1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciValueKlass.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/castnode.hpp"
  29 #include "opto/graphKit.hpp"
  30 #include "opto/rootnode.hpp"
  31 #include "opto/valuetypenode.hpp"
  32 #include "opto/phaseX.hpp"
  33 
  34 // Clones the values type to handle control flow merges involving multiple value types.
  35 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
  36 ValueTypeBaseNode* ValueTypeBaseNode::clone_with_phis(PhaseGVN* gvn, Node* region) {
  37   assert(!has_phi_inputs(region), "already cloned with phis");
  38   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
  39 
  40   // Create a PhiNode for merging the oop values
  41   const TypeValueTypePtr* vtptr = value_type_ptr();
  42   vtptr = vtptr->cast_to_ptr_type(TypePtr::BotPTR)->is_valuetypeptr();
  43   PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr);
  44   gvn->set_type(oop, vtptr);
  45   vt->set_oop(oop);
  46 
  47   // Create a PhiNode each for merging the field values
  48   for (uint i = 0; i < vt->field_count(); ++i) {
  49     ciType* type = vt->field_type(i);
  50     Node*  value = vt->field_value(i);
  51     if (type->is_valuetype()) {
  52       // Handle flattened value type fields recursively
  53       value = value->as_ValueType()->clone_with_phis(gvn, region);
  54     } else {
  55       const Type* phi_type = Type::get_const_type(type);
  56       value = PhiNode::make(region, value, phi_type);
  57       gvn->set_type(value, phi_type);
  58     }
  59     vt->set_field_value(i, value);
  60   }
  61   gvn->set_type(vt, vt->bottom_type());
  62   return vt;
  63 }
  64 
  65 // Checks if the inputs of the ValueBaseTypeNode were replaced by PhiNodes
  66 // for the given region (see ValueBaseTypeNode::clone_with_phis).
  67 bool ValueTypeBaseNode::has_phi_inputs(Node* region) {
  68   // Check oop input
  69   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
  70 #ifdef ASSERT
  71   if (result) {
  72     // Check all field value inputs for consistency
  73     for (uint i = Oop; i < field_count(); ++i) {
  74       Node* n = in(i);
  75       if (n->is_ValueTypeBase()) {
  76         assert(n->as_ValueTypeBase()->has_phi_inputs(region), "inconsistent phi inputs");
  77       } else {
  78         assert(n->is_Phi() && n->as_Phi()->region() == region, "inconsistent phi inputs");
  79       }
  80     }
  81   }
  82 #endif
  83   return result;
  84 }
  85 
  86 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
  87 ValueTypeBaseNode* ValueTypeBaseNode::merge_with(PhaseGVN* gvn, const ValueTypeBaseNode* other, int pnum, bool transform) {
  88   // Merge oop inputs
  89   PhiNode* phi = get_oop()->as_Phi();
  90   phi->set_req(pnum, other->get_oop());
  91   if (transform) {
  92     set_oop(gvn->transform(phi));
  93     gvn->record_for_igvn(phi);
  94   }
  95   // Merge field values
  96   for (uint i = 0; i < field_count(); ++i) {
  97     Node* val1 =        field_value(i);
  98     Node* val2 = other->field_value(i);
  99     if (val1->isa_ValueType()) {
 100       val1->as_ValueType()->merge_with(gvn, val2->as_ValueType(), pnum, transform);
 101     } else {
 102       assert(val1->is_Phi(), "must be a phi node");
 103       assert(!val2->is_ValueType(), "inconsistent merge values");
 104       val1->set_req(pnum, val2);
 105     }
 106     if (transform) {
 107       set_field_value(i, gvn->transform(val1));
 108       gvn->record_for_igvn(val1);
 109     }
 110   }
 111   return this;
 112 }
 113 
 114 Node* ValueTypeBaseNode::field_value(uint index) const {
 115   assert(index < field_count(), "index out of bounds");
 116   return in(Values + index);
 117 }
 118 
 119 // Get the value of the field at the given offset.
 120 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 121 Node* ValueTypeBaseNode::field_value_by_offset(int offset, bool recursive) const {
 122   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 123   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 124   int index = value_klass()->field_index_by_offset(offset);
 125   int sub_offset = offset - field_offset(index);
 126   Node* value = field_value(index);
 127   assert(value != NULL, "field value not found");
 128   if (recursive && value->is_ValueType()) {
 129     ValueTypeNode* vt = value->as_ValueType();
 130     if (field_is_flattened(index)) {
 131       // Flattened value type field
 132       sub_offset += vt->value_klass()->first_field_offset(); // Add header size
 133       return vt->field_value_by_offset(sub_offset, recursive);
 134     } else {
 135       assert(sub_offset == 0, "should not have a sub offset");
 136       return vt;
 137     }
 138   }
 139   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 140   assert(sub_offset == 0, "offset mismatch");
 141   return value;
 142 }
 143 
 144 void ValueTypeBaseNode::set_field_value(uint index, Node* value) {
 145   assert(index < field_count(), "index out of bounds");
 146   set_req(Values + index, value);
 147 }
 148 
 149 int ValueTypeBaseNode::field_offset(uint index) const {
 150   assert(index < field_count(), "index out of bounds");
 151   return value_klass()->declared_nonstatic_field_at(index)->offset();
 152 }
 153 
 154 ciType* ValueTypeBaseNode::field_type(uint index) const {
 155   assert(index < field_count(), "index out of bounds");
 156   return value_klass()->declared_nonstatic_field_at(index)->type();
 157 }
 158 
 159 bool ValueTypeBaseNode::field_is_flattened(uint index) const {
 160   assert(index < field_count(), "index out of bounds");
 161   return value_klass()->declared_nonstatic_field_at(index)->is_flattened();
 162 }
 163 
 164 int ValueTypeBaseNode::make_scalar_in_safepoint(Unique_Node_List& worklist, SafePointNode* sfpt, Node* root, PhaseGVN* gvn) {
 165   ciValueKlass* vk = value_klass();
 166   uint nfields = vk->nof_nonstatic_fields();
 167   JVMState* jvms = sfpt->jvms();
 168   int start = jvms->debug_start();
 169   int end   = jvms->debug_end();
 170   // Replace safepoint edge by SafePointScalarObjectNode and add field values
 171   assert(jvms != NULL, "missing JVMS");
 172   uint first_ind = (sfpt->req() - jvms->scloff());
 173   const TypeValueTypePtr* res_type = value_type_ptr();
 174   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 175 #ifdef ASSERT
 176                                                                   NULL,
 177 #endif
 178                                                                   first_ind, nfields);
 179   sobj->init_req(0, root);
 180   // Iterate over the value type fields in order of increasing
 181   // offset and add the field values to the safepoint.
 182   for (uint j = 0; j < nfields; ++j) {
 183     int offset = vk->nonstatic_field_at(j)->offset();
 184     Node* value = field_value_by_offset(offset, true /* include flattened value type fields */);
 185     if (value->is_ValueType()) {
 186       if (value->as_ValueType()->is_allocated(gvn)) {
 187         value = value->as_ValueType()->get_oop();
 188       } else {
 189         // Add non-flattened value type field to the worklist to process later
 190         worklist.push(value);
 191       }
 192     }
 193     sfpt->add_req(value);
 194   }
 195   jvms->set_endoff(sfpt->req());
 196   if (gvn != NULL) {
 197     sobj = gvn->transform(sobj)->as_SafePointScalarObject();
 198     gvn->igvn_rehash_node_delayed(sfpt);
 199   }
 200   return sfpt->replace_edges_in_range(this, sobj, start, end);
 201 }
 202 
 203 void ValueTypeBaseNode::make_scalar_in_safepoints(Node* root, PhaseGVN* gvn) {
 204   // Process all safepoint uses and scalarize value type
 205   Unique_Node_List worklist;
 206   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 207     Node* u = fast_out(i);
 208     if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 209       SafePointNode* sfpt = u->as_SafePoint();
 210       Node* in_oop = get_oop();
 211       const Type* oop_type = in_oop->bottom_type();
 212       assert(Opcode() == Op_ValueTypePtr || !isa_ValueType()->is_allocated(gvn), "already heap allocated value types should be linked directly");
 213       int nb = make_scalar_in_safepoint(worklist, sfpt, root, gvn);
 214       --i; imax -= nb;
 215     }
 216   }
 217   // Now scalarize non-flattened fields
 218   for (uint i = 0; i < worklist.size(); ++i) {
 219     Node* vt = worklist.at(i);
 220     vt->as_ValueType()->make_scalar_in_safepoints(root, gvn);
 221   }
 222 }
 223 
 224 void ValueTypeBaseNode::make(PhaseGVN* gvn, Node*& ctl, Node* mem, Node* n, ValueTypeBaseNode* vt, ciValueKlass* base_vk, int base_offset, int base_input, bool in) {
 225   assert(base_offset >= 0, "offset in value type always positive");
 226   for (uint i = 0; i < vt->field_count(); i++) {
 227     ciType* field_type = vt->field_type(i);
 228     int offset = base_offset + vt->field_offset(i);
 229     if (field_type->is_valuetype() && vt->field_is_flattened(i)) {
 230       ciValueKlass* embedded_vk = field_type->as_value_klass();
 231       ValueTypeNode* embedded_vt = ValueTypeNode::make(*gvn, embedded_vk);
 232       ValueTypeBaseNode::make(gvn, ctl, mem, n, embedded_vt, base_vk, offset - vt->value_klass()->first_field_offset(), base_input, in);
 233       vt->set_field_value(i, gvn->transform(embedded_vt));
 234     } else {
 235       int j = 0; int extra = 0;
 236       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 237         ciField* f = base_vk->nonstatic_field_at(j);
 238         if (offset == f->offset()) {
 239           assert(f->type() == field_type, "inconsistent field type");
 240           break;
 241         }
 242         BasicType bt = f->type()->basic_type();
 243         if (bt == T_LONG || bt == T_DOUBLE) {
 244           extra++;
 245         }
 246       }
 247       assert(j != base_vk->nof_nonstatic_fields(), "must find");
 248       Node* parm = NULL;
 249       if (n->is_Start()) {
 250         assert(in, "return from start?");
 251         parm = gvn->transform(new ParmNode(n->as_Start(), base_input + j + extra));
 252       } else {
 253         if (in) {
 254           assert(n->is_Call(), "nothing else here");
 255           parm = n->in(base_input + j + extra);
 256         } else {
 257           parm = gvn->transform(new ProjNode(n->as_Call(), base_input + j + extra));
 258         }
 259       }
 260       if (field_type->is_valuetype()) {
 261         // Non-flattened value type field, check for null
 262         parm = ValueTypeNode::make(*gvn, ctl, mem, parm, /* null_check */ true);
 263 
 264       }
 265       vt->set_field_value(i, parm);
 266       // Record all these guys for later GVN.
 267       gvn->record_for_igvn(parm);
 268     }
 269   }
 270 }
 271 
 272 void ValueTypeBaseNode::load(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 273   // Initialize the value type by loading its field values from
 274   // memory and adding the values as input edges to the node.
 275   for (uint i = 0; i < field_count(); ++i) {
 276     int offset = holder_offset + field_offset(i);
 277     ciType* ftype = field_type(i);
 278     Node* value = NULL;
 279     if (ftype->is_valuetype() && field_is_flattened(i)) {
 280       // Recursively load the flattened value type field
 281       value = ValueTypeNode::make(gvn, ftype->as_value_klass(), ctl, mem, base, ptr, holder, offset);
 282     } else {
 283       const Type* con_type = NULL;
 284       if (base->is_Con()) {
 285         // If the oop to the value type is constant (static final field), we can
 286         // also treat the fields as constants because the value type is immutable.
 287         const TypeOopPtr* oop_ptr = base->bottom_type()->isa_oopptr();
 288         ciObject* constant_oop = oop_ptr->const_oop();
 289         ciField* field = holder->get_field_by_offset(offset, false);
 290         ciConstant constant = constant_oop->as_instance()->field_value(field);
 291         con_type = Type::make_from_constant(constant, /*require_const=*/ true);
 292       }
 293       if (con_type != NULL) {
 294         // Found a constant field value
 295         value = gvn.transform(gvn.makecon(con_type));
 296         if (con_type->isa_valuetypeptr()) {
 297           // Constant, non-flattened value type field
 298           value = ValueTypeNode::make(gvn, ctl, mem, value);
 299         }
 300       } else {
 301         // Load field value from memory
 302         const Type* base_type = gvn.type(base);
 303         const TypePtr* adr_type = NULL;
 304         if (base_type->isa_aryptr()) {
 305           // In the case of a flattened value type array, each field has its own slice
 306           adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 307         } else {
 308           ciField* field = holder->get_field_by_offset(offset, false);
 309           adr_type = gvn.C->alias_type(field)->adr_type();
 310         }
 311         Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset)));
 312         BasicType bt = type2field[ftype->basic_type()];
 313         const Type* ft = Type::get_const_type(ftype);
 314         if (bt == T_VALUETYPE) {
 315           ft = ft->is_valuetypeptr()->cast_to_ptr_type(TypePtr::BotPTR);
 316         }
 317         assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 318         value = gvn.transform(LoadNode::make(gvn, NULL, mem, adr, adr_type, ft, bt, MemNode::unordered));
 319         if (bt == T_VALUETYPE) {
 320           // Non-flattened value type field, check for null
 321           value = ValueTypeNode::make(gvn, ctl, mem, value, /* null_check */ true);
 322         }
 323       }
 324     }
 325     set_field_value(i, value);
 326   }
 327 }
 328 
 329 void ValueTypeBaseNode::store_flattened(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 330   // The value type is embedded into the object without an oop header. Subtract the
 331   // offset of the first field to account for the missing header when storing the values.
 332   holder_offset -= value_klass()->first_field_offset();
 333   store(kit, base, ptr, holder, holder_offset);
 334 }
 335 
 336 void ValueTypeBaseNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 337   if (holder == NULL) {
 338     holder = value_klass();
 339   }
 340   // Write field values to memory
 341   for (uint i = 0; i < field_count(); ++i) {
 342     int offset = holder_offset + field_offset(i);
 343     Node* value = field_value(i);
 344     if (value->is_ValueType() && field_is_flattened(i)) {
 345       // Recursively store the flattened value type field
 346       value->isa_ValueType()->store_flattened(kit, base, ptr, holder, offset);
 347     } else {
 348       const Type* base_type = kit->gvn().type(base);
 349       const TypePtr* adr_type = NULL;
 350       if (base_type->isa_aryptr()) {
 351         // In the case of a flattened value type array, each field has its own slice
 352         adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 353       } else {
 354         ciField* field = holder->get_field_by_offset(offset, false);
 355         adr_type = kit->C->alias_type(field)->adr_type();
 356       }
 357       Node* adr = kit->basic_plus_adr(base, ptr, offset);
 358       BasicType bt = type2field[field_type(i)->basic_type()];
 359       if (is_java_primitive(bt)) {
 360         kit->store_to_memory(kit->control(), adr, value, bt, adr_type, MemNode::unordered);
 361       } else {
 362         const TypeOopPtr* ft = TypeOopPtr::make_from_klass(field_type(i)->as_klass());
 363         // Field may be NULL
 364         ft = ft->cast_to_ptr_type(TypePtr::BotPTR)->is_oopptr();
 365         assert(adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 366         bool is_array = base_type->isa_aryptr() != NULL;
 367         kit->store_oop(kit->control(), base, adr, adr_type, value, ft, bt, is_array, MemNode::unordered);
 368       }
 369     }
 370   }
 371 }
 372 
 373 ValueTypeBaseNode* ValueTypeBaseNode::allocate(GraphKit* kit) {
 374   Node* in_oop = get_oop();
 375   Node* null_ctl = kit->top();
 376   // Check if value type is already allocated
 377   Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl);
 378   if (null_ctl->is_top()) {
 379     // Value type is allocated
 380     return this;
 381   }
 382   // Not able to prove that value type is allocated.
 383   // Emit runtime check that may be folded later.
 384   assert(!is_allocated(&kit->gvn()), "should not be allocated");
 385   const TypeValueTypePtr* vtptr_type = bottom_type()->isa_valuetypeptr();
 386   if (vtptr_type == NULL) {
 387     vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 388   }
 389   RegionNode* region = new RegionNode(3);
 390   PhiNode* oop = new PhiNode(region, vtptr_type);
 391   PhiNode* io  = new PhiNode(region, Type::ABIO);
 392   PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 393 
 394   // Oop is non-NULL, use it
 395   region->init_req(1, kit->control());
 396   oop   ->init_req(1, not_null_oop);
 397   io    ->init_req(1, kit->i_o());
 398   mem   ->init_req(1, kit->merged_memory());
 399 
 400   // Oop is NULL, allocate value type
 401   kit->set_control(null_ctl);
 402   kit->kill_dead_locals();
 403   ciValueKlass* vk = value_klass();
 404   Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 405   Node* alloc_oop  = kit->new_instance(klass_node, NULL, NULL, false, this);
 406   // Write field values to memory
 407   store(kit, alloc_oop, alloc_oop, vk);
 408   region->init_req(2, kit->control());
 409   oop   ->init_req(2, alloc_oop);
 410   io    ->init_req(2, kit->i_o());
 411   mem   ->init_req(2, kit->merged_memory());
 412 
 413   // Update GraphKit
 414   kit->set_control(kit->gvn().transform(region));
 415   kit->set_i_o(kit->gvn().transform(io));
 416   kit->set_all_memory(kit->gvn().transform(mem));
 417   kit->record_for_igvn(region);
 418   kit->record_for_igvn(oop);
 419   kit->record_for_igvn(io);
 420   kit->record_for_igvn(mem);
 421 
 422   // Use cloned ValueTypeNode to propagate oop from now on
 423   Node* res_oop = kit->gvn().transform(oop);
 424   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
 425   vt->set_oop(res_oop);
 426   vt = kit->gvn().transform(vt)->as_ValueTypeBase();
 427   kit->replace_in_map(this, vt);
 428   return vt;
 429 }
 430 
 431 bool ValueTypeBaseNode::is_allocated(PhaseGVN* phase) const {
 432   Node* oop = get_oop();
 433   const Type* oop_type = (phase != NULL) ? phase->type(oop) : oop->bottom_type();
 434   return oop_type->meet(TypePtr::NULL_PTR) != oop_type;
 435 }
 436 
 437 // When a call returns multiple values, it has several result
 438 // projections, one per field. Replacing the result of the call by a
 439 // value type node (after late inlining) requires that for each result
 440 // projection, we find the corresponding value type field.
 441 void ValueTypeBaseNode::replace_call_results(GraphKit* kit, Node* call, Compile* C) {
 442   ciValueKlass* vk = value_klass();
 443   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 444     ProjNode* pn = call->fast_out(i)->as_Proj();
 445     uint con = pn->_con;
 446     if (con >= TypeFunc::Parms+1) {
 447       uint field_nb = con - (TypeFunc::Parms+1);
 448       int extra = 0;
 449       for (uint j = 0; j < field_nb - extra; j++) {
 450         ciField* f = vk->nonstatic_field_at(j);
 451         BasicType bt = f->type()->basic_type();
 452         if (bt == T_LONG || bt == T_DOUBLE) {
 453           extra++;
 454         }
 455       }
 456       ciField* f = vk->nonstatic_field_at(field_nb - extra);
 457       Node* field = field_value_by_offset(f->offset(), true);
 458       if (field->is_ValueType()) {
 459         assert(f->is_flattened(), "should be flattened");
 460         field = field->as_ValueType()->allocate(kit)->get_oop();
 461       }
 462       C->gvn_replace_by(pn, field);
 463       C->initial_gvn()->hash_delete(pn);
 464       pn->set_req(0, C->top());
 465       --i; --imax;
 466     }
 467   }
 468 }
 469 
 470 ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) {
 471   // Create a new ValueTypeNode with uninitialized values and NULL oop
 472   const TypeValueType* type = TypeValueType::make(klass);
 473   return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE), gvn.C);
 474 }
 475 
 476 Node* ValueTypeNode::make_default(PhaseGVN& gvn, ciValueKlass* vk) {
 477   // TODO re-use constant oop of pre-allocated default value type here?
 478   // Create a new ValueTypeNode with default values
 479   ValueTypeNode* vt = ValueTypeNode::make(gvn, vk);
 480   for (uint i = 0; i < vt->field_count(); ++i) {
 481     ciType* field_type = vt->field_type(i);
 482     Node* value = NULL;
 483     if (field_type->is_valuetype()) {
 484       value = ValueTypeNode::make_default(gvn, field_type->as_value_klass());
 485     } else {
 486       value = gvn.zerocon(field_type->basic_type());
 487     }
 488     vt->set_field_value(i, value);
 489   }
 490   return gvn.transform(vt);
 491 }
 492 
 493 Node* ValueTypeNode::make(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* oop, bool null_check) {
 494   // Create and initialize a ValueTypeNode by loading all field
 495   // values from a heap-allocated version and also save the oop.
 496   const TypeValueType* type = gvn.type(oop)->is_valuetypeptr()->value_type();
 497   ValueTypeNode* vt = new ValueTypeNode(type, oop, gvn.C);
 498 
 499   if (null_check && !vt->is_allocated(&gvn)) {
 500     // Add oop null check
 501     Node* chk = gvn.transform(new CmpPNode(oop, gvn.zerocon(T_VALUETYPE)));
 502     Node* tst = gvn.transform(new BoolNode(chk, BoolTest::ne));
 503     IfNode* iff = gvn.transform(new IfNode(ctl, tst, PROB_MAX, COUNT_UNKNOWN))->as_If();
 504     Node* not_null = gvn.transform(new IfTrueNode(iff));
 505     Node* null = gvn.transform(new IfFalseNode(iff));
 506     Node* region = new RegionNode(3);
 507 
 508     // Load value type from memory if oop is non-null
 509     oop = new CastPPNode(oop, TypePtr::NOTNULL);
 510     oop->set_req(0, not_null);
 511     oop = gvn.transform(oop);
 512     vt->load(gvn, not_null, mem, oop, oop, type->value_klass());
 513     region->init_req(1, not_null);
 514 
 515     // Use default value type if oop is null
 516     Node* def = make_default(gvn, type->value_klass());
 517     region->init_req(2, null);
 518 
 519     // Merge the two value types and update control
 520     vt = vt->clone_with_phis(&gvn, region)->as_ValueType();
 521     vt->merge_with(&gvn, def->as_ValueType(), 2, true);
 522     ctl = gvn.transform(region);
 523   } else {
 524     Node* init_ctl = ctl;
 525     vt->load(gvn, ctl, mem, oop, oop, type->value_klass());
 526     vt = gvn.transform(vt)->as_ValueType();
 527     assert(vt->is_allocated(&gvn), "value type should be allocated");
 528     assert(init_ctl != ctl || oop->is_Con() || oop->is_CheckCastPP() || oop->Opcode() == Op_ValueTypePtr ||
 529            vt->is_loaded(&gvn, type) == oop, "value type should be loaded");
 530   }
 531   return vt;
 532 }
 533 
 534 Node* ValueTypeNode::make(GraphKit* kit, Node* oop, bool null_check) {
 535   Node* ctl = kit->control();
 536   Node* vt = make(kit->gvn(), ctl, kit->merged_memory(), oop, null_check);
 537   kit->set_control(ctl);
 538   return vt;
 539 }
 540 
 541 Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* vk, Node*& ctl, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 542   // Create and initialize a ValueTypeNode by loading all field values from
 543   // a flattened value type field at 'holder_offset' or from a value type array.
 544   ValueTypeNode* vt = make(gvn, vk);
 545   // The value type is flattened into the object without an oop header. Subtract the
 546   // offset of the first field to account for the missing header when loading the values.
 547   holder_offset -= vk->first_field_offset();
 548   vt->load(gvn, ctl, mem, obj, ptr, holder, holder_offset);
 549   assert(vt->is_loaded(&gvn, vt->type()->isa_valuetype()) != obj, "holder oop should not be used as flattened value type oop");
 550   return gvn.transform(vt)->as_ValueType();
 551 }
 552 
 553 Node* ValueTypeNode::make(GraphKit* kit, ciValueKlass* vk, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 554   Node* ctl = kit->control();
 555   Node* vt = make(kit->gvn(), vk, ctl, kit->merged_memory(), obj, ptr, holder, holder_offset);
 556   kit->set_control(ctl);
 557   return vt;
 558 }
 559 
 560 Node* ValueTypeNode::make(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* n, ciValueKlass* vk, int base_input, bool in) {
 561   ValueTypeNode* vt = ValueTypeNode::make(gvn, vk);
 562   ValueTypeBaseNode::make(&gvn, ctl, mem, n, vt, vk, 0, base_input, in);
 563   return gvn.transform(vt);
 564 }
 565 
 566 Node* ValueTypeNode::is_loaded(PhaseGVN* phase, const TypeValueType* t, Node* base, int holder_offset) {
 567   if (field_count() == 0) {
 568     assert(t->value_klass()->is__Value(), "unexpected value type klass");
 569     assert(is_allocated(phase), "must be allocated");
 570     return get_oop();
 571   }
 572   for (uint i = 0; i < field_count(); ++i) {
 573     int offset = holder_offset + field_offset(i);
 574     Node* value = field_value(i);
 575     if (value->isa_DecodeN()) {
 576       // Skip DecodeN
 577       value = value->in(1);
 578     }
 579     if (value->isa_Load()) {
 580       // Check if base and offset of field load matches value type layout
 581       intptr_t loffset = 0;
 582       Node* lbase = AddPNode::Ideal_base_and_offset(value->in(MemNode::Address), phase, loffset);
 583       if (lbase == NULL || (lbase != base && base != NULL) || loffset != offset) {
 584         return NULL;
 585       } else if (base == NULL) {
 586         // Set base and check if pointer type matches
 587         base = lbase;
 588         const TypeValueTypePtr* vtptr = phase->type(base)->isa_valuetypeptr();
 589         if (vtptr == NULL || !vtptr->value_type()->eq(t)) {
 590           return NULL;
 591         }
 592       }
 593     } else if (value->isa_ValueType()) {
 594       // Check value type field load recursively
 595       ValueTypeNode* vt = value->as_ValueType();
 596       base = vt->is_loaded(phase, t, base, offset - vt->value_klass()->first_field_offset());
 597       if (base == NULL) {
 598         return NULL;
 599       }
 600     } else {
 601       return NULL;
 602     }
 603   }
 604   return base;
 605 }
 606 
 607 Node* ValueTypeNode::allocate_fields(GraphKit* kit) {
 608   ValueTypeNode* vt = clone()->as_ValueType();
 609   for (uint i = 0; i < field_count(); i++) {
 610     Node* value = field_value(i);
 611     if (value->is_ValueType()) {
 612       if (field_is_flattened(i)) {
 613         value = value->as_ValueType()->allocate_fields(kit);
 614       } else {
 615         // Non-flattened value type field
 616         value = value->as_ValueType()->allocate(kit);
 617       }
 618       vt->set_field_value(i, value);
 619     }
 620   }
 621   vt = kit->gvn().transform(vt)->as_ValueType();
 622   kit->replace_in_map(this, vt);
 623   return vt;
 624 }
 625 
 626 Node* ValueTypeNode::tagged_klass(PhaseGVN& gvn) {
 627   ciValueKlass* vk = value_klass();
 628   const TypeKlassPtr* tk = TypeKlassPtr::make(vk);
 629   intptr_t bits = tk->get_con();
 630   set_nth_bit(bits, 0);
 631   return gvn.makecon(TypeRawPtr::make((address)bits));
 632 }
 633 
 634 void ValueTypeNode::pass_klass(Node* n, uint pos, const GraphKit& kit) {
 635   n->init_req(pos, tagged_klass(kit.gvn()));
 636 }
 637 
 638 uint ValueTypeNode::pass_fields(Node* n, int base_input, GraphKit& kit, bool assert_allocated, ciValueKlass* base_vk, int base_offset) {
 639   ciValueKlass* vk = value_klass();
 640   if (base_vk == NULL) {
 641     base_vk = vk;
 642   }
 643   uint edges = 0;
 644   for (uint i = 0; i < field_count(); i++) {
 645     ciType* f_type = field_type(i);
 646     int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 647     Node* arg = field_value(i);
 648     if (f_type->is_valuetype() && field_is_flattened(i)) {
 649       ciValueKlass* embedded_vk = f_type->as_value_klass();
 650       edges += arg->as_ValueType()->pass_fields(n, base_input, kit, assert_allocated, base_vk, offset);
 651     } else {
 652       int j = 0; int extra = 0;
 653       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 654         ciField* f = base_vk->nonstatic_field_at(j);
 655         if (offset == f->offset()) {
 656           assert(f->type() == f_type, "inconsistent field type");
 657           break;
 658         }
 659         BasicType bt = f->type()->basic_type();
 660         if (bt == T_LONG || bt == T_DOUBLE) {
 661           extra++;
 662         }
 663       }
 664       if (arg->is_ValueType()) {
 665         // non-flattened value type field
 666         ValueTypeNode* vt = arg->as_ValueType();
 667         assert(!assert_allocated || vt->is_allocated(&kit.gvn()), "value type field should be allocated");
 668         arg = vt->allocate(&kit)->get_oop();
 669       }
 670       n->init_req(base_input + j + extra, arg);
 671       edges++;
 672       BasicType bt = f_type->basic_type();
 673       if (bt == T_LONG || bt == T_DOUBLE) {
 674         n->init_req(base_input + j + extra + 1, kit.top());
 675         edges++;
 676       }
 677     }
 678   }
 679   return edges;
 680 }
 681 
 682 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 683   if (!is_allocated(phase)) {
 684     // Check if this value type is loaded from memory
 685     Node* base = is_loaded(phase, type()->is_valuetype());
 686     if (base != NULL) {
 687       // Save the oop
 688       set_oop(base);
 689       assert(is_allocated(phase), "should now be allocated");
 690       return this;
 691     }
 692   }
 693 
 694   if (can_reshape) {
 695     PhaseIterGVN* igvn = phase->is_IterGVN();
 696     if (is_allocated(igvn)) {
 697       // Value type is heap allocated, search for safepoint uses
 698       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 699         Node* out = fast_out(i);
 700         if (out->is_SafePoint()) {
 701           // Let SafePointNode::Ideal() take care of re-wiring the
 702           // safepoint to the oop input instead of the value type node.
 703           igvn->rehash_node_delayed(out);
 704         }
 705       }
 706     }
 707   }
 708   return NULL;
 709 }
 710 
 711 // Search for multiple allocations of this value type
 712 // and try to replace them by dominating allocations.
 713 void ValueTypeNode::remove_redundant_allocations(PhaseIterGVN* igvn, PhaseIdealLoop* phase) {
 714   assert(EliminateAllocations, "allocation elimination should be enabled");
 715   Node_List dead_allocations;
 716   // Search for allocations of this value type
 717   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 718     AllocateNode* alloc = fast_out(i)->isa_Allocate();
 719     if (alloc != NULL && alloc->result_cast() != NULL && alloc->in(AllocateNode::ValueNode) == this) {
 720       Node* res_dom = NULL;
 721       if (is_allocated(igvn)) {
 722         // The value type is already allocated but still connected to an AllocateNode.
 723         // This can happen with late inlining when we first allocate a value type argument
 724         // but later decide to inline the call with the callee code also allocating.
 725         res_dom = get_oop();
 726       } else {
 727         // Search for a dominating allocation of the same value type
 728         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
 729           Node* out2 = fast_out(j);
 730           if (alloc != out2 && out2->is_Allocate() && out2->in(AllocateNode::ValueNode) == this &&
 731               phase->is_dominator(out2, alloc)) {
 732             AllocateNode* alloc_dom =  out2->as_Allocate();
 733             assert(alloc->in(AllocateNode::KlassNode) == alloc_dom->in(AllocateNode::KlassNode), "klasses should match");
 734             res_dom = alloc_dom->result_cast();
 735             break;
 736           }
 737         }
 738       }
 739       if (res_dom != NULL) {
 740         // Move users to dominating allocation
 741         Node* res = alloc->result_cast();
 742         igvn->replace_node(res, res_dom);
 743         // The dominated allocation is now dead, remove the
 744         // value type node connection and adjust the iterator.
 745         dead_allocations.push(alloc);
 746         igvn->replace_input_of(alloc, AllocateNode::ValueNode, NULL);
 747         --i; --imax;
 748 #ifdef ASSERT
 749         if (PrintEliminateAllocations) {
 750           tty->print("++++ Eliminated: %d Allocate ", alloc->_idx);
 751           dump_spec(tty);
 752           tty->cr();
 753         }
 754 #endif
 755       }
 756     }
 757   }
 758 
 759   // Remove dead value type allocations by replacing the projection nodes
 760   for (uint i = 0; i < dead_allocations.size(); ++i) {
 761     CallProjections projs;
 762     AllocateNode* alloc = dead_allocations.at(i)->as_Allocate();
 763     alloc->extract_projections(&projs, true);
 764     // Use lazy_replace to avoid corrupting the dominator tree of PhaseIdealLoop
 765     phase->lazy_replace(projs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
 766     phase->lazy_replace(projs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
 767     phase->lazy_replace(projs.catchall_memproj, phase->C->top());
 768     phase->lazy_replace(projs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
 769     phase->lazy_replace(projs.catchall_ioproj, phase->C->top());
 770     phase->lazy_replace(projs.catchall_catchproj, phase->C->top());
 771     phase->lazy_replace(projs.resproj, phase->C->top());
 772   }
 773 
 774   // Process users
 775   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 776     Node* out = fast_out(i);
 777     if (out->isa_ValueType() != NULL) {
 778       // Recursively process value type users
 779       out->as_ValueType()->remove_redundant_allocations(igvn, phase);
 780       --i; --imax;
 781     } else if (out->isa_Allocate() != NULL) {
 782       // Unlink AllocateNode
 783       assert(out->in(AllocateNode::ValueNode) == this, "should be linked");
 784       igvn->replace_input_of(out, AllocateNode::ValueNode, NULL);
 785       --i; --imax;
 786     } else {
 787 #ifdef ASSERT
 788       // The value type should not have any other users at this time
 789       out->dump();
 790       assert(false, "unexpected user of value type");
 791 #endif
 792     }
 793   }
 794 
 795   // Should be dead now
 796   igvn->remove_dead_node(this);
 797 }
 798 
 799 #ifndef PRODUCT
 800 
 801 void ValueTypeNode::dump_spec(outputStream* st) const {
 802   TypeNode::dump_spec(st);
 803 }
 804 
 805 #endif
 806 
 807 ValueTypePtrNode* ValueTypePtrNode::make(GraphKit* kit, ciValueKlass* vk, CallNode* call) {
 808   ValueTypePtrNode* vt = new ValueTypePtrNode(vk, kit->zerocon(T_VALUETYPE), kit->C);
 809   Node* ctl = kit->control();
 810   ValueTypeBaseNode::make(&kit->gvn(), ctl, kit->merged_memory(), call, vt, vk, 0, TypeFunc::Parms+1, false);
 811   kit->set_control(ctl);
 812   return vt;
 813 }
 814 
 815 ValueTypePtrNode* ValueTypePtrNode::make(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* oop) {
 816   // Create and initialize a ValueTypePtrNode by loading all field
 817   // values from a heap-allocated version and also save the oop.
 818   ciValueKlass* vk = gvn.type(oop)->is_valuetypeptr()->value_type()->value_klass();
 819   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, oop, gvn.C);
 820   vtptr->load(gvn, ctl, mem, oop, oop, vk);
 821   return vtptr;
 822 }