1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/valueArrayKlass.hpp"
  43 #include "oops/valueArrayOop.hpp"
  44 #include "oops/valueKlass.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvm.h"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/compilationPolicy.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/signature.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/thread.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "runtime/vframe_hp.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 
  62 #if INCLUDE_JVMCI
  63 #include "jvmci/jvmciRuntime.hpp"
  64 #include "jvmci/jvmciJavaClasses.hpp"
  65 #endif
  66 
  67 
  68 bool DeoptimizationMarker::_is_active = false;
  69 
  70 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  71                                          int  caller_adjustment,
  72                                          int  caller_actual_parameters,
  73                                          int  number_of_frames,
  74                                          intptr_t* frame_sizes,
  75                                          address* frame_pcs,
  76                                          BasicType return_type,
  77                                          int exec_mode) {
  78   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  79   _caller_adjustment         = caller_adjustment;
  80   _caller_actual_parameters  = caller_actual_parameters;
  81   _number_of_frames          = number_of_frames;
  82   _frame_sizes               = frame_sizes;
  83   _frame_pcs                 = frame_pcs;
  84   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  85   _return_type               = return_type;
  86   _initial_info              = 0;
  87   // PD (x86 only)
  88   _counter_temp              = 0;
  89   _unpack_kind               = exec_mode;
  90   _sender_sp_temp            = 0;
  91 
  92   _total_frame_sizes         = size_of_frames();
  93   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  94 }
  95 
  96 
  97 Deoptimization::UnrollBlock::~UnrollBlock() {
  98   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  99   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 100   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 101 }
 102 
 103 
 104 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 105   assert(register_number < RegisterMap::reg_count, "checking register number");
 106   return &_register_block[register_number * 2];
 107 }
 108 
 109 
 110 
 111 int Deoptimization::UnrollBlock::size_of_frames() const {
 112   // Acount first for the adjustment of the initial frame
 113   int result = _caller_adjustment;
 114   for (int index = 0; index < number_of_frames(); index++) {
 115     result += frame_sizes()[index];
 116   }
 117   return result;
 118 }
 119 
 120 
 121 void Deoptimization::UnrollBlock::print() {
 122   ttyLocker ttyl;
 123   tty->print_cr("UnrollBlock");
 124   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 125   tty->print(   "  frame_sizes: ");
 126   for (int index = 0; index < number_of_frames(); index++) {
 127     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 128   }
 129   tty->cr();
 130 }
 131 
 132 
 133 // In order to make fetch_unroll_info work properly with escape
 134 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 135 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 136 // of previously eliminated objects occurs in realloc_objects, which is
 137 // called from the method fetch_unroll_info_helper below.
 138 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 139   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 140   // but makes the entry a little slower. There is however a little dance we have to
 141   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 142 
 143   // fetch_unroll_info() is called at the beginning of the deoptimization
 144   // handler. Note this fact before we start generating temporary frames
 145   // that can confuse an asynchronous stack walker. This counter is
 146   // decremented at the end of unpack_frames().
 147   if (TraceDeoptimization) {
 148     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 149   }
 150   thread->inc_in_deopt_handler();
 151 
 152   return fetch_unroll_info_helper(thread, exec_mode);
 153 JRT_END
 154 
 155 
 156 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 157 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 158 
 159   // Note: there is a safepoint safety issue here. No matter whether we enter
 160   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 161   // the vframeArray is created.
 162   //
 163 
 164   // Allocate our special deoptimization ResourceMark
 165   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 166   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 167   thread->set_deopt_mark(dmark);
 168 
 169   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 170   RegisterMap map(thread, true);
 171   RegisterMap dummy_map(thread, false);
 172   // Now get the deoptee with a valid map
 173   frame deoptee = stub_frame.sender(&map);
 174   // Set the deoptee nmethod
 175   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 176   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 177   thread->set_deopt_compiled_method(cm);
 178 
 179   if (VerifyStack) {
 180     thread->validate_frame_layout();
 181   }
 182 
 183   // Create a growable array of VFrames where each VFrame represents an inlined
 184   // Java frame.  This storage is allocated with the usual system arena.
 185   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 186   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 187   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 188   while (!vf->is_top()) {
 189     assert(vf->is_compiled_frame(), "Wrong frame type");
 190     chunk->push(compiledVFrame::cast(vf));
 191     vf = vf->sender();
 192   }
 193   assert(vf->is_compiled_frame(), "Wrong frame type");
 194   chunk->push(compiledVFrame::cast(vf));
 195 
 196   bool realloc_failures = false;
 197 
 198 #if defined(COMPILER2) || INCLUDE_JVMCI
 199   // Reallocate the non-escaping objects and restore their fields. Then
 200   // relock objects if synchronization on them was eliminated.
 201 #ifndef INCLUDE_JVMCI
 202   if (DoEscapeAnalysis || EliminateNestedLocks) {
 203     if (EliminateAllocations) {
 204 #endif // INCLUDE_JVMCI
 205       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 206       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 207 
 208       // The flag return_oop() indicates call sites which return oop
 209       // in compiled code. Such sites include java method calls,
 210       // runtime calls (for example, used to allocate new objects/arrays
 211       // on slow code path) and any other calls generated in compiled code.
 212       // It is not guaranteed that we can get such information here only
 213       // by analyzing bytecode in deoptimized frames. This is why this flag
 214       // is set during method compilation (see Compile::Process_OopMap_Node()).
 215       // If the previous frame was popped or if we are dispatching an exception,
 216       // we don't have an oop result.
 217       ScopeDesc* scope = chunk->at(0)->scope();
 218       bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 219       // In case of the return of multiple values, we must take care
 220       // of all oop return values.
 221       GrowableArray<Handle> return_oops;
 222       ValueKlass* vk = NULL;
 223       if (save_oop_result) {
 224         if (scope->return_vt()) {
 225           vk = ValueKlass::returned_value_type(map);
 226           if (vk != NULL) {
 227             bool success = vk->save_oop_results(map, return_oops);
 228             assert(success, "found klass ptr being returned: saving oops can't fail");
 229             save_oop_result = false;
 230           } else {
 231             vk = NULL;
 232           }
 233         }
 234       }
 235       if (save_oop_result) {
 236         // Reallocation may trigger GC. If deoptimization happened on return from
 237         // call which returns oop we need to save it since it is not in oopmap.
 238         oop result = deoptee.saved_oop_result(&map);
 239         assert(oopDesc::is_oop_or_null(result), "must be oop");
 240         return_oops.push(Handle(thread, result));
 241         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 242         if (TraceDeoptimization) {
 243           ttyLocker ttyl;
 244           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 245         }
 246       }
 247       if (objects != NULL || vk != NULL) {
 248         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 249         JRT_BLOCK
 250           if (vk != NULL) {
 251             realloc_failures = realloc_value_type_result(vk, map, return_oops, THREAD);
 252           }
 253           if (objects != NULL) {
 254             realloc_failures = realloc_failures || realloc_objects(thread, &deoptee, objects, THREAD);
 255             reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 256           }
 257         JRT_END
 258 #ifndef PRODUCT
 259         if (TraceDeoptimization) {
 260           ttyLocker ttyl;
 261           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 262           print_objects(objects, realloc_failures);
 263         }
 264 #endif
 265       }
 266       if (save_oop_result || vk != NULL) {
 267         // Restore result.
 268         assert(return_oops.length() == 1, "no value type");
 269         deoptee.set_saved_oop_result(&map, return_oops.pop()());
 270       }
 271 #ifndef INCLUDE_JVMCI
 272     }
 273     if (EliminateLocks) {
 274 #endif // INCLUDE_JVMCI
 275 #ifndef PRODUCT
 276       bool first = true;
 277 #endif
 278       for (int i = 0; i < chunk->length(); i++) {
 279         compiledVFrame* cvf = chunk->at(i);
 280         assert (cvf->scope() != NULL,"expect only compiled java frames");
 281         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 282         if (monitors->is_nonempty()) {
 283           relock_objects(monitors, thread, realloc_failures);
 284 #ifndef PRODUCT
 285           if (PrintDeoptimizationDetails) {
 286             ttyLocker ttyl;
 287             for (int j = 0; j < monitors->length(); j++) {
 288               MonitorInfo* mi = monitors->at(j);
 289               if (mi->eliminated()) {
 290                 if (first) {
 291                   first = false;
 292                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 293                 }
 294                 if (mi->owner_is_scalar_replaced()) {
 295                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 296                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 297                 } else {
 298                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 299                 }
 300               }
 301             }
 302           }
 303 #endif // !PRODUCT
 304         }
 305       }
 306 #ifndef INCLUDE_JVMCI
 307     }
 308   }
 309 #endif // INCLUDE_JVMCI
 310 #endif // COMPILER2 || INCLUDE_JVMCI
 311 
 312   ScopeDesc* trap_scope = chunk->at(0)->scope();
 313   Handle exceptionObject;
 314   if (trap_scope->rethrow_exception()) {
 315     if (PrintDeoptimizationDetails) {
 316       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 317     }
 318     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 319     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 320     ScopeValue* topOfStack = expressions->top();
 321     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 322     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 323   }
 324 
 325   // Ensure that no safepoint is taken after pointers have been stored
 326   // in fields of rematerialized objects.  If a safepoint occurs from here on
 327   // out the java state residing in the vframeArray will be missed.
 328   NoSafepointVerifier no_safepoint;
 329 
 330   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 331 #if defined(COMPILER2) || INCLUDE_JVMCI
 332   if (realloc_failures) {
 333     pop_frames_failed_reallocs(thread, array);
 334   }
 335 #endif
 336 
 337   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 338   thread->set_vframe_array_head(array);
 339 
 340   // Now that the vframeArray has been created if we have any deferred local writes
 341   // added by jvmti then we can free up that structure as the data is now in the
 342   // vframeArray
 343 
 344   if (thread->deferred_locals() != NULL) {
 345     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 346     int i = 0;
 347     do {
 348       // Because of inlining we could have multiple vframes for a single frame
 349       // and several of the vframes could have deferred writes. Find them all.
 350       if (list->at(i)->id() == array->original().id()) {
 351         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 352         list->remove_at(i);
 353         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 354         delete dlv;
 355       } else {
 356         i++;
 357       }
 358     } while ( i < list->length() );
 359     if (list->length() == 0) {
 360       thread->set_deferred_locals(NULL);
 361       // free the list and elements back to C heap.
 362       delete list;
 363     }
 364 
 365   }
 366 
 367 #ifndef SHARK
 368   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 369   CodeBlob* cb = stub_frame.cb();
 370   // Verify we have the right vframeArray
 371   assert(cb->frame_size() >= 0, "Unexpected frame size");
 372   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 373 
 374   // If the deopt call site is a MethodHandle invoke call site we have
 375   // to adjust the unpack_sp.
 376   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 377   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 378     unpack_sp = deoptee.unextended_sp();
 379 
 380 #ifdef ASSERT
 381   assert(cb->is_deoptimization_stub() ||
 382          cb->is_uncommon_trap_stub() ||
 383          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 384          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 385          "unexpected code blob: %s", cb->name());
 386 #endif
 387 #else
 388   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 389 #endif // !SHARK
 390 
 391   // This is a guarantee instead of an assert because if vframe doesn't match
 392   // we will unpack the wrong deoptimized frame and wind up in strange places
 393   // where it will be very difficult to figure out what went wrong. Better
 394   // to die an early death here than some very obscure death later when the
 395   // trail is cold.
 396   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 397   // in that it will fail to detect a problem when there is one. This needs
 398   // more work in tiger timeframe.
 399   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 400 
 401   int number_of_frames = array->frames();
 402 
 403   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 404   // virtual activation, which is the reverse of the elements in the vframes array.
 405   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 406   // +1 because we always have an interpreter return address for the final slot.
 407   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 408   int popframe_extra_args = 0;
 409   // Create an interpreter return address for the stub to use as its return
 410   // address so the skeletal frames are perfectly walkable
 411   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 412 
 413   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 414   // activation be put back on the expression stack of the caller for reexecution
 415   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 416     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 417   }
 418 
 419   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 420   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 421   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 422   //
 423   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 424   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 425 
 426   // It's possible that the number of parameters at the call site is
 427   // different than number of arguments in the callee when method
 428   // handles are used.  If the caller is interpreted get the real
 429   // value so that the proper amount of space can be added to it's
 430   // frame.
 431   bool caller_was_method_handle = false;
 432   if (deopt_sender.is_interpreted_frame()) {
 433     methodHandle method = deopt_sender.interpreter_frame_method();
 434     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 435     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 436       // Method handle invokes may involve fairly arbitrary chains of
 437       // calls so it's impossible to know how much actual space the
 438       // caller has for locals.
 439       caller_was_method_handle = true;
 440     }
 441   }
 442 
 443   //
 444   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 445   // frame_sizes/frame_pcs[1] next oldest frame (int)
 446   // frame_sizes/frame_pcs[n] youngest frame (int)
 447   //
 448   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 449   // owns the space for the return address to it's caller).  Confusing ain't it.
 450   //
 451   // The vframe array can address vframes with indices running from
 452   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 453   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 454   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 455   // so things look a little strange in this loop.
 456   //
 457   int callee_parameters = 0;
 458   int callee_locals = 0;
 459   for (int index = 0; index < array->frames(); index++ ) {
 460     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 461     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 462     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 463     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 464                                                                                                     callee_locals,
 465                                                                                                     index == 0,
 466                                                                                                     popframe_extra_args);
 467     // This pc doesn't have to be perfect just good enough to identify the frame
 468     // as interpreted so the skeleton frame will be walkable
 469     // The correct pc will be set when the skeleton frame is completely filled out
 470     // The final pc we store in the loop is wrong and will be overwritten below
 471     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 472 
 473     callee_parameters = array->element(index)->method()->size_of_parameters();
 474     callee_locals = array->element(index)->method()->max_locals();
 475     popframe_extra_args = 0;
 476   }
 477 
 478   // Compute whether the root vframe returns a float or double value.
 479   BasicType return_type;
 480   {
 481     methodHandle method(thread, array->element(0)->method());
 482     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 483     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 484   }
 485 
 486   // Compute information for handling adapters and adjusting the frame size of the caller.
 487   int caller_adjustment = 0;
 488 
 489   // Compute the amount the oldest interpreter frame will have to adjust
 490   // its caller's stack by. If the caller is a compiled frame then
 491   // we pretend that the callee has no parameters so that the
 492   // extension counts for the full amount of locals and not just
 493   // locals-parms. This is because without a c2i adapter the parm
 494   // area as created by the compiled frame will not be usable by
 495   // the interpreter. (Depending on the calling convention there
 496   // may not even be enough space).
 497 
 498   // QQQ I'd rather see this pushed down into last_frame_adjust
 499   // and have it take the sender (aka caller).
 500 
 501   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 502     caller_adjustment = last_frame_adjust(0, callee_locals);
 503   } else if (callee_locals > callee_parameters) {
 504     // The caller frame may need extending to accommodate
 505     // non-parameter locals of the first unpacked interpreted frame.
 506     // Compute that adjustment.
 507     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 508   }
 509 
 510   // If the sender is deoptimized the we must retrieve the address of the handler
 511   // since the frame will "magically" show the original pc before the deopt
 512   // and we'd undo the deopt.
 513 
 514   frame_pcs[0] = deopt_sender.raw_pc();
 515 
 516 #ifndef SHARK
 517   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 518 #endif // SHARK
 519 
 520 #ifdef INCLUDE_JVMCI
 521   if (exceptionObject() != NULL) {
 522     thread->set_exception_oop(exceptionObject());
 523     exec_mode = Unpack_exception;
 524   }
 525 #endif
 526 
 527   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 528     assert(thread->has_pending_exception(), "should have thrown OOME");
 529     thread->set_exception_oop(thread->pending_exception());
 530     thread->clear_pending_exception();
 531     exec_mode = Unpack_exception;
 532   }
 533 
 534 #if INCLUDE_JVMCI
 535   if (thread->frames_to_pop_failed_realloc() > 0) {
 536     thread->set_pending_monitorenter(false);
 537   }
 538 #endif
 539 
 540   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 541                                       caller_adjustment * BytesPerWord,
 542                                       caller_was_method_handle ? 0 : callee_parameters,
 543                                       number_of_frames,
 544                                       frame_sizes,
 545                                       frame_pcs,
 546                                       return_type,
 547                                       exec_mode);
 548   // On some platforms, we need a way to pass some platform dependent
 549   // information to the unpacking code so the skeletal frames come out
 550   // correct (initial fp value, unextended sp, ...)
 551   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 552 
 553   if (array->frames() > 1) {
 554     if (VerifyStack && TraceDeoptimization) {
 555       ttyLocker ttyl;
 556       tty->print_cr("Deoptimizing method containing inlining");
 557     }
 558   }
 559 
 560   array->set_unroll_block(info);
 561   return info;
 562 }
 563 
 564 // Called to cleanup deoptimization data structures in normal case
 565 // after unpacking to stack and when stack overflow error occurs
 566 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 567                                         vframeArray *array) {
 568 
 569   // Get array if coming from exception
 570   if (array == NULL) {
 571     array = thread->vframe_array_head();
 572   }
 573   thread->set_vframe_array_head(NULL);
 574 
 575   // Free the previous UnrollBlock
 576   vframeArray* old_array = thread->vframe_array_last();
 577   thread->set_vframe_array_last(array);
 578 
 579   if (old_array != NULL) {
 580     UnrollBlock* old_info = old_array->unroll_block();
 581     old_array->set_unroll_block(NULL);
 582     delete old_info;
 583     delete old_array;
 584   }
 585 
 586   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 587   // inside the vframeArray (StackValueCollections)
 588 
 589   delete thread->deopt_mark();
 590   thread->set_deopt_mark(NULL);
 591   thread->set_deopt_compiled_method(NULL);
 592 
 593 
 594   if (JvmtiExport::can_pop_frame()) {
 595 #ifndef CC_INTERP
 596     // Regardless of whether we entered this routine with the pending
 597     // popframe condition bit set, we should always clear it now
 598     thread->clear_popframe_condition();
 599 #else
 600     // C++ interpreter will clear has_pending_popframe when it enters
 601     // with method_resume. For deopt_resume2 we clear it now.
 602     if (thread->popframe_forcing_deopt_reexecution())
 603         thread->clear_popframe_condition();
 604 #endif /* CC_INTERP */
 605   }
 606 
 607   // unpack_frames() is called at the end of the deoptimization handler
 608   // and (in C2) at the end of the uncommon trap handler. Note this fact
 609   // so that an asynchronous stack walker can work again. This counter is
 610   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 611   // the beginning of uncommon_trap().
 612   thread->dec_in_deopt_handler();
 613 }
 614 
 615 // Moved from cpu directories because none of the cpus has callee save values.
 616 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 617 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 618 
 619   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 620   // the days we had adapter frames. When we deoptimize a situation where a
 621   // compiled caller calls a compiled caller will have registers it expects
 622   // to survive the call to the callee. If we deoptimize the callee the only
 623   // way we can restore these registers is to have the oldest interpreter
 624   // frame that we create restore these values. That is what this routine
 625   // will accomplish.
 626 
 627   // At the moment we have modified c2 to not have any callee save registers
 628   // so this problem does not exist and this routine is just a place holder.
 629 
 630   assert(f->is_interpreted_frame(), "must be interpreted");
 631 }
 632 
 633 // Return BasicType of value being returned
 634 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 635 
 636   // We are already active int he special DeoptResourceMark any ResourceObj's we
 637   // allocate will be freed at the end of the routine.
 638 
 639   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 640   // but makes the entry a little slower. There is however a little dance we have to
 641   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 642   ResetNoHandleMark rnhm; // No-op in release/product versions
 643   HandleMark hm;
 644 
 645   frame stub_frame = thread->last_frame();
 646 
 647   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 648   // must point to the vframeArray for the unpack frame.
 649   vframeArray* array = thread->vframe_array_head();
 650 
 651 #ifndef PRODUCT
 652   if (TraceDeoptimization) {
 653     ttyLocker ttyl;
 654     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 655                   p2i(thread), p2i(array), exec_mode);
 656   }
 657 #endif
 658   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 659               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 660 
 661   UnrollBlock* info = array->unroll_block();
 662 
 663   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 664   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 665 
 666   BasicType bt = info->return_type();
 667 
 668   // If we have an exception pending, claim that the return type is an oop
 669   // so the deopt_blob does not overwrite the exception_oop.
 670 
 671   if (exec_mode == Unpack_exception)
 672     bt = T_OBJECT;
 673 
 674   // Cleanup thread deopt data
 675   cleanup_deopt_info(thread, array);
 676 
 677 #ifndef PRODUCT
 678   if (VerifyStack) {
 679     ResourceMark res_mark;
 680 
 681     thread->validate_frame_layout();
 682 
 683     // Verify that the just-unpacked frames match the interpreter's
 684     // notions of expression stack and locals
 685     vframeArray* cur_array = thread->vframe_array_last();
 686     RegisterMap rm(thread, false);
 687     rm.set_include_argument_oops(false);
 688     bool is_top_frame = true;
 689     int callee_size_of_parameters = 0;
 690     int callee_max_locals = 0;
 691     for (int i = 0; i < cur_array->frames(); i++) {
 692       vframeArrayElement* el = cur_array->element(i);
 693       frame* iframe = el->iframe();
 694       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 695 
 696       // Get the oop map for this bci
 697       InterpreterOopMap mask;
 698       int cur_invoke_parameter_size = 0;
 699       bool try_next_mask = false;
 700       int next_mask_expression_stack_size = -1;
 701       int top_frame_expression_stack_adjustment = 0;
 702       methodHandle mh(thread, iframe->interpreter_frame_method());
 703       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 704       BytecodeStream str(mh);
 705       str.set_start(iframe->interpreter_frame_bci());
 706       int max_bci = mh->code_size();
 707       // Get to the next bytecode if possible
 708       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 709       // Check to see if we can grab the number of outgoing arguments
 710       // at an uncommon trap for an invoke (where the compiler
 711       // generates debug info before the invoke has executed)
 712       Bytecodes::Code cur_code = str.next();
 713       if (cur_code == Bytecodes::_invokevirtual   ||
 714           cur_code == Bytecodes::_invokespecial   ||
 715           cur_code == Bytecodes::_invokestatic    ||
 716           cur_code == Bytecodes::_invokeinterface ||
 717           cur_code == Bytecodes::_invokedynamic) {
 718         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 719         Symbol* signature = invoke.signature();
 720         ArgumentSizeComputer asc(signature);
 721         cur_invoke_parameter_size = asc.size();
 722         if (invoke.has_receiver()) {
 723           // Add in receiver
 724           ++cur_invoke_parameter_size;
 725         }
 726         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 727           callee_size_of_parameters++;
 728         }
 729       }
 730       if (str.bci() < max_bci) {
 731         Bytecodes::Code bc = str.next();
 732         if (bc >= 0) {
 733           // The interpreter oop map generator reports results before
 734           // the current bytecode has executed except in the case of
 735           // calls. It seems to be hard to tell whether the compiler
 736           // has emitted debug information matching the "state before"
 737           // a given bytecode or the state after, so we try both
 738           switch (cur_code) {
 739             case Bytecodes::_invokevirtual:
 740             case Bytecodes::_invokespecial:
 741             case Bytecodes::_invokestatic:
 742             case Bytecodes::_invokeinterface:
 743             case Bytecodes::_invokedynamic:
 744             case Bytecodes::_athrow:
 745               break;
 746             default: {
 747               InterpreterOopMap next_mask;
 748               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 749               next_mask_expression_stack_size = next_mask.expression_stack_size();
 750               // Need to subtract off the size of the result type of
 751               // the bytecode because this is not described in the
 752               // debug info but returned to the interpreter in the TOS
 753               // caching register
 754               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 755               if (bytecode_result_type != T_ILLEGAL) {
 756                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 757               }
 758               assert(top_frame_expression_stack_adjustment >= 0, "");
 759               try_next_mask = true;
 760               break;
 761             }
 762           }
 763         }
 764       }
 765 
 766       // Verify stack depth and oops in frame
 767       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 768       if (!(
 769             /* SPARC */
 770             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 771             /* x86 */
 772             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 773             (try_next_mask &&
 774              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 775                                                                     top_frame_expression_stack_adjustment))) ||
 776             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 777             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 778              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 779             )) {
 780         ttyLocker ttyl;
 781 
 782         // Print out some information that will help us debug the problem
 783         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 784         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 785         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 786                       iframe->interpreter_frame_expression_stack_size());
 787         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 788         tty->print_cr("  try_next_mask = %d", try_next_mask);
 789         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 790         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 791         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 792         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 793         tty->print_cr("  exec_mode = %d", exec_mode);
 794         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 795         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 796         tty->print_cr("  Interpreted frames:");
 797         for (int k = 0; k < cur_array->frames(); k++) {
 798           vframeArrayElement* el = cur_array->element(k);
 799           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 800         }
 801         cur_array->print_on_2(tty);
 802         guarantee(false, "wrong number of expression stack elements during deopt");
 803       }
 804       VerifyOopClosure verify;
 805       iframe->oops_interpreted_do(&verify, &rm, false);
 806       callee_size_of_parameters = mh->size_of_parameters();
 807       callee_max_locals = mh->max_locals();
 808       is_top_frame = false;
 809     }
 810   }
 811 #endif /* !PRODUCT */
 812 
 813 
 814   return bt;
 815 JRT_END
 816 
 817 
 818 int Deoptimization::deoptimize_dependents() {
 819   Threads::deoptimized_wrt_marked_nmethods();
 820   return 0;
 821 }
 822 
 823 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 824   = Deoptimization::Action_reinterpret;
 825 
 826 #if defined(COMPILER2) || INCLUDE_JVMCI
 827 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 828   Handle pending_exception(THREAD, thread->pending_exception());
 829   const char* exception_file = thread->exception_file();
 830   int exception_line = thread->exception_line();
 831   thread->clear_pending_exception();
 832 
 833   bool failures = false;
 834 
 835   for (int i = 0; i < objects->length(); i++) {
 836     assert(objects->at(i)->is_object(), "invalid debug information");
 837     ObjectValue* sv = (ObjectValue*) objects->at(i);
 838 
 839     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 840     oop obj = NULL;
 841 
 842     if (k->is_instance_klass()) {
 843       InstanceKlass* ik = InstanceKlass::cast(k);
 844       obj = ik->allocate_instance(THREAD);
 845     } else if (k->is_valueArray_klass()) {
 846       ValueArrayKlass* ak = ValueArrayKlass::cast(k);
 847       // Value type array must be zeroed because not all memory is reassigned
 848       obj = ak->allocate(sv->field_size(), true, THREAD);
 849     } else if (k->is_typeArray_klass()) {
 850       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 851       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 852       int len = sv->field_size() / type2size[ak->element_type()];
 853       obj = ak->allocate(len, THREAD);
 854     } else if (k->is_objArray_klass()) {
 855       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 856       obj = ak->allocate(sv->field_size(), THREAD);
 857     }
 858 
 859     if (obj == NULL) {
 860       failures = true;
 861     }
 862 
 863     assert(sv->value().is_null(), "redundant reallocation");
 864     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 865     CLEAR_PENDING_EXCEPTION;
 866     sv->set_value(obj);
 867   }
 868 
 869   if (failures) {
 870     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 871   } else if (pending_exception.not_null()) {
 872     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 873   }
 874 
 875   return failures;
 876 }
 877 
 878 // We're deoptimizing at the return of a call, value type fields are
 879 // in registers. When we go back to the interpreter, it will expect a
 880 // reference to a value type instance. Allocate and initialize it from
 881 // the register values here.
 882 bool Deoptimization::realloc_value_type_result(ValueKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) {
 883   oop new_vt = vk->realloc_result(map, return_oops, false, THREAD);
 884   if (new_vt == NULL) {
 885     CLEAR_PENDING_EXCEPTION;
 886     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true);
 887   }
 888   return_oops.clear();
 889   return_oops.push(Handle(THREAD, new_vt));
 890   return false;
 891 }
 892 
 893 // restore elements of an eliminated type array
 894 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 895   int index = 0;
 896   intptr_t val;
 897 
 898   for (int i = 0; i < sv->field_size(); i++) {
 899     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 900     switch(type) {
 901     case T_LONG: case T_DOUBLE: {
 902       assert(value->type() == T_INT, "Agreement.");
 903       StackValue* low =
 904         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 905 #ifdef _LP64
 906       jlong res = (jlong)low->get_int();
 907 #else
 908 #ifdef SPARC
 909       // For SPARC we have to swap high and low words.
 910       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 911 #else
 912       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 913 #endif //SPARC
 914 #endif
 915       obj->long_at_put(index, res);
 916       break;
 917     }
 918 
 919     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 920     case T_INT: case T_FLOAT: { // 4 bytes.
 921       assert(value->type() == T_INT, "Agreement.");
 922       bool big_value = false;
 923       if (i + 1 < sv->field_size() && type == T_INT) {
 924         if (sv->field_at(i)->is_location()) {
 925           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 926           if (type == Location::dbl || type == Location::lng) {
 927             big_value = true;
 928           }
 929         } else if (sv->field_at(i)->is_constant_int()) {
 930           ScopeValue* next_scope_field = sv->field_at(i + 1);
 931           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 932             big_value = true;
 933           }
 934         }
 935       }
 936 
 937       if (big_value) {
 938         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 939   #ifdef _LP64
 940         jlong res = (jlong)low->get_int();
 941   #else
 942   #ifdef SPARC
 943         // For SPARC we have to swap high and low words.
 944         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 945   #else
 946         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 947   #endif //SPARC
 948   #endif
 949         obj->int_at_put(index, (jint)*((jint*)&res));
 950         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 951       } else {
 952         val = value->get_int();
 953         obj->int_at_put(index, (jint)*((jint*)&val));
 954       }
 955       break;
 956     }
 957 
 958     case T_SHORT:
 959       assert(value->type() == T_INT, "Agreement.");
 960       val = value->get_int();
 961       obj->short_at_put(index, (jshort)*((jint*)&val));
 962       break;
 963 
 964     case T_CHAR:
 965       assert(value->type() == T_INT, "Agreement.");
 966       val = value->get_int();
 967       obj->char_at_put(index, (jchar)*((jint*)&val));
 968       break;
 969 
 970     case T_BYTE:
 971       assert(value->type() == T_INT, "Agreement.");
 972       val = value->get_int();
 973       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 974       break;
 975 
 976     case T_BOOLEAN:
 977       assert(value->type() == T_INT, "Agreement.");
 978       val = value->get_int();
 979       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 980       break;
 981 
 982       default:
 983         ShouldNotReachHere();
 984     }
 985     index++;
 986   }
 987 }
 988 
 989 
 990 // restore fields of an eliminated object array
 991 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 992   for (int i = 0; i < sv->field_size(); i++) {
 993     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 994     assert(value->type() == T_OBJECT, "object element expected");
 995     obj->obj_at_put(i, value->get_obj()());
 996   }
 997 }
 998 
 999 class ReassignedField {
1000 public:
1001   int _offset;
1002   BasicType _type;
1003   InstanceKlass* _klass;
1004 public:
1005   ReassignedField() {
1006     _offset = 0;
1007     _type = T_ILLEGAL;
1008     _klass = NULL;
1009   }
1010 };
1011 
1012 int compare(ReassignedField* left, ReassignedField* right) {
1013   return left->_offset - right->_offset;
1014 }
1015 
1016 // Restore fields of an eliminated instance object using the same field order
1017 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1018 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
1019   if (klass->superklass() != NULL) {
1020     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
1021   }
1022 
1023   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1024   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1025     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1026       ReassignedField field;
1027       field._offset = fs.offset();
1028       field._type = FieldType::basic_type(fs.signature());
1029       if (field._type == T_VALUETYPE) {
1030         if (fs.is_flatten()) {
1031           // Resolve klass of flattened value type field
1032           SignatureStream ss(fs.signature(), false);
1033           Klass* vk = ss.as_klass(Handle(THREAD, klass->class_loader()), Handle(THREAD, klass->protection_domain()), SignatureStream::NCDFError, THREAD);
1034           guarantee(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1035           assert(vk->is_value(), "must be a ValueKlass");
1036           field._klass = InstanceKlass::cast(vk);
1037         } else {
1038           // Non-flattened value type field
1039           field._type = T_VALUETYPEPTR;
1040         }
1041       }
1042       fields->append(field);
1043     }
1044   }
1045   fields->sort(compare);
1046   for (int i = 0; i < fields->length(); i++) {
1047     intptr_t val;
1048     ScopeValue* scope_field = sv->field_at(svIndex);
1049     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1050     int offset = base_offset + fields->at(i)._offset;
1051     BasicType type = fields->at(i)._type;
1052     switch (type) {
1053       case T_OBJECT:
1054       case T_VALUETYPEPTR:
1055       case T_ARRAY:
1056         assert(value->type() == T_OBJECT, "Agreement.");
1057         obj->obj_field_put(offset, value->get_obj()());
1058         break;
1059 
1060       case T_VALUETYPE: {
1061         // Recursively re-assign flattened value type fields
1062         InstanceKlass* vk = fields->at(i)._klass;
1063         assert(vk != NULL, "must be resolved");
1064         offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1065         svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1066         continue; // Continue because we don't need to increment svIndex
1067       }
1068 
1069       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1070       case T_INT: case T_FLOAT: { // 4 bytes.
1071         assert(value->type() == T_INT, "Agreement.");
1072         bool big_value = false;
1073         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1074           if (scope_field->is_location()) {
1075             Location::Type type = ((LocationValue*) scope_field)->location().type();
1076             if (type == Location::dbl || type == Location::lng) {
1077               big_value = true;
1078             }
1079           }
1080           if (scope_field->is_constant_int()) {
1081             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1082             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1083               big_value = true;
1084             }
1085           }
1086         }
1087 
1088         if (big_value) {
1089           i++;
1090           assert(i < fields->length(), "second T_INT field needed");
1091           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1092         } else {
1093           val = value->get_int();
1094           obj->int_field_put(offset, (jint)*((jint*)&val));
1095           break;
1096         }
1097       }
1098         /* no break */
1099 
1100       case T_LONG: case T_DOUBLE: {
1101         assert(value->type() == T_INT, "Agreement.");
1102         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1103 #ifdef _LP64
1104         jlong res = (jlong)low->get_int();
1105 #else
1106 #ifdef SPARC
1107         // For SPARC we have to swap high and low words.
1108         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1109 #else
1110         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1111 #endif //SPARC
1112 #endif
1113         obj->long_field_put(offset, res);
1114         break;
1115       }
1116 
1117       case T_SHORT:
1118         assert(value->type() == T_INT, "Agreement.");
1119         val = value->get_int();
1120         obj->short_field_put(offset, (jshort)*((jint*)&val));
1121         break;
1122 
1123       case T_CHAR:
1124         assert(value->type() == T_INT, "Agreement.");
1125         val = value->get_int();
1126         obj->char_field_put(offset, (jchar)*((jint*)&val));
1127         break;
1128 
1129       case T_BYTE:
1130         assert(value->type() == T_INT, "Agreement.");
1131         val = value->get_int();
1132         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1133         break;
1134 
1135       case T_BOOLEAN:
1136         assert(value->type() == T_INT, "Agreement.");
1137         val = value->get_int();
1138         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1139         break;
1140 
1141       default:
1142         ShouldNotReachHere();
1143     }
1144     svIndex++;
1145   }
1146   return svIndex;
1147 }
1148 
1149 // restore fields of an eliminated value type array
1150 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) {
1151   ValueKlass* vk = vak->element_klass();
1152   assert(vk->flatten_array(), "should only be used for flattened value type arrays");
1153   // Adjust offset to omit oop header
1154   int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset();
1155   // Initialize all elements of the flattened value type array
1156   for (int i = 0; i < sv->field_size(); i++) {
1157     ScopeValue* val = sv->field_at(i);
1158     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1159     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK);
1160   }
1161 }
1162 
1163 // restore fields of all eliminated objects and arrays
1164 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1165   for (int i = 0; i < objects->length(); i++) {
1166     ObjectValue* sv = (ObjectValue*) objects->at(i);
1167     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1168     Handle obj = sv->value();
1169     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1170     if (PrintDeoptimizationDetails) {
1171       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1172     }
1173     if (obj.is_null()) {
1174       continue;
1175     }
1176 
1177     if (k->is_instance_klass()) {
1178       InstanceKlass* ik = InstanceKlass::cast(k);
1179       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1180     } else if (k->is_valueArray_klass()) {
1181       ValueArrayKlass* vak = ValueArrayKlass::cast(k);
1182       reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK);
1183     } else if (k->is_typeArray_klass()) {
1184       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1185       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1186     } else if (k->is_objArray_klass()) {
1187       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1188     }
1189   }
1190 }
1191 
1192 
1193 // relock objects for which synchronization was eliminated
1194 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1195   for (int i = 0; i < monitors->length(); i++) {
1196     MonitorInfo* mon_info = monitors->at(i);
1197     if (mon_info->eliminated()) {
1198       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1199       if (!mon_info->owner_is_scalar_replaced()) {
1200         Handle obj(thread, mon_info->owner());
1201         markOop mark = obj->mark();
1202         if (UseBiasedLocking && mark->has_bias_pattern()) {
1203           // New allocated objects may have the mark set to anonymously biased.
1204           // Also the deoptimized method may called methods with synchronization
1205           // where the thread-local object is bias locked to the current thread.
1206           assert(mark->is_biased_anonymously() ||
1207                  mark->biased_locker() == thread, "should be locked to current thread");
1208           // Reset mark word to unbiased prototype.
1209           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1210           obj->set_mark(unbiased_prototype);
1211         }
1212         BasicLock* lock = mon_info->lock();
1213         ObjectSynchronizer::slow_enter(obj, lock, thread);
1214         assert(mon_info->owner()->is_locked(), "object must be locked now");
1215       }
1216     }
1217   }
1218 }
1219 
1220 
1221 #ifndef PRODUCT
1222 // print information about reallocated objects
1223 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1224   fieldDescriptor fd;
1225 
1226   for (int i = 0; i < objects->length(); i++) {
1227     ObjectValue* sv = (ObjectValue*) objects->at(i);
1228     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1229     Handle obj = sv->value();
1230 
1231     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1232     k->print_value();
1233     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1234     if (obj.is_null()) {
1235       tty->print(" allocation failed");
1236     } else {
1237       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1238     }
1239     tty->cr();
1240 
1241     if (Verbose && !obj.is_null()) {
1242       k->oop_print_on(obj(), tty);
1243     }
1244   }
1245 }
1246 #endif
1247 #endif // COMPILER2 || INCLUDE_JVMCI
1248 
1249 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1250   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1251 
1252 #ifndef PRODUCT
1253   if (PrintDeoptimizationDetails) {
1254     ttyLocker ttyl;
1255     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1256     fr.print_on(tty);
1257     tty->print_cr("     Virtual frames (innermost first):");
1258     for (int index = 0; index < chunk->length(); index++) {
1259       compiledVFrame* vf = chunk->at(index);
1260       tty->print("       %2d - ", index);
1261       vf->print_value();
1262       int bci = chunk->at(index)->raw_bci();
1263       const char* code_name;
1264       if (bci == SynchronizationEntryBCI) {
1265         code_name = "sync entry";
1266       } else {
1267         Bytecodes::Code code = vf->method()->code_at(bci);
1268         code_name = Bytecodes::name(code);
1269       }
1270       tty->print(" - %s", code_name);
1271       tty->print_cr(" @ bci %d ", bci);
1272       if (Verbose) {
1273         vf->print();
1274         tty->cr();
1275       }
1276     }
1277   }
1278 #endif
1279 
1280   // Register map for next frame (used for stack crawl).  We capture
1281   // the state of the deopt'ing frame's caller.  Thus if we need to
1282   // stuff a C2I adapter we can properly fill in the callee-save
1283   // register locations.
1284   frame caller = fr.sender(reg_map);
1285   int frame_size = caller.sp() - fr.sp();
1286 
1287   frame sender = caller;
1288 
1289   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1290   // the vframeArray containing the unpacking information is allocated in the C heap.
1291   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1292   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1293 
1294   // Compare the vframeArray to the collected vframes
1295   assert(array->structural_compare(thread, chunk), "just checking");
1296 
1297 #ifndef PRODUCT
1298   if (PrintDeoptimizationDetails) {
1299     ttyLocker ttyl;
1300     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1301   }
1302 #endif // PRODUCT
1303 
1304   return array;
1305 }
1306 
1307 #if defined(COMPILER2) || INCLUDE_JVMCI
1308 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1309   // Reallocation of some scalar replaced objects failed. Record
1310   // that we need to pop all the interpreter frames for the
1311   // deoptimized compiled frame.
1312   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1313   thread->set_frames_to_pop_failed_realloc(array->frames());
1314   // Unlock all monitors here otherwise the interpreter will see a
1315   // mix of locked and unlocked monitors (because of failed
1316   // reallocations of synchronized objects) and be confused.
1317   for (int i = 0; i < array->frames(); i++) {
1318     MonitorChunk* monitors = array->element(i)->monitors();
1319     if (monitors != NULL) {
1320       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1321         BasicObjectLock* src = monitors->at(j);
1322         if (src->obj() != NULL) {
1323           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1324         }
1325       }
1326       array->element(i)->free_monitors(thread);
1327 #ifdef ASSERT
1328       array->element(i)->set_removed_monitors();
1329 #endif
1330     }
1331   }
1332 }
1333 #endif
1334 
1335 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1336   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1337   Thread* thread = Thread::current();
1338   for (int i = 0; i < monitors->length(); i++) {
1339     MonitorInfo* mon_info = monitors->at(i);
1340     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1341       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1342     }
1343   }
1344 }
1345 
1346 
1347 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1348   if (!UseBiasedLocking) {
1349     return;
1350   }
1351 
1352   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1353 
1354   // Unfortunately we don't have a RegisterMap available in most of
1355   // the places we want to call this routine so we need to walk the
1356   // stack again to update the register map.
1357   if (map == NULL || !map->update_map()) {
1358     StackFrameStream sfs(thread, true);
1359     bool found = false;
1360     while (!found && !sfs.is_done()) {
1361       frame* cur = sfs.current();
1362       sfs.next();
1363       found = cur->id() == fr.id();
1364     }
1365     assert(found, "frame to be deoptimized not found on target thread's stack");
1366     map = sfs.register_map();
1367   }
1368 
1369   vframe* vf = vframe::new_vframe(&fr, map, thread);
1370   compiledVFrame* cvf = compiledVFrame::cast(vf);
1371   // Revoke monitors' biases in all scopes
1372   while (!cvf->is_top()) {
1373     collect_monitors(cvf, objects_to_revoke);
1374     cvf = compiledVFrame::cast(cvf->sender());
1375   }
1376   collect_monitors(cvf, objects_to_revoke);
1377 
1378   if (SafepointSynchronize::is_at_safepoint()) {
1379     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1380   } else {
1381     BiasedLocking::revoke(objects_to_revoke);
1382   }
1383 }
1384 
1385 
1386 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1387   if (!UseBiasedLocking) {
1388     return;
1389   }
1390 
1391   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1392   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1393   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1394     if (jt->has_last_Java_frame()) {
1395       StackFrameStream sfs(jt, true);
1396       while (!sfs.is_done()) {
1397         frame* cur = sfs.current();
1398         if (cb->contains(cur->pc())) {
1399           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1400           compiledVFrame* cvf = compiledVFrame::cast(vf);
1401           // Revoke monitors' biases in all scopes
1402           while (!cvf->is_top()) {
1403             collect_monitors(cvf, objects_to_revoke);
1404             cvf = compiledVFrame::cast(cvf->sender());
1405           }
1406           collect_monitors(cvf, objects_to_revoke);
1407         }
1408         sfs.next();
1409       }
1410     }
1411   }
1412   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1413 }
1414 
1415 
1416 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1417   assert(fr.can_be_deoptimized(), "checking frame type");
1418 
1419   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1420 
1421   if (LogCompilation && xtty != NULL) {
1422     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1423     assert(cm != NULL, "only compiled methods can deopt");
1424 
1425     ttyLocker ttyl;
1426     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1427     cm->log_identity(xtty);
1428     xtty->end_head();
1429     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1430       xtty->begin_elem("jvms bci='%d'", sd->bci());
1431       xtty->method(sd->method());
1432       xtty->end_elem();
1433       if (sd->is_top())  break;
1434     }
1435     xtty->tail("deoptimized");
1436   }
1437 
1438   // Patch the compiled method so that when execution returns to it we will
1439   // deopt the execution state and return to the interpreter.
1440   fr.deoptimize(thread);
1441 }
1442 
1443 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1444   deoptimize(thread, fr, map, Reason_constraint);
1445 }
1446 
1447 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1448   // Deoptimize only if the frame comes from compile code.
1449   // Do not deoptimize the frame which is already patched
1450   // during the execution of the loops below.
1451   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1452     return;
1453   }
1454   ResourceMark rm;
1455   DeoptimizationMarker dm;
1456   if (UseBiasedLocking) {
1457     revoke_biases_of_monitors(thread, fr, map);
1458   }
1459   deoptimize_single_frame(thread, fr, reason);
1460 
1461 }
1462 
1463 #if INCLUDE_JVMCI
1464 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1465   // there is no exception handler for this pc => deoptimize
1466   cm->make_not_entrant();
1467 
1468   // Use Deoptimization::deoptimize for all of its side-effects:
1469   // revoking biases of monitors, gathering traps statistics, logging...
1470   // it also patches the return pc but we do not care about that
1471   // since we return a continuation to the deopt_blob below.
1472   JavaThread* thread = JavaThread::current();
1473   RegisterMap reg_map(thread, UseBiasedLocking);
1474   frame runtime_frame = thread->last_frame();
1475   frame caller_frame = runtime_frame.sender(&reg_map);
1476   assert(caller_frame.cb()->as_nmethod_or_null() == cm, "expect top frame nmethod");
1477   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1478 
1479   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1480   if (trap_mdo != NULL) {
1481     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1482   }
1483 
1484   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1485 }
1486 #endif
1487 
1488 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1489   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1490          "can only deoptimize other thread at a safepoint");
1491   // Compute frame and register map based on thread and sp.
1492   RegisterMap reg_map(thread, UseBiasedLocking);
1493   frame fr = thread->last_frame();
1494   while (fr.id() != id) {
1495     fr = fr.sender(&reg_map);
1496   }
1497   deoptimize(thread, fr, &reg_map, reason);
1498 }
1499 
1500 
1501 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1502   if (thread == Thread::current()) {
1503     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1504   } else {
1505     VM_DeoptimizeFrame deopt(thread, id, reason);
1506     VMThread::execute(&deopt);
1507   }
1508 }
1509 
1510 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1511   deoptimize_frame(thread, id, Reason_constraint);
1512 }
1513 
1514 // JVMTI PopFrame support
1515 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1516 {
1517   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1518 }
1519 JRT_END
1520 
1521 MethodData*
1522 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1523                                 bool create_if_missing) {
1524   Thread* THREAD = thread;
1525   MethodData* mdo = m()->method_data();
1526   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1527     // Build an MDO.  Ignore errors like OutOfMemory;
1528     // that simply means we won't have an MDO to update.
1529     Method::build_interpreter_method_data(m, THREAD);
1530     if (HAS_PENDING_EXCEPTION) {
1531       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1532       CLEAR_PENDING_EXCEPTION;
1533     }
1534     mdo = m()->method_data();
1535   }
1536   return mdo;
1537 }
1538 
1539 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1540 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1541   // in case of an unresolved klass entry, load the class.
1542   if (constant_pool->tag_at(index).is_unresolved_klass() ||
1543       constant_pool->tag_at(index).is_unresolved_value_type()) {
1544     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1545     return;
1546   }
1547 
1548   if (!constant_pool->tag_at(index).is_symbol()) return;
1549 
1550   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1551   Symbol*  symbol  = constant_pool->symbol_at(index);
1552 
1553   // class name?
1554   if (symbol->byte_at(0) != '(') {
1555     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1556     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1557     return;
1558   }
1559 
1560   // then it must be a signature!
1561   ResourceMark rm(THREAD);
1562   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1563     if (ss.is_object()) {
1564       Symbol* class_name = ss.as_symbol(CHECK);
1565       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1566       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1567     }
1568   }
1569 }
1570 
1571 
1572 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1573   EXCEPTION_MARK;
1574   load_class_by_index(constant_pool, index, THREAD);
1575   if (HAS_PENDING_EXCEPTION) {
1576     // Exception happened during classloading. We ignore the exception here, since it
1577     // is going to be rethrown since the current activation is going to be deoptimized and
1578     // the interpreter will re-execute the bytecode.
1579     CLEAR_PENDING_EXCEPTION;
1580     // Class loading called java code which may have caused a stack
1581     // overflow. If the exception was thrown right before the return
1582     // to the runtime the stack is no longer guarded. Reguard the
1583     // stack otherwise if we return to the uncommon trap blob and the
1584     // stack bang causes a stack overflow we crash.
1585     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1586     JavaThread* thread = (JavaThread*)THREAD;
1587     bool guard_pages_enabled = thread->stack_guards_enabled();
1588     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1589     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1590   }
1591 }
1592 
1593 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1594   HandleMark hm;
1595 
1596   // uncommon_trap() is called at the beginning of the uncommon trap
1597   // handler. Note this fact before we start generating temporary frames
1598   // that can confuse an asynchronous stack walker. This counter is
1599   // decremented at the end of unpack_frames().
1600   thread->inc_in_deopt_handler();
1601 
1602   // We need to update the map if we have biased locking.
1603 #if INCLUDE_JVMCI
1604   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1605   RegisterMap reg_map(thread, true);
1606 #else
1607   RegisterMap reg_map(thread, UseBiasedLocking);
1608 #endif
1609   frame stub_frame = thread->last_frame();
1610   frame fr = stub_frame.sender(&reg_map);
1611   // Make sure the calling nmethod is not getting deoptimized and removed
1612   // before we are done with it.
1613   nmethodLocker nl(fr.pc());
1614 
1615   // Log a message
1616   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1617               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1618 
1619   {
1620     ResourceMark rm;
1621 
1622     // Revoke biases of any monitors in the frame to ensure we can migrate them
1623     revoke_biases_of_monitors(thread, fr, &reg_map);
1624 
1625     DeoptReason reason = trap_request_reason(trap_request);
1626     DeoptAction action = trap_request_action(trap_request);
1627 #if INCLUDE_JVMCI
1628     int debug_id = trap_request_debug_id(trap_request);
1629 #endif
1630     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1631 
1632     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1633     compiledVFrame* cvf = compiledVFrame::cast(vf);
1634 
1635     CompiledMethod* nm = cvf->code();
1636 
1637     ScopeDesc*      trap_scope  = cvf->scope();
1638 
1639     if (TraceDeoptimization) {
1640       ttyLocker ttyl;
1641       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1642 #if INCLUDE_JVMCI
1643           , debug_id
1644 #endif
1645           );
1646     }
1647 
1648     methodHandle    trap_method = trap_scope->method();
1649     int             trap_bci    = trap_scope->bci();
1650 #if INCLUDE_JVMCI
1651     oop speculation = thread->pending_failed_speculation();
1652     if (nm->is_compiled_by_jvmci()) {
1653       if (speculation != NULL) {
1654         oop speculation_log = nm->as_nmethod()->speculation_log();
1655         if (speculation_log != NULL) {
1656           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1657             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1658               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1659             }
1660           }
1661           if (TraceDeoptimization) {
1662             tty->print_cr("Saving speculation to speculation log");
1663           }
1664           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1665         } else {
1666           if (TraceDeoptimization) {
1667             tty->print_cr("Speculation present but no speculation log");
1668           }
1669         }
1670         thread->set_pending_failed_speculation(NULL);
1671       } else {
1672         if (TraceDeoptimization) {
1673           tty->print_cr("No speculation");
1674         }
1675       }
1676     } else {
1677       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1678     }
1679 
1680     if (trap_bci == SynchronizationEntryBCI) {
1681       trap_bci = 0;
1682       thread->set_pending_monitorenter(true);
1683     }
1684 
1685     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1686       thread->set_pending_transfer_to_interpreter(true);
1687     }
1688 #endif
1689 
1690     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1691     // Record this event in the histogram.
1692     gather_statistics(reason, action, trap_bc);
1693 
1694     // Ensure that we can record deopt. history:
1695     // Need MDO to record RTM code generation state.
1696     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1697 
1698     methodHandle profiled_method;
1699 #if INCLUDE_JVMCI
1700     if (nm->is_compiled_by_jvmci()) {
1701       profiled_method = nm->method();
1702     } else {
1703       profiled_method = trap_method;
1704     }
1705 #else
1706     profiled_method = trap_method;
1707 #endif
1708 
1709     MethodData* trap_mdo =
1710       get_method_data(thread, profiled_method, create_if_missing);
1711 
1712     // Log a message
1713     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1714                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1715                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1716 
1717     // Print a bunch of diagnostics, if requested.
1718     if (TraceDeoptimization || LogCompilation) {
1719       ResourceMark rm;
1720       ttyLocker ttyl;
1721       char buf[100];
1722       if (xtty != NULL) {
1723         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1724                          os::current_thread_id(),
1725                          format_trap_request(buf, sizeof(buf), trap_request));
1726         nm->log_identity(xtty);
1727       }
1728       Symbol* class_name = NULL;
1729       bool unresolved = false;
1730       if (unloaded_class_index >= 0) {
1731         constantPoolHandle constants (THREAD, trap_method->constants());
1732         if (constants->tag_at(unloaded_class_index).is_unresolved_klass() ||
1733             constants->tag_at(unloaded_class_index).is_unresolved_value_type()) {
1734           class_name = constants->klass_name_at(unloaded_class_index);
1735           unresolved = true;
1736           if (xtty != NULL)
1737             xtty->print(" unresolved='1'");
1738         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1739           class_name = constants->symbol_at(unloaded_class_index);
1740         }
1741         if (xtty != NULL)
1742           xtty->name(class_name);
1743       }
1744       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1745         // Dump the relevant MDO state.
1746         // This is the deopt count for the current reason, any previous
1747         // reasons or recompiles seen at this point.
1748         int dcnt = trap_mdo->trap_count(reason);
1749         if (dcnt != 0)
1750           xtty->print(" count='%d'", dcnt);
1751         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1752         int dos = (pdata == NULL)? 0: pdata->trap_state();
1753         if (dos != 0) {
1754           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1755           if (trap_state_is_recompiled(dos)) {
1756             int recnt2 = trap_mdo->overflow_recompile_count();
1757             if (recnt2 != 0)
1758               xtty->print(" recompiles2='%d'", recnt2);
1759           }
1760         }
1761       }
1762       if (xtty != NULL) {
1763         xtty->stamp();
1764         xtty->end_head();
1765       }
1766       if (TraceDeoptimization) {  // make noise on the tty
1767         tty->print("Uncommon trap occurred in");
1768         nm->method()->print_short_name(tty);
1769         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1770 #if INCLUDE_JVMCI
1771         if (nm->is_nmethod()) {
1772           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1773           if (installedCode != NULL) {
1774             oop installedCodeName = NULL;
1775             if (installedCode->is_a(InstalledCode::klass())) {
1776               installedCodeName = InstalledCode::name(installedCode);
1777             }
1778             if (installedCodeName != NULL) {
1779               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1780             } else {
1781               tty->print(" (JVMCI: installed code has no name) ");
1782             }
1783           } else if (nm->is_compiled_by_jvmci()) {
1784             tty->print(" (JVMCI: no installed code) ");
1785           }
1786         }
1787 #endif
1788         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1789                    p2i(fr.pc()),
1790                    os::current_thread_id(),
1791                    trap_reason_name(reason),
1792                    trap_action_name(action),
1793                    unloaded_class_index
1794 #if INCLUDE_JVMCI
1795                    , debug_id
1796 #endif
1797                    );
1798         if (class_name != NULL) {
1799           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1800           class_name->print_symbol_on(tty);
1801         }
1802         tty->cr();
1803       }
1804       if (xtty != NULL) {
1805         // Log the precise location of the trap.
1806         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1807           xtty->begin_elem("jvms bci='%d'", sd->bci());
1808           xtty->method(sd->method());
1809           xtty->end_elem();
1810           if (sd->is_top())  break;
1811         }
1812         xtty->tail("uncommon_trap");
1813       }
1814     }
1815     // (End diagnostic printout.)
1816 
1817     // Load class if necessary
1818     if (unloaded_class_index >= 0) {
1819       constantPoolHandle constants(THREAD, trap_method->constants());
1820       load_class_by_index(constants, unloaded_class_index);
1821     }
1822 
1823     // Flush the nmethod if necessary and desirable.
1824     //
1825     // We need to avoid situations where we are re-flushing the nmethod
1826     // because of a hot deoptimization site.  Repeated flushes at the same
1827     // point need to be detected by the compiler and avoided.  If the compiler
1828     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1829     // module must take measures to avoid an infinite cycle of recompilation
1830     // and deoptimization.  There are several such measures:
1831     //
1832     //   1. If a recompilation is ordered a second time at some site X
1833     //   and for the same reason R, the action is adjusted to 'reinterpret',
1834     //   to give the interpreter time to exercise the method more thoroughly.
1835     //   If this happens, the method's overflow_recompile_count is incremented.
1836     //
1837     //   2. If the compiler fails to reduce the deoptimization rate, then
1838     //   the method's overflow_recompile_count will begin to exceed the set
1839     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1840     //   is adjusted to 'make_not_compilable', and the method is abandoned
1841     //   to the interpreter.  This is a performance hit for hot methods,
1842     //   but is better than a disastrous infinite cycle of recompilations.
1843     //   (Actually, only the method containing the site X is abandoned.)
1844     //
1845     //   3. In parallel with the previous measures, if the total number of
1846     //   recompilations of a method exceeds the much larger set limit
1847     //   PerMethodRecompilationCutoff, the method is abandoned.
1848     //   This should only happen if the method is very large and has
1849     //   many "lukewarm" deoptimizations.  The code which enforces this
1850     //   limit is elsewhere (class nmethod, class Method).
1851     //
1852     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1853     // to recompile at each bytecode independently of the per-BCI cutoff.
1854     //
1855     // The decision to update code is up to the compiler, and is encoded
1856     // in the Action_xxx code.  If the compiler requests Action_none
1857     // no trap state is changed, no compiled code is changed, and the
1858     // computation suffers along in the interpreter.
1859     //
1860     // The other action codes specify various tactics for decompilation
1861     // and recompilation.  Action_maybe_recompile is the loosest, and
1862     // allows the compiled code to stay around until enough traps are seen,
1863     // and until the compiler gets around to recompiling the trapping method.
1864     //
1865     // The other actions cause immediate removal of the present code.
1866 
1867     // Traps caused by injected profile shouldn't pollute trap counts.
1868     bool injected_profile_trap = trap_method->has_injected_profile() &&
1869                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1870 
1871     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1872     bool make_not_entrant = false;
1873     bool make_not_compilable = false;
1874     bool reprofile = false;
1875     switch (action) {
1876     case Action_none:
1877       // Keep the old code.
1878       update_trap_state = false;
1879       break;
1880     case Action_maybe_recompile:
1881       // Do not need to invalidate the present code, but we can
1882       // initiate another
1883       // Start compiler without (necessarily) invalidating the nmethod.
1884       // The system will tolerate the old code, but new code should be
1885       // generated when possible.
1886       break;
1887     case Action_reinterpret:
1888       // Go back into the interpreter for a while, and then consider
1889       // recompiling form scratch.
1890       make_not_entrant = true;
1891       // Reset invocation counter for outer most method.
1892       // This will allow the interpreter to exercise the bytecodes
1893       // for a while before recompiling.
1894       // By contrast, Action_make_not_entrant is immediate.
1895       //
1896       // Note that the compiler will track null_check, null_assert,
1897       // range_check, and class_check events and log them as if they
1898       // had been traps taken from compiled code.  This will update
1899       // the MDO trap history so that the next compilation will
1900       // properly detect hot trap sites.
1901       reprofile = true;
1902       break;
1903     case Action_make_not_entrant:
1904       // Request immediate recompilation, and get rid of the old code.
1905       // Make them not entrant, so next time they are called they get
1906       // recompiled.  Unloaded classes are loaded now so recompile before next
1907       // time they are called.  Same for uninitialized.  The interpreter will
1908       // link the missing class, if any.
1909       make_not_entrant = true;
1910       break;
1911     case Action_make_not_compilable:
1912       // Give up on compiling this method at all.
1913       make_not_entrant = true;
1914       make_not_compilable = true;
1915       break;
1916     default:
1917       ShouldNotReachHere();
1918     }
1919 
1920     // Setting +ProfileTraps fixes the following, on all platforms:
1921     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1922     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1923     // recompile relies on a MethodData* to record heroic opt failures.
1924 
1925     // Whether the interpreter is producing MDO data or not, we also need
1926     // to use the MDO to detect hot deoptimization points and control
1927     // aggressive optimization.
1928     bool inc_recompile_count = false;
1929     ProfileData* pdata = NULL;
1930     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1931       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1932       uint this_trap_count = 0;
1933       bool maybe_prior_trap = false;
1934       bool maybe_prior_recompile = false;
1935       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1936 #if INCLUDE_JVMCI
1937                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1938 #endif
1939                                    nm->method(),
1940                                    //outputs:
1941                                    this_trap_count,
1942                                    maybe_prior_trap,
1943                                    maybe_prior_recompile);
1944       // Because the interpreter also counts null, div0, range, and class
1945       // checks, these traps from compiled code are double-counted.
1946       // This is harmless; it just means that the PerXTrapLimit values
1947       // are in effect a little smaller than they look.
1948 
1949       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1950       if (per_bc_reason != Reason_none) {
1951         // Now take action based on the partially known per-BCI history.
1952         if (maybe_prior_trap
1953             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1954           // If there are too many traps at this BCI, force a recompile.
1955           // This will allow the compiler to see the limit overflow, and
1956           // take corrective action, if possible.  The compiler generally
1957           // does not use the exact PerBytecodeTrapLimit value, but instead
1958           // changes its tactics if it sees any traps at all.  This provides
1959           // a little hysteresis, delaying a recompile until a trap happens
1960           // several times.
1961           //
1962           // Actually, since there is only one bit of counter per BCI,
1963           // the possible per-BCI counts are {0,1,(per-method count)}.
1964           // This produces accurate results if in fact there is only
1965           // one hot trap site, but begins to get fuzzy if there are
1966           // many sites.  For example, if there are ten sites each
1967           // trapping two or more times, they each get the blame for
1968           // all of their traps.
1969           make_not_entrant = true;
1970         }
1971 
1972         // Detect repeated recompilation at the same BCI, and enforce a limit.
1973         if (make_not_entrant && maybe_prior_recompile) {
1974           // More than one recompile at this point.
1975           inc_recompile_count = maybe_prior_trap;
1976         }
1977       } else {
1978         // For reasons which are not recorded per-bytecode, we simply
1979         // force recompiles unconditionally.
1980         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1981         make_not_entrant = true;
1982       }
1983 
1984       // Go back to the compiler if there are too many traps in this method.
1985       if (this_trap_count >= per_method_trap_limit(reason)) {
1986         // If there are too many traps in this method, force a recompile.
1987         // This will allow the compiler to see the limit overflow, and
1988         // take corrective action, if possible.
1989         // (This condition is an unlikely backstop only, because the
1990         // PerBytecodeTrapLimit is more likely to take effect first,
1991         // if it is applicable.)
1992         make_not_entrant = true;
1993       }
1994 
1995       // Here's more hysteresis:  If there has been a recompile at
1996       // this trap point already, run the method in the interpreter
1997       // for a while to exercise it more thoroughly.
1998       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1999         reprofile = true;
2000       }
2001     }
2002 
2003     // Take requested actions on the method:
2004 
2005     // Recompile
2006     if (make_not_entrant) {
2007       if (!nm->make_not_entrant()) {
2008         return; // the call did not change nmethod's state
2009       }
2010 
2011       if (pdata != NULL) {
2012         // Record the recompilation event, if any.
2013         int tstate0 = pdata->trap_state();
2014         int tstate1 = trap_state_set_recompiled(tstate0, true);
2015         if (tstate1 != tstate0)
2016           pdata->set_trap_state(tstate1);
2017       }
2018 
2019 #if INCLUDE_RTM_OPT
2020       // Restart collecting RTM locking abort statistic if the method
2021       // is recompiled for a reason other than RTM state change.
2022       // Assume that in new recompiled code the statistic could be different,
2023       // for example, due to different inlining.
2024       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
2025           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2026         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2027       }
2028 #endif
2029       // For code aging we count traps separately here, using make_not_entrant()
2030       // as a guard against simultaneous deopts in multiple threads.
2031       if (reason == Reason_tenured && trap_mdo != NULL) {
2032         trap_mdo->inc_tenure_traps();
2033       }
2034     }
2035 
2036     if (inc_recompile_count) {
2037       trap_mdo->inc_overflow_recompile_count();
2038       if ((uint)trap_mdo->overflow_recompile_count() >
2039           (uint)PerBytecodeRecompilationCutoff) {
2040         // Give up on the method containing the bad BCI.
2041         if (trap_method() == nm->method()) {
2042           make_not_compilable = true;
2043         } else {
2044           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
2045           // But give grace to the enclosing nm->method().
2046         }
2047       }
2048     }
2049 
2050     // Reprofile
2051     if (reprofile) {
2052       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2053     }
2054 
2055     // Give up compiling
2056     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2057       assert(make_not_entrant, "consistent");
2058       nm->method()->set_not_compilable(CompLevel_full_optimization);
2059     }
2060 
2061   } // Free marked resources
2062 
2063 }
2064 JRT_END
2065 
2066 ProfileData*
2067 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2068                                          int trap_bci,
2069                                          Deoptimization::DeoptReason reason,
2070                                          bool update_total_trap_count,
2071 #if INCLUDE_JVMCI
2072                                          bool is_osr,
2073 #endif
2074                                          Method* compiled_method,
2075                                          //outputs:
2076                                          uint& ret_this_trap_count,
2077                                          bool& ret_maybe_prior_trap,
2078                                          bool& ret_maybe_prior_recompile) {
2079   bool maybe_prior_trap = false;
2080   bool maybe_prior_recompile = false;
2081   uint this_trap_count = 0;
2082   if (update_total_trap_count) {
2083     uint idx = reason;
2084 #if INCLUDE_JVMCI
2085     if (is_osr) {
2086       idx += Reason_LIMIT;
2087     }
2088 #endif
2089     uint prior_trap_count = trap_mdo->trap_count(idx);
2090     this_trap_count  = trap_mdo->inc_trap_count(idx);
2091 
2092     // If the runtime cannot find a place to store trap history,
2093     // it is estimated based on the general condition of the method.
2094     // If the method has ever been recompiled, or has ever incurred
2095     // a trap with the present reason , then this BCI is assumed
2096     // (pessimistically) to be the culprit.
2097     maybe_prior_trap      = (prior_trap_count != 0);
2098     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2099   }
2100   ProfileData* pdata = NULL;
2101 
2102 
2103   // For reasons which are recorded per bytecode, we check per-BCI data.
2104   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2105   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2106   if (per_bc_reason != Reason_none) {
2107     // Find the profile data for this BCI.  If there isn't one,
2108     // try to allocate one from the MDO's set of spares.
2109     // This will let us detect a repeated trap at this point.
2110     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2111 
2112     if (pdata != NULL) {
2113       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2114         if (LogCompilation && xtty != NULL) {
2115           ttyLocker ttyl;
2116           // no more room for speculative traps in this MDO
2117           xtty->elem("speculative_traps_oom");
2118         }
2119       }
2120       // Query the trap state of this profile datum.
2121       int tstate0 = pdata->trap_state();
2122       if (!trap_state_has_reason(tstate0, per_bc_reason))
2123         maybe_prior_trap = false;
2124       if (!trap_state_is_recompiled(tstate0))
2125         maybe_prior_recompile = false;
2126 
2127       // Update the trap state of this profile datum.
2128       int tstate1 = tstate0;
2129       // Record the reason.
2130       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2131       // Store the updated state on the MDO, for next time.
2132       if (tstate1 != tstate0)
2133         pdata->set_trap_state(tstate1);
2134     } else {
2135       if (LogCompilation && xtty != NULL) {
2136         ttyLocker ttyl;
2137         // Missing MDP?  Leave a small complaint in the log.
2138         xtty->elem("missing_mdp bci='%d'", trap_bci);
2139       }
2140     }
2141   }
2142 
2143   // Return results:
2144   ret_this_trap_count = this_trap_count;
2145   ret_maybe_prior_trap = maybe_prior_trap;
2146   ret_maybe_prior_recompile = maybe_prior_recompile;
2147   return pdata;
2148 }
2149 
2150 void
2151 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2152   ResourceMark rm;
2153   // Ignored outputs:
2154   uint ignore_this_trap_count;
2155   bool ignore_maybe_prior_trap;
2156   bool ignore_maybe_prior_recompile;
2157   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2158   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2159   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2160   query_update_method_data(trap_mdo, trap_bci,
2161                            (DeoptReason)reason,
2162                            update_total_counts,
2163 #if INCLUDE_JVMCI
2164                            false,
2165 #endif
2166                            NULL,
2167                            ignore_this_trap_count,
2168                            ignore_maybe_prior_trap,
2169                            ignore_maybe_prior_recompile);
2170 }
2171 
2172 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2173   if (TraceDeoptimization) {
2174     tty->print("Uncommon trap ");
2175   }
2176   // Still in Java no safepoints
2177   {
2178     // This enters VM and may safepoint
2179     uncommon_trap_inner(thread, trap_request);
2180   }
2181   return fetch_unroll_info_helper(thread, exec_mode);
2182 }
2183 
2184 // Local derived constants.
2185 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2186 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2187 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2188 
2189 //---------------------------trap_state_reason---------------------------------
2190 Deoptimization::DeoptReason
2191 Deoptimization::trap_state_reason(int trap_state) {
2192   // This assert provides the link between the width of DataLayout::trap_bits
2193   // and the encoding of "recorded" reasons.  It ensures there are enough
2194   // bits to store all needed reasons in the per-BCI MDO profile.
2195   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2196   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2197   trap_state -= recompile_bit;
2198   if (trap_state == DS_REASON_MASK) {
2199     return Reason_many;
2200   } else {
2201     assert((int)Reason_none == 0, "state=0 => Reason_none");
2202     return (DeoptReason)trap_state;
2203   }
2204 }
2205 //-------------------------trap_state_has_reason-------------------------------
2206 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2207   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2208   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2209   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2210   trap_state -= recompile_bit;
2211   if (trap_state == DS_REASON_MASK) {
2212     return -1;  // true, unspecifically (bottom of state lattice)
2213   } else if (trap_state == reason) {
2214     return 1;   // true, definitely
2215   } else if (trap_state == 0) {
2216     return 0;   // false, definitely (top of state lattice)
2217   } else {
2218     return 0;   // false, definitely
2219   }
2220 }
2221 //-------------------------trap_state_add_reason-------------------------------
2222 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2223   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2224   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2225   trap_state -= recompile_bit;
2226   if (trap_state == DS_REASON_MASK) {
2227     return trap_state + recompile_bit;     // already at state lattice bottom
2228   } else if (trap_state == reason) {
2229     return trap_state + recompile_bit;     // the condition is already true
2230   } else if (trap_state == 0) {
2231     return reason + recompile_bit;          // no condition has yet been true
2232   } else {
2233     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2234   }
2235 }
2236 //-----------------------trap_state_is_recompiled------------------------------
2237 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2238   return (trap_state & DS_RECOMPILE_BIT) != 0;
2239 }
2240 //-----------------------trap_state_set_recompiled-----------------------------
2241 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2242   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2243   else    return trap_state & ~DS_RECOMPILE_BIT;
2244 }
2245 //---------------------------format_trap_state---------------------------------
2246 // This is used for debugging and diagnostics, including LogFile output.
2247 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2248                                               int trap_state) {
2249   assert(buflen > 0, "sanity");
2250   DeoptReason reason      = trap_state_reason(trap_state);
2251   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2252   // Re-encode the state from its decoded components.
2253   int decoded_state = 0;
2254   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2255     decoded_state = trap_state_add_reason(decoded_state, reason);
2256   if (recomp_flag)
2257     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2258   // If the state re-encodes properly, format it symbolically.
2259   // Because this routine is used for debugging and diagnostics,
2260   // be robust even if the state is a strange value.
2261   size_t len;
2262   if (decoded_state != trap_state) {
2263     // Random buggy state that doesn't decode??
2264     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2265   } else {
2266     len = jio_snprintf(buf, buflen, "%s%s",
2267                        trap_reason_name(reason),
2268                        recomp_flag ? " recompiled" : "");
2269   }
2270   return buf;
2271 }
2272 
2273 
2274 //--------------------------------statics--------------------------------------
2275 const char* Deoptimization::_trap_reason_name[] = {
2276   // Note:  Keep this in sync. with enum DeoptReason.
2277   "none",
2278   "null_check",
2279   "null_assert" JVMCI_ONLY("_or_unreached0"),
2280   "range_check",
2281   "class_check",
2282   "array_check",
2283   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2284   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2285   "unloaded",
2286   "uninitialized",
2287   "unreached",
2288   "unhandled",
2289   "constraint",
2290   "div0_check",
2291   "age",
2292   "predicate",
2293   "loop_limit_check",
2294   "speculate_class_check",
2295   "speculate_null_check",
2296   "speculate_null_assert",
2297   "rtm_state_change",
2298   "unstable_if",
2299   "unstable_fused_if",
2300 #if INCLUDE_JVMCI
2301   "aliasing",
2302   "transfer_to_interpreter",
2303   "not_compiled_exception_handler",
2304   "unresolved",
2305   "jsr_mismatch",
2306 #endif
2307   "tenured"
2308 };
2309 const char* Deoptimization::_trap_action_name[] = {
2310   // Note:  Keep this in sync. with enum DeoptAction.
2311   "none",
2312   "maybe_recompile",
2313   "reinterpret",
2314   "make_not_entrant",
2315   "make_not_compilable"
2316 };
2317 
2318 const char* Deoptimization::trap_reason_name(int reason) {
2319   // Check that every reason has a name
2320   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2321 
2322   if (reason == Reason_many)  return "many";
2323   if ((uint)reason < Reason_LIMIT)
2324     return _trap_reason_name[reason];
2325   static char buf[20];
2326   sprintf(buf, "reason%d", reason);
2327   return buf;
2328 }
2329 const char* Deoptimization::trap_action_name(int action) {
2330   // Check that every action has a name
2331   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2332 
2333   if ((uint)action < Action_LIMIT)
2334     return _trap_action_name[action];
2335   static char buf[20];
2336   sprintf(buf, "action%d", action);
2337   return buf;
2338 }
2339 
2340 // This is used for debugging and diagnostics, including LogFile output.
2341 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2342                                                 int trap_request) {
2343   jint unloaded_class_index = trap_request_index(trap_request);
2344   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2345   const char* action = trap_action_name(trap_request_action(trap_request));
2346 #if INCLUDE_JVMCI
2347   int debug_id = trap_request_debug_id(trap_request);
2348 #endif
2349   size_t len;
2350   if (unloaded_class_index < 0) {
2351     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2352                        reason, action
2353 #if INCLUDE_JVMCI
2354                        ,debug_id
2355 #endif
2356                        );
2357   } else {
2358     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2359                        reason, action, unloaded_class_index
2360 #if INCLUDE_JVMCI
2361                        ,debug_id
2362 #endif
2363                        );
2364   }
2365   return buf;
2366 }
2367 
2368 juint Deoptimization::_deoptimization_hist
2369         [Deoptimization::Reason_LIMIT]
2370     [1 + Deoptimization::Action_LIMIT]
2371         [Deoptimization::BC_CASE_LIMIT]
2372   = {0};
2373 
2374 enum {
2375   LSB_BITS = 8,
2376   LSB_MASK = right_n_bits(LSB_BITS)
2377 };
2378 
2379 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2380                                        Bytecodes::Code bc) {
2381   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2382   assert(action >= 0 && action < Action_LIMIT, "oob");
2383   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2384   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2385   juint* cases = _deoptimization_hist[reason][1+action];
2386   juint* bc_counter_addr = NULL;
2387   juint  bc_counter      = 0;
2388   // Look for an unused counter, or an exact match to this BC.
2389   if (bc != Bytecodes::_illegal) {
2390     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2391       juint* counter_addr = &cases[bc_case];
2392       juint  counter = *counter_addr;
2393       if ((counter == 0 && bc_counter_addr == NULL)
2394           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2395         // this counter is either free or is already devoted to this BC
2396         bc_counter_addr = counter_addr;
2397         bc_counter = counter | bc;
2398       }
2399     }
2400   }
2401   if (bc_counter_addr == NULL) {
2402     // Overflow, or no given bytecode.
2403     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2404     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2405   }
2406   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2407 }
2408 
2409 jint Deoptimization::total_deoptimization_count() {
2410   return _deoptimization_hist[Reason_none][0][0];
2411 }
2412 
2413 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2414   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2415   return _deoptimization_hist[reason][0][0];
2416 }
2417 
2418 void Deoptimization::print_statistics() {
2419   juint total = total_deoptimization_count();
2420   juint account = total;
2421   if (total != 0) {
2422     ttyLocker ttyl;
2423     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2424     tty->print_cr("Deoptimization traps recorded:");
2425     #define PRINT_STAT_LINE(name, r) \
2426       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2427     PRINT_STAT_LINE("total", total);
2428     // For each non-zero entry in the histogram, print the reason,
2429     // the action, and (if specifically known) the type of bytecode.
2430     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2431       for (int action = 0; action < Action_LIMIT; action++) {
2432         juint* cases = _deoptimization_hist[reason][1+action];
2433         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2434           juint counter = cases[bc_case];
2435           if (counter != 0) {
2436             char name[1*K];
2437             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2438             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2439               bc = Bytecodes::_illegal;
2440             sprintf(name, "%s/%s/%s",
2441                     trap_reason_name(reason),
2442                     trap_action_name(action),
2443                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2444             juint r = counter >> LSB_BITS;
2445             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2446             account -= r;
2447           }
2448         }
2449       }
2450     }
2451     if (account != 0) {
2452       PRINT_STAT_LINE("unaccounted", account);
2453     }
2454     #undef PRINT_STAT_LINE
2455     if (xtty != NULL)  xtty->tail("statistics");
2456   }
2457 }
2458 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2459 
2460 
2461 // Stubs for C1 only system.
2462 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2463   return false;
2464 }
2465 
2466 const char* Deoptimization::trap_reason_name(int reason) {
2467   return "unknown";
2468 }
2469 
2470 void Deoptimization::print_statistics() {
2471   // no output
2472 }
2473 
2474 void
2475 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2476   // no udpate
2477 }
2478 
2479 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2480   return 0;
2481 }
2482 
2483 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2484                                        Bytecodes::Code bc) {
2485   // no update
2486 }
2487 
2488 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2489                                               int trap_state) {
2490   jio_snprintf(buf, buflen, "#%d", trap_state);
2491   return buf;
2492 }
2493 
2494 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI