1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/fieldStreams.hpp"
  46 #include "oops/klass.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/objArrayOop.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/valueKlass.hpp"
  51 #include "prims/forte.hpp"
  52 #include "prims/jvm.h"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/methodHandles.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/vframe.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 
  80 // Shared stub locations
  81 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  82 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  83 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  87 address             SharedRuntime::_resolve_static_call_entry;
  88 
  89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  93 
  94 #ifdef COMPILER2
  95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  96 #endif // COMPILER2
  97 
  98 
  99 //----------------------------generate_stubs-----------------------------------
 100 void SharedRuntime::generate_stubs() {
 101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 102   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 107   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 108 
 109 #if defined(COMPILER2) || INCLUDE_JVMCI
 110   // Vectors are generated only by C2 and JVMCI.
 111   bool support_wide = is_wide_vector(MaxVectorSize);
 112   if (support_wide) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2 || INCLUDE_JVMCI
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 // Implementation of SharedRuntime
 129 
 130 #ifndef PRODUCT
 131 // For statistics
 132 int SharedRuntime::_ic_miss_ctr = 0;
 133 int SharedRuntime::_wrong_method_ctr = 0;
 134 int SharedRuntime::_resolve_static_ctr = 0;
 135 int SharedRuntime::_resolve_virtual_ctr = 0;
 136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 137 int SharedRuntime::_implicit_null_throws = 0;
 138 int SharedRuntime::_implicit_div0_throws = 0;
 139 int SharedRuntime::_throw_null_ctr = 0;
 140 
 141 int SharedRuntime::_nof_normal_calls = 0;
 142 int SharedRuntime::_nof_optimized_calls = 0;
 143 int SharedRuntime::_nof_inlined_calls = 0;
 144 int SharedRuntime::_nof_megamorphic_calls = 0;
 145 int SharedRuntime::_nof_static_calls = 0;
 146 int SharedRuntime::_nof_inlined_static_calls = 0;
 147 int SharedRuntime::_nof_interface_calls = 0;
 148 int SharedRuntime::_nof_optimized_interface_calls = 0;
 149 int SharedRuntime::_nof_inlined_interface_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 151 int SharedRuntime::_nof_removable_exceptions = 0;
 152 
 153 int SharedRuntime::_new_instance_ctr=0;
 154 int SharedRuntime::_new_array_ctr=0;
 155 int SharedRuntime::_multi1_ctr=0;
 156 int SharedRuntime::_multi2_ctr=0;
 157 int SharedRuntime::_multi3_ctr=0;
 158 int SharedRuntime::_multi4_ctr=0;
 159 int SharedRuntime::_multi5_ctr=0;
 160 int SharedRuntime::_mon_enter_stub_ctr=0;
 161 int SharedRuntime::_mon_exit_stub_ctr=0;
 162 int SharedRuntime::_mon_enter_ctr=0;
 163 int SharedRuntime::_mon_exit_ctr=0;
 164 int SharedRuntime::_partial_subtype_ctr=0;
 165 int SharedRuntime::_jbyte_array_copy_ctr=0;
 166 int SharedRuntime::_jshort_array_copy_ctr=0;
 167 int SharedRuntime::_jint_array_copy_ctr=0;
 168 int SharedRuntime::_jlong_array_copy_ctr=0;
 169 int SharedRuntime::_oop_array_copy_ctr=0;
 170 int SharedRuntime::_checkcast_array_copy_ctr=0;
 171 int SharedRuntime::_unsafe_array_copy_ctr=0;
 172 int SharedRuntime::_generic_array_copy_ctr=0;
 173 int SharedRuntime::_slow_array_copy_ctr=0;
 174 int SharedRuntime::_find_handler_ctr=0;
 175 int SharedRuntime::_rethrow_ctr=0;
 176 
 177 int     SharedRuntime::_ICmiss_index                    = 0;
 178 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 180 
 181 
 182 void SharedRuntime::trace_ic_miss(address at) {
 183   for (int i = 0; i < _ICmiss_index; i++) {
 184     if (_ICmiss_at[i] == at) {
 185       _ICmiss_count[i]++;
 186       return;
 187     }
 188   }
 189   int index = _ICmiss_index++;
 190   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 191   _ICmiss_at[index] = at;
 192   _ICmiss_count[index] = 1;
 193 }
 194 
 195 void SharedRuntime::print_ic_miss_histogram() {
 196   if (ICMissHistogram) {
 197     tty->print_cr("IC Miss Histogram:");
 198     int tot_misses = 0;
 199     for (int i = 0; i < _ICmiss_index; i++) {
 200       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 201       tot_misses += _ICmiss_count[i];
 202     }
 203     tty->print_cr("Total IC misses: %7d", tot_misses);
 204   }
 205 }
 206 #endif // PRODUCT
 207 
 208 #if INCLUDE_ALL_GCS
 209 
 210 // G1 write-barrier pre: executed before a pointer store.
 211 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 212   if (orig == NULL) {
 213     assert(false, "should be optimized out");
 214     return;
 215   }
 216   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 217   // store the original value that was in the field reference
 218   thread->satb_mark_queue().enqueue(orig);
 219 JRT_END
 220 
 221 // G1 write-barrier post: executed after a pointer store.
 222 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 223   thread->dirty_card_queue().enqueue(card_addr);
 224 JRT_END
 225 
 226 #endif // INCLUDE_ALL_GCS
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 230   return x * y;
 231 JRT_END
 232 
 233 
 234 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 235   if (x == min_jlong && y == CONST64(-1)) {
 236     return x;
 237   } else {
 238     return x / y;
 239   }
 240 JRT_END
 241 
 242 
 243 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 244   if (x == min_jlong && y == CONST64(-1)) {
 245     return 0;
 246   } else {
 247     return x % y;
 248   }
 249 JRT_END
 250 
 251 
 252 const juint  float_sign_mask  = 0x7FFFFFFF;
 253 const juint  float_infinity   = 0x7F800000;
 254 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 255 const julong double_infinity  = CONST64(0x7FF0000000000000);
 256 
 257 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 258 #ifdef _WIN64
 259   // 64-bit Windows on amd64 returns the wrong values for
 260   // infinity operands.
 261   union { jfloat f; juint i; } xbits, ybits;
 262   xbits.f = x;
 263   ybits.f = y;
 264   // x Mod Infinity == x unless x is infinity
 265   if (((xbits.i & float_sign_mask) != float_infinity) &&
 266        ((ybits.i & float_sign_mask) == float_infinity) ) {
 267     return x;
 268   }
 269   return ((jfloat)fmod_winx64((double)x, (double)y));
 270 #else
 271   return ((jfloat)fmod((double)x,(double)y));
 272 #endif
 273 JRT_END
 274 
 275 
 276 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 277 #ifdef _WIN64
 278   union { jdouble d; julong l; } xbits, ybits;
 279   xbits.d = x;
 280   ybits.d = y;
 281   // x Mod Infinity == x unless x is infinity
 282   if (((xbits.l & double_sign_mask) != double_infinity) &&
 283        ((ybits.l & double_sign_mask) == double_infinity) ) {
 284     return x;
 285   }
 286   return ((jdouble)fmod_winx64((double)x, (double)y));
 287 #else
 288   return ((jdouble)fmod((double)x,(double)y));
 289 #endif
 290 JRT_END
 291 
 292 #ifdef __SOFTFP__
 293 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 310   return x + y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 314   return x - y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 318   return x * y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 322   return x / y;
 323 JRT_END
 324 
 325 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 326   return (jfloat)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 334   return (jdouble)x;
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 338   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 342   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 346   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 // Functions to return the opposite of the aeabi functions for nan.
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 // Intrinsics make gcc generate code for these.
 387 float  SharedRuntime::fneg(float f)   {
 388   return -f;
 389 }
 390 
 391 double SharedRuntime::dneg(double f)  {
 392   return -f;
 393 }
 394 
 395 #endif // __SOFTFP__
 396 
 397 #if defined(__SOFTFP__) || defined(E500V2)
 398 // Intrinsics make gcc generate code for these.
 399 double SharedRuntime::dabs(double f)  {
 400   return (f <= (double)0.0) ? (double)0.0 - f : f;
 401 }
 402 
 403 #endif
 404 
 405 #if defined(__SOFTFP__) || defined(PPC)
 406 double SharedRuntime::dsqrt(double f) {
 407   return sqrt(f);
 408 }
 409 #endif
 410 
 411 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 412   if (g_isnan(x))
 413     return 0;
 414   if (x >= (jfloat) max_jint)
 415     return max_jint;
 416   if (x <= (jfloat) min_jint)
 417     return min_jint;
 418   return (jint) x;
 419 JRT_END
 420 
 421 
 422 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 423   if (g_isnan(x))
 424     return 0;
 425   if (x >= (jfloat) max_jlong)
 426     return max_jlong;
 427   if (x <= (jfloat) min_jlong)
 428     return min_jlong;
 429   return (jlong) x;
 430 JRT_END
 431 
 432 
 433 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 434   if (g_isnan(x))
 435     return 0;
 436   if (x >= (jdouble) max_jint)
 437     return max_jint;
 438   if (x <= (jdouble) min_jint)
 439     return min_jint;
 440   return (jint) x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 445   if (g_isnan(x))
 446     return 0;
 447   if (x >= (jdouble) max_jlong)
 448     return max_jlong;
 449   if (x <= (jdouble) min_jlong)
 450     return min_jlong;
 451   return (jlong) x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 456   return (jfloat)x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 461   return (jfloat)x;
 462 JRT_END
 463 
 464 
 465 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 466   return (jdouble)x;
 467 JRT_END
 468 
 469 // Exception handling across interpreter/compiler boundaries
 470 //
 471 // exception_handler_for_return_address(...) returns the continuation address.
 472 // The continuation address is the entry point of the exception handler of the
 473 // previous frame depending on the return address.
 474 
 475 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 476   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 477   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 478 
 479   // Reset method handle flag.
 480   thread->set_is_method_handle_return(false);
 481 
 482 #if INCLUDE_JVMCI
 483   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 484   // and other exception handler continuations do not read it
 485   thread->set_exception_pc(NULL);
 486 #endif // INCLUDE_JVMCI
 487 
 488   // The fastest case first
 489   CodeBlob* blob = CodeCache::find_blob(return_address);
 490   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 491   if (nm != NULL) {
 492     // Set flag if return address is a method handle call site.
 493     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 494     // native nmethods don't have exception handlers
 495     assert(!nm->is_native_method(), "no exception handler");
 496     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 497     if (nm->is_deopt_pc(return_address)) {
 498       // If we come here because of a stack overflow, the stack may be
 499       // unguarded. Reguard the stack otherwise if we return to the
 500       // deopt blob and the stack bang causes a stack overflow we
 501       // crash.
 502       bool guard_pages_enabled = thread->stack_guards_enabled();
 503       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 504       if (thread->reserved_stack_activation() != thread->stack_base()) {
 505         thread->set_reserved_stack_activation(thread->stack_base());
 506       }
 507       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 508       return SharedRuntime::deopt_blob()->unpack_with_exception();
 509     } else {
 510       return nm->exception_begin();
 511     }
 512   }
 513 
 514   // Entry code
 515   if (StubRoutines::returns_to_call_stub(return_address)) {
 516     return StubRoutines::catch_exception_entry();
 517   }
 518   // Interpreted code
 519   if (Interpreter::contains(return_address)) {
 520     return Interpreter::rethrow_exception_entry();
 521   }
 522 
 523   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 524   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 525 
 526 #ifndef PRODUCT
 527   { ResourceMark rm;
 528     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 529     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 530     tty->print_cr("b) other problem");
 531   }
 532 #endif // PRODUCT
 533 
 534   ShouldNotReachHere();
 535   return NULL;
 536 }
 537 
 538 
 539 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 540   return raw_exception_handler_for_return_address(thread, return_address);
 541 JRT_END
 542 
 543 
 544 address SharedRuntime::get_poll_stub(address pc) {
 545   address stub;
 546   // Look up the code blob
 547   CodeBlob *cb = CodeCache::find_blob(pc);
 548 
 549   // Should be an nmethod
 550   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 551 
 552   // Look up the relocation information
 553   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 554     "safepoint polling: type must be poll");
 555 
 556 #ifdef ASSERT
 557   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 558     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 559     Disassembler::decode(cb);
 560     fatal("Only polling locations are used for safepoint");
 561   }
 562 #endif
 563 
 564   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 565   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 566   if (at_poll_return) {
 567     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 568            "polling page return stub not created yet");
 569     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 570   } else if (has_wide_vectors) {
 571     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 572            "polling page vectors safepoint stub not created yet");
 573     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 574   } else {
 575     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 576            "polling page safepoint stub not created yet");
 577     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 578   }
 579   log_debug(safepoint)("... found polling page %s exception at pc = "
 580                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 581                        at_poll_return ? "return" : "loop",
 582                        (intptr_t)pc, (intptr_t)stub);
 583   return stub;
 584 }
 585 
 586 
 587 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 588   assert(caller.is_interpreted_frame(), "");
 589   int args_size = ArgumentSizeComputer(sig).size() + 1;
 590   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 591   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 592   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 593   return result;
 594 }
 595 
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 598   if (JvmtiExport::can_post_on_exceptions()) {
 599     vframeStream vfst(thread, true);
 600     methodHandle method = methodHandle(thread, vfst.method());
 601     address bcp = method()->bcp_from(vfst.bci());
 602     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 603   }
 604   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 605 }
 606 
 607 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 608   Handle h_exception = Exceptions::new_exception(thread, name, message);
 609   throw_and_post_jvmti_exception(thread, h_exception);
 610 }
 611 
 612 // The interpreter code to call this tracing function is only
 613 // called/generated when UL is on for redefine, class and has the right level
 614 // and tags. Since obsolete methods are never compiled, we don't have
 615 // to modify the compilers to generate calls to this function.
 616 //
 617 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 618     JavaThread* thread, Method* method))
 619   if (method->is_obsolete()) {
 620     // We are calling an obsolete method, but this is not necessarily
 621     // an error. Our method could have been redefined just after we
 622     // fetched the Method* from the constant pool.
 623     ResourceMark rm;
 624     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 625   }
 626   return 0;
 627 JRT_END
 628 
 629 // ret_pc points into caller; we are returning caller's exception handler
 630 // for given exception
 631 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 632                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 633   assert(cm != NULL, "must exist");
 634   ResourceMark rm;
 635 
 636 #if INCLUDE_JVMCI
 637   if (cm->is_compiled_by_jvmci()) {
 638     // lookup exception handler for this pc
 639     int catch_pco = ret_pc - cm->code_begin();
 640     ExceptionHandlerTable table(cm);
 641     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 642     if (t != NULL) {
 643       return cm->code_begin() + t->pco();
 644     } else {
 645       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 646     }
 647   }
 648 #endif // INCLUDE_JVMCI
 649 
 650   nmethod* nm = cm->as_nmethod();
 651   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 652   // determine handler bci, if any
 653   EXCEPTION_MARK;
 654 
 655   int handler_bci = -1;
 656   int scope_depth = 0;
 657   if (!force_unwind) {
 658     int bci = sd->bci();
 659     bool recursive_exception = false;
 660     do {
 661       bool skip_scope_increment = false;
 662       // exception handler lookup
 663       Klass* ek = exception->klass();
 664       methodHandle mh(THREAD, sd->method());
 665       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 666       if (HAS_PENDING_EXCEPTION) {
 667         recursive_exception = true;
 668         // We threw an exception while trying to find the exception handler.
 669         // Transfer the new exception to the exception handle which will
 670         // be set into thread local storage, and do another lookup for an
 671         // exception handler for this exception, this time starting at the
 672         // BCI of the exception handler which caused the exception to be
 673         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 674         // argument to ensure that the correct exception is thrown (4870175).
 675         recursive_exception_occurred = true;
 676         exception = Handle(THREAD, PENDING_EXCEPTION);
 677         CLEAR_PENDING_EXCEPTION;
 678         if (handler_bci >= 0) {
 679           bci = handler_bci;
 680           handler_bci = -1;
 681           skip_scope_increment = true;
 682         }
 683       }
 684       else {
 685         recursive_exception = false;
 686       }
 687       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 688         sd = sd->sender();
 689         if (sd != NULL) {
 690           bci = sd->bci();
 691         }
 692         ++scope_depth;
 693       }
 694     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 695   }
 696 
 697   // found handling method => lookup exception handler
 698   int catch_pco = ret_pc - nm->code_begin();
 699 
 700   ExceptionHandlerTable table(nm);
 701   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 702   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 703     // Allow abbreviated catch tables.  The idea is to allow a method
 704     // to materialize its exceptions without committing to the exact
 705     // routing of exceptions.  In particular this is needed for adding
 706     // a synthetic handler to unlock monitors when inlining
 707     // synchronized methods since the unlock path isn't represented in
 708     // the bytecodes.
 709     t = table.entry_for(catch_pco, -1, 0);
 710   }
 711 
 712 #ifdef COMPILER1
 713   if (t == NULL && nm->is_compiled_by_c1()) {
 714     assert(nm->unwind_handler_begin() != NULL, "");
 715     return nm->unwind_handler_begin();
 716   }
 717 #endif
 718 
 719   if (t == NULL) {
 720     ttyLocker ttyl;
 721     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 722     tty->print_cr("   Exception:");
 723     exception->print();
 724     tty->cr();
 725     tty->print_cr(" Compiled exception table :");
 726     table.print();
 727     nm->print_code();
 728     guarantee(false, "missing exception handler");
 729     return NULL;
 730   }
 731 
 732   return nm->code_begin() + t->pco();
 733 }
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 736   // These errors occur only at call sites
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 741   // These errors occur only at call sites
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 754   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 755   // cache sites (when the callee activation is not yet set up) so we are at a call site
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 760   throw_StackOverflowError_common(thread, false);
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 764   throw_StackOverflowError_common(thread, true);
 765 JRT_END
 766 
 767 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 768   // We avoid using the normal exception construction in this case because
 769   // it performs an upcall to Java, and we're already out of stack space.
 770   Thread* THREAD = thread;
 771   Klass* k = SystemDictionary::StackOverflowError_klass();
 772   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 773   if (delayed) {
 774     java_lang_Throwable::set_message(exception_oop,
 775                                      Universe::delayed_stack_overflow_error_message());
 776   }
 777   Handle exception (thread, exception_oop);
 778   if (StackTraceInThrowable) {
 779     java_lang_Throwable::fill_in_stack_trace(exception);
 780   }
 781   // Increment counter for hs_err file reporting
 782   Atomic::inc(&Exceptions::_stack_overflow_errors);
 783   throw_and_post_jvmti_exception(thread, exception);
 784 }
 785 
 786 #if INCLUDE_JVMCI
 787 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 788   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 789   thread->set_jvmci_implicit_exception_pc(pc);
 790   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 791   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 792 }
 793 #endif // INCLUDE_JVMCI
 794 
 795 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 796                                                            address pc,
 797                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 798 {
 799   address target_pc = NULL;
 800 
 801   if (Interpreter::contains(pc)) {
 802 #ifdef CC_INTERP
 803     // C++ interpreter doesn't throw implicit exceptions
 804     ShouldNotReachHere();
 805 #else
 806     switch (exception_kind) {
 807       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 808       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 809       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 810       default:                      ShouldNotReachHere();
 811     }
 812 #endif // !CC_INTERP
 813   } else {
 814     switch (exception_kind) {
 815       case STACK_OVERFLOW: {
 816         // Stack overflow only occurs upon frame setup; the callee is
 817         // going to be unwound. Dispatch to a shared runtime stub
 818         // which will cause the StackOverflowError to be fabricated
 819         // and processed.
 820         // Stack overflow should never occur during deoptimization:
 821         // the compiled method bangs the stack by as much as the
 822         // interpreter would need in case of a deoptimization. The
 823         // deoptimization blob and uncommon trap blob bang the stack
 824         // in a debug VM to verify the correctness of the compiled
 825         // method stack banging.
 826         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 827         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 828         return StubRoutines::throw_StackOverflowError_entry();
 829       }
 830 
 831       case IMPLICIT_NULL: {
 832         if (VtableStubs::contains(pc)) {
 833           // We haven't yet entered the callee frame. Fabricate an
 834           // exception and begin dispatching it in the caller. Since
 835           // the caller was at a call site, it's safe to destroy all
 836           // caller-saved registers, as these entry points do.
 837           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 838 
 839           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 840           if (vt_stub == NULL) return NULL;
 841 
 842           if (vt_stub->is_abstract_method_error(pc)) {
 843             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 844             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 845             return StubRoutines::throw_AbstractMethodError_entry();
 846           } else {
 847             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 848             return StubRoutines::throw_NullPointerException_at_call_entry();
 849           }
 850         } else {
 851           CodeBlob* cb = CodeCache::find_blob(pc);
 852 
 853           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 854           if (cb == NULL) return NULL;
 855 
 856           // Exception happened in CodeCache. Must be either:
 857           // 1. Inline-cache check in C2I handler blob,
 858           // 2. Inline-cache check in nmethod, or
 859           // 3. Implicit null exception in nmethod
 860 
 861           if (!cb->is_compiled()) {
 862             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 863             if (!is_in_blob) {
 864               // Allow normal crash reporting to handle this
 865               return NULL;
 866             }
 867             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 868             // There is no handler here, so we will simply unwind.
 869             return StubRoutines::throw_NullPointerException_at_call_entry();
 870           }
 871 
 872           // Otherwise, it's a compiled method.  Consult its exception handlers.
 873           CompiledMethod* cm = (CompiledMethod*)cb;
 874           if (cm->inlinecache_check_contains(pc)) {
 875             // exception happened inside inline-cache check code
 876             // => the nmethod is not yet active (i.e., the frame
 877             // is not set up yet) => use return address pushed by
 878             // caller => don't push another return address
 879             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 880             return StubRoutines::throw_NullPointerException_at_call_entry();
 881           }
 882 
 883           if (cm->method()->is_method_handle_intrinsic()) {
 884             // exception happened inside MH dispatch code, similar to a vtable stub
 885             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 886             return StubRoutines::throw_NullPointerException_at_call_entry();
 887           }
 888 
 889 #ifndef PRODUCT
 890           _implicit_null_throws++;
 891 #endif
 892 #if INCLUDE_JVMCI
 893           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 894             // If there's no PcDesc then we'll die way down inside of
 895             // deopt instead of just getting normal error reporting,
 896             // so only go there if it will succeed.
 897             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 898           } else {
 899 #endif // INCLUDE_JVMCI
 900           assert (cm->is_nmethod(), "Expect nmethod");
 901           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 902 #if INCLUDE_JVMCI
 903           }
 904 #endif // INCLUDE_JVMCI
 905           // If there's an unexpected fault, target_pc might be NULL,
 906           // in which case we want to fall through into the normal
 907           // error handling code.
 908         }
 909 
 910         break; // fall through
 911       }
 912 
 913 
 914       case IMPLICIT_DIVIDE_BY_ZERO: {
 915         CompiledMethod* cm = CodeCache::find_compiled(pc);
 916         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 917 #ifndef PRODUCT
 918         _implicit_div0_throws++;
 919 #endif
 920 #if INCLUDE_JVMCI
 921         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 922           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 923         } else {
 924 #endif // INCLUDE_JVMCI
 925         target_pc = cm->continuation_for_implicit_exception(pc);
 926 #if INCLUDE_JVMCI
 927         }
 928 #endif // INCLUDE_JVMCI
 929         // If there's an unexpected fault, target_pc might be NULL,
 930         // in which case we want to fall through into the normal
 931         // error handling code.
 932         break; // fall through
 933       }
 934 
 935       default: ShouldNotReachHere();
 936     }
 937 
 938     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 939 
 940     if (exception_kind == IMPLICIT_NULL) {
 941 #ifndef PRODUCT
 942       // for AbortVMOnException flag
 943       Exceptions::debug_check_abort("java.lang.NullPointerException");
 944 #endif //PRODUCT
 945       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 946     } else {
 947 #ifndef PRODUCT
 948       // for AbortVMOnException flag
 949       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 950 #endif //PRODUCT
 951       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 952     }
 953     return target_pc;
 954   }
 955 
 956   ShouldNotReachHere();
 957   return NULL;
 958 }
 959 
 960 
 961 /**
 962  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 963  * installed in the native function entry of all native Java methods before
 964  * they get linked to their actual native methods.
 965  *
 966  * \note
 967  * This method actually never gets called!  The reason is because
 968  * the interpreter's native entries call NativeLookup::lookup() which
 969  * throws the exception when the lookup fails.  The exception is then
 970  * caught and forwarded on the return from NativeLookup::lookup() call
 971  * before the call to the native function.  This might change in the future.
 972  */
 973 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 974 {
 975   // We return a bad value here to make sure that the exception is
 976   // forwarded before we look at the return value.
 977   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 978 }
 979 JNI_END
 980 
 981 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 982   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 983 }
 984 
 985 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 986 #if INCLUDE_JVMCI
 987   if (!obj->klass()->has_finalizer()) {
 988     return;
 989   }
 990 #endif // INCLUDE_JVMCI
 991   assert(oopDesc::is_oop(obj), "must be a valid oop");
 992   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 993   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 994 JRT_END
 995 
 996 
 997 jlong SharedRuntime::get_java_tid(Thread* thread) {
 998   if (thread != NULL) {
 999     if (thread->is_Java_thread()) {
1000       oop obj = ((JavaThread*)thread)->threadObj();
1001       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1002     }
1003   }
1004   return 0;
1005 }
1006 
1007 /**
1008  * This function ought to be a void function, but cannot be because
1009  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1010  * 6254741.  Once that is fixed we can remove the dummy return value.
1011  */
1012 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1013   return dtrace_object_alloc_base(Thread::current(), o, size);
1014 }
1015 
1016 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1017   assert(DTraceAllocProbes, "wrong call");
1018   Klass* klass = o->klass();
1019   Symbol* name = klass->name();
1020   HOTSPOT_OBJECT_ALLOC(
1021                    get_java_tid(thread),
1022                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1023   return 0;
1024 }
1025 
1026 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1027     JavaThread* thread, Method* method))
1028   assert(DTraceMethodProbes, "wrong call");
1029   Symbol* kname = method->klass_name();
1030   Symbol* name = method->name();
1031   Symbol* sig = method->signature();
1032   HOTSPOT_METHOD_ENTRY(
1033       get_java_tid(thread),
1034       (char *) kname->bytes(), kname->utf8_length(),
1035       (char *) name->bytes(), name->utf8_length(),
1036       (char *) sig->bytes(), sig->utf8_length());
1037   return 0;
1038 JRT_END
1039 
1040 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1041     JavaThread* thread, Method* method))
1042   assert(DTraceMethodProbes, "wrong call");
1043   Symbol* kname = method->klass_name();
1044   Symbol* name = method->name();
1045   Symbol* sig = method->signature();
1046   HOTSPOT_METHOD_RETURN(
1047       get_java_tid(thread),
1048       (char *) kname->bytes(), kname->utf8_length(),
1049       (char *) name->bytes(), name->utf8_length(),
1050       (char *) sig->bytes(), sig->utf8_length());
1051   return 0;
1052 JRT_END
1053 
1054 
1055 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1056 // for a call current in progress, i.e., arguments has been pushed on stack
1057 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1058 // vtable updates, etc.  Caller frame must be compiled.
1059 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1060   ResourceMark rm(THREAD);
1061 
1062   // last java frame on stack (which includes native call frames)
1063   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1064 
1065   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1066 }
1067 
1068 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1069   CompiledMethod* caller = vfst.nm();
1070 
1071   nmethodLocker caller_lock(caller);
1072 
1073   address pc = vfst.frame_pc();
1074   { // Get call instruction under lock because another thread may be busy patching it.
1075     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1076     return caller->attached_method_before_pc(pc);
1077   }
1078   return NULL;
1079 }
1080 
1081 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1082 // for a call current in progress, i.e., arguments has been pushed on stack
1083 // but callee has not been invoked yet.  Caller frame must be compiled.
1084 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1085                                               vframeStream& vfst,
1086                                               Bytecodes::Code& bc,
1087                                               CallInfo& callinfo, TRAPS) {
1088   Handle receiver;
1089   Handle nullHandle;  //create a handy null handle for exception returns
1090 
1091   assert(!vfst.at_end(), "Java frame must exist");
1092 
1093   // Find caller and bci from vframe
1094   methodHandle caller(THREAD, vfst.method());
1095   int          bci   = vfst.bci();
1096 
1097   Bytecode_invoke bytecode(caller, bci);
1098   int bytecode_index = bytecode.index();
1099   bc = bytecode.invoke_code();
1100 
1101   methodHandle attached_method = extract_attached_method(vfst);
1102   if (attached_method.not_null()) {
1103     methodHandle callee = bytecode.static_target(CHECK_NH);
1104     vmIntrinsics::ID id = callee->intrinsic_id();
1105     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1106     // it attaches statically resolved method to the call site.
1107     if (MethodHandles::is_signature_polymorphic(id) &&
1108         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1109       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1110 
1111       // Adjust invocation mode according to the attached method.
1112       switch (bc) {
1113         case Bytecodes::_invokeinterface:
1114           if (!attached_method->method_holder()->is_interface()) {
1115             bc = Bytecodes::_invokevirtual;
1116           }
1117           break;
1118         case Bytecodes::_invokehandle:
1119           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1120             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1121                                               : Bytecodes::_invokevirtual;
1122           }
1123           break;
1124         default:
1125           break;
1126       }
1127     } else {
1128       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1129       if (bc != Bytecodes::_invokevirtual) {
1130         // Ignore the attached method in this case to not confuse below code
1131         attached_method = NULL;
1132       }
1133     }
1134   }
1135 
1136   bool has_receiver = bc != Bytecodes::_invokestatic &&
1137                       bc != Bytecodes::_invokedynamic &&
1138                       bc != Bytecodes::_invokehandle;
1139 
1140   // Find receiver for non-static call
1141   if (has_receiver) {
1142     // This register map must be update since we need to find the receiver for
1143     // compiled frames. The receiver might be in a register.
1144     RegisterMap reg_map2(thread);
1145     frame stubFrame   = thread->last_frame();
1146     // Caller-frame is a compiled frame
1147     frame callerFrame = stubFrame.sender(&reg_map2);
1148 
1149     methodHandle callee = attached_method;
1150     if (callee.is_null()) {
1151       callee = bytecode.static_target(CHECK_NH);
1152       if (callee.is_null()) {
1153         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1154       }
1155     }
1156     if (ValueTypePassFieldsAsArgs && callee->method_holder()->is_value()) {
1157       // If the receiver is a value type that is passed as fields, no oop is available.
1158       // Resolve the call without receiver null checking.
1159       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1160       assert(!attached_method.is_null(), "must have attached method");
1161       constantPoolHandle constants(THREAD, caller->constants());
1162       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1163       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1164       return receiver; // is null
1165     } else {
1166       // Retrieve from a compiled argument list
1167       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1168 
1169       if (receiver.is_null()) {
1170         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1171       }
1172     }
1173   }
1174 
1175   // Resolve method
1176   if (attached_method.not_null()) {
1177     // Parameterized by attached method.
1178     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1179   } else {
1180     // Parameterized by bytecode.
1181     constantPoolHandle constants(THREAD, caller->constants());
1182     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1183   }
1184 
1185 #ifdef ASSERT
1186   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1187   if (has_receiver) {
1188     assert(receiver.not_null(), "should have thrown exception");
1189     Klass* receiver_klass = receiver->klass();
1190     Klass* rk = NULL;
1191     if (attached_method.not_null()) {
1192       // In case there's resolved method attached, use its holder during the check.
1193       rk = attached_method->method_holder();
1194     } else {
1195       // Klass is already loaded.
1196       constantPoolHandle constants(THREAD, caller->constants());
1197       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1198     }
1199     Klass* static_receiver_klass = rk;
1200     methodHandle callee = callinfo.selected_method();
1201     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1202            "actual receiver must be subclass of static receiver klass");
1203     if (receiver_klass->is_instance_klass()) {
1204       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1205         tty->print_cr("ERROR: Klass not yet initialized!!");
1206         receiver_klass->print();
1207       }
1208       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1209     }
1210   }
1211 #endif
1212 
1213   return receiver;
1214 }
1215 
1216 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1217   ResourceMark rm(THREAD);
1218   // We need first to check if any Java activations (compiled, interpreted)
1219   // exist on the stack since last JavaCall.  If not, we need
1220   // to get the target method from the JavaCall wrapper.
1221   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1222   methodHandle callee_method;
1223   if (vfst.at_end()) {
1224     // No Java frames were found on stack since we did the JavaCall.
1225     // Hence the stack can only contain an entry_frame.  We need to
1226     // find the target method from the stub frame.
1227     RegisterMap reg_map(thread, false);
1228     frame fr = thread->last_frame();
1229     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1230     fr = fr.sender(&reg_map);
1231     assert(fr.is_entry_frame(), "must be");
1232     // fr is now pointing to the entry frame.
1233     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1234   } else {
1235     Bytecodes::Code bc;
1236     CallInfo callinfo;
1237     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1238     callee_method = callinfo.selected_method();
1239   }
1240   assert(callee_method()->is_method(), "must be");
1241   return callee_method;
1242 }
1243 
1244 // Resolves a call.
1245 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1246                                            bool is_virtual,
1247                                            bool is_optimized, TRAPS) {
1248   methodHandle callee_method;
1249   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1250   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1251     int retry_count = 0;
1252     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1253            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1254       // If has a pending exception then there is no need to re-try to
1255       // resolve this method.
1256       // If the method has been redefined, we need to try again.
1257       // Hack: we have no way to update the vtables of arrays, so don't
1258       // require that java.lang.Object has been updated.
1259 
1260       // It is very unlikely that method is redefined more than 100 times
1261       // in the middle of resolve. If it is looping here more than 100 times
1262       // means then there could be a bug here.
1263       guarantee((retry_count++ < 100),
1264                 "Could not resolve to latest version of redefined method");
1265       // method is redefined in the middle of resolve so re-try.
1266       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1267     }
1268   }
1269   return callee_method;
1270 }
1271 
1272 // Resolves a call.  The compilers generate code for calls that go here
1273 // and are patched with the real destination of the call.
1274 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1275                                            bool is_virtual,
1276                                            bool is_optimized, TRAPS) {
1277 
1278   ResourceMark rm(thread);
1279   RegisterMap cbl_map(thread, false);
1280   frame caller_frame = thread->last_frame().sender(&cbl_map);
1281 
1282   CodeBlob* caller_cb = caller_frame.cb();
1283   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1284   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1285 
1286   // make sure caller is not getting deoptimized
1287   // and removed before we are done with it.
1288   // CLEANUP - with lazy deopt shouldn't need this lock
1289   nmethodLocker caller_lock(caller_nm);
1290 
1291   // determine call info & receiver
1292   // note: a) receiver is NULL for static calls
1293   //       b) an exception is thrown if receiver is NULL for non-static calls
1294   CallInfo call_info;
1295   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1296   Handle receiver = find_callee_info(thread, invoke_code,
1297                                      call_info, CHECK_(methodHandle()));
1298   methodHandle callee_method = call_info.selected_method();
1299 
1300   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1301          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1302          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1303          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1304          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1305 
1306   assert(caller_nm->is_alive(), "It should be alive");
1307 
1308 #ifndef PRODUCT
1309   // tracing/debugging/statistics
1310   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1311                 (is_virtual) ? (&_resolve_virtual_ctr) :
1312                                (&_resolve_static_ctr);
1313   Atomic::inc(addr);
1314 
1315   if (TraceCallFixup) {
1316     ResourceMark rm(thread);
1317     tty->print("resolving %s%s (%s) call to",
1318       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1319       Bytecodes::name(invoke_code));
1320     callee_method->print_short_name(tty);
1321     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1322                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1323   }
1324 #endif
1325 
1326   // JSR 292 key invariant:
1327   // If the resolved method is a MethodHandle invoke target, the call
1328   // site must be a MethodHandle call site, because the lambda form might tail-call
1329   // leaving the stack in a state unknown to either caller or callee
1330   // TODO detune for now but we might need it again
1331 //  assert(!callee_method->is_compiled_lambda_form() ||
1332 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1333 
1334   // Compute entry points. This might require generation of C2I converter
1335   // frames, so we cannot be holding any locks here. Furthermore, the
1336   // computation of the entry points is independent of patching the call.  We
1337   // always return the entry-point, but we only patch the stub if the call has
1338   // not been deoptimized.  Return values: For a virtual call this is an
1339   // (cached_oop, destination address) pair. For a static call/optimized
1340   // virtual this is just a destination address.
1341 
1342   StaticCallInfo static_call_info;
1343   CompiledICInfo virtual_call_info;
1344 
1345   // Make sure the callee nmethod does not get deoptimized and removed before
1346   // we are done patching the code.
1347   CompiledMethod* callee = callee_method->code();
1348 
1349   if (callee != NULL) {
1350     assert(callee->is_compiled(), "must be nmethod for patching");
1351   }
1352 
1353   if (callee != NULL && !callee->is_in_use()) {
1354     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1355     callee = NULL;
1356   }
1357   nmethodLocker nl_callee(callee);
1358 #ifdef ASSERT
1359   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1360 #endif
1361 
1362   bool is_nmethod = caller_nm->is_nmethod();
1363 
1364   if (is_virtual) {
1365     Klass* receiver_klass = NULL;
1366     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1367       // If the receiver is a value type that is passed as fields, no oop is available
1368       receiver_klass = callee_method->method_holder();
1369     } else {
1370       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1371       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1372     }
1373     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1374     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1375                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1376                      CHECK_(methodHandle()));
1377   } else {
1378     // static call
1379     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1380   }
1381 
1382   // grab lock, check for deoptimization and potentially patch caller
1383   {
1384     MutexLocker ml_patch(CompiledIC_lock);
1385 
1386     // Lock blocks for safepoint during which both nmethods can change state.
1387 
1388     // Now that we are ready to patch if the Method* was redefined then
1389     // don't update call site and let the caller retry.
1390     // Don't update call site if callee nmethod was unloaded or deoptimized.
1391     // Don't update call site if callee nmethod was replaced by an other nmethod
1392     // which may happen when multiply alive nmethod (tiered compilation)
1393     // will be supported.
1394     if (!callee_method->is_old() &&
1395         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1396 #ifdef ASSERT
1397       // We must not try to patch to jump to an already unloaded method.
1398       if (dest_entry_point != 0) {
1399         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1400         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1401                "should not call unloaded nmethod");
1402       }
1403 #endif
1404       if (is_virtual) {
1405         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1406         if (inline_cache->is_clean()) {
1407           inline_cache->set_to_monomorphic(virtual_call_info);
1408         }
1409       } else {
1410         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1411         if (ssc->is_clean()) ssc->set(static_call_info);
1412       }
1413     }
1414 
1415   } // unlock CompiledIC_lock
1416 
1417   return callee_method;
1418 }
1419 
1420 
1421 // Inline caches exist only in compiled code
1422 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1423 #ifdef ASSERT
1424   RegisterMap reg_map(thread, false);
1425   frame stub_frame = thread->last_frame();
1426   assert(stub_frame.is_runtime_frame(), "sanity check");
1427   frame caller_frame = stub_frame.sender(&reg_map);
1428   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1429 #endif /* ASSERT */
1430 
1431   methodHandle callee_method;
1432   JRT_BLOCK
1433     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1434     // Return Method* through TLS
1435     thread->set_vm_result_2(callee_method());
1436   JRT_BLOCK_END
1437   // return compiled code entry point after potential safepoints
1438   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1439   return callee_method->verified_code_entry();
1440 JRT_END
1441 
1442 
1443 // Handle call site that has been made non-entrant
1444 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1445   // 6243940 We might end up in here if the callee is deoptimized
1446   // as we race to call it.  We don't want to take a safepoint if
1447   // the caller was interpreted because the caller frame will look
1448   // interpreted to the stack walkers and arguments are now
1449   // "compiled" so it is much better to make this transition
1450   // invisible to the stack walking code. The i2c path will
1451   // place the callee method in the callee_target. It is stashed
1452   // there because if we try and find the callee by normal means a
1453   // safepoint is possible and have trouble gc'ing the compiled args.
1454   RegisterMap reg_map(thread, false);
1455   frame stub_frame = thread->last_frame();
1456   assert(stub_frame.is_runtime_frame(), "sanity check");
1457   frame caller_frame = stub_frame.sender(&reg_map);
1458 
1459   if (caller_frame.is_interpreted_frame() ||
1460       caller_frame.is_entry_frame()) {
1461     Method* callee = thread->callee_target();
1462     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1463     thread->set_vm_result_2(callee);
1464     thread->set_callee_target(NULL);
1465     return callee->get_c2i_entry();
1466   }
1467 
1468   // Must be compiled to compiled path which is safe to stackwalk
1469   methodHandle callee_method;
1470   JRT_BLOCK
1471     // Force resolving of caller (if we called from compiled frame)
1472     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1473     thread->set_vm_result_2(callee_method());
1474   JRT_BLOCK_END
1475   // return compiled code entry point after potential safepoints
1476   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1477   return callee_method->verified_code_entry();
1478 JRT_END
1479 
1480 // Handle abstract method call
1481 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1482   return StubRoutines::throw_AbstractMethodError_entry();
1483 JRT_END
1484 
1485 
1486 // resolve a static call and patch code
1487 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1488   methodHandle callee_method;
1489   JRT_BLOCK
1490     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1491     thread->set_vm_result_2(callee_method());
1492   JRT_BLOCK_END
1493   // return compiled code entry point after potential safepoints
1494   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1495   return callee_method->verified_code_entry();
1496 JRT_END
1497 
1498 
1499 // resolve virtual call and update inline cache to monomorphic
1500 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1501   methodHandle callee_method;
1502   JRT_BLOCK
1503     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1504     thread->set_vm_result_2(callee_method());
1505   JRT_BLOCK_END
1506   // return compiled code entry point after potential safepoints
1507   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1508   return callee_method->verified_code_entry();
1509 JRT_END
1510 
1511 
1512 // Resolve a virtual call that can be statically bound (e.g., always
1513 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1514 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1515   methodHandle callee_method;
1516   JRT_BLOCK
1517     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1518     thread->set_vm_result_2(callee_method());
1519   JRT_BLOCK_END
1520   // return compiled code entry point after potential safepoints
1521   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1522   return callee_method->verified_code_entry();
1523 JRT_END
1524 
1525 
1526 
1527 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1528   ResourceMark rm(thread);
1529   CallInfo call_info;
1530   Bytecodes::Code bc;
1531 
1532   // receiver is NULL for static calls. An exception is thrown for NULL
1533   // receivers for non-static calls
1534   Handle receiver = find_callee_info(thread, bc, call_info,
1535                                      CHECK_(methodHandle()));
1536   // Compiler1 can produce virtual call sites that can actually be statically bound
1537   // If we fell thru to below we would think that the site was going megamorphic
1538   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1539   // we'd try and do a vtable dispatch however methods that can be statically bound
1540   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1541   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1542   // plain ic_miss) and the site will be converted to an optimized virtual call site
1543   // never to miss again. I don't believe C2 will produce code like this but if it
1544   // did this would still be the correct thing to do for it too, hence no ifdef.
1545   //
1546   if (call_info.resolved_method()->can_be_statically_bound()) {
1547     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1548     if (TraceCallFixup) {
1549       RegisterMap reg_map(thread, false);
1550       frame caller_frame = thread->last_frame().sender(&reg_map);
1551       ResourceMark rm(thread);
1552       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1553       callee_method->print_short_name(tty);
1554       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1555       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1556     }
1557     return callee_method;
1558   }
1559 
1560   methodHandle callee_method = call_info.selected_method();
1561 
1562   bool should_be_mono = false;
1563 
1564 #ifndef PRODUCT
1565   Atomic::inc(&_ic_miss_ctr);
1566 
1567   // Statistics & Tracing
1568   if (TraceCallFixup) {
1569     ResourceMark rm(thread);
1570     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1571     callee_method->print_short_name(tty);
1572     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1573   }
1574 
1575   if (ICMissHistogram) {
1576     MutexLocker m(VMStatistic_lock);
1577     RegisterMap reg_map(thread, false);
1578     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1579     // produce statistics under the lock
1580     trace_ic_miss(f.pc());
1581   }
1582 #endif
1583 
1584   // install an event collector so that when a vtable stub is created the
1585   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1586   // event can't be posted when the stub is created as locks are held
1587   // - instead the event will be deferred until the event collector goes
1588   // out of scope.
1589   JvmtiDynamicCodeEventCollector event_collector;
1590 
1591   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1592   { MutexLocker ml_patch (CompiledIC_lock);
1593     RegisterMap reg_map(thread, false);
1594     frame caller_frame = thread->last_frame().sender(&reg_map);
1595     CodeBlob* cb = caller_frame.cb();
1596     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1597     if (cb->is_compiled()) {
1598       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1599       bool should_be_mono = false;
1600       if (inline_cache->is_optimized()) {
1601         if (TraceCallFixup) {
1602           ResourceMark rm(thread);
1603           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1604           callee_method->print_short_name(tty);
1605           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1606         }
1607         should_be_mono = true;
1608       } else if (inline_cache->is_icholder_call()) {
1609         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1610         if (ic_oop != NULL) {
1611 
1612           if (receiver()->klass() == ic_oop->holder_klass()) {
1613             // This isn't a real miss. We must have seen that compiled code
1614             // is now available and we want the call site converted to a
1615             // monomorphic compiled call site.
1616             // We can't assert for callee_method->code() != NULL because it
1617             // could have been deoptimized in the meantime
1618             if (TraceCallFixup) {
1619               ResourceMark rm(thread);
1620               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1621               callee_method->print_short_name(tty);
1622               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1623             }
1624             should_be_mono = true;
1625           }
1626         }
1627       }
1628 
1629       if (should_be_mono) {
1630 
1631         // We have a path that was monomorphic but was going interpreted
1632         // and now we have (or had) a compiled entry. We correct the IC
1633         // by using a new icBuffer.
1634         CompiledICInfo info;
1635         Klass* receiver_klass = receiver()->klass();
1636         inline_cache->compute_monomorphic_entry(callee_method,
1637                                                 receiver_klass,
1638                                                 inline_cache->is_optimized(),
1639                                                 false, caller_nm->is_nmethod(),
1640                                                 info, CHECK_(methodHandle()));
1641         inline_cache->set_to_monomorphic(info);
1642       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1643         // Potential change to megamorphic
1644         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1645         if (!successful) {
1646           inline_cache->set_to_clean();
1647         }
1648       } else {
1649         // Either clean or megamorphic
1650       }
1651     } else {
1652       fatal("Unimplemented");
1653     }
1654   } // Release CompiledIC_lock
1655 
1656   return callee_method;
1657 }
1658 
1659 //
1660 // Resets a call-site in compiled code so it will get resolved again.
1661 // This routines handles both virtual call sites, optimized virtual call
1662 // sites, and static call sites. Typically used to change a call sites
1663 // destination from compiled to interpreted.
1664 //
1665 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1666   ResourceMark rm(thread);
1667   RegisterMap reg_map(thread, false);
1668   frame stub_frame = thread->last_frame();
1669   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1670   frame caller = stub_frame.sender(&reg_map);
1671 
1672   // Do nothing if the frame isn't a live compiled frame.
1673   // nmethod could be deoptimized by the time we get here
1674   // so no update to the caller is needed.
1675 
1676   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1677 
1678     address pc = caller.pc();
1679 
1680     // Check for static or virtual call
1681     bool is_static_call = false;
1682     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1683 
1684     // Default call_addr is the location of the "basic" call.
1685     // Determine the address of the call we a reresolving. With
1686     // Inline Caches we will always find a recognizable call.
1687     // With Inline Caches disabled we may or may not find a
1688     // recognizable call. We will always find a call for static
1689     // calls and for optimized virtual calls. For vanilla virtual
1690     // calls it depends on the state of the UseInlineCaches switch.
1691     //
1692     // With Inline Caches disabled we can get here for a virtual call
1693     // for two reasons:
1694     //   1 - calling an abstract method. The vtable for abstract methods
1695     //       will run us thru handle_wrong_method and we will eventually
1696     //       end up in the interpreter to throw the ame.
1697     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1698     //       call and between the time we fetch the entry address and
1699     //       we jump to it the target gets deoptimized. Similar to 1
1700     //       we will wind up in the interprter (thru a c2i with c2).
1701     //
1702     address call_addr = NULL;
1703     {
1704       // Get call instruction under lock because another thread may be
1705       // busy patching it.
1706       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1707       // Location of call instruction
1708       call_addr = caller_nm->call_instruction_address(pc);
1709     }
1710     // Make sure nmethod doesn't get deoptimized and removed until
1711     // this is done with it.
1712     // CLEANUP - with lazy deopt shouldn't need this lock
1713     nmethodLocker nmlock(caller_nm);
1714 
1715     if (call_addr != NULL) {
1716       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1717       int ret = iter.next(); // Get item
1718       if (ret) {
1719         assert(iter.addr() == call_addr, "must find call");
1720         if (iter.type() == relocInfo::static_call_type) {
1721           is_static_call = true;
1722         } else {
1723           assert(iter.type() == relocInfo::virtual_call_type ||
1724                  iter.type() == relocInfo::opt_virtual_call_type
1725                 , "unexpected relocInfo. type");
1726         }
1727       } else {
1728         assert(!UseInlineCaches, "relocation info. must exist for this address");
1729       }
1730 
1731       // Cleaning the inline cache will force a new resolve. This is more robust
1732       // than directly setting it to the new destination, since resolving of calls
1733       // is always done through the same code path. (experience shows that it
1734       // leads to very hard to track down bugs, if an inline cache gets updated
1735       // to a wrong method). It should not be performance critical, since the
1736       // resolve is only done once.
1737 
1738       bool is_nmethod = caller_nm->is_nmethod();
1739       MutexLocker ml(CompiledIC_lock);
1740       if (is_static_call) {
1741         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1742         ssc->set_to_clean();
1743       } else {
1744         // compiled, dispatched call (which used to call an interpreted method)
1745         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1746         inline_cache->set_to_clean();
1747       }
1748     }
1749   }
1750 
1751   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1752 
1753 
1754 #ifndef PRODUCT
1755   Atomic::inc(&_wrong_method_ctr);
1756 
1757   if (TraceCallFixup) {
1758     ResourceMark rm(thread);
1759     tty->print("handle_wrong_method reresolving call to");
1760     callee_method->print_short_name(tty);
1761     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1762   }
1763 #endif
1764 
1765   return callee_method;
1766 }
1767 
1768 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1769   // The faulting unsafe accesses should be changed to throw the error
1770   // synchronously instead. Meanwhile the faulting instruction will be
1771   // skipped over (effectively turning it into a no-op) and an
1772   // asynchronous exception will be raised which the thread will
1773   // handle at a later point. If the instruction is a load it will
1774   // return garbage.
1775 
1776   // Request an async exception.
1777   thread->set_pending_unsafe_access_error();
1778 
1779   // Return address of next instruction to execute.
1780   return next_pc;
1781 }
1782 
1783 #ifdef ASSERT
1784 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1785                                                                 const BasicType* sig_bt,
1786                                                                 const VMRegPair* regs) {
1787   ResourceMark rm;
1788   const int total_args_passed = method->size_of_parameters();
1789   const VMRegPair*    regs_with_member_name = regs;
1790         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1791 
1792   const int member_arg_pos = total_args_passed - 1;
1793   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1794   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1795 
1796   const bool is_outgoing = method->is_method_handle_intrinsic();
1797   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1798 
1799   for (int i = 0; i < member_arg_pos; i++) {
1800     VMReg a =    regs_with_member_name[i].first();
1801     VMReg b = regs_without_member_name[i].first();
1802     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1803   }
1804   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1805 }
1806 #endif
1807 
1808 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1809   if (destination != entry_point) {
1810     CodeBlob* callee = CodeCache::find_blob(destination);
1811     // callee == cb seems weird. It means calling interpreter thru stub.
1812     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1813       // static call or optimized virtual
1814       if (TraceCallFixup) {
1815         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1816         moop->print_short_name(tty);
1817         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1818       }
1819       return true;
1820     } else {
1821       if (TraceCallFixup) {
1822         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1823         moop->print_short_name(tty);
1824         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1825       }
1826       // assert is too strong could also be resolve destinations.
1827       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1828     }
1829   } else {
1830     if (TraceCallFixup) {
1831       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1832       moop->print_short_name(tty);
1833       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1834     }
1835   }
1836   return false;
1837 }
1838 
1839 // ---------------------------------------------------------------------------
1840 // We are calling the interpreter via a c2i. Normally this would mean that
1841 // we were called by a compiled method. However we could have lost a race
1842 // where we went int -> i2c -> c2i and so the caller could in fact be
1843 // interpreted. If the caller is compiled we attempt to patch the caller
1844 // so he no longer calls into the interpreter.
1845 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1846   Method* moop(method);
1847 
1848   address entry_point = moop->from_compiled_entry_no_trampoline();
1849 
1850   // It's possible that deoptimization can occur at a call site which hasn't
1851   // been resolved yet, in which case this function will be called from
1852   // an nmethod that has been patched for deopt and we can ignore the
1853   // request for a fixup.
1854   // Also it is possible that we lost a race in that from_compiled_entry
1855   // is now back to the i2c in that case we don't need to patch and if
1856   // we did we'd leap into space because the callsite needs to use
1857   // "to interpreter" stub in order to load up the Method*. Don't
1858   // ask me how I know this...
1859 
1860   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1861   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1862     return;
1863   }
1864 
1865   // The check above makes sure this is a nmethod.
1866   CompiledMethod* nm = cb->as_compiled_method_or_null();
1867   assert(nm, "must be");
1868 
1869   // Get the return PC for the passed caller PC.
1870   address return_pc = caller_pc + frame::pc_return_offset;
1871 
1872   // There is a benign race here. We could be attempting to patch to a compiled
1873   // entry point at the same time the callee is being deoptimized. If that is
1874   // the case then entry_point may in fact point to a c2i and we'd patch the
1875   // call site with the same old data. clear_code will set code() to NULL
1876   // at the end of it. If we happen to see that NULL then we can skip trying
1877   // to patch. If we hit the window where the callee has a c2i in the
1878   // from_compiled_entry and the NULL isn't present yet then we lose the race
1879   // and patch the code with the same old data. Asi es la vida.
1880 
1881   if (moop->code() == NULL) return;
1882 
1883   if (nm->is_in_use()) {
1884 
1885     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1886     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1887     if (NativeCall::is_call_before(return_pc)) {
1888       ResourceMark mark;
1889       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1890       //
1891       // bug 6281185. We might get here after resolving a call site to a vanilla
1892       // virtual call. Because the resolvee uses the verified entry it may then
1893       // see compiled code and attempt to patch the site by calling us. This would
1894       // then incorrectly convert the call site to optimized and its downhill from
1895       // there. If you're lucky you'll get the assert in the bugid, if not you've
1896       // just made a call site that could be megamorphic into a monomorphic site
1897       // for the rest of its life! Just another racing bug in the life of
1898       // fixup_callers_callsite ...
1899       //
1900       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1901       iter.next();
1902       assert(iter.has_current(), "must have a reloc at java call site");
1903       relocInfo::relocType typ = iter.reloc()->type();
1904       if (typ != relocInfo::static_call_type &&
1905            typ != relocInfo::opt_virtual_call_type &&
1906            typ != relocInfo::static_stub_type) {
1907         return;
1908       }
1909       address destination = call->destination();
1910       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1911         call->set_destination_mt_safe(entry_point);
1912       }
1913     }
1914   }
1915 IRT_END
1916 
1917 
1918 // same as JVM_Arraycopy, but called directly from compiled code
1919 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1920                                                 oopDesc* dest, jint dest_pos,
1921                                                 jint length,
1922                                                 JavaThread* thread)) {
1923 #ifndef PRODUCT
1924   _slow_array_copy_ctr++;
1925 #endif
1926   // Check if we have null pointers
1927   if (src == NULL || dest == NULL) {
1928     THROW(vmSymbols::java_lang_NullPointerException());
1929   }
1930   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1931   // even though the copy_array API also performs dynamic checks to ensure
1932   // that src and dest are truly arrays (and are conformable).
1933   // The copy_array mechanism is awkward and could be removed, but
1934   // the compilers don't call this function except as a last resort,
1935   // so it probably doesn't matter.
1936   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1937                                         (arrayOopDesc*)dest, dest_pos,
1938                                         length, thread);
1939 }
1940 JRT_END
1941 
1942 // The caller of generate_class_cast_message() (or one of its callers)
1943 // must use a ResourceMark in order to correctly free the result.
1944 char* SharedRuntime::generate_class_cast_message(
1945     JavaThread* thread, Klass* caster_klass) {
1946 
1947   // Get target class name from the checkcast instruction
1948   vframeStream vfst(thread, true);
1949   assert(!vfst.at_end(), "Java frame must exist");
1950   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1951   Klass* target_klass = vfst.method()->constants()->klass_at(
1952     cc.index(), thread);
1953   return generate_class_cast_message(caster_klass, target_klass);
1954 }
1955 
1956 // The caller of class_loader_and_module_name() (or one of its callers)
1957 // must use a ResourceMark in order to correctly free the result.
1958 const char* class_loader_and_module_name(Klass* klass) {
1959   const char* delim = "/";
1960   size_t delim_len = strlen(delim);
1961 
1962   const char* fqn = klass->external_name();
1963   // Length of message to return; always include FQN
1964   size_t msglen = strlen(fqn) + 1;
1965 
1966   bool has_cl_name = false;
1967   bool has_mod_name = false;
1968   bool has_version = false;
1969 
1970   // Use class loader name, if exists and not builtin
1971   const char* class_loader_name = "";
1972   ClassLoaderData* cld = klass->class_loader_data();
1973   assert(cld != NULL, "class_loader_data should not be NULL");
1974   if (!cld->is_builtin_class_loader_data()) {
1975     // If not builtin, look for name
1976     oop loader = klass->class_loader();
1977     if (loader != NULL) {
1978       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1979       if (class_loader_name_oop != NULL) {
1980         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1981         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1982           has_cl_name = true;
1983           msglen += strlen(class_loader_name) + delim_len;
1984         }
1985       }
1986     }
1987   }
1988 
1989   const char* module_name = "";
1990   const char* version = "";
1991   Klass* bottom_klass = klass->is_objArray_klass() ?
1992     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1993   if (bottom_klass->is_instance_klass()) {
1994     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1995     // Use module name, if exists
1996     if (module->is_named()) {
1997       has_mod_name = true;
1998       module_name = module->name()->as_C_string();
1999       msglen += strlen(module_name);
2000       // Use version if exists and is not a jdk module
2001       if (module->is_non_jdk_module() && module->version() != NULL) {
2002         has_version = true;
2003         version = module->version()->as_C_string();
2004         msglen += strlen("@") + strlen(version);
2005       }
2006     }
2007   } else {
2008     // klass is an array of primitives, so its module is java.base
2009     module_name = JAVA_BASE_NAME;
2010   }
2011 
2012   if (has_cl_name || has_mod_name) {
2013     msglen += delim_len;
2014   }
2015 
2016   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2017 
2018   // Just return the FQN if error in allocating string
2019   if (message == NULL) {
2020     return fqn;
2021   }
2022 
2023   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2024                class_loader_name,
2025                (has_cl_name) ? delim : "",
2026                (has_mod_name) ? module_name : "",
2027                (has_version) ? "@" : "",
2028                (has_version) ? version : "",
2029                (has_cl_name || has_mod_name) ? delim : "",
2030                fqn);
2031   return message;
2032 }
2033 
2034 char* SharedRuntime::generate_class_cast_message(
2035     Klass* caster_klass, Klass* target_klass) {
2036 
2037   const char* caster_name = class_loader_and_module_name(caster_klass);
2038 
2039   const char* target_name = class_loader_and_module_name(target_klass);
2040 
2041   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2042 
2043   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2044   if (message == NULL) {
2045     // Shouldn't happen, but don't cause even more problems if it does
2046     message = const_cast<char*>(caster_klass->external_name());
2047   } else {
2048     jio_snprintf(message,
2049                  msglen,
2050                  "%s cannot be cast to %s",
2051                  caster_name,
2052                  target_name);
2053   }
2054   return message;
2055 }
2056 
2057 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2058   (void) JavaThread::current()->reguard_stack();
2059 JRT_END
2060 
2061 
2062 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2063 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2064   // Disable ObjectSynchronizer::quick_enter() in default config
2065   // on AARCH64 and ARM until JDK-8153107 is resolved.
2066   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2067       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2068       !SafepointSynchronize::is_synchronizing()) {
2069     // Only try quick_enter() if we're not trying to reach a safepoint
2070     // so that the calling thread reaches the safepoint more quickly.
2071     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2072   }
2073   // NO_ASYNC required because an async exception on the state transition destructor
2074   // would leave you with the lock held and it would never be released.
2075   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2076   // and the model is that an exception implies the method failed.
2077   JRT_BLOCK_NO_ASYNC
2078   oop obj(_obj);
2079   if (PrintBiasedLockingStatistics) {
2080     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2081   }
2082   Handle h_obj(THREAD, obj);
2083   if (UseBiasedLocking) {
2084     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2085     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2086   } else {
2087     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2088   }
2089   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2090   JRT_BLOCK_END
2091 JRT_END
2092 
2093 // Handles the uncommon cases of monitor unlocking in compiled code
2094 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2095    oop obj(_obj);
2096   assert(JavaThread::current() == THREAD, "invariant");
2097   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2098   // testing was unable to ever fire the assert that guarded it so I have removed it.
2099   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2100 #undef MIGHT_HAVE_PENDING
2101 #ifdef MIGHT_HAVE_PENDING
2102   // Save and restore any pending_exception around the exception mark.
2103   // While the slow_exit must not throw an exception, we could come into
2104   // this routine with one set.
2105   oop pending_excep = NULL;
2106   const char* pending_file;
2107   int pending_line;
2108   if (HAS_PENDING_EXCEPTION) {
2109     pending_excep = PENDING_EXCEPTION;
2110     pending_file  = THREAD->exception_file();
2111     pending_line  = THREAD->exception_line();
2112     CLEAR_PENDING_EXCEPTION;
2113   }
2114 #endif /* MIGHT_HAVE_PENDING */
2115 
2116   {
2117     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2118     EXCEPTION_MARK;
2119     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2120   }
2121 
2122 #ifdef MIGHT_HAVE_PENDING
2123   if (pending_excep != NULL) {
2124     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2125   }
2126 #endif /* MIGHT_HAVE_PENDING */
2127 JRT_END
2128 
2129 #ifndef PRODUCT
2130 
2131 void SharedRuntime::print_statistics() {
2132   ttyLocker ttyl;
2133   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2134 
2135   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2136 
2137   SharedRuntime::print_ic_miss_histogram();
2138 
2139   if (CountRemovableExceptions) {
2140     if (_nof_removable_exceptions > 0) {
2141       Unimplemented(); // this counter is not yet incremented
2142       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2143     }
2144   }
2145 
2146   // Dump the JRT_ENTRY counters
2147   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2148   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2149   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2150   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2151   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2152   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2153   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2154 
2155   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2156   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2157   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2158   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2159   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2160 
2161   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2162   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2163   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2164   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2165   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2166   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2167   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2168   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2169   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2170   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2171   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2172   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2173   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2174   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2175   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2176   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2177 
2178   AdapterHandlerLibrary::print_statistics();
2179 
2180   if (xtty != NULL)  xtty->tail("statistics");
2181 }
2182 
2183 inline double percent(int x, int y) {
2184   return 100.0 * x / MAX2(y, 1);
2185 }
2186 
2187 class MethodArityHistogram {
2188  public:
2189   enum { MAX_ARITY = 256 };
2190  private:
2191   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2192   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2193   static int _max_arity;                      // max. arity seen
2194   static int _max_size;                       // max. arg size seen
2195 
2196   static void add_method_to_histogram(nmethod* nm) {
2197     Method* m = nm->method();
2198     ArgumentCount args(m->signature());
2199     int arity   = args.size() + (m->is_static() ? 0 : 1);
2200     int argsize = m->size_of_parameters();
2201     arity   = MIN2(arity, MAX_ARITY-1);
2202     argsize = MIN2(argsize, MAX_ARITY-1);
2203     int count = nm->method()->compiled_invocation_count();
2204     _arity_histogram[arity]  += count;
2205     _size_histogram[argsize] += count;
2206     _max_arity = MAX2(_max_arity, arity);
2207     _max_size  = MAX2(_max_size, argsize);
2208   }
2209 
2210   void print_histogram_helper(int n, int* histo, const char* name) {
2211     const int N = MIN2(5, n);
2212     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2213     double sum = 0;
2214     double weighted_sum = 0;
2215     int i;
2216     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2217     double rest = sum;
2218     double percent = sum / 100;
2219     for (i = 0; i <= N; i++) {
2220       rest -= histo[i];
2221       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2222     }
2223     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2224     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2225   }
2226 
2227   void print_histogram() {
2228     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2229     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2230     tty->print_cr("\nSame for parameter size (in words):");
2231     print_histogram_helper(_max_size, _size_histogram, "size");
2232     tty->cr();
2233   }
2234 
2235  public:
2236   MethodArityHistogram() {
2237     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2238     _max_arity = _max_size = 0;
2239     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2240     CodeCache::nmethods_do(add_method_to_histogram);
2241     print_histogram();
2242   }
2243 };
2244 
2245 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2246 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2247 int MethodArityHistogram::_max_arity;
2248 int MethodArityHistogram::_max_size;
2249 
2250 void SharedRuntime::print_call_statistics(int comp_total) {
2251   tty->print_cr("Calls from compiled code:");
2252   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2253   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2254   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2255   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2256   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2257   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2258   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2259   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2260   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2261   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2262   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2263   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2264   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2265   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2266   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2267   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2268   tty->cr();
2269   tty->print_cr("Note 1: counter updates are not MT-safe.");
2270   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2271   tty->print_cr("        %% in nested categories are relative to their category");
2272   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2273   tty->cr();
2274 
2275   MethodArityHistogram h;
2276 }
2277 #endif
2278 
2279 
2280 // A simple wrapper class around the calling convention information
2281 // that allows sharing of adapters for the same calling convention.
2282 class AdapterFingerPrint : public CHeapObj<mtCode> {
2283  private:
2284   enum {
2285     _basic_type_bits = 4,
2286     _basic_type_mask = right_n_bits(_basic_type_bits),
2287     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2288     _compact_int_count = 3
2289   };
2290   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2291   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2292 
2293   union {
2294     int  _compact[_compact_int_count];
2295     int* _fingerprint;
2296   } _value;
2297   int _length; // A negative length indicates the fingerprint is in the compact form,
2298                // Otherwise _value._fingerprint is the array.
2299 
2300   // Remap BasicTypes that are handled equivalently by the adapters.
2301   // These are correct for the current system but someday it might be
2302   // necessary to make this mapping platform dependent.
2303   static int adapter_encoding(BasicType in, bool is_valuetype) {
2304     switch (in) {
2305       case T_BOOLEAN:
2306       case T_BYTE:
2307       case T_SHORT:
2308       case T_CHAR: {
2309         if (is_valuetype) {
2310           // Do not widen value type field types
2311           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2312           return in;
2313         } else {
2314           // They are all promoted to T_INT in the calling convention
2315           return T_INT;
2316         }
2317       }
2318 
2319       case T_VALUETYPE: {
2320         // If value types are passed as fields, return 'in' to differentiate
2321         // between a T_VALUETYPE and a T_OBJECT in the signature.
2322         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2323       }
2324       case T_VALUETYPEPTR:
2325       case T_OBJECT:
2326       case T_ARRAY:
2327         // In other words, we assume that any register good enough for
2328         // an int or long is good enough for a managed pointer.
2329 #ifdef _LP64
2330         return T_LONG;
2331 #else
2332         return T_INT;
2333 #endif
2334 
2335       case T_INT:
2336       case T_LONG:
2337       case T_FLOAT:
2338       case T_DOUBLE:
2339       case T_VOID:
2340         return in;
2341 
2342       default:
2343         ShouldNotReachHere();
2344         return T_CONFLICT;
2345     }
2346   }
2347 
2348  public:
2349   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2350     // The fingerprint is based on the BasicType signature encoded
2351     // into an array of ints with eight entries per int.
2352     int* ptr;
2353     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2354     if (len <= _compact_int_count) {
2355       assert(_compact_int_count == 3, "else change next line");
2356       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2357       // Storing the signature encoded as signed chars hits about 98%
2358       // of the time.
2359       _length = -len;
2360       ptr = _value._compact;
2361     } else {
2362       _length = len;
2363       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2364       ptr = _value._fingerprint;
2365     }
2366 
2367     // Now pack the BasicTypes with 8 per int
2368     int sig_index = 0;
2369     BasicType prev_sbt = T_ILLEGAL;
2370     int vt_count = 0;
2371     for (int index = 0; index < len; index++) {
2372       int value = 0;
2373       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2374         int bt = 0;
2375         if (sig_index < total_args_passed) {
2376           BasicType sbt = sig_bt[sig_index++];
2377           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2378             // Found start of value type in signature
2379             vt_count++;
2380           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2381                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2382             // Found end of value type in signature
2383             vt_count--;
2384             assert(vt_count >= 0, "invalid vt_count");
2385           }
2386           bt = adapter_encoding(sbt, vt_count > 0);
2387           prev_sbt = sbt;
2388         }
2389         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2390         value = (value << _basic_type_bits) | bt;
2391       }
2392       ptr[index] = value;
2393     }
2394     assert(vt_count == 0, "invalid vt_count");
2395   }
2396 
2397   ~AdapterFingerPrint() {
2398     if (_length > 0) {
2399       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2400     }
2401   }
2402 
2403   int value(int index) {
2404     if (_length < 0) {
2405       return _value._compact[index];
2406     }
2407     return _value._fingerprint[index];
2408   }
2409   int length() {
2410     if (_length < 0) return -_length;
2411     return _length;
2412   }
2413 
2414   bool is_compact() {
2415     return _length <= 0;
2416   }
2417 
2418   unsigned int compute_hash() {
2419     int hash = 0;
2420     for (int i = 0; i < length(); i++) {
2421       int v = value(i);
2422       hash = (hash << 8) ^ v ^ (hash >> 5);
2423     }
2424     return (unsigned int)hash;
2425   }
2426 
2427   const char* as_string() {
2428     stringStream st;
2429     st.print("0x");
2430     for (int i = 0; i < length(); i++) {
2431       st.print("%08x", value(i));
2432     }
2433     return st.as_string();
2434   }
2435 
2436   bool equals(AdapterFingerPrint* other) {
2437     if (other->_length != _length) {
2438       return false;
2439     }
2440     if (_length < 0) {
2441       assert(_compact_int_count == 3, "else change next line");
2442       return _value._compact[0] == other->_value._compact[0] &&
2443              _value._compact[1] == other->_value._compact[1] &&
2444              _value._compact[2] == other->_value._compact[2];
2445     } else {
2446       for (int i = 0; i < _length; i++) {
2447         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2448           return false;
2449         }
2450       }
2451     }
2452     return true;
2453   }
2454 };
2455 
2456 
2457 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2458 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2459   friend class AdapterHandlerTableIterator;
2460 
2461  private:
2462 
2463 #ifndef PRODUCT
2464   static int _lookups; // number of calls to lookup
2465   static int _buckets; // number of buckets checked
2466   static int _equals;  // number of buckets checked with matching hash
2467   static int _hits;    // number of successful lookups
2468   static int _compact; // number of equals calls with compact signature
2469 #endif
2470 
2471   AdapterHandlerEntry* bucket(int i) {
2472     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2473   }
2474 
2475  public:
2476   AdapterHandlerTable()
2477     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2478 
2479   // Create a new entry suitable for insertion in the table
2480   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2481     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2482     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2483     if (DumpSharedSpaces) {
2484       ((CDSAdapterHandlerEntry*)entry)->init();
2485     }
2486     return entry;
2487   }
2488 
2489   // Insert an entry into the table
2490   void add(AdapterHandlerEntry* entry) {
2491     int index = hash_to_index(entry->hash());
2492     add_entry(index, entry);
2493   }
2494 
2495   void free_entry(AdapterHandlerEntry* entry) {
2496     entry->deallocate();
2497     BasicHashtable<mtCode>::free_entry(entry);
2498   }
2499 
2500   // Find a entry with the same fingerprint if it exists
2501   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2502     NOT_PRODUCT(_lookups++);
2503     AdapterFingerPrint fp(total_args_passed, sig_bt);
2504     unsigned int hash = fp.compute_hash();
2505     int index = hash_to_index(hash);
2506     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2507       NOT_PRODUCT(_buckets++);
2508       if (e->hash() == hash) {
2509         NOT_PRODUCT(_equals++);
2510         if (fp.equals(e->fingerprint())) {
2511 #ifndef PRODUCT
2512           if (fp.is_compact()) _compact++;
2513           _hits++;
2514 #endif
2515           return e;
2516         }
2517       }
2518     }
2519     return NULL;
2520   }
2521 
2522 #ifndef PRODUCT
2523   void print_statistics() {
2524     ResourceMark rm;
2525     int longest = 0;
2526     int empty = 0;
2527     int total = 0;
2528     int nonempty = 0;
2529     for (int index = 0; index < table_size(); index++) {
2530       int count = 0;
2531       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2532         count++;
2533       }
2534       if (count != 0) nonempty++;
2535       if (count == 0) empty++;
2536       if (count > longest) longest = count;
2537       total += count;
2538     }
2539     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2540                   empty, longest, total, total / (double)nonempty);
2541     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2542                   _lookups, _buckets, _equals, _hits, _compact);
2543   }
2544 #endif
2545 };
2546 
2547 
2548 #ifndef PRODUCT
2549 
2550 int AdapterHandlerTable::_lookups;
2551 int AdapterHandlerTable::_buckets;
2552 int AdapterHandlerTable::_equals;
2553 int AdapterHandlerTable::_hits;
2554 int AdapterHandlerTable::_compact;
2555 
2556 #endif
2557 
2558 class AdapterHandlerTableIterator : public StackObj {
2559  private:
2560   AdapterHandlerTable* _table;
2561   int _index;
2562   AdapterHandlerEntry* _current;
2563 
2564   void scan() {
2565     while (_index < _table->table_size()) {
2566       AdapterHandlerEntry* a = _table->bucket(_index);
2567       _index++;
2568       if (a != NULL) {
2569         _current = a;
2570         return;
2571       }
2572     }
2573   }
2574 
2575  public:
2576   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2577     scan();
2578   }
2579   bool has_next() {
2580     return _current != NULL;
2581   }
2582   AdapterHandlerEntry* next() {
2583     if (_current != NULL) {
2584       AdapterHandlerEntry* result = _current;
2585       _current = _current->next();
2586       if (_current == NULL) scan();
2587       return result;
2588     } else {
2589       return NULL;
2590     }
2591   }
2592 };
2593 
2594 
2595 // ---------------------------------------------------------------------------
2596 // Implementation of AdapterHandlerLibrary
2597 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2598 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2599 const int AdapterHandlerLibrary_size = 16*K;
2600 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2601 
2602 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2603   // Should be called only when AdapterHandlerLibrary_lock is active.
2604   if (_buffer == NULL) // Initialize lazily
2605       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2606   return _buffer;
2607 }
2608 
2609 extern "C" void unexpected_adapter_call() {
2610   ShouldNotCallThis();
2611 }
2612 
2613 void AdapterHandlerLibrary::initialize() {
2614   if (_adapters != NULL) return;
2615   _adapters = new AdapterHandlerTable();
2616 
2617   // Create a special handler for abstract methods.  Abstract methods
2618   // are never compiled so an i2c entry is somewhat meaningless, but
2619   // throw AbstractMethodError just in case.
2620   // Pass wrong_method_abstract for the c2i transitions to return
2621   // AbstractMethodError for invalid invocations.
2622   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2623   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2624                                                               StubRoutines::throw_AbstractMethodError_entry(),
2625                                                               wrong_method_abstract, wrong_method_abstract);
2626 }
2627 
2628 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2629                                                       address i2c_entry,
2630                                                       address c2i_entry,
2631                                                       address c2i_unverified_entry,
2632                                                       Symbol* sig_extended) {
2633   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2634 }
2635 
2636 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method, TRAPS) {
2637   AdapterHandlerEntry* entry = get_adapter0(method, CHECK_NULL);
2638   if (method->is_shared()) {
2639     // See comments around Method::link_method()
2640     MutexLocker mu(AdapterHandlerLibrary_lock);
2641     if (method->adapter() == NULL) {
2642       method->update_adapter_trampoline(entry);
2643     }
2644     address trampoline = method->from_compiled_entry();
2645     if (*(int*)trampoline == 0) {
2646       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2647       MacroAssembler _masm(&buffer);
2648       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2649       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2650 
2651       if (PrintInterpreter) {
2652         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2653       }
2654     }
2655   }
2656 
2657   return entry;
2658 }
2659 
2660 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method, TRAPS) {
2661   // Use customized signature handler.  Need to lock around updates to
2662   // the AdapterHandlerTable (it is not safe for concurrent readers
2663   // and a single writer: this could be fixed if it becomes a
2664   // problem).
2665 
2666   ResourceMark rm;
2667 
2668   NOT_PRODUCT(int insts_size = 0);
2669   AdapterBlob* new_adapter = NULL;
2670   AdapterHandlerEntry* entry = NULL;
2671   AdapterFingerPrint* fingerprint = NULL;
2672   {
2673     MutexLocker mu(AdapterHandlerLibrary_lock);
2674     // make sure data structure is initialized
2675     initialize();
2676 
2677     if (method->is_abstract()) {
2678       return _abstract_method_handler;
2679     }
2680 
2681     // Fill in the signature array, for the calling-convention call.
2682     GrowableArray<SigEntry> sig_extended;
2683     {
2684       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2685       Thread* THREAD = Thread::current();
2686       Klass* holder = method->method_holder();
2687       GrowableArray<BasicType> sig_bt_tmp;
2688 
2689       int i = 0;
2690       if (!method->is_static()) {  // Pass in receiver first
2691         if (holder->is_value()) {
2692           ValueKlass* vk = ValueKlass::cast(holder);
2693           if (!ValueTypePassFieldsAsArgs || vk->is__Value()) {
2694             // If we don't pass value types as arguments or if the holder of
2695             // the method is __Value, we must pass a reference.
2696             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2697           } else {
2698             const Array<SigEntry>* sig_vk = vk->extended_sig();
2699             sig_extended.appendAll(sig_vk);
2700           }
2701         } else {
2702           sig_extended.push(SigEntry(T_OBJECT));
2703         }
2704       }
2705       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2706         if (ss.type() == T_VALUETYPE) {
2707           Symbol* name = ss.as_symbol_or_null();
2708           assert(name != NULL, "should not be null");
2709           if (!ValueTypePassFieldsAsArgs || (name == vmSymbols::java_lang____Value())) {
2710             assert(!ValueTypePassFieldsAsArgs || method->is_compiled_lambda_form() || method->is_method_handle_intrinsic(),
2711                    "should not use __Value for a value type argument");
2712             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2713           } else {
2714             // Method handle intrinsics with a __Value argument may be created during
2715             // compilation. Only do a full system dictionary lookup if the argument name
2716             // is not __Value, to avoid lookups from the compiler thread.
2717             Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2718                                    Handle(THREAD, holder->protection_domain()),
2719                                    SignatureStream::ReturnNull, CHECK_NULL);
2720             const Array<SigEntry>* sig_vk = ValueKlass::cast(k)->extended_sig();
2721             sig_extended.appendAll(sig_vk);
2722           }
2723         } else {
2724           sig_extended.push(SigEntry(ss.type()));
2725           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2726             sig_extended.push(SigEntry(T_VOID));
2727           }
2728         }
2729       }
2730     }
2731 
2732     int total_args_passed_cc = ValueTypePassFieldsAsArgs ? SigEntry::count_fields(sig_extended) : sig_extended.length();
2733     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2734     SigEntry::fill_sig_bt(sig_extended, sig_bt_cc, total_args_passed_cc, ValueTypePassFieldsAsArgs);
2735 
2736     int total_args_passed_fp = sig_extended.length();
2737     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2738     for (int i = 0; i < sig_extended.length(); i++) {
2739       sig_bt_fp[i] = sig_extended.at(i)._bt;
2740     }
2741 
2742     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2743 
2744     // Lookup method signature's fingerprint
2745     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2746 
2747 #ifdef ASSERT
2748     AdapterHandlerEntry* shared_entry = NULL;
2749     // Start adapter sharing verification only after the VM is booted.
2750     if (VerifyAdapterSharing && (entry != NULL)) {
2751       shared_entry = entry;
2752       entry = NULL;
2753     }
2754 #endif
2755 
2756     if (entry != NULL) {
2757       return entry;
2758     }
2759 
2760     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2761     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2762 
2763     // Make a C heap allocated version of the fingerprint to store in the adapter
2764     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2765 
2766     // StubRoutines::code2() is initialized after this function can be called. As a result,
2767     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2768     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2769     // stub that ensure that an I2C stub is called from an interpreter frame.
2770     bool contains_all_checks = StubRoutines::code2() != NULL;
2771 
2772     // Create I2C & C2I handlers
2773     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2774     if (buf != NULL) {
2775       CodeBuffer buffer(buf);
2776       short buffer_locs[20];
2777       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2778                                              sizeof(buffer_locs)/sizeof(relocInfo));
2779 
2780       MacroAssembler _masm(&buffer);
2781       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2782                                                      comp_args_on_stack,
2783                                                      sig_extended,
2784                                                      regs,
2785                                                      fingerprint,
2786                                                      new_adapter);
2787 #ifdef ASSERT
2788       if (VerifyAdapterSharing) {
2789         if (shared_entry != NULL) {
2790           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2791           // Release the one just created and return the original
2792           _adapters->free_entry(entry);
2793           return shared_entry;
2794         } else  {
2795           entry->save_code(buf->code_begin(), buffer.insts_size());
2796         }
2797       }
2798 #endif
2799 
2800       NOT_PRODUCT(insts_size = buffer.insts_size());
2801     }
2802     if (new_adapter == NULL) {
2803       // CodeCache is full, disable compilation
2804       // Ought to log this but compile log is only per compile thread
2805       // and we're some non descript Java thread.
2806       return NULL; // Out of CodeCache space
2807     }
2808     entry->relocate(new_adapter->content_begin());
2809 #ifndef PRODUCT
2810     // debugging suppport
2811     if (PrintAdapterHandlers || PrintStubCode) {
2812       ttyLocker ttyl;
2813       entry->print_adapter_on(tty);
2814       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2815                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2816                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2817       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2818       if (Verbose || PrintStubCode) {
2819         address first_pc = entry->base_address();
2820         if (first_pc != NULL) {
2821           Disassembler::decode(first_pc, first_pc + insts_size);
2822           tty->cr();
2823         }
2824       }
2825     }
2826 #endif
2827     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2828     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2829     if (contains_all_checks || !VerifyAdapterCalls) {
2830       _adapters->add(entry);
2831     }
2832   }
2833   // Outside of the lock
2834   if (new_adapter != NULL) {
2835     char blob_id[256];
2836     jio_snprintf(blob_id,
2837                  sizeof(blob_id),
2838                  "%s(%s)@" PTR_FORMAT,
2839                  new_adapter->name(),
2840                  fingerprint->as_string(),
2841                  new_adapter->content_begin());
2842     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2843 
2844     if (JvmtiExport::should_post_dynamic_code_generated()) {
2845       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2846     }
2847   }
2848   return entry;
2849 }
2850 
2851 address AdapterHandlerEntry::base_address() {
2852   address base = _i2c_entry;
2853   if (base == NULL)  base = _c2i_entry;
2854   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2855   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2856   return base;
2857 }
2858 
2859 void AdapterHandlerEntry::relocate(address new_base) {
2860   address old_base = base_address();
2861   assert(old_base != NULL, "");
2862   ptrdiff_t delta = new_base - old_base;
2863   if (_i2c_entry != NULL)
2864     _i2c_entry += delta;
2865   if (_c2i_entry != NULL)
2866     _c2i_entry += delta;
2867   if (_c2i_unverified_entry != NULL)
2868     _c2i_unverified_entry += delta;
2869   assert(base_address() == new_base, "");
2870 }
2871 
2872 
2873 void AdapterHandlerEntry::deallocate() {
2874   delete _fingerprint;
2875 #ifdef ASSERT
2876   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2877 #endif
2878 }
2879 
2880 
2881 #ifdef ASSERT
2882 // Capture the code before relocation so that it can be compared
2883 // against other versions.  If the code is captured after relocation
2884 // then relative instructions won't be equivalent.
2885 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2886   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2887   _saved_code_length = length;
2888   memcpy(_saved_code, buffer, length);
2889 }
2890 
2891 
2892 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2893   if (length != _saved_code_length) {
2894     return false;
2895   }
2896 
2897   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2898 }
2899 #endif
2900 
2901 
2902 /**
2903  * Create a native wrapper for this native method.  The wrapper converts the
2904  * Java-compiled calling convention to the native convention, handles
2905  * arguments, and transitions to native.  On return from the native we transition
2906  * back to java blocking if a safepoint is in progress.
2907  */
2908 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2909   ResourceMark rm;
2910   nmethod* nm = NULL;
2911 
2912   assert(method->is_native(), "must be native");
2913   assert(method->is_method_handle_intrinsic() ||
2914          method->has_native_function(), "must have something valid to call!");
2915 
2916   {
2917     // Perform the work while holding the lock, but perform any printing outside the lock
2918     MutexLocker mu(AdapterHandlerLibrary_lock);
2919     // See if somebody beat us to it
2920     if (method->code() != NULL) {
2921       return;
2922     }
2923 
2924     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2925     assert(compile_id > 0, "Must generate native wrapper");
2926 
2927 
2928     ResourceMark rm;
2929     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2930     if (buf != NULL) {
2931       CodeBuffer buffer(buf);
2932       double locs_buf[20];
2933       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2934       MacroAssembler _masm(&buffer);
2935 
2936       // Fill in the signature array, for the calling-convention call.
2937       const int total_args_passed = method->size_of_parameters();
2938 
2939       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2940       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2941       int i=0;
2942       if (!method->is_static())  // Pass in receiver first
2943         sig_bt[i++] = T_OBJECT;
2944       SignatureStream ss(method->signature());
2945       for (; !ss.at_return_type(); ss.next()) {
2946         BasicType bt = ss.type();
2947         if (bt == T_VALUETYPE) {
2948 #ifdef ASSERT
2949           Thread* THREAD = Thread::current();
2950           // Avoid class loading from compiler thread
2951           if (THREAD->can_call_java()) {
2952             Handle class_loader(THREAD, method->method_holder()->class_loader());
2953             Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2954             Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2955             assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
2956             assert(ValueKlass::cast(k)->is__Value(), "other values not supported");
2957           }
2958 #endif
2959           bt = T_VALUETYPEPTR;
2960         }
2961         sig_bt[i++] = bt;  // Collect remaining bits of signature
2962         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2963           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2964       }
2965       assert(i == total_args_passed, "");
2966       BasicType ret_type = ss.type();
2967 
2968       // Now get the compiled-Java layout as input (or output) arguments.
2969       // NOTE: Stubs for compiled entry points of method handle intrinsics
2970       // are just trampolines so the argument registers must be outgoing ones.
2971       const bool is_outgoing = method->is_method_handle_intrinsic();
2972       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2973 
2974       // Generate the compiled-to-native wrapper code
2975       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2976 
2977       if (nm != NULL) {
2978         method->set_code(method, nm);
2979 
2980         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2981         if (directive->PrintAssemblyOption) {
2982           nm->print_code();
2983         }
2984         DirectivesStack::release(directive);
2985       }
2986     }
2987   } // Unlock AdapterHandlerLibrary_lock
2988 
2989 
2990   // Install the generated code.
2991   if (nm != NULL) {
2992     const char *msg = method->is_static() ? "(static)" : "";
2993     CompileTask::print_ul(nm, msg);
2994     if (PrintCompilation) {
2995       ttyLocker ttyl;
2996       CompileTask::print(tty, nm, msg);
2997     }
2998     nm->post_compiled_method_load_event();
2999   }
3000 }
3001 
3002 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3003   assert(thread == JavaThread::current(), "must be");
3004   // The code is about to enter a JNI lazy critical native method and
3005   // _needs_gc is true, so if this thread is already in a critical
3006   // section then just return, otherwise this thread should block
3007   // until needs_gc has been cleared.
3008   if (thread->in_critical()) {
3009     return;
3010   }
3011   // Lock and unlock a critical section to give the system a chance to block
3012   GCLocker::lock_critical(thread);
3013   GCLocker::unlock_critical(thread);
3014 JRT_END
3015 
3016 // -------------------------------------------------------------------------
3017 // Java-Java calling convention
3018 // (what you use when Java calls Java)
3019 
3020 //------------------------------name_for_receiver----------------------------------
3021 // For a given signature, return the VMReg for parameter 0.
3022 VMReg SharedRuntime::name_for_receiver() {
3023   VMRegPair regs;
3024   BasicType sig_bt = T_OBJECT;
3025   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3026   // Return argument 0 register.  In the LP64 build pointers
3027   // take 2 registers, but the VM wants only the 'main' name.
3028   return regs.first();
3029 }
3030 
3031 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3032   // This method is returning a data structure allocating as a
3033   // ResourceObject, so do not put any ResourceMarks in here.
3034   char *s = sig->as_C_string();
3035   int len = (int)strlen(s);
3036   s++; len--;                   // Skip opening paren
3037 
3038   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3039   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3040   int cnt = 0;
3041   if (has_receiver) {
3042     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3043   }
3044 
3045   while (*s != ')') {          // Find closing right paren
3046     switch (*s++) {            // Switch on signature character
3047     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3048     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3049     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3050     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3051     case 'I': sig_bt[cnt++] = T_INT;     break;
3052     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3053     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3054     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3055     case 'V': sig_bt[cnt++] = T_VOID;    break;
3056     case 'Q':
3057     case 'L':                   // Oop
3058       while (*s++ != ';');   // Skip signature
3059       sig_bt[cnt++] = T_OBJECT;
3060       break;
3061     case '[': {                 // Array
3062       do {                      // Skip optional size
3063         while (*s >= '0' && *s <= '9') s++;
3064       } while (*s++ == '[');   // Nested arrays?
3065       // Skip element type
3066       if (s[-1] == 'L' || s[-1] == 'Q')
3067         while (*s++ != ';'); // Skip signature
3068       sig_bt[cnt++] = T_ARRAY;
3069       break;
3070     }
3071     default : ShouldNotReachHere();
3072     }
3073   }
3074 
3075   if (has_appendix) {
3076     sig_bt[cnt++] = T_OBJECT;
3077   }
3078 
3079   assert(cnt < 256, "grow table size");
3080 
3081   int comp_args_on_stack;
3082   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3083 
3084   // the calling convention doesn't count out_preserve_stack_slots so
3085   // we must add that in to get "true" stack offsets.
3086 
3087   if (comp_args_on_stack) {
3088     for (int i = 0; i < cnt; i++) {
3089       VMReg reg1 = regs[i].first();
3090       if (reg1->is_stack()) {
3091         // Yuck
3092         reg1 = reg1->bias(out_preserve_stack_slots());
3093       }
3094       VMReg reg2 = regs[i].second();
3095       if (reg2->is_stack()) {
3096         // Yuck
3097         reg2 = reg2->bias(out_preserve_stack_slots());
3098       }
3099       regs[i].set_pair(reg2, reg1);
3100     }
3101   }
3102 
3103   // results
3104   *arg_size = cnt;
3105   return regs;
3106 }
3107 
3108 // OSR Migration Code
3109 //
3110 // This code is used convert interpreter frames into compiled frames.  It is
3111 // called from very start of a compiled OSR nmethod.  A temp array is
3112 // allocated to hold the interesting bits of the interpreter frame.  All
3113 // active locks are inflated to allow them to move.  The displaced headers and
3114 // active interpreter locals are copied into the temp buffer.  Then we return
3115 // back to the compiled code.  The compiled code then pops the current
3116 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3117 // copies the interpreter locals and displaced headers where it wants.
3118 // Finally it calls back to free the temp buffer.
3119 //
3120 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3121 
3122 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3123 
3124   //
3125   // This code is dependent on the memory layout of the interpreter local
3126   // array and the monitors. On all of our platforms the layout is identical
3127   // so this code is shared. If some platform lays the their arrays out
3128   // differently then this code could move to platform specific code or
3129   // the code here could be modified to copy items one at a time using
3130   // frame accessor methods and be platform independent.
3131 
3132   frame fr = thread->last_frame();
3133   assert(fr.is_interpreted_frame(), "");
3134   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3135 
3136   // Figure out how many monitors are active.
3137   int active_monitor_count = 0;
3138   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3139        kptr < fr.interpreter_frame_monitor_begin();
3140        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3141     if (kptr->obj() != NULL) active_monitor_count++;
3142   }
3143 
3144   // QQQ we could place number of active monitors in the array so that compiled code
3145   // could double check it.
3146 
3147   Method* moop = fr.interpreter_frame_method();
3148   int max_locals = moop->max_locals();
3149   // Allocate temp buffer, 1 word per local & 2 per active monitor
3150   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3151   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3152 
3153   // Copy the locals.  Order is preserved so that loading of longs works.
3154   // Since there's no GC I can copy the oops blindly.
3155   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3156   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3157                        (HeapWord*)&buf[0],
3158                        max_locals);
3159 
3160   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3161   int i = max_locals;
3162   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3163        kptr2 < fr.interpreter_frame_monitor_begin();
3164        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3165     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3166       BasicLock *lock = kptr2->lock();
3167       // Inflate so the displaced header becomes position-independent
3168       if (lock->displaced_header()->is_unlocked())
3169         ObjectSynchronizer::inflate_helper(kptr2->obj());
3170       // Now the displaced header is free to move
3171       buf[i++] = (intptr_t)lock->displaced_header();
3172       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3173     }
3174   }
3175   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3176 
3177   return buf;
3178 JRT_END
3179 
3180 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3181   FREE_C_HEAP_ARRAY(intptr_t, buf);
3182 JRT_END
3183 
3184 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3185   AdapterHandlerTableIterator iter(_adapters);
3186   while (iter.has_next()) {
3187     AdapterHandlerEntry* a = iter.next();
3188     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3189   }
3190   return false;
3191 }
3192 
3193 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3194   AdapterHandlerTableIterator iter(_adapters);
3195   while (iter.has_next()) {
3196     AdapterHandlerEntry* a = iter.next();
3197     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3198       st->print("Adapter for signature: ");
3199       a->print_adapter_on(tty);
3200       return;
3201     }
3202   }
3203   assert(false, "Should have found handler");
3204 }
3205 
3206 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3207   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3208                p2i(this), fingerprint()->as_string(),
3209                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3210 
3211 }
3212 
3213 #if INCLUDE_CDS
3214 
3215 void CDSAdapterHandlerEntry::init() {
3216   assert(DumpSharedSpaces, "used during dump time only");
3217   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3218   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3219 };
3220 
3221 #endif // INCLUDE_CDS
3222 
3223 
3224 #ifndef PRODUCT
3225 
3226 void AdapterHandlerLibrary::print_statistics() {
3227   _adapters->print_statistics();
3228 }
3229 
3230 #endif /* PRODUCT */
3231 
3232 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3233   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3234   if (thread->stack_reserved_zone_disabled()) {
3235   thread->enable_stack_reserved_zone();
3236   }
3237   thread->set_reserved_stack_activation(thread->stack_base());
3238 JRT_END
3239 
3240 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3241   ResourceMark rm(thread);
3242   frame activation;
3243   CompiledMethod* nm = NULL;
3244   int count = 1;
3245 
3246   assert(fr.is_java_frame(), "Must start on Java frame");
3247 
3248   while (true) {
3249     Method* method = NULL;
3250     bool found = false;
3251     if (fr.is_interpreted_frame()) {
3252       method = fr.interpreter_frame_method();
3253       if (method != NULL && method->has_reserved_stack_access()) {
3254         found = true;
3255       }
3256     } else {
3257       CodeBlob* cb = fr.cb();
3258       if (cb != NULL && cb->is_compiled()) {
3259         nm = cb->as_compiled_method();
3260         method = nm->method();
3261         // scope_desc_near() must be used, instead of scope_desc_at() because on
3262         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3263         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3264           method = sd->method();
3265           if (method != NULL && method->has_reserved_stack_access()) {
3266             found = true;
3267       }
3268     }
3269       }
3270     }
3271     if (found) {
3272       activation = fr;
3273       warning("Potentially dangerous stack overflow in "
3274               "ReservedStackAccess annotated method %s [%d]",
3275               method->name_and_sig_as_C_string(), count++);
3276       EventReservedStackActivation event;
3277       if (event.should_commit()) {
3278         event.set_method(method);
3279         event.commit();
3280       }
3281     }
3282     if (fr.is_first_java_frame()) {
3283       break;
3284     } else {
3285       fr = fr.java_sender();
3286     }
3287   }
3288   return activation;
3289 }
3290 
3291 // We are at a compiled code to interpreter call. We need backing
3292 // buffers for all value type arguments. Allocate an object array to
3293 // hold them (convenient because once we're done with it we don't have
3294 // to worry about freeing it).
3295 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3296 {
3297   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3298   ResourceMark rm;
3299   JavaThread* THREAD = thread;
3300   methodHandle callee(callee_method);
3301 
3302   int nb_slots = 0;
3303   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3304   if (has_value_receiver) {
3305     nb_slots++;
3306   }
3307   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3308   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3309   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3310     if (ss.type() == T_VALUETYPE) {
3311       nb_slots++;
3312     }
3313   }
3314   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3315   objArrayHandle array(THREAD, array_oop);
3316   int i = 0;
3317   if (has_value_receiver) {
3318     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3319     oop res = vk->allocate_instance(CHECK);
3320     array->obj_at_put(i, res);
3321     i++;
3322   }
3323   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3324     if (ss.type() == T_VALUETYPE) {
3325       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3326       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3327       ValueKlass* vk = ValueKlass::cast(k);
3328       oop res = vk->allocate_instance(CHECK);
3329       array->obj_at_put(i, res);
3330       i++;
3331     }
3332   }
3333   thread->set_vm_result(array());
3334   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3335 }
3336 JRT_END
3337 
3338 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3339 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3340 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3341 {
3342   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3343   assert(oopDesc::is_oop(array), "should be oop");
3344   for (int i = 0; i < array->length(); ++i) {
3345     instanceOop valueOop = (instanceOop)array->obj_at(i);
3346     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3347     if (vk->contains_oops()) {
3348       const address dst_oop_addr = ((address) (void*) valueOop);
3349       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3350       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3351       while (map != end) {
3352         address doop_address = dst_oop_addr + map->offset();
3353         oopDesc::bs()->write_ref_array((HeapWord*) doop_address, map->count());
3354         map++;
3355       }
3356     }
3357   }
3358 }
3359 JRT_END
3360 
3361 // We're returning from an interpreted method: load each field into a
3362 // register following the calling convention
3363 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3364 {
3365   assert(res->klass()->is_value(), "only value types here");
3366   ResourceMark rm;
3367   RegisterMap reg_map(thread);
3368   frame stubFrame = thread->last_frame();
3369   frame callerFrame = stubFrame.sender(&reg_map);
3370   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3371 
3372   ValueKlass* vk = ValueKlass::cast(res->klass());
3373 
3374   const Array<SigEntry>* sig_vk = vk->extended_sig() ;
3375   const Array<VMRegPair>* regs = vk->return_regs();
3376 
3377   if (regs == NULL) {
3378     // The fields of the value klass don't fit in registers, bail out
3379     return;
3380   }
3381 
3382   int j = 1;
3383   for (int i = 0; i < sig_vk->length(); i++) {
3384     BasicType bt = sig_vk->at(i)._bt;
3385     if (bt == T_VALUETYPE) {
3386       continue;
3387     }
3388     if (bt == T_VOID) {
3389       if (sig_vk->at(i-1)._bt == T_LONG ||
3390           sig_vk->at(i-1)._bt == T_DOUBLE) {
3391         j++;
3392       }
3393       continue;
3394     }
3395     int off = sig_vk->at(i)._offset;
3396     VMRegPair pair = regs->at(j);
3397     address loc = reg_map.location(pair.first());
3398     switch(bt) {
3399     case T_BOOLEAN:
3400       *(intptr_t*)loc = *(jboolean*)((address)res + off);
3401       break;
3402     case T_CHAR:
3403       *(intptr_t*)loc = *(jchar*)((address)res + off);
3404       break;
3405     case T_BYTE:
3406       *(intptr_t*)loc = *(jbyte*)((address)res + off);
3407       break;
3408     case T_SHORT:
3409       *(intptr_t*)loc = *(jshort*)((address)res + off);
3410       break;
3411     case T_INT: {
3412       jint v = *(jint*)((address)res + off);
3413       *(intptr_t*)loc = v;
3414       break;
3415     }
3416     case T_LONG:
3417 #ifdef _LP64
3418       *(intptr_t*)loc = *(jlong*)((address)res + off);
3419 #else
3420       Unimplemented();
3421 #endif
3422       break;
3423     case T_OBJECT:
3424     case T_ARRAY: {
3425       oop v = NULL;
3426       if (!UseCompressedOops) {
3427         oop* p = (oop*)((address)res + off);
3428         v = oopDesc::load_heap_oop(p);
3429       } else {
3430         narrowOop* p = (narrowOop*)((address)res + off);
3431         v = oopDesc::load_decode_heap_oop(p);
3432       }
3433       *(oop*)loc = v;
3434       break;
3435     }
3436     case T_FLOAT:
3437       *(jfloat*)loc = *(jfloat*)((address)res + off);
3438       break;
3439     case T_DOUBLE:
3440       *(jdouble*)loc = *(jdouble*)((address)res + off);
3441       break;
3442     default:
3443       ShouldNotReachHere();
3444     }
3445     j++;
3446   }
3447   assert(j == regs->length(), "missed a field?");
3448 
3449 #ifdef ASSERT
3450   VMRegPair pair = regs->at(0);
3451   address loc = reg_map.location(pair.first());
3452   assert(*(oopDesc**)loc == res, "overwritten object");
3453 #endif
3454 
3455   thread->set_vm_result(res);
3456 }
3457 JRT_END
3458 
3459 // We've returned to an interpreted method, the interpreter needs a
3460 // reference to a value type instance. Allocate it and initialize it
3461 // from field's values in registers.
3462 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3463 {
3464   ResourceMark rm;
3465   RegisterMap reg_map(thread);
3466   frame stubFrame = thread->last_frame();
3467   frame callerFrame = stubFrame.sender(&reg_map);
3468 
3469 #ifdef ASSERT
3470   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3471 #endif
3472 
3473   if (!is_set_nth_bit(res, 0)) {
3474     // We're not returning with value type fields in registers (the
3475     // calling convention didn't allow it for this value klass)
3476     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3477     thread->set_vm_result((oopDesc*)res);
3478     assert(verif_vk == NULL, "broken calling convention");
3479     return;
3480   }
3481 
3482   clear_nth_bit(res, 0);
3483   ValueKlass* vk = (ValueKlass*)res;
3484   assert(verif_vk == vk, "broken calling convention");
3485   assert(Metaspace::contains((void*)res), "should be klass");
3486 
3487   // Allocate handles for every oop fields so they are safe in case of
3488   // a safepoint when allocating
3489   GrowableArray<Handle> handles;
3490   vk->save_oop_fields(reg_map, handles);
3491 
3492   // It's unsafe to safepoint until we are here
3493 
3494   Handle new_vt;
3495   JRT_BLOCK;
3496   {
3497     Thread* THREAD = thread;
3498     oop vt = vk->realloc_result(reg_map, handles, callerFrame.is_interpreted_frame(), CHECK);
3499     new_vt = Handle(thread, vt);
3500 
3501 #ifdef ASSERT
3502     javaVFrame* vf = javaVFrame::cast(vframe::new_vframe(&callerFrame, &reg_map, thread));
3503     Method* m = vf->method();
3504     int bci = vf->bci();
3505     Bytecode_invoke inv(m, bci);
3506 
3507     methodHandle callee = inv.static_target(thread);
3508     assert(!thread->has_pending_exception(), "call resolution should work");
3509     ValueKlass* verif_vk2 = callee->returned_value_type(thread);
3510     assert(verif_vk == verif_vk2 || verif_vk2->is__Value(), "Bad value klass");
3511 #endif
3512   }
3513   JRT_BLOCK_END;
3514 
3515   thread->set_vm_result(new_vt());
3516 }
3517 JRT_END
3518