
5600         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5601             this->klass()->equals(tkls->klass()));
5602         else if (above_centerline(this->ptr()));
5603         else if (above_centerline(tkls->ptr()));
5604         else
5605           ptr = NotNull;
5606       }
5607       return make( ptr, this_klass, off );
5608     } // Else classes are not equal
5609 
5610     // Since klasses are different, we require the LCA in the Java
5611     // class hierarchy - which means we have to fall to at least NotNull.
5612     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5613       ptr = NotNull;
5614     // Now we find the LCA of Java classes
5615     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5616     return   make( ptr, k, off );
5617   } // End of case KlassPtr
5618 
5619   } // End of switch
5620   return this;                  // Return the double constant
5621 }
5622 
5623 //------------------------------xdual------------------------------------------
5624 // Dual: compute field-by-field dual
5625 const Type    *TypeKlassPtr::xdual() const {
5626   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5627 }
5628 
5629 //------------------------------get_con----------------------------------------
5630 intptr_t TypeKlassPtr::get_con() const {
5631   assert( _ptr == Null || _ptr == Constant, "" );
5632   assert(offset() >= 0, "");
5633 
5634   if (offset() != 0) {
5635     // After being ported to the compiler interface, the compiler no longer
5636     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5637     // to a handle at compile time.  This handle is embedded in the generated
5638     // code and dereferenced at the time the nmethod is made.  Until that time,
5639     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5640     // have access to the addresses!).  This does not seem to currently happen,
5641     // but this assertion here is to help prevent its occurence.
5642     tty->print_cr("Found oop constant with non-zero offset");
5643     ShouldNotReachHere();
5644   }
5645 
5646   return (intptr_t)klass()->constant_encoding();
5647 }
5648 //------------------------------dump2------------------------------------------
5649 // Dump Klass Type
5650 #ifndef PRODUCT
5651 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5652   switch( _ptr ) {
5653   case Constant:
5654     st->print("precise ");
5655   case NotNull:
5656     {
5657       if (klass() != NULL) {
5658         const char* name = klass()->name()->as_utf8();
5659         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5660       } else {
5661         st->print("klass BOTTOM");
5662       }
5663     }
5664   case BotPTR:
5665     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5666   case TopPTR:
5667   case AnyNull:
5668     st->print(":%s", ptr_msg[_ptr]);
5669     if( _klass_is_exact ) st->print(":exact");
5670     break;
5671   default:
5672     break;
5673   }
5674 
5675   _offset.dump2(st);
5676 
5677   st->print(" *");
5678 }
5679 #endif
5680 
5681 
5682 
5683 //=============================================================================
5684 // Convenience common pre-built types.
5685 
5686 //------------------------------make-------------------------------------------
5687 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5688                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5689   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5690 }
5691 
5692 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5693   return make(domain, domain, range, range);
5694 }
5695 
5696 //------------------------------make-------------------------------------------
5697 const TypeFunc *TypeFunc::make(ciMethod* method) {
5698   Compile* C = Compile::current();
5699   const TypeFunc* tf = C->last_tf(method); // check cache
5700   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5701   const TypeTuple *domain_sig, *domain_cc;
5702   // Value type arguments are not passed by reference, instead each
5703   // field of the value type is passed as an argument. We maintain 2
5704   // views of the argument list here: one based on the signature (with
5705   // a value type argument as a single slot), one based on the actual
5706   // calling convention (with a value type argument as a list of its
5707   // fields).
5708   if (method->is_static()) {
5709     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5710     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5711   } else {
5712     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5713     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5714   }
5715   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5716   bool as_fields = ValueTypeReturnedAsFields;
5717   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), as_fields);
5718   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5719   C->set_last_tf(method, tf);  // fill cache
5720   return tf;
5721 }
5722 
5723 //------------------------------meet-------------------------------------------
5724 // Compute the MEET of two types.  It returns a new Type object.
5725 const Type *TypeFunc::xmeet( const Type *t ) const {
5726   // Perform a fast test for common case; meeting the same types together.
5727   if( this == t ) return this;  // Meeting same type-rep?
5728 
5729   // Current "this->_base" is Func
5730   switch (t->base()) {          // switch on original type
5731 
5732   case Bottom:                  // Ye Olde Default
5733     return t;
5734 
5735   default:                      // All else is a mistake
5736     typerr(t);
5737 
5738   case Top:
5739     break;
5740   }
5741   return this;                  // Return the double constant
5742 }
5743 
5744 //------------------------------xdual------------------------------------------
5745 // Dual: compute field-by-field dual
5746 const Type *TypeFunc::xdual() const {
5747   return this;
5748 }
5749 
5750 //------------------------------eq---------------------------------------------
5751 // Structural equality check for Type representations
5752 bool TypeFunc::eq( const Type *t ) const {
5753   const TypeFunc *a = (const TypeFunc*)t;
5754   return _domain_sig == a->_domain_sig &&
5755     _domain_cc == a->_domain_cc &&
5756     _range_sig == a->_range_sig &&
5757     _range_cc == a->_range_cc;
5758 }
5759 
5760 //------------------------------hash-------------------------------------------
5761 // Type-specific hashing function.
5762 int TypeFunc::hash(void) const {
5763   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5764 }
5765 
5766 //------------------------------dump2------------------------------------------
5767 // Dump Function Type
5768 #ifndef PRODUCT
5769 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5770   if( _range_sig->cnt() <= Parms )
5771     st->print("void");
5772   else {
5773     uint i;
5774     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5775       _range_sig->field_at(i)->dump2(d,depth,st);
5776       st->print("/");
5777     }
5778     _range_sig->field_at(i)->dump2(d,depth,st);
5779   }
5780   st->print(" ");
5781   st->print("( ");
5782   if( !depth || d[this] ) {     // Check for recursive dump
5783     st->print("...)");
5784     return;
5785   }
5786   d.Insert((void*)this,(void*)this);    // Stop recursion
5787   if (Parms < _domain_sig->cnt())
5788     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5789   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5790     st->print(", ");
5791     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5792   }
5793   st->print(" )");
5794 }
5795 #endif
5796 
5797 //------------------------------singleton--------------------------------------
5798 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5799 // constants (Ldi nodes).  Singletons are integer, float or double constants
5800 // or a single symbol.
5801 bool TypeFunc::singleton(void) const {
5802   return false;                 // Never a singleton
5803 }
5804 
5805 bool TypeFunc::empty(void) const {
5806   return false;                 // Never empty
5807 }
5808 
5809 
5810 BasicType TypeFunc::return_type() const{
5811   if (range_sig()->cnt() == TypeFunc::Parms) {
5812     return T_VOID;
5813   }
5814   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5815 }