1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/gcLocker.inline.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "logging/log.hpp"
  29 #include "memory/metadataFactory.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "oops/fieldStreams.hpp"
  32 #include "oops/method.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/valueKlass.hpp"
  35 #include "oops/valueArrayKlass.hpp"
  36 #include "runtime/signature.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 int ValueKlass::first_field_offset() const {
  40 #ifdef ASSERT
  41   int first_offset = INT_MAX;
  42   for (JavaFieldStream fs(this); !fs.done(); fs.next()) {
  43     if (fs.offset() < first_offset) first_offset= fs.offset();
  44   }
  45 #endif
  46   int base_offset = instanceOopDesc::base_offset_in_bytes();
  47   // The first field of value types is aligned on a long boundary
  48   base_offset = align_up(base_offset, BytesPerLong);
  49   assert(base_offset == first_offset, "inconsistent offsets");
  50   return base_offset;
  51 }
  52 
  53 int ValueKlass::raw_value_byte_size() const {
  54   assert(!is__Value(), "This is not the value type klass you are looking for");
  55   int heapOopAlignedSize = nonstatic_field_size() << LogBytesPerHeapOop;
  56   // If bigger than 64 bits or needs oop alignment, then use jlong aligned
  57   // which for values should be jlong aligned, asserts in raw_field_copy otherwise
  58   if (heapOopAlignedSize >= longSize || contains_oops()) {
  59     return heapOopAlignedSize;
  60   }
  61   // Small primitives...
  62   // If a few small basic type fields, return the actual size, i.e.
  63   // 1 byte = 1
  64   // 2 byte = 2
  65   // 3 byte = 4, because pow2 needed for element stores
  66   int first_offset = first_field_offset();
  67   int last_offset  = 0; // find the last offset, add basic type size
  68   int last_tsz     = 0;
  69   for (JavaFieldStream fs(this); !fs.done(); fs.next()) {
  70     if (fs.offset() > last_offset) {
  71       BasicType type = fs.field_descriptor().field_type();
  72       if (is_java_primitive(type)) {
  73         last_tsz = type2aelembytes(type);
  74       } else if (type == T_VALUETYPE) {
  75         // Not just primitives. Layout aligns embedded value, so use jlong aligned it is
  76         return heapOopAlignedSize;
  77       } else {
  78         guarantee(0, "Unknown type %d", type);
  79       }
  80       assert(last_tsz != 0, "Invariant");
  81       last_offset = fs.offset();
  82     }
  83   }
  84   // Assumes VT with no fields are meaningless and illegal
  85   last_offset += last_tsz;
  86   assert(last_offset > first_offset && last_tsz, "Invariant");
  87   return 1 << upper_log2(last_offset - first_offset);
  88 }
  89 
  90 instanceOop ValueKlass::allocate_instance(TRAPS) {
  91   int size = size_helper();  // Query before forming handle.
  92 
  93   return (instanceOop)CollectedHeap::obj_allocate(this, size, CHECK_NULL);
  94 }
  95 
  96 instanceOop ValueKlass::allocate_buffered_or_heap_instance(bool* in_heap, TRAPS) {
  97   assert(THREAD->is_Java_thread(), "Only Java threads can call this method");
  98 
  99   instanceOop value = NULL;
 100   if (is_bufferable()) {
 101     value = (instanceOop)VTBuffer::allocate_value(this, CHECK_NULL);
 102     *in_heap = false;
 103   }
 104   if (value == NULL) {
 105     log_info(valuetypes)("Value buffering failed, allocating in the Java heap");
 106     value = allocate_instance(CHECK_NULL);
 107     *in_heap = true;
 108   }
 109   return value;
 110 }
 111 
 112 bool ValueKlass::is_atomic() {
 113   return (nonstatic_field_size() * heapOopSize) <= longSize;
 114 }
 115 
 116 int ValueKlass::nonstatic_oop_count() {
 117   int oops = 0;
 118   int map_count = nonstatic_oop_map_count();
 119   OopMapBlock* block = start_of_nonstatic_oop_maps();
 120   OopMapBlock* end = block + map_count;
 121   while (block != end) {
 122     oops += block->count();
 123     block++;
 124   }
 125   return oops;
 126 }
 127 
 128 // Arrays of...
 129 
 130 bool ValueKlass::flatten_array() {
 131   if (!ValueArrayFlatten) {
 132     return false;
 133   }
 134 
 135   int elem_bytes = raw_value_byte_size();
 136   // Too big
 137   if ((ValueArrayElemMaxFlatSize >= 0) && (elem_bytes > ValueArrayElemMaxFlatSize)) {
 138     return false;
 139   }
 140   // Too many embedded oops
 141   if ((ValueArrayElemMaxFlatOops >= 0) && (nonstatic_oop_count() > ValueArrayElemMaxFlatOops)) {
 142     return false;
 143   }
 144 
 145   return true;
 146 }
 147 
 148 
 149 Klass* ValueKlass::array_klass_impl(bool or_null, int n, TRAPS) {
 150   if (!flatten_array()) {
 151     return InstanceKlass::array_klass_impl(or_null, n, THREAD);
 152   }
 153 
 154   // Basically the same as instanceKlass, but using "ValueArrayKlass::allocate_klass"
 155   if (array_klasses() == NULL) {
 156     if (or_null) return NULL;
 157 
 158     ResourceMark rm;
 159     JavaThread *jt = (JavaThread *)THREAD;
 160     {
 161       // Atomic creation of array_klasses
 162       MutexLocker mc(Compile_lock, THREAD);   // for vtables
 163       MutexLocker ma(MultiArray_lock, THREAD);
 164 
 165       // Check if update has already taken place
 166       if (array_klasses() == NULL) {
 167         Klass* ak;
 168         if (is_atomic() || (!ValueArrayAtomicAccess)) {
 169           ak = ValueArrayKlass::allocate_klass(this, CHECK_NULL);
 170         } else {
 171           ak = ObjArrayKlass::allocate_objArray_klass(class_loader_data(), 1, this, CHECK_NULL);
 172         }
 173         set_array_klasses(ak);
 174       }
 175     }
 176   }
 177   // _this will always be set at this point
 178   ArrayKlass* ak = ArrayKlass::cast(array_klasses());
 179   if (or_null) {
 180     return ak->array_klass_or_null(n);
 181   }
 182   return ak->array_klass(n, THREAD);
 183 }
 184 
 185 Klass* ValueKlass::array_klass_impl(bool or_null, TRAPS) {
 186   return array_klass_impl(or_null, 1, THREAD);
 187 }
 188 
 189 void ValueKlass::raw_field_copy(void* src, void* dst, size_t raw_byte_size) {
 190   /*
 191    * Try not to shear fields even if not an atomic store...
 192    *
 193    * First 3 cases handle value array store, otherwise works on the same basis
 194    * as JVM_Clone, at this size data is aligned. The order of primitive types
 195    * is largest to smallest, and it not possible for fields to stradle long
 196    * copy boundaries.
 197    *
 198    * If MT without exclusive access, possible to observe partial value store,
 199    * but not partial primitive and reference field values
 200    */
 201   switch (raw_byte_size) {
 202     case 1:
 203       *((jbyte*) dst) = *(jbyte*)src;
 204       break;
 205     case 2:
 206       *((jshort*) dst) = *(jshort*)src;
 207       break;
 208     case 4:
 209       *((jint*) dst) = *(jint*) src;
 210       break;
 211     default:
 212       assert(raw_byte_size % sizeof(jlong) == 0, "Unaligned raw_byte_size");
 213       Copy::conjoint_jlongs_atomic((jlong*)src, (jlong*)dst, raw_byte_size >> LogBytesPerLong);
 214   }
 215 }
 216 
 217 /*
 218  * Store the value of this klass contained with src into dst.
 219  *
 220  * This operation is appropriate for use from vastore, vaload and putfield (for values)
 221  *
 222  * GC barriers currently can lock with no safepoint check and allocate c-heap,
 223  * so raw point is "safe" for now.
 224  *
 225  * Going forward, look to use machine generated (stub gen or bc) version for most used klass layouts
 226  *
 227  */
 228 void ValueKlass::value_store(void* src, void* dst, size_t raw_byte_size, bool dst_heap, bool dst_uninitialized) {
 229   if (contains_oops() && dst_heap) {
 230     // src/dst aren't oops, need offset to adjust oop map offset
 231     const address dst_oop_addr = ((address) dst) - first_field_offset();
 232 
 233     // Pre-barriers...
 234     OopMapBlock* map = start_of_nonstatic_oop_maps();
 235     OopMapBlock* const end = map + nonstatic_oop_map_count();
 236     while (map != end) {
 237       // Shame we can't just use the existing oop iterator...src/dst aren't oop
 238       address doop_address = dst_oop_addr + map->offset();
 239       if (UseCompressedOops) {
 240         oopDesc::bs()->write_ref_array_pre((narrowOop*) doop_address, map->count(), dst_uninitialized);
 241       } else {
 242         oopDesc::bs()->write_ref_array_pre((oop*) doop_address, map->count(), dst_uninitialized);
 243       }
 244       map++;
 245     }
 246 
 247     raw_field_copy(src, dst, raw_byte_size);
 248 
 249     // Post-barriers...
 250     map = start_of_nonstatic_oop_maps();
 251     while (map != end) {
 252       address doop_address = dst_oop_addr + map->offset();
 253       oopDesc::bs()->write_ref_array((HeapWord*) doop_address, map->count());
 254       map++;
 255     }
 256   } else {   // Primitive-only case...
 257     raw_field_copy(src, dst, raw_byte_size);
 258   }
 259 }
 260 
 261 oop ValueKlass::box(Handle src, InstanceKlass* target_klass, TRAPS) {
 262   assert(src()->klass()->is_value(), "src must be a value type");
 263   assert(!target_klass->is_value(), "target_klass must not be a value type");
 264 
 265   target_klass->initialize(CHECK_0);
 266   instanceOop box = target_klass->allocate_instance(CHECK_0);
 267   value_store(data_for_oop(src()), data_for_oop(box), true, false);
 268 
 269   assert(!box->klass()->is_value(), "Sanity check");
 270   return box;
 271 }
 272 
 273 oop ValueKlass::unbox(Handle src, InstanceKlass* target_klass, TRAPS) {
 274   assert(!src()->klass()->is_value(), "src must not be a value type");
 275   assert(target_klass->is_value(), "target_klass must be a value type");
 276   ValueKlass* vtklass = ValueKlass::cast(target_klass);
 277 
 278   vtklass->initialize(CHECK_0);
 279   bool in_heap;
 280   instanceOop value = vtklass->allocate_buffered_or_heap_instance(&in_heap, CHECK_0);
 281   value_store(data_for_oop(src()), data_for_oop(value), in_heap, false);
 282 
 283   assert(value->klass()->is_value(), "Sanity check");
 284   return value;
 285 }
 286 
 287 // Value type arguments are not passed by reference, instead each
 288 // field of the value type is passed as an argument. This helper
 289 // function collects the fields of the value types (including embedded
 290 // value type's fields) in a list. Included with the field's type is
 291 // the offset of each field in the value type: i2c and c2i adapters
 292 // need that to load or store fields. Finally, the list of fields is
 293 // sorted in order of increasing offsets: the adapters and the
 294 // compiled code need and agreed upon order of fields.
 295 //
 296 // The list of basic types that is returned starts with a T_VALUETYPE
 297 // and ends with an extra T_VOID. T_VALUETYPE/T_VOID are used as
 298 // delimiters. Every entry between the two is a field of the value
 299 // type. If there's an embedded value type in the list, it also starts
 300 // with a T_VALUETYPE and ends with a T_VOID. This is so we can
 301 // generate a unique fingerprint for the method's adapters and we can
 302 // generate the list of basic types from the interpreter point of view
 303 // (value types passed as reference: iterate on the list until a
 304 // T_VALUETYPE, drop everything until and including the closing
 305 // T_VOID) or the compiler point of view (each field of the value
 306 // types is an argument: drop all T_VALUETYPE/T_VOID from the list).
 307 GrowableArray<SigEntry> ValueKlass::collect_fields(int base_off) const {
 308   GrowableArray<SigEntry> sig_extended;
 309   sig_extended.push(SigEntry(T_VALUETYPE, base_off));
 310   for (JavaFieldStream fs(this); !fs.done(); fs.next()) {
 311     if (fs.access_flags().is_static()) continue;
 312     fieldDescriptor& fd = fs.field_descriptor();
 313     BasicType bt = fd.field_type();
 314     int offset = base_off + fd.offset() - (base_off > 0 ? first_field_offset() : 0);
 315     if (bt == T_VALUETYPE) {
 316       if (fd.is_flatten()) {
 317         Symbol* signature = fd.signature();
 318         JavaThread* THREAD = JavaThread::current();
 319         oop loader = class_loader();
 320         oop domain = protection_domain();
 321         ResetNoHandleMark rnhm;
 322         HandleMark hm;
 323         NoSafepointVerifier nsv;
 324         Klass* klass = SystemDictionary::resolve_or_null(signature,
 325                                                          Handle(THREAD, loader), Handle(THREAD, domain),
 326                                                          THREAD);
 327         assert(klass != NULL && !HAS_PENDING_EXCEPTION, "lookup shouldn't fail");
 328         const GrowableArray<SigEntry>& embedded = ValueKlass::cast(klass)->collect_fields(offset);
 329         sig_extended.appendAll(&embedded);
 330       } else {
 331         sig_extended.push(SigEntry(T_VALUETYPEPTR, offset));
 332       }
 333     } else {
 334       sig_extended.push(SigEntry(bt, offset));
 335       if (bt == T_LONG || bt == T_DOUBLE) {
 336         sig_extended.push(SigEntry(T_VOID, offset));
 337       }
 338     }
 339   }
 340   int offset = base_off + size_helper()*HeapWordSize - (base_off > 0 ? first_field_offset() : 0);
 341   sig_extended.push(SigEntry(T_VOID, offset)); // hack: use T_VOID to mark end of value type fields
 342   if (base_off == 0) {
 343     sig_extended.sort(SigEntry::compare);
 344   }
 345   assert(sig_extended.at(0)._bt == T_VALUETYPE && sig_extended.at(sig_extended.length()-1)._bt == T_VOID, "broken structure");
 346   return sig_extended;
 347 }
 348 
 349 void ValueKlass::initialize_calling_convention() {
 350   // Because the pack and unpack handler addresses need to be loadable from generated code,
 351   // they are stored at a fixed offset in the klass metadata. Since value type klasses do
 352   // not have a vtable, the vtable offset is used to store these addresses.
 353   guarantee(vtable_length() == 0, "vtables are not supported in value klasses");
 354   if (ValueTypeReturnedAsFields || ValueTypePassFieldsAsArgs) {
 355     Thread* THREAD = Thread::current();
 356     assert(!HAS_PENDING_EXCEPTION, "should have no exception");
 357     ResourceMark rm;
 358     const GrowableArray<SigEntry>& sig_vk = collect_fields();
 359     int nb_fields = SigEntry::count_fields(sig_vk)+1;
 360     Array<SigEntry>* extended_sig = MetadataFactory::new_array<SigEntry>(class_loader_data(), sig_vk.length(), CHECK_AND_CLEAR);
 361     *((Array<SigEntry>**)adr_extended_sig()) = extended_sig;
 362     for (int i = 0; i < sig_vk.length(); i++) {
 363       extended_sig->at_put(i, sig_vk.at(i));
 364     }
 365 
 366     if (ValueTypeReturnedAsFields) {
 367       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nb_fields);
 368       sig_bt[0] = T_METADATA;
 369       SigEntry::fill_sig_bt(sig_vk, sig_bt+1, nb_fields-1, true);
 370       VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, nb_fields);
 371       int total = SharedRuntime::java_return_convention(sig_bt, regs, nb_fields);
 372 
 373       if (total > 0) {
 374         Array<VMRegPair>* return_regs = MetadataFactory::new_array<VMRegPair>(class_loader_data(), nb_fields, CHECK_AND_CLEAR);
 375         *((Array<VMRegPair>**)adr_return_regs()) = return_regs;
 376         for (int i = 0; i < nb_fields; i++) {
 377           return_regs->at_put(i, regs[i]);
 378         }
 379 
 380         BufferedValueTypeBlob* buffered_blob = SharedRuntime::generate_buffered_value_type_adapter(this);
 381         *((address*)adr_pack_handler()) = buffered_blob->pack_fields();
 382         *((address*)adr_unpack_handler()) = buffered_blob->unpack_fields();
 383         assert(CodeCache::find_blob(pack_handler()) == buffered_blob, "lost track of blob");
 384       }
 385     }
 386   }
 387 }
 388 
 389 void ValueKlass::deallocate_contents(ClassLoaderData* loader_data) {
 390   if (extended_sig() != NULL) {
 391     MetadataFactory::free_array<SigEntry>(loader_data, extended_sig());
 392   }
 393   if (return_regs() != NULL) {
 394     MetadataFactory::free_array<VMRegPair>(loader_data, return_regs());
 395   }
 396   cleanup_blobs();
 397   InstanceKlass::deallocate_contents(loader_data);
 398 }
 399 
 400 void ValueKlass::cleanup(ValueKlass* ik) {
 401   ik->cleanup_blobs();
 402 }
 403 
 404 void ValueKlass::cleanup_blobs() {
 405   if (pack_handler() != NULL) {
 406     CodeBlob* buffered_blob = CodeCache::find_blob(pack_handler());
 407     assert(buffered_blob->is_buffered_value_type_blob(), "bad blob type");
 408     BufferBlob::free((BufferBlob*)buffered_blob);
 409     *((address*)adr_pack_handler()) = NULL;
 410     *((address*)adr_unpack_handler()) = NULL;
 411   }
 412 }
 413 
 414 // Can this value type be returned as multiple values?
 415 bool ValueKlass::can_be_returned_as_fields() const {
 416   return !is__Value() && (return_regs() != NULL);
 417 }
 418 
 419 // Create handles for all oop fields returned in registers that are going to be live across a safepoint
 420 void ValueKlass::save_oop_fields(const RegisterMap& reg_map, GrowableArray<Handle>& handles) const {
 421   Thread* thread = Thread::current();
 422   const Array<SigEntry>* sig_vk = extended_sig();
 423   const Array<VMRegPair>* regs = return_regs();
 424   int j = 1;
 425 
 426   for (int i = 0; i < sig_vk->length(); i++) {
 427     BasicType bt = sig_vk->at(i)._bt;
 428     if (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY) {
 429       int off = sig_vk->at(i)._offset;
 430       VMRegPair pair = regs->at(j);
 431       address loc = reg_map.location(pair.first());
 432       oop v = *(oop*)loc;
 433       assert(v == NULL || oopDesc::is_oop(v), "not an oop?");
 434       assert(Universe::heap()->is_in_or_null(v), "must be heap pointer");
 435       handles.push(Handle(thread, v));
 436     }
 437     if (bt == T_VALUETYPE) {
 438       continue;
 439     }
 440     if (bt == T_VOID &&
 441         sig_vk->at(i-1)._bt != T_LONG &&
 442         sig_vk->at(i-1)._bt != T_DOUBLE) {
 443       continue;
 444     }
 445     j++;
 446   }
 447   assert(j == regs->length(), "missed a field?");
 448 }
 449 
 450 // Update oop fields in registers from handles after a safepoint
 451 void ValueKlass::restore_oop_results(RegisterMap& reg_map, GrowableArray<Handle>& handles) const {
 452   assert(ValueTypeReturnedAsFields, "inconsistent");
 453   const Array<SigEntry>* sig_vk = extended_sig();
 454   const Array<VMRegPair>* regs = return_regs();
 455   assert(regs != NULL, "inconsistent");
 456 
 457   int j = 1;
 458   for (int i = 0, k = 0; i < sig_vk->length(); i++) {
 459     BasicType bt = sig_vk->at(i)._bt;
 460     if (bt == T_OBJECT || bt == T_ARRAY) {
 461       int off = sig_vk->at(i)._offset;
 462       VMRegPair pair = regs->at(j);
 463       address loc = reg_map.location(pair.first());
 464       *(oop*)loc = handles.at(k++)();
 465     }
 466     if (bt == T_VALUETYPE) {
 467       continue;
 468     }
 469     if (bt == T_VOID &&
 470         sig_vk->at(i-1)._bt != T_LONG &&
 471         sig_vk->at(i-1)._bt != T_DOUBLE) {
 472       continue;
 473     }
 474     j++;
 475   }
 476   assert(j == regs->length(), "missed a field?");
 477 }
 478 
 479 // Fields are in registers. Create an instance of the value type and
 480 // initialize it with the values of the fields.
 481 oop ValueKlass::realloc_result(const RegisterMap& reg_map, const GrowableArray<Handle>& handles, bool buffered, TRAPS) {
 482   bool ignored = false;
 483   oop new_vt = NULL;
 484   if (buffered) {
 485     new_vt = allocate_buffered_or_heap_instance(&ignored, CHECK_NULL);
 486   } else {
 487     new_vt = allocate_instance(CHECK_NULL);
 488   }
 489 
 490   const Array<SigEntry>* sig_vk = extended_sig();
 491   const Array<VMRegPair>* regs = return_regs();
 492 
 493   int j = 1;
 494   int k = 0;
 495   for (int i = 0; i < sig_vk->length(); i++) {
 496     BasicType bt = sig_vk->at(i)._bt;
 497     if (bt == T_VALUETYPE) {
 498       continue;
 499     }
 500     if (bt == T_VOID) {
 501       if (sig_vk->at(i-1)._bt == T_LONG ||
 502           sig_vk->at(i-1)._bt == T_DOUBLE) {
 503         j++;
 504       }
 505       continue;
 506     }
 507     int off = sig_vk->at(i)._offset;
 508     VMRegPair pair = regs->at(j);
 509     address loc = reg_map.location(pair.first());
 510     switch(bt) {
 511     case T_BOOLEAN: {
 512       jboolean v = *(intptr_t*)loc;
 513       *(jboolean*)((address)new_vt + off) = v;
 514       break;
 515     }
 516     case T_CHAR: {
 517       jchar v = *(intptr_t*)loc;
 518       *(jchar*)((address)new_vt + off) = v;
 519       break;
 520     }
 521     case T_BYTE: {
 522       jbyte v = *(intptr_t*)loc;
 523       *(jbyte*)((address)new_vt + off) = v;
 524       break;
 525     }
 526     case T_SHORT: {
 527       jshort v = *(intptr_t*)loc;
 528       *(jshort*)((address)new_vt + off) = v;
 529       break;
 530     }
 531     case T_INT: {
 532       jint v = *(intptr_t*)loc;
 533       *(jint*)((address)new_vt + off) = v;
 534       break;
 535     }
 536     case T_LONG: {
 537 #ifdef _LP64
 538       jlong v = *(intptr_t*)loc;
 539       *(jlong*)((address)new_vt + off) = v;
 540 #else
 541       Unimplemented();
 542 #endif
 543       break;
 544     }
 545     case T_OBJECT:
 546     case T_VALUETYPEPTR:
 547     case T_ARRAY: {
 548       Handle handle = handles.at(k++);
 549       oop v = handle();
 550       if (!UseCompressedOops) {
 551         oop* p = (oop*)((address)new_vt + off);
 552         oopDesc::store_heap_oop(p, v);
 553       } else {
 554         narrowOop* p = (narrowOop*)((address)new_vt + off);
 555         oopDesc::encode_store_heap_oop(p, v);
 556       }
 557       break;
 558     }
 559     case T_FLOAT: {
 560       jfloat v = *(jfloat*)loc;
 561       *(jfloat*)((address)new_vt + off) = v;
 562       break;
 563     }
 564     case T_DOUBLE: {
 565       jdouble v = *(jdouble*)loc;
 566       *(jdouble*)((address)new_vt + off) = v;
 567       break;
 568     }
 569     default:
 570       ShouldNotReachHere();
 571     }
 572     *(intptr_t*)loc = 0xDEAD;
 573     j++;
 574   }
 575   assert(j == regs->length(), "missed a field?");
 576   assert(k == handles.length(), "missed an oop?");
 577   return new_vt;
 578 }
 579 
 580 // Check the return register for a ValueKlass oop
 581 ValueKlass* ValueKlass::returned_value_klass(const RegisterMap& map) {
 582   BasicType bt = T_METADATA;
 583   VMRegPair pair;
 584   int nb = SharedRuntime::java_return_convention(&bt, &pair, 1);
 585   assert(nb == 1, "broken");
 586 
 587   address loc = map.location(pair.first());
 588   intptr_t ptr = *(intptr_t*)loc;
 589   if (is_set_nth_bit(ptr, 0)) {
 590     // Oop is tagged, must be a ValueKlass oop
 591     clear_nth_bit(ptr, 0);
 592     assert(Metaspace::contains((void*)ptr), "should be klass");
 593     ValueKlass* vk = (ValueKlass*)ptr;
 594     assert(vk->can_be_returned_as_fields(), "must be able to return as fields");
 595     return vk;
 596   }
 597 #ifdef ASSERT
 598   // Oop is not tagged, must be a valid oop
 599   if (VerifyOops) {
 600     oop((HeapWord*)ptr)->verify();
 601   }
 602 #endif
 603   return NULL;
 604 }