1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 const Type::Offset Type::Offset::top(Type::OffsetTop);
  53 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  54 
  55 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  56   // Either is 'TOP' offset?  Return the other offset!
  57   int offset = other._offset;
  58   if (_offset == OffsetTop) return Offset(offset);
  59   if (offset == OffsetTop) return Offset(_offset);
  60   // If either is different, return 'BOTTOM' offset
  61   if (_offset != offset) return bottom;
  62   return Offset(_offset);
  63 }
  64 
  65 const Type::Offset Type::Offset::dual() const {
  66   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  67   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  68   return Offset(_offset);               // Map everything else into self
  69 }
  70 
  71 const Type::Offset Type::Offset::add(intptr_t offset) const {
  72   // Adding to 'TOP' offset?  Return 'TOP'!
  73   if (_offset == OffsetTop || offset == OffsetTop) return top;
  74   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  75   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  76   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  77   offset += (intptr_t)_offset;
  78   if (offset != (int)offset || offset == OffsetTop) return bottom;
  79 
  80   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  81   // It is possible to construct a negative offset during PhaseCCP
  82 
  83   return Offset((int)offset);        // Sum valid offsets
  84 }
  85 
  86 void Type::Offset::dump2(outputStream *st) const {
  87   if (_offset == 0) {
  88     return;
  89   } else if (_offset == OffsetTop) {
  90     st->print("+top");
  91   }
  92   else if (_offset == OffsetBot) {
  93     st->print("+bot");
  94   } else if (_offset) {
  95     st->print("+%d", _offset);
  96   }
  97 }
  98 
  99 // Array which maps compiler types to Basic Types
 100 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 101   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 102   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 103   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 104   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 105   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 106   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 107   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 108   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 109   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 110   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 111 
 112 #ifdef SPARC
 113   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 114   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 115   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 116   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 117   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 118 #elif defined(PPC64) || defined(S390)
 119   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 120   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 121   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 122   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 123   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 124 #else // all other
 125   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 126   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 127   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 128   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 129   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 130 #endif
 131   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 132   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 133   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 134   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 135   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 136   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 137   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 138   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 139   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 140   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 141   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 142   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 143   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 144   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 145   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 146   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 147   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 148   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 149   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 150   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 151 };
 152 
 153 // Map ideal registers (machine types) to ideal types
 154 const Type *Type::mreg2type[_last_machine_leaf];
 155 
 156 // Map basic types to canonical Type* pointers.
 157 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 158 
 159 // Map basic types to constant-zero Types.
 160 const Type* Type::            _zero_type[T_CONFLICT+1];
 161 
 162 // Map basic types to array-body alias types.
 163 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 164 
 165 //=============================================================================
 166 // Convenience common pre-built types.
 167 const Type *Type::ABIO;         // State-of-machine only
 168 const Type *Type::BOTTOM;       // All values
 169 const Type *Type::CONTROL;      // Control only
 170 const Type *Type::DOUBLE;       // All doubles
 171 const Type *Type::FLOAT;        // All floats
 172 const Type *Type::HALF;         // Placeholder half of doublewide type
 173 const Type *Type::MEMORY;       // Abstract store only
 174 const Type *Type::RETURN_ADDRESS;
 175 const Type *Type::TOP;          // No values in set
 176 
 177 //------------------------------get_const_type---------------------------
 178 const Type* Type::get_const_type(ciType* type) {
 179   if (type == NULL) {
 180     return NULL;
 181   } else if (type->is_primitive_type()) {
 182     return get_const_basic_type(type->basic_type());
 183   } else {
 184     return TypeOopPtr::make_from_klass(type->as_klass());
 185   }
 186 }
 187 
 188 //---------------------------array_element_basic_type---------------------------------
 189 // Mapping to the array element's basic type.
 190 BasicType Type::array_element_basic_type() const {
 191   BasicType bt = basic_type();
 192   if (bt == T_INT) {
 193     if (this == TypeInt::INT)   return T_INT;
 194     if (this == TypeInt::CHAR)  return T_CHAR;
 195     if (this == TypeInt::BYTE)  return T_BYTE;
 196     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 197     if (this == TypeInt::SHORT) return T_SHORT;
 198     return T_VOID;
 199   }
 200   return bt;
 201 }
 202 
 203 // For two instance arrays of same dimension, return the base element types.
 204 // Otherwise or if the arrays have different dimensions, return NULL.
 205 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 206                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 207 
 208   if (e1) *e1 = NULL;
 209   if (e2) *e2 = NULL;
 210   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 211   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 212 
 213   if (a1tap != NULL && a2tap != NULL) {
 214     // Handle multidimensional arrays
 215     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 216     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 217     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 218       a1tap = a1tp->is_aryptr();
 219       a2tap = a2tp->is_aryptr();
 220       a1tp = a1tap->elem()->make_ptr();
 221       a2tp = a2tap->elem()->make_ptr();
 222     }
 223     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 224       if (e1) *e1 = a1tp->is_instptr();
 225       if (e2) *e2 = a2tp->is_instptr();
 226     }
 227   }
 228 }
 229 
 230 //---------------------------get_typeflow_type---------------------------------
 231 // Import a type produced by ciTypeFlow.
 232 const Type* Type::get_typeflow_type(ciType* type) {
 233   switch (type->basic_type()) {
 234 
 235   case ciTypeFlow::StateVector::T_BOTTOM:
 236     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 237     return Type::BOTTOM;
 238 
 239   case ciTypeFlow::StateVector::T_TOP:
 240     assert(type == ciTypeFlow::StateVector::top_type(), "");
 241     return Type::TOP;
 242 
 243   case ciTypeFlow::StateVector::T_NULL:
 244     assert(type == ciTypeFlow::StateVector::null_type(), "");
 245     return TypePtr::NULL_PTR;
 246 
 247   case ciTypeFlow::StateVector::T_LONG2:
 248     // The ciTypeFlow pass pushes a long, then the half.
 249     // We do the same.
 250     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 251     return TypeInt::TOP;
 252 
 253   case ciTypeFlow::StateVector::T_DOUBLE2:
 254     // The ciTypeFlow pass pushes double, then the half.
 255     // Our convention is the same.
 256     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 257     return Type::TOP;
 258 
 259   case T_ADDRESS:
 260     assert(type->is_return_address(), "");
 261     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 262 
 263   case T_VALUETYPE:
 264     if (type->is__Value()) {
 265       return TypeValueTypePtr::NOTNULL;
 266     } else {
 267       return TypeValueType::make(type->as_value_klass());
 268     }
 269 
 270   default:
 271     // make sure we did not mix up the cases:
 272     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 273     assert(type != ciTypeFlow::StateVector::top_type(), "");
 274     assert(type != ciTypeFlow::StateVector::null_type(), "");
 275     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 276     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 277     assert(!type->is_return_address(), "");
 278 
 279     return Type::get_const_type(type);
 280   }
 281 }
 282 
 283 
 284 //-----------------------make_from_constant------------------------------------
 285 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 286                                      int stable_dimension, bool is_narrow_oop,
 287                                      bool is_autobox_cache) {
 288   switch (constant.basic_type()) {
 289     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 290     case T_CHAR:     return TypeInt::make(constant.as_char());
 291     case T_BYTE:     return TypeInt::make(constant.as_byte());
 292     case T_SHORT:    return TypeInt::make(constant.as_short());
 293     case T_INT:      return TypeInt::make(constant.as_int());
 294     case T_LONG:     return TypeLong::make(constant.as_long());
 295     case T_FLOAT:    return TypeF::make(constant.as_float());
 296     case T_DOUBLE:   return TypeD::make(constant.as_double());
 297     case T_ARRAY:
 298     case T_VALUETYPE:
 299     case T_OBJECT: {
 300         // cases:
 301         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 302         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 303         // An oop is not scavengable if it is in the perm gen.
 304         const Type* con_type = NULL;
 305         ciObject* oop_constant = constant.as_object();
 306         if (oop_constant->is_null_object()) {
 307           con_type = Type::get_zero_type(T_OBJECT);
 308         } else if (require_constant || oop_constant->should_be_constant()) {
 309           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 310           if (con_type != NULL) {
 311             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 312               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 313             }
 314             if (stable_dimension > 0) {
 315               assert(FoldStableValues, "sanity");
 316               assert(!con_type->is_zero_type(), "default value for stable field");
 317               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 318             }
 319           }
 320         }
 321         if (is_narrow_oop) {
 322           con_type = con_type->make_narrowoop();
 323         }
 324         return con_type;
 325       }
 326     case T_ILLEGAL:
 327       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 328       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 329       return NULL;
 330     default:
 331       // Fall through to failure
 332       return NULL;
 333   }
 334 }
 335 
 336 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 337   BasicType conbt = con.basic_type();
 338   switch (conbt) {
 339     case T_BOOLEAN: conbt = T_BYTE;   break;
 340     case T_ARRAY:   conbt = T_OBJECT; break;
 341     case T_VALUETYPE: conbt = T_OBJECT; break;
 342     default:                          break;
 343   }
 344   switch (loadbt) {
 345     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 346     case T_NARROWOOP: loadbt = T_OBJECT; break;
 347     case T_ARRAY:     loadbt = T_OBJECT; break;
 348     case T_VALUETYPE: loadbt = T_OBJECT; break;
 349     case T_ADDRESS:   loadbt = T_OBJECT; break;
 350     default:                             break;
 351   }
 352   if (conbt == loadbt) {
 353     if (is_unsigned && conbt == T_BYTE) {
 354       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 355       return ciConstant(T_INT, con.as_int() & 0xFF);
 356     } else {
 357       return con;
 358     }
 359   }
 360   if (conbt == T_SHORT && loadbt == T_CHAR) {
 361     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 362     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 363   }
 364   return ciConstant(); // T_ILLEGAL
 365 }
 366 
 367 // Try to constant-fold a stable array element.
 368 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 369                                                    BasicType loadbt, bool is_unsigned_load) {
 370   // Decode the results of GraphKit::array_element_address.
 371   ciConstant element_value = array->element_value_by_offset(off);
 372   if (element_value.basic_type() == T_ILLEGAL) {
 373     return NULL; // wrong offset
 374   }
 375   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 376 
 377   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 378          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 379 
 380   if (con.is_valid() &&          // not a mismatched access
 381       !con.is_null_or_zero()) {  // not a default value
 382     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 383     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 384   }
 385   return NULL;
 386 }
 387 
 388 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 389   ciField* field;
 390   ciType* type = holder->java_mirror_type();
 391   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 392     // Static field
 393     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 394   } else {
 395     // Instance field
 396     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 397   }
 398   if (field == NULL) {
 399     return NULL; // Wrong offset
 400   }
 401   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 402 }
 403 
 404 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 405                                            BasicType loadbt, bool is_unsigned_load) {
 406   if (!field->is_constant()) {
 407     return NULL; // Non-constant field
 408   }
 409   ciConstant field_value;
 410   if (field->is_static()) {
 411     // final static field
 412     field_value = field->constant_value();
 413   } else if (holder != NULL) {
 414     // final or stable non-static field
 415     // Treat final non-static fields of trusted classes (classes in
 416     // java.lang.invoke and sun.invoke packages and subpackages) as
 417     // compile time constants.
 418     field_value = field->constant_value_of(holder);
 419   }
 420   if (!field_value.is_valid()) {
 421     return NULL; // Not a constant
 422   }
 423 
 424   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 425 
 426   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 427          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 428 
 429   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 430   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 431   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 432 
 433   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 434                                             stable_dimension, is_narrow_oop,
 435                                             field->is_autobox_cache());
 436   if (con_type != NULL && field->is_call_site_target()) {
 437     ciCallSite* call_site = holder->as_call_site();
 438     if (!call_site->is_constant_call_site()) {
 439       ciMethodHandle* target = con.as_object()->as_method_handle();
 440       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 441     }
 442   }
 443   return con_type;
 444 }
 445 
 446 //------------------------------make-------------------------------------------
 447 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 448 // and look for an existing copy in the type dictionary.
 449 const Type *Type::make( enum TYPES t ) {
 450   return (new Type(t))->hashcons();
 451 }
 452 
 453 //------------------------------cmp--------------------------------------------
 454 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 455   if( t1->_base != t2->_base )
 456     return 1;                   // Missed badly
 457   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 458   return !t1->eq(t2);           // Return ZERO if equal
 459 }
 460 
 461 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 462   if (!include_speculative) {
 463     return remove_speculative();
 464   }
 465   return this;
 466 }
 467 
 468 //------------------------------hash-------------------------------------------
 469 int Type::uhash( const Type *const t ) {
 470   return t->hash();
 471 }
 472 
 473 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 474 
 475 //--------------------------Initialize_shared----------------------------------
 476 void Type::Initialize_shared(Compile* current) {
 477   // This method does not need to be locked because the first system
 478   // compilations (stub compilations) occur serially.  If they are
 479   // changed to proceed in parallel, then this section will need
 480   // locking.
 481 
 482   Arena* save = current->type_arena();
 483   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 484 
 485   current->set_type_arena(shared_type_arena);
 486   _shared_type_dict =
 487     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 488                                   shared_type_arena, 128 );
 489   current->set_type_dict(_shared_type_dict);
 490 
 491   // Make shared pre-built types.
 492   CONTROL = make(Control);      // Control only
 493   TOP     = make(Top);          // No values in set
 494   MEMORY  = make(Memory);       // Abstract store only
 495   ABIO    = make(Abio);         // State-of-machine only
 496   RETURN_ADDRESS=make(Return_Address);
 497   FLOAT   = make(FloatBot);     // All floats
 498   DOUBLE  = make(DoubleBot);    // All doubles
 499   BOTTOM  = make(Bottom);       // Everything
 500   HALF    = make(Half);         // Placeholder half of doublewide type
 501 
 502   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 503   TypeF::ONE  = TypeF::make(1.0); // Float 1
 504 
 505   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 506   TypeD::ONE  = TypeD::make(1.0); // Double 1
 507 
 508   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 509   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 510   TypeInt::ONE     = TypeInt::make( 1);  //  1
 511   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 512   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 513   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 514   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 515   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 516   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 517   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 518   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 519   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 520   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 521   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 522   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 523   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 524   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 525   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 526   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 527   // CmpL is overloaded both as the bytecode computation returning
 528   // a trinary (-1,0,+1) integer result AND as an efficient long
 529   // compare returning optimizer ideal-type flags.
 530   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 531   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 532   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 533   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 534   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 535 
 536   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 537   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 538   TypeLong::ONE     = TypeLong::make( 1);        //  1
 539   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 540   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 541   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 542   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 543   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 544 
 545   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 546   fboth[0] = Type::CONTROL;
 547   fboth[1] = Type::CONTROL;
 548   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 549 
 550   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 551   ffalse[0] = Type::CONTROL;
 552   ffalse[1] = Type::TOP;
 553   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 554 
 555   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 556   fneither[0] = Type::TOP;
 557   fneither[1] = Type::TOP;
 558   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 559 
 560   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 561   ftrue[0] = Type::TOP;
 562   ftrue[1] = Type::CONTROL;
 563   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 564 
 565   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 566   floop[0] = Type::CONTROL;
 567   floop[1] = TypeInt::INT;
 568   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 569 
 570   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 571   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 572   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 573 
 574   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 575   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 576 
 577   const Type **fmembar = TypeTuple::fields(0);
 578   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 579 
 580   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 581   fsc[0] = TypeInt::CC;
 582   fsc[1] = Type::MEMORY;
 583   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 584 
 585   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 586   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 587   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 588   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 589                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 590   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 591                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 592   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 593 
 594   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 595 
 596   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 597   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 598 
 599   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 600 
 601   TypeValueTypePtr::NOTNULL = (EnableValhalla || EnableMVT) ? TypeValueTypePtr::make(TypePtr::NotNull, current->env()->___Value_klass()->as_value_klass()) : NULL;
 602 
 603   mreg2type[Op_Node] = Type::BOTTOM;
 604   mreg2type[Op_Set ] = 0;
 605   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 606   mreg2type[Op_RegI] = TypeInt::INT;
 607   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 608   mreg2type[Op_RegF] = Type::FLOAT;
 609   mreg2type[Op_RegD] = Type::DOUBLE;
 610   mreg2type[Op_RegL] = TypeLong::LONG;
 611   mreg2type[Op_RegFlags] = TypeInt::CC;
 612 
 613   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 614 
 615   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 616 
 617 #ifdef _LP64
 618   if (UseCompressedOops) {
 619     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 620     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 621   } else
 622 #endif
 623   {
 624     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 625     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 626   }
 627   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 628   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 629   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 630   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 631   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 632   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 633   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 634 
 635   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 636   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 637   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 638   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 639   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 640   TypeAryPtr::_array_body_type[T_VALUETYPEPTR] = NULL;
 641   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 642   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 643   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 644   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 645   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 646   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 647   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 648   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 649 
 650   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 651   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 652   TypeKlassPtr::BOTTOM = (EnableValhalla | EnableMVT) ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 653   TypeKlassPtr::VALUE = TypeKlassPtr::make(TypePtr::NotNull, current->env()->___Value_klass(), Offset(0));
 654 
 655   const Type **fi2c = TypeTuple::fields(2);
 656   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 657   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 658   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 659 
 660   const Type **intpair = TypeTuple::fields(2);
 661   intpair[0] = TypeInt::INT;
 662   intpair[1] = TypeInt::INT;
 663   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 664 
 665   const Type **longpair = TypeTuple::fields(2);
 666   longpair[0] = TypeLong::LONG;
 667   longpair[1] = TypeLong::LONG;
 668   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 669 
 670   const Type **intccpair = TypeTuple::fields(2);
 671   intccpair[0] = TypeInt::INT;
 672   intccpair[1] = TypeInt::CC;
 673   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 674 
 675   const Type **longccpair = TypeTuple::fields(2);
 676   longccpair[0] = TypeLong::LONG;
 677   longccpair[1] = TypeInt::CC;
 678   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 679 
 680   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 681   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 682   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 683   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 684   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 685   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 686   _const_basic_type[T_INT]         = TypeInt::INT;
 687   _const_basic_type[T_LONG]        = TypeLong::LONG;
 688   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 689   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 690   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 691   _const_basic_type[T_VALUETYPEPTR]= TypeInstPtr::BOTTOM;
 692   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 693   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 694   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 695   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 696   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 697 
 698   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 699   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 700   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 701   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 702   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 703   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 704   _zero_type[T_INT]         = TypeInt::ZERO;
 705   _zero_type[T_LONG]        = TypeLong::ZERO;
 706   _zero_type[T_FLOAT]       = TypeF::ZERO;
 707   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 708   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 709   _zero_type[T_VALUETYPEPTR]= TypePtr::NULL_PTR;
 710   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 711   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 712   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 713   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 714 
 715   // get_zero_type() should not happen for T_CONFLICT
 716   _zero_type[T_CONFLICT]= NULL;
 717 
 718   // Vector predefined types, it needs initialized _const_basic_type[].
 719   if (Matcher::vector_size_supported(T_BYTE,4)) {
 720     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 721   }
 722   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 723     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 724   }
 725   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 726     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 727   }
 728   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 729     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 730   }
 731   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 732     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 733   }
 734   mreg2type[Op_VecS] = TypeVect::VECTS;
 735   mreg2type[Op_VecD] = TypeVect::VECTD;
 736   mreg2type[Op_VecX] = TypeVect::VECTX;
 737   mreg2type[Op_VecY] = TypeVect::VECTY;
 738   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 739 
 740   // Restore working type arena.
 741   current->set_type_arena(save);
 742   current->set_type_dict(NULL);
 743 }
 744 
 745 //------------------------------Initialize-------------------------------------
 746 void Type::Initialize(Compile* current) {
 747   assert(current->type_arena() != NULL, "must have created type arena");
 748 
 749   if (_shared_type_dict == NULL) {
 750     Initialize_shared(current);
 751   }
 752 
 753   Arena* type_arena = current->type_arena();
 754 
 755   // Create the hash-cons'ing dictionary with top-level storage allocation
 756   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 757   current->set_type_dict(tdic);
 758 
 759   // Transfer the shared types.
 760   DictI i(_shared_type_dict);
 761   for( ; i.test(); ++i ) {
 762     Type* t = (Type*)i._value;
 763     tdic->Insert(t,t);  // New Type, insert into Type table
 764   }
 765 }
 766 
 767 //------------------------------hashcons---------------------------------------
 768 // Do the hash-cons trick.  If the Type already exists in the type table,
 769 // delete the current Type and return the existing Type.  Otherwise stick the
 770 // current Type in the Type table.
 771 const Type *Type::hashcons(void) {
 772   debug_only(base());           // Check the assertion in Type::base().
 773   // Look up the Type in the Type dictionary
 774   Dict *tdic = type_dict();
 775   Type* old = (Type*)(tdic->Insert(this, this, false));
 776   if( old ) {                   // Pre-existing Type?
 777     if( old != this )           // Yes, this guy is not the pre-existing?
 778       delete this;              // Yes, Nuke this guy
 779     assert( old->_dual, "" );
 780     return old;                 // Return pre-existing
 781   }
 782 
 783   // Every type has a dual (to make my lattice symmetric).
 784   // Since we just discovered a new Type, compute its dual right now.
 785   assert( !_dual, "" );         // No dual yet
 786   _dual = xdual();              // Compute the dual
 787   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 788     _dual = this;
 789     return this;
 790   }
 791   assert( !_dual->_dual, "" );  // No reverse dual yet
 792   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 793   // New Type, insert into Type table
 794   tdic->Insert((void*)_dual,(void*)_dual);
 795   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 796 #ifdef ASSERT
 797   Type *dual_dual = (Type*)_dual->xdual();
 798   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 799   delete dual_dual;
 800 #endif
 801   return this;                  // Return new Type
 802 }
 803 
 804 //------------------------------eq---------------------------------------------
 805 // Structural equality check for Type representations
 806 bool Type::eq( const Type * ) const {
 807   return true;                  // Nothing else can go wrong
 808 }
 809 
 810 //------------------------------hash-------------------------------------------
 811 // Type-specific hashing function.
 812 int Type::hash(void) const {
 813   return _base;
 814 }
 815 
 816 //------------------------------is_finite--------------------------------------
 817 // Has a finite value
 818 bool Type::is_finite() const {
 819   return false;
 820 }
 821 
 822 //------------------------------is_nan-----------------------------------------
 823 // Is not a number (NaN)
 824 bool Type::is_nan()    const {
 825   return false;
 826 }
 827 
 828 //----------------------interface_vs_oop---------------------------------------
 829 #ifdef ASSERT
 830 bool Type::interface_vs_oop_helper(const Type *t) const {
 831   bool result = false;
 832 
 833   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 834   const TypePtr*    t_ptr =    t->make_ptr();
 835   if( this_ptr == NULL || t_ptr == NULL )
 836     return result;
 837 
 838   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 839   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 840   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 841     bool this_interface = this_inst->klass()->is_interface();
 842     bool    t_interface =    t_inst->klass()->is_interface();
 843     result = this_interface ^ t_interface;
 844   }
 845 
 846   return result;
 847 }
 848 
 849 bool Type::interface_vs_oop(const Type *t) const {
 850   if (interface_vs_oop_helper(t)) {
 851     return true;
 852   }
 853   // Now check the speculative parts as well
 854   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 855   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 856   if (this_spec != NULL && t_spec != NULL) {
 857     if (this_spec->interface_vs_oop_helper(t_spec)) {
 858       return true;
 859     }
 860     return false;
 861   }
 862   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 863     return true;
 864   }
 865   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 866     return true;
 867   }
 868   return false;
 869 }
 870 
 871 #endif
 872 
 873 //------------------------------meet-------------------------------------------
 874 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 875 // commutative and the lattice is symmetric.
 876 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 877   if (isa_narrowoop() && t->isa_narrowoop()) {
 878     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 879     return result->make_narrowoop();
 880   }
 881   if (isa_narrowklass() && t->isa_narrowklass()) {
 882     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 883     return result->make_narrowklass();
 884   }
 885 
 886   const Type *this_t = maybe_remove_speculative(include_speculative);
 887   t = t->maybe_remove_speculative(include_speculative);
 888 
 889   const Type *mt = this_t->xmeet(t);
 890   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 891   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 892 #ifdef ASSERT
 893   assert(mt == t->xmeet(this_t), "meet not commutative");
 894   const Type* dual_join = mt->_dual;
 895   const Type *t2t    = dual_join->xmeet(t->_dual);
 896   const Type *t2this = dual_join->xmeet(this_t->_dual);
 897 
 898   // Interface meet Oop is Not Symmetric:
 899   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 900   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 901 
 902   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 903     tty->print_cr("=== Meet Not Symmetric ===");
 904     tty->print("t   =                   ");              t->dump(); tty->cr();
 905     tty->print("this=                   ");         this_t->dump(); tty->cr();
 906     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 907 
 908     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 909     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 910     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 911 
 912     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 913     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 914 
 915     fatal("meet not symmetric" );
 916   }
 917 #endif
 918   return mt;
 919 }
 920 
 921 //------------------------------xmeet------------------------------------------
 922 // Compute the MEET of two types.  It returns a new Type object.
 923 const Type *Type::xmeet( const Type *t ) const {
 924   // Perform a fast test for common case; meeting the same types together.
 925   if( this == t ) return this;  // Meeting same type-rep?
 926 
 927   // Meeting TOP with anything?
 928   if( _base == Top ) return t;
 929 
 930   // Meeting BOTTOM with anything?
 931   if( _base == Bottom ) return BOTTOM;
 932 
 933   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 934   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 935   switch (t->base()) {  // Switch on original type
 936 
 937   // Cut in half the number of cases I must handle.  Only need cases for when
 938   // the given enum "t->type" is less than or equal to the local enum "type".
 939   case FloatCon:
 940   case DoubleCon:
 941   case Int:
 942   case Long:
 943     return t->xmeet(this);
 944 
 945   case OopPtr:
 946     return t->xmeet(this);
 947 
 948   case InstPtr:
 949   case ValueTypePtr:
 950     return t->xmeet(this);
 951 
 952   case MetadataPtr:
 953   case KlassPtr:
 954     return t->xmeet(this);
 955 
 956   case AryPtr:
 957     return t->xmeet(this);
 958 
 959   case NarrowOop:
 960     return t->xmeet(this);
 961 
 962   case NarrowKlass:
 963     return t->xmeet(this);
 964 
 965   case ValueType:
 966     return t->xmeet(this);
 967 
 968   case Bad:                     // Type check
 969   default:                      // Bogus type not in lattice
 970     typerr(t);
 971     return Type::BOTTOM;
 972 
 973   case Bottom:                  // Ye Olde Default
 974     return t;
 975 
 976   case FloatTop:
 977     if( _base == FloatTop ) return this;
 978   case FloatBot:                // Float
 979     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 980     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 981     typerr(t);
 982     return Type::BOTTOM;
 983 
 984   case DoubleTop:
 985     if( _base == DoubleTop ) return this;
 986   case DoubleBot:               // Double
 987     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 988     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 989     typerr(t);
 990     return Type::BOTTOM;
 991 
 992   // These next few cases must match exactly or it is a compile-time error.
 993   case Control:                 // Control of code
 994   case Abio:                    // State of world outside of program
 995   case Memory:
 996     if( _base == t->_base )  return this;
 997     typerr(t);
 998     return Type::BOTTOM;
 999 
1000   case Top:                     // Top of the lattice
1001     return this;
1002   }
1003 
1004   // The type is unchanged
1005   return this;
1006 }
1007 
1008 //-----------------------------filter------------------------------------------
1009 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1010   const Type* ft = join_helper(kills, include_speculative);
1011   if (ft->empty())
1012     return Type::TOP;           // Canonical empty value
1013   return ft;
1014 }
1015 
1016 //------------------------------xdual------------------------------------------
1017 // Compute dual right now.
1018 const Type::TYPES Type::dual_type[Type::lastype] = {
1019   Bad,          // Bad
1020   Control,      // Control
1021   Bottom,       // Top
1022   Bad,          // Int - handled in v-call
1023   Bad,          // Long - handled in v-call
1024   Half,         // Half
1025   Bad,          // NarrowOop - handled in v-call
1026   Bad,          // NarrowKlass - handled in v-call
1027 
1028   Bad,          // Tuple - handled in v-call
1029   Bad,          // Array - handled in v-call
1030   Bad,          // VectorS - handled in v-call
1031   Bad,          // VectorD - handled in v-call
1032   Bad,          // VectorX - handled in v-call
1033   Bad,          // VectorY - handled in v-call
1034   Bad,          // VectorZ - handled in v-call
1035   Bad,          // ValueType - handled in v-call
1036 
1037   Bad,          // AnyPtr - handled in v-call
1038   Bad,          // RawPtr - handled in v-call
1039   Bad,          // OopPtr - handled in v-call
1040   Bad,          // InstPtr - handled in v-call
1041   Bad,          // ValueTypePtr - handled in v-call
1042   Bad,          // AryPtr - handled in v-call
1043 
1044   Bad,          //  MetadataPtr - handled in v-call
1045   Bad,          // KlassPtr - handled in v-call
1046 
1047   Bad,          // Function - handled in v-call
1048   Abio,         // Abio
1049   Return_Address,// Return_Address
1050   Memory,       // Memory
1051   FloatBot,     // FloatTop
1052   FloatCon,     // FloatCon
1053   FloatTop,     // FloatBot
1054   DoubleBot,    // DoubleTop
1055   DoubleCon,    // DoubleCon
1056   DoubleTop,    // DoubleBot
1057   Top           // Bottom
1058 };
1059 
1060 const Type *Type::xdual() const {
1061   // Note: the base() accessor asserts the sanity of _base.
1062   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1063   return new Type(_type_info[_base].dual_type);
1064 }
1065 
1066 //------------------------------has_memory-------------------------------------
1067 bool Type::has_memory() const {
1068   Type::TYPES tx = base();
1069   if (tx == Memory) return true;
1070   if (tx == Tuple) {
1071     const TypeTuple *t = is_tuple();
1072     for (uint i=0; i < t->cnt(); i++) {
1073       tx = t->field_at(i)->base();
1074       if (tx == Memory)  return true;
1075     }
1076   }
1077   return false;
1078 }
1079 
1080 #ifndef PRODUCT
1081 //------------------------------dump2------------------------------------------
1082 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1083   st->print("%s", _type_info[_base].msg);
1084 }
1085 
1086 //------------------------------dump-------------------------------------------
1087 void Type::dump_on(outputStream *st) const {
1088   ResourceMark rm;
1089   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1090   dump2(d,1, st);
1091   if (is_ptr_to_narrowoop()) {
1092     st->print(" [narrow]");
1093   } else if (is_ptr_to_narrowklass()) {
1094     st->print(" [narrowklass]");
1095   }
1096 }
1097 
1098 //-----------------------------------------------------------------------------
1099 const char* Type::str(const Type* t) {
1100   stringStream ss;
1101   t->dump_on(&ss);
1102   return ss.as_string();
1103 }
1104 #endif
1105 
1106 //------------------------------singleton--------------------------------------
1107 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1108 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1109 bool Type::singleton(void) const {
1110   return _base == Top || _base == Half;
1111 }
1112 
1113 //------------------------------empty------------------------------------------
1114 // TRUE if Type is a type with no values, FALSE otherwise.
1115 bool Type::empty(void) const {
1116   switch (_base) {
1117   case DoubleTop:
1118   case FloatTop:
1119   case Top:
1120     return true;
1121 
1122   case Half:
1123   case Abio:
1124   case Return_Address:
1125   case Memory:
1126   case Bottom:
1127   case FloatBot:
1128   case DoubleBot:
1129     return false;  // never a singleton, therefore never empty
1130 
1131   default:
1132     ShouldNotReachHere();
1133     return false;
1134   }
1135 }
1136 
1137 //------------------------------dump_stats-------------------------------------
1138 // Dump collected statistics to stderr
1139 #ifndef PRODUCT
1140 void Type::dump_stats() {
1141   tty->print("Types made: %d\n", type_dict()->Size());
1142 }
1143 #endif
1144 
1145 //------------------------------typerr-----------------------------------------
1146 void Type::typerr( const Type *t ) const {
1147 #ifndef PRODUCT
1148   tty->print("\nError mixing types: ");
1149   dump();
1150   tty->print(" and ");
1151   t->dump();
1152   tty->print("\n");
1153 #endif
1154   ShouldNotReachHere();
1155 }
1156 
1157 
1158 //=============================================================================
1159 // Convenience common pre-built types.
1160 const TypeF *TypeF::ZERO;       // Floating point zero
1161 const TypeF *TypeF::ONE;        // Floating point one
1162 
1163 //------------------------------make-------------------------------------------
1164 // Create a float constant
1165 const TypeF *TypeF::make(float f) {
1166   return (TypeF*)(new TypeF(f))->hashcons();
1167 }
1168 
1169 //------------------------------meet-------------------------------------------
1170 // Compute the MEET of two types.  It returns a new Type object.
1171 const Type *TypeF::xmeet( const Type *t ) const {
1172   // Perform a fast test for common case; meeting the same types together.
1173   if( this == t ) return this;  // Meeting same type-rep?
1174 
1175   // Current "this->_base" is FloatCon
1176   switch (t->base()) {          // Switch on original type
1177   case AnyPtr:                  // Mixing with oops happens when javac
1178   case RawPtr:                  // reuses local variables
1179   case OopPtr:
1180   case InstPtr:
1181   case ValueTypePtr:
1182   case AryPtr:
1183   case MetadataPtr:
1184   case KlassPtr:
1185   case NarrowOop:
1186   case NarrowKlass:
1187   case Int:
1188   case Long:
1189   case DoubleTop:
1190   case DoubleCon:
1191   case DoubleBot:
1192   case Bottom:                  // Ye Olde Default
1193     return Type::BOTTOM;
1194 
1195   case FloatBot:
1196     return t;
1197 
1198   default:                      // All else is a mistake
1199     typerr(t);
1200 
1201   case FloatCon:                // Float-constant vs Float-constant?
1202     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1203                                 // must compare bitwise as positive zero, negative zero and NaN have
1204                                 // all the same representation in C++
1205       return FLOAT;             // Return generic float
1206                                 // Equal constants
1207   case Top:
1208   case FloatTop:
1209     break;                      // Return the float constant
1210   }
1211   return this;                  // Return the float constant
1212 }
1213 
1214 //------------------------------xdual------------------------------------------
1215 // Dual: symmetric
1216 const Type *TypeF::xdual() const {
1217   return this;
1218 }
1219 
1220 //------------------------------eq---------------------------------------------
1221 // Structural equality check for Type representations
1222 bool TypeF::eq(const Type *t) const {
1223   // Bitwise comparison to distinguish between +/-0. These values must be treated
1224   // as different to be consistent with C1 and the interpreter.
1225   return (jint_cast(_f) == jint_cast(t->getf()));
1226 }
1227 
1228 //------------------------------hash-------------------------------------------
1229 // Type-specific hashing function.
1230 int TypeF::hash(void) const {
1231   return *(int*)(&_f);
1232 }
1233 
1234 //------------------------------is_finite--------------------------------------
1235 // Has a finite value
1236 bool TypeF::is_finite() const {
1237   return g_isfinite(getf()) != 0;
1238 }
1239 
1240 //------------------------------is_nan-----------------------------------------
1241 // Is not a number (NaN)
1242 bool TypeF::is_nan()    const {
1243   return g_isnan(getf()) != 0;
1244 }
1245 
1246 //------------------------------dump2------------------------------------------
1247 // Dump float constant Type
1248 #ifndef PRODUCT
1249 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1250   Type::dump2(d,depth, st);
1251   st->print("%f", _f);
1252 }
1253 #endif
1254 
1255 //------------------------------singleton--------------------------------------
1256 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1257 // constants (Ldi nodes).  Singletons are integer, float or double constants
1258 // or a single symbol.
1259 bool TypeF::singleton(void) const {
1260   return true;                  // Always a singleton
1261 }
1262 
1263 bool TypeF::empty(void) const {
1264   return false;                 // always exactly a singleton
1265 }
1266 
1267 //=============================================================================
1268 // Convenience common pre-built types.
1269 const TypeD *TypeD::ZERO;       // Floating point zero
1270 const TypeD *TypeD::ONE;        // Floating point one
1271 
1272 //------------------------------make-------------------------------------------
1273 const TypeD *TypeD::make(double d) {
1274   return (TypeD*)(new TypeD(d))->hashcons();
1275 }
1276 
1277 //------------------------------meet-------------------------------------------
1278 // Compute the MEET of two types.  It returns a new Type object.
1279 const Type *TypeD::xmeet( const Type *t ) const {
1280   // Perform a fast test for common case; meeting the same types together.
1281   if( this == t ) return this;  // Meeting same type-rep?
1282 
1283   // Current "this->_base" is DoubleCon
1284   switch (t->base()) {          // Switch on original type
1285   case AnyPtr:                  // Mixing with oops happens when javac
1286   case RawPtr:                  // reuses local variables
1287   case OopPtr:
1288   case InstPtr:
1289   case ValueTypePtr:
1290   case AryPtr:
1291   case MetadataPtr:
1292   case KlassPtr:
1293   case NarrowOop:
1294   case NarrowKlass:
1295   case Int:
1296   case Long:
1297   case FloatTop:
1298   case FloatCon:
1299   case FloatBot:
1300   case Bottom:                  // Ye Olde Default
1301     return Type::BOTTOM;
1302 
1303   case DoubleBot:
1304     return t;
1305 
1306   default:                      // All else is a mistake
1307     typerr(t);
1308 
1309   case DoubleCon:               // Double-constant vs Double-constant?
1310     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1311       return DOUBLE;            // Return generic double
1312   case Top:
1313   case DoubleTop:
1314     break;
1315   }
1316   return this;                  // Return the double constant
1317 }
1318 
1319 //------------------------------xdual------------------------------------------
1320 // Dual: symmetric
1321 const Type *TypeD::xdual() const {
1322   return this;
1323 }
1324 
1325 //------------------------------eq---------------------------------------------
1326 // Structural equality check for Type representations
1327 bool TypeD::eq(const Type *t) const {
1328   // Bitwise comparison to distinguish between +/-0. These values must be treated
1329   // as different to be consistent with C1 and the interpreter.
1330   return (jlong_cast(_d) == jlong_cast(t->getd()));
1331 }
1332 
1333 //------------------------------hash-------------------------------------------
1334 // Type-specific hashing function.
1335 int TypeD::hash(void) const {
1336   return *(int*)(&_d);
1337 }
1338 
1339 //------------------------------is_finite--------------------------------------
1340 // Has a finite value
1341 bool TypeD::is_finite() const {
1342   return g_isfinite(getd()) != 0;
1343 }
1344 
1345 //------------------------------is_nan-----------------------------------------
1346 // Is not a number (NaN)
1347 bool TypeD::is_nan()    const {
1348   return g_isnan(getd()) != 0;
1349 }
1350 
1351 //------------------------------dump2------------------------------------------
1352 // Dump double constant Type
1353 #ifndef PRODUCT
1354 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1355   Type::dump2(d,depth,st);
1356   st->print("%f", _d);
1357 }
1358 #endif
1359 
1360 //------------------------------singleton--------------------------------------
1361 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1362 // constants (Ldi nodes).  Singletons are integer, float or double constants
1363 // or a single symbol.
1364 bool TypeD::singleton(void) const {
1365   return true;                  // Always a singleton
1366 }
1367 
1368 bool TypeD::empty(void) const {
1369   return false;                 // always exactly a singleton
1370 }
1371 
1372 //=============================================================================
1373 // Convience common pre-built types.
1374 const TypeInt *TypeInt::MINUS_1;// -1
1375 const TypeInt *TypeInt::ZERO;   // 0
1376 const TypeInt *TypeInt::ONE;    // 1
1377 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1378 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1379 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1380 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1381 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1382 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1383 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1384 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1385 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1386 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1387 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1388 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1389 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1390 const TypeInt *TypeInt::INT;    // 32-bit integers
1391 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1392 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1393 
1394 //------------------------------TypeInt----------------------------------------
1395 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1396 }
1397 
1398 //------------------------------make-------------------------------------------
1399 const TypeInt *TypeInt::make( jint lo ) {
1400   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1401 }
1402 
1403 static int normalize_int_widen( jint lo, jint hi, int w ) {
1404   // Certain normalizations keep us sane when comparing types.
1405   // The 'SMALLINT' covers constants and also CC and its relatives.
1406   if (lo <= hi) {
1407     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1408     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1409   } else {
1410     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1411     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1412   }
1413   return w;
1414 }
1415 
1416 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1417   w = normalize_int_widen(lo, hi, w);
1418   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1419 }
1420 
1421 //------------------------------meet-------------------------------------------
1422 // Compute the MEET of two types.  It returns a new Type representation object
1423 // with reference count equal to the number of Types pointing at it.
1424 // Caller should wrap a Types around it.
1425 const Type *TypeInt::xmeet( const Type *t ) const {
1426   // Perform a fast test for common case; meeting the same types together.
1427   if( this == t ) return this;  // Meeting same type?
1428 
1429   // Currently "this->_base" is a TypeInt
1430   switch (t->base()) {          // Switch on original type
1431   case AnyPtr:                  // Mixing with oops happens when javac
1432   case RawPtr:                  // reuses local variables
1433   case OopPtr:
1434   case InstPtr:
1435   case ValueTypePtr:
1436   case AryPtr:
1437   case MetadataPtr:
1438   case KlassPtr:
1439   case NarrowOop:
1440   case NarrowKlass:
1441   case Long:
1442   case FloatTop:
1443   case FloatCon:
1444   case FloatBot:
1445   case DoubleTop:
1446   case DoubleCon:
1447   case DoubleBot:
1448   case Bottom:                  // Ye Olde Default
1449     return Type::BOTTOM;
1450   default:                      // All else is a mistake
1451     typerr(t);
1452   case Top:                     // No change
1453     return this;
1454   case Int:                     // Int vs Int?
1455     break;
1456   }
1457 
1458   // Expand covered set
1459   const TypeInt *r = t->is_int();
1460   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1461 }
1462 
1463 //------------------------------xdual------------------------------------------
1464 // Dual: reverse hi & lo; flip widen
1465 const Type *TypeInt::xdual() const {
1466   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1467   return new TypeInt(_hi,_lo,w);
1468 }
1469 
1470 //------------------------------widen------------------------------------------
1471 // Only happens for optimistic top-down optimizations.
1472 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1473   // Coming from TOP or such; no widening
1474   if( old->base() != Int ) return this;
1475   const TypeInt *ot = old->is_int();
1476 
1477   // If new guy is equal to old guy, no widening
1478   if( _lo == ot->_lo && _hi == ot->_hi )
1479     return old;
1480 
1481   // If new guy contains old, then we widened
1482   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1483     // New contains old
1484     // If new guy is already wider than old, no widening
1485     if( _widen > ot->_widen ) return this;
1486     // If old guy was a constant, do not bother
1487     if (ot->_lo == ot->_hi)  return this;
1488     // Now widen new guy.
1489     // Check for widening too far
1490     if (_widen == WidenMax) {
1491       int max = max_jint;
1492       int min = min_jint;
1493       if (limit->isa_int()) {
1494         max = limit->is_int()->_hi;
1495         min = limit->is_int()->_lo;
1496       }
1497       if (min < _lo && _hi < max) {
1498         // If neither endpoint is extremal yet, push out the endpoint
1499         // which is closer to its respective limit.
1500         if (_lo >= 0 ||                 // easy common case
1501             (juint)(_lo - min) >= (juint)(max - _hi)) {
1502           // Try to widen to an unsigned range type of 31 bits:
1503           return make(_lo, max, WidenMax);
1504         } else {
1505           return make(min, _hi, WidenMax);
1506         }
1507       }
1508       return TypeInt::INT;
1509     }
1510     // Returned widened new guy
1511     return make(_lo,_hi,_widen+1);
1512   }
1513 
1514   // If old guy contains new, then we probably widened too far & dropped to
1515   // bottom.  Return the wider fellow.
1516   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1517     return old;
1518 
1519   //fatal("Integer value range is not subset");
1520   //return this;
1521   return TypeInt::INT;
1522 }
1523 
1524 //------------------------------narrow---------------------------------------
1525 // Only happens for pessimistic optimizations.
1526 const Type *TypeInt::narrow( const Type *old ) const {
1527   if (_lo >= _hi)  return this;   // already narrow enough
1528   if (old == NULL)  return this;
1529   const TypeInt* ot = old->isa_int();
1530   if (ot == NULL)  return this;
1531   jint olo = ot->_lo;
1532   jint ohi = ot->_hi;
1533 
1534   // If new guy is equal to old guy, no narrowing
1535   if (_lo == olo && _hi == ohi)  return old;
1536 
1537   // If old guy was maximum range, allow the narrowing
1538   if (olo == min_jint && ohi == max_jint)  return this;
1539 
1540   if (_lo < olo || _hi > ohi)
1541     return this;                // doesn't narrow; pretty wierd
1542 
1543   // The new type narrows the old type, so look for a "death march".
1544   // See comments on PhaseTransform::saturate.
1545   juint nrange = (juint)_hi - _lo;
1546   juint orange = (juint)ohi - olo;
1547   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1548     // Use the new type only if the range shrinks a lot.
1549     // We do not want the optimizer computing 2^31 point by point.
1550     return old;
1551   }
1552 
1553   return this;
1554 }
1555 
1556 //-----------------------------filter------------------------------------------
1557 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1558   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1559   if (ft == NULL || ft->empty())
1560     return Type::TOP;           // Canonical empty value
1561   if (ft->_widen < this->_widen) {
1562     // Do not allow the value of kill->_widen to affect the outcome.
1563     // The widen bits must be allowed to run freely through the graph.
1564     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1565   }
1566   return ft;
1567 }
1568 
1569 //------------------------------eq---------------------------------------------
1570 // Structural equality check for Type representations
1571 bool TypeInt::eq( const Type *t ) const {
1572   const TypeInt *r = t->is_int(); // Handy access
1573   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1574 }
1575 
1576 //------------------------------hash-------------------------------------------
1577 // Type-specific hashing function.
1578 int TypeInt::hash(void) const {
1579   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1580 }
1581 
1582 //------------------------------is_finite--------------------------------------
1583 // Has a finite value
1584 bool TypeInt::is_finite() const {
1585   return true;
1586 }
1587 
1588 //------------------------------dump2------------------------------------------
1589 // Dump TypeInt
1590 #ifndef PRODUCT
1591 static const char* intname(char* buf, jint n) {
1592   if (n == min_jint)
1593     return "min";
1594   else if (n < min_jint + 10000)
1595     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1596   else if (n == max_jint)
1597     return "max";
1598   else if (n > max_jint - 10000)
1599     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1600   else
1601     sprintf(buf, INT32_FORMAT, n);
1602   return buf;
1603 }
1604 
1605 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1606   char buf[40], buf2[40];
1607   if (_lo == min_jint && _hi == max_jint)
1608     st->print("int");
1609   else if (is_con())
1610     st->print("int:%s", intname(buf, get_con()));
1611   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1612     st->print("bool");
1613   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1614     st->print("byte");
1615   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1616     st->print("char");
1617   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1618     st->print("short");
1619   else if (_hi == max_jint)
1620     st->print("int:>=%s", intname(buf, _lo));
1621   else if (_lo == min_jint)
1622     st->print("int:<=%s", intname(buf, _hi));
1623   else
1624     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1625 
1626   if (_widen != 0 && this != TypeInt::INT)
1627     st->print(":%.*s", _widen, "wwww");
1628 }
1629 #endif
1630 
1631 //------------------------------singleton--------------------------------------
1632 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1633 // constants.
1634 bool TypeInt::singleton(void) const {
1635   return _lo >= _hi;
1636 }
1637 
1638 bool TypeInt::empty(void) const {
1639   return _lo > _hi;
1640 }
1641 
1642 //=============================================================================
1643 // Convenience common pre-built types.
1644 const TypeLong *TypeLong::MINUS_1;// -1
1645 const TypeLong *TypeLong::ZERO; // 0
1646 const TypeLong *TypeLong::ONE;  // 1
1647 const TypeLong *TypeLong::POS;  // >=0
1648 const TypeLong *TypeLong::LONG; // 64-bit integers
1649 const TypeLong *TypeLong::INT;  // 32-bit subrange
1650 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1651 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1652 
1653 //------------------------------TypeLong---------------------------------------
1654 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1655 }
1656 
1657 //------------------------------make-------------------------------------------
1658 const TypeLong *TypeLong::make( jlong lo ) {
1659   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1660 }
1661 
1662 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1663   // Certain normalizations keep us sane when comparing types.
1664   // The 'SMALLINT' covers constants.
1665   if (lo <= hi) {
1666     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1667     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1668   } else {
1669     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1670     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1671   }
1672   return w;
1673 }
1674 
1675 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1676   w = normalize_long_widen(lo, hi, w);
1677   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1678 }
1679 
1680 
1681 //------------------------------meet-------------------------------------------
1682 // Compute the MEET of two types.  It returns a new Type representation object
1683 // with reference count equal to the number of Types pointing at it.
1684 // Caller should wrap a Types around it.
1685 const Type *TypeLong::xmeet( const Type *t ) const {
1686   // Perform a fast test for common case; meeting the same types together.
1687   if( this == t ) return this;  // Meeting same type?
1688 
1689   // Currently "this->_base" is a TypeLong
1690   switch (t->base()) {          // Switch on original type
1691   case AnyPtr:                  // Mixing with oops happens when javac
1692   case RawPtr:                  // reuses local variables
1693   case OopPtr:
1694   case InstPtr:
1695   case ValueTypePtr:
1696   case AryPtr:
1697   case MetadataPtr:
1698   case KlassPtr:
1699   case NarrowOop:
1700   case NarrowKlass:
1701   case Int:
1702   case FloatTop:
1703   case FloatCon:
1704   case FloatBot:
1705   case DoubleTop:
1706   case DoubleCon:
1707   case DoubleBot:
1708   case Bottom:                  // Ye Olde Default
1709     return Type::BOTTOM;
1710   default:                      // All else is a mistake
1711     typerr(t);
1712   case Top:                     // No change
1713     return this;
1714   case Long:                    // Long vs Long?
1715     break;
1716   }
1717 
1718   // Expand covered set
1719   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1720   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1721 }
1722 
1723 //------------------------------xdual------------------------------------------
1724 // Dual: reverse hi & lo; flip widen
1725 const Type *TypeLong::xdual() const {
1726   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1727   return new TypeLong(_hi,_lo,w);
1728 }
1729 
1730 //------------------------------widen------------------------------------------
1731 // Only happens for optimistic top-down optimizations.
1732 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1733   // Coming from TOP or such; no widening
1734   if( old->base() != Long ) return this;
1735   const TypeLong *ot = old->is_long();
1736 
1737   // If new guy is equal to old guy, no widening
1738   if( _lo == ot->_lo && _hi == ot->_hi )
1739     return old;
1740 
1741   // If new guy contains old, then we widened
1742   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1743     // New contains old
1744     // If new guy is already wider than old, no widening
1745     if( _widen > ot->_widen ) return this;
1746     // If old guy was a constant, do not bother
1747     if (ot->_lo == ot->_hi)  return this;
1748     // Now widen new guy.
1749     // Check for widening too far
1750     if (_widen == WidenMax) {
1751       jlong max = max_jlong;
1752       jlong min = min_jlong;
1753       if (limit->isa_long()) {
1754         max = limit->is_long()->_hi;
1755         min = limit->is_long()->_lo;
1756       }
1757       if (min < _lo && _hi < max) {
1758         // If neither endpoint is extremal yet, push out the endpoint
1759         // which is closer to its respective limit.
1760         if (_lo >= 0 ||                 // easy common case
1761             ((julong)_lo - min) >= ((julong)max - _hi)) {
1762           // Try to widen to an unsigned range type of 32/63 bits:
1763           if (max >= max_juint && _hi < max_juint)
1764             return make(_lo, max_juint, WidenMax);
1765           else
1766             return make(_lo, max, WidenMax);
1767         } else {
1768           return make(min, _hi, WidenMax);
1769         }
1770       }
1771       return TypeLong::LONG;
1772     }
1773     // Returned widened new guy
1774     return make(_lo,_hi,_widen+1);
1775   }
1776 
1777   // If old guy contains new, then we probably widened too far & dropped to
1778   // bottom.  Return the wider fellow.
1779   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1780     return old;
1781 
1782   //  fatal("Long value range is not subset");
1783   // return this;
1784   return TypeLong::LONG;
1785 }
1786 
1787 //------------------------------narrow----------------------------------------
1788 // Only happens for pessimistic optimizations.
1789 const Type *TypeLong::narrow( const Type *old ) const {
1790   if (_lo >= _hi)  return this;   // already narrow enough
1791   if (old == NULL)  return this;
1792   const TypeLong* ot = old->isa_long();
1793   if (ot == NULL)  return this;
1794   jlong olo = ot->_lo;
1795   jlong ohi = ot->_hi;
1796 
1797   // If new guy is equal to old guy, no narrowing
1798   if (_lo == olo && _hi == ohi)  return old;
1799 
1800   // If old guy was maximum range, allow the narrowing
1801   if (olo == min_jlong && ohi == max_jlong)  return this;
1802 
1803   if (_lo < olo || _hi > ohi)
1804     return this;                // doesn't narrow; pretty wierd
1805 
1806   // The new type narrows the old type, so look for a "death march".
1807   // See comments on PhaseTransform::saturate.
1808   julong nrange = _hi - _lo;
1809   julong orange = ohi - olo;
1810   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1811     // Use the new type only if the range shrinks a lot.
1812     // We do not want the optimizer computing 2^31 point by point.
1813     return old;
1814   }
1815 
1816   return this;
1817 }
1818 
1819 //-----------------------------filter------------------------------------------
1820 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1821   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1822   if (ft == NULL || ft->empty())
1823     return Type::TOP;           // Canonical empty value
1824   if (ft->_widen < this->_widen) {
1825     // Do not allow the value of kill->_widen to affect the outcome.
1826     // The widen bits must be allowed to run freely through the graph.
1827     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1828   }
1829   return ft;
1830 }
1831 
1832 //------------------------------eq---------------------------------------------
1833 // Structural equality check for Type representations
1834 bool TypeLong::eq( const Type *t ) const {
1835   const TypeLong *r = t->is_long(); // Handy access
1836   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1837 }
1838 
1839 //------------------------------hash-------------------------------------------
1840 // Type-specific hashing function.
1841 int TypeLong::hash(void) const {
1842   return (int)(_lo+_hi+_widen+(int)Type::Long);
1843 }
1844 
1845 //------------------------------is_finite--------------------------------------
1846 // Has a finite value
1847 bool TypeLong::is_finite() const {
1848   return true;
1849 }
1850 
1851 //------------------------------dump2------------------------------------------
1852 // Dump TypeLong
1853 #ifndef PRODUCT
1854 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1855   if (n > x) {
1856     if (n >= x + 10000)  return NULL;
1857     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1858   } else if (n < x) {
1859     if (n <= x - 10000)  return NULL;
1860     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1861   } else {
1862     return xname;
1863   }
1864   return buf;
1865 }
1866 
1867 static const char* longname(char* buf, jlong n) {
1868   const char* str;
1869   if (n == min_jlong)
1870     return "min";
1871   else if (n < min_jlong + 10000)
1872     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1873   else if (n == max_jlong)
1874     return "max";
1875   else if (n > max_jlong - 10000)
1876     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1877   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1878     return str;
1879   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1880     return str;
1881   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1882     return str;
1883   else
1884     sprintf(buf, JLONG_FORMAT, n);
1885   return buf;
1886 }
1887 
1888 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1889   char buf[80], buf2[80];
1890   if (_lo == min_jlong && _hi == max_jlong)
1891     st->print("long");
1892   else if (is_con())
1893     st->print("long:%s", longname(buf, get_con()));
1894   else if (_hi == max_jlong)
1895     st->print("long:>=%s", longname(buf, _lo));
1896   else if (_lo == min_jlong)
1897     st->print("long:<=%s", longname(buf, _hi));
1898   else
1899     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1900 
1901   if (_widen != 0 && this != TypeLong::LONG)
1902     st->print(":%.*s", _widen, "wwww");
1903 }
1904 #endif
1905 
1906 //------------------------------singleton--------------------------------------
1907 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1908 // constants
1909 bool TypeLong::singleton(void) const {
1910   return _lo >= _hi;
1911 }
1912 
1913 bool TypeLong::empty(void) const {
1914   return _lo > _hi;
1915 }
1916 
1917 //=============================================================================
1918 // Convenience common pre-built types.
1919 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1920 const TypeTuple *TypeTuple::IFFALSE;
1921 const TypeTuple *TypeTuple::IFTRUE;
1922 const TypeTuple *TypeTuple::IFNEITHER;
1923 const TypeTuple *TypeTuple::LOOPBODY;
1924 const TypeTuple *TypeTuple::MEMBAR;
1925 const TypeTuple *TypeTuple::STORECONDITIONAL;
1926 const TypeTuple *TypeTuple::START_I2C;
1927 const TypeTuple *TypeTuple::INT_PAIR;
1928 const TypeTuple *TypeTuple::LONG_PAIR;
1929 const TypeTuple *TypeTuple::INT_CC_PAIR;
1930 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1931 
1932 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1933   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1934     ciField* field = vk->nonstatic_field_at(j);
1935     BasicType bt = field->type()->basic_type();
1936     const Type* ft = Type::get_const_type(field->type());
1937     if (bt == T_VALUETYPE) {
1938       ft = ft->isa_valuetypeptr()->cast_to_ptr_type(TypePtr::BotPTR);
1939     }
1940     field_array[pos++] = ft;
1941     if (bt == T_LONG || bt == T_DOUBLE) {
1942       field_array[pos++] = Type::HALF;
1943     }
1944   }
1945 }
1946 
1947 //------------------------------make-------------------------------------------
1948 // Make a TypeTuple from the range of a method signature
1949 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1950   ciType* return_type = sig->return_type();
1951   return make_range(return_type, ret_vt_fields);
1952 }
1953 
1954 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool ret_vt_fields) {
1955   uint arg_cnt = 0;
1956   if (ret_vt_fields) {
1957     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1958   }
1959   if (ret_vt_fields) {
1960     ciValueKlass* vk = (ciValueKlass*)return_type;
1961     arg_cnt = vk->value_arg_slots()+1;
1962   } else {
1963     arg_cnt = return_type->size();
1964   }
1965 
1966   const Type **field_array = fields(arg_cnt);
1967   switch (return_type->basic_type()) {
1968   case T_LONG:
1969     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1970     field_array[TypeFunc::Parms+1] = Type::HALF;
1971     break;
1972   case T_DOUBLE:
1973     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1974     field_array[TypeFunc::Parms+1] = Type::HALF;
1975     break;
1976   case T_OBJECT:
1977   case T_ARRAY:
1978   case T_BOOLEAN:
1979   case T_CHAR:
1980   case T_FLOAT:
1981   case T_BYTE:
1982   case T_SHORT:
1983   case T_INT:
1984     field_array[TypeFunc::Parms] = get_const_type(return_type);
1985     break;
1986   case T_VALUETYPE:
1987     if (ret_vt_fields) {
1988       ciValueKlass* vk = (ciValueKlass*)return_type;
1989       uint pos = TypeFunc::Parms;
1990       field_array[pos] = TypePtr::BOTTOM;
1991       pos++;
1992       collect_value_fields(vk, field_array, pos);
1993     } else {
1994       field_array[TypeFunc::Parms] = get_const_type(return_type);
1995     }
1996     break;
1997   case T_VOID:
1998     break;
1999   default:
2000     ShouldNotReachHere();
2001   }
2002   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2003 }
2004 
2005 // Make a TypeTuple from the domain of a method signature
2006 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2007   uint arg_cnt = sig->size();
2008 
2009   int vt_extra = 0;
2010   if (vt_fields_as_args) {
2011     for (int i = 0; i < sig->count(); i++) {
2012       ciType* type = sig->type_at(i);
2013       if (type->basic_type() == T_VALUETYPE && !type->is__Value()) {
2014         assert(type->is_valuetype(), "inconsistent type");
2015         ciValueKlass* vk = (ciValueKlass*)type;
2016         vt_extra += vk->value_arg_slots()-1;
2017       }
2018     }
2019     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2020   }
2021 
2022   uint pos = TypeFunc::Parms;
2023   const Type **field_array;
2024   if (recv != NULL) {
2025     arg_cnt++;
2026     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype() && !recv->is__Value();
2027     if (vt_fields_for_recv) {
2028       ciValueKlass* vk = (ciValueKlass*)recv;
2029       vt_extra += vk->value_arg_slots()-1;
2030     }
2031     field_array = fields(arg_cnt + vt_extra);
2032     // Use get_const_type here because it respects UseUniqueSubclasses:
2033     if (vt_fields_for_recv) {
2034       ciValueKlass* vk = (ciValueKlass*)recv;
2035       collect_value_fields(vk, field_array, pos);
2036     } else {
2037       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2038     }
2039   } else {
2040     field_array = fields(arg_cnt + vt_extra);
2041   }
2042 
2043   int i = 0;
2044   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2045     ciType* type = sig->type_at(i);
2046 
2047     switch (type->basic_type()) {
2048     case T_LONG:
2049       field_array[pos++] = TypeLong::LONG;
2050       field_array[pos++] = Type::HALF;
2051       break;
2052     case T_DOUBLE:
2053       field_array[pos++] = Type::DOUBLE;
2054       field_array[pos++] = Type::HALF;
2055       break;
2056     case T_OBJECT:
2057     case T_ARRAY:
2058     case T_FLOAT:
2059     case T_INT:
2060       field_array[pos++] = get_const_type(type);
2061       break;
2062     case T_BOOLEAN:
2063     case T_CHAR:
2064     case T_BYTE:
2065     case T_SHORT:
2066       field_array[pos++] = TypeInt::INT;
2067       break;
2068     case T_VALUETYPE: {
2069       assert(type->is_valuetype(), "inconsistent type");
2070       if (vt_fields_as_args && !type->is__Value()) {
2071         ciValueKlass* vk = (ciValueKlass*)type;
2072         collect_value_fields(vk, field_array, pos);
2073       } else {
2074         field_array[pos++] = get_const_type(type);
2075       }
2076       break;
2077     }
2078     default:
2079       ShouldNotReachHere();
2080     }
2081     i++;
2082   }
2083   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2084 
2085   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2086 }
2087 
2088 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2089   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2090 }
2091 
2092 //------------------------------fields-----------------------------------------
2093 // Subroutine call type with space allocated for argument types
2094 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2095 const Type **TypeTuple::fields( uint arg_cnt ) {
2096   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2097   flds[TypeFunc::Control  ] = Type::CONTROL;
2098   flds[TypeFunc::I_O      ] = Type::ABIO;
2099   flds[TypeFunc::Memory   ] = Type::MEMORY;
2100   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2101   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2102 
2103   return flds;
2104 }
2105 
2106 //------------------------------meet-------------------------------------------
2107 // Compute the MEET of two types.  It returns a new Type object.
2108 const Type *TypeTuple::xmeet( const Type *t ) const {
2109   // Perform a fast test for common case; meeting the same types together.
2110   if( this == t ) return this;  // Meeting same type-rep?
2111 
2112   // Current "this->_base" is Tuple
2113   switch (t->base()) {          // switch on original type
2114 
2115   case Bottom:                  // Ye Olde Default
2116     return t;
2117 
2118   default:                      // All else is a mistake
2119     typerr(t);
2120 
2121   case Tuple: {                 // Meeting 2 signatures?
2122     const TypeTuple *x = t->is_tuple();
2123     assert( _cnt == x->_cnt, "" );
2124     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2125     for( uint i=0; i<_cnt; i++ )
2126       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2127     return TypeTuple::make(_cnt,fields);
2128   }
2129   case Top:
2130     break;
2131   }
2132   return this;                  // Return the double constant
2133 }
2134 
2135 //------------------------------xdual------------------------------------------
2136 // Dual: compute field-by-field dual
2137 const Type *TypeTuple::xdual() const {
2138   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2139   for( uint i=0; i<_cnt; i++ )
2140     fields[i] = _fields[i]->dual();
2141   return new TypeTuple(_cnt,fields);
2142 }
2143 
2144 //------------------------------eq---------------------------------------------
2145 // Structural equality check for Type representations
2146 bool TypeTuple::eq( const Type *t ) const {
2147   const TypeTuple *s = (const TypeTuple *)t;
2148   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2149   for (uint i = 0; i < _cnt; i++)
2150     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2151       return false;             // Missed
2152   return true;
2153 }
2154 
2155 //------------------------------hash-------------------------------------------
2156 // Type-specific hashing function.
2157 int TypeTuple::hash(void) const {
2158   intptr_t sum = _cnt;
2159   for( uint i=0; i<_cnt; i++ )
2160     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2161   return sum;
2162 }
2163 
2164 //------------------------------dump2------------------------------------------
2165 // Dump signature Type
2166 #ifndef PRODUCT
2167 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2168   st->print("{");
2169   if( !depth || d[this] ) {     // Check for recursive print
2170     st->print("...}");
2171     return;
2172   }
2173   d.Insert((void*)this, (void*)this);   // Stop recursion
2174   if( _cnt ) {
2175     uint i;
2176     for( i=0; i<_cnt-1; i++ ) {
2177       st->print("%d:", i);
2178       _fields[i]->dump2(d, depth-1, st);
2179       st->print(", ");
2180     }
2181     st->print("%d:", i);
2182     _fields[i]->dump2(d, depth-1, st);
2183   }
2184   st->print("}");
2185 }
2186 #endif
2187 
2188 //------------------------------singleton--------------------------------------
2189 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2190 // constants (Ldi nodes).  Singletons are integer, float or double constants
2191 // or a single symbol.
2192 bool TypeTuple::singleton(void) const {
2193   return false;                 // Never a singleton
2194 }
2195 
2196 bool TypeTuple::empty(void) const {
2197   for( uint i=0; i<_cnt; i++ ) {
2198     if (_fields[i]->empty())  return true;
2199   }
2200   return false;
2201 }
2202 
2203 //=============================================================================
2204 // Convenience common pre-built types.
2205 
2206 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2207   // Certain normalizations keep us sane when comparing types.
2208   // We do not want arrayOop variables to differ only by the wideness
2209   // of their index types.  Pick minimum wideness, since that is the
2210   // forced wideness of small ranges anyway.
2211   if (size->_widen != Type::WidenMin)
2212     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2213   else
2214     return size;
2215 }
2216 
2217 //------------------------------make-------------------------------------------
2218 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2219   if (UseCompressedOops && elem->isa_oopptr()) {
2220     elem = elem->make_narrowoop();
2221   }
2222   size = normalize_array_size(size);
2223   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2224 }
2225 
2226 //------------------------------meet-------------------------------------------
2227 // Compute the MEET of two types.  It returns a new Type object.
2228 const Type *TypeAry::xmeet( const Type *t ) const {
2229   // Perform a fast test for common case; meeting the same types together.
2230   if( this == t ) return this;  // Meeting same type-rep?
2231 
2232   // Current "this->_base" is Ary
2233   switch (t->base()) {          // switch on original type
2234 
2235   case Bottom:                  // Ye Olde Default
2236     return t;
2237 
2238   default:                      // All else is a mistake
2239     typerr(t);
2240 
2241   case Array: {                 // Meeting 2 arrays?
2242     const TypeAry *a = t->is_ary();
2243     return TypeAry::make(_elem->meet_speculative(a->_elem),
2244                          _size->xmeet(a->_size)->is_int(),
2245                          _stable & a->_stable);
2246   }
2247   case Top:
2248     break;
2249   }
2250   return this;                  // Return the double constant
2251 }
2252 
2253 //------------------------------xdual------------------------------------------
2254 // Dual: compute field-by-field dual
2255 const Type *TypeAry::xdual() const {
2256   const TypeInt* size_dual = _size->dual()->is_int();
2257   size_dual = normalize_array_size(size_dual);
2258   return new TypeAry(_elem->dual(), size_dual, !_stable);
2259 }
2260 
2261 //------------------------------eq---------------------------------------------
2262 // Structural equality check for Type representations
2263 bool TypeAry::eq( const Type *t ) const {
2264   const TypeAry *a = (const TypeAry*)t;
2265   return _elem == a->_elem &&
2266     _stable == a->_stable &&
2267     _size == a->_size;
2268 }
2269 
2270 //------------------------------hash-------------------------------------------
2271 // Type-specific hashing function.
2272 int TypeAry::hash(void) const {
2273   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2274 }
2275 
2276 /**
2277  * Return same type without a speculative part in the element
2278  */
2279 const Type* TypeAry::remove_speculative() const {
2280   return make(_elem->remove_speculative(), _size, _stable);
2281 }
2282 
2283 /**
2284  * Return same type with cleaned up speculative part of element
2285  */
2286 const Type* TypeAry::cleanup_speculative() const {
2287   return make(_elem->cleanup_speculative(), _size, _stable);
2288 }
2289 
2290 /**
2291  * Return same type but with a different inline depth (used for speculation)
2292  *
2293  * @param depth  depth to meet with
2294  */
2295 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2296   if (!UseInlineDepthForSpeculativeTypes) {
2297     return this;
2298   }
2299   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2300 }
2301 
2302 //----------------------interface_vs_oop---------------------------------------
2303 #ifdef ASSERT
2304 bool TypeAry::interface_vs_oop(const Type *t) const {
2305   const TypeAry* t_ary = t->is_ary();
2306   if (t_ary) {
2307     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2308     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2309     if(this_ptr != NULL && t_ptr != NULL) {
2310       return this_ptr->interface_vs_oop(t_ptr);
2311     }
2312   }
2313   return false;
2314 }
2315 #endif
2316 
2317 //------------------------------dump2------------------------------------------
2318 #ifndef PRODUCT
2319 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2320   if (_stable)  st->print("stable:");
2321   _elem->dump2(d, depth, st);
2322   st->print("[");
2323   _size->dump2(d, depth, st);
2324   st->print("]");
2325 }
2326 #endif
2327 
2328 //------------------------------singleton--------------------------------------
2329 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2330 // constants (Ldi nodes).  Singletons are integer, float or double constants
2331 // or a single symbol.
2332 bool TypeAry::singleton(void) const {
2333   return false;                 // Never a singleton
2334 }
2335 
2336 bool TypeAry::empty(void) const {
2337   return _elem->empty() || _size->empty();
2338 }
2339 
2340 //--------------------------ary_must_be_exact----------------------------------
2341 bool TypeAry::ary_must_be_exact() const {
2342   if (!UseExactTypes)       return false;
2343   // This logic looks at the element type of an array, and returns true
2344   // if the element type is either a primitive or a final instance class.
2345   // In such cases, an array built on this ary must have no subclasses.
2346   if (_elem == BOTTOM)      return false;  // general array not exact
2347   if (_elem == TOP   )      return false;  // inverted general array not exact
2348   const TypeOopPtr*  toop = NULL;
2349   if (UseCompressedOops && _elem->isa_narrowoop()) {
2350     toop = _elem->make_ptr()->isa_oopptr();
2351   } else {
2352     toop = _elem->isa_oopptr();
2353   }
2354   if (!toop)                return true;   // a primitive type, like int
2355   ciKlass* tklass = toop->klass();
2356   if (tklass == NULL)       return false;  // unloaded class
2357   if (!tklass->is_loaded()) return false;  // unloaded class
2358   const TypeInstPtr* tinst;
2359   if (_elem->isa_narrowoop())
2360     tinst = _elem->make_ptr()->isa_instptr();
2361   else
2362     tinst = _elem->isa_instptr();
2363   if (tinst)
2364     return tklass->as_instance_klass()->is_final();
2365   const TypeAryPtr*  tap;
2366   if (_elem->isa_narrowoop())
2367     tap = _elem->make_ptr()->isa_aryptr();
2368   else
2369     tap = _elem->isa_aryptr();
2370   if (tap)
2371     return tap->ary()->ary_must_be_exact();
2372   return false;
2373 }
2374 
2375 //==============================TypeValueType=======================================
2376 
2377 //------------------------------make-------------------------------------------
2378 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2379   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2380 }
2381 
2382 //------------------------------meet-------------------------------------------
2383 // Compute the MEET of two types.  It returns a new Type object.
2384 const Type* TypeValueType::xmeet(const Type* t) const {
2385   // Perform a fast test for common case; meeting the same types together.
2386   if(this == t) return this;  // Meeting same type-rep?
2387 
2388   // Current "this->_base" is ValueType
2389   switch (t->base()) {          // switch on original type
2390 
2391   case Top:
2392     break;
2393 
2394   case Bottom:
2395     return t;
2396 
2397   default:                      // All else is a mistake
2398     typerr(t);
2399 
2400   }
2401   return this;
2402 }
2403 
2404 //------------------------------xdual------------------------------------------
2405 const Type* TypeValueType::xdual() const {
2406   // FIXME
2407   return new TypeValueType(_vk);
2408 }
2409 
2410 //------------------------------eq---------------------------------------------
2411 // Structural equality check for Type representations
2412 bool TypeValueType::eq(const Type* t) const {
2413   const TypeValueType* vt = t->is_valuetype();
2414   return (_vk == vt->value_klass());
2415 }
2416 
2417 //------------------------------hash-------------------------------------------
2418 // Type-specific hashing function.
2419 int TypeValueType::hash(void) const {
2420   return (intptr_t)_vk;
2421 }
2422 
2423 //------------------------------singleton--------------------------------------
2424 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2425 bool TypeValueType::singleton(void) const {
2426   // FIXME
2427   return false;
2428 }
2429 
2430 //------------------------------empty------------------------------------------
2431 // TRUE if Type is a type with no values, FALSE otherwise.
2432 bool TypeValueType::empty(void) const {
2433   // FIXME
2434   return false;
2435 }
2436 
2437 //------------------------------dump2------------------------------------------
2438 #ifndef PRODUCT
2439 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2440   int count = _vk->nof_declared_nonstatic_fields();
2441   st->print("valuetype[%d]:{", count);
2442   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2443   for (int i = 1; i < count; ++i) {
2444     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2445   }
2446   st->print("}");
2447 }
2448 #endif
2449 
2450 //==============================TypeVect=======================================
2451 // Convenience common pre-built types.
2452 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2453 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2454 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2455 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2456 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2457 
2458 //------------------------------make-------------------------------------------
2459 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2460   BasicType elem_bt = elem->array_element_basic_type();
2461   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2462   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2463   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2464   int size = length * type2aelembytes(elem_bt);
2465   switch (Matcher::vector_ideal_reg(size)) {
2466   case Op_VecS:
2467     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2468   case Op_RegL:
2469   case Op_VecD:
2470   case Op_RegD:
2471     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2472   case Op_VecX:
2473     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2474   case Op_VecY:
2475     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2476   case Op_VecZ:
2477     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2478   }
2479  ShouldNotReachHere();
2480   return NULL;
2481 }
2482 
2483 //------------------------------meet-------------------------------------------
2484 // Compute the MEET of two types.  It returns a new Type object.
2485 const Type *TypeVect::xmeet( const Type *t ) const {
2486   // Perform a fast test for common case; meeting the same types together.
2487   if( this == t ) return this;  // Meeting same type-rep?
2488 
2489   // Current "this->_base" is Vector
2490   switch (t->base()) {          // switch on original type
2491 
2492   case Bottom:                  // Ye Olde Default
2493     return t;
2494 
2495   default:                      // All else is a mistake
2496     typerr(t);
2497 
2498   case VectorS:
2499   case VectorD:
2500   case VectorX:
2501   case VectorY:
2502   case VectorZ: {                // Meeting 2 vectors?
2503     const TypeVect* v = t->is_vect();
2504     assert(  base() == v->base(), "");
2505     assert(length() == v->length(), "");
2506     assert(element_basic_type() == v->element_basic_type(), "");
2507     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2508   }
2509   case Top:
2510     break;
2511   }
2512   return this;
2513 }
2514 
2515 //------------------------------xdual------------------------------------------
2516 // Dual: compute field-by-field dual
2517 const Type *TypeVect::xdual() const {
2518   return new TypeVect(base(), _elem->dual(), _length);
2519 }
2520 
2521 //------------------------------eq---------------------------------------------
2522 // Structural equality check for Type representations
2523 bool TypeVect::eq(const Type *t) const {
2524   const TypeVect *v = t->is_vect();
2525   return (_elem == v->_elem) && (_length == v->_length);
2526 }
2527 
2528 //------------------------------hash-------------------------------------------
2529 // Type-specific hashing function.
2530 int TypeVect::hash(void) const {
2531   return (intptr_t)_elem + (intptr_t)_length;
2532 }
2533 
2534 //------------------------------singleton--------------------------------------
2535 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2536 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2537 // constant value (when vector is created with Replicate code).
2538 bool TypeVect::singleton(void) const {
2539 // There is no Con node for vectors yet.
2540 //  return _elem->singleton();
2541   return false;
2542 }
2543 
2544 bool TypeVect::empty(void) const {
2545   return _elem->empty();
2546 }
2547 
2548 //------------------------------dump2------------------------------------------
2549 #ifndef PRODUCT
2550 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2551   switch (base()) {
2552   case VectorS:
2553     st->print("vectors["); break;
2554   case VectorD:
2555     st->print("vectord["); break;
2556   case VectorX:
2557     st->print("vectorx["); break;
2558   case VectorY:
2559     st->print("vectory["); break;
2560   case VectorZ:
2561     st->print("vectorz["); break;
2562   default:
2563     ShouldNotReachHere();
2564   }
2565   st->print("%d]:{", _length);
2566   _elem->dump2(d, depth, st);
2567   st->print("}");
2568 }
2569 #endif
2570 
2571 
2572 //=============================================================================
2573 // Convenience common pre-built types.
2574 const TypePtr *TypePtr::NULL_PTR;
2575 const TypePtr *TypePtr::NOTNULL;
2576 const TypePtr *TypePtr::BOTTOM;
2577 
2578 //------------------------------meet-------------------------------------------
2579 // Meet over the PTR enum
2580 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2581   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2582   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2583   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2584   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2585   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2586   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2587   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2588 };
2589 
2590 //------------------------------make-------------------------------------------
2591 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2592   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2593 }
2594 
2595 //------------------------------cast_to_ptr_type-------------------------------
2596 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2597   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2598   if( ptr == _ptr ) return this;
2599   return make(_base, ptr, _offset, _speculative, _inline_depth);
2600 }
2601 
2602 //------------------------------get_con----------------------------------------
2603 intptr_t TypePtr::get_con() const {
2604   assert( _ptr == Null, "" );
2605   return offset();
2606 }
2607 
2608 //------------------------------meet-------------------------------------------
2609 // Compute the MEET of two types.  It returns a new Type object.
2610 const Type *TypePtr::xmeet(const Type *t) const {
2611   const Type* res = xmeet_helper(t);
2612   if (res->isa_ptr() == NULL) {
2613     return res;
2614   }
2615 
2616   const TypePtr* res_ptr = res->is_ptr();
2617   if (res_ptr->speculative() != NULL) {
2618     // type->speculative() == NULL means that speculation is no better
2619     // than type, i.e. type->speculative() == type. So there are 2
2620     // ways to represent the fact that we have no useful speculative
2621     // data and we should use a single one to be able to test for
2622     // equality between types. Check whether type->speculative() ==
2623     // type and set speculative to NULL if it is the case.
2624     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2625       return res_ptr->remove_speculative();
2626     }
2627   }
2628 
2629   return res;
2630 }
2631 
2632 const Type *TypePtr::xmeet_helper(const Type *t) const {
2633   // Perform a fast test for common case; meeting the same types together.
2634   if( this == t ) return this;  // Meeting same type-rep?
2635 
2636   // Current "this->_base" is AnyPtr
2637   switch (t->base()) {          // switch on original type
2638   case Int:                     // Mixing ints & oops happens when javac
2639   case Long:                    // reuses local variables
2640   case FloatTop:
2641   case FloatCon:
2642   case FloatBot:
2643   case DoubleTop:
2644   case DoubleCon:
2645   case DoubleBot:
2646   case NarrowOop:
2647   case NarrowKlass:
2648   case Bottom:                  // Ye Olde Default
2649     return Type::BOTTOM;
2650   case Top:
2651     return this;
2652 
2653   case AnyPtr: {                // Meeting to AnyPtrs
2654     const TypePtr *tp = t->is_ptr();
2655     const TypePtr* speculative = xmeet_speculative(tp);
2656     int depth = meet_inline_depth(tp->inline_depth());
2657     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2658   }
2659   case RawPtr:                  // For these, flip the call around to cut down
2660   case OopPtr:
2661   case InstPtr:                 // on the cases I have to handle.
2662   case ValueTypePtr:
2663   case AryPtr:
2664   case MetadataPtr:
2665   case KlassPtr:
2666     return t->xmeet(this);      // Call in reverse direction
2667   default:                      // All else is a mistake
2668     typerr(t);
2669 
2670   }
2671   return this;
2672 }
2673 
2674 //------------------------------meet_offset------------------------------------
2675 Type::Offset TypePtr::meet_offset(int offset) const {
2676   return _offset.meet(Offset(offset));
2677 }
2678 
2679 //------------------------------dual_offset------------------------------------
2680 Type::Offset TypePtr::dual_offset() const {
2681   return _offset.dual();
2682 }
2683 
2684 //------------------------------xdual------------------------------------------
2685 // Dual: compute field-by-field dual
2686 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2687   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2688 };
2689 const Type *TypePtr::xdual() const {
2690   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2691 }
2692 
2693 //------------------------------xadd_offset------------------------------------
2694 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2695   return _offset.add(offset);
2696 }
2697 
2698 //------------------------------add_offset-------------------------------------
2699 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2700   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2701 }
2702 
2703 //------------------------------eq---------------------------------------------
2704 // Structural equality check for Type representations
2705 bool TypePtr::eq( const Type *t ) const {
2706   const TypePtr *a = (const TypePtr*)t;
2707   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2708 }
2709 
2710 //------------------------------hash-------------------------------------------
2711 // Type-specific hashing function.
2712 int TypePtr::hash(void) const {
2713   return java_add(java_add(_ptr, offset()), java_add( hash_speculative(), _inline_depth));
2714 ;
2715 }
2716 
2717 /**
2718  * Return same type without a speculative part
2719  */
2720 const Type* TypePtr::remove_speculative() const {
2721   if (_speculative == NULL) {
2722     return this;
2723   }
2724   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2725   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2726 }
2727 
2728 /**
2729  * Return same type but drop speculative part if we know we won't use
2730  * it
2731  */
2732 const Type* TypePtr::cleanup_speculative() const {
2733   if (speculative() == NULL) {
2734     return this;
2735   }
2736   const Type* no_spec = remove_speculative();
2737   // If this is NULL_PTR then we don't need the speculative type
2738   // (with_inline_depth in case the current type inline depth is
2739   // InlineDepthTop)
2740   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2741     return no_spec;
2742   }
2743   if (above_centerline(speculative()->ptr())) {
2744     return no_spec;
2745   }
2746   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2747   // If the speculative may be null and is an inexact klass then it
2748   // doesn't help
2749   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2750       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2751     return no_spec;
2752   }
2753   return this;
2754 }
2755 
2756 /**
2757  * dual of the speculative part of the type
2758  */
2759 const TypePtr* TypePtr::dual_speculative() const {
2760   if (_speculative == NULL) {
2761     return NULL;
2762   }
2763   return _speculative->dual()->is_ptr();
2764 }
2765 
2766 /**
2767  * meet of the speculative parts of 2 types
2768  *
2769  * @param other  type to meet with
2770  */
2771 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2772   bool this_has_spec = (_speculative != NULL);
2773   bool other_has_spec = (other->speculative() != NULL);
2774 
2775   if (!this_has_spec && !other_has_spec) {
2776     return NULL;
2777   }
2778 
2779   // If we are at a point where control flow meets and one branch has
2780   // a speculative type and the other has not, we meet the speculative
2781   // type of one branch with the actual type of the other. If the
2782   // actual type is exact and the speculative is as well, then the
2783   // result is a speculative type which is exact and we can continue
2784   // speculation further.
2785   const TypePtr* this_spec = _speculative;
2786   const TypePtr* other_spec = other->speculative();
2787 
2788   if (!this_has_spec) {
2789     this_spec = this;
2790   }
2791 
2792   if (!other_has_spec) {
2793     other_spec = other;
2794   }
2795 
2796   return this_spec->meet(other_spec)->is_ptr();
2797 }
2798 
2799 /**
2800  * dual of the inline depth for this type (used for speculation)
2801  */
2802 int TypePtr::dual_inline_depth() const {
2803   return -inline_depth();
2804 }
2805 
2806 /**
2807  * meet of 2 inline depths (used for speculation)
2808  *
2809  * @param depth  depth to meet with
2810  */
2811 int TypePtr::meet_inline_depth(int depth) const {
2812   return MAX2(inline_depth(), depth);
2813 }
2814 
2815 /**
2816  * Are the speculative parts of 2 types equal?
2817  *
2818  * @param other  type to compare this one to
2819  */
2820 bool TypePtr::eq_speculative(const TypePtr* other) const {
2821   if (_speculative == NULL || other->speculative() == NULL) {
2822     return _speculative == other->speculative();
2823   }
2824 
2825   if (_speculative->base() != other->speculative()->base()) {
2826     return false;
2827   }
2828 
2829   return _speculative->eq(other->speculative());
2830 }
2831 
2832 /**
2833  * Hash of the speculative part of the type
2834  */
2835 int TypePtr::hash_speculative() const {
2836   if (_speculative == NULL) {
2837     return 0;
2838   }
2839 
2840   return _speculative->hash();
2841 }
2842 
2843 /**
2844  * add offset to the speculative part of the type
2845  *
2846  * @param offset  offset to add
2847  */
2848 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2849   if (_speculative == NULL) {
2850     return NULL;
2851   }
2852   return _speculative->add_offset(offset)->is_ptr();
2853 }
2854 
2855 /**
2856  * return exact klass from the speculative type if there's one
2857  */
2858 ciKlass* TypePtr::speculative_type() const {
2859   if (_speculative != NULL && _speculative->isa_oopptr()) {
2860     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2861     if (speculative->klass_is_exact()) {
2862       return speculative->klass();
2863     }
2864   }
2865   return NULL;
2866 }
2867 
2868 /**
2869  * return true if speculative type may be null
2870  */
2871 bool TypePtr::speculative_maybe_null() const {
2872   if (_speculative != NULL) {
2873     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2874     return speculative->maybe_null();
2875   }
2876   return true;
2877 }
2878 
2879 bool TypePtr::speculative_always_null() const {
2880   if (_speculative != NULL) {
2881     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2882     return speculative == TypePtr::NULL_PTR;
2883   }
2884   return false;
2885 }
2886 
2887 /**
2888  * Same as TypePtr::speculative_type() but return the klass only if
2889  * the speculative tells us is not null
2890  */
2891 ciKlass* TypePtr::speculative_type_not_null() const {
2892   if (speculative_maybe_null()) {
2893     return NULL;
2894   }
2895   return speculative_type();
2896 }
2897 
2898 /**
2899  * Check whether new profiling would improve speculative type
2900  *
2901  * @param   exact_kls    class from profiling
2902  * @param   inline_depth inlining depth of profile point
2903  *
2904  * @return  true if type profile is valuable
2905  */
2906 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2907   // no profiling?
2908   if (exact_kls == NULL) {
2909     return false;
2910   }
2911   if (speculative() == TypePtr::NULL_PTR) {
2912     return false;
2913   }
2914   // no speculative type or non exact speculative type?
2915   if (speculative_type() == NULL) {
2916     return true;
2917   }
2918   // If the node already has an exact speculative type keep it,
2919   // unless it was provided by profiling that is at a deeper
2920   // inlining level. Profiling at a higher inlining depth is
2921   // expected to be less accurate.
2922   if (_speculative->inline_depth() == InlineDepthBottom) {
2923     return false;
2924   }
2925   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2926   return inline_depth < _speculative->inline_depth();
2927 }
2928 
2929 /**
2930  * Check whether new profiling would improve ptr (= tells us it is non
2931  * null)
2932  *
2933  * @param   ptr_kind always null or not null?
2934  *
2935  * @return  true if ptr profile is valuable
2936  */
2937 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2938   // profiling doesn't tell us anything useful
2939   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2940     return false;
2941   }
2942   // We already know this is not null
2943   if (!this->maybe_null()) {
2944     return false;
2945   }
2946   // We already know the speculative type cannot be null
2947   if (!speculative_maybe_null()) {
2948     return false;
2949   }
2950   // We already know this is always null
2951   if (this == TypePtr::NULL_PTR) {
2952     return false;
2953   }
2954   // We already know the speculative type is always null
2955   if (speculative_always_null()) {
2956     return false;
2957   }
2958   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2959     return false;
2960   }
2961   return true;
2962 }
2963 
2964 //------------------------------dump2------------------------------------------
2965 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2966   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2967 };
2968 
2969 #ifndef PRODUCT
2970 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2971   if( _ptr == Null ) st->print("NULL");
2972   else st->print("%s *", ptr_msg[_ptr]);
2973   _offset.dump2(st);
2974   dump_inline_depth(st);
2975   dump_speculative(st);
2976 }
2977 
2978 /**
2979  *dump the speculative part of the type
2980  */
2981 void TypePtr::dump_speculative(outputStream *st) const {
2982   if (_speculative != NULL) {
2983     st->print(" (speculative=");
2984     _speculative->dump_on(st);
2985     st->print(")");
2986   }
2987 }
2988 
2989 /**
2990  *dump the inline depth of the type
2991  */
2992 void TypePtr::dump_inline_depth(outputStream *st) const {
2993   if (_inline_depth != InlineDepthBottom) {
2994     if (_inline_depth == InlineDepthTop) {
2995       st->print(" (inline_depth=InlineDepthTop)");
2996     } else {
2997       st->print(" (inline_depth=%d)", _inline_depth);
2998     }
2999   }
3000 }
3001 #endif
3002 
3003 //------------------------------singleton--------------------------------------
3004 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3005 // constants
3006 bool TypePtr::singleton(void) const {
3007   // TopPTR, Null, AnyNull, Constant are all singletons
3008   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3009 }
3010 
3011 bool TypePtr::empty(void) const {
3012   return (_offset == Offset::top) || above_centerline(_ptr);
3013 }
3014 
3015 //=============================================================================
3016 // Convenience common pre-built types.
3017 const TypeRawPtr *TypeRawPtr::BOTTOM;
3018 const TypeRawPtr *TypeRawPtr::NOTNULL;
3019 
3020 //------------------------------make-------------------------------------------
3021 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3022   assert( ptr != Constant, "what is the constant?" );
3023   assert( ptr != Null, "Use TypePtr for NULL" );
3024   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3025 }
3026 
3027 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3028   assert( bits, "Use TypePtr for NULL" );
3029   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3030 }
3031 
3032 //------------------------------cast_to_ptr_type-------------------------------
3033 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3034   assert( ptr != Constant, "what is the constant?" );
3035   assert( ptr != Null, "Use TypePtr for NULL" );
3036   assert( _bits==0, "Why cast a constant address?");
3037   if( ptr == _ptr ) return this;
3038   return make(ptr);
3039 }
3040 
3041 //------------------------------get_con----------------------------------------
3042 intptr_t TypeRawPtr::get_con() const {
3043   assert( _ptr == Null || _ptr == Constant, "" );
3044   return (intptr_t)_bits;
3045 }
3046 
3047 //------------------------------meet-------------------------------------------
3048 // Compute the MEET of two types.  It returns a new Type object.
3049 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3050   // Perform a fast test for common case; meeting the same types together.
3051   if( this == t ) return this;  // Meeting same type-rep?
3052 
3053   // Current "this->_base" is RawPtr
3054   switch( t->base() ) {         // switch on original type
3055   case Bottom:                  // Ye Olde Default
3056     return t;
3057   case Top:
3058     return this;
3059   case AnyPtr:                  // Meeting to AnyPtrs
3060     break;
3061   case RawPtr: {                // might be top, bot, any/not or constant
3062     enum PTR tptr = t->is_ptr()->ptr();
3063     enum PTR ptr = meet_ptr( tptr );
3064     if( ptr == Constant ) {     // Cannot be equal constants, so...
3065       if( tptr == Constant && _ptr != Constant)  return t;
3066       if( _ptr == Constant && tptr != Constant)  return this;
3067       ptr = NotNull;            // Fall down in lattice
3068     }
3069     return make( ptr );
3070   }
3071 
3072   case OopPtr:
3073   case InstPtr:
3074   case ValueTypePtr:
3075   case AryPtr:
3076   case MetadataPtr:
3077   case KlassPtr:
3078     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3079   default:                      // All else is a mistake
3080     typerr(t);
3081   }
3082 
3083   // Found an AnyPtr type vs self-RawPtr type
3084   const TypePtr *tp = t->is_ptr();
3085   switch (tp->ptr()) {
3086   case TypePtr::TopPTR:  return this;
3087   case TypePtr::BotPTR:  return t;
3088   case TypePtr::Null:
3089     if( _ptr == TypePtr::TopPTR ) return t;
3090     return TypeRawPtr::BOTTOM;
3091   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3092   case TypePtr::AnyNull:
3093     if( _ptr == TypePtr::Constant) return this;
3094     return make( meet_ptr(TypePtr::AnyNull) );
3095   default: ShouldNotReachHere();
3096   }
3097   return this;
3098 }
3099 
3100 //------------------------------xdual------------------------------------------
3101 // Dual: compute field-by-field dual
3102 const Type *TypeRawPtr::xdual() const {
3103   return new TypeRawPtr( dual_ptr(), _bits );
3104 }
3105 
3106 //------------------------------add_offset-------------------------------------
3107 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3108   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3109   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3110   if( offset == 0 ) return this; // No change
3111   switch (_ptr) {
3112   case TypePtr::TopPTR:
3113   case TypePtr::BotPTR:
3114   case TypePtr::NotNull:
3115     return this;
3116   case TypePtr::Null:
3117   case TypePtr::Constant: {
3118     address bits = _bits+offset;
3119     if ( bits == 0 ) return TypePtr::NULL_PTR;
3120     return make( bits );
3121   }
3122   default:  ShouldNotReachHere();
3123   }
3124   return NULL;                  // Lint noise
3125 }
3126 
3127 //------------------------------eq---------------------------------------------
3128 // Structural equality check for Type representations
3129 bool TypeRawPtr::eq( const Type *t ) const {
3130   const TypeRawPtr *a = (const TypeRawPtr*)t;
3131   return _bits == a->_bits && TypePtr::eq(t);
3132 }
3133 
3134 //------------------------------hash-------------------------------------------
3135 // Type-specific hashing function.
3136 int TypeRawPtr::hash(void) const {
3137   return (intptr_t)_bits + TypePtr::hash();
3138 }
3139 
3140 //------------------------------dump2------------------------------------------
3141 #ifndef PRODUCT
3142 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3143   if( _ptr == Constant )
3144     st->print(INTPTR_FORMAT, p2i(_bits));
3145   else
3146     st->print("rawptr:%s", ptr_msg[_ptr]);
3147 }
3148 #endif
3149 
3150 //=============================================================================
3151 // Convenience common pre-built type.
3152 const TypeOopPtr *TypeOopPtr::BOTTOM;
3153 
3154 //------------------------------TypeOopPtr-------------------------------------
3155 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3156                        int instance_id, const TypePtr* speculative, int inline_depth)
3157   : TypePtr(t, ptr, offset, speculative, inline_depth),
3158     _const_oop(o), _klass(k),
3159     _klass_is_exact(xk),
3160     _is_ptr_to_narrowoop(false),
3161     _is_ptr_to_narrowklass(false),
3162     _is_ptr_to_boxed_value(false),
3163     _instance_id(instance_id) {
3164   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3165       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3166     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3167   }
3168 #ifdef _LP64
3169   if (this->offset() != 0) {
3170     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3171       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3172     } else if (klass() == NULL) {
3173       // Array with unknown body type
3174       assert(this->isa_aryptr(), "only arrays without klass");
3175       _is_ptr_to_narrowoop = UseCompressedOops;
3176     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3177       if (klass()->is_obj_array_klass()) {
3178         _is_ptr_to_narrowoop = true;
3179       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3180         // Check if the field of the value type array element contains oops
3181         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3182         int foffset = field_offset.get() + vk->first_field_offset();
3183         ciField* field = vk->get_field_by_offset(foffset, false);
3184         assert(field != NULL, "missing field");
3185         BasicType bt = field->layout_type();
3186         assert(bt != T_VALUETYPEPTR, "unexpected type");
3187         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3188       }
3189     } else if (klass()->is_instance_klass()) {
3190       ciInstanceKlass* ik = klass()->as_instance_klass();
3191       ciField* field = NULL;
3192       if (this->isa_klassptr()) {
3193         // Perm objects don't use compressed references
3194       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3195         // unsafe access
3196         _is_ptr_to_narrowoop = UseCompressedOops;
3197       } else { // exclude unsafe ops
3198         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3199 
3200         if (klass() == ciEnv::current()->Class_klass() &&
3201             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3202              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3203           // Special hidden fields from the Class.
3204           assert(this->isa_instptr(), "must be an instance ptr.");
3205           _is_ptr_to_narrowoop = false;
3206         } else if (klass() == ciEnv::current()->Class_klass() &&
3207                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3208           // Static fields
3209           assert(o != NULL, "must be constant");
3210           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3211           ciField* field = k->get_field_by_offset(this->offset(), true);
3212           assert(field != NULL, "missing field");
3213           BasicType basic_elem_type = field->layout_type();
3214           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3215                                                        basic_elem_type == T_ARRAY);
3216         } else {
3217           // Instance fields which contains a compressed oop references.
3218           field = ik->get_field_by_offset(this->offset(), false);
3219           if (field != NULL) {
3220             BasicType basic_elem_type = field->layout_type();
3221             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3222                                                          basic_elem_type == T_VALUETYPE ||
3223                                                          basic_elem_type == T_ARRAY);
3224             assert(basic_elem_type != T_VALUETYPEPTR, "unexpected type");
3225           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3226             // Compile::find_alias_type() cast exactness on all types to verify
3227             // that it does not affect alias type.
3228             _is_ptr_to_narrowoop = UseCompressedOops;
3229           } else {
3230             // Type for the copy start in LibraryCallKit::inline_native_clone().
3231             _is_ptr_to_narrowoop = UseCompressedOops;
3232           }
3233         }
3234       }
3235     }
3236   }
3237 #endif
3238 }
3239 
3240 //------------------------------make-------------------------------------------
3241 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3242                                    const TypePtr* speculative, int inline_depth) {
3243   assert(ptr != Constant, "no constant generic pointers");
3244   ciKlass*  k = Compile::current()->env()->Object_klass();
3245   bool      xk = false;
3246   ciObject* o = NULL;
3247   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3248 }
3249 
3250 
3251 //------------------------------cast_to_ptr_type-------------------------------
3252 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3253   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3254   if( ptr == _ptr ) return this;
3255   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3256 }
3257 
3258 //-----------------------------cast_to_instance_id----------------------------
3259 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3260   // There are no instances of a general oop.
3261   // Return self unchanged.
3262   return this;
3263 }
3264 
3265 //-----------------------------cast_to_exactness-------------------------------
3266 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3267   // There is no such thing as an exact general oop.
3268   // Return self unchanged.
3269   return this;
3270 }
3271 
3272 
3273 //------------------------------as_klass_type----------------------------------
3274 // Return the klass type corresponding to this instance or array type.
3275 // It is the type that is loaded from an object of this type.
3276 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3277   ciKlass* k = klass();
3278   bool    xk = klass_is_exact();
3279   if (k == NULL)
3280     return TypeKlassPtr::OBJECT;
3281   else
3282     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3283 }
3284 
3285 //------------------------------meet-------------------------------------------
3286 // Compute the MEET of two types.  It returns a new Type object.
3287 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3288   // Perform a fast test for common case; meeting the same types together.
3289   if( this == t ) return this;  // Meeting same type-rep?
3290 
3291   // Current "this->_base" is OopPtr
3292   switch (t->base()) {          // switch on original type
3293 
3294   case Int:                     // Mixing ints & oops happens when javac
3295   case Long:                    // reuses local variables
3296   case FloatTop:
3297   case FloatCon:
3298   case FloatBot:
3299   case DoubleTop:
3300   case DoubleCon:
3301   case DoubleBot:
3302   case NarrowOop:
3303   case NarrowKlass:
3304   case Bottom:                  // Ye Olde Default
3305     return Type::BOTTOM;
3306   case Top:
3307     return this;
3308 
3309   default:                      // All else is a mistake
3310     typerr(t);
3311 
3312   case RawPtr:
3313   case MetadataPtr:
3314   case KlassPtr:
3315     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3316 
3317   case AnyPtr: {
3318     // Found an AnyPtr type vs self-OopPtr type
3319     const TypePtr *tp = t->is_ptr();
3320     Offset offset = meet_offset(tp->offset());
3321     PTR ptr = meet_ptr(tp->ptr());
3322     const TypePtr* speculative = xmeet_speculative(tp);
3323     int depth = meet_inline_depth(tp->inline_depth());
3324     switch (tp->ptr()) {
3325     case Null:
3326       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3327       // else fall through:
3328     case TopPTR:
3329     case AnyNull: {
3330       int instance_id = meet_instance_id(InstanceTop);
3331       return make(ptr, offset, instance_id, speculative, depth);
3332     }
3333     case BotPTR:
3334     case NotNull:
3335       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3336     default: typerr(t);
3337     }
3338   }
3339 
3340   case OopPtr: {                 // Meeting to other OopPtrs
3341     const TypeOopPtr *tp = t->is_oopptr();
3342     int instance_id = meet_instance_id(tp->instance_id());
3343     const TypePtr* speculative = xmeet_speculative(tp);
3344     int depth = meet_inline_depth(tp->inline_depth());
3345     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3346   }
3347 
3348   case InstPtr:                  // For these, flip the call around to cut down
3349   case ValueTypePtr:
3350   case AryPtr:
3351     return t->xmeet(this);      // Call in reverse direction
3352 
3353   } // End of switch
3354   return this;                  // Return the double constant
3355 }
3356 
3357 
3358 //------------------------------xdual------------------------------------------
3359 // Dual of a pure heap pointer.  No relevant klass or oop information.
3360 const Type *TypeOopPtr::xdual() const {
3361   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3362   assert(const_oop() == NULL,             "no constants here");
3363   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3364 }
3365 
3366 //--------------------------make_from_klass_common-----------------------------
3367 // Computes the element-type given a klass.
3368 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3369   if (klass->is_valuetype()) {
3370     return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3371   } else if (klass->is_instance_klass()) {
3372     Compile* C = Compile::current();
3373     Dependencies* deps = C->dependencies();
3374     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3375     // Element is an instance
3376     bool klass_is_exact = false;
3377     if (klass->is_loaded()) {
3378       // Try to set klass_is_exact.
3379       ciInstanceKlass* ik = klass->as_instance_klass();
3380       klass_is_exact = ik->is_final();
3381       if (!klass_is_exact && klass_change
3382           && deps != NULL && UseUniqueSubclasses) {
3383         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3384         if (sub != NULL) {
3385           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3386           klass = ik = sub;
3387           klass_is_exact = sub->is_final();
3388         }
3389       }
3390       if (!klass_is_exact && try_for_exact
3391           && deps != NULL && UseExactTypes) {
3392         if (!ik->is_interface() && !ik->has_subklass()) {
3393           // Add a dependence; if concrete subclass added we need to recompile
3394           deps->assert_leaf_type(ik);
3395           klass_is_exact = true;
3396         }
3397       }
3398     }
3399     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3400   } else if (klass->is_obj_array_klass()) {
3401     // Element is an object or value array. Recursively call ourself.
3402     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3403     bool xk = etype->klass_is_exact();
3404     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3405     // We used to pass NotNull in here, asserting that the sub-arrays
3406     // are all not-null.  This is not true in generally, as code can
3407     // slam NULLs down in the subarrays.
3408     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3409     return arr;
3410   } else if (klass->is_type_array_klass()) {
3411     // Element is an typeArray
3412     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3413     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3414     // We used to pass NotNull in here, asserting that the array pointer
3415     // is not-null. That was not true in general.
3416     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3417     return arr;
3418   } else if (klass->is_value_array_klass()) {
3419     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3420     const Type* etype = NULL;
3421     bool xk = false;
3422     if (vk->flatten_array()) {
3423       etype = TypeValueType::make(vk);
3424       xk = true;
3425     } else {
3426       const TypeOopPtr* etype_oop = TypeOopPtr::make_from_klass_common(vk, false, try_for_exact);
3427       xk = etype_oop->klass_is_exact();
3428       etype = etype_oop;
3429     }
3430     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3431     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3432     return arr;
3433   } else {
3434     ShouldNotReachHere();
3435     return NULL;
3436   }
3437 }
3438 
3439 //------------------------------make_from_constant-----------------------------
3440 // Make a java pointer from an oop constant
3441 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3442   assert(!o->is_null_object(), "null object not yet handled here.");
3443   ciKlass* klass = o->klass();
3444   if (klass->is_valuetype()) {
3445     // Element is a value type
3446     if (require_constant) {
3447       if (!o->can_be_constant())  return NULL;
3448     } else if (!o->should_be_constant()) {
3449       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3450     }
3451     return TypeValueTypePtr::make(o);
3452   } else if (klass->is_instance_klass()) {
3453     // Element is an instance
3454     if (require_constant) {
3455       if (!o->can_be_constant())  return NULL;
3456     } else if (!o->should_be_constant()) {
3457       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3458     }
3459     return TypeInstPtr::make(o);
3460   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3461     // Element is an object array. Recursively call ourself.
3462     const TypeOopPtr *etype =
3463       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3464     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3465     // We used to pass NotNull in here, asserting that the sub-arrays
3466     // are all not-null.  This is not true in generally, as code can
3467     // slam NULLs down in the subarrays.
3468     if (require_constant) {
3469       if (!o->can_be_constant())  return NULL;
3470     } else if (!o->should_be_constant()) {
3471       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3472     }
3473     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3474     return arr;
3475   } else if (klass->is_type_array_klass()) {
3476     // Element is an typeArray
3477     const Type* etype =
3478       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3479     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3480     // We used to pass NotNull in here, asserting that the array pointer
3481     // is not-null. That was not true in general.
3482     if (require_constant) {
3483       if (!o->can_be_constant())  return NULL;
3484     } else if (!o->should_be_constant()) {
3485       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3486     }
3487     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3488     return arr;
3489   }
3490 
3491   fatal("unhandled object type");
3492   return NULL;
3493 }
3494 
3495 //------------------------------get_con----------------------------------------
3496 intptr_t TypeOopPtr::get_con() const {
3497   assert( _ptr == Null || _ptr == Constant, "" );
3498   assert(offset() >= 0, "");
3499 
3500   if (offset() != 0) {
3501     // After being ported to the compiler interface, the compiler no longer
3502     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3503     // to a handle at compile time.  This handle is embedded in the generated
3504     // code and dereferenced at the time the nmethod is made.  Until that time,
3505     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3506     // have access to the addresses!).  This does not seem to currently happen,
3507     // but this assertion here is to help prevent its occurence.
3508     tty->print_cr("Found oop constant with non-zero offset");
3509     ShouldNotReachHere();
3510   }
3511 
3512   return (intptr_t)const_oop()->constant_encoding();
3513 }
3514 
3515 
3516 //-----------------------------filter------------------------------------------
3517 // Do not allow interface-vs.-noninterface joins to collapse to top.
3518 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3519 
3520   const Type* ft = join_helper(kills, include_speculative);
3521   const TypeInstPtr* ftip = ft->isa_instptr();
3522   const TypeInstPtr* ktip = kills->isa_instptr();
3523 
3524   if (ft->empty()) {
3525     // Check for evil case of 'this' being a class and 'kills' expecting an
3526     // interface.  This can happen because the bytecodes do not contain
3527     // enough type info to distinguish a Java-level interface variable
3528     // from a Java-level object variable.  If we meet 2 classes which
3529     // both implement interface I, but their meet is at 'j/l/O' which
3530     // doesn't implement I, we have no way to tell if the result should
3531     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3532     // into a Phi which "knows" it's an Interface type we'll have to
3533     // uplift the type.
3534     if (!empty()) {
3535       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3536         return kills;           // Uplift to interface
3537       }
3538       // Also check for evil cases of 'this' being a class array
3539       // and 'kills' expecting an array of interfaces.
3540       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3541       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3542         return kills;           // Uplift to array of interface
3543       }
3544     }
3545 
3546     return Type::TOP;           // Canonical empty value
3547   }
3548 
3549   // If we have an interface-typed Phi or cast and we narrow to a class type,
3550   // the join should report back the class.  However, if we have a J/L/Object
3551   // class-typed Phi and an interface flows in, it's possible that the meet &
3552   // join report an interface back out.  This isn't possible but happens
3553   // because the type system doesn't interact well with interfaces.
3554   if (ftip != NULL && ktip != NULL &&
3555       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3556       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3557     assert(!ftip->klass_is_exact(), "interface could not be exact");
3558     return ktip->cast_to_ptr_type(ftip->ptr());
3559   }
3560 
3561   return ft;
3562 }
3563 
3564 //------------------------------eq---------------------------------------------
3565 // Structural equality check for Type representations
3566 bool TypeOopPtr::eq( const Type *t ) const {
3567   const TypeOopPtr *a = (const TypeOopPtr*)t;
3568   if (_klass_is_exact != a->_klass_is_exact ||
3569       _instance_id != a->_instance_id)  return false;
3570   ciObject* one = const_oop();
3571   ciObject* two = a->const_oop();
3572   if (one == NULL || two == NULL) {
3573     return (one == two) && TypePtr::eq(t);
3574   } else {
3575     return one->equals(two) && TypePtr::eq(t);
3576   }
3577 }
3578 
3579 //------------------------------hash-------------------------------------------
3580 // Type-specific hashing function.
3581 int TypeOopPtr::hash(void) const {
3582   return
3583     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3584              java_add(_instance_id, TypePtr::hash()));
3585 }
3586 
3587 //------------------------------dump2------------------------------------------
3588 #ifndef PRODUCT
3589 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3590   st->print("oopptr:%s", ptr_msg[_ptr]);
3591   if( _klass_is_exact ) st->print(":exact");
3592   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3593   _offset.dump2(st);
3594   if (_instance_id == InstanceTop)
3595     st->print(",iid=top");
3596   else if (_instance_id != InstanceBot)
3597     st->print(",iid=%d",_instance_id);
3598 
3599   dump_inline_depth(st);
3600   dump_speculative(st);
3601 }
3602 #endif
3603 
3604 //------------------------------singleton--------------------------------------
3605 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3606 // constants
3607 bool TypeOopPtr::singleton(void) const {
3608   // detune optimizer to not generate constant oop + constant offset as a constant!
3609   // TopPTR, Null, AnyNull, Constant are all singletons
3610   return (offset() == 0) && !below_centerline(_ptr);
3611 }
3612 
3613 //------------------------------add_offset-------------------------------------
3614 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3615   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3616 }
3617 
3618 /**
3619  * Return same type without a speculative part
3620  */
3621 const Type* TypeOopPtr::remove_speculative() const {
3622   if (_speculative == NULL) {
3623     return this;
3624   }
3625   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3626   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3627 }
3628 
3629 /**
3630  * Return same type but drop speculative part if we know we won't use
3631  * it
3632  */
3633 const Type* TypeOopPtr::cleanup_speculative() const {
3634   // If the klass is exact and the ptr is not null then there's
3635   // nothing that the speculative type can help us with
3636   if (klass_is_exact() && !maybe_null()) {
3637     return remove_speculative();
3638   }
3639   return TypePtr::cleanup_speculative();
3640 }
3641 
3642 /**
3643  * Return same type but with a different inline depth (used for speculation)
3644  *
3645  * @param depth  depth to meet with
3646  */
3647 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3648   if (!UseInlineDepthForSpeculativeTypes) {
3649     return this;
3650   }
3651   return make(_ptr, _offset, _instance_id, _speculative, depth);
3652 }
3653 
3654 //------------------------------meet_instance_id--------------------------------
3655 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3656   // Either is 'TOP' instance?  Return the other instance!
3657   if( _instance_id == InstanceTop ) return  instance_id;
3658   if(  instance_id == InstanceTop ) return _instance_id;
3659   // If either is different, return 'BOTTOM' instance
3660   if( _instance_id != instance_id ) return InstanceBot;
3661   return _instance_id;
3662 }
3663 
3664 //------------------------------dual_instance_id--------------------------------
3665 int TypeOopPtr::dual_instance_id( ) const {
3666   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3667   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3668   return _instance_id;              // Map everything else into self
3669 }
3670 
3671 /**
3672  * Check whether new profiling would improve speculative type
3673  *
3674  * @param   exact_kls    class from profiling
3675  * @param   inline_depth inlining depth of profile point
3676  *
3677  * @return  true if type profile is valuable
3678  */
3679 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3680   // no way to improve an already exact type
3681   if (klass_is_exact()) {
3682     return false;
3683   }
3684   return TypePtr::would_improve_type(exact_kls, inline_depth);
3685 }
3686 
3687 //=============================================================================
3688 // Convenience common pre-built types.
3689 const TypeInstPtr *TypeInstPtr::NOTNULL;
3690 const TypeInstPtr *TypeInstPtr::BOTTOM;
3691 const TypeInstPtr *TypeInstPtr::MIRROR;
3692 const TypeInstPtr *TypeInstPtr::MARK;
3693 const TypeInstPtr *TypeInstPtr::KLASS;
3694 
3695 //------------------------------TypeInstPtr-------------------------------------
3696 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3697                          int instance_id, const TypePtr* speculative, int inline_depth)
3698   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3699     _name(k->name()) {
3700    assert(k != NULL &&
3701           (k->is_loaded() || o == NULL),
3702           "cannot have constants with non-loaded klass");
3703 };
3704 
3705 //------------------------------make-------------------------------------------
3706 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3707                                      ciKlass* k,
3708                                      bool xk,
3709                                      ciObject* o,
3710                                      Offset offset,
3711                                      int instance_id,
3712                                      const TypePtr* speculative,
3713                                      int inline_depth) {
3714   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3715   // Either const_oop() is NULL or else ptr is Constant
3716   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3717           "constant pointers must have a value supplied" );
3718   // Ptr is never Null
3719   assert( ptr != Null, "NULL pointers are not typed" );
3720 
3721   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3722   if (!UseExactTypes)  xk = false;
3723   if (ptr == Constant) {
3724     // Note:  This case includes meta-object constants, such as methods.
3725     xk = true;
3726   } else if (k->is_loaded()) {
3727     ciInstanceKlass* ik = k->as_instance_klass();
3728     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3729     if (xk && ik->is_interface())  xk = false;  // no exact interface
3730   }
3731 
3732   // Now hash this baby
3733   TypeInstPtr *result =
3734     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3735 
3736   return result;
3737 }
3738 
3739 /**
3740  *  Create constant type for a constant boxed value
3741  */
3742 const Type* TypeInstPtr::get_const_boxed_value() const {
3743   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3744   assert((const_oop() != NULL), "should be called only for constant object");
3745   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3746   BasicType bt = constant.basic_type();
3747   switch (bt) {
3748     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3749     case T_INT:      return TypeInt::make(constant.as_int());
3750     case T_CHAR:     return TypeInt::make(constant.as_char());
3751     case T_BYTE:     return TypeInt::make(constant.as_byte());
3752     case T_SHORT:    return TypeInt::make(constant.as_short());
3753     case T_FLOAT:    return TypeF::make(constant.as_float());
3754     case T_DOUBLE:   return TypeD::make(constant.as_double());
3755     case T_LONG:     return TypeLong::make(constant.as_long());
3756     default:         break;
3757   }
3758   fatal("Invalid boxed value type '%s'", type2name(bt));
3759   return NULL;
3760 }
3761 
3762 //------------------------------cast_to_ptr_type-------------------------------
3763 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3764   if( ptr == _ptr ) return this;
3765   // Reconstruct _sig info here since not a problem with later lazy
3766   // construction, _sig will show up on demand.
3767   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3768 }
3769 
3770 
3771 //-----------------------------cast_to_exactness-------------------------------
3772 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3773   if( klass_is_exact == _klass_is_exact ) return this;
3774   if (!UseExactTypes)  return this;
3775   if (!_klass->is_loaded())  return this;
3776   ciInstanceKlass* ik = _klass->as_instance_klass();
3777   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3778   if( ik->is_interface() )              return this;  // cannot set xk
3779   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3780 }
3781 
3782 //-----------------------------cast_to_instance_id----------------------------
3783 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3784   if( instance_id == _instance_id ) return this;
3785   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3786 }
3787 
3788 //------------------------------xmeet_unloaded---------------------------------
3789 // Compute the MEET of two InstPtrs when at least one is unloaded.
3790 // Assume classes are different since called after check for same name/class-loader
3791 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3792     Offset off = meet_offset(tinst->offset());
3793     PTR ptr = meet_ptr(tinst->ptr());
3794     int instance_id = meet_instance_id(tinst->instance_id());
3795     const TypePtr* speculative = xmeet_speculative(tinst);
3796     int depth = meet_inline_depth(tinst->inline_depth());
3797 
3798     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3799     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3800     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3801       //
3802       // Meet unloaded class with java/lang/Object
3803       //
3804       // Meet
3805       //          |                     Unloaded Class
3806       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3807       //  ===================================================================
3808       //   TOP    | ..........................Unloaded......................|
3809       //  AnyNull |  U-AN    |................Unloaded......................|
3810       // Constant | ... O-NN .................................. |   O-BOT   |
3811       //  NotNull | ... O-NN .................................. |   O-BOT   |
3812       //  BOTTOM  | ........................Object-BOTTOM ..................|
3813       //
3814       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3815       //
3816       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3817       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3818       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3819       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3820         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3821         else                                      { return TypeInstPtr::NOTNULL; }
3822       }
3823       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3824 
3825       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3826     }
3827 
3828     // Both are unloaded, not the same class, not Object
3829     // Or meet unloaded with a different loaded class, not java/lang/Object
3830     if( ptr != TypePtr::BotPTR ) {
3831       return TypeInstPtr::NOTNULL;
3832     }
3833     return TypeInstPtr::BOTTOM;
3834 }
3835 
3836 
3837 //------------------------------meet-------------------------------------------
3838 // Compute the MEET of two types.  It returns a new Type object.
3839 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3840   // Perform a fast test for common case; meeting the same types together.
3841   if( this == t ) return this;  // Meeting same type-rep?
3842 
3843   // Current "this->_base" is Pointer
3844   switch (t->base()) {          // switch on original type
3845 
3846   case Int:                     // Mixing ints & oops happens when javac
3847   case Long:                    // reuses local variables
3848   case FloatTop:
3849   case FloatCon:
3850   case FloatBot:
3851   case DoubleTop:
3852   case DoubleCon:
3853   case DoubleBot:
3854   case NarrowOop:
3855   case NarrowKlass:
3856   case Bottom:                  // Ye Olde Default
3857     return Type::BOTTOM;
3858   case Top:
3859     return this;
3860 
3861   default:                      // All else is a mistake
3862     typerr(t);
3863 
3864   case MetadataPtr:
3865   case KlassPtr:
3866   case RawPtr: return TypePtr::BOTTOM;
3867 
3868   case AryPtr: {                // All arrays inherit from Object class
3869     const TypeAryPtr *tp = t->is_aryptr();
3870     Offset offset = meet_offset(tp->offset());
3871     PTR ptr = meet_ptr(tp->ptr());
3872     int instance_id = meet_instance_id(tp->instance_id());
3873     const TypePtr* speculative = xmeet_speculative(tp);
3874     int depth = meet_inline_depth(tp->inline_depth());
3875     switch (ptr) {
3876     case TopPTR:
3877     case AnyNull:                // Fall 'down' to dual of object klass
3878       // For instances when a subclass meets a superclass we fall
3879       // below the centerline when the superclass is exact. We need to
3880       // do the same here.
3881       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3882         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3883       } else {
3884         // cannot subclass, so the meet has to fall badly below the centerline
3885         ptr = NotNull;
3886         instance_id = InstanceBot;
3887         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3888       }
3889     case Constant:
3890     case NotNull:
3891     case BotPTR:                // Fall down to object klass
3892       // LCA is object_klass, but if we subclass from the top we can do better
3893       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3894         // If 'this' (InstPtr) is above the centerline and it is Object class
3895         // then we can subclass in the Java class hierarchy.
3896         // For instances when a subclass meets a superclass we fall
3897         // below the centerline when the superclass is exact. We need
3898         // to do the same here.
3899         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3900           // that is, tp's array type is a subtype of my klass
3901           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3902                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3903         }
3904       }
3905       // The other case cannot happen, since I cannot be a subtype of an array.
3906       // The meet falls down to Object class below centerline.
3907       if( ptr == Constant )
3908          ptr = NotNull;
3909       instance_id = InstanceBot;
3910       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3911     default: typerr(t);
3912     }
3913   }
3914 
3915   case OopPtr: {                // Meeting to OopPtrs
3916     // Found a OopPtr type vs self-InstPtr type
3917     const TypeOopPtr *tp = t->is_oopptr();
3918     Offset offset = meet_offset(tp->offset());
3919     PTR ptr = meet_ptr(tp->ptr());
3920     switch (tp->ptr()) {
3921     case TopPTR:
3922     case AnyNull: {
3923       int instance_id = meet_instance_id(InstanceTop);
3924       const TypePtr* speculative = xmeet_speculative(tp);
3925       int depth = meet_inline_depth(tp->inline_depth());
3926       return make(ptr, klass(), klass_is_exact(),
3927                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3928     }
3929     case NotNull:
3930     case BotPTR: {
3931       int instance_id = meet_instance_id(tp->instance_id());
3932       const TypePtr* speculative = xmeet_speculative(tp);
3933       int depth = meet_inline_depth(tp->inline_depth());
3934       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3935     }
3936     default: typerr(t);
3937     }
3938   }
3939 
3940   case AnyPtr: {                // Meeting to AnyPtrs
3941     // Found an AnyPtr type vs self-InstPtr type
3942     const TypePtr *tp = t->is_ptr();
3943     Offset offset = meet_offset(tp->offset());
3944     PTR ptr = meet_ptr(tp->ptr());
3945     int instance_id = meet_instance_id(InstanceTop);
3946     const TypePtr* speculative = xmeet_speculative(tp);
3947     int depth = meet_inline_depth(tp->inline_depth());
3948     switch (tp->ptr()) {
3949     case Null:
3950       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3951       // else fall through to AnyNull
3952     case TopPTR:
3953     case AnyNull: {
3954       return make(ptr, klass(), klass_is_exact(),
3955                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3956     }
3957     case NotNull:
3958     case BotPTR:
3959       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3960     default: typerr(t);
3961     }
3962   }
3963 
3964   /*
3965                  A-top         }
3966                /   |   \       }  Tops
3967            B-top A-any C-top   }
3968               | /  |  \ |      }  Any-nulls
3969            B-any   |   C-any   }
3970               |    |    |
3971            B-con A-con C-con   } constants; not comparable across classes
3972               |    |    |
3973            B-not   |   C-not   }
3974               | \  |  / |      }  not-nulls
3975            B-bot A-not C-bot   }
3976                \   |   /       }  Bottoms
3977                  A-bot         }
3978   */
3979 
3980   case InstPtr: {                // Meeting 2 Oops?
3981     // Found an InstPtr sub-type vs self-InstPtr type
3982     const TypeInstPtr *tinst = t->is_instptr();
3983     Offset off = meet_offset( tinst->offset() );
3984     PTR ptr = meet_ptr( tinst->ptr() );
3985     int instance_id = meet_instance_id(tinst->instance_id());
3986     const TypePtr* speculative = xmeet_speculative(tinst);
3987     int depth = meet_inline_depth(tinst->inline_depth());
3988 
3989     // Check for easy case; klasses are equal (and perhaps not loaded!)
3990     // If we have constants, then we created oops so classes are loaded
3991     // and we can handle the constants further down.  This case handles
3992     // both-not-loaded or both-loaded classes
3993     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3994       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3995     }
3996 
3997     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3998     ciKlass* tinst_klass = tinst->klass();
3999     ciKlass* this_klass  = this->klass();
4000     bool tinst_xk = tinst->klass_is_exact();
4001     bool this_xk  = this->klass_is_exact();
4002     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4003       // One of these classes has not been loaded
4004       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4005 #ifndef PRODUCT
4006       if( PrintOpto && Verbose ) {
4007         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4008         tty->print("  this == "); this->dump(); tty->cr();
4009         tty->print(" tinst == "); tinst->dump(); tty->cr();
4010       }
4011 #endif
4012       return unloaded_meet;
4013     }
4014 
4015     // Handle mixing oops and interfaces first.
4016     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4017                                         tinst_klass == ciEnv::current()->Object_klass())) {
4018       ciKlass *tmp = tinst_klass; // Swap interface around
4019       tinst_klass = this_klass;
4020       this_klass = tmp;
4021       bool tmp2 = tinst_xk;
4022       tinst_xk = this_xk;
4023       this_xk = tmp2;
4024     }
4025     if (tinst_klass->is_interface() &&
4026         !(this_klass->is_interface() ||
4027           // Treat java/lang/Object as an honorary interface,
4028           // because we need a bottom for the interface hierarchy.
4029           this_klass == ciEnv::current()->Object_klass())) {
4030       // Oop meets interface!
4031 
4032       // See if the oop subtypes (implements) interface.
4033       ciKlass *k;
4034       bool xk;
4035       if( this_klass->is_subtype_of( tinst_klass ) ) {
4036         // Oop indeed subtypes.  Now keep oop or interface depending
4037         // on whether we are both above the centerline or either is
4038         // below the centerline.  If we are on the centerline
4039         // (e.g., Constant vs. AnyNull interface), use the constant.
4040         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4041         // If we are keeping this_klass, keep its exactness too.
4042         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4043       } else {                  // Does not implement, fall to Object
4044         // Oop does not implement interface, so mixing falls to Object
4045         // just like the verifier does (if both are above the
4046         // centerline fall to interface)
4047         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4048         xk = above_centerline(ptr) ? tinst_xk : false;
4049         // Watch out for Constant vs. AnyNull interface.
4050         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4051         instance_id = InstanceBot;
4052       }
4053       ciObject* o = NULL;  // the Constant value, if any
4054       if (ptr == Constant) {
4055         // Find out which constant.
4056         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4057       }
4058       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4059     }
4060 
4061     // Either oop vs oop or interface vs interface or interface vs Object
4062 
4063     // !!! Here's how the symmetry requirement breaks down into invariants:
4064     // If we split one up & one down AND they subtype, take the down man.
4065     // If we split one up & one down AND they do NOT subtype, "fall hard".
4066     // If both are up and they subtype, take the subtype class.
4067     // If both are up and they do NOT subtype, "fall hard".
4068     // If both are down and they subtype, take the supertype class.
4069     // If both are down and they do NOT subtype, "fall hard".
4070     // Constants treated as down.
4071 
4072     // Now, reorder the above list; observe that both-down+subtype is also
4073     // "fall hard"; "fall hard" becomes the default case:
4074     // If we split one up & one down AND they subtype, take the down man.
4075     // If both are up and they subtype, take the subtype class.
4076 
4077     // If both are down and they subtype, "fall hard".
4078     // If both are down and they do NOT subtype, "fall hard".
4079     // If both are up and they do NOT subtype, "fall hard".
4080     // If we split one up & one down AND they do NOT subtype, "fall hard".
4081 
4082     // If a proper subtype is exact, and we return it, we return it exactly.
4083     // If a proper supertype is exact, there can be no subtyping relationship!
4084     // If both types are equal to the subtype, exactness is and-ed below the
4085     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4086 
4087     // Check for subtyping:
4088     ciKlass *subtype = NULL;
4089     bool subtype_exact = false;
4090     if( tinst_klass->equals(this_klass) ) {
4091       subtype = this_klass;
4092       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4093     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4094       subtype = this_klass;     // Pick subtyping class
4095       subtype_exact = this_xk;
4096     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4097       subtype = tinst_klass;    // Pick subtyping class
4098       subtype_exact = tinst_xk;
4099     }
4100 
4101     if( subtype ) {
4102       if( above_centerline(ptr) ) { // both are up?
4103         this_klass = tinst_klass = subtype;
4104         this_xk = tinst_xk = subtype_exact;
4105       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4106         this_klass = tinst_klass; // tinst is down; keep down man
4107         this_xk = tinst_xk;
4108       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4109         tinst_klass = this_klass; // this is down; keep down man
4110         tinst_xk = this_xk;
4111       } else {
4112         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4113       }
4114     }
4115 
4116     // Check for classes now being equal
4117     if (tinst_klass->equals(this_klass)) {
4118       // If the klasses are equal, the constants may still differ.  Fall to
4119       // NotNull if they do (neither constant is NULL; that is a special case
4120       // handled elsewhere).
4121       ciObject* o = NULL;             // Assume not constant when done
4122       ciObject* this_oop  = const_oop();
4123       ciObject* tinst_oop = tinst->const_oop();
4124       if( ptr == Constant ) {
4125         if (this_oop != NULL && tinst_oop != NULL &&
4126             this_oop->equals(tinst_oop) )
4127           o = this_oop;
4128         else if (above_centerline(this ->_ptr))
4129           o = tinst_oop;
4130         else if (above_centerline(tinst ->_ptr))
4131           o = this_oop;
4132         else
4133           ptr = NotNull;
4134       }
4135       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4136     } // Else classes are not equal
4137 
4138     // Since klasses are different, we require a LCA in the Java
4139     // class hierarchy - which means we have to fall to at least NotNull.
4140     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4141       ptr = NotNull;
4142 
4143     instance_id = InstanceBot;
4144 
4145     // Now we find the LCA of Java classes
4146     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4147     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4148   } // End of case InstPtr
4149 
4150   } // End of switch
4151   return this;                  // Return the double constant
4152 }
4153 
4154 
4155 //------------------------java_mirror_type--------------------------------------
4156 ciType* TypeInstPtr::java_mirror_type() const {
4157   // must be a singleton type
4158   if( const_oop() == NULL )  return NULL;
4159 
4160   // must be of type java.lang.Class
4161   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4162 
4163   return const_oop()->as_instance()->java_mirror_type();
4164 }
4165 
4166 
4167 //------------------------------xdual------------------------------------------
4168 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4169 // inheritance mechanism.
4170 const Type *TypeInstPtr::xdual() const {
4171   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4172 }
4173 
4174 //------------------------------eq---------------------------------------------
4175 // Structural equality check for Type representations
4176 bool TypeInstPtr::eq( const Type *t ) const {
4177   const TypeInstPtr *p = t->is_instptr();
4178   return
4179     klass()->equals(p->klass()) &&
4180     TypeOopPtr::eq(p);          // Check sub-type stuff
4181 }
4182 
4183 //------------------------------hash-------------------------------------------
4184 // Type-specific hashing function.
4185 int TypeInstPtr::hash(void) const {
4186   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
4187   return hash;
4188 }
4189 
4190 //------------------------------dump2------------------------------------------
4191 // Dump oop Type
4192 #ifndef PRODUCT
4193 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4194   // Print the name of the klass.
4195   klass()->print_name_on(st);
4196 
4197   switch( _ptr ) {
4198   case Constant:
4199     // TO DO: Make CI print the hex address of the underlying oop.
4200     if (WizardMode || Verbose) {
4201       const_oop()->print_oop(st);
4202     }
4203   case BotPTR:
4204     if (!WizardMode && !Verbose) {
4205       if( _klass_is_exact ) st->print(":exact");
4206       break;
4207     }
4208   case TopPTR:
4209   case AnyNull:
4210   case NotNull:
4211     st->print(":%s", ptr_msg[_ptr]);
4212     if( _klass_is_exact ) st->print(":exact");
4213     break;
4214   default:
4215     break;
4216   }
4217 
4218   _offset.dump2(st);
4219 
4220   st->print(" *");
4221   if (_instance_id == InstanceTop)
4222     st->print(",iid=top");
4223   else if (_instance_id != InstanceBot)
4224     st->print(",iid=%d",_instance_id);
4225 
4226   dump_inline_depth(st);
4227   dump_speculative(st);
4228 }
4229 #endif
4230 
4231 //------------------------------add_offset-------------------------------------
4232 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4233   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4234               _instance_id, add_offset_speculative(offset), _inline_depth);
4235 }
4236 
4237 const Type *TypeInstPtr::remove_speculative() const {
4238   if (_speculative == NULL) {
4239     return this;
4240   }
4241   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4242   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4243               _instance_id, NULL, _inline_depth);
4244 }
4245 
4246 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4247   if (!UseInlineDepthForSpeculativeTypes) {
4248     return this;
4249   }
4250   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4251 }
4252 
4253 //=============================================================================
4254 // Convenience common pre-built types.
4255 const TypeAryPtr *TypeAryPtr::RANGE;
4256 const TypeAryPtr *TypeAryPtr::OOPS;
4257 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4258 const TypeAryPtr *TypeAryPtr::BYTES;
4259 const TypeAryPtr *TypeAryPtr::SHORTS;
4260 const TypeAryPtr *TypeAryPtr::CHARS;
4261 const TypeAryPtr *TypeAryPtr::INTS;
4262 const TypeAryPtr *TypeAryPtr::LONGS;
4263 const TypeAryPtr *TypeAryPtr::FLOATS;
4264 const TypeAryPtr *TypeAryPtr::DOUBLES;
4265 
4266 //------------------------------make-------------------------------------------
4267 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4268                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4269   assert(!(k == NULL && ary->_elem->isa_int()),
4270          "integral arrays must be pre-equipped with a class");
4271   if (!xk)  xk = ary->ary_must_be_exact();
4272   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4273   if (!UseExactTypes)  xk = (ptr == Constant);
4274   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4275 }
4276 
4277 //------------------------------make-------------------------------------------
4278 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4279                                    int instance_id, const TypePtr* speculative, int inline_depth,
4280                                    bool is_autobox_cache) {
4281   assert(!(k == NULL && ary->_elem->isa_int()),
4282          "integral arrays must be pre-equipped with a class");
4283   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4284   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4285   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4286   if (!UseExactTypes)  xk = (ptr == Constant);
4287   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4288 }
4289 
4290 //------------------------------cast_to_ptr_type-------------------------------
4291 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4292   if( ptr == _ptr ) return this;
4293   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4294 }
4295 
4296 
4297 //-----------------------------cast_to_exactness-------------------------------
4298 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4299   if( klass_is_exact == _klass_is_exact ) return this;
4300   if (!UseExactTypes)  return this;
4301   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4302   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4303 }
4304 
4305 //-----------------------------cast_to_instance_id----------------------------
4306 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4307   if( instance_id == _instance_id ) return this;
4308   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4309 }
4310 
4311 //-----------------------------narrow_size_type-------------------------------
4312 // Local cache for arrayOopDesc::max_array_length(etype),
4313 // which is kind of slow (and cached elsewhere by other users).
4314 static jint max_array_length_cache[T_CONFLICT+1];
4315 static jint max_array_length(BasicType etype) {
4316   jint& cache = max_array_length_cache[etype];
4317   jint res = cache;
4318   if (res == 0) {
4319     switch (etype) {
4320     case T_NARROWOOP:
4321       etype = T_OBJECT;
4322       break;
4323     case T_NARROWKLASS:
4324     case T_CONFLICT:
4325     case T_ILLEGAL:
4326     case T_VOID:
4327       etype = T_BYTE;           // will produce conservatively high value
4328       break;
4329     default:
4330       break;
4331     }
4332     cache = res = arrayOopDesc::max_array_length(etype);
4333   }
4334   return res;
4335 }
4336 
4337 // Narrow the given size type to the index range for the given array base type.
4338 // Return NULL if the resulting int type becomes empty.
4339 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4340   jint hi = size->_hi;
4341   jint lo = size->_lo;
4342   jint min_lo = 0;
4343   jint max_hi = max_array_length(elem()->basic_type());
4344   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4345   bool chg = false;
4346   if (lo < min_lo) {
4347     lo = min_lo;
4348     if (size->is_con()) {
4349       hi = lo;
4350     }
4351     chg = true;
4352   }
4353   if (hi > max_hi) {
4354     hi = max_hi;
4355     if (size->is_con()) {
4356       lo = hi;
4357     }
4358     chg = true;
4359   }
4360   // Negative length arrays will produce weird intermediate dead fast-path code
4361   if (lo > hi)
4362     return TypeInt::ZERO;
4363   if (!chg)
4364     return size;
4365   return TypeInt::make(lo, hi, Type::WidenMin);
4366 }
4367 
4368 //-------------------------------cast_to_size----------------------------------
4369 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4370   assert(new_size != NULL, "");
4371   new_size = narrow_size_type(new_size);
4372   if (new_size == size())  return this;
4373   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4374   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4375 }
4376 
4377 //------------------------------cast_to_stable---------------------------------
4378 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4379   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4380     return this;
4381 
4382   const Type* elem = this->elem();
4383   const TypePtr* elem_ptr = elem->make_ptr();
4384 
4385   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4386     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4387     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4388   }
4389 
4390   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4391 
4392   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4393 }
4394 
4395 //-----------------------------stable_dimension--------------------------------
4396 int TypeAryPtr::stable_dimension() const {
4397   if (!is_stable())  return 0;
4398   int dim = 1;
4399   const TypePtr* elem_ptr = elem()->make_ptr();
4400   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4401     dim += elem_ptr->is_aryptr()->stable_dimension();
4402   return dim;
4403 }
4404 
4405 //----------------------cast_to_autobox_cache-----------------------------------
4406 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4407   if (is_autobox_cache() == cache)  return this;
4408   const TypeOopPtr* etype = elem()->make_oopptr();
4409   if (etype == NULL)  return this;
4410   // The pointers in the autobox arrays are always non-null.
4411   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4412   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4413   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4414   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4415 }
4416 
4417 //------------------------------eq---------------------------------------------
4418 // Structural equality check for Type representations
4419 bool TypeAryPtr::eq( const Type *t ) const {
4420   const TypeAryPtr *p = t->is_aryptr();
4421   return
4422     _ary == p->_ary &&  // Check array
4423     TypeOopPtr::eq(p) &&// Check sub-parts
4424     _field_offset == p->_field_offset;
4425 }
4426 
4427 //------------------------------hash-------------------------------------------
4428 // Type-specific hashing function.
4429 int TypeAryPtr::hash(void) const {
4430   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4431 }
4432 
4433 //------------------------------meet-------------------------------------------
4434 // Compute the MEET of two types.  It returns a new Type object.
4435 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4436   // Perform a fast test for common case; meeting the same types together.
4437   if( this == t ) return this;  // Meeting same type-rep?
4438   // Current "this->_base" is Pointer
4439   switch (t->base()) {          // switch on original type
4440 
4441   // Mixing ints & oops happens when javac reuses local variables
4442   case Int:
4443   case Long:
4444   case FloatTop:
4445   case FloatCon:
4446   case FloatBot:
4447   case DoubleTop:
4448   case DoubleCon:
4449   case DoubleBot:
4450   case NarrowOop:
4451   case NarrowKlass:
4452   case Bottom:                  // Ye Olde Default
4453     return Type::BOTTOM;
4454   case Top:
4455     return this;
4456 
4457   default:                      // All else is a mistake
4458     typerr(t);
4459 
4460   case OopPtr: {                // Meeting to OopPtrs
4461     // Found a OopPtr type vs self-AryPtr type
4462     const TypeOopPtr *tp = t->is_oopptr();
4463     Offset offset = meet_offset(tp->offset());
4464     PTR ptr = meet_ptr(tp->ptr());
4465     int depth = meet_inline_depth(tp->inline_depth());
4466     const TypePtr* speculative = xmeet_speculative(tp);
4467     switch (tp->ptr()) {
4468     case TopPTR:
4469     case AnyNull: {
4470       int instance_id = meet_instance_id(InstanceTop);
4471       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4472                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4473     }
4474     case BotPTR:
4475     case NotNull: {
4476       int instance_id = meet_instance_id(tp->instance_id());
4477       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4478     }
4479     default: ShouldNotReachHere();
4480     }
4481   }
4482 
4483   case AnyPtr: {                // Meeting two AnyPtrs
4484     // Found an AnyPtr type vs self-AryPtr type
4485     const TypePtr *tp = t->is_ptr();
4486     Offset offset = meet_offset(tp->offset());
4487     PTR ptr = meet_ptr(tp->ptr());
4488     const TypePtr* speculative = xmeet_speculative(tp);
4489     int depth = meet_inline_depth(tp->inline_depth());
4490     switch (tp->ptr()) {
4491     case TopPTR:
4492       return this;
4493     case BotPTR:
4494     case NotNull:
4495       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4496     case Null:
4497       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4498       // else fall through to AnyNull
4499     case AnyNull: {
4500       int instance_id = meet_instance_id(InstanceTop);
4501       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4502                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4503     }
4504     default: ShouldNotReachHere();
4505     }
4506   }
4507 
4508   case MetadataPtr:
4509   case KlassPtr:
4510   case RawPtr: return TypePtr::BOTTOM;
4511 
4512   case AryPtr: {                // Meeting 2 references?
4513     const TypeAryPtr *tap = t->is_aryptr();
4514     Offset off = meet_offset(tap->offset());
4515     Offset field_off = meet_field_offset(tap->field_offset());
4516     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4517     PTR ptr = meet_ptr(tap->ptr());
4518     int instance_id = meet_instance_id(tap->instance_id());
4519     const TypePtr* speculative = xmeet_speculative(tap);
4520     int depth = meet_inline_depth(tap->inline_depth());
4521     ciKlass* lazy_klass = NULL;
4522     if (tary->_elem->isa_int()) {
4523       // Integral array element types have irrelevant lattice relations.
4524       // It is the klass that determines array layout, not the element type.
4525       if (_klass == NULL)
4526         lazy_klass = tap->_klass;
4527       else if (tap->_klass == NULL || tap->_klass == _klass) {
4528         lazy_klass = _klass;
4529       } else {
4530         // Something like byte[int+] meets char[int+].
4531         // This must fall to bottom, not (int[-128..65535])[int+].
4532         instance_id = InstanceBot;
4533         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4534       }
4535     } else // Non integral arrays.
4536       // Must fall to bottom if exact klasses in upper lattice
4537       // are not equal or super klass is exact.
4538       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4539           // meet with top[] and bottom[] are processed further down:
4540           tap->_klass != NULL  && this->_klass != NULL   &&
4541           // both are exact and not equal:
4542           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4543            // 'tap'  is exact and super or unrelated:
4544            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4545            // 'this' is exact and super or unrelated:
4546            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4547       if (above_centerline(ptr)) {
4548         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4549       }
4550       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4551     }
4552 
4553     bool xk = false;
4554     switch (tap->ptr()) {
4555     case AnyNull:
4556     case TopPTR:
4557       // Compute new klass on demand, do not use tap->_klass
4558       if (below_centerline(this->_ptr)) {
4559         xk = this->_klass_is_exact;
4560       } else {
4561         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4562       }
4563       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4564     case Constant: {
4565       ciObject* o = const_oop();
4566       if( _ptr == Constant ) {
4567         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4568           xk = (klass() == tap->klass());
4569           ptr = NotNull;
4570           o = NULL;
4571           instance_id = InstanceBot;
4572         } else {
4573           xk = true;
4574         }
4575       } else if(above_centerline(_ptr)) {
4576         o = tap->const_oop();
4577         xk = true;
4578       } else {
4579         // Only precise for identical arrays
4580         xk = this->_klass_is_exact && (klass() == tap->klass());
4581       }
4582       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4583     }
4584     case NotNull:
4585     case BotPTR:
4586       // Compute new klass on demand, do not use tap->_klass
4587       if (above_centerline(this->_ptr))
4588             xk = tap->_klass_is_exact;
4589       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4590               (klass() == tap->klass()); // Only precise for identical arrays
4591       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4592     default: ShouldNotReachHere();
4593     }
4594   }
4595 
4596   // All arrays inherit from Object class
4597   case InstPtr: {
4598     const TypeInstPtr *tp = t->is_instptr();
4599     Offset offset = meet_offset(tp->offset());
4600     PTR ptr = meet_ptr(tp->ptr());
4601     int instance_id = meet_instance_id(tp->instance_id());
4602     const TypePtr* speculative = xmeet_speculative(tp);
4603     int depth = meet_inline_depth(tp->inline_depth());
4604     switch (ptr) {
4605     case TopPTR:
4606     case AnyNull:                // Fall 'down' to dual of object klass
4607       // For instances when a subclass meets a superclass we fall
4608       // below the centerline when the superclass is exact. We need to
4609       // do the same here.
4610       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4611         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4612       } else {
4613         // cannot subclass, so the meet has to fall badly below the centerline
4614         ptr = NotNull;
4615         instance_id = InstanceBot;
4616         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4617       }
4618     case Constant:
4619     case NotNull:
4620     case BotPTR:                // Fall down to object klass
4621       // LCA is object_klass, but if we subclass from the top we can do better
4622       if (above_centerline(tp->ptr())) {
4623         // If 'tp'  is above the centerline and it is Object class
4624         // then we can subclass in the Java class hierarchy.
4625         // For instances when a subclass meets a superclass we fall
4626         // below the centerline when the superclass is exact. We need
4627         // to do the same here.
4628         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4629           // that is, my array type is a subtype of 'tp' klass
4630           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4631                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4632         }
4633       }
4634       // The other case cannot happen, since t cannot be a subtype of an array.
4635       // The meet falls down to Object class below centerline.
4636       if( ptr == Constant )
4637          ptr = NotNull;
4638       instance_id = InstanceBot;
4639       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4640     default: typerr(t);
4641     }
4642   }
4643   }
4644   return this;                  // Lint noise
4645 }
4646 
4647 //------------------------------xdual------------------------------------------
4648 // Dual: compute field-by-field dual
4649 const Type *TypeAryPtr::xdual() const {
4650   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4651 }
4652 
4653 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4654   return _field_offset.meet(offset);
4655 }
4656 
4657 //------------------------------dual_offset------------------------------------
4658 Type::Offset TypeAryPtr::dual_field_offset() const {
4659   return _field_offset.dual();
4660 }
4661 
4662 //----------------------interface_vs_oop---------------------------------------
4663 #ifdef ASSERT
4664 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4665   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4666   if (t_aryptr) {
4667     return _ary->interface_vs_oop(t_aryptr->_ary);
4668   }
4669   return false;
4670 }
4671 #endif
4672 
4673 //------------------------------dump2------------------------------------------
4674 #ifndef PRODUCT
4675 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4676   _ary->dump2(d,depth,st);
4677   switch( _ptr ) {
4678   case Constant:
4679     const_oop()->print(st);
4680     break;
4681   case BotPTR:
4682     if (!WizardMode && !Verbose) {
4683       if( _klass_is_exact ) st->print(":exact");
4684       break;
4685     }
4686   case TopPTR:
4687   case AnyNull:
4688   case NotNull:
4689     st->print(":%s", ptr_msg[_ptr]);
4690     if( _klass_is_exact ) st->print(":exact");
4691     break;
4692   default:
4693     break;
4694   }
4695 
4696   if (elem()->isa_valuetype()) {
4697     st->print("(");
4698     _field_offset.dump2(st);
4699     st->print(")");
4700   }
4701   if (offset() != 0) {
4702     int header_size = objArrayOopDesc::header_size() * wordSize;
4703     if( _offset == Offset::top )       st->print("+undefined");
4704     else if( _offset == Offset::bottom )  st->print("+any");
4705     else if( offset() < header_size ) st->print("+%d", offset());
4706     else {
4707       BasicType basic_elem_type = elem()->basic_type();
4708       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4709       int elem_size = type2aelembytes(basic_elem_type);
4710       st->print("[%d]", (offset() - array_base)/elem_size);
4711     }
4712   }
4713   st->print(" *");
4714   if (_instance_id == InstanceTop)
4715     st->print(",iid=top");
4716   else if (_instance_id != InstanceBot)
4717     st->print(",iid=%d",_instance_id);
4718 
4719   dump_inline_depth(st);
4720   dump_speculative(st);
4721 }
4722 #endif
4723 
4724 bool TypeAryPtr::empty(void) const {
4725   if (_ary->empty())       return true;
4726   return TypeOopPtr::empty();
4727 }
4728 
4729 //------------------------------add_offset-------------------------------------
4730 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4731   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4732 }
4733 
4734 const Type *TypeAryPtr::remove_speculative() const {
4735   if (_speculative == NULL) {
4736     return this;
4737   }
4738   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4739   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4740 }
4741 
4742 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4743   if (!UseInlineDepthForSpeculativeTypes) {
4744     return this;
4745   }
4746   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4747 }
4748 
4749 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4750   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4751 }
4752 
4753 const TypePtr* TypeAryPtr::with_field_offset_and_offset(intptr_t offset) const {
4754   if (offset != Type::OffsetBot) {
4755     const Type* elemtype = elem();
4756     if (elemtype->isa_valuetype()) {
4757       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4758       if (offset >= (intptr_t)header) {
4759         // Try to get the field of the value type array element we are pointing to
4760         ciKlass* arytype_klass = klass();
4761         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4762         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4763         int shift = vak->log2_element_size();
4764         int mask = (1 << shift) - 1;
4765         intptr_t field_offset = ((offset - header) & mask);
4766         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4767         if (field == NULL) {
4768           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4769           return add_offset(offset);
4770         } else {
4771           assert(_field_offset.get() <= 0, "should not have field_offset");
4772           return with_field_offset(field_offset)->add_offset(offset - field_offset);
4773         }
4774       }
4775     }
4776   }
4777   return add_offset(offset);
4778 }
4779 
4780 //=============================================================================
4781 
4782 
4783 //=============================================================================
4784 
4785 const TypeValueTypePtr* TypeValueTypePtr::NOTNULL;
4786 //------------------------------make-------------------------------------------
4787 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth, bool narrow) {
4788   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, o, offset, instance_id, speculative, inline_depth))->hashcons();
4789 }
4790 
4791 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4792   return make(_vt, _ptr, _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4793 }
4794 
4795 //------------------------------cast_to_ptr_type-------------------------------
4796 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4797   if (ptr == _ptr) return this;
4798   return make(_vt, ptr, _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4799 }
4800 
4801 //-----------------------------cast_to_instance_id----------------------------
4802 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4803   if (instance_id == _instance_id) return this;
4804   return make(_vt, _ptr, _const_oop, _offset, instance_id, _speculative, _inline_depth);
4805 }
4806 
4807 //------------------------------meet-------------------------------------------
4808 // Compute the MEET of two types.  It returns a new Type object.
4809 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4810   // Perform a fast test for common case; meeting the same types together.
4811   if (this == t) return this;  // Meeting same type-rep?
4812 
4813   switch (t->base()) {          // switch on original type
4814     case Int:                     // Mixing ints & oops happens when javac
4815     case Long:                    // reuses local variables
4816     case FloatTop:
4817     case FloatCon:
4818     case FloatBot:
4819     case DoubleTop:
4820     case DoubleCon:
4821     case DoubleBot:
4822     case NarrowOop:
4823     case NarrowKlass:
4824     case Bottom:                  // Ye Olde Default
4825       return Type::BOTTOM;
4826 
4827     case MetadataPtr:
4828     case KlassPtr:
4829     case RawPtr:
4830     case AryPtr:
4831     case InstPtr:
4832       return TypePtr::BOTTOM;
4833 
4834     case Top:
4835       return this;
4836 
4837     default:                      // All else is a mistake
4838       typerr(t);
4839 
4840     case OopPtr: {
4841       // Found a OopPtr type vs self-ValueTypePtr type
4842       const TypeOopPtr* tp = t->is_oopptr();
4843       Offset offset = meet_offset(tp->offset());
4844       PTR ptr = meet_ptr(tp->ptr());
4845       int instance_id = meet_instance_id(tp->instance_id());
4846       const TypePtr* speculative = xmeet_speculative(tp);
4847       int depth = meet_inline_depth(tp->inline_depth());
4848       switch (tp->ptr()) {
4849       case TopPTR:
4850       case AnyNull: {
4851         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4852       }
4853       case NotNull:
4854       case BotPTR: {
4855         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4856       }
4857       default: typerr(t);
4858       }
4859     }
4860 
4861     case AnyPtr: {
4862       // Found an AnyPtr type vs self-ValueTypePtr type
4863       const TypePtr* tp = t->is_ptr();
4864       Offset offset = meet_offset(tp->offset());
4865       PTR ptr = meet_ptr(tp->ptr());
4866       int instance_id = meet_instance_id(InstanceTop);
4867       const TypePtr* speculative = xmeet_speculative(tp);
4868       int depth = meet_inline_depth(tp->inline_depth());
4869       switch (tp->ptr()) {
4870       case Null:
4871         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4872         // else fall through to AnyNull
4873       case TopPTR:
4874       case AnyNull: {
4875         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4876       }
4877       case NotNull:
4878       case BotPTR:
4879         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4880       default: typerr(t);
4881       }
4882     }
4883 
4884     case ValueTypePtr: {
4885       // Found an ValueTypePtr type vs self-ValueTypePtr type
4886       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4887       Offset offset = meet_offset(tp->offset());
4888       PTR ptr = meet_ptr(tp->ptr());
4889       int instance_id = meet_instance_id(InstanceTop);
4890       const TypePtr* speculative = xmeet_speculative(tp);
4891       int depth = meet_inline_depth(tp->inline_depth());
4892       // Compute constant oop
4893       ciObject* o = NULL;
4894       ciObject* this_oop  = const_oop();
4895       ciObject* tp_oop = tp->const_oop();
4896       const TypeValueType* vt = NULL;
4897       if (_vt != tp->_vt) {
4898         assert(is__Value() || tp->is__Value(), "impossible meet");
4899         if (above_centerline(ptr)) {
4900           vt = is__Value() ? tp->_vt : _vt;
4901         } else if (above_centerline(this->_ptr) && !above_centerline(tp->_ptr)) {
4902           vt = tp->_vt;
4903         } else if (above_centerline(tp->_ptr) && !above_centerline(this->_ptr)) {
4904           vt = _vt;
4905         } else {
4906           vt = is__Value() ? _vt : tp->_vt;
4907         }
4908       } else {
4909         vt = _vt;
4910       }
4911       if (ptr == Constant) {
4912         if (this_oop != NULL && tp_oop != NULL &&
4913             this_oop->equals(tp_oop) ) {
4914           o = this_oop;
4915         } else if (above_centerline(this ->_ptr)) {
4916           o = tp_oop;
4917         } else if (above_centerline(tp ->_ptr)) {
4918           o = this_oop;
4919         } else {
4920           ptr = NotNull;
4921         }
4922       }
4923       return make(vt, ptr, o, offset, instance_id, speculative, depth);
4924     }
4925     }
4926 }
4927 
4928 // Dual: compute field-by-field dual
4929 const Type* TypeValueTypePtr::xdual() const {
4930   return new TypeValueTypePtr(_vt, dual_ptr(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4931 }
4932 
4933 //------------------------------eq---------------------------------------------
4934 // Structural equality check for Type representations
4935 bool TypeValueTypePtr::eq(const Type* t) const {
4936   const TypeValueTypePtr* p = t->is_valuetypeptr();
4937   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4938 }
4939 
4940 //------------------------------hash-------------------------------------------
4941 // Type-specific hashing function.
4942 int TypeValueTypePtr::hash(void) const {
4943   return java_add(_vt->hash(), TypeOopPtr::hash());
4944 }
4945 
4946 //------------------------------is__Value--------------------------------------
4947 bool TypeValueTypePtr::is__Value() const {
4948   return klass()->equals(TypeKlassPtr::VALUE->klass());
4949 }
4950 
4951 //------------------------------dump2------------------------------------------
4952 #ifndef PRODUCT
4953 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4954   st->print("valuetype* ");
4955   klass()->print_name_on(st);
4956   st->print(":%s", ptr_msg[_ptr]);
4957   _offset.dump2(st);
4958 }
4959 #endif
4960 
4961 //=============================================================================
4962 
4963 //------------------------------hash-------------------------------------------
4964 // Type-specific hashing function.
4965 int TypeNarrowPtr::hash(void) const {
4966   return _ptrtype->hash() + 7;
4967 }
4968 
4969 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4970   return _ptrtype->singleton();
4971 }
4972 
4973 bool TypeNarrowPtr::empty(void) const {
4974   return _ptrtype->empty();
4975 }
4976 
4977 intptr_t TypeNarrowPtr::get_con() const {
4978   return _ptrtype->get_con();
4979 }
4980 
4981 bool TypeNarrowPtr::eq( const Type *t ) const {
4982   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4983   if (tc != NULL) {
4984     if (_ptrtype->base() != tc->_ptrtype->base()) {
4985       return false;
4986     }
4987     return tc->_ptrtype->eq(_ptrtype);
4988   }
4989   return false;
4990 }
4991 
4992 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4993   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4994   return make_same_narrowptr(odual);
4995 }
4996 
4997 
4998 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4999   if (isa_same_narrowptr(kills)) {
5000     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5001     if (ft->empty())
5002       return Type::TOP;           // Canonical empty value
5003     if (ft->isa_ptr()) {
5004       return make_hash_same_narrowptr(ft->isa_ptr());
5005     }
5006     return ft;
5007   } else if (kills->isa_ptr()) {
5008     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5009     if (ft->empty())
5010       return Type::TOP;           // Canonical empty value
5011     return ft;
5012   } else {
5013     return Type::TOP;
5014   }
5015 }
5016 
5017 //------------------------------xmeet------------------------------------------
5018 // Compute the MEET of two types.  It returns a new Type object.
5019 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5020   // Perform a fast test for common case; meeting the same types together.
5021   if( this == t ) return this;  // Meeting same type-rep?
5022 
5023   if (t->base() == base()) {
5024     const Type* result = _ptrtype->xmeet(t->make_ptr());
5025     if (result->isa_ptr()) {
5026       return make_hash_same_narrowptr(result->is_ptr());
5027     }
5028     return result;
5029   }
5030 
5031   // Current "this->_base" is NarrowKlass or NarrowOop
5032   switch (t->base()) {          // switch on original type
5033 
5034   case Int:                     // Mixing ints & oops happens when javac
5035   case Long:                    // reuses local variables
5036   case FloatTop:
5037   case FloatCon:
5038   case FloatBot:
5039   case DoubleTop:
5040   case DoubleCon:
5041   case DoubleBot:
5042   case AnyPtr:
5043   case RawPtr:
5044   case OopPtr:
5045   case InstPtr:
5046   case ValueTypePtr:
5047   case AryPtr:
5048   case MetadataPtr:
5049   case KlassPtr:
5050   case NarrowOop:
5051   case NarrowKlass:
5052 
5053   case Bottom:                  // Ye Olde Default
5054     return Type::BOTTOM;
5055   case Top:
5056     return this;
5057 
5058   default:                      // All else is a mistake
5059     typerr(t);
5060 
5061   } // End of switch
5062 
5063   return this;
5064 }
5065 
5066 #ifndef PRODUCT
5067 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5068   _ptrtype->dump2(d, depth, st);
5069 }
5070 #endif
5071 
5072 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5073 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5074 
5075 
5076 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5077   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5078 }
5079 
5080 const Type* TypeNarrowOop::remove_speculative() const {
5081   return make(_ptrtype->remove_speculative()->is_ptr());
5082 }
5083 
5084 const Type* TypeNarrowOop::cleanup_speculative() const {
5085   return make(_ptrtype->cleanup_speculative()->is_ptr());
5086 }
5087 
5088 #ifndef PRODUCT
5089 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5090   st->print("narrowoop: ");
5091   TypeNarrowPtr::dump2(d, depth, st);
5092 }
5093 #endif
5094 
5095 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5096 
5097 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5098   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5099 }
5100 
5101 #ifndef PRODUCT
5102 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5103   st->print("narrowklass: ");
5104   TypeNarrowPtr::dump2(d, depth, st);
5105 }
5106 #endif
5107 
5108 
5109 //------------------------------eq---------------------------------------------
5110 // Structural equality check for Type representations
5111 bool TypeMetadataPtr::eq( const Type *t ) const {
5112   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5113   ciMetadata* one = metadata();
5114   ciMetadata* two = a->metadata();
5115   if (one == NULL || two == NULL) {
5116     return (one == two) && TypePtr::eq(t);
5117   } else {
5118     return one->equals(two) && TypePtr::eq(t);
5119   }
5120 }
5121 
5122 //------------------------------hash-------------------------------------------
5123 // Type-specific hashing function.
5124 int TypeMetadataPtr::hash(void) const {
5125   return
5126     (metadata() ? metadata()->hash() : 0) +
5127     TypePtr::hash();
5128 }
5129 
5130 //------------------------------singleton--------------------------------------
5131 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5132 // constants
5133 bool TypeMetadataPtr::singleton(void) const {
5134   // detune optimizer to not generate constant metadata + constant offset as a constant!
5135   // TopPTR, Null, AnyNull, Constant are all singletons
5136   return (offset() == 0) && !below_centerline(_ptr);
5137 }
5138 
5139 //------------------------------add_offset-------------------------------------
5140 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5141   return make( _ptr, _metadata, xadd_offset(offset));
5142 }
5143 
5144 //-----------------------------filter------------------------------------------
5145 // Do not allow interface-vs.-noninterface joins to collapse to top.
5146 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5147   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5148   if (ft == NULL || ft->empty())
5149     return Type::TOP;           // Canonical empty value
5150   return ft;
5151 }
5152 
5153  //------------------------------get_con----------------------------------------
5154 intptr_t TypeMetadataPtr::get_con() const {
5155   assert( _ptr == Null || _ptr == Constant, "" );
5156   assert(offset() >= 0, "");
5157 
5158   if (offset() != 0) {
5159     // After being ported to the compiler interface, the compiler no longer
5160     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5161     // to a handle at compile time.  This handle is embedded in the generated
5162     // code and dereferenced at the time the nmethod is made.  Until that time,
5163     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5164     // have access to the addresses!).  This does not seem to currently happen,
5165     // but this assertion here is to help prevent its occurence.
5166     tty->print_cr("Found oop constant with non-zero offset");
5167     ShouldNotReachHere();
5168   }
5169 
5170   return (intptr_t)metadata()->constant_encoding();
5171 }
5172 
5173 //------------------------------cast_to_ptr_type-------------------------------
5174 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5175   if( ptr == _ptr ) return this;
5176   return make(ptr, metadata(), _offset);
5177 }
5178 
5179 //------------------------------meet-------------------------------------------
5180 // Compute the MEET of two types.  It returns a new Type object.
5181 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5182   // Perform a fast test for common case; meeting the same types together.
5183   if( this == t ) return this;  // Meeting same type-rep?
5184 
5185   // Current "this->_base" is OopPtr
5186   switch (t->base()) {          // switch on original type
5187 
5188   case Int:                     // Mixing ints & oops happens when javac
5189   case Long:                    // reuses local variables
5190   case FloatTop:
5191   case FloatCon:
5192   case FloatBot:
5193   case DoubleTop:
5194   case DoubleCon:
5195   case DoubleBot:
5196   case NarrowOop:
5197   case NarrowKlass:
5198   case Bottom:                  // Ye Olde Default
5199     return Type::BOTTOM;
5200   case Top:
5201     return this;
5202 
5203   default:                      // All else is a mistake
5204     typerr(t);
5205 
5206   case AnyPtr: {
5207     // Found an AnyPtr type vs self-OopPtr type
5208     const TypePtr *tp = t->is_ptr();
5209     Offset offset = meet_offset(tp->offset());
5210     PTR ptr = meet_ptr(tp->ptr());
5211     switch (tp->ptr()) {
5212     case Null:
5213       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5214       // else fall through:
5215     case TopPTR:
5216     case AnyNull: {
5217       return make(ptr, _metadata, offset);
5218     }
5219     case BotPTR:
5220     case NotNull:
5221       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5222     default: typerr(t);
5223     }
5224   }
5225 
5226   case RawPtr:
5227   case KlassPtr:
5228   case OopPtr:
5229   case InstPtr:
5230   case ValueTypePtr:
5231   case AryPtr:
5232     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5233 
5234   case MetadataPtr: {
5235     const TypeMetadataPtr *tp = t->is_metadataptr();
5236     Offset offset = meet_offset(tp->offset());
5237     PTR tptr = tp->ptr();
5238     PTR ptr = meet_ptr(tptr);
5239     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5240     if (tptr == TopPTR || _ptr == TopPTR ||
5241         metadata()->equals(tp->metadata())) {
5242       return make(ptr, md, offset);
5243     }
5244     // metadata is different
5245     if( ptr == Constant ) {  // Cannot be equal constants, so...
5246       if( tptr == Constant && _ptr != Constant)  return t;
5247       if( _ptr == Constant && tptr != Constant)  return this;
5248       ptr = NotNull;            // Fall down in lattice
5249     }
5250     return make(ptr, NULL, offset);
5251     break;
5252   }
5253   } // End of switch
5254   return this;                  // Return the double constant
5255 }
5256 
5257 
5258 //------------------------------xdual------------------------------------------
5259 // Dual of a pure metadata pointer.
5260 const Type *TypeMetadataPtr::xdual() const {
5261   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5262 }
5263 
5264 //------------------------------dump2------------------------------------------
5265 #ifndef PRODUCT
5266 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5267   st->print("metadataptr:%s", ptr_msg[_ptr]);
5268   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5269   switch (offset()) {
5270   case OffsetTop: st->print("+top"); break;
5271   case OffsetBot: st->print("+any"); break;
5272   case         0: break;
5273   default:        st->print("+%d",offset()); break;
5274   }
5275 }
5276 #endif
5277 
5278 
5279 //=============================================================================
5280 // Convenience common pre-built type.
5281 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5282 
5283 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5284   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5285 }
5286 
5287 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5288   return make(Constant, m, Offset(0));
5289 }
5290 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5291   return make(Constant, m, Offset(0));
5292 }
5293 
5294 //------------------------------make-------------------------------------------
5295 // Create a meta data constant
5296 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5297   assert(m == NULL || !m->is_klass(), "wrong type");
5298   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5299 }
5300 
5301 
5302 //=============================================================================
5303 // Convenience common pre-built types.
5304 
5305 // Not-null object klass or below
5306 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5307 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5308 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5309 const TypeKlassPtr *TypeKlassPtr::VALUE;
5310 
5311 //------------------------------TypeKlassPtr-----------------------------------
5312 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5313   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5314 }
5315 
5316 //------------------------------make-------------------------------------------
5317 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5318 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5319   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5320   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5321 }
5322 
5323 //------------------------------eq---------------------------------------------
5324 // Structural equality check for Type representations
5325 bool TypeKlassPtr::eq( const Type *t ) const {
5326   const TypeKlassPtr *p = t->is_klassptr();
5327   return klass() == p->klass() && TypePtr::eq(p);
5328 }
5329 
5330 //------------------------------hash-------------------------------------------
5331 // Type-specific hashing function.
5332 int TypeKlassPtr::hash(void) const {
5333   return java_add(klass() != NULL ? klass()->hash() : 0, TypePtr::hash());
5334 }
5335 
5336 //------------------------------singleton--------------------------------------
5337 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5338 // constants
5339 bool TypeKlassPtr::singleton(void) const {
5340   // detune optimizer to not generate constant klass + constant offset as a constant!
5341   // TopPTR, Null, AnyNull, Constant are all singletons
5342   return (offset() == 0) && !below_centerline(_ptr);
5343 }
5344 
5345 // Do not allow interface-vs.-noninterface joins to collapse to top.
5346 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5347   // logic here mirrors the one from TypeOopPtr::filter. See comments
5348   // there.
5349   const Type* ft = join_helper(kills, include_speculative);
5350   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5351   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5352 
5353   if (ft->empty()) {
5354     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5355       return kills;             // Uplift to interface
5356 
5357     return Type::TOP;           // Canonical empty value
5358   }
5359 
5360   // Interface klass type could be exact in opposite to interface type,
5361   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5362   if (ftkp != NULL && ktkp != NULL &&
5363       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5364       !ftkp->klass_is_exact() && // Keep exact interface klass
5365       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5366     return ktkp->cast_to_ptr_type(ftkp->ptr());
5367   }
5368 
5369   return ft;
5370 }
5371 
5372 //----------------------compute_klass------------------------------------------
5373 // Compute the defining klass for this class
5374 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5375   // Compute _klass based on element type.
5376   ciKlass* k_ary = NULL;
5377   const TypeAryPtr *tary;
5378   const Type* el = elem();
5379   if (el->isa_narrowoop()) {
5380     el = el->make_ptr();
5381   }
5382 
5383   // Get element klass
5384   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5385     // Compute object array klass from element klass
5386     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5387   } else if (el->isa_valuetype()) {
5388     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5389   } else if ((tary = el->isa_aryptr()) != NULL) {
5390     // Compute array klass from element klass
5391     ciKlass* k_elem = tary->klass();
5392     // If element type is something like bottom[], k_elem will be null.
5393     if (k_elem != NULL)
5394       k_ary = ciObjArrayKlass::make(k_elem);
5395   } else if ((el->base() == Type::Top) ||
5396              (el->base() == Type::Bottom)) {
5397     // element type of Bottom occurs from meet of basic type
5398     // and object; Top occurs when doing join on Bottom.
5399     // Leave k_ary at NULL.
5400   } else {
5401     // Cannot compute array klass directly from basic type,
5402     // since subtypes of TypeInt all have basic type T_INT.
5403 #ifdef ASSERT
5404     if (verify && el->isa_int()) {
5405       // Check simple cases when verifying klass.
5406       BasicType bt = T_ILLEGAL;
5407       if (el == TypeInt::BYTE) {
5408         bt = T_BYTE;
5409       } else if (el == TypeInt::SHORT) {
5410         bt = T_SHORT;
5411       } else if (el == TypeInt::CHAR) {
5412         bt = T_CHAR;
5413       } else if (el == TypeInt::INT) {
5414         bt = T_INT;
5415       } else {
5416         return _klass; // just return specified klass
5417       }
5418       return ciTypeArrayKlass::make(bt);
5419     }
5420 #endif
5421     assert(!el->isa_int(),
5422            "integral arrays must be pre-equipped with a class");
5423     // Compute array klass directly from basic type
5424     k_ary = ciTypeArrayKlass::make(el->basic_type());
5425   }
5426   return k_ary;
5427 }
5428 
5429 //------------------------------klass------------------------------------------
5430 // Return the defining klass for this class
5431 ciKlass* TypeAryPtr::klass() const {
5432   if( _klass ) return _klass;   // Return cached value, if possible
5433 
5434   // Oops, need to compute _klass and cache it
5435   ciKlass* k_ary = compute_klass();
5436 
5437   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5438     // The _klass field acts as a cache of the underlying
5439     // ciKlass for this array type.  In order to set the field,
5440     // we need to cast away const-ness.
5441     //
5442     // IMPORTANT NOTE: we *never* set the _klass field for the
5443     // type TypeAryPtr::OOPS.  This Type is shared between all
5444     // active compilations.  However, the ciKlass which represents
5445     // this Type is *not* shared between compilations, so caching
5446     // this value would result in fetching a dangling pointer.
5447     //
5448     // Recomputing the underlying ciKlass for each request is
5449     // a bit less efficient than caching, but calls to
5450     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5451     ((TypeAryPtr*)this)->_klass = k_ary;
5452     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5453         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5454       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5455     }
5456   }
5457   return k_ary;
5458 }
5459 
5460 
5461 //------------------------------add_offset-------------------------------------
5462 // Access internals of klass object
5463 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5464   return make( _ptr, klass(), xadd_offset(offset) );
5465 }
5466 
5467 //------------------------------cast_to_ptr_type-------------------------------
5468 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5469   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5470   if( ptr == _ptr ) return this;
5471   return make(ptr, _klass, _offset);
5472 }
5473 
5474 
5475 //-----------------------------cast_to_exactness-------------------------------
5476 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5477   if( klass_is_exact == _klass_is_exact ) return this;
5478   if (!UseExactTypes)  return this;
5479   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5480 }
5481 
5482 
5483 //-----------------------------as_instance_type--------------------------------
5484 // Corresponding type for an instance of the given class.
5485 // It will be NotNull, and exact if and only if the klass type is exact.
5486 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5487   ciKlass* k = klass();
5488   assert(k != NULL, "klass should not be NULL");
5489   bool    xk = klass_is_exact();
5490   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5491   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5492   guarantee(toop != NULL, "need type for given klass");
5493   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5494   return toop->cast_to_exactness(xk)->is_oopptr();
5495 }
5496 
5497 
5498 //------------------------------xmeet------------------------------------------
5499 // Compute the MEET of two types, return a new Type object.
5500 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5501   // Perform a fast test for common case; meeting the same types together.
5502   if( this == t ) return this;  // Meeting same type-rep?
5503 
5504   // Current "this->_base" is Pointer
5505   switch (t->base()) {          // switch on original type
5506 
5507   case Int:                     // Mixing ints & oops happens when javac
5508   case Long:                    // reuses local variables
5509   case FloatTop:
5510   case FloatCon:
5511   case FloatBot:
5512   case DoubleTop:
5513   case DoubleCon:
5514   case DoubleBot:
5515   case NarrowOop:
5516   case NarrowKlass:
5517   case Bottom:                  // Ye Olde Default
5518     return Type::BOTTOM;
5519   case Top:
5520     return this;
5521 
5522   default:                      // All else is a mistake
5523     typerr(t);
5524 
5525   case AnyPtr: {                // Meeting to AnyPtrs
5526     // Found an AnyPtr type vs self-KlassPtr type
5527     const TypePtr *tp = t->is_ptr();
5528     Offset offset = meet_offset(tp->offset());
5529     PTR ptr = meet_ptr(tp->ptr());
5530     switch (tp->ptr()) {
5531     case TopPTR:
5532       return this;
5533     case Null:
5534       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5535     case AnyNull:
5536       return make( ptr, klass(), offset );
5537     case BotPTR:
5538     case NotNull:
5539       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5540     default: typerr(t);
5541     }
5542   }
5543 
5544   case RawPtr:
5545   case MetadataPtr:
5546   case OopPtr:
5547   case AryPtr:                  // Meet with AryPtr
5548   case InstPtr:                 // Meet with InstPtr
5549   case ValueTypePtr:
5550     return TypePtr::BOTTOM;
5551 
5552   //
5553   //             A-top         }
5554   //           /   |   \       }  Tops
5555   //       B-top A-any C-top   }
5556   //          | /  |  \ |      }  Any-nulls
5557   //       B-any   |   C-any   }
5558   //          |    |    |
5559   //       B-con A-con C-con   } constants; not comparable across classes
5560   //          |    |    |
5561   //       B-not   |   C-not   }
5562   //          | \  |  / |      }  not-nulls
5563   //       B-bot A-not C-bot   }
5564   //           \   |   /       }  Bottoms
5565   //             A-bot         }
5566   //
5567 
5568   case KlassPtr: {  // Meet two KlassPtr types
5569     const TypeKlassPtr *tkls = t->is_klassptr();
5570     Offset  off  = meet_offset(tkls->offset());
5571     PTR  ptr     = meet_ptr(tkls->ptr());
5572 
5573     if (klass() == NULL || tkls->klass() == NULL) {
5574       ciKlass* k = NULL;
5575       if (ptr == Constant) {
5576         k = (klass() == NULL) ? tkls->klass() : klass();
5577       }
5578       return make(ptr, k, off);
5579     }
5580 
5581     // Check for easy case; klasses are equal (and perhaps not loaded!)
5582     // If we have constants, then we created oops so classes are loaded
5583     // and we can handle the constants further down.  This case handles
5584     // not-loaded classes
5585     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5586       return make( ptr, klass(), off );
5587     }
5588 
5589     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5590     ciKlass* tkls_klass = tkls->klass();
5591     ciKlass* this_klass = this->klass();
5592     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5593     assert( this_klass->is_loaded(), "This class should have been loaded.");
5594 
5595     // If 'this' type is above the centerline and is a superclass of the
5596     // other, we can treat 'this' as having the same type as the other.
5597     if ((above_centerline(this->ptr())) &&
5598         tkls_klass->is_subtype_of(this_klass)) {
5599       this_klass = tkls_klass;
5600     }
5601     // If 'tinst' type is above the centerline and is a superclass of the
5602     // other, we can treat 'tinst' as having the same type as the other.
5603     if ((above_centerline(tkls->ptr())) &&
5604         this_klass->is_subtype_of(tkls_klass)) {
5605       tkls_klass = this_klass;
5606     }
5607 
5608     // Check for classes now being equal
5609     if (tkls_klass->equals(this_klass)) {
5610       // If the klasses are equal, the constants may still differ.  Fall to
5611       // NotNull if they do (neither constant is NULL; that is a special case
5612       // handled elsewhere).
5613       if( ptr == Constant ) {
5614         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5615             this->klass()->equals(tkls->klass()));
5616         else if (above_centerline(this->ptr()));
5617         else if (above_centerline(tkls->ptr()));
5618         else
5619           ptr = NotNull;
5620       }
5621       return make( ptr, this_klass, off );
5622     } // Else classes are not equal
5623 
5624     // Since klasses are different, we require the LCA in the Java
5625     // class hierarchy - which means we have to fall to at least NotNull.
5626     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5627       ptr = NotNull;
5628     // Now we find the LCA of Java classes
5629     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5630     return   make( ptr, k, off );
5631   } // End of case KlassPtr
5632 
5633   } // End of switch
5634   return this;                  // Return the double constant
5635 }
5636 
5637 //------------------------------xdual------------------------------------------
5638 // Dual: compute field-by-field dual
5639 const Type    *TypeKlassPtr::xdual() const {
5640   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5641 }
5642 
5643 //------------------------------get_con----------------------------------------
5644 intptr_t TypeKlassPtr::get_con() const {
5645   assert( _ptr == Null || _ptr == Constant, "" );
5646   assert(offset() >= 0, "");
5647 
5648   if (offset() != 0) {
5649     // After being ported to the compiler interface, the compiler no longer
5650     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5651     // to a handle at compile time.  This handle is embedded in the generated
5652     // code and dereferenced at the time the nmethod is made.  Until that time,
5653     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5654     // have access to the addresses!).  This does not seem to currently happen,
5655     // but this assertion here is to help prevent its occurence.
5656     tty->print_cr("Found oop constant with non-zero offset");
5657     ShouldNotReachHere();
5658   }
5659 
5660   return (intptr_t)klass()->constant_encoding();
5661 }
5662 //------------------------------dump2------------------------------------------
5663 // Dump Klass Type
5664 #ifndef PRODUCT
5665 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5666   switch( _ptr ) {
5667   case Constant:
5668     st->print("precise ");
5669   case NotNull:
5670     {
5671       if (klass() != NULL) {
5672         const char* name = klass()->name()->as_utf8();
5673         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5674       } else {
5675         st->print("klass BOTTOM");
5676       }
5677     }
5678   case BotPTR:
5679     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5680   case TopPTR:
5681   case AnyNull:
5682     st->print(":%s", ptr_msg[_ptr]);
5683     if( _klass_is_exact ) st->print(":exact");
5684     break;
5685   default:
5686     break;
5687   }
5688 
5689   _offset.dump2(st);
5690 
5691   st->print(" *");
5692 }
5693 #endif
5694 
5695 
5696 
5697 //=============================================================================
5698 // Convenience common pre-built types.
5699 
5700 //------------------------------make-------------------------------------------
5701 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5702                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5703   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5704 }
5705 
5706 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5707   return make(domain, domain, range, range);
5708 }
5709 
5710 //------------------------------make-------------------------------------------
5711 const TypeFunc *TypeFunc::make(ciMethod* method) {
5712   Compile* C = Compile::current();
5713   const TypeFunc* tf = C->last_tf(method); // check cache
5714   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5715   const TypeTuple *domain_sig, *domain_cc;
5716   // Value type arguments are not passed by reference, instead each
5717   // field of the value type is passed as an argument. We maintain 2
5718   // views of the argument list here: one based on the signature (with
5719   // a value type argument as a single slot), one based on the actual
5720   // calling convention (with a value type argument as a list of its
5721   // fields).
5722   if (method->is_static()) {
5723     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5724     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5725   } else {
5726     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5727     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5728   }
5729   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5730   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5731   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5732   C->set_last_tf(method, tf);  // fill cache
5733   return tf;
5734 }
5735 
5736 //------------------------------meet-------------------------------------------
5737 // Compute the MEET of two types.  It returns a new Type object.
5738 const Type *TypeFunc::xmeet( const Type *t ) const {
5739   // Perform a fast test for common case; meeting the same types together.
5740   if( this == t ) return this;  // Meeting same type-rep?
5741 
5742   // Current "this->_base" is Func
5743   switch (t->base()) {          // switch on original type
5744 
5745   case Bottom:                  // Ye Olde Default
5746     return t;
5747 
5748   default:                      // All else is a mistake
5749     typerr(t);
5750 
5751   case Top:
5752     break;
5753   }
5754   return this;                  // Return the double constant
5755 }
5756 
5757 //------------------------------xdual------------------------------------------
5758 // Dual: compute field-by-field dual
5759 const Type *TypeFunc::xdual() const {
5760   return this;
5761 }
5762 
5763 //------------------------------eq---------------------------------------------
5764 // Structural equality check for Type representations
5765 bool TypeFunc::eq( const Type *t ) const {
5766   const TypeFunc *a = (const TypeFunc*)t;
5767   return _domain_sig == a->_domain_sig &&
5768     _domain_cc == a->_domain_cc &&
5769     _range_sig == a->_range_sig &&
5770     _range_cc == a->_range_cc;
5771 }
5772 
5773 //------------------------------hash-------------------------------------------
5774 // Type-specific hashing function.
5775 int TypeFunc::hash(void) const {
5776   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5777 }
5778 
5779 //------------------------------dump2------------------------------------------
5780 // Dump Function Type
5781 #ifndef PRODUCT
5782 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5783   if( _range_sig->cnt() <= Parms )
5784     st->print("void");
5785   else {
5786     uint i;
5787     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5788       _range_sig->field_at(i)->dump2(d,depth,st);
5789       st->print("/");
5790     }
5791     _range_sig->field_at(i)->dump2(d,depth,st);
5792   }
5793   st->print(" ");
5794   st->print("( ");
5795   if( !depth || d[this] ) {     // Check for recursive dump
5796     st->print("...)");
5797     return;
5798   }
5799   d.Insert((void*)this,(void*)this);    // Stop recursion
5800   if (Parms < _domain_sig->cnt())
5801     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5802   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5803     st->print(", ");
5804     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5805   }
5806   st->print(" )");
5807 }
5808 #endif
5809 
5810 //------------------------------singleton--------------------------------------
5811 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5812 // constants (Ldi nodes).  Singletons are integer, float or double constants
5813 // or a single symbol.
5814 bool TypeFunc::singleton(void) const {
5815   return false;                 // Never a singleton
5816 }
5817 
5818 bool TypeFunc::empty(void) const {
5819   return false;                 // Never empty
5820 }
5821 
5822 
5823 BasicType TypeFunc::return_type() const{
5824   if (range_sig()->cnt() == TypeFunc::Parms) {
5825     return T_VOID;
5826   }
5827   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5828 }