1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/castnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/divnode.hpp"
  49 #include "opto/escape.hpp"
  50 #include "opto/idealGraphPrinter.hpp"
  51 #include "opto/loopnode.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/macro.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/mathexactnode.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/narrowptrnode.hpp"
  59 #include "opto/node.hpp"
  60 #include "opto/opcodes.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/parse.hpp"
  63 #include "opto/phaseX.hpp"
  64 #include "opto/rootnode.hpp"
  65 #include "opto/runtime.hpp"
  66 #include "opto/stringopts.hpp"
  67 #include "opto/type.hpp"
  68 #include "opto/valuetypenode.hpp"
  69 #include "opto/vectornode.hpp"
  70 #include "runtime/arguments.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/timer.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/copy.hpp"
  77 
  78 
  79 // -------------------- Compile::mach_constant_base_node -----------------------
  80 // Constant table base node singleton.
  81 MachConstantBaseNode* Compile::mach_constant_base_node() {
  82   if (_mach_constant_base_node == NULL) {
  83     _mach_constant_base_node = new MachConstantBaseNode();
  84     _mach_constant_base_node->add_req(C->root());
  85   }
  86   return _mach_constant_base_node;
  87 }
  88 
  89 
  90 /// Support for intrinsics.
  91 
  92 // Return the index at which m must be inserted (or already exists).
  93 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  94 class IntrinsicDescPair {
  95  private:
  96   ciMethod* _m;
  97   bool _is_virtual;
  98  public:
  99   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 100   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 101     ciMethod* m= elt->method();
 102     ciMethod* key_m = key->_m;
 103     if (key_m < m)      return -1;
 104     else if (key_m > m) return 1;
 105     else {
 106       bool is_virtual = elt->is_virtual();
 107       bool key_virtual = key->_is_virtual;
 108       if (key_virtual < is_virtual)      return -1;
 109       else if (key_virtual > is_virtual) return 1;
 110       else                               return 0;
 111     }
 112   }
 113 };
 114 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 115 #ifdef ASSERT
 116   for (int i = 1; i < _intrinsics->length(); i++) {
 117     CallGenerator* cg1 = _intrinsics->at(i-1);
 118     CallGenerator* cg2 = _intrinsics->at(i);
 119     assert(cg1->method() != cg2->method()
 120            ? cg1->method()     < cg2->method()
 121            : cg1->is_virtual() < cg2->is_virtual(),
 122            "compiler intrinsics list must stay sorted");
 123   }
 124 #endif
 125   IntrinsicDescPair pair(m, is_virtual);
 126   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 127 }
 128 
 129 void Compile::register_intrinsic(CallGenerator* cg) {
 130   if (_intrinsics == NULL) {
 131     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 132   }
 133   int len = _intrinsics->length();
 134   bool found = false;
 135   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 136   assert(!found, "registering twice");
 137   _intrinsics->insert_before(index, cg);
 138   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 139 }
 140 
 141 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 142   assert(m->is_loaded(), "don't try this on unloaded methods");
 143   if (_intrinsics != NULL) {
 144     bool found = false;
 145     int index = intrinsic_insertion_index(m, is_virtual, found);
 146      if (found) {
 147       return _intrinsics->at(index);
 148     }
 149   }
 150   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 151   if (m->intrinsic_id() != vmIntrinsics::_none &&
 152       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 153     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 154     if (cg != NULL) {
 155       // Save it for next time:
 156       register_intrinsic(cg);
 157       return cg;
 158     } else {
 159       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 160     }
 161   }
 162   return NULL;
 163 }
 164 
 165 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 166 // in library_call.cpp.
 167 
 168 
 169 #ifndef PRODUCT
 170 // statistics gathering...
 171 
 172 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 173 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 174 
 175 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 176   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 177   int oflags = _intrinsic_hist_flags[id];
 178   assert(flags != 0, "what happened?");
 179   if (is_virtual) {
 180     flags |= _intrinsic_virtual;
 181   }
 182   bool changed = (flags != oflags);
 183   if ((flags & _intrinsic_worked) != 0) {
 184     juint count = (_intrinsic_hist_count[id] += 1);
 185     if (count == 1) {
 186       changed = true;           // first time
 187     }
 188     // increment the overall count also:
 189     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 190   }
 191   if (changed) {
 192     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 193       // Something changed about the intrinsic's virtuality.
 194       if ((flags & _intrinsic_virtual) != 0) {
 195         // This is the first use of this intrinsic as a virtual call.
 196         if (oflags != 0) {
 197           // We already saw it as a non-virtual, so note both cases.
 198           flags |= _intrinsic_both;
 199         }
 200       } else if ((oflags & _intrinsic_both) == 0) {
 201         // This is the first use of this intrinsic as a non-virtual
 202         flags |= _intrinsic_both;
 203       }
 204     }
 205     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 206   }
 207   // update the overall flags also:
 208   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 209   return changed;
 210 }
 211 
 212 static char* format_flags(int flags, char* buf) {
 213   buf[0] = 0;
 214   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 215   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 216   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 217   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 218   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 219   if (buf[0] == 0)  strcat(buf, ",");
 220   assert(buf[0] == ',', "must be");
 221   return &buf[1];
 222 }
 223 
 224 void Compile::print_intrinsic_statistics() {
 225   char flagsbuf[100];
 226   ttyLocker ttyl;
 227   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 228   tty->print_cr("Compiler intrinsic usage:");
 229   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 230   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 231   #define PRINT_STAT_LINE(name, c, f) \
 232     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 233   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 234     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 235     int   flags = _intrinsic_hist_flags[id];
 236     juint count = _intrinsic_hist_count[id];
 237     if ((flags | count) != 0) {
 238       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 239     }
 240   }
 241   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 242   if (xtty != NULL)  xtty->tail("statistics");
 243 }
 244 
 245 void Compile::print_statistics() {
 246   { ttyLocker ttyl;
 247     if (xtty != NULL)  xtty->head("statistics type='opto'");
 248     Parse::print_statistics();
 249     PhaseCCP::print_statistics();
 250     PhaseRegAlloc::print_statistics();
 251     Scheduling::print_statistics();
 252     PhasePeephole::print_statistics();
 253     PhaseIdealLoop::print_statistics();
 254     if (xtty != NULL)  xtty->tail("statistics");
 255   }
 256   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 257     // put this under its own <statistics> element.
 258     print_intrinsic_statistics();
 259   }
 260 }
 261 #endif //PRODUCT
 262 
 263 // Support for bundling info
 264 Bundle* Compile::node_bundling(const Node *n) {
 265   assert(valid_bundle_info(n), "oob");
 266   return &_node_bundling_base[n->_idx];
 267 }
 268 
 269 bool Compile::valid_bundle_info(const Node *n) {
 270   return (_node_bundling_limit > n->_idx);
 271 }
 272 
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     i -= uses_found;    // we deleted 1 or more copies of this edge
 294   }
 295 }
 296 
 297 
 298 static inline bool not_a_node(const Node* n) {
 299   if (n == NULL)                   return true;
 300   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 301   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 302   return false;
 303 }
 304 
 305 // Identify all nodes that are reachable from below, useful.
 306 // Use breadth-first pass that records state in a Unique_Node_List,
 307 // recursive traversal is slower.
 308 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 309   int estimated_worklist_size = live_nodes();
 310   useful.map( estimated_worklist_size, NULL );  // preallocate space
 311 
 312   // Initialize worklist
 313   if (root() != NULL)     { useful.push(root()); }
 314   // If 'top' is cached, declare it useful to preserve cached node
 315   if( cached_top_node() ) { useful.push(cached_top_node()); }
 316 
 317   // Push all useful nodes onto the list, breadthfirst
 318   for( uint next = 0; next < useful.size(); ++next ) {
 319     assert( next < unique(), "Unique useful nodes < total nodes");
 320     Node *n  = useful.at(next);
 321     uint max = n->len();
 322     for( uint i = 0; i < max; ++i ) {
 323       Node *m = n->in(i);
 324       if (not_a_node(m))  continue;
 325       useful.push(m);
 326     }
 327   }
 328 }
 329 
 330 // Update dead_node_list with any missing dead nodes using useful
 331 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 332 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 333   uint max_idx = unique();
 334   VectorSet& useful_node_set = useful.member_set();
 335 
 336   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 337     // If node with index node_idx is not in useful set,
 338     // mark it as dead in dead node list.
 339     if (! useful_node_set.test(node_idx) ) {
 340       record_dead_node(node_idx);
 341     }
 342   }
 343 }
 344 
 345 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 346   int shift = 0;
 347   for (int i = 0; i < inlines->length(); i++) {
 348     CallGenerator* cg = inlines->at(i);
 349     CallNode* call = cg->call_node();
 350     if (shift > 0) {
 351       inlines->at_put(i-shift, cg);
 352     }
 353     if (!useful.member(call)) {
 354       shift++;
 355     }
 356   }
 357   inlines->trunc_to(inlines->length()-shift);
 358 }
 359 
 360 // Disconnect all useless nodes by disconnecting those at the boundary.
 361 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 362   uint next = 0;
 363   while (next < useful.size()) {
 364     Node *n = useful.at(next++);
 365     if (n->is_SafePoint()) {
 366       // We're done with a parsing phase. Replaced nodes are not valid
 367       // beyond that point.
 368       n->as_SafePoint()->delete_replaced_nodes();
 369     }
 370     // Use raw traversal of out edges since this code removes out edges
 371     int max = n->outcnt();
 372     for (int j = 0; j < max; ++j) {
 373       Node* child = n->raw_out(j);
 374       if (! useful.member(child)) {
 375         assert(!child->is_top() || child != top(),
 376                "If top is cached in Compile object it is in useful list");
 377         // Only need to remove this out-edge to the useless node
 378         n->raw_del_out(j);
 379         --j;
 380         --max;
 381       }
 382     }
 383     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 384       record_for_igvn(n->unique_out());
 385     }
 386   }
 387   // Remove useless macro and predicate opaq nodes
 388   for (int i = C->macro_count()-1; i >= 0; i--) {
 389     Node* n = C->macro_node(i);
 390     if (!useful.member(n)) {
 391       remove_macro_node(n);
 392     }
 393   }
 394   // Remove useless CastII nodes with range check dependency
 395   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 396     Node* cast = range_check_cast_node(i);
 397     if (!useful.member(cast)) {
 398       remove_range_check_cast(cast);
 399     }
 400   }
 401   // Remove useless expensive node
 402   for (int i = C->expensive_count()-1; i >= 0; i--) {
 403     Node* n = C->expensive_node(i);
 404     if (!useful.member(n)) {
 405       remove_expensive_node(n);
 406     }
 407   }
 408   for (int i = value_type_ptr_count() - 1; i >= 0; i--) {
 409     ValueTypePtrNode* vtptr = value_type_ptr(i);
 410     if (!useful.member(vtptr)) {
 411       remove_value_type_ptr(vtptr);
 412     }
 413   }
 414   // clean up the late inline lists
 415   remove_useless_late_inlines(&_string_late_inlines, useful);
 416   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 417   remove_useless_late_inlines(&_late_inlines, useful);
 418   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 419 }
 420 
 421 //------------------------------frame_size_in_words-----------------------------
 422 // frame_slots in units of words
 423 int Compile::frame_size_in_words() const {
 424   // shift is 0 in LP32 and 1 in LP64
 425   const int shift = (LogBytesPerWord - LogBytesPerInt);
 426   int words = _frame_slots >> shift;
 427   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 428   return words;
 429 }
 430 
 431 // To bang the stack of this compiled method we use the stack size
 432 // that the interpreter would need in case of a deoptimization. This
 433 // removes the need to bang the stack in the deoptimization blob which
 434 // in turn simplifies stack overflow handling.
 435 int Compile::bang_size_in_bytes() const {
 436   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 437 }
 438 
 439 // ============================================================================
 440 //------------------------------CompileWrapper---------------------------------
 441 class CompileWrapper : public StackObj {
 442   Compile *const _compile;
 443  public:
 444   CompileWrapper(Compile* compile);
 445 
 446   ~CompileWrapper();
 447 };
 448 
 449 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 450   // the Compile* pointer is stored in the current ciEnv:
 451   ciEnv* env = compile->env();
 452   assert(env == ciEnv::current(), "must already be a ciEnv active");
 453   assert(env->compiler_data() == NULL, "compile already active?");
 454   env->set_compiler_data(compile);
 455   assert(compile == Compile::current(), "sanity");
 456 
 457   compile->set_type_dict(NULL);
 458   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 459   compile->clone_map().set_clone_idx(0);
 460   compile->set_type_hwm(NULL);
 461   compile->set_type_last_size(0);
 462   compile->set_last_tf(NULL, NULL);
 463   compile->set_indexSet_arena(NULL);
 464   compile->set_indexSet_free_block_list(NULL);
 465   compile->init_type_arena();
 466   Type::Initialize(compile);
 467   _compile->set_scratch_buffer_blob(NULL);
 468   _compile->begin_method();
 469   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 470 }
 471 CompileWrapper::~CompileWrapper() {
 472   _compile->end_method();
 473   if (_compile->scratch_buffer_blob() != NULL)
 474     BufferBlob::free(_compile->scratch_buffer_blob());
 475   _compile->env()->set_compiler_data(NULL);
 476 }
 477 
 478 
 479 //----------------------------print_compile_messages---------------------------
 480 void Compile::print_compile_messages() {
 481 #ifndef PRODUCT
 482   // Check if recompiling
 483   if (_subsume_loads == false && PrintOpto) {
 484     // Recompiling without allowing machine instructions to subsume loads
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 490     // Recompiling without escape analysis
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 496     // Recompiling without boxing elimination
 497     tty->print_cr("*********************************************************");
 498     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 499     tty->print_cr("*********************************************************");
 500   }
 501   if (C->directive()->BreakAtCompileOption) {
 502     // Open the debugger when compiling this method.
 503     tty->print("### Breaking when compiling: ");
 504     method()->print_short_name();
 505     tty->cr();
 506     BREAKPOINT;
 507   }
 508 
 509   if( PrintOpto ) {
 510     if (is_osr_compilation()) {
 511       tty->print("[OSR]%3d", _compile_id);
 512     } else {
 513       tty->print("%3d", _compile_id);
 514     }
 515   }
 516 #endif
 517 }
 518 
 519 
 520 //-----------------------init_scratch_buffer_blob------------------------------
 521 // Construct a temporary BufferBlob and cache it for this compile.
 522 void Compile::init_scratch_buffer_blob(int const_size) {
 523   // If there is already a scratch buffer blob allocated and the
 524   // constant section is big enough, use it.  Otherwise free the
 525   // current and allocate a new one.
 526   BufferBlob* blob = scratch_buffer_blob();
 527   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 528     // Use the current blob.
 529   } else {
 530     if (blob != NULL) {
 531       BufferBlob::free(blob);
 532     }
 533 
 534     ResourceMark rm;
 535     _scratch_const_size = const_size;
 536     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 537     blob = BufferBlob::create("Compile::scratch_buffer", size);
 538     // Record the buffer blob for next time.
 539     set_scratch_buffer_blob(blob);
 540     // Have we run out of code space?
 541     if (scratch_buffer_blob() == NULL) {
 542       // Let CompilerBroker disable further compilations.
 543       record_failure("Not enough space for scratch buffer in CodeCache");
 544       return;
 545     }
 546   }
 547 
 548   // Initialize the relocation buffers
 549   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 550   set_scratch_locs_memory(locs_buf);
 551 }
 552 
 553 
 554 //-----------------------scratch_emit_size-------------------------------------
 555 // Helper function that computes size by emitting code
 556 uint Compile::scratch_emit_size(const Node* n) {
 557   // Start scratch_emit_size section.
 558   set_in_scratch_emit_size(true);
 559 
 560   // Emit into a trash buffer and count bytes emitted.
 561   // This is a pretty expensive way to compute a size,
 562   // but it works well enough if seldom used.
 563   // All common fixed-size instructions are given a size
 564   // method by the AD file.
 565   // Note that the scratch buffer blob and locs memory are
 566   // allocated at the beginning of the compile task, and
 567   // may be shared by several calls to scratch_emit_size.
 568   // The allocation of the scratch buffer blob is particularly
 569   // expensive, since it has to grab the code cache lock.
 570   BufferBlob* blob = this->scratch_buffer_blob();
 571   assert(blob != NULL, "Initialize BufferBlob at start");
 572   assert(blob->size() > MAX_inst_size, "sanity");
 573   relocInfo* locs_buf = scratch_locs_memory();
 574   address blob_begin = blob->content_begin();
 575   address blob_end   = (address)locs_buf;
 576   assert(blob->contains(blob_end), "sanity");
 577   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 578   buf.initialize_consts_size(_scratch_const_size);
 579   buf.initialize_stubs_size(MAX_stubs_size);
 580   assert(locs_buf != NULL, "sanity");
 581   int lsize = MAX_locs_size / 3;
 582   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 583   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 584   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 585   // Mark as scratch buffer.
 586   buf.consts()->set_scratch_emit();
 587   buf.insts()->set_scratch_emit();
 588   buf.stubs()->set_scratch_emit();
 589 
 590   // Do the emission.
 591 
 592   Label fakeL; // Fake label for branch instructions.
 593   Label*   saveL = NULL;
 594   uint save_bnum = 0;
 595   bool is_branch = n->is_MachBranch();
 596   if (is_branch) {
 597     MacroAssembler masm(&buf);
 598     masm.bind(fakeL);
 599     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 600     n->as_MachBranch()->label_set(&fakeL, 0);
 601   }
 602   n->emit(buf, this->regalloc());
 603 
 604   // Emitting into the scratch buffer should not fail
 605   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 606 
 607   if (is_branch) // Restore label.
 608     n->as_MachBranch()->label_set(saveL, save_bnum);
 609 
 610   // End scratch_emit_size section.
 611   set_in_scratch_emit_size(false);
 612 
 613   return buf.insts_size();
 614 }
 615 
 616 
 617 // ============================================================================
 618 //------------------------------Compile standard-------------------------------
 619 debug_only( int Compile::_debug_idx = 100000; )
 620 
 621 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 622 // the continuation bci for on stack replacement.
 623 
 624 
 625 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 626                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 627                 : Phase(Compiler),
 628                   _env(ci_env),
 629                   _directive(directive),
 630                   _log(ci_env->log()),
 631                   _compile_id(ci_env->compile_id()),
 632                   _save_argument_registers(false),
 633                   _stub_name(NULL),
 634                   _stub_function(NULL),
 635                   _stub_entry_point(NULL),
 636                   _method(target),
 637                   _entry_bci(osr_bci),
 638                   _initial_gvn(NULL),
 639                   _for_igvn(NULL),
 640                   _warm_calls(NULL),
 641                   _subsume_loads(subsume_loads),
 642                   _do_escape_analysis(do_escape_analysis),
 643                   _eliminate_boxing(eliminate_boxing),
 644                   _failure_reason(NULL),
 645                   _code_buffer("Compile::Fill_buffer"),
 646                   _orig_pc_slot(0),
 647                   _orig_pc_slot_offset_in_bytes(0),
 648                   _has_method_handle_invokes(false),
 649                   _mach_constant_base_node(NULL),
 650                   _node_bundling_limit(0),
 651                   _node_bundling_base(NULL),
 652                   _java_calls(0),
 653                   _inner_loops(0),
 654                   _scratch_const_size(-1),
 655                   _in_scratch_emit_size(false),
 656                   _dead_node_list(comp_arena()),
 657                   _dead_node_count(0),
 658 #ifndef PRODUCT
 659                   _trace_opto_output(directive->TraceOptoOutputOption),
 660                   _in_dump_cnt(0),
 661                   _printer(IdealGraphPrinter::printer()),
 662 #endif
 663                   _congraph(NULL),
 664                   _comp_arena(mtCompiler),
 665                   _node_arena(mtCompiler),
 666                   _old_arena(mtCompiler),
 667                   _Compile_types(mtCompiler),
 668                   _replay_inline_data(NULL),
 669                   _late_inlines(comp_arena(), 2, 0, NULL),
 670                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 671                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 672                   _late_inlines_pos(0),
 673                   _number_of_mh_late_inlines(0),
 674                   _inlining_progress(false),
 675                   _inlining_incrementally(false),
 676                   _print_inlining_list(NULL),
 677                   _print_inlining_stream(NULL),
 678                   _print_inlining_idx(0),
 679                   _print_inlining_output(NULL),
 680                   _interpreter_frame_size(0),
 681                   _max_node_limit(MaxNodeLimit),
 682                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 683   C = this;
 684 #ifndef PRODUCT
 685   if (_printer != NULL) {
 686     _printer->set_compile(this);
 687   }
 688 #endif
 689   CompileWrapper cw(this);
 690 
 691   if (CITimeVerbose) {
 692     tty->print(" ");
 693     target->holder()->name()->print();
 694     tty->print(".");
 695     target->print_short_name();
 696     tty->print("  ");
 697   }
 698   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 699   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 700 
 701 #ifndef PRODUCT
 702   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 703   if (!print_opto_assembly) {
 704     bool print_assembly = directive->PrintAssemblyOption;
 705     if (print_assembly && !Disassembler::can_decode()) {
 706       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 707       print_opto_assembly = true;
 708     }
 709   }
 710   set_print_assembly(print_opto_assembly);
 711   set_parsed_irreducible_loop(false);
 712 
 713   if (directive->ReplayInlineOption) {
 714     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 715   }
 716 #endif
 717   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 718   set_print_intrinsics(directive->PrintIntrinsicsOption);
 719   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 720 
 721   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 722     // Make sure the method being compiled gets its own MDO,
 723     // so we can at least track the decompile_count().
 724     // Need MDO to record RTM code generation state.
 725     method()->ensure_method_data();
 726   }
 727 
 728   Init(::AliasLevel);
 729 
 730 
 731   print_compile_messages();
 732 
 733   _ilt = InlineTree::build_inline_tree_root();
 734 
 735   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 736   assert(num_alias_types() >= AliasIdxRaw, "");
 737 
 738 #define MINIMUM_NODE_HASH  1023
 739   // Node list that Iterative GVN will start with
 740   Unique_Node_List for_igvn(comp_arena());
 741   set_for_igvn(&for_igvn);
 742 
 743   // GVN that will be run immediately on new nodes
 744   uint estimated_size = method()->code_size()*4+64;
 745   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 746   PhaseGVN gvn(node_arena(), estimated_size);
 747   set_initial_gvn(&gvn);
 748 
 749   print_inlining_init();
 750   { // Scope for timing the parser
 751     TracePhase tp("parse", &timers[_t_parser]);
 752 
 753     // Put top into the hash table ASAP.
 754     initial_gvn()->transform_no_reclaim(top());
 755 
 756     // Set up tf(), start(), and find a CallGenerator.
 757     CallGenerator* cg = NULL;
 758     if (is_osr_compilation()) {
 759       const TypeTuple *domain = StartOSRNode::osr_domain();
 760       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 761       init_tf(TypeFunc::make(domain, range));
 762       StartNode* s = new StartOSRNode(root(), domain);
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       cg = CallGenerator::for_osr(method(), entry_bci());
 766     } else {
 767       // Normal case.
 768       init_tf(TypeFunc::make(method()));
 769       StartNode* s = new StartNode(root(), tf()->domain_cc());
 770       initial_gvn()->set_type_bottom(s);
 771       init_start(s);
 772       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 773         // With java.lang.ref.reference.get() we must go through the
 774         // intrinsic when G1 is enabled - even when get() is the root
 775         // method of the compile - so that, if necessary, the value in
 776         // the referent field of the reference object gets recorded by
 777         // the pre-barrier code.
 778         // Specifically, if G1 is enabled, the value in the referent
 779         // field is recorded by the G1 SATB pre barrier. This will
 780         // result in the referent being marked live and the reference
 781         // object removed from the list of discovered references during
 782         // reference processing.
 783         cg = find_intrinsic(method(), false);
 784       }
 785       if (cg == NULL) {
 786         float past_uses = method()->interpreter_invocation_count();
 787         float expected_uses = past_uses;
 788         cg = CallGenerator::for_inline(method(), expected_uses);
 789       }
 790     }
 791     if (failing())  return;
 792     if (cg == NULL) {
 793       record_method_not_compilable("cannot parse method");
 794       return;
 795     }
 796     JVMState* jvms = build_start_state(start(), tf());
 797     if ((jvms = cg->generate(jvms)) == NULL) {
 798       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 799         record_method_not_compilable("method parse failed");
 800       }
 801       return;
 802     }
 803     GraphKit kit(jvms);
 804 
 805     if (!kit.stopped()) {
 806       // Accept return values, and transfer control we know not where.
 807       // This is done by a special, unique ReturnNode bound to root.
 808       return_values(kit.jvms());
 809     }
 810 
 811     if (kit.has_exceptions()) {
 812       // Any exceptions that escape from this call must be rethrown
 813       // to whatever caller is dynamically above us on the stack.
 814       // This is done by a special, unique RethrowNode bound to root.
 815       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 816     }
 817 
 818     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 819 
 820     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 821       inline_string_calls(true);
 822     }
 823 
 824     if (failing())  return;
 825 
 826     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 827 
 828     // Remove clutter produced by parsing.
 829     if (!failing()) {
 830       ResourceMark rm;
 831       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 832     }
 833   }
 834 
 835   // Note:  Large methods are capped off in do_one_bytecode().
 836   if (failing())  return;
 837 
 838   // After parsing, node notes are no longer automagic.
 839   // They must be propagated by register_new_node_with_optimizer(),
 840   // clone(), or the like.
 841   set_default_node_notes(NULL);
 842 
 843   for (;;) {
 844     int successes = Inline_Warm();
 845     if (failing())  return;
 846     if (successes == 0)  break;
 847   }
 848 
 849   // Drain the list.
 850   Finish_Warm();
 851 #ifndef PRODUCT
 852   if (_printer && _printer->should_print(1)) {
 853     _printer->print_inlining();
 854   }
 855 #endif
 856 
 857   if (failing())  return;
 858   NOT_PRODUCT( verify_graph_edges(); )
 859 
 860   // Now optimize
 861   Optimize();
 862   if (failing())  return;
 863   NOT_PRODUCT( verify_graph_edges(); )
 864 
 865 #ifndef PRODUCT
 866   if (PrintIdeal) {
 867     ttyLocker ttyl;  // keep the following output all in one block
 868     // This output goes directly to the tty, not the compiler log.
 869     // To enable tools to match it up with the compilation activity,
 870     // be sure to tag this tty output with the compile ID.
 871     if (xtty != NULL) {
 872       xtty->head("ideal compile_id='%d'%s", compile_id(),
 873                  is_osr_compilation()    ? " compile_kind='osr'" :
 874                  "");
 875     }
 876     root()->dump(9999);
 877     if (xtty != NULL) {
 878       xtty->tail("ideal");
 879     }
 880   }
 881 #endif
 882 
 883   NOT_PRODUCT( verify_barriers(); )
 884 
 885   // Dump compilation data to replay it.
 886   if (directive->DumpReplayOption) {
 887     env()->dump_replay_data(_compile_id);
 888   }
 889   if (directive->DumpInlineOption && (ilt() != NULL)) {
 890     env()->dump_inline_data(_compile_id);
 891   }
 892 
 893   // Now that we know the size of all the monitors we can add a fixed slot
 894   // for the original deopt pc.
 895 
 896   _orig_pc_slot =  fixed_slots();
 897   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 898   set_fixed_slots(next_slot);
 899 
 900   // Compute when to use implicit null checks. Used by matching trap based
 901   // nodes and NullCheck optimization.
 902   set_allowed_deopt_reasons();
 903 
 904   // Now generate code
 905   Code_Gen();
 906   if (failing())  return;
 907 
 908   // Check if we want to skip execution of all compiled code.
 909   {
 910 #ifndef PRODUCT
 911     if (OptoNoExecute) {
 912       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 913       return;
 914     }
 915 #endif
 916     TracePhase tp("install_code", &timers[_t_registerMethod]);
 917 
 918     if (is_osr_compilation()) {
 919       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 920       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 921     } else {
 922       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 923       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 924     }
 925 
 926     env()->register_method(_method, _entry_bci,
 927                            &_code_offsets,
 928                            _orig_pc_slot_offset_in_bytes,
 929                            code_buffer(),
 930                            frame_size_in_words(), _oop_map_set,
 931                            &_handler_table, &_inc_table,
 932                            compiler,
 933                            has_unsafe_access(),
 934                            SharedRuntime::is_wide_vector(max_vector_size()),
 935                            rtm_state()
 936                            );
 937 
 938     if (log() != NULL) // Print code cache state into compiler log
 939       log()->code_cache_state();
 940   }
 941 }
 942 
 943 //------------------------------Compile----------------------------------------
 944 // Compile a runtime stub
 945 Compile::Compile( ciEnv* ci_env,
 946                   TypeFunc_generator generator,
 947                   address stub_function,
 948                   const char *stub_name,
 949                   int is_fancy_jump,
 950                   bool pass_tls,
 951                   bool save_arg_registers,
 952                   bool return_pc,
 953                   DirectiveSet* directive)
 954   : Phase(Compiler),
 955     _env(ci_env),
 956     _directive(directive),
 957     _log(ci_env->log()),
 958     _compile_id(0),
 959     _save_argument_registers(save_arg_registers),
 960     _method(NULL),
 961     _stub_name(stub_name),
 962     _stub_function(stub_function),
 963     _stub_entry_point(NULL),
 964     _entry_bci(InvocationEntryBci),
 965     _initial_gvn(NULL),
 966     _for_igvn(NULL),
 967     _warm_calls(NULL),
 968     _orig_pc_slot(0),
 969     _orig_pc_slot_offset_in_bytes(0),
 970     _subsume_loads(true),
 971     _do_escape_analysis(false),
 972     _eliminate_boxing(false),
 973     _failure_reason(NULL),
 974     _code_buffer("Compile::Fill_buffer"),
 975     _has_method_handle_invokes(false),
 976     _mach_constant_base_node(NULL),
 977     _node_bundling_limit(0),
 978     _node_bundling_base(NULL),
 979     _java_calls(0),
 980     _inner_loops(0),
 981 #ifndef PRODUCT
 982     _trace_opto_output(directive->TraceOptoOutputOption),
 983     _in_dump_cnt(0),
 984     _printer(NULL),
 985 #endif
 986     _comp_arena(mtCompiler),
 987     _node_arena(mtCompiler),
 988     _old_arena(mtCompiler),
 989     _Compile_types(mtCompiler),
 990     _dead_node_list(comp_arena()),
 991     _dead_node_count(0),
 992     _congraph(NULL),
 993     _replay_inline_data(NULL),
 994     _number_of_mh_late_inlines(0),
 995     _inlining_progress(false),
 996     _inlining_incrementally(false),
 997     _print_inlining_list(NULL),
 998     _print_inlining_stream(NULL),
 999     _print_inlining_idx(0),
1000     _print_inlining_output(NULL),
1001     _allowed_reasons(0),
1002     _interpreter_frame_size(0),
1003     _max_node_limit(MaxNodeLimit),
1004     _has_reserved_stack_access(false) {
1005   C = this;
1006 
1007   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1008   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1009 
1010 #ifndef PRODUCT
1011   set_print_assembly(PrintFrameConverterAssembly);
1012   set_parsed_irreducible_loop(false);
1013 #endif
1014   set_has_irreducible_loop(false); // no loops
1015 
1016   CompileWrapper cw(this);
1017   Init(/*AliasLevel=*/ 0);
1018   init_tf((*generator)());
1019 
1020   {
1021     // The following is a dummy for the sake of GraphKit::gen_stub
1022     Unique_Node_List for_igvn(comp_arena());
1023     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1024     PhaseGVN gvn(Thread::current()->resource_area(),255);
1025     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1026     gvn.transform_no_reclaim(top());
1027 
1028     GraphKit kit;
1029     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1030   }
1031 
1032   NOT_PRODUCT( verify_graph_edges(); )
1033   Code_Gen();
1034   if (failing())  return;
1035 
1036 
1037   // Entry point will be accessed using compile->stub_entry_point();
1038   if (code_buffer() == NULL) {
1039     Matcher::soft_match_failure();
1040   } else {
1041     if (PrintAssembly && (WizardMode || Verbose))
1042       tty->print_cr("### Stub::%s", stub_name);
1043 
1044     if (!failing()) {
1045       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1046 
1047       // Make the NMethod
1048       // For now we mark the frame as never safe for profile stackwalking
1049       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1050                                                       code_buffer(),
1051                                                       CodeOffsets::frame_never_safe,
1052                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1053                                                       frame_size_in_words(),
1054                                                       _oop_map_set,
1055                                                       save_arg_registers);
1056       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1057 
1058       _stub_entry_point = rs->entry_point();
1059     }
1060   }
1061 }
1062 
1063 //------------------------------Init-------------------------------------------
1064 // Prepare for a single compilation
1065 void Compile::Init(int aliaslevel) {
1066   _unique  = 0;
1067   _regalloc = NULL;
1068 
1069   _tf      = NULL;  // filled in later
1070   _top     = NULL;  // cached later
1071   _matcher = NULL;  // filled in later
1072   _cfg     = NULL;  // filled in later
1073 
1074   set_24_bit_selection_and_mode(Use24BitFP, false);
1075 
1076   _node_note_array = NULL;
1077   _default_node_notes = NULL;
1078   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1079 
1080   _immutable_memory = NULL; // filled in at first inquiry
1081 
1082   // Globally visible Nodes
1083   // First set TOP to NULL to give safe behavior during creation of RootNode
1084   set_cached_top_node(NULL);
1085   set_root(new RootNode());
1086   // Now that you have a Root to point to, create the real TOP
1087   set_cached_top_node( new ConNode(Type::TOP) );
1088   set_recent_alloc(NULL, NULL);
1089 
1090   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1091   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1092   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1093   env()->set_dependencies(new Dependencies(env()));
1094 
1095   _fixed_slots = 0;
1096   set_has_split_ifs(false);
1097   set_has_loops(has_method() && method()->has_loops()); // first approximation
1098   set_has_stringbuilder(false);
1099   set_has_boxed_value(false);
1100   _trap_can_recompile = false;  // no traps emitted yet
1101   _major_progress = true; // start out assuming good things will happen
1102   set_has_unsafe_access(false);
1103   set_max_vector_size(0);
1104   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1105   set_decompile_count(0);
1106 
1107   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1108   set_num_loop_opts(LoopOptsCount);
1109   set_do_inlining(Inline);
1110   set_max_inline_size(MaxInlineSize);
1111   set_freq_inline_size(FreqInlineSize);
1112   set_do_scheduling(OptoScheduling);
1113   set_do_count_invocations(false);
1114   set_do_method_data_update(false);
1115 
1116   set_do_vector_loop(false);
1117 
1118   if (AllowVectorizeOnDemand) {
1119     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1120       set_do_vector_loop(true);
1121       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1122     } else if (has_method() && method()->name() != 0 &&
1123                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1124       set_do_vector_loop(true);
1125     }
1126   }
1127   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1128   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1129 
1130   set_age_code(has_method() && method()->profile_aging());
1131   set_rtm_state(NoRTM); // No RTM lock eliding by default
1132   _max_node_limit = _directive->MaxNodeLimitOption;
1133 
1134 #if INCLUDE_RTM_OPT
1135   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1136     int rtm_state = method()->method_data()->rtm_state();
1137     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1138       // Don't generate RTM lock eliding code.
1139       set_rtm_state(NoRTM);
1140     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1141       // Generate RTM lock eliding code without abort ratio calculation code.
1142       set_rtm_state(UseRTM);
1143     } else if (UseRTMDeopt) {
1144       // Generate RTM lock eliding code and include abort ratio calculation
1145       // code if UseRTMDeopt is on.
1146       set_rtm_state(ProfileRTM);
1147     }
1148   }
1149 #endif
1150   if (debug_info()->recording_non_safepoints()) {
1151     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1152                         (comp_arena(), 8, 0, NULL));
1153     set_default_node_notes(Node_Notes::make(this));
1154   }
1155 
1156   // // -- Initialize types before each compile --
1157   // // Update cached type information
1158   // if( _method && _method->constants() )
1159   //   Type::update_loaded_types(_method, _method->constants());
1160 
1161   // Init alias_type map.
1162   if (!_do_escape_analysis && aliaslevel == 3)
1163     aliaslevel = 2;  // No unique types without escape analysis
1164   _AliasLevel = aliaslevel;
1165   const int grow_ats = 16;
1166   _max_alias_types = grow_ats;
1167   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1168   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1169   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1170   {
1171     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1172   }
1173   // Initialize the first few types.
1174   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1175   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1176   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1177   _num_alias_types = AliasIdxRaw+1;
1178   // Zero out the alias type cache.
1179   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1180   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1181   probe_alias_cache(NULL)->_index = AliasIdxTop;
1182 
1183   _intrinsics = NULL;
1184   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1185   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1186   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1187   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1188   _value_type_ptr_nodes = new(comp_arena()) GrowableArray<ValueTypePtrNode*>(comp_arena(), 8,  0, NULL);
1189   register_library_intrinsics();
1190 }
1191 
1192 //---------------------------init_start----------------------------------------
1193 // Install the StartNode on this compile object.
1194 void Compile::init_start(StartNode* s) {
1195   if (failing())
1196     return; // already failing
1197   assert(s == start(), "");
1198 }
1199 
1200 /**
1201  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1202  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1203  * the ideal graph.
1204  */
1205 StartNode* Compile::start() const {
1206   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1207   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1208     Node* start = root()->fast_out(i);
1209     if (start->is_Start()) {
1210       return start->as_Start();
1211     }
1212   }
1213   fatal("Did not find Start node!");
1214   return NULL;
1215 }
1216 
1217 //-------------------------------immutable_memory-------------------------------------
1218 // Access immutable memory
1219 Node* Compile::immutable_memory() {
1220   if (_immutable_memory != NULL) {
1221     return _immutable_memory;
1222   }
1223   StartNode* s = start();
1224   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1225     Node *p = s->fast_out(i);
1226     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1227       _immutable_memory = p;
1228       return _immutable_memory;
1229     }
1230   }
1231   ShouldNotReachHere();
1232   return NULL;
1233 }
1234 
1235 //----------------------set_cached_top_node------------------------------------
1236 // Install the cached top node, and make sure Node::is_top works correctly.
1237 void Compile::set_cached_top_node(Node* tn) {
1238   if (tn != NULL)  verify_top(tn);
1239   Node* old_top = _top;
1240   _top = tn;
1241   // Calling Node::setup_is_top allows the nodes the chance to adjust
1242   // their _out arrays.
1243   if (_top != NULL)     _top->setup_is_top();
1244   if (old_top != NULL)  old_top->setup_is_top();
1245   assert(_top == NULL || top()->is_top(), "");
1246 }
1247 
1248 #ifdef ASSERT
1249 uint Compile::count_live_nodes_by_graph_walk() {
1250   Unique_Node_List useful(comp_arena());
1251   // Get useful node list by walking the graph.
1252   identify_useful_nodes(useful);
1253   return useful.size();
1254 }
1255 
1256 void Compile::print_missing_nodes() {
1257 
1258   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1259   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1260     return;
1261   }
1262 
1263   // This is an expensive function. It is executed only when the user
1264   // specifies VerifyIdealNodeCount option or otherwise knows the
1265   // additional work that needs to be done to identify reachable nodes
1266   // by walking the flow graph and find the missing ones using
1267   // _dead_node_list.
1268 
1269   Unique_Node_List useful(comp_arena());
1270   // Get useful node list by walking the graph.
1271   identify_useful_nodes(useful);
1272 
1273   uint l_nodes = C->live_nodes();
1274   uint l_nodes_by_walk = useful.size();
1275 
1276   if (l_nodes != l_nodes_by_walk) {
1277     if (_log != NULL) {
1278       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1279       _log->stamp();
1280       _log->end_head();
1281     }
1282     VectorSet& useful_member_set = useful.member_set();
1283     int last_idx = l_nodes_by_walk;
1284     for (int i = 0; i < last_idx; i++) {
1285       if (useful_member_set.test(i)) {
1286         if (_dead_node_list.test(i)) {
1287           if (_log != NULL) {
1288             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1289           }
1290           if (PrintIdealNodeCount) {
1291             // Print the log message to tty
1292               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1293               useful.at(i)->dump();
1294           }
1295         }
1296       }
1297       else if (! _dead_node_list.test(i)) {
1298         if (_log != NULL) {
1299           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1300         }
1301         if (PrintIdealNodeCount) {
1302           // Print the log message to tty
1303           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1304         }
1305       }
1306     }
1307     if (_log != NULL) {
1308       _log->tail("mismatched_nodes");
1309     }
1310   }
1311 }
1312 void Compile::record_modified_node(Node* n) {
1313   if (_modified_nodes != NULL && !_inlining_incrementally &&
1314       n->outcnt() != 0 && !n->is_Con()) {
1315     _modified_nodes->push(n);
1316   }
1317 }
1318 
1319 void Compile::remove_modified_node(Node* n) {
1320   if (_modified_nodes != NULL) {
1321     _modified_nodes->remove(n);
1322   }
1323 }
1324 #endif
1325 
1326 #ifndef PRODUCT
1327 void Compile::verify_top(Node* tn) const {
1328   if (tn != NULL) {
1329     assert(tn->is_Con(), "top node must be a constant");
1330     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1331     assert(tn->in(0) != NULL, "must have live top node");
1332   }
1333 }
1334 #endif
1335 
1336 
1337 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1338 
1339 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1340   guarantee(arr != NULL, "");
1341   int num_blocks = arr->length();
1342   if (grow_by < num_blocks)  grow_by = num_blocks;
1343   int num_notes = grow_by * _node_notes_block_size;
1344   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1345   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1346   while (num_notes > 0) {
1347     arr->append(notes);
1348     notes     += _node_notes_block_size;
1349     num_notes -= _node_notes_block_size;
1350   }
1351   assert(num_notes == 0, "exact multiple, please");
1352 }
1353 
1354 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1355   if (source == NULL || dest == NULL)  return false;
1356 
1357   if (dest->is_Con())
1358     return false;               // Do not push debug info onto constants.
1359 
1360 #ifdef ASSERT
1361   // Leave a bread crumb trail pointing to the original node:
1362   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1363     dest->set_debug_orig(source);
1364   }
1365 #endif
1366 
1367   if (node_note_array() == NULL)
1368     return false;               // Not collecting any notes now.
1369 
1370   // This is a copy onto a pre-existing node, which may already have notes.
1371   // If both nodes have notes, do not overwrite any pre-existing notes.
1372   Node_Notes* source_notes = node_notes_at(source->_idx);
1373   if (source_notes == NULL || source_notes->is_clear())  return false;
1374   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1375   if (dest_notes == NULL || dest_notes->is_clear()) {
1376     return set_node_notes_at(dest->_idx, source_notes);
1377   }
1378 
1379   Node_Notes merged_notes = (*source_notes);
1380   // The order of operations here ensures that dest notes will win...
1381   merged_notes.update_from(dest_notes);
1382   return set_node_notes_at(dest->_idx, &merged_notes);
1383 }
1384 
1385 
1386 //--------------------------allow_range_check_smearing-------------------------
1387 // Gating condition for coalescing similar range checks.
1388 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1389 // single covering check that is at least as strong as any of them.
1390 // If the optimization succeeds, the simplified (strengthened) range check
1391 // will always succeed.  If it fails, we will deopt, and then give up
1392 // on the optimization.
1393 bool Compile::allow_range_check_smearing() const {
1394   // If this method has already thrown a range-check,
1395   // assume it was because we already tried range smearing
1396   // and it failed.
1397   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1398   return !already_trapped;
1399 }
1400 
1401 
1402 //------------------------------flatten_alias_type-----------------------------
1403 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1404   int offset = tj->offset();
1405   TypePtr::PTR ptr = tj->ptr();
1406 
1407   // Known instance (scalarizable allocation) alias only with itself.
1408   bool is_known_inst = tj->isa_oopptr() != NULL &&
1409                        tj->is_oopptr()->is_known_instance();
1410 
1411   // Process weird unsafe references.
1412   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1413     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1414     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1415     tj = TypeOopPtr::BOTTOM;
1416     ptr = tj->ptr();
1417     offset = tj->offset();
1418   }
1419 
1420   // Array pointers need some flattening
1421   const TypeAryPtr *ta = tj->isa_aryptr();
1422   if (ta && ta->is_stable()) {
1423     // Erase stability property for alias analysis.
1424     tj = ta = ta->cast_to_stable(false);
1425   }
1426   if( ta && is_known_inst ) {
1427     if ( offset != Type::OffsetBot &&
1428          offset > arrayOopDesc::length_offset_in_bytes() ) {
1429       offset = Type::OffsetBot; // Flatten constant access into array body only
1430       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1431     }
1432   } else if( ta && _AliasLevel >= 2 ) {
1433     // For arrays indexed by constant indices, we flatten the alias
1434     // space to include all of the array body.  Only the header, klass
1435     // and array length can be accessed un-aliased.
1436     // For flattened value type array, each field has its own slice so
1437     // we must include the field offset.
1438     if( offset != Type::OffsetBot ) {
1439       if( ta->const_oop() ) { // MethodData* or Method*
1440         offset = Type::OffsetBot;   // Flatten constant access into array body
1441         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1442       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1443         // range is OK as-is.
1444         tj = ta = TypeAryPtr::RANGE;
1445       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1446         tj = TypeInstPtr::KLASS; // all klass loads look alike
1447         ta = TypeAryPtr::RANGE; // generic ignored junk
1448         ptr = TypePtr::BotPTR;
1449       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1450         tj = TypeInstPtr::MARK;
1451         ta = TypeAryPtr::RANGE; // generic ignored junk
1452         ptr = TypePtr::BotPTR;
1453       } else {                  // Random constant offset into array body
1454         offset = Type::OffsetBot;   // Flatten constant access into array body
1455         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1456       }
1457     }
1458     // Arrays of fixed size alias with arrays of unknown size.
1459     if (ta->size() != TypeInt::POS) {
1460       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1461       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1462     }
1463     // Arrays of known objects become arrays of unknown objects.
1464     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1465       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1466       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1467     }
1468     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1469       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1470       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1471     }
1472     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1473     // cannot be distinguished by bytecode alone.
1474     if (ta->elem() == TypeInt::BOOL) {
1475       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1476       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1477       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1478     }
1479     // During the 2nd round of IterGVN, NotNull castings are removed.
1480     // Make sure the Bottom and NotNull variants alias the same.
1481     // Also, make sure exact and non-exact variants alias the same.
1482     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1483       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1484     }
1485   }
1486 
1487   // Oop pointers need some flattening
1488   const TypeInstPtr *to = tj->isa_instptr();
1489   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1490     ciInstanceKlass *k = to->klass()->as_instance_klass();
1491     if( ptr == TypePtr::Constant ) {
1492       if (to->klass() != ciEnv::current()->Class_klass() ||
1493           offset < k->size_helper() * wordSize) {
1494         // No constant oop pointers (such as Strings); they alias with
1495         // unknown strings.
1496         assert(!is_known_inst, "not scalarizable allocation");
1497         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1498       }
1499     } else if( is_known_inst ) {
1500       tj = to; // Keep NotNull and klass_is_exact for instance type
1501     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1502       // During the 2nd round of IterGVN, NotNull castings are removed.
1503       // Make sure the Bottom and NotNull variants alias the same.
1504       // Also, make sure exact and non-exact variants alias the same.
1505       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1506     }
1507     if (to->speculative() != NULL) {
1508       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1509     }
1510     // Canonicalize the holder of this field
1511     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1512       // First handle header references such as a LoadKlassNode, even if the
1513       // object's klass is unloaded at compile time (4965979).
1514       if (!is_known_inst) { // Do it only for non-instance types
1515         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1516       }
1517     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1518       // Static fields are in the space above the normal instance
1519       // fields in the java.lang.Class instance.
1520       if (to->klass() != ciEnv::current()->Class_klass()) {
1521         to = NULL;
1522         tj = TypeOopPtr::BOTTOM;
1523         offset = tj->offset();
1524       }
1525     } else {
1526       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1527       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1528         if( is_known_inst ) {
1529           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1530         } else {
1531           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1532         }
1533       }
1534     }
1535   }
1536 
1537   // Klass pointers to object array klasses need some flattening
1538   const TypeKlassPtr *tk = tj->isa_klassptr();
1539   if( tk ) {
1540     // If we are referencing a field within a Klass, we need
1541     // to assume the worst case of an Object.  Both exact and
1542     // inexact types must flatten to the same alias class so
1543     // use NotNull as the PTR.
1544     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1545 
1546       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1547                                    TypeKlassPtr::OBJECT->klass(),
1548                                    Type::Offset(offset));
1549     }
1550 
1551     ciKlass* klass = tk->klass();
1552     if (klass != NULL && klass->is_obj_array_klass()) {
1553       ciKlass* k = TypeAryPtr::OOPS->klass();
1554       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1555         k = TypeInstPtr::BOTTOM->klass();
1556       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1557     }
1558 
1559     // Check for precise loads from the primary supertype array and force them
1560     // to the supertype cache alias index.  Check for generic array loads from
1561     // the primary supertype array and also force them to the supertype cache
1562     // alias index.  Since the same load can reach both, we need to merge
1563     // these 2 disparate memories into the same alias class.  Since the
1564     // primary supertype array is read-only, there's no chance of confusion
1565     // where we bypass an array load and an array store.
1566     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1567     if (offset == Type::OffsetBot ||
1568         (offset >= primary_supers_offset &&
1569          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1570         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1571       offset = in_bytes(Klass::secondary_super_cache_offset());
1572       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1573     }
1574   }
1575 
1576   // Flatten all Raw pointers together.
1577   if (tj->base() == Type::RawPtr)
1578     tj = TypeRawPtr::BOTTOM;
1579 
1580   if (tj->base() == Type::AnyPtr)
1581     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1582 
1583   // Flatten all to bottom for now
1584   switch( _AliasLevel ) {
1585   case 0:
1586     tj = TypePtr::BOTTOM;
1587     break;
1588   case 1:                       // Flatten to: oop, static, field or array
1589     switch (tj->base()) {
1590     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1591     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1592     case Type::AryPtr:   // do not distinguish arrays at all
1593     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1594     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1595     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1596     default: ShouldNotReachHere();
1597     }
1598     break;
1599   case 2:                       // No collapsing at level 2; keep all splits
1600   case 3:                       // No collapsing at level 3; keep all splits
1601     break;
1602   default:
1603     Unimplemented();
1604   }
1605 
1606   offset = tj->offset();
1607   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1608 
1609   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1610           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1611           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1612           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1613           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1614           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1615           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1616           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1617   assert( tj->ptr() != TypePtr::TopPTR &&
1618           tj->ptr() != TypePtr::AnyNull &&
1619           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1620 //    assert( tj->ptr() != TypePtr::Constant ||
1621 //            tj->base() == Type::RawPtr ||
1622 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1623 
1624   return tj;
1625 }
1626 
1627 void Compile::AliasType::Init(int i, const TypePtr* at) {
1628   _index = i;
1629   _adr_type = at;
1630   _field = NULL;
1631   _element = NULL;
1632   _is_rewritable = true; // default
1633   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1634   if (atoop != NULL && atoop->is_known_instance()) {
1635     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1636     _general_index = Compile::current()->get_alias_index(gt);
1637   } else {
1638     _general_index = 0;
1639   }
1640 }
1641 
1642 BasicType Compile::AliasType::basic_type() const {
1643   if (element() != NULL) {
1644     const Type* element = adr_type()->is_aryptr()->elem();
1645     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1646   } if (field() != NULL) {
1647     return field()->layout_type();
1648   } else {
1649     return T_ILLEGAL; // unknown
1650   }
1651 }
1652 
1653 //---------------------------------print_on------------------------------------
1654 #ifndef PRODUCT
1655 void Compile::AliasType::print_on(outputStream* st) {
1656   if (index() < 10)
1657         st->print("@ <%d> ", index());
1658   else  st->print("@ <%d>",  index());
1659   st->print(is_rewritable() ? "   " : " RO");
1660   int offset = adr_type()->offset();
1661   if (offset == Type::OffsetBot)
1662         st->print(" +any");
1663   else  st->print(" +%-3d", offset);
1664   st->print(" in ");
1665   adr_type()->dump_on(st);
1666   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1667   if (field() != NULL && tjp) {
1668     if (tjp->klass()  != field()->holder() ||
1669         tjp->offset() != field()->offset_in_bytes()) {
1670       st->print(" != ");
1671       field()->print();
1672       st->print(" ***");
1673     }
1674   }
1675 }
1676 
1677 void print_alias_types() {
1678   Compile* C = Compile::current();
1679   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1680   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1681     C->alias_type(idx)->print_on(tty);
1682     tty->cr();
1683   }
1684 }
1685 #endif
1686 
1687 
1688 //----------------------------probe_alias_cache--------------------------------
1689 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1690   intptr_t key = (intptr_t) adr_type;
1691   key ^= key >> logAliasCacheSize;
1692   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1693 }
1694 
1695 
1696 //-----------------------------grow_alias_types--------------------------------
1697 void Compile::grow_alias_types() {
1698   const int old_ats  = _max_alias_types; // how many before?
1699   const int new_ats  = old_ats;          // how many more?
1700   const int grow_ats = old_ats+new_ats;  // how many now?
1701   _max_alias_types = grow_ats;
1702   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1703   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1704   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1705   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1706 }
1707 
1708 
1709 //--------------------------------find_alias_type------------------------------
1710 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1711   if (_AliasLevel == 0)
1712     return alias_type(AliasIdxBot);
1713 
1714   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1715   if (ace->_adr_type == adr_type) {
1716     return alias_type(ace->_index);
1717   }
1718 
1719   // Handle special cases.
1720   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1721   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1722 
1723   // Do it the slow way.
1724   const TypePtr* flat = flatten_alias_type(adr_type);
1725 
1726 #ifdef ASSERT
1727   {
1728     ResourceMark rm;
1729     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1730            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1731     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1732            Type::str(adr_type));
1733     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1734       const TypeOopPtr* foop = flat->is_oopptr();
1735       // Scalarizable allocations have exact klass always.
1736       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1737       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1738       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1739              Type::str(foop), Type::str(xoop));
1740     }
1741   }
1742 #endif
1743 
1744   int idx = AliasIdxTop;
1745   for (int i = 0; i < num_alias_types(); i++) {
1746     if (alias_type(i)->adr_type() == flat) {
1747       idx = i;
1748       break;
1749     }
1750   }
1751 
1752   if (idx == AliasIdxTop) {
1753     if (no_create)  return NULL;
1754     // Grow the array if necessary.
1755     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1756     // Add a new alias type.
1757     idx = _num_alias_types++;
1758     _alias_types[idx]->Init(idx, flat);
1759     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1760     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1761     if (flat->isa_instptr()) {
1762       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1763           && flat->is_instptr()->klass() == env()->Class_klass())
1764         alias_type(idx)->set_rewritable(false);
1765     }
1766     if (flat->isa_aryptr()) {
1767 #ifdef ASSERT
1768       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1769       // (T_BYTE has the weakest alignment and size restrictions...)
1770       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1771 #endif
1772       if (flat->offset() == TypePtr::OffsetBot) {
1773         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1774       }
1775     }
1776     if (flat->isa_klassptr()) {
1777       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1778         alias_type(idx)->set_rewritable(false);
1779       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1780         alias_type(idx)->set_rewritable(false);
1781       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1782         alias_type(idx)->set_rewritable(false);
1783       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1784         alias_type(idx)->set_rewritable(false);
1785     }
1786     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1787     // but the base pointer type is not distinctive enough to identify
1788     // references into JavaThread.)
1789 
1790     // Check for final fields.
1791     const TypeInstPtr* tinst = flat->isa_instptr();
1792     const TypeValueTypePtr* vtptr = flat->isa_valuetypeptr();
1793     ciField* field = NULL;
1794     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1795       if (tinst->const_oop() != NULL &&
1796           tinst->klass() == ciEnv::current()->Class_klass() &&
1797           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1798         // static field
1799         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1800         field = k->get_field_by_offset(tinst->offset(), true);
1801       } else {
1802         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1803         field = k->get_field_by_offset(tinst->offset(), false);
1804       }
1805     } else if (vtptr) {
1806       // Value type field
1807       ciValueKlass* vk = vtptr->klass()->as_value_klass();
1808       field = vk->get_field_by_offset(vtptr->offset(), false);
1809     }
1810     assert(field == NULL ||
1811            original_field == NULL ||
1812            (field->holder() == original_field->holder() &&
1813             field->offset() == original_field->offset() &&
1814             field->is_static() == original_field->is_static()), "wrong field?");
1815     // Set field() and is_rewritable() attributes.
1816     if (field != NULL)  alias_type(idx)->set_field(field);
1817   }
1818 
1819   // Fill the cache for next time.
1820   ace->_adr_type = adr_type;
1821   ace->_index    = idx;
1822   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1823 
1824   // Might as well try to fill the cache for the flattened version, too.
1825   AliasCacheEntry* face = probe_alias_cache(flat);
1826   if (face->_adr_type == NULL) {
1827     face->_adr_type = flat;
1828     face->_index    = idx;
1829     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1830   }
1831 
1832   return alias_type(idx);
1833 }
1834 
1835 
1836 Compile::AliasType* Compile::alias_type(ciField* field) {
1837   const TypeOopPtr* t;
1838   if (field->is_static())
1839     t = TypeInstPtr::make(field->holder()->java_mirror());
1840   else
1841     t = TypeOopPtr::make_from_klass_raw(field->holder());
1842   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1843   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1844   return atp;
1845 }
1846 
1847 
1848 //------------------------------have_alias_type--------------------------------
1849 bool Compile::have_alias_type(const TypePtr* adr_type) {
1850   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1851   if (ace->_adr_type == adr_type) {
1852     return true;
1853   }
1854 
1855   // Handle special cases.
1856   if (adr_type == NULL)             return true;
1857   if (adr_type == TypePtr::BOTTOM)  return true;
1858 
1859   return find_alias_type(adr_type, true, NULL) != NULL;
1860 }
1861 
1862 //-----------------------------must_alias--------------------------------------
1863 // True if all values of the given address type are in the given alias category.
1864 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1865   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1866   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1867   if (alias_idx == AliasIdxTop)         return false; // the empty category
1868   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1869 
1870   // the only remaining possible overlap is identity
1871   int adr_idx = get_alias_index(adr_type);
1872   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1873   assert(adr_idx == alias_idx ||
1874          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1875           && adr_type                       != TypeOopPtr::BOTTOM),
1876          "should not be testing for overlap with an unsafe pointer");
1877   return adr_idx == alias_idx;
1878 }
1879 
1880 //------------------------------can_alias--------------------------------------
1881 // True if any values of the given address type are in the given alias category.
1882 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1883   if (alias_idx == AliasIdxTop)         return false; // the empty category
1884   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1885   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1886   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1887 
1888   // the only remaining possible overlap is identity
1889   int adr_idx = get_alias_index(adr_type);
1890   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1891   return adr_idx == alias_idx;
1892 }
1893 
1894 
1895 
1896 //---------------------------pop_warm_call-------------------------------------
1897 WarmCallInfo* Compile::pop_warm_call() {
1898   WarmCallInfo* wci = _warm_calls;
1899   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1900   return wci;
1901 }
1902 
1903 //----------------------------Inline_Warm--------------------------------------
1904 int Compile::Inline_Warm() {
1905   // If there is room, try to inline some more warm call sites.
1906   // %%% Do a graph index compaction pass when we think we're out of space?
1907   if (!InlineWarmCalls)  return 0;
1908 
1909   int calls_made_hot = 0;
1910   int room_to_grow   = NodeCountInliningCutoff - unique();
1911   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1912   int amount_grown   = 0;
1913   WarmCallInfo* call;
1914   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1915     int est_size = (int)call->size();
1916     if (est_size > (room_to_grow - amount_grown)) {
1917       // This one won't fit anyway.  Get rid of it.
1918       call->make_cold();
1919       continue;
1920     }
1921     call->make_hot();
1922     calls_made_hot++;
1923     amount_grown   += est_size;
1924     amount_to_grow -= est_size;
1925   }
1926 
1927   if (calls_made_hot > 0)  set_major_progress();
1928   return calls_made_hot;
1929 }
1930 
1931 
1932 //----------------------------Finish_Warm--------------------------------------
1933 void Compile::Finish_Warm() {
1934   if (!InlineWarmCalls)  return;
1935   if (failing())  return;
1936   if (warm_calls() == NULL)  return;
1937 
1938   // Clean up loose ends, if we are out of space for inlining.
1939   WarmCallInfo* call;
1940   while ((call = pop_warm_call()) != NULL) {
1941     call->make_cold();
1942   }
1943 }
1944 
1945 //---------------------cleanup_loop_predicates-----------------------
1946 // Remove the opaque nodes that protect the predicates so that all unused
1947 // checks and uncommon_traps will be eliminated from the ideal graph
1948 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1949   if (predicate_count()==0) return;
1950   for (int i = predicate_count(); i > 0; i--) {
1951     Node * n = predicate_opaque1_node(i-1);
1952     assert(n->Opcode() == Op_Opaque1, "must be");
1953     igvn.replace_node(n, n->in(1));
1954   }
1955   assert(predicate_count()==0, "should be clean!");
1956 }
1957 
1958 void Compile::add_range_check_cast(Node* n) {
1959   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1960   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1961   _range_check_casts->append(n);
1962 }
1963 
1964 // Remove all range check dependent CastIINodes.
1965 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1966   for (int i = range_check_cast_count(); i > 0; i--) {
1967     Node* cast = range_check_cast_node(i-1);
1968     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1969     igvn.replace_node(cast, cast->in(1));
1970   }
1971   assert(range_check_cast_count() == 0, "should be empty");
1972 }
1973 
1974 void Compile::add_value_type_ptr(ValueTypePtrNode* n) {
1975   assert(can_add_value_type_ptr(), "too late");
1976   assert(!_value_type_ptr_nodes->contains(n), "duplicate entry");
1977   _value_type_ptr_nodes->append(n);
1978 }
1979 
1980 void Compile::process_value_type_ptr_nodes(PhaseIterGVN &igvn) {
1981   for (int i = value_type_ptr_count(); i > 0; i--) {
1982     ValueTypePtrNode* vtptr = value_type_ptr(i-1);
1983     // once all inlining is over otherwise debug info can get
1984     // inconsistent
1985     vtptr->make_scalar_in_safepoints(igvn.C->root(), &igvn);
1986     igvn.replace_node(vtptr, vtptr->get_oop());
1987   }
1988   assert(value_type_ptr_count() == 0, "should be empty");
1989   _value_type_ptr_nodes = NULL;
1990   igvn.optimize();
1991 }
1992 
1993 // StringOpts and late inlining of string methods
1994 void Compile::inline_string_calls(bool parse_time) {
1995   {
1996     // remove useless nodes to make the usage analysis simpler
1997     ResourceMark rm;
1998     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1999   }
2000 
2001   {
2002     ResourceMark rm;
2003     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2004     PhaseStringOpts pso(initial_gvn(), for_igvn());
2005     print_method(PHASE_AFTER_STRINGOPTS, 3);
2006   }
2007 
2008   // now inline anything that we skipped the first time around
2009   if (!parse_time) {
2010     _late_inlines_pos = _late_inlines.length();
2011   }
2012 
2013   while (_string_late_inlines.length() > 0) {
2014     CallGenerator* cg = _string_late_inlines.pop();
2015     cg->do_late_inline();
2016     if (failing())  return;
2017   }
2018   _string_late_inlines.trunc_to(0);
2019 }
2020 
2021 // Late inlining of boxing methods
2022 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2023   if (_boxing_late_inlines.length() > 0) {
2024     assert(has_boxed_value(), "inconsistent");
2025 
2026     PhaseGVN* gvn = initial_gvn();
2027     set_inlining_incrementally(true);
2028 
2029     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2030     for_igvn()->clear();
2031     gvn->replace_with(&igvn);
2032 
2033     _late_inlines_pos = _late_inlines.length();
2034 
2035     while (_boxing_late_inlines.length() > 0) {
2036       CallGenerator* cg = _boxing_late_inlines.pop();
2037       cg->do_late_inline();
2038       if (failing())  return;
2039     }
2040     _boxing_late_inlines.trunc_to(0);
2041 
2042     {
2043       ResourceMark rm;
2044       PhaseRemoveUseless pru(gvn, for_igvn());
2045     }
2046 
2047     igvn = PhaseIterGVN(gvn);
2048     igvn.optimize();
2049 
2050     set_inlining_progress(false);
2051     set_inlining_incrementally(false);
2052   }
2053 }
2054 
2055 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2056   assert(IncrementalInline, "incremental inlining should be on");
2057   PhaseGVN* gvn = initial_gvn();
2058 
2059   set_inlining_progress(false);
2060   for_igvn()->clear();
2061   gvn->replace_with(&igvn);
2062 
2063   {
2064     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2065     int i = 0;
2066     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2067       CallGenerator* cg = _late_inlines.at(i);
2068       _late_inlines_pos = i+1;
2069       cg->do_late_inline();
2070       if (failing())  return;
2071     }
2072     int j = 0;
2073     for (; i < _late_inlines.length(); i++, j++) {
2074       _late_inlines.at_put(j, _late_inlines.at(i));
2075     }
2076     _late_inlines.trunc_to(j);
2077   }
2078 
2079   {
2080     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2081     ResourceMark rm;
2082     PhaseRemoveUseless pru(gvn, for_igvn());
2083   }
2084 
2085   {
2086     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2087     igvn = PhaseIterGVN(gvn);
2088   }
2089 }
2090 
2091 // Perform incremental inlining until bound on number of live nodes is reached
2092 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2093   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2094 
2095   PhaseGVN* gvn = initial_gvn();
2096 
2097   set_inlining_incrementally(true);
2098   set_inlining_progress(true);
2099   uint low_live_nodes = 0;
2100 
2101   while(inlining_progress() && _late_inlines.length() > 0) {
2102 
2103     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2104       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2105         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2106         // PhaseIdealLoop is expensive so we only try it once we are
2107         // out of live nodes and we only try it again if the previous
2108         // helped got the number of nodes down significantly
2109         PhaseIdealLoop ideal_loop( igvn, false, true );
2110         if (failing())  return;
2111         low_live_nodes = live_nodes();
2112         _major_progress = true;
2113       }
2114 
2115       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2116         break;
2117       }
2118     }
2119 
2120     inline_incrementally_one(igvn);
2121 
2122     if (failing())  return;
2123 
2124     {
2125       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2126       igvn.optimize();
2127     }
2128 
2129     if (failing())  return;
2130   }
2131 
2132   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2133 
2134   if (_string_late_inlines.length() > 0) {
2135     assert(has_stringbuilder(), "inconsistent");
2136     for_igvn()->clear();
2137     initial_gvn()->replace_with(&igvn);
2138 
2139     inline_string_calls(false);
2140 
2141     if (failing())  return;
2142 
2143     {
2144       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2145       ResourceMark rm;
2146       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2147     }
2148 
2149     {
2150       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2151       igvn = PhaseIterGVN(gvn);
2152       igvn.optimize();
2153     }
2154   }
2155 
2156   set_inlining_incrementally(false);
2157 }
2158 
2159 
2160 //------------------------------Optimize---------------------------------------
2161 // Given a graph, optimize it.
2162 void Compile::Optimize() {
2163   TracePhase tp("optimizer", &timers[_t_optimizer]);
2164 
2165 #ifndef PRODUCT
2166   if (_directive->BreakAtCompileOption) {
2167     BREAKPOINT;
2168   }
2169 
2170 #endif
2171 
2172   ResourceMark rm;
2173   int          loop_opts_cnt;
2174 
2175   print_inlining_reinit();
2176 
2177   NOT_PRODUCT( verify_graph_edges(); )
2178 
2179   print_method(PHASE_AFTER_PARSING);
2180 
2181  {
2182   // Iterative Global Value Numbering, including ideal transforms
2183   // Initialize IterGVN with types and values from parse-time GVN
2184   PhaseIterGVN igvn(initial_gvn());
2185 #ifdef ASSERT
2186   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2187 #endif
2188   {
2189     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2190     igvn.optimize();
2191   }
2192 
2193   print_method(PHASE_ITER_GVN1, 2);
2194 
2195   if (failing())  return;
2196 
2197   inline_incrementally(igvn);
2198 
2199   print_method(PHASE_INCREMENTAL_INLINE, 2);
2200 
2201   if (failing())  return;
2202 
2203   if (eliminate_boxing()) {
2204     // Inline valueOf() methods now.
2205     inline_boxing_calls(igvn);
2206 
2207     if (AlwaysIncrementalInline) {
2208       inline_incrementally(igvn);
2209     }
2210 
2211     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2212 
2213     if (failing())  return;
2214   }
2215 
2216   // Remove the speculative part of types and clean up the graph from
2217   // the extra CastPP nodes whose only purpose is to carry them. Do
2218   // that early so that optimizations are not disrupted by the extra
2219   // CastPP nodes.
2220   remove_speculative_types(igvn);
2221 
2222   // No more new expensive nodes will be added to the list from here
2223   // so keep only the actual candidates for optimizations.
2224   cleanup_expensive_nodes(igvn);
2225 
2226   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2227     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2228     initial_gvn()->replace_with(&igvn);
2229     for_igvn()->clear();
2230     Unique_Node_List new_worklist(C->comp_arena());
2231     {
2232       ResourceMark rm;
2233       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2234     }
2235     set_for_igvn(&new_worklist);
2236     igvn = PhaseIterGVN(initial_gvn());
2237     igvn.optimize();
2238   }
2239 
2240   if (value_type_ptr_count() > 0) {
2241     process_value_type_ptr_nodes(igvn);
2242   }
2243 
2244   // Perform escape analysis
2245   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2246     if (has_loops()) {
2247       // Cleanup graph (remove dead nodes).
2248       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2249       PhaseIdealLoop ideal_loop( igvn, false, true );
2250       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2251       if (failing())  return;
2252     }
2253     ConnectionGraph::do_analysis(this, &igvn);
2254 
2255     if (failing())  return;
2256 
2257     // Optimize out fields loads from scalar replaceable allocations.
2258     igvn.optimize();
2259     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2260 
2261     if (failing())  return;
2262 
2263     if (congraph() != NULL && macro_count() > 0) {
2264       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2265       PhaseMacroExpand mexp(igvn);
2266       mexp.eliminate_macro_nodes();
2267       igvn.set_delay_transform(false);
2268 
2269       igvn.optimize();
2270       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2271 
2272       if (failing())  return;
2273     }
2274   }
2275 
2276   // Loop transforms on the ideal graph.  Range Check Elimination,
2277   // peeling, unrolling, etc.
2278 
2279   // Set loop opts counter
2280   loop_opts_cnt = num_loop_opts();
2281   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2282     {
2283       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2284       PhaseIdealLoop ideal_loop( igvn, true );
2285       loop_opts_cnt--;
2286       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2287       if (failing())  return;
2288     }
2289     // Loop opts pass if partial peeling occurred in previous pass
2290     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2291       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2292       PhaseIdealLoop ideal_loop( igvn, false );
2293       loop_opts_cnt--;
2294       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2295       if (failing())  return;
2296     }
2297     // Loop opts pass for loop-unrolling before CCP
2298     if(major_progress() && (loop_opts_cnt > 0)) {
2299       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2300       PhaseIdealLoop ideal_loop( igvn, false );
2301       loop_opts_cnt--;
2302       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2303     }
2304     if (!failing()) {
2305       // Verify that last round of loop opts produced a valid graph
2306       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2307       PhaseIdealLoop::verify(igvn);
2308     }
2309   }
2310   if (failing())  return;
2311 
2312   // Conditional Constant Propagation;
2313   PhaseCCP ccp( &igvn );
2314   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2315   {
2316     TracePhase tp("ccp", &timers[_t_ccp]);
2317     ccp.do_transform();
2318   }
2319   print_method(PHASE_CPP1, 2);
2320 
2321   assert( true, "Break here to ccp.dump_old2new_map()");
2322 
2323   // Iterative Global Value Numbering, including ideal transforms
2324   {
2325     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2326     igvn = ccp;
2327     igvn.optimize();
2328   }
2329 
2330   print_method(PHASE_ITER_GVN2, 2);
2331 
2332   if (failing())  return;
2333 
2334   // Loop transforms on the ideal graph.  Range Check Elimination,
2335   // peeling, unrolling, etc.
2336   if(loop_opts_cnt > 0) {
2337     debug_only( int cnt = 0; );
2338     while(major_progress() && (loop_opts_cnt > 0)) {
2339       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2340       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2341       PhaseIdealLoop ideal_loop( igvn, true);
2342       loop_opts_cnt--;
2343       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2344       if (failing())  return;
2345     }
2346   }
2347   // Ensure that major progress is now clear
2348   C->clear_major_progress();
2349 
2350   {
2351     // Verify that all previous optimizations produced a valid graph
2352     // at least to this point, even if no loop optimizations were done.
2353     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2354     PhaseIdealLoop::verify(igvn);
2355   }
2356 
2357   if (range_check_cast_count() > 0) {
2358     // No more loop optimizations. Remove all range check dependent CastIINodes.
2359     C->remove_range_check_casts(igvn);
2360     igvn.optimize();
2361   }
2362 
2363   {
2364     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2365     PhaseMacroExpand  mex(igvn);
2366     if (mex.expand_macro_nodes()) {
2367       assert(failing(), "must bail out w/ explicit message");
2368       return;
2369     }
2370   }
2371 
2372   DEBUG_ONLY( _modified_nodes = NULL; )
2373  } // (End scope of igvn; run destructor if necessary for asserts.)
2374 
2375  process_print_inlining();
2376  // A method with only infinite loops has no edges entering loops from root
2377  {
2378    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2379    if (final_graph_reshaping()) {
2380      assert(failing(), "must bail out w/ explicit message");
2381      return;
2382    }
2383  }
2384 
2385  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2386 }
2387 
2388 // Fixme remove
2389 static void check_for_value_node(Node &n, void* C) {
2390   if (n.is_ValueType()) {
2391 #ifdef ASSERT
2392     ((Compile*)C)->method()->print_short_name();
2393     tty->print_cr("");
2394     n.dump(-1);
2395     assert(false, "Unable to match ValueTypeNode");
2396 #endif
2397     ((Compile*)C)->record_failure("Unable to match ValueTypeNode");
2398   }
2399 }
2400 
2401 //------------------------------Code_Gen---------------------------------------
2402 // Given a graph, generate code for it
2403 void Compile::Code_Gen() {
2404   // FIXME remove
2405   root()->walk(Node::nop, check_for_value_node, this);
2406 
2407   if (failing()) {
2408     return;
2409   }
2410 
2411   // Perform instruction selection.  You might think we could reclaim Matcher
2412   // memory PDQ, but actually the Matcher is used in generating spill code.
2413   // Internals of the Matcher (including some VectorSets) must remain live
2414   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2415   // set a bit in reclaimed memory.
2416 
2417   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2418   // nodes.  Mapping is only valid at the root of each matched subtree.
2419   NOT_PRODUCT( verify_graph_edges(); )
2420 
2421   Matcher matcher;
2422   _matcher = &matcher;
2423   {
2424     TracePhase tp("matcher", &timers[_t_matcher]);
2425     matcher.match();
2426   }
2427   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2428   // nodes.  Mapping is only valid at the root of each matched subtree.
2429   NOT_PRODUCT( verify_graph_edges(); )
2430 
2431   // If you have too many nodes, or if matching has failed, bail out
2432   check_node_count(0, "out of nodes matching instructions");
2433   if (failing()) {
2434     return;
2435   }
2436 
2437   // Build a proper-looking CFG
2438   PhaseCFG cfg(node_arena(), root(), matcher);
2439   _cfg = &cfg;
2440   {
2441     TracePhase tp("scheduler", &timers[_t_scheduler]);
2442     bool success = cfg.do_global_code_motion();
2443     if (!success) {
2444       return;
2445     }
2446 
2447     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2448     NOT_PRODUCT( verify_graph_edges(); )
2449     debug_only( cfg.verify(); )
2450   }
2451 
2452   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2453   _regalloc = &regalloc;
2454   {
2455     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2456     // Perform register allocation.  After Chaitin, use-def chains are
2457     // no longer accurate (at spill code) and so must be ignored.
2458     // Node->LRG->reg mappings are still accurate.
2459     _regalloc->Register_Allocate();
2460 
2461     // Bail out if the allocator builds too many nodes
2462     if (failing()) {
2463       return;
2464     }
2465   }
2466 
2467   // Prior to register allocation we kept empty basic blocks in case the
2468   // the allocator needed a place to spill.  After register allocation we
2469   // are not adding any new instructions.  If any basic block is empty, we
2470   // can now safely remove it.
2471   {
2472     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2473     cfg.remove_empty_blocks();
2474     if (do_freq_based_layout()) {
2475       PhaseBlockLayout layout(cfg);
2476     } else {
2477       cfg.set_loop_alignment();
2478     }
2479     cfg.fixup_flow();
2480   }
2481 
2482   // Apply peephole optimizations
2483   if( OptoPeephole ) {
2484     TracePhase tp("peephole", &timers[_t_peephole]);
2485     PhasePeephole peep( _regalloc, cfg);
2486     peep.do_transform();
2487   }
2488 
2489   // Do late expand if CPU requires this.
2490   if (Matcher::require_postalloc_expand) {
2491     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2492     cfg.postalloc_expand(_regalloc);
2493   }
2494 
2495   // Convert Nodes to instruction bits in a buffer
2496   {
2497     TraceTime tp("output", &timers[_t_output], CITime);
2498     Output();
2499   }
2500 
2501   print_method(PHASE_FINAL_CODE);
2502 
2503   // He's dead, Jim.
2504   _cfg     = (PhaseCFG*)0xdeadbeef;
2505   _regalloc = (PhaseChaitin*)0xdeadbeef;
2506 }
2507 
2508 
2509 //------------------------------dump_asm---------------------------------------
2510 // Dump formatted assembly
2511 #ifndef PRODUCT
2512 void Compile::dump_asm(int *pcs, uint pc_limit) {
2513   bool cut_short = false;
2514   tty->print_cr("#");
2515   tty->print("#  ");  _tf->dump();  tty->cr();
2516   tty->print_cr("#");
2517 
2518   // For all blocks
2519   int pc = 0x0;                 // Program counter
2520   char starts_bundle = ' ';
2521   _regalloc->dump_frame();
2522 
2523   Node *n = NULL;
2524   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2525     if (VMThread::should_terminate()) {
2526       cut_short = true;
2527       break;
2528     }
2529     Block* block = _cfg->get_block(i);
2530     if (block->is_connector() && !Verbose) {
2531       continue;
2532     }
2533     n = block->head();
2534     if (pcs && n->_idx < pc_limit) {
2535       tty->print("%3.3x   ", pcs[n->_idx]);
2536     } else {
2537       tty->print("      ");
2538     }
2539     block->dump_head(_cfg);
2540     if (block->is_connector()) {
2541       tty->print_cr("        # Empty connector block");
2542     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2543       tty->print_cr("        # Block is sole successor of call");
2544     }
2545 
2546     // For all instructions
2547     Node *delay = NULL;
2548     for (uint j = 0; j < block->number_of_nodes(); j++) {
2549       if (VMThread::should_terminate()) {
2550         cut_short = true;
2551         break;
2552       }
2553       n = block->get_node(j);
2554       if (valid_bundle_info(n)) {
2555         Bundle* bundle = node_bundling(n);
2556         if (bundle->used_in_unconditional_delay()) {
2557           delay = n;
2558           continue;
2559         }
2560         if (bundle->starts_bundle()) {
2561           starts_bundle = '+';
2562         }
2563       }
2564 
2565       if (WizardMode) {
2566         n->dump();
2567       }
2568 
2569       if( !n->is_Region() &&    // Dont print in the Assembly
2570           !n->is_Phi() &&       // a few noisely useless nodes
2571           !n->is_Proj() &&
2572           !n->is_MachTemp() &&
2573           !n->is_SafePointScalarObject() &&
2574           !n->is_Catch() &&     // Would be nice to print exception table targets
2575           !n->is_MergeMem() &&  // Not very interesting
2576           !n->is_top() &&       // Debug info table constants
2577           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2578           ) {
2579         if (pcs && n->_idx < pc_limit)
2580           tty->print("%3.3x", pcs[n->_idx]);
2581         else
2582           tty->print("   ");
2583         tty->print(" %c ", starts_bundle);
2584         starts_bundle = ' ';
2585         tty->print("\t");
2586         n->format(_regalloc, tty);
2587         tty->cr();
2588       }
2589 
2590       // If we have an instruction with a delay slot, and have seen a delay,
2591       // then back up and print it
2592       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2593         assert(delay != NULL, "no unconditional delay instruction");
2594         if (WizardMode) delay->dump();
2595 
2596         if (node_bundling(delay)->starts_bundle())
2597           starts_bundle = '+';
2598         if (pcs && n->_idx < pc_limit)
2599           tty->print("%3.3x", pcs[n->_idx]);
2600         else
2601           tty->print("   ");
2602         tty->print(" %c ", starts_bundle);
2603         starts_bundle = ' ';
2604         tty->print("\t");
2605         delay->format(_regalloc, tty);
2606         tty->cr();
2607         delay = NULL;
2608       }
2609 
2610       // Dump the exception table as well
2611       if( n->is_Catch() && (Verbose || WizardMode) ) {
2612         // Print the exception table for this offset
2613         _handler_table.print_subtable_for(pc);
2614       }
2615     }
2616 
2617     if (pcs && n->_idx < pc_limit)
2618       tty->print_cr("%3.3x", pcs[n->_idx]);
2619     else
2620       tty->cr();
2621 
2622     assert(cut_short || delay == NULL, "no unconditional delay branch");
2623 
2624   } // End of per-block dump
2625   tty->cr();
2626 
2627   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2628 }
2629 #endif
2630 
2631 //------------------------------Final_Reshape_Counts---------------------------
2632 // This class defines counters to help identify when a method
2633 // may/must be executed using hardware with only 24-bit precision.
2634 struct Final_Reshape_Counts : public StackObj {
2635   int  _call_count;             // count non-inlined 'common' calls
2636   int  _float_count;            // count float ops requiring 24-bit precision
2637   int  _double_count;           // count double ops requiring more precision
2638   int  _java_call_count;        // count non-inlined 'java' calls
2639   int  _inner_loop_count;       // count loops which need alignment
2640   VectorSet _visited;           // Visitation flags
2641   Node_List _tests;             // Set of IfNodes & PCTableNodes
2642 
2643   Final_Reshape_Counts() :
2644     _call_count(0), _float_count(0), _double_count(0),
2645     _java_call_count(0), _inner_loop_count(0),
2646     _visited( Thread::current()->resource_area() ) { }
2647 
2648   void inc_call_count  () { _call_count  ++; }
2649   void inc_float_count () { _float_count ++; }
2650   void inc_double_count() { _double_count++; }
2651   void inc_java_call_count() { _java_call_count++; }
2652   void inc_inner_loop_count() { _inner_loop_count++; }
2653 
2654   int  get_call_count  () const { return _call_count  ; }
2655   int  get_float_count () const { return _float_count ; }
2656   int  get_double_count() const { return _double_count; }
2657   int  get_java_call_count() const { return _java_call_count; }
2658   int  get_inner_loop_count() const { return _inner_loop_count; }
2659 };
2660 
2661 #ifdef ASSERT
2662 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2663   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2664   // Make sure the offset goes inside the instance layout.
2665   return k->contains_field_offset(tp->offset());
2666   // Note that OffsetBot and OffsetTop are very negative.
2667 }
2668 #endif
2669 
2670 // Eliminate trivially redundant StoreCMs and accumulate their
2671 // precedence edges.
2672 void Compile::eliminate_redundant_card_marks(Node* n) {
2673   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2674   if (n->in(MemNode::Address)->outcnt() > 1) {
2675     // There are multiple users of the same address so it might be
2676     // possible to eliminate some of the StoreCMs
2677     Node* mem = n->in(MemNode::Memory);
2678     Node* adr = n->in(MemNode::Address);
2679     Node* val = n->in(MemNode::ValueIn);
2680     Node* prev = n;
2681     bool done = false;
2682     // Walk the chain of StoreCMs eliminating ones that match.  As
2683     // long as it's a chain of single users then the optimization is
2684     // safe.  Eliminating partially redundant StoreCMs would require
2685     // cloning copies down the other paths.
2686     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2687       if (adr == mem->in(MemNode::Address) &&
2688           val == mem->in(MemNode::ValueIn)) {
2689         // redundant StoreCM
2690         if (mem->req() > MemNode::OopStore) {
2691           // Hasn't been processed by this code yet.
2692           n->add_prec(mem->in(MemNode::OopStore));
2693         } else {
2694           // Already converted to precedence edge
2695           for (uint i = mem->req(); i < mem->len(); i++) {
2696             // Accumulate any precedence edges
2697             if (mem->in(i) != NULL) {
2698               n->add_prec(mem->in(i));
2699             }
2700           }
2701           // Everything above this point has been processed.
2702           done = true;
2703         }
2704         // Eliminate the previous StoreCM
2705         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2706         assert(mem->outcnt() == 0, "should be dead");
2707         mem->disconnect_inputs(NULL, this);
2708       } else {
2709         prev = mem;
2710       }
2711       mem = prev->in(MemNode::Memory);
2712     }
2713   }
2714 }
2715 
2716 
2717 //------------------------------final_graph_reshaping_impl----------------------
2718 // Implement items 1-5 from final_graph_reshaping below.
2719 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2720 
2721   if ( n->outcnt() == 0 ) return; // dead node
2722   uint nop = n->Opcode();
2723 
2724   // Check for 2-input instruction with "last use" on right input.
2725   // Swap to left input.  Implements item (2).
2726   if( n->req() == 3 &&          // two-input instruction
2727       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2728       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2729       n->in(2)->outcnt() == 1 &&// right use IS a last use
2730       !n->in(2)->is_Con() ) {   // right use is not a constant
2731     // Check for commutative opcode
2732     switch( nop ) {
2733     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2734     case Op_MaxI:  case Op_MinI:
2735     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2736     case Op_AndL:  case Op_XorL:  case Op_OrL:
2737     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2738       // Move "last use" input to left by swapping inputs
2739       n->swap_edges(1, 2);
2740       break;
2741     }
2742     default:
2743       break;
2744     }
2745   }
2746 
2747 #ifdef ASSERT
2748   if( n->is_Mem() ) {
2749     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2750     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2751             // oop will be recorded in oop map if load crosses safepoint
2752             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2753                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2754             "raw memory operations should have control edge");
2755   }
2756 #endif
2757   // Count FPU ops and common calls, implements item (3)
2758   switch( nop ) {
2759   // Count all float operations that may use FPU
2760   case Op_AddF:
2761   case Op_SubF:
2762   case Op_MulF:
2763   case Op_DivF:
2764   case Op_NegF:
2765   case Op_ModF:
2766   case Op_ConvI2F:
2767   case Op_ConF:
2768   case Op_CmpF:
2769   case Op_CmpF3:
2770   // case Op_ConvL2F: // longs are split into 32-bit halves
2771     frc.inc_float_count();
2772     break;
2773 
2774   case Op_ConvF2D:
2775   case Op_ConvD2F:
2776     frc.inc_float_count();
2777     frc.inc_double_count();
2778     break;
2779 
2780   // Count all double operations that may use FPU
2781   case Op_AddD:
2782   case Op_SubD:
2783   case Op_MulD:
2784   case Op_DivD:
2785   case Op_NegD:
2786   case Op_ModD:
2787   case Op_ConvI2D:
2788   case Op_ConvD2I:
2789   // case Op_ConvL2D: // handled by leaf call
2790   // case Op_ConvD2L: // handled by leaf call
2791   case Op_ConD:
2792   case Op_CmpD:
2793   case Op_CmpD3:
2794     frc.inc_double_count();
2795     break;
2796   case Op_Opaque1:              // Remove Opaque Nodes before matching
2797   case Op_Opaque2:              // Remove Opaque Nodes before matching
2798   case Op_Opaque3:
2799     n->subsume_by(n->in(1), this);
2800     break;
2801   case Op_CallStaticJava:
2802   case Op_CallJava:
2803   case Op_CallDynamicJava:
2804     frc.inc_java_call_count(); // Count java call site;
2805   case Op_CallRuntime:
2806   case Op_CallLeaf:
2807   case Op_CallLeafNoFP: {
2808     assert( n->is_Call(), "" );
2809     CallNode *call = n->as_Call();
2810     // Count call sites where the FP mode bit would have to be flipped.
2811     // Do not count uncommon runtime calls:
2812     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2813     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2814     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2815       frc.inc_call_count();   // Count the call site
2816     } else {                  // See if uncommon argument is shared
2817       Node *n = call->in(TypeFunc::Parms);
2818       int nop = n->Opcode();
2819       // Clone shared simple arguments to uncommon calls, item (1).
2820       if( n->outcnt() > 1 &&
2821           !n->is_Proj() &&
2822           nop != Op_CreateEx &&
2823           nop != Op_CheckCastPP &&
2824           nop != Op_DecodeN &&
2825           nop != Op_DecodeNKlass &&
2826           !n->is_Mem() ) {
2827         Node *x = n->clone();
2828         call->set_req( TypeFunc::Parms, x );
2829       }
2830     }
2831     break;
2832   }
2833 
2834   case Op_StoreD:
2835   case Op_LoadD:
2836   case Op_LoadD_unaligned:
2837     frc.inc_double_count();
2838     goto handle_mem;
2839   case Op_StoreF:
2840   case Op_LoadF:
2841     frc.inc_float_count();
2842     goto handle_mem;
2843 
2844   case Op_StoreCM:
2845     {
2846       // Convert OopStore dependence into precedence edge
2847       Node* prec = n->in(MemNode::OopStore);
2848       n->del_req(MemNode::OopStore);
2849       n->add_prec(prec);
2850       eliminate_redundant_card_marks(n);
2851     }
2852 
2853     // fall through
2854 
2855   case Op_StoreB:
2856   case Op_StoreC:
2857   case Op_StorePConditional:
2858   case Op_StoreI:
2859   case Op_StoreL:
2860   case Op_StoreIConditional:
2861   case Op_StoreLConditional:
2862   case Op_CompareAndSwapB:
2863   case Op_CompareAndSwapS:
2864   case Op_CompareAndSwapI:
2865   case Op_CompareAndSwapL:
2866   case Op_CompareAndSwapP:
2867   case Op_CompareAndSwapN:
2868   case Op_WeakCompareAndSwapB:
2869   case Op_WeakCompareAndSwapS:
2870   case Op_WeakCompareAndSwapI:
2871   case Op_WeakCompareAndSwapL:
2872   case Op_WeakCompareAndSwapP:
2873   case Op_WeakCompareAndSwapN:
2874   case Op_CompareAndExchangeB:
2875   case Op_CompareAndExchangeS:
2876   case Op_CompareAndExchangeI:
2877   case Op_CompareAndExchangeL:
2878   case Op_CompareAndExchangeP:
2879   case Op_CompareAndExchangeN:
2880   case Op_GetAndAddS:
2881   case Op_GetAndAddB:
2882   case Op_GetAndAddI:
2883   case Op_GetAndAddL:
2884   case Op_GetAndSetS:
2885   case Op_GetAndSetB:
2886   case Op_GetAndSetI:
2887   case Op_GetAndSetL:
2888   case Op_GetAndSetP:
2889   case Op_GetAndSetN:
2890   case Op_StoreP:
2891   case Op_StoreN:
2892   case Op_StoreNKlass:
2893   case Op_LoadB:
2894   case Op_LoadUB:
2895   case Op_LoadUS:
2896   case Op_LoadI:
2897   case Op_LoadKlass:
2898   case Op_LoadNKlass:
2899   case Op_LoadL:
2900   case Op_LoadL_unaligned:
2901   case Op_LoadPLocked:
2902   case Op_LoadP:
2903   case Op_LoadN:
2904   case Op_LoadRange:
2905   case Op_LoadS: {
2906   handle_mem:
2907 #ifdef ASSERT
2908     if( VerifyOptoOopOffsets ) {
2909       assert( n->is_Mem(), "" );
2910       MemNode *mem  = (MemNode*)n;
2911       // Check to see if address types have grounded out somehow.
2912       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2913       assert( !tp || oop_offset_is_sane(tp), "" );
2914     }
2915 #endif
2916     break;
2917   }
2918 
2919   case Op_AddP: {               // Assert sane base pointers
2920     Node *addp = n->in(AddPNode::Address);
2921     assert( !addp->is_AddP() ||
2922             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2923             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2924             "Base pointers must match (addp %u)", addp->_idx );
2925 #ifdef _LP64
2926     if ((UseCompressedOops || UseCompressedClassPointers) &&
2927         addp->Opcode() == Op_ConP &&
2928         addp == n->in(AddPNode::Base) &&
2929         n->in(AddPNode::Offset)->is_Con()) {
2930       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2931       // on the platform and on the compressed oops mode.
2932       // Use addressing with narrow klass to load with offset on x86.
2933       // Some platforms can use the constant pool to load ConP.
2934       // Do this transformation here since IGVN will convert ConN back to ConP.
2935       const Type* t = addp->bottom_type();
2936       bool is_oop   = t->isa_oopptr() != NULL;
2937       bool is_klass = t->isa_klassptr() != NULL;
2938 
2939       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2940           (is_klass && Matcher::const_klass_prefer_decode())) {
2941         Node* nn = NULL;
2942 
2943         int op = is_oop ? Op_ConN : Op_ConNKlass;
2944 
2945         // Look for existing ConN node of the same exact type.
2946         Node* r  = root();
2947         uint cnt = r->outcnt();
2948         for (uint i = 0; i < cnt; i++) {
2949           Node* m = r->raw_out(i);
2950           if (m!= NULL && m->Opcode() == op &&
2951               m->bottom_type()->make_ptr() == t) {
2952             nn = m;
2953             break;
2954           }
2955         }
2956         if (nn != NULL) {
2957           // Decode a narrow oop to match address
2958           // [R12 + narrow_oop_reg<<3 + offset]
2959           if (is_oop) {
2960             nn = new DecodeNNode(nn, t);
2961           } else {
2962             nn = new DecodeNKlassNode(nn, t);
2963           }
2964           // Check for succeeding AddP which uses the same Base.
2965           // Otherwise we will run into the assertion above when visiting that guy.
2966           for (uint i = 0; i < n->outcnt(); ++i) {
2967             Node *out_i = n->raw_out(i);
2968             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2969               out_i->set_req(AddPNode::Base, nn);
2970 #ifdef ASSERT
2971               for (uint j = 0; j < out_i->outcnt(); ++j) {
2972                 Node *out_j = out_i->raw_out(j);
2973                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2974                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2975               }
2976 #endif
2977             }
2978           }
2979           n->set_req(AddPNode::Base, nn);
2980           n->set_req(AddPNode::Address, nn);
2981           if (addp->outcnt() == 0) {
2982             addp->disconnect_inputs(NULL, this);
2983           }
2984         }
2985       }
2986     }
2987 #endif
2988     // platform dependent reshaping of the address expression
2989     reshape_address(n->as_AddP());
2990     break;
2991   }
2992 
2993   case Op_CastPP: {
2994     // Remove CastPP nodes to gain more freedom during scheduling but
2995     // keep the dependency they encode as control or precedence edges
2996     // (if control is set already) on memory operations. Some CastPP
2997     // nodes don't have a control (don't carry a dependency): skip
2998     // those.
2999     if (n->in(0) != NULL) {
3000       ResourceMark rm;
3001       Unique_Node_List wq;
3002       wq.push(n);
3003       for (uint next = 0; next < wq.size(); ++next) {
3004         Node *m = wq.at(next);
3005         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3006           Node* use = m->fast_out(i);
3007           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3008             use->ensure_control_or_add_prec(n->in(0));
3009           } else {
3010             switch(use->Opcode()) {
3011             case Op_AddP:
3012             case Op_DecodeN:
3013             case Op_DecodeNKlass:
3014             case Op_CheckCastPP:
3015             case Op_CastPP:
3016               wq.push(use);
3017               break;
3018             }
3019           }
3020         }
3021       }
3022     }
3023     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3024     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3025       Node* in1 = n->in(1);
3026       const Type* t = n->bottom_type();
3027       Node* new_in1 = in1->clone();
3028       new_in1->as_DecodeN()->set_type(t);
3029 
3030       if (!Matcher::narrow_oop_use_complex_address()) {
3031         //
3032         // x86, ARM and friends can handle 2 adds in addressing mode
3033         // and Matcher can fold a DecodeN node into address by using
3034         // a narrow oop directly and do implicit NULL check in address:
3035         //
3036         // [R12 + narrow_oop_reg<<3 + offset]
3037         // NullCheck narrow_oop_reg
3038         //
3039         // On other platforms (Sparc) we have to keep new DecodeN node and
3040         // use it to do implicit NULL check in address:
3041         //
3042         // decode_not_null narrow_oop_reg, base_reg
3043         // [base_reg + offset]
3044         // NullCheck base_reg
3045         //
3046         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3047         // to keep the information to which NULL check the new DecodeN node
3048         // corresponds to use it as value in implicit_null_check().
3049         //
3050         new_in1->set_req(0, n->in(0));
3051       }
3052 
3053       n->subsume_by(new_in1, this);
3054       if (in1->outcnt() == 0) {
3055         in1->disconnect_inputs(NULL, this);
3056       }
3057     } else {
3058       n->subsume_by(n->in(1), this);
3059       if (n->outcnt() == 0) {
3060         n->disconnect_inputs(NULL, this);
3061       }
3062     }
3063     break;
3064   }
3065 #ifdef _LP64
3066   case Op_CmpP:
3067     // Do this transformation here to preserve CmpPNode::sub() and
3068     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3069     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3070       Node* in1 = n->in(1);
3071       Node* in2 = n->in(2);
3072       if (!in1->is_DecodeNarrowPtr()) {
3073         in2 = in1;
3074         in1 = n->in(2);
3075       }
3076       assert(in1->is_DecodeNarrowPtr(), "sanity");
3077 
3078       Node* new_in2 = NULL;
3079       if (in2->is_DecodeNarrowPtr()) {
3080         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3081         new_in2 = in2->in(1);
3082       } else if (in2->Opcode() == Op_ConP) {
3083         const Type* t = in2->bottom_type();
3084         if (t == TypePtr::NULL_PTR) {
3085           assert(in1->is_DecodeN(), "compare klass to null?");
3086           // Don't convert CmpP null check into CmpN if compressed
3087           // oops implicit null check is not generated.
3088           // This will allow to generate normal oop implicit null check.
3089           if (Matcher::gen_narrow_oop_implicit_null_checks())
3090             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3091           //
3092           // This transformation together with CastPP transformation above
3093           // will generated code for implicit NULL checks for compressed oops.
3094           //
3095           // The original code after Optimize()
3096           //
3097           //    LoadN memory, narrow_oop_reg
3098           //    decode narrow_oop_reg, base_reg
3099           //    CmpP base_reg, NULL
3100           //    CastPP base_reg // NotNull
3101           //    Load [base_reg + offset], val_reg
3102           //
3103           // after these transformations will be
3104           //
3105           //    LoadN memory, narrow_oop_reg
3106           //    CmpN narrow_oop_reg, NULL
3107           //    decode_not_null narrow_oop_reg, base_reg
3108           //    Load [base_reg + offset], val_reg
3109           //
3110           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3111           // since narrow oops can be used in debug info now (see the code in
3112           // final_graph_reshaping_walk()).
3113           //
3114           // At the end the code will be matched to
3115           // on x86:
3116           //
3117           //    Load_narrow_oop memory, narrow_oop_reg
3118           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3119           //    NullCheck narrow_oop_reg
3120           //
3121           // and on sparc:
3122           //
3123           //    Load_narrow_oop memory, narrow_oop_reg
3124           //    decode_not_null narrow_oop_reg, base_reg
3125           //    Load [base_reg + offset], val_reg
3126           //    NullCheck base_reg
3127           //
3128         } else if (t->isa_oopptr()) {
3129           new_in2 = ConNode::make(t->make_narrowoop());
3130         } else if (t->isa_klassptr()) {
3131           new_in2 = ConNode::make(t->make_narrowklass());
3132         }
3133       }
3134       if (new_in2 != NULL) {
3135         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3136         n->subsume_by(cmpN, this);
3137         if (in1->outcnt() == 0) {
3138           in1->disconnect_inputs(NULL, this);
3139         }
3140         if (in2->outcnt() == 0) {
3141           in2->disconnect_inputs(NULL, this);
3142         }
3143       }
3144     }
3145     break;
3146 
3147   case Op_DecodeN:
3148   case Op_DecodeNKlass:
3149     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3150     // DecodeN could be pinned when it can't be fold into
3151     // an address expression, see the code for Op_CastPP above.
3152     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3153     break;
3154 
3155   case Op_EncodeP:
3156   case Op_EncodePKlass: {
3157     Node* in1 = n->in(1);
3158     if (in1->is_DecodeNarrowPtr()) {
3159       n->subsume_by(in1->in(1), this);
3160     } else if (in1->Opcode() == Op_ConP) {
3161       const Type* t = in1->bottom_type();
3162       if (t == TypePtr::NULL_PTR) {
3163         assert(t->isa_oopptr(), "null klass?");
3164         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3165       } else if (t->isa_oopptr()) {
3166         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3167       } else if (t->isa_klassptr()) {
3168         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3169       }
3170     }
3171     if (in1->outcnt() == 0) {
3172       in1->disconnect_inputs(NULL, this);
3173     }
3174     break;
3175   }
3176 
3177   case Op_Proj: {
3178     if (OptimizeStringConcat) {
3179       ProjNode* p = n->as_Proj();
3180       if (p->_is_io_use) {
3181         // Separate projections were used for the exception path which
3182         // are normally removed by a late inline.  If it wasn't inlined
3183         // then they will hang around and should just be replaced with
3184         // the original one.
3185         Node* proj = NULL;
3186         // Replace with just one
3187         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3188           Node *use = i.get();
3189           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3190             proj = use;
3191             break;
3192           }
3193         }
3194         assert(proj != NULL, "must be found");
3195         p->subsume_by(proj, this);
3196       }
3197     }
3198     break;
3199   }
3200 
3201   case Op_Phi:
3202     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3203       // The EncodeP optimization may create Phi with the same edges
3204       // for all paths. It is not handled well by Register Allocator.
3205       Node* unique_in = n->in(1);
3206       assert(unique_in != NULL, "");
3207       uint cnt = n->req();
3208       for (uint i = 2; i < cnt; i++) {
3209         Node* m = n->in(i);
3210         assert(m != NULL, "");
3211         if (unique_in != m)
3212           unique_in = NULL;
3213       }
3214       if (unique_in != NULL) {
3215         n->subsume_by(unique_in, this);
3216       }
3217     }
3218     break;
3219 
3220 #endif
3221 
3222 #ifdef ASSERT
3223   case Op_CastII:
3224     // Verify that all range check dependent CastII nodes were removed.
3225     if (n->isa_CastII()->has_range_check()) {
3226       n->dump(3);
3227       assert(false, "Range check dependent CastII node was not removed");
3228     }
3229     break;
3230 #endif
3231 
3232   case Op_ModI:
3233     if (UseDivMod) {
3234       // Check if a%b and a/b both exist
3235       Node* d = n->find_similar(Op_DivI);
3236       if (d) {
3237         // Replace them with a fused divmod if supported
3238         if (Matcher::has_match_rule(Op_DivModI)) {
3239           DivModINode* divmod = DivModINode::make(n);
3240           d->subsume_by(divmod->div_proj(), this);
3241           n->subsume_by(divmod->mod_proj(), this);
3242         } else {
3243           // replace a%b with a-((a/b)*b)
3244           Node* mult = new MulINode(d, d->in(2));
3245           Node* sub  = new SubINode(d->in(1), mult);
3246           n->subsume_by(sub, this);
3247         }
3248       }
3249     }
3250     break;
3251 
3252   case Op_ModL:
3253     if (UseDivMod) {
3254       // Check if a%b and a/b both exist
3255       Node* d = n->find_similar(Op_DivL);
3256       if (d) {
3257         // Replace them with a fused divmod if supported
3258         if (Matcher::has_match_rule(Op_DivModL)) {
3259           DivModLNode* divmod = DivModLNode::make(n);
3260           d->subsume_by(divmod->div_proj(), this);
3261           n->subsume_by(divmod->mod_proj(), this);
3262         } else {
3263           // replace a%b with a-((a/b)*b)
3264           Node* mult = new MulLNode(d, d->in(2));
3265           Node* sub  = new SubLNode(d->in(1), mult);
3266           n->subsume_by(sub, this);
3267         }
3268       }
3269     }
3270     break;
3271 
3272   case Op_LoadVector:
3273   case Op_StoreVector:
3274     break;
3275 
3276   case Op_AddReductionVI:
3277   case Op_AddReductionVL:
3278   case Op_AddReductionVF:
3279   case Op_AddReductionVD:
3280   case Op_MulReductionVI:
3281   case Op_MulReductionVL:
3282   case Op_MulReductionVF:
3283   case Op_MulReductionVD:
3284     break;
3285 
3286   case Op_PackB:
3287   case Op_PackS:
3288   case Op_PackI:
3289   case Op_PackF:
3290   case Op_PackL:
3291   case Op_PackD:
3292     if (n->req()-1 > 2) {
3293       // Replace many operand PackNodes with a binary tree for matching
3294       PackNode* p = (PackNode*) n;
3295       Node* btp = p->binary_tree_pack(1, n->req());
3296       n->subsume_by(btp, this);
3297     }
3298     break;
3299   case Op_Loop:
3300   case Op_CountedLoop:
3301     if (n->as_Loop()->is_inner_loop()) {
3302       frc.inc_inner_loop_count();
3303     }
3304     break;
3305   case Op_LShiftI:
3306   case Op_RShiftI:
3307   case Op_URShiftI:
3308   case Op_LShiftL:
3309   case Op_RShiftL:
3310   case Op_URShiftL:
3311     if (Matcher::need_masked_shift_count) {
3312       // The cpu's shift instructions don't restrict the count to the
3313       // lower 5/6 bits. We need to do the masking ourselves.
3314       Node* in2 = n->in(2);
3315       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3316       const TypeInt* t = in2->find_int_type();
3317       if (t != NULL && t->is_con()) {
3318         juint shift = t->get_con();
3319         if (shift > mask) { // Unsigned cmp
3320           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3321         }
3322       } else {
3323         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3324           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3325           n->set_req(2, shift);
3326         }
3327       }
3328       if (in2->outcnt() == 0) { // Remove dead node
3329         in2->disconnect_inputs(NULL, this);
3330       }
3331     }
3332     break;
3333   case Op_MemBarStoreStore:
3334   case Op_MemBarRelease:
3335     // Break the link with AllocateNode: it is no longer useful and
3336     // confuses register allocation.
3337     if (n->req() > MemBarNode::Precedent) {
3338       n->set_req(MemBarNode::Precedent, top());
3339     }
3340     break;
3341   case Op_RangeCheck: {
3342     RangeCheckNode* rc = n->as_RangeCheck();
3343     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3344     n->subsume_by(iff, this);
3345     frc._tests.push(iff);
3346     break;
3347   }
3348   case Op_ConvI2L: {
3349     if (!Matcher::convi2l_type_required) {
3350       // Code generation on some platforms doesn't need accurate
3351       // ConvI2L types. Widening the type can help remove redundant
3352       // address computations.
3353       n->as_Type()->set_type(TypeLong::INT);
3354       ResourceMark rm;
3355       Node_List wq;
3356       wq.push(n);
3357       for (uint next = 0; next < wq.size(); next++) {
3358         Node *m = wq.at(next);
3359 
3360         for(;;) {
3361           // Loop over all nodes with identical inputs edges as m
3362           Node* k = m->find_similar(m->Opcode());
3363           if (k == NULL) {
3364             break;
3365           }
3366           // Push their uses so we get a chance to remove node made
3367           // redundant
3368           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3369             Node* u = k->fast_out(i);
3370             assert(!wq.contains(u), "shouldn't process one node several times");
3371             if (u->Opcode() == Op_LShiftL ||
3372                 u->Opcode() == Op_AddL ||
3373                 u->Opcode() == Op_SubL ||
3374                 u->Opcode() == Op_AddP) {
3375               wq.push(u);
3376             }
3377           }
3378           // Replace all nodes with identical edges as m with m
3379           k->subsume_by(m, this);
3380         }
3381       }
3382     }
3383     break;
3384   }
3385   case Op_ValueType: {
3386     ValueTypeNode* vt = n->as_ValueType();
3387     vt->make_scalar_in_safepoints(root(), NULL);
3388     if (vt->outcnt() == 0) {
3389       vt->disconnect_inputs(NULL, this);
3390     }
3391     break;
3392   }
3393   case Op_ValueTypePtr: {
3394     ShouldNotReachHere();
3395     break;
3396   }
3397   default:
3398     assert( !n->is_Call(), "" );
3399     assert( !n->is_Mem(), "" );
3400     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3401     break;
3402   }
3403 
3404   // Collect CFG split points
3405   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3406     frc._tests.push(n);
3407   }
3408 }
3409 
3410 //------------------------------final_graph_reshaping_walk---------------------
3411 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3412 // requires that the walk visits a node's inputs before visiting the node.
3413 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3414   ResourceArea *area = Thread::current()->resource_area();
3415   Unique_Node_List sfpt(area);
3416 
3417   frc._visited.set(root->_idx); // first, mark node as visited
3418   uint cnt = root->req();
3419   Node *n = root;
3420   uint  i = 0;
3421   while (true) {
3422     if (i < cnt) {
3423       // Place all non-visited non-null inputs onto stack
3424       Node* m = n->in(i);
3425       ++i;
3426       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3427         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3428           // compute worst case interpreter size in case of a deoptimization
3429           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3430 
3431           sfpt.push(m);
3432         }
3433         cnt = m->req();
3434         nstack.push(n, i); // put on stack parent and next input's index
3435         n = m;
3436         i = 0;
3437       }
3438     } else {
3439       // Now do post-visit work
3440       final_graph_reshaping_impl( n, frc );
3441       if (nstack.is_empty())
3442         break;             // finished
3443       n = nstack.node();   // Get node from stack
3444       cnt = n->req();
3445       i = nstack.index();
3446       nstack.pop();        // Shift to the next node on stack
3447     }
3448   }
3449 
3450   // Skip next transformation if compressed oops are not used.
3451   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3452       (!UseCompressedOops && !UseCompressedClassPointers))
3453     return;
3454 
3455   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3456   // It could be done for an uncommon traps or any safepoints/calls
3457   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3458   while (sfpt.size() > 0) {
3459     n = sfpt.pop();
3460     JVMState *jvms = n->as_SafePoint()->jvms();
3461     assert(jvms != NULL, "sanity");
3462     int start = jvms->debug_start();
3463     int end   = n->req();
3464     bool is_uncommon = (n->is_CallStaticJava() &&
3465                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3466     for (int j = start; j < end; j++) {
3467       Node* in = n->in(j);
3468       if (in->is_DecodeNarrowPtr()) {
3469         bool safe_to_skip = true;
3470         if (!is_uncommon ) {
3471           // Is it safe to skip?
3472           for (uint i = 0; i < in->outcnt(); i++) {
3473             Node* u = in->raw_out(i);
3474             if (!u->is_SafePoint() ||
3475                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3476               safe_to_skip = false;
3477             }
3478           }
3479         }
3480         if (safe_to_skip) {
3481           n->set_req(j, in->in(1));
3482         }
3483         if (in->outcnt() == 0) {
3484           in->disconnect_inputs(NULL, this);
3485         }
3486       }
3487     }
3488   }
3489 }
3490 
3491 //------------------------------final_graph_reshaping--------------------------
3492 // Final Graph Reshaping.
3493 //
3494 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3495 //     and not commoned up and forced early.  Must come after regular
3496 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3497 //     inputs to Loop Phis; these will be split by the allocator anyways.
3498 //     Remove Opaque nodes.
3499 // (2) Move last-uses by commutative operations to the left input to encourage
3500 //     Intel update-in-place two-address operations and better register usage
3501 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3502 //     calls canonicalizing them back.
3503 // (3) Count the number of double-precision FP ops, single-precision FP ops
3504 //     and call sites.  On Intel, we can get correct rounding either by
3505 //     forcing singles to memory (requires extra stores and loads after each
3506 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3507 //     clearing the mode bit around call sites).  The mode bit is only used
3508 //     if the relative frequency of single FP ops to calls is low enough.
3509 //     This is a key transform for SPEC mpeg_audio.
3510 // (4) Detect infinite loops; blobs of code reachable from above but not
3511 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3512 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3513 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3514 //     Detection is by looking for IfNodes where only 1 projection is
3515 //     reachable from below or CatchNodes missing some targets.
3516 // (5) Assert for insane oop offsets in debug mode.
3517 
3518 bool Compile::final_graph_reshaping() {
3519   // an infinite loop may have been eliminated by the optimizer,
3520   // in which case the graph will be empty.
3521   if (root()->req() == 1) {
3522     record_method_not_compilable("trivial infinite loop");
3523     return true;
3524   }
3525 
3526   // Expensive nodes have their control input set to prevent the GVN
3527   // from freely commoning them. There's no GVN beyond this point so
3528   // no need to keep the control input. We want the expensive nodes to
3529   // be freely moved to the least frequent code path by gcm.
3530   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3531   for (int i = 0; i < expensive_count(); i++) {
3532     _expensive_nodes->at(i)->set_req(0, NULL);
3533   }
3534 
3535   Final_Reshape_Counts frc;
3536 
3537   // Visit everybody reachable!
3538   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3539   Node_Stack nstack(live_nodes() >> 1);
3540   final_graph_reshaping_walk(nstack, root(), frc);
3541 
3542   // Check for unreachable (from below) code (i.e., infinite loops).
3543   for( uint i = 0; i < frc._tests.size(); i++ ) {
3544     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3545     // Get number of CFG targets.
3546     // Note that PCTables include exception targets after calls.
3547     uint required_outcnt = n->required_outcnt();
3548     if (n->outcnt() != required_outcnt) {
3549       // Check for a few special cases.  Rethrow Nodes never take the
3550       // 'fall-thru' path, so expected kids is 1 less.
3551       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3552         if (n->in(0)->in(0)->is_Call()) {
3553           CallNode *call = n->in(0)->in(0)->as_Call();
3554           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3555             required_outcnt--;      // Rethrow always has 1 less kid
3556           } else if (call->req() > TypeFunc::Parms &&
3557                      call->is_CallDynamicJava()) {
3558             // Check for null receiver. In such case, the optimizer has
3559             // detected that the virtual call will always result in a null
3560             // pointer exception. The fall-through projection of this CatchNode
3561             // will not be populated.
3562             Node *arg0 = call->in(TypeFunc::Parms);
3563             if (arg0->is_Type() &&
3564                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3565               required_outcnt--;
3566             }
3567           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3568                      call->req() > TypeFunc::Parms+1 &&
3569                      call->is_CallStaticJava()) {
3570             // Check for negative array length. In such case, the optimizer has
3571             // detected that the allocation attempt will always result in an
3572             // exception. There is no fall-through projection of this CatchNode .
3573             Node *arg1 = call->in(TypeFunc::Parms+1);
3574             if (arg1->is_Type() &&
3575                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3576               required_outcnt--;
3577             }
3578           }
3579         }
3580       }
3581       // Recheck with a better notion of 'required_outcnt'
3582       if (n->outcnt() != required_outcnt) {
3583         assert(false, "malformed control flow");
3584         record_method_not_compilable("malformed control flow");
3585         return true;            // Not all targets reachable!
3586       }
3587     }
3588     // Check that I actually visited all kids.  Unreached kids
3589     // must be infinite loops.
3590     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3591       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3592         record_method_not_compilable("infinite loop");
3593         assert(false, "infinite loop");
3594         return true;            // Found unvisited kid; must be unreach
3595       }
3596   }
3597 
3598   // If original bytecodes contained a mixture of floats and doubles
3599   // check if the optimizer has made it homogenous, item (3).
3600   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3601       frc.get_float_count() > 32 &&
3602       frc.get_double_count() == 0 &&
3603       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3604     set_24_bit_selection_and_mode( false,  true );
3605   }
3606 
3607   set_java_calls(frc.get_java_call_count());
3608   set_inner_loops(frc.get_inner_loop_count());
3609 
3610   // No infinite loops, no reason to bail out.
3611   return false;
3612 }
3613 
3614 //-----------------------------too_many_traps----------------------------------
3615 // Report if there are too many traps at the current method and bci.
3616 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3617 bool Compile::too_many_traps(ciMethod* method,
3618                              int bci,
3619                              Deoptimization::DeoptReason reason) {
3620   ciMethodData* md = method->method_data();
3621   if (md->is_empty()) {
3622     // Assume the trap has not occurred, or that it occurred only
3623     // because of a transient condition during start-up in the interpreter.
3624     return false;
3625   }
3626   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3627   if (md->has_trap_at(bci, m, reason) != 0) {
3628     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3629     // Also, if there are multiple reasons, or if there is no per-BCI record,
3630     // assume the worst.
3631     if (log())
3632       log()->elem("observe trap='%s' count='%d'",
3633                   Deoptimization::trap_reason_name(reason),
3634                   md->trap_count(reason));
3635     return true;
3636   } else {
3637     // Ignore method/bci and see if there have been too many globally.
3638     return too_many_traps(reason, md);
3639   }
3640 }
3641 
3642 // Less-accurate variant which does not require a method and bci.
3643 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3644                              ciMethodData* logmd) {
3645   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3646     // Too many traps globally.
3647     // Note that we use cumulative trap_count, not just md->trap_count.
3648     if (log()) {
3649       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3650       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3651                   Deoptimization::trap_reason_name(reason),
3652                   mcount, trap_count(reason));
3653     }
3654     return true;
3655   } else {
3656     // The coast is clear.
3657     return false;
3658   }
3659 }
3660 
3661 //--------------------------too_many_recompiles--------------------------------
3662 // Report if there are too many recompiles at the current method and bci.
3663 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3664 // Is not eager to return true, since this will cause the compiler to use
3665 // Action_none for a trap point, to avoid too many recompilations.
3666 bool Compile::too_many_recompiles(ciMethod* method,
3667                                   int bci,
3668                                   Deoptimization::DeoptReason reason) {
3669   ciMethodData* md = method->method_data();
3670   if (md->is_empty()) {
3671     // Assume the trap has not occurred, or that it occurred only
3672     // because of a transient condition during start-up in the interpreter.
3673     return false;
3674   }
3675   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3676   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3677   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3678   Deoptimization::DeoptReason per_bc_reason
3679     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3680   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3681   if ((per_bc_reason == Deoptimization::Reason_none
3682        || md->has_trap_at(bci, m, reason) != 0)
3683       // The trap frequency measure we care about is the recompile count:
3684       && md->trap_recompiled_at(bci, m)
3685       && md->overflow_recompile_count() >= bc_cutoff) {
3686     // Do not emit a trap here if it has already caused recompilations.
3687     // Also, if there are multiple reasons, or if there is no per-BCI record,
3688     // assume the worst.
3689     if (log())
3690       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3691                   Deoptimization::trap_reason_name(reason),
3692                   md->trap_count(reason),
3693                   md->overflow_recompile_count());
3694     return true;
3695   } else if (trap_count(reason) != 0
3696              && decompile_count() >= m_cutoff) {
3697     // Too many recompiles globally, and we have seen this sort of trap.
3698     // Use cumulative decompile_count, not just md->decompile_count.
3699     if (log())
3700       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3701                   Deoptimization::trap_reason_name(reason),
3702                   md->trap_count(reason), trap_count(reason),
3703                   md->decompile_count(), decompile_count());
3704     return true;
3705   } else {
3706     // The coast is clear.
3707     return false;
3708   }
3709 }
3710 
3711 // Compute when not to trap. Used by matching trap based nodes and
3712 // NullCheck optimization.
3713 void Compile::set_allowed_deopt_reasons() {
3714   _allowed_reasons = 0;
3715   if (is_method_compilation()) {
3716     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3717       assert(rs < BitsPerInt, "recode bit map");
3718       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3719         _allowed_reasons |= nth_bit(rs);
3720       }
3721     }
3722   }
3723 }
3724 
3725 #ifndef PRODUCT
3726 //------------------------------verify_graph_edges---------------------------
3727 // Walk the Graph and verify that there is a one-to-one correspondence
3728 // between Use-Def edges and Def-Use edges in the graph.
3729 void Compile::verify_graph_edges(bool no_dead_code) {
3730   if (VerifyGraphEdges) {
3731     ResourceArea *area = Thread::current()->resource_area();
3732     Unique_Node_List visited(area);
3733     // Call recursive graph walk to check edges
3734     _root->verify_edges(visited);
3735     if (no_dead_code) {
3736       // Now make sure that no visited node is used by an unvisited node.
3737       bool dead_nodes = false;
3738       Unique_Node_List checked(area);
3739       while (visited.size() > 0) {
3740         Node* n = visited.pop();
3741         checked.push(n);
3742         for (uint i = 0; i < n->outcnt(); i++) {
3743           Node* use = n->raw_out(i);
3744           if (checked.member(use))  continue;  // already checked
3745           if (visited.member(use))  continue;  // already in the graph
3746           if (use->is_Con())        continue;  // a dead ConNode is OK
3747           // At this point, we have found a dead node which is DU-reachable.
3748           if (!dead_nodes) {
3749             tty->print_cr("*** Dead nodes reachable via DU edges:");
3750             dead_nodes = true;
3751           }
3752           use->dump(2);
3753           tty->print_cr("---");
3754           checked.push(use);  // No repeats; pretend it is now checked.
3755         }
3756       }
3757       assert(!dead_nodes, "using nodes must be reachable from root");
3758     }
3759   }
3760 }
3761 
3762 // Verify GC barriers consistency
3763 // Currently supported:
3764 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3765 void Compile::verify_barriers() {
3766   if (UseG1GC) {
3767     // Verify G1 pre-barriers
3768     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3769 
3770     ResourceArea *area = Thread::current()->resource_area();
3771     Unique_Node_List visited(area);
3772     Node_List worklist(area);
3773     // We're going to walk control flow backwards starting from the Root
3774     worklist.push(_root);
3775     while (worklist.size() > 0) {
3776       Node* x = worklist.pop();
3777       if (x == NULL || x == top()) continue;
3778       if (visited.member(x)) {
3779         continue;
3780       } else {
3781         visited.push(x);
3782       }
3783 
3784       if (x->is_Region()) {
3785         for (uint i = 1; i < x->req(); i++) {
3786           worklist.push(x->in(i));
3787         }
3788       } else {
3789         worklist.push(x->in(0));
3790         // We are looking for the pattern:
3791         //                            /->ThreadLocal
3792         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3793         //              \->ConI(0)
3794         // We want to verify that the If and the LoadB have the same control
3795         // See GraphKit::g1_write_barrier_pre()
3796         if (x->is_If()) {
3797           IfNode *iff = x->as_If();
3798           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3799             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3800             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3801                 && cmp->in(1)->is_Load()) {
3802               LoadNode* load = cmp->in(1)->as_Load();
3803               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3804                   && load->in(2)->in(3)->is_Con()
3805                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3806 
3807                 Node* if_ctrl = iff->in(0);
3808                 Node* load_ctrl = load->in(0);
3809 
3810                 if (if_ctrl != load_ctrl) {
3811                   // Skip possible CProj->NeverBranch in infinite loops
3812                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3813                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3814                     if_ctrl = if_ctrl->in(0)->in(0);
3815                   }
3816                 }
3817                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3818               }
3819             }
3820           }
3821         }
3822       }
3823     }
3824   }
3825 }
3826 
3827 #endif
3828 
3829 // The Compile object keeps track of failure reasons separately from the ciEnv.
3830 // This is required because there is not quite a 1-1 relation between the
3831 // ciEnv and its compilation task and the Compile object.  Note that one
3832 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3833 // to backtrack and retry without subsuming loads.  Other than this backtracking
3834 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3835 // by the logic in C2Compiler.
3836 void Compile::record_failure(const char* reason) {
3837   if (log() != NULL) {
3838     log()->elem("failure reason='%s' phase='compile'", reason);
3839   }
3840   if (_failure_reason == NULL) {
3841     // Record the first failure reason.
3842     _failure_reason = reason;
3843   }
3844 
3845   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3846     C->print_method(PHASE_FAILURE);
3847   }
3848   _root = NULL;  // flush the graph, too
3849 }
3850 
3851 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3852   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3853     _phase_name(name), _dolog(CITimeVerbose)
3854 {
3855   if (_dolog) {
3856     C = Compile::current();
3857     _log = C->log();
3858   } else {
3859     C = NULL;
3860     _log = NULL;
3861   }
3862   if (_log != NULL) {
3863     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3864     _log->stamp();
3865     _log->end_head();
3866   }
3867 }
3868 
3869 Compile::TracePhase::~TracePhase() {
3870 
3871   C = Compile::current();
3872   if (_dolog) {
3873     _log = C->log();
3874   } else {
3875     _log = NULL;
3876   }
3877 
3878 #ifdef ASSERT
3879   if (PrintIdealNodeCount) {
3880     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3881                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3882   }
3883 
3884   if (VerifyIdealNodeCount) {
3885     Compile::current()->print_missing_nodes();
3886   }
3887 #endif
3888 
3889   if (_log != NULL) {
3890     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3891   }
3892 }
3893 
3894 //=============================================================================
3895 // Two Constant's are equal when the type and the value are equal.
3896 bool Compile::Constant::operator==(const Constant& other) {
3897   if (type()          != other.type()         )  return false;
3898   if (can_be_reused() != other.can_be_reused())  return false;
3899   // For floating point values we compare the bit pattern.
3900   switch (type()) {
3901   case T_INT:
3902   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3903   case T_LONG:
3904   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3905   case T_OBJECT:
3906   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3907   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3908   case T_METADATA: return (_v._metadata == other._v._metadata);
3909   default: ShouldNotReachHere(); return false;
3910   }
3911 }
3912 
3913 static int type_to_size_in_bytes(BasicType t) {
3914   switch (t) {
3915   case T_INT:     return sizeof(jint   );
3916   case T_LONG:    return sizeof(jlong  );
3917   case T_FLOAT:   return sizeof(jfloat );
3918   case T_DOUBLE:  return sizeof(jdouble);
3919   case T_METADATA: return sizeof(Metadata*);
3920     // We use T_VOID as marker for jump-table entries (labels) which
3921     // need an internal word relocation.
3922   case T_VOID:
3923   case T_ADDRESS:
3924   case T_OBJECT:  return sizeof(jobject);
3925   default:
3926     ShouldNotReachHere();
3927     return -1;
3928   }
3929 }
3930 
3931 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3932   // sort descending
3933   if (a->freq() > b->freq())  return -1;
3934   if (a->freq() < b->freq())  return  1;
3935   return 0;
3936 }
3937 
3938 void Compile::ConstantTable::calculate_offsets_and_size() {
3939   // First, sort the array by frequencies.
3940   _constants.sort(qsort_comparator);
3941 
3942 #ifdef ASSERT
3943   // Make sure all jump-table entries were sorted to the end of the
3944   // array (they have a negative frequency).
3945   bool found_void = false;
3946   for (int i = 0; i < _constants.length(); i++) {
3947     Constant con = _constants.at(i);
3948     if (con.type() == T_VOID)
3949       found_void = true;  // jump-tables
3950     else
3951       assert(!found_void, "wrong sorting");
3952   }
3953 #endif
3954 
3955   int offset = 0;
3956   for (int i = 0; i < _constants.length(); i++) {
3957     Constant* con = _constants.adr_at(i);
3958 
3959     // Align offset for type.
3960     int typesize = type_to_size_in_bytes(con->type());
3961     offset = align_up(offset, typesize);
3962     con->set_offset(offset);   // set constant's offset
3963 
3964     if (con->type() == T_VOID) {
3965       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3966       offset = offset + typesize * n->outcnt();  // expand jump-table
3967     } else {
3968       offset = offset + typesize;
3969     }
3970   }
3971 
3972   // Align size up to the next section start (which is insts; see
3973   // CodeBuffer::align_at_start).
3974   assert(_size == -1, "already set?");
3975   _size = align_up(offset, (int)CodeEntryAlignment);
3976 }
3977 
3978 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3979   MacroAssembler _masm(&cb);
3980   for (int i = 0; i < _constants.length(); i++) {
3981     Constant con = _constants.at(i);
3982     address constant_addr = NULL;
3983     switch (con.type()) {
3984     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3985     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3986     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3987     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3988     case T_OBJECT: {
3989       jobject obj = con.get_jobject();
3990       int oop_index = _masm.oop_recorder()->find_index(obj);
3991       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3992       break;
3993     }
3994     case T_ADDRESS: {
3995       address addr = (address) con.get_jobject();
3996       constant_addr = _masm.address_constant(addr);
3997       break;
3998     }
3999     // We use T_VOID as marker for jump-table entries (labels) which
4000     // need an internal word relocation.
4001     case T_VOID: {
4002       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4003       // Fill the jump-table with a dummy word.  The real value is
4004       // filled in later in fill_jump_table.
4005       address dummy = (address) n;
4006       constant_addr = _masm.address_constant(dummy);
4007       // Expand jump-table
4008       for (uint i = 1; i < n->outcnt(); i++) {
4009         address temp_addr = _masm.address_constant(dummy + i);
4010         assert(temp_addr, "consts section too small");
4011       }
4012       break;
4013     }
4014     case T_METADATA: {
4015       Metadata* obj = con.get_metadata();
4016       int metadata_index = _masm.oop_recorder()->find_index(obj);
4017       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4018       break;
4019     }
4020     default: ShouldNotReachHere();
4021     }
4022     assert(constant_addr, "consts section too small");
4023     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4024             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4025   }
4026 }
4027 
4028 int Compile::ConstantTable::find_offset(Constant& con) const {
4029   int idx = _constants.find(con);
4030   assert(idx != -1, "constant must be in constant table");
4031   int offset = _constants.at(idx).offset();
4032   assert(offset != -1, "constant table not emitted yet?");
4033   return offset;
4034 }
4035 
4036 void Compile::ConstantTable::add(Constant& con) {
4037   if (con.can_be_reused()) {
4038     int idx = _constants.find(con);
4039     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4040       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4041       return;
4042     }
4043   }
4044   (void) _constants.append(con);
4045 }
4046 
4047 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4048   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4049   Constant con(type, value, b->_freq);
4050   add(con);
4051   return con;
4052 }
4053 
4054 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4055   Constant con(metadata);
4056   add(con);
4057   return con;
4058 }
4059 
4060 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4061   jvalue value;
4062   BasicType type = oper->type()->basic_type();
4063   switch (type) {
4064   case T_LONG:    value.j = oper->constantL(); break;
4065   case T_FLOAT:   value.f = oper->constantF(); break;
4066   case T_DOUBLE:  value.d = oper->constantD(); break;
4067   case T_OBJECT:
4068   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4069   case T_METADATA: return add((Metadata*)oper->constant()); break;
4070   default: guarantee(false, "unhandled type: %s", type2name(type));
4071   }
4072   return add(n, type, value);
4073 }
4074 
4075 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4076   jvalue value;
4077   // We can use the node pointer here to identify the right jump-table
4078   // as this method is called from Compile::Fill_buffer right before
4079   // the MachNodes are emitted and the jump-table is filled (means the
4080   // MachNode pointers do not change anymore).
4081   value.l = (jobject) n;
4082   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4083   add(con);
4084   return con;
4085 }
4086 
4087 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4088   // If called from Compile::scratch_emit_size do nothing.
4089   if (Compile::current()->in_scratch_emit_size())  return;
4090 
4091   assert(labels.is_nonempty(), "must be");
4092   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4093 
4094   // Since MachConstantNode::constant_offset() also contains
4095   // table_base_offset() we need to subtract the table_base_offset()
4096   // to get the plain offset into the constant table.
4097   int offset = n->constant_offset() - table_base_offset();
4098 
4099   MacroAssembler _masm(&cb);
4100   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4101 
4102   for (uint i = 0; i < n->outcnt(); i++) {
4103     address* constant_addr = &jump_table_base[i];
4104     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4105     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4106     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4107   }
4108 }
4109 
4110 //----------------------------static_subtype_check-----------------------------
4111 // Shortcut important common cases when superklass is exact:
4112 // (0) superklass is java.lang.Object (can occur in reflective code)
4113 // (1) subklass is already limited to a subtype of superklass => always ok
4114 // (2) subklass does not overlap with superklass => always fail
4115 // (3) superklass has NO subtypes and we can check with a simple compare.
4116 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4117   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4118     return SSC_full_test;       // Let caller generate the general case.
4119   }
4120 
4121   if (!EnableMVT && !EnableValhalla && superk == env()->Object_klass()) {
4122     return SSC_always_true;     // (0) this test cannot fail
4123   }
4124 
4125   ciType* superelem = superk;
4126   if (superelem->is_array_klass())
4127     superelem = superelem->as_array_klass()->base_element_type();
4128 
4129   if (!subk->is_interface()) {  // cannot trust static interface types yet
4130     if (subk->is_subtype_of(superk)) {
4131       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4132     }
4133     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4134         !superk->is_subtype_of(subk)) {
4135       return SSC_always_false;
4136     }
4137   }
4138 
4139   // If casting to an instance klass, it must have no subtypes
4140   if (superk->is_interface()) {
4141     // Cannot trust interfaces yet.
4142     // %%% S.B. superk->nof_implementors() == 1
4143   } else if (superelem->is_instance_klass()) {
4144     ciInstanceKlass* ik = superelem->as_instance_klass();
4145     if (!ik->has_subklass() && !ik->is_interface()) {
4146       if (!ik->is_final()) {
4147         // Add a dependency if there is a chance of a later subclass.
4148         dependencies()->assert_leaf_type(ik);
4149       }
4150       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4151     }
4152   } else {
4153     // A primitive array type has no subtypes.
4154     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4155   }
4156 
4157   return SSC_full_test;
4158 }
4159 
4160 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4161 #ifdef _LP64
4162   // The scaled index operand to AddP must be a clean 64-bit value.
4163   // Java allows a 32-bit int to be incremented to a negative
4164   // value, which appears in a 64-bit register as a large
4165   // positive number.  Using that large positive number as an
4166   // operand in pointer arithmetic has bad consequences.
4167   // On the other hand, 32-bit overflow is rare, and the possibility
4168   // can often be excluded, if we annotate the ConvI2L node with
4169   // a type assertion that its value is known to be a small positive
4170   // number.  (The prior range check has ensured this.)
4171   // This assertion is used by ConvI2LNode::Ideal.
4172   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4173   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4174   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4175   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4176 #endif
4177   return idx;
4178 }
4179 
4180 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4181 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4182   if (ctrl != NULL) {
4183     // Express control dependency by a CastII node with a narrow type.
4184     value = new CastIINode(value, itype, false, true /* range check dependency */);
4185     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4186     // node from floating above the range check during loop optimizations. Otherwise, the
4187     // ConvI2L node may be eliminated independently of the range check, causing the data path
4188     // to become TOP while the control path is still there (although it's unreachable).
4189     value->set_req(0, ctrl);
4190     // Save CastII node to remove it after loop optimizations.
4191     phase->C->add_range_check_cast(value);
4192     value = phase->transform(value);
4193   }
4194   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4195   return phase->transform(new ConvI2LNode(value, ltype));
4196 }
4197 
4198 // The message about the current inlining is accumulated in
4199 // _print_inlining_stream and transfered into the _print_inlining_list
4200 // once we know whether inlining succeeds or not. For regular
4201 // inlining, messages are appended to the buffer pointed by
4202 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4203 // a new buffer is added after _print_inlining_idx in the list. This
4204 // way we can update the inlining message for late inlining call site
4205 // when the inlining is attempted again.
4206 void Compile::print_inlining_init() {
4207   if (print_inlining() || print_intrinsics()) {
4208     _print_inlining_stream = new stringStream();
4209     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4210   }
4211 }
4212 
4213 void Compile::print_inlining_reinit() {
4214   if (print_inlining() || print_intrinsics()) {
4215     // Re allocate buffer when we change ResourceMark
4216     _print_inlining_stream = new stringStream();
4217   }
4218 }
4219 
4220 void Compile::print_inlining_reset() {
4221   _print_inlining_stream->reset();
4222 }
4223 
4224 void Compile::print_inlining_commit() {
4225   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4226   // Transfer the message from _print_inlining_stream to the current
4227   // _print_inlining_list buffer and clear _print_inlining_stream.
4228   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4229   print_inlining_reset();
4230 }
4231 
4232 void Compile::print_inlining_push() {
4233   // Add new buffer to the _print_inlining_list at current position
4234   _print_inlining_idx++;
4235   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4236 }
4237 
4238 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4239   return _print_inlining_list->at(_print_inlining_idx);
4240 }
4241 
4242 void Compile::print_inlining_update(CallGenerator* cg) {
4243   if (print_inlining() || print_intrinsics()) {
4244     if (!cg->is_late_inline()) {
4245       if (print_inlining_current().cg() != NULL) {
4246         print_inlining_push();
4247       }
4248       print_inlining_commit();
4249     } else {
4250       if (print_inlining_current().cg() != cg &&
4251           (print_inlining_current().cg() != NULL ||
4252            print_inlining_current().ss()->size() != 0)) {
4253         print_inlining_push();
4254       }
4255       print_inlining_commit();
4256       print_inlining_current().set_cg(cg);
4257     }
4258   }
4259 }
4260 
4261 void Compile::print_inlining_move_to(CallGenerator* cg) {
4262   // We resume inlining at a late inlining call site. Locate the
4263   // corresponding inlining buffer so that we can update it.
4264   if (print_inlining()) {
4265     for (int i = 0; i < _print_inlining_list->length(); i++) {
4266       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4267         _print_inlining_idx = i;
4268         return;
4269       }
4270     }
4271     ShouldNotReachHere();
4272   }
4273 }
4274 
4275 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4276   if (print_inlining()) {
4277     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4278     assert(print_inlining_current().cg() == cg, "wrong entry");
4279     // replace message with new message
4280     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4281     print_inlining_commit();
4282     print_inlining_current().set_cg(cg);
4283   }
4284 }
4285 
4286 void Compile::print_inlining_assert_ready() {
4287   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4288 }
4289 
4290 void Compile::process_print_inlining() {
4291   bool do_print_inlining = print_inlining() || print_intrinsics();
4292   if (do_print_inlining || log() != NULL) {
4293     // Print inlining message for candidates that we couldn't inline
4294     // for lack of space
4295     for (int i = 0; i < _late_inlines.length(); i++) {
4296       CallGenerator* cg = _late_inlines.at(i);
4297       if (!cg->is_mh_late_inline()) {
4298         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4299         if (do_print_inlining) {
4300           cg->print_inlining_late(msg);
4301         }
4302         log_late_inline_failure(cg, msg);
4303       }
4304     }
4305   }
4306   if (do_print_inlining) {
4307     ResourceMark rm;
4308     stringStream ss;
4309     for (int i = 0; i < _print_inlining_list->length(); i++) {
4310       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4311     }
4312     size_t end = ss.size();
4313     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4314     strncpy(_print_inlining_output, ss.base(), end+1);
4315     _print_inlining_output[end] = 0;
4316   }
4317 }
4318 
4319 void Compile::dump_print_inlining() {
4320   if (_print_inlining_output != NULL) {
4321     tty->print_raw(_print_inlining_output);
4322   }
4323 }
4324 
4325 void Compile::log_late_inline(CallGenerator* cg) {
4326   if (log() != NULL) {
4327     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4328                 cg->unique_id());
4329     JVMState* p = cg->call_node()->jvms();
4330     while (p != NULL) {
4331       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4332       p = p->caller();
4333     }
4334     log()->tail("late_inline");
4335   }
4336 }
4337 
4338 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4339   log_late_inline(cg);
4340   if (log() != NULL) {
4341     log()->inline_fail(msg);
4342   }
4343 }
4344 
4345 void Compile::log_inline_id(CallGenerator* cg) {
4346   if (log() != NULL) {
4347     // The LogCompilation tool needs a unique way to identify late
4348     // inline call sites. This id must be unique for this call site in
4349     // this compilation. Try to have it unique across compilations as
4350     // well because it can be convenient when grepping through the log
4351     // file.
4352     // Distinguish OSR compilations from others in case CICountOSR is
4353     // on.
4354     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4355     cg->set_unique_id(id);
4356     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4357   }
4358 }
4359 
4360 void Compile::log_inline_failure(const char* msg) {
4361   if (C->log() != NULL) {
4362     C->log()->inline_fail(msg);
4363   }
4364 }
4365 
4366 
4367 // Dump inlining replay data to the stream.
4368 // Don't change thread state and acquire any locks.
4369 void Compile::dump_inline_data(outputStream* out) {
4370   InlineTree* inl_tree = ilt();
4371   if (inl_tree != NULL) {
4372     out->print(" inline %d", inl_tree->count());
4373     inl_tree->dump_replay_data(out);
4374   }
4375 }
4376 
4377 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4378   if (n1->Opcode() < n2->Opcode())      return -1;
4379   else if (n1->Opcode() > n2->Opcode()) return 1;
4380 
4381   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4382   for (uint i = 1; i < n1->req(); i++) {
4383     if (n1->in(i) < n2->in(i))      return -1;
4384     else if (n1->in(i) > n2->in(i)) return 1;
4385   }
4386 
4387   return 0;
4388 }
4389 
4390 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4391   Node* n1 = *n1p;
4392   Node* n2 = *n2p;
4393 
4394   return cmp_expensive_nodes(n1, n2);
4395 }
4396 
4397 void Compile::sort_expensive_nodes() {
4398   if (!expensive_nodes_sorted()) {
4399     _expensive_nodes->sort(cmp_expensive_nodes);
4400   }
4401 }
4402 
4403 bool Compile::expensive_nodes_sorted() const {
4404   for (int i = 1; i < _expensive_nodes->length(); i++) {
4405     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4406       return false;
4407     }
4408   }
4409   return true;
4410 }
4411 
4412 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4413   if (_expensive_nodes->length() == 0) {
4414     return false;
4415   }
4416 
4417   assert(OptimizeExpensiveOps, "optimization off?");
4418 
4419   // Take this opportunity to remove dead nodes from the list
4420   int j = 0;
4421   for (int i = 0; i < _expensive_nodes->length(); i++) {
4422     Node* n = _expensive_nodes->at(i);
4423     if (!n->is_unreachable(igvn)) {
4424       assert(n->is_expensive(), "should be expensive");
4425       _expensive_nodes->at_put(j, n);
4426       j++;
4427     }
4428   }
4429   _expensive_nodes->trunc_to(j);
4430 
4431   // Then sort the list so that similar nodes are next to each other
4432   // and check for at least two nodes of identical kind with same data
4433   // inputs.
4434   sort_expensive_nodes();
4435 
4436   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4437     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4438       return true;
4439     }
4440   }
4441 
4442   return false;
4443 }
4444 
4445 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4446   if (_expensive_nodes->length() == 0) {
4447     return;
4448   }
4449 
4450   assert(OptimizeExpensiveOps, "optimization off?");
4451 
4452   // Sort to bring similar nodes next to each other and clear the
4453   // control input of nodes for which there's only a single copy.
4454   sort_expensive_nodes();
4455 
4456   int j = 0;
4457   int identical = 0;
4458   int i = 0;
4459   bool modified = false;
4460   for (; i < _expensive_nodes->length()-1; i++) {
4461     assert(j <= i, "can't write beyond current index");
4462     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4463       identical++;
4464       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4465       continue;
4466     }
4467     if (identical > 0) {
4468       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4469       identical = 0;
4470     } else {
4471       Node* n = _expensive_nodes->at(i);
4472       igvn.replace_input_of(n, 0, NULL);
4473       igvn.hash_insert(n);
4474       modified = true;
4475     }
4476   }
4477   if (identical > 0) {
4478     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4479   } else if (_expensive_nodes->length() >= 1) {
4480     Node* n = _expensive_nodes->at(i);
4481     igvn.replace_input_of(n, 0, NULL);
4482     igvn.hash_insert(n);
4483     modified = true;
4484   }
4485   _expensive_nodes->trunc_to(j);
4486   if (modified) {
4487     igvn.optimize();
4488   }
4489 }
4490 
4491 void Compile::add_expensive_node(Node * n) {
4492   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4493   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4494   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4495   if (OptimizeExpensiveOps) {
4496     _expensive_nodes->append(n);
4497   } else {
4498     // Clear control input and let IGVN optimize expensive nodes if
4499     // OptimizeExpensiveOps is off.
4500     n->set_req(0, NULL);
4501   }
4502 }
4503 
4504 /**
4505  * Remove the speculative part of types and clean up the graph
4506  */
4507 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4508   if (UseTypeSpeculation) {
4509     Unique_Node_List worklist;
4510     worklist.push(root());
4511     int modified = 0;
4512     // Go over all type nodes that carry a speculative type, drop the
4513     // speculative part of the type and enqueue the node for an igvn
4514     // which may optimize it out.
4515     for (uint next = 0; next < worklist.size(); ++next) {
4516       Node *n  = worklist.at(next);
4517       if (n->is_Type()) {
4518         TypeNode* tn = n->as_Type();
4519         const Type* t = tn->type();
4520         const Type* t_no_spec = t->remove_speculative();
4521         if (t_no_spec != t) {
4522           bool in_hash = igvn.hash_delete(n);
4523           assert(in_hash, "node should be in igvn hash table");
4524           tn->set_type(t_no_spec);
4525           igvn.hash_insert(n);
4526           igvn._worklist.push(n); // give it a chance to go away
4527           modified++;
4528         }
4529       }
4530       uint max = n->len();
4531       for( uint i = 0; i < max; ++i ) {
4532         Node *m = n->in(i);
4533         if (not_a_node(m))  continue;
4534         worklist.push(m);
4535       }
4536     }
4537     // Drop the speculative part of all types in the igvn's type table
4538     igvn.remove_speculative_types();
4539     if (modified > 0) {
4540       igvn.optimize();
4541     }
4542 #ifdef ASSERT
4543     // Verify that after the IGVN is over no speculative type has resurfaced
4544     worklist.clear();
4545     worklist.push(root());
4546     for (uint next = 0; next < worklist.size(); ++next) {
4547       Node *n  = worklist.at(next);
4548       const Type* t = igvn.type_or_null(n);
4549       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4550       if (n->is_Type()) {
4551         t = n->as_Type()->type();
4552         assert(t == t->remove_speculative(), "no more speculative types");
4553       }
4554       uint max = n->len();
4555       for( uint i = 0; i < max; ++i ) {
4556         Node *m = n->in(i);
4557         if (not_a_node(m))  continue;
4558         worklist.push(m);
4559       }
4560     }
4561     igvn.check_no_speculative_types();
4562 #endif
4563   }
4564 }
4565 
4566 // Auxiliary method to support randomized stressing/fuzzing.
4567 //
4568 // This method can be called the arbitrary number of times, with current count
4569 // as the argument. The logic allows selecting a single candidate from the
4570 // running list of candidates as follows:
4571 //    int count = 0;
4572 //    Cand* selected = null;
4573 //    while(cand = cand->next()) {
4574 //      if (randomized_select(++count)) {
4575 //        selected = cand;
4576 //      }
4577 //    }
4578 //
4579 // Including count equalizes the chances any candidate is "selected".
4580 // This is useful when we don't have the complete list of candidates to choose
4581 // from uniformly. In this case, we need to adjust the randomicity of the
4582 // selection, or else we will end up biasing the selection towards the latter
4583 // candidates.
4584 //
4585 // Quick back-envelope calculation shows that for the list of n candidates
4586 // the equal probability for the candidate to persist as "best" can be
4587 // achieved by replacing it with "next" k-th candidate with the probability
4588 // of 1/k. It can be easily shown that by the end of the run, the
4589 // probability for any candidate is converged to 1/n, thus giving the
4590 // uniform distribution among all the candidates.
4591 //
4592 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4593 #define RANDOMIZED_DOMAIN_POW 29
4594 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4595 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4596 bool Compile::randomized_select(int count) {
4597   assert(count > 0, "only positive");
4598   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4599 }
4600 
4601 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4602 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4603 
4604 void NodeCloneInfo::dump() const {
4605   tty->print(" {%d:%d} ", idx(), gen());
4606 }
4607 
4608 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4609   uint64_t val = value(old->_idx);
4610   NodeCloneInfo cio(val);
4611   assert(val != 0, "old node should be in the map");
4612   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4613   insert(nnn->_idx, cin.get());
4614 #ifndef PRODUCT
4615   if (is_debug()) {
4616     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4617   }
4618 #endif
4619 }
4620 
4621 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4622   NodeCloneInfo cio(value(old->_idx));
4623   if (cio.get() == 0) {
4624     cio.set(old->_idx, 0);
4625     insert(old->_idx, cio.get());
4626 #ifndef PRODUCT
4627     if (is_debug()) {
4628       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4629     }
4630 #endif
4631   }
4632   clone(old, nnn, gen);
4633 }
4634 
4635 int CloneMap::max_gen() const {
4636   int g = 0;
4637   DictI di(_dict);
4638   for(; di.test(); ++di) {
4639     int t = gen(di._key);
4640     if (g < t) {
4641       g = t;
4642 #ifndef PRODUCT
4643       if (is_debug()) {
4644         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4645       }
4646 #endif
4647     }
4648   }
4649   return g;
4650 }
4651 
4652 void CloneMap::dump(node_idx_t key) const {
4653   uint64_t val = value(key);
4654   if (val != 0) {
4655     NodeCloneInfo ni(val);
4656     ni.dump();
4657   }
4658 }
4659 
4660 // Helper function for enforcing certain bytecodes to reexecute if
4661 // deoptimization happens
4662 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
4663   ciMethod* cur_method = jvms->method();
4664   int       cur_bci   = jvms->bci();
4665   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
4666     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
4667     return Interpreter::bytecode_should_reexecute(code) ||
4668            (is_anewarray && (code == Bytecodes::_multianewarray));
4669     // Reexecute _multianewarray bytecode which was replaced with
4670     // sequence of [a]newarray. See Parse::do_multianewarray().
4671     //
4672     // Note: interpreter should not have it set since this optimization
4673     // is limited by dimensions and guarded by flag so in some cases
4674     // multianewarray() runtime calls will be generated and
4675     // the bytecode should not be reexecutes (stack will not be reset).
4676   } else
4677     return false;
4678 }
4679 
4680 void Compile::add_safepoint_edges(SafePointNode* call, JVMState* youngest_jvms, bool can_prune_locals, uint stack_slots_not_pruned) {
4681   // do not scribble on the input jvms
4682   JVMState* out_jvms = youngest_jvms->clone_deep(C);
4683   call->set_jvms(out_jvms); // Start jvms list for call node
4684 
4685   // For a known set of bytecodes, the interpreter should reexecute them if
4686   // deoptimization happens. We set the reexecute state for them here
4687   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
4688       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
4689     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
4690   }
4691 
4692   // Presize the call:
4693   DEBUG_ONLY(uint non_debug_edges = call->req());
4694   call->add_req_batch(top(), youngest_jvms->debug_depth());
4695   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
4696 
4697   // Set up edges so that the call looks like this:
4698   //  Call [state:] ctl io mem fptr retadr
4699   //       [parms:] parm0 ... parmN
4700   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
4701   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
4702   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
4703   // Note that caller debug info precedes callee debug info.
4704 
4705   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
4706   uint debug_ptr = call->req();
4707 
4708   // Loop over the map input edges associated with jvms, add them
4709   // to the call node, & reset all offsets to match call node array.
4710   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
4711     uint debug_end   = debug_ptr;
4712     uint debug_start = debug_ptr - in_jvms->debug_size();
4713     debug_ptr = debug_start;  // back up the ptr
4714 
4715     uint p = debug_start;  // walks forward in [debug_start, debug_end)
4716     uint j, k, l;
4717     SafePointNode* in_map = in_jvms->map();
4718     out_jvms->set_map(call);
4719 
4720     if (can_prune_locals) {
4721       assert(in_jvms->method() == out_jvms->method(), "sanity");
4722       // If the current throw can reach an exception handler in this JVMS,
4723       // then we must keep everything live that can reach that handler.
4724       // As a quick and dirty approximation, we look for any handlers at all.
4725       if (in_jvms->method()->has_exception_handlers()) {
4726         can_prune_locals = false;
4727       }
4728     }
4729 
4730     // Add the Locals
4731     k = in_jvms->locoff();
4732     l = in_jvms->loc_size();
4733     out_jvms->set_locoff(p);
4734     if (!can_prune_locals) {
4735       for (j = 0; j < l; j++)
4736         call->set_req(p++, in_map->in(k+j));
4737     } else {
4738       p += l;  // already set to top above by add_req_batch
4739     }
4740 
4741     // Add the Expression Stack
4742     k = in_jvms->stkoff();
4743     l = in_jvms->sp();
4744     out_jvms->set_stkoff(p);
4745     if (!can_prune_locals) {
4746       for (j = 0; j < l; j++)
4747         call->set_req(p++, in_map->in(k+j));
4748     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
4749       // Divide stack into {S0,...,S1}, where S0 is set to top.
4750       uint s1 = stack_slots_not_pruned;
4751       stack_slots_not_pruned = 0;  // for next iteration
4752       if (s1 > l)  s1 = l;
4753       uint s0 = l - s1;
4754       p += s0;  // skip the tops preinstalled by add_req_batch
4755       for (j = s0; j < l; j++)
4756         call->set_req(p++, in_map->in(k+j));
4757     } else {
4758       p += l;  // already set to top above by add_req_batch
4759     }
4760 
4761     // Add the Monitors
4762     k = in_jvms->monoff();
4763     l = in_jvms->mon_size();
4764     out_jvms->set_monoff(p);
4765     for (j = 0; j < l; j++)
4766       call->set_req(p++, in_map->in(k+j));
4767 
4768     // Copy any scalar object fields.
4769     k = in_jvms->scloff();
4770     l = in_jvms->scl_size();
4771     out_jvms->set_scloff(p);
4772     for (j = 0; j < l; j++)
4773       call->set_req(p++, in_map->in(k+j));
4774 
4775     // Finish the new jvms.
4776     out_jvms->set_endoff(p);
4777 
4778     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
4779     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
4780     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
4781     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
4782     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
4783     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
4784 
4785     // Update the two tail pointers in parallel.
4786     out_jvms = out_jvms->caller();
4787     in_jvms  = in_jvms->caller();
4788   }
4789 
4790   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
4791 
4792   // Test the correctness of JVMState::debug_xxx accessors:
4793   assert(call->jvms()->debug_start() == non_debug_edges, "");
4794   assert(call->jvms()->debug_end()   == call->req(), "");
4795   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
4796 }