1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciValueKlass.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/castnode.hpp"
  29 #include "opto/graphKit.hpp"
  30 #include "opto/rootnode.hpp"
  31 #include "opto/valuetypenode.hpp"
  32 #include "opto/phaseX.hpp"
  33 
  34 // Clones the values type to handle control flow merges involving multiple value types.
  35 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
  36 ValueTypeBaseNode* ValueTypeBaseNode::clone_with_phis(PhaseGVN* gvn, Node* region) {
  37   assert(!has_phi_inputs(region), "already cloned with phis");
  38   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
  39 
  40   // Create a PhiNode for merging the oop values
  41   const Type* phi_type = Type::get_const_type(value_klass());
  42   PhiNode* oop = PhiNode::make(region, vt->get_oop(), phi_type);
  43   gvn->set_type(oop, phi_type);
  44   vt->set_oop(oop);
  45 
  46   // Create a PhiNode each for merging the field values
  47   for (uint i = 0; i < vt->field_count(); ++i) {
  48     ciType* type = vt->field_type(i);
  49     Node*  value = vt->field_value(i);
  50     if (type->is_valuetype()) {
  51       // Handle flattened value type fields recursively
  52       value = value->as_ValueType()->clone_with_phis(gvn, region);
  53     } else {
  54       phi_type = Type::get_const_type(type);
  55       value = PhiNode::make(region, value, phi_type);
  56       gvn->set_type(value, phi_type);
  57     }
  58     vt->set_field_value(i, value);
  59   }
  60   gvn->set_type(vt, vt->bottom_type());
  61   return vt;
  62 }
  63 
  64 // Checks if the inputs of the ValueBaseTypeNode were replaced by PhiNodes
  65 // for the given region (see ValueBaseTypeNode::clone_with_phis).
  66 bool ValueTypeBaseNode::has_phi_inputs(Node* region) {
  67   // Check oop input
  68   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
  69 #ifdef ASSERT
  70   if (result) {
  71     // Check all field value inputs for consistency
  72     for (uint i = Oop; i < field_count(); ++i) {
  73       Node* n = in(i);
  74       if (n->is_ValueTypeBase()) {
  75         assert(n->as_ValueTypeBase()->has_phi_inputs(region), "inconsistent phi inputs");
  76       } else {
  77         assert(n->is_Phi() && n->as_Phi()->region() == region, "inconsistent phi inputs");
  78       }
  79     }
  80   }
  81 #endif
  82   return result;
  83 }
  84 
  85 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
  86 ValueTypeBaseNode* ValueTypeBaseNode::merge_with(PhaseGVN* gvn, const ValueTypeBaseNode* other, int pnum, bool transform) {
  87   // Merge oop inputs
  88   PhiNode* phi = get_oop()->as_Phi();
  89   phi->set_req(pnum, other->get_oop());
  90   if (transform) {
  91     set_oop(gvn->transform(phi));
  92     gvn->record_for_igvn(phi);
  93   }
  94   // Merge field values
  95   for (uint i = 0; i < field_count(); ++i) {
  96     Node* val1 =        field_value(i);
  97     Node* val2 = other->field_value(i);
  98     if (val1->isa_ValueType()) {
  99       val1->as_ValueType()->merge_with(gvn, val2->as_ValueType(), pnum, transform);
 100     } else {
 101       assert(val1->is_Phi(), "must be a phi node");
 102       assert(!val2->is_ValueType(), "inconsistent merge values");
 103       val1->set_req(pnum, val2);
 104     }
 105     if (transform) {
 106       set_field_value(i, gvn->transform(val1));
 107       gvn->record_for_igvn(val1);
 108     }
 109   }
 110   return this;
 111 }
 112 
 113 Node* ValueTypeBaseNode::field_value(uint index) const {
 114   assert(index < field_count(), "index out of bounds");
 115   return in(Values + index);
 116 }
 117 
 118 // Get the value of the field at the given offset.
 119 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 120 Node* ValueTypeBaseNode::field_value_by_offset(int offset, bool recursive) const {
 121   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 122   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 123   int index = value_klass()->field_index_by_offset(offset);
 124   int sub_offset = offset - field_offset(index);
 125   Node* value = field_value(index);
 126   assert(value != NULL, "field value not found");
 127   if (recursive && value->is_ValueType()) {
 128     ValueTypeNode* vt = value->as_ValueType();
 129     if (field_is_flattened(index)) {
 130       // Flattened value type field
 131       sub_offset += vt->value_klass()->first_field_offset(); // Add header size
 132       return vt->field_value_by_offset(sub_offset, recursive);
 133     } else {
 134       assert(sub_offset == 0, "should not have a sub offset");
 135       return vt;
 136     }
 137   }
 138   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 139   assert(sub_offset == 0, "offset mismatch");
 140   return value;
 141 }
 142 
 143 void ValueTypeBaseNode::set_field_value(uint index, Node* value) {
 144   assert(index < field_count(), "index out of bounds");
 145   set_req(Values + index, value);
 146 }
 147 
 148 int ValueTypeBaseNode::field_offset(uint index) const {
 149   assert(index < field_count(), "index out of bounds");
 150   return value_klass()->declared_nonstatic_field_at(index)->offset();
 151 }
 152 
 153 ciType* ValueTypeBaseNode::field_type(uint index) const {
 154   assert(index < field_count(), "index out of bounds");
 155   return value_klass()->declared_nonstatic_field_at(index)->type();
 156 }
 157 
 158 bool ValueTypeBaseNode::field_is_flattened(uint index) const {
 159   assert(index < field_count(), "index out of bounds");
 160   ciField* field = value_klass()->declared_nonstatic_field_at(index);
 161   assert(!field->is_flattened() || field->type()->is_valuetype(), "must be a value type");
 162   return field->is_flattened();
 163 }
 164 
 165 int ValueTypeBaseNode::make_scalar_in_safepoint(Unique_Node_List& worklist, SafePointNode* sfpt, Node* root, PhaseGVN* gvn) {
 166   ciValueKlass* vk = value_klass();
 167   uint nfields = vk->nof_nonstatic_fields();
 168   JVMState* jvms = sfpt->jvms();
 169   int start = jvms->debug_start();
 170   int end   = jvms->debug_end();
 171   // Replace safepoint edge by SafePointScalarObjectNode and add field values
 172   assert(jvms != NULL, "missing JVMS");
 173   uint first_ind = (sfpt->req() - jvms->scloff());
 174   const TypeValueTypePtr* res_type = value_type_ptr();
 175   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 176 #ifdef ASSERT
 177                                                                   NULL,
 178 #endif
 179                                                                   first_ind, nfields);
 180   sobj->init_req(0, root);
 181   // Iterate over the value type fields in order of increasing
 182   // offset and add the field values to the safepoint.
 183   for (uint j = 0; j < nfields; ++j) {
 184     int offset = vk->nonstatic_field_at(j)->offset();
 185     Node* value = field_value_by_offset(offset, true /* include flattened value type fields */);
 186     if (value->is_ValueType()) {
 187       if (value->as_ValueType()->is_allocated(gvn)) {
 188         value = value->as_ValueType()->get_oop();
 189       } else {
 190         // Add non-flattened value type field to the worklist to process later
 191         worklist.push(value);
 192       }
 193     }
 194     sfpt->add_req(value);
 195   }
 196   jvms->set_endoff(sfpt->req());
 197   if (gvn != NULL) {
 198     sobj = gvn->transform(sobj)->as_SafePointScalarObject();
 199     gvn->igvn_rehash_node_delayed(sfpt);
 200   }
 201   return sfpt->replace_edges_in_range(this, sobj, start, end);
 202 }
 203 
 204 void ValueTypeBaseNode::make_scalar_in_safepoints(Node* root, PhaseGVN* gvn) {
 205   // Process all safepoint uses and scalarize value type
 206   Unique_Node_List worklist;
 207   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 208     Node* u = fast_out(i);
 209     if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 210       SafePointNode* sfpt = u->as_SafePoint();
 211       Node* in_oop = get_oop();
 212       const Type* oop_type = in_oop->bottom_type();
 213       assert(Opcode() == Op_ValueTypePtr || !isa_ValueType()->is_allocated(gvn), "already heap allocated value types should be linked directly");
 214       int nb = make_scalar_in_safepoint(worklist, sfpt, root, gvn);
 215       --i; imax -= nb;
 216     }
 217   }
 218   // Now scalarize non-flattened fields
 219   for (uint i = 0; i < worklist.size(); ++i) {
 220     Node* vt = worklist.at(i);
 221     vt->as_ValueType()->make_scalar_in_safepoints(root, gvn);
 222   }
 223 }
 224 
 225 void ValueTypeBaseNode::initialize(PhaseGVN* gvn, Node*& ctl, Node* mem, MultiNode* multi, ciValueKlass* vk, int base_offset, int base_input, bool in) {
 226   assert(base_offset >= 0, "offset in value type must be positive");
 227   for (uint i = 0; i < field_count(); i++) {
 228     ciType* ft = field_type(i);
 229     int offset = base_offset + field_offset(i);
 230     if (field_is_flattened(i)) {
 231       // Flattened value type field
 232       ValueTypeNode* vt = ValueTypeNode::make_uninitialized(*gvn, ft->as_value_klass());
 233       vt->initialize(gvn, ctl, mem, multi, vk, offset - value_klass()->first_field_offset(), base_input, in);
 234       set_field_value(i, gvn->transform(vt));
 235     } else {
 236       int j = 0; int extra = 0;
 237       for (; j < vk->nof_nonstatic_fields(); j++) {
 238         ciField* f = vk->nonstatic_field_at(j);
 239         if (offset == f->offset()) {
 240           assert(f->type() == ft, "inconsistent field type");
 241           break;
 242         }
 243         BasicType bt = f->type()->basic_type();
 244         if (bt == T_LONG || bt == T_DOUBLE) {
 245           extra++;
 246         }
 247       }
 248       assert(j != vk->nof_nonstatic_fields(), "must find");
 249       Node* parm = NULL;
 250       if (multi->is_Start()) {
 251         assert(in, "return from start?");
 252         parm = gvn->transform(new ParmNode(multi->as_Start(), base_input + j + extra));
 253       } else {
 254         if (in) {
 255           parm = multi->as_Call()->in(base_input + j + extra);
 256         } else {
 257           parm = gvn->transform(new ProjNode(multi->as_Call(), base_input + j + extra));
 258         }
 259       }
 260       if (ft->is_valuetype()) {
 261         // Non-flattened value type field, check for null
 262         parm = ValueTypeNode::make_from_oop(*gvn, ctl, mem, parm, /* null_check */ true);
 263       }
 264       set_field_value(i, parm);
 265       // Record all these guys for later GVN.
 266       gvn->record_for_igvn(parm);
 267     }
 268   }
 269 }
 270 
 271 void ValueTypeBaseNode::load(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 272   // Initialize the value type by loading its field values from
 273   // memory and adding the values as input edges to the node.
 274   for (uint i = 0; i < field_count(); ++i) {
 275     int offset = holder_offset + field_offset(i);
 276     Node* value = NULL;
 277     ciType* ft = field_type(i);
 278     if (field_is_flattened(i)) {
 279       // Recursively load the flattened value type field
 280       value = ValueTypeNode::make_from_flattened(gvn, ft->as_value_klass(), ctl, mem, base, ptr, holder, offset);
 281     } else {
 282       const Type* con_type = NULL;
 283       if (base->is_Con()) {
 284         // If the oop to the value type is constant (static final field), we can
 285         // also treat the fields as constants because the value type is immutable.
 286         const TypeOopPtr* oop_ptr = base->bottom_type()->isa_oopptr();
 287         ciObject* constant_oop = oop_ptr->const_oop();
 288         ciField* field = holder->get_field_by_offset(offset, false);
 289         ciConstant constant = constant_oop->as_instance()->field_value(field);
 290         con_type = Type::make_from_constant(constant, /*require_const=*/ true);
 291       }
 292       if (con_type != NULL) {
 293         // Found a constant field value
 294         value = gvn.transform(gvn.makecon(con_type));
 295         if (con_type->isa_valuetypeptr()) {
 296           // Constant, non-flattened value type field
 297           value = ValueTypeNode::make_from_oop(gvn, ctl, mem, value);
 298         }
 299       } else {
 300         // Load field value from memory
 301         const TypeAryPtr* ary_type = gvn.type(base)->isa_aryptr();
 302         const TypePtr* adr_type = NULL;
 303         bool is_array = ary_type != NULL;
 304         if (is_array) {
 305           // In the case of a flattened value type array, each field has its own slice
 306           adr_type = ary_type->with_field_offset(offset)->add_offset(Type::OffsetBot);
 307         } else {
 308           ciField* field = holder->get_field_by_offset(offset, false);
 309           adr_type = gvn.C->alias_type(field)->adr_type();
 310         }
 311         Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset)));
 312         BasicType bt = type2field[ft->basic_type()];
 313         assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 314         const Type* rt = Type::get_const_type(ft);
 315         value = gvn.transform(LoadNode::make(gvn, is_array ? ctl : NULL, mem, adr, adr_type, rt, bt, MemNode::unordered));
 316         if (bt == T_VALUETYPE) {
 317           // Non-flattened value type field, check for null
 318           value = ValueTypeNode::make_from_oop(gvn, ctl, mem, value, /* null_check */ true);
 319         }
 320       }
 321     }
 322     set_field_value(i, value);
 323   }
 324 }
 325 
 326 void ValueTypeBaseNode::store_flattened(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 327   // The value type is embedded into the object without an oop header. Subtract the
 328   // offset of the first field to account for the missing header when storing the values.
 329   holder_offset -= value_klass()->first_field_offset();
 330   store(kit, base, ptr, holder, holder_offset);
 331 }
 332 
 333 void ValueTypeBaseNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 334   if (holder == NULL) {
 335     holder = value_klass();
 336   }
 337   // Write field values to memory
 338   for (uint i = 0; i < field_count(); ++i) {
 339     int offset = holder_offset + field_offset(i);
 340     Node* value = field_value(i);
 341     ciType* ft = field_type(i);
 342     if (field_is_flattened(i)) {
 343       // Recursively store the flattened value type field
 344       value->as_ValueType()->store_flattened(kit, base, ptr, holder, offset);
 345     } else {
 346       const TypeAryPtr* ary_type = kit->gvn().type(base)->isa_aryptr();
 347       const TypePtr* adr_type = NULL;
 348       bool is_array = ary_type != NULL;
 349       if (is_array) {
 350         // In the case of a flattened value type array, each field has its own slice
 351         adr_type = ary_type->with_field_offset(offset)->add_offset(Type::OffsetBot);
 352       } else {
 353         ciField* field = holder->get_field_by_offset(offset, false);
 354         adr_type = kit->C->alias_type(field)->adr_type();
 355       }
 356       Node* adr = kit->basic_plus_adr(base, ptr, offset);
 357       BasicType bt = type2field[ft->basic_type()];
 358       if (is_java_primitive(bt)) {
 359         kit->store_to_memory(kit->control(), adr, value, bt, adr_type, MemNode::unordered);
 360       } else {
 361         const TypeOopPtr* val_type = Type::get_const_type(ft)->is_oopptr();
 362         assert(adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 363         kit->store_oop(kit->control(), base, adr, adr_type, value, val_type, bt, is_array, MemNode::unordered);
 364       }
 365     }
 366   }
 367 }
 368 
 369 ValueTypeBaseNode* ValueTypeBaseNode::allocate(GraphKit* kit) {
 370   Node* in_oop = get_oop();
 371   Node* null_ctl = kit->top();
 372   // Check if value type is already allocated
 373   Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl);
 374   if (null_ctl->is_top()) {
 375     // Value type is allocated
 376     return this;
 377   }
 378   // Not able to prove that value type is allocated.
 379   // Emit runtime check that may be folded later.
 380   assert(!is_allocated(&kit->gvn()), "should not be allocated");
 381   RegionNode* region = new RegionNode(3);
 382   PhiNode* oop = new PhiNode(region, value_type_ptr());
 383   PhiNode* io  = new PhiNode(region, Type::ABIO);
 384   PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 385 
 386   // Oop is non-NULL, use it
 387   region->init_req(1, kit->control());
 388   oop   ->init_req(1, not_null_oop);
 389   io    ->init_req(1, kit->i_o());
 390   mem   ->init_req(1, kit->merged_memory());
 391 
 392   // Oop is NULL, allocate value type
 393   kit->set_control(null_ctl);
 394   kit->kill_dead_locals();
 395   ciValueKlass* vk = value_klass();
 396   Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 397   Node* alloc_oop  = kit->new_instance(klass_node, NULL, NULL, false, this);
 398   // Write field values to memory
 399   store(kit, alloc_oop, alloc_oop, vk);
 400   region->init_req(2, kit->control());
 401   oop   ->init_req(2, alloc_oop);
 402   io    ->init_req(2, kit->i_o());
 403   mem   ->init_req(2, kit->merged_memory());
 404 
 405   // Update GraphKit
 406   kit->set_control(kit->gvn().transform(region));
 407   kit->set_i_o(kit->gvn().transform(io));
 408   kit->set_all_memory(kit->gvn().transform(mem));
 409   kit->record_for_igvn(region);
 410   kit->record_for_igvn(oop);
 411   kit->record_for_igvn(io);
 412   kit->record_for_igvn(mem);
 413 
 414   // Use cloned ValueTypeNode to propagate oop from now on
 415   Node* res_oop = kit->gvn().transform(oop);
 416   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
 417   vt->set_oop(res_oop);
 418   vt = kit->gvn().transform(vt)->as_ValueTypeBase();
 419   kit->replace_in_map(this, vt);
 420   return vt;
 421 }
 422 
 423 bool ValueTypeBaseNode::is_allocated(PhaseGVN* phase) const {
 424   Node* oop = get_oop();
 425   const Type* oop_type = (phase != NULL) ? phase->type(oop) : oop->bottom_type();
 426   return oop_type->meet(TypePtr::NULL_PTR) != oop_type;
 427 }
 428 
 429 // When a call returns multiple values, it has several result
 430 // projections, one per field. Replacing the result of the call by a
 431 // value type node (after late inlining) requires that for each result
 432 // projection, we find the corresponding value type field.
 433 void ValueTypeBaseNode::replace_call_results(GraphKit* kit, Node* call, Compile* C) {
 434   ciValueKlass* vk = value_klass();
 435   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 436     ProjNode* pn = call->fast_out(i)->as_Proj();
 437     uint con = pn->_con;
 438     if (con >= TypeFunc::Parms+1) {
 439       uint field_nb = con - (TypeFunc::Parms+1);
 440       int extra = 0;
 441       for (uint j = 0; j < field_nb - extra; j++) {
 442         ciField* f = vk->nonstatic_field_at(j);
 443         BasicType bt = f->type()->basic_type();
 444         if (bt == T_LONG || bt == T_DOUBLE) {
 445           extra++;
 446         }
 447       }
 448       ciField* f = vk->nonstatic_field_at(field_nb - extra);
 449       Node* field = field_value_by_offset(f->offset(), true);
 450       if (field->is_ValueType()) {
 451         assert(f->is_flattened(), "should be flattened");
 452         field = field->as_ValueType()->allocate(kit)->get_oop();
 453       }
 454       C->gvn_replace_by(pn, field);
 455       C->initial_gvn()->hash_delete(pn);
 456       pn->set_req(0, C->top());
 457       --i; --imax;
 458     }
 459   }
 460 }
 461 
 462 ValueTypeNode* ValueTypeNode::make_uninitialized(PhaseGVN& gvn, ciValueKlass* klass) {
 463   // Create a new ValueTypeNode with uninitialized values and NULL oop
 464   const TypeValueType* type = TypeValueType::make(klass);
 465   return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE));
 466 }
 467 
 468 ValueTypeNode* ValueTypeNode::make_default(PhaseGVN& gvn, ciValueKlass* vk) {
 469   // Create a new ValueTypeNode with default values
 470   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(gvn, vk);
 471   for (uint i = 0; i < vt->field_count(); ++i) {
 472     ciType* field_type = vt->field_type(i);
 473     Node* value = NULL;
 474     if (field_type->is_valuetype()) {
 475       value = ValueTypeNode::make_default(gvn, field_type->as_value_klass());
 476     } else {
 477       value = gvn.zerocon(field_type->basic_type());
 478     }
 479     vt->set_field_value(i, value);
 480   }
 481   return gvn.transform(vt)->as_ValueType();
 482 }
 483 
 484 ValueTypeNode* ValueTypeNode::make_from_oop(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* oop, bool null_check) {
 485   // Create and initialize a ValueTypeNode by loading all field
 486   // values from a heap-allocated version and also save the oop.
 487   ciValueKlass* vk = gvn.type(oop)->is_valuetypeptr()->value_klass();
 488   ValueTypeNode* vt = new ValueTypeNode(TypeValueType::make(vk), oop);
 489 
 490   if (null_check && !vt->is_allocated(&gvn)) {
 491     // Add oop null check
 492     Node* chk = gvn.transform(new CmpPNode(oop, gvn.zerocon(T_VALUETYPE)));
 493     Node* tst = gvn.transform(new BoolNode(chk, BoolTest::ne));
 494     IfNode* iff = gvn.transform(new IfNode(ctl, tst, PROB_MAX, COUNT_UNKNOWN))->as_If();
 495     Node* not_null = gvn.transform(new IfTrueNode(iff));
 496     Node* null = gvn.transform(new IfFalseNode(iff));
 497     Node* region = new RegionNode(3);
 498 
 499     // Load value type from memory if oop is non-null
 500     oop = new CastPPNode(oop, TypePtr::NOTNULL);
 501     oop->set_req(0, not_null);
 502     oop = gvn.transform(oop);
 503     vt->load(gvn, not_null, mem, oop, oop, vk);
 504     region->init_req(1, not_null);
 505 
 506     // Use default value type if oop is null
 507     ValueTypeNode* def = make_default(gvn, vk);
 508     region->init_req(2, null);
 509 
 510     // Merge the two value types and update control
 511     vt = vt->clone_with_phis(&gvn, region)->as_ValueType();
 512     vt->merge_with(&gvn, def, 2, true);
 513     ctl = gvn.transform(region);
 514   } else {
 515     Node* init_ctl = ctl;
 516     vt->load(gvn, ctl, mem, oop, oop, vk);
 517     vt = gvn.transform(vt)->as_ValueType();
 518     assert(vt->is_allocated(&gvn), "value type should be allocated");
 519     assert(init_ctl != ctl || oop->is_Con() || oop->is_CheckCastPP() || oop->Opcode() == Op_ValueTypePtr ||
 520            vt->is_loaded(&gvn) == oop, "value type should be loaded");
 521   }
 522   return vt;
 523 }
 524 
 525 // GraphKit wrapper for the 'make_from_oop' method
 526 ValueTypeNode* ValueTypeNode::make_from_oop(GraphKit* kit, Node* oop, bool null_check) {
 527   Node* ctl = kit->control();
 528   ValueTypeNode* vt = make_from_oop(kit->gvn(), ctl, kit->merged_memory(), oop, null_check);
 529   kit->set_control(ctl);
 530   return vt;
 531 }
 532 
 533 ValueTypeNode* ValueTypeNode::make_from_flattened(PhaseGVN& gvn, ciValueKlass* vk, Node*& ctl, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 534   // Create and initialize a ValueTypeNode by loading all field values from
 535   // a flattened value type field at 'holder_offset' or from a value type array.
 536   ValueTypeNode* vt = make_uninitialized(gvn, vk);
 537   // The value type is flattened into the object without an oop header. Subtract the
 538   // offset of the first field to account for the missing header when loading the values.
 539   holder_offset -= vk->first_field_offset();
 540   vt->load(gvn, ctl, mem, obj, ptr, holder, holder_offset);
 541   assert(vt->is_loaded(&gvn) != obj, "holder oop should not be used as flattened value type oop");
 542   return gvn.transform(vt)->as_ValueType();
 543 }
 544 
 545 // GraphKit wrapper for the 'make_from_flattened' method
 546 ValueTypeNode* ValueTypeNode::make_from_flattened(GraphKit* kit, ciValueKlass* vk, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 547   Node* ctl = kit->control();
 548   ValueTypeNode* vt = make_from_flattened(kit->gvn(), vk, ctl, kit->merged_memory(), obj, ptr, holder, holder_offset);
 549   kit->set_control(ctl);
 550   return vt;
 551 }
 552 
 553 ValueTypeNode* ValueTypeNode::make_from_multi(PhaseGVN& gvn, Node*& ctl, Node* mem, MultiNode* multi, ciValueKlass* vk, int base_input, bool in) {
 554   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(gvn, vk);
 555   vt->initialize(&gvn, ctl, mem, multi, vk, 0, base_input, in);
 556   return gvn.transform(vt)->as_ValueType();
 557 }
 558 
 559 Node* ValueTypeNode::is_loaded(PhaseGVN* phase, ciValueKlass* vk, Node* base, int holder_offset) {
 560   if (vk == NULL) {
 561     vk = value_klass();
 562   }
 563   if (field_count() == 0) {
 564     assert(vk->is__Value(), "unexpected value type klass");
 565     assert(is_allocated(phase), "must be allocated");
 566     return get_oop();
 567   }
 568   for (uint i = 0; i < field_count(); ++i) {
 569     int offset = holder_offset + field_offset(i);
 570     Node* value = field_value(i);
 571     if (value->isa_DecodeN()) {
 572       // Skip DecodeN
 573       value = value->in(1);
 574     }
 575     if (value->isa_Load()) {
 576       // Check if base and offset of field load matches value type layout
 577       intptr_t loffset = 0;
 578       Node* lbase = AddPNode::Ideal_base_and_offset(value->in(MemNode::Address), phase, loffset);
 579       if (lbase == NULL || (lbase != base && base != NULL) || loffset != offset) {
 580         return NULL;
 581       } else if (base == NULL) {
 582         // Set base and check if pointer type matches
 583         base = lbase;
 584         const TypeValueTypePtr* vtptr = phase->type(base)->isa_valuetypeptr();
 585         if (vtptr == NULL || !vtptr->value_klass()->equals(vk)) {
 586           return NULL;
 587         }
 588       }
 589     } else if (value->isa_ValueType()) {
 590       // Check value type field load recursively
 591       ValueTypeNode* vt = value->as_ValueType();
 592       base = vt->is_loaded(phase, vk, base, offset - vt->value_klass()->first_field_offset());
 593       if (base == NULL) {
 594         return NULL;
 595       }
 596     } else {
 597       return NULL;
 598     }
 599   }
 600   return base;
 601 }
 602 
 603 Node* ValueTypeNode::allocate_fields(GraphKit* kit) {
 604   ValueTypeNode* vt = clone()->as_ValueType();
 605   for (uint i = 0; i < field_count(); i++) {
 606      ValueTypeNode* value = field_value(i)->isa_ValueType();
 607      if (field_is_flattened(i)) {
 608        // Flattened value type field
 609        vt->set_field_value(i, value->allocate_fields(kit));
 610      } else if (value != NULL){
 611        // Non-flattened value type field
 612        vt->set_field_value(i, value->allocate(kit));
 613      }
 614   }
 615   vt = kit->gvn().transform(vt)->as_ValueType();
 616   kit->replace_in_map(this, vt);
 617   return vt;
 618 }
 619 
 620 Node* ValueTypeNode::tagged_klass(PhaseGVN& gvn) {
 621   ciValueKlass* vk = value_klass();
 622   const TypeKlassPtr* tk = TypeKlassPtr::make(vk);
 623   intptr_t bits = tk->get_con();
 624   set_nth_bit(bits, 0);
 625   return gvn.makecon(TypeRawPtr::make((address)bits));
 626 }
 627 
 628 void ValueTypeNode::pass_klass(Node* n, uint pos, const GraphKit& kit) {
 629   n->init_req(pos, tagged_klass(kit.gvn()));
 630 }
 631 
 632 uint ValueTypeNode::pass_fields(Node* n, int base_input, GraphKit& kit, bool assert_allocated, ciValueKlass* base_vk, int base_offset) {
 633   ciValueKlass* vk = value_klass();
 634   if (base_vk == NULL) {
 635     base_vk = vk;
 636   }
 637   uint edges = 0;
 638   for (uint i = 0; i < field_count(); i++) {
 639     int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 640     Node* arg = field_value(i);
 641     if (field_is_flattened(i)) {
 642        // Flattened value type field
 643        edges += arg->as_ValueType()->pass_fields(n, base_input, kit, assert_allocated, base_vk, offset);
 644     } else {
 645       int j = 0; int extra = 0;
 646       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 647         ciField* field = base_vk->nonstatic_field_at(j);
 648         if (offset == field->offset()) {
 649           assert(field->type() == field_type(i), "inconsistent field type");
 650           break;
 651         }
 652         BasicType bt = field->type()->basic_type();
 653         if (bt == T_LONG || bt == T_DOUBLE) {
 654           extra++;
 655         }
 656       }
 657       if (arg->is_ValueType()) {
 658         // non-flattened value type field
 659         ValueTypeNode* vt = arg->as_ValueType();
 660         assert(!assert_allocated || vt->is_allocated(&kit.gvn()), "value type field should be allocated");
 661         arg = vt->allocate(&kit)->get_oop();
 662       }
 663       n->init_req(base_input + j + extra, arg);
 664       edges++;
 665       BasicType bt = field_type(i)->basic_type();
 666       if (bt == T_LONG || bt == T_DOUBLE) {
 667         n->init_req(base_input + j + extra + 1, kit.top());
 668         edges++;
 669       }
 670     }
 671   }
 672   return edges;
 673 }
 674 
 675 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 676   if (!is_allocated(phase)) {
 677     // Check if this value type is loaded from memory
 678     Node* base = is_loaded(phase);
 679     if (base != NULL) {
 680       // Save the oop
 681       set_oop(base);
 682       assert(is_allocated(phase), "should now be allocated");
 683       return this;
 684     }
 685   }
 686 
 687   if (can_reshape) {
 688     PhaseIterGVN* igvn = phase->is_IterGVN();
 689     if (is_allocated(igvn)) {
 690       // Value type is heap allocated, search for safepoint uses
 691       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 692         Node* out = fast_out(i);
 693         if (out->is_SafePoint()) {
 694           // Let SafePointNode::Ideal() take care of re-wiring the
 695           // safepoint to the oop input instead of the value type node.
 696           igvn->rehash_node_delayed(out);
 697         }
 698       }
 699     }
 700   }
 701   return NULL;
 702 }
 703 
 704 // Search for multiple allocations of this value type
 705 // and try to replace them by dominating allocations.
 706 void ValueTypeNode::remove_redundant_allocations(PhaseIterGVN* igvn, PhaseIdealLoop* phase) {
 707   assert(EliminateAllocations, "allocation elimination should be enabled");
 708   Node_List dead_allocations;
 709   // Search for allocations of this value type
 710   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 711     AllocateNode* alloc = fast_out(i)->isa_Allocate();
 712     if (alloc != NULL && alloc->result_cast() != NULL && alloc->in(AllocateNode::ValueNode) == this) {
 713       Node* res_dom = NULL;
 714       if (is_allocated(igvn)) {
 715         // The value type is already allocated but still connected to an AllocateNode.
 716         // This can happen with late inlining when we first allocate a value type argument
 717         // but later decide to inline the call with the callee code also allocating.
 718         res_dom = get_oop();
 719       } else {
 720         // Search for a dominating allocation of the same value type
 721         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
 722           Node* out2 = fast_out(j);
 723           if (alloc != out2 && out2->is_Allocate() && out2->in(AllocateNode::ValueNode) == this &&
 724               phase->is_dominator(out2, alloc)) {
 725             AllocateNode* alloc_dom =  out2->as_Allocate();
 726             assert(alloc->in(AllocateNode::KlassNode) == alloc_dom->in(AllocateNode::KlassNode), "klasses should match");
 727             res_dom = alloc_dom->result_cast();
 728             break;
 729           }
 730         }
 731       }
 732       if (res_dom != NULL) {
 733         // Move users to dominating allocation
 734         Node* res = alloc->result_cast();
 735         igvn->replace_node(res, res_dom);
 736         // The dominated allocation is now dead, remove the
 737         // value type node connection and adjust the iterator.
 738         dead_allocations.push(alloc);
 739         igvn->replace_input_of(alloc, AllocateNode::ValueNode, NULL);
 740         --i; --imax;
 741 #ifdef ASSERT
 742         if (PrintEliminateAllocations) {
 743           tty->print("++++ Eliminated: %d Allocate ", alloc->_idx);
 744           dump_spec(tty);
 745           tty->cr();
 746         }
 747 #endif
 748       }
 749     }
 750   }
 751 
 752   // Remove dead value type allocations by replacing the projection nodes
 753   for (uint i = 0; i < dead_allocations.size(); ++i) {
 754     CallProjections projs;
 755     AllocateNode* alloc = dead_allocations.at(i)->as_Allocate();
 756     alloc->extract_projections(&projs, true);
 757     // Use lazy_replace to avoid corrupting the dominator tree of PhaseIdealLoop
 758     phase->lazy_replace(projs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
 759     phase->lazy_replace(projs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
 760     phase->lazy_replace(projs.catchall_memproj, phase->C->top());
 761     phase->lazy_replace(projs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
 762     phase->lazy_replace(projs.catchall_ioproj, phase->C->top());
 763     phase->lazy_replace(projs.catchall_catchproj, phase->C->top());
 764     phase->lazy_replace(projs.resproj, phase->C->top());
 765   }
 766 
 767   // Process users
 768   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 769     Node* out = fast_out(i);
 770     if (out->isa_ValueType() != NULL) {
 771       // Recursively process value type users
 772       out->as_ValueType()->remove_redundant_allocations(igvn, phase);
 773       --i; --imax;
 774     } else if (out->isa_Allocate() != NULL) {
 775       // Unlink AllocateNode
 776       assert(out->in(AllocateNode::ValueNode) == this, "should be linked");
 777       igvn->replace_input_of(out, AllocateNode::ValueNode, NULL);
 778       --i; --imax;
 779     } else {
 780 #ifdef ASSERT
 781       // The value type should not have any other users at this time
 782       out->dump();
 783       assert(false, "unexpected user of value type");
 784 #endif
 785     }
 786   }
 787 
 788   // Should be dead now
 789   igvn->remove_dead_node(this);
 790 }
 791 
 792 ValueTypePtrNode* ValueTypePtrNode::make_from_value_type(PhaseGVN& gvn, ValueTypeNode* vt) {
 793   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vt->value_klass(), vt->get_oop());
 794   for (uint i = Oop+1; i < vt->req(); i++) {
 795     vtptr->init_req(i, vt->in(i));
 796   }
 797   return gvn.transform(vtptr)->as_ValueTypePtr();
 798 }
 799 
 800 ValueTypePtrNode* ValueTypePtrNode::make_from_call(GraphKit* kit, ciValueKlass* vk, CallNode* call) {
 801   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, kit->zerocon(T_VALUETYPE));
 802   Node* ctl = kit->control();
 803   vtptr->initialize(&kit->gvn(), ctl, kit->merged_memory(), call, vk);
 804   kit->set_control(ctl);
 805   return vtptr;
 806 }
 807 
 808 ValueTypePtrNode* ValueTypePtrNode::make_from_oop(PhaseGVN& gvn, Node*& ctl, Node* mem, Node* oop) {
 809   // Create and initialize a ValueTypePtrNode by loading all field
 810   // values from a heap-allocated version and also save the oop.
 811   ciValueKlass* vk = gvn.type(oop)->is_valuetypeptr()->value_klass();
 812   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, oop);
 813   vtptr->load(gvn, ctl, mem, oop, oop, vk);
 814   return vtptr;
 815 }