1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/macroAssembler.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "runtime/java.hpp"
  33 #include "runtime/os.hpp"
  34 #include "runtime/stubCodeGenerator.hpp"
  35 #include "vm_version_x86.hpp"
  36 
  37 
  38 int VM_Version::_cpu;
  39 int VM_Version::_model;
  40 int VM_Version::_stepping;
  41 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  42 
  43 // Address of instruction which causes SEGV
  44 address VM_Version::_cpuinfo_segv_addr = 0;
  45 // Address of instruction after the one which causes SEGV
  46 address VM_Version::_cpuinfo_cont_addr = 0;
  47 
  48 static BufferBlob* stub_blob;
  49 static const int stub_size = 1100;
  50 
  51 extern "C" {
  52   typedef void (*get_cpu_info_stub_t)(void*);
  53 }
  54 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  55 
  56 
  57 class VM_Version_StubGenerator: public StubCodeGenerator {
  58  public:
  59 
  60   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  61 
  62   address generate_get_cpu_info() {
  63     // Flags to test CPU type.
  64     const uint32_t HS_EFL_AC = 0x40000;
  65     const uint32_t HS_EFL_ID = 0x200000;
  66     // Values for when we don't have a CPUID instruction.
  67     const int      CPU_FAMILY_SHIFT = 8;
  68     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  69     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  70     bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
  71 
  72     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  73     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, ext_cpuid8, done, wrapup;
  74     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  75 
  76     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  77 #   define __ _masm->
  78 
  79     address start = __ pc();
  80 
  81     //
  82     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  83     //
  84     // LP64: rcx and rdx are first and second argument registers on windows
  85 
  86     __ push(rbp);
  87 #ifdef _LP64
  88     __ mov(rbp, c_rarg0); // cpuid_info address
  89 #else
  90     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  91 #endif
  92     __ push(rbx);
  93     __ push(rsi);
  94     __ pushf();          // preserve rbx, and flags
  95     __ pop(rax);
  96     __ push(rax);
  97     __ mov(rcx, rax);
  98     //
  99     // if we are unable to change the AC flag, we have a 386
 100     //
 101     __ xorl(rax, HS_EFL_AC);
 102     __ push(rax);
 103     __ popf();
 104     __ pushf();
 105     __ pop(rax);
 106     __ cmpptr(rax, rcx);
 107     __ jccb(Assembler::notEqual, detect_486);
 108 
 109     __ movl(rax, CPU_FAMILY_386);
 110     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 111     __ jmp(done);
 112 
 113     //
 114     // If we are unable to change the ID flag, we have a 486 which does
 115     // not support the "cpuid" instruction.
 116     //
 117     __ bind(detect_486);
 118     __ mov(rax, rcx);
 119     __ xorl(rax, HS_EFL_ID);
 120     __ push(rax);
 121     __ popf();
 122     __ pushf();
 123     __ pop(rax);
 124     __ cmpptr(rcx, rax);
 125     __ jccb(Assembler::notEqual, detect_586);
 126 
 127     __ bind(cpu486);
 128     __ movl(rax, CPU_FAMILY_486);
 129     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 130     __ jmp(done);
 131 
 132     //
 133     // At this point, we have a chip which supports the "cpuid" instruction
 134     //
 135     __ bind(detect_586);
 136     __ xorl(rax, rax);
 137     __ cpuid();
 138     __ orl(rax, rax);
 139     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 140                                         // value of at least 1, we give up and
 141                                         // assume a 486
 142     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 143     __ movl(Address(rsi, 0), rax);
 144     __ movl(Address(rsi, 4), rbx);
 145     __ movl(Address(rsi, 8), rcx);
 146     __ movl(Address(rsi,12), rdx);
 147 
 148     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 149     __ jccb(Assembler::belowEqual, std_cpuid4);
 150 
 151     //
 152     // cpuid(0xB) Processor Topology
 153     //
 154     __ movl(rax, 0xb);
 155     __ xorl(rcx, rcx);   // Threads level
 156     __ cpuid();
 157 
 158     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 159     __ movl(Address(rsi, 0), rax);
 160     __ movl(Address(rsi, 4), rbx);
 161     __ movl(Address(rsi, 8), rcx);
 162     __ movl(Address(rsi,12), rdx);
 163 
 164     __ movl(rax, 0xb);
 165     __ movl(rcx, 1);     // Cores level
 166     __ cpuid();
 167     __ push(rax);
 168     __ andl(rax, 0x1f);  // Determine if valid topology level
 169     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 170     __ andl(rax, 0xffff);
 171     __ pop(rax);
 172     __ jccb(Assembler::equal, std_cpuid4);
 173 
 174     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 175     __ movl(Address(rsi, 0), rax);
 176     __ movl(Address(rsi, 4), rbx);
 177     __ movl(Address(rsi, 8), rcx);
 178     __ movl(Address(rsi,12), rdx);
 179 
 180     __ movl(rax, 0xb);
 181     __ movl(rcx, 2);     // Packages level
 182     __ cpuid();
 183     __ push(rax);
 184     __ andl(rax, 0x1f);  // Determine if valid topology level
 185     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 186     __ andl(rax, 0xffff);
 187     __ pop(rax);
 188     __ jccb(Assembler::equal, std_cpuid4);
 189 
 190     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 191     __ movl(Address(rsi, 0), rax);
 192     __ movl(Address(rsi, 4), rbx);
 193     __ movl(Address(rsi, 8), rcx);
 194     __ movl(Address(rsi,12), rdx);
 195 
 196     //
 197     // cpuid(0x4) Deterministic cache params
 198     //
 199     __ bind(std_cpuid4);
 200     __ movl(rax, 4);
 201     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 202     __ jccb(Assembler::greater, std_cpuid1);
 203 
 204     __ xorl(rcx, rcx);   // L1 cache
 205     __ cpuid();
 206     __ push(rax);
 207     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 208     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 209     __ pop(rax);
 210     __ jccb(Assembler::equal, std_cpuid1);
 211 
 212     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 213     __ movl(Address(rsi, 0), rax);
 214     __ movl(Address(rsi, 4), rbx);
 215     __ movl(Address(rsi, 8), rcx);
 216     __ movl(Address(rsi,12), rdx);
 217 
 218     //
 219     // Standard cpuid(0x1)
 220     //
 221     __ bind(std_cpuid1);
 222     __ movl(rax, 1);
 223     __ cpuid();
 224     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 225     __ movl(Address(rsi, 0), rax);
 226     __ movl(Address(rsi, 4), rbx);
 227     __ movl(Address(rsi, 8), rcx);
 228     __ movl(Address(rsi,12), rdx);
 229 
 230     //
 231     // Check if OS has enabled XGETBV instruction to access XCR0
 232     // (OSXSAVE feature flag) and CPU supports AVX
 233     //
 234     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 235     __ cmpl(rcx, 0x18000000);
 236     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 237 
 238     //
 239     // XCR0, XFEATURE_ENABLED_MASK register
 240     //
 241     __ xorl(rcx, rcx);   // zero for XCR0 register
 242     __ xgetbv();
 243     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 244     __ movl(Address(rsi, 0), rax);
 245     __ movl(Address(rsi, 4), rdx);
 246 
 247     //
 248     // cpuid(0x7) Structured Extended Features
 249     //
 250     __ bind(sef_cpuid);
 251     __ movl(rax, 7);
 252     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 253     __ jccb(Assembler::greater, ext_cpuid);
 254 
 255     __ xorl(rcx, rcx);
 256     __ cpuid();
 257     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 258     __ movl(Address(rsi, 0), rax);
 259     __ movl(Address(rsi, 4), rbx);
 260 
 261     //
 262     // Extended cpuid(0x80000000)
 263     //
 264     __ bind(ext_cpuid);
 265     __ movl(rax, 0x80000000);
 266     __ cpuid();
 267     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 268     __ jcc(Assembler::belowEqual, done);
 269     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 270     __ jcc(Assembler::belowEqual, ext_cpuid1);
 271     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 272     __ jccb(Assembler::belowEqual, ext_cpuid5);
 273     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 274     __ jccb(Assembler::belowEqual, ext_cpuid7);
 275     __ cmpl(rax, 0x80000008);     // Is cpuid(0x80000009 and above) supported?
 276     __ jccb(Assembler::belowEqual, ext_cpuid8);
 277     __ cmpl(rax, 0x8000001E);     // Is cpuid(0x8000001E) supported?
 278     __ jccb(Assembler::below, ext_cpuid8);
 279     //
 280     // Extended cpuid(0x8000001E)
 281     //
 282     __ movl(rax, 0x8000001E);
 283     __ cpuid();
 284     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1E_offset())));
 285     __ movl(Address(rsi, 0), rax);
 286     __ movl(Address(rsi, 4), rbx);
 287     __ movl(Address(rsi, 8), rcx);
 288     __ movl(Address(rsi,12), rdx);
 289 
 290     //
 291     // Extended cpuid(0x80000008)
 292     //
 293     __ bind(ext_cpuid8);
 294     __ movl(rax, 0x80000008);
 295     __ cpuid();
 296     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 297     __ movl(Address(rsi, 0), rax);
 298     __ movl(Address(rsi, 4), rbx);
 299     __ movl(Address(rsi, 8), rcx);
 300     __ movl(Address(rsi,12), rdx);
 301 
 302     //
 303     // Extended cpuid(0x80000007)
 304     //
 305     __ bind(ext_cpuid7);
 306     __ movl(rax, 0x80000007);
 307     __ cpuid();
 308     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 309     __ movl(Address(rsi, 0), rax);
 310     __ movl(Address(rsi, 4), rbx);
 311     __ movl(Address(rsi, 8), rcx);
 312     __ movl(Address(rsi,12), rdx);
 313 
 314     //
 315     // Extended cpuid(0x80000005)
 316     //
 317     __ bind(ext_cpuid5);
 318     __ movl(rax, 0x80000005);
 319     __ cpuid();
 320     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 321     __ movl(Address(rsi, 0), rax);
 322     __ movl(Address(rsi, 4), rbx);
 323     __ movl(Address(rsi, 8), rcx);
 324     __ movl(Address(rsi,12), rdx);
 325 
 326     //
 327     // Extended cpuid(0x80000001)
 328     //
 329     __ bind(ext_cpuid1);
 330     __ movl(rax, 0x80000001);
 331     __ cpuid();
 332     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 333     __ movl(Address(rsi, 0), rax);
 334     __ movl(Address(rsi, 4), rbx);
 335     __ movl(Address(rsi, 8), rcx);
 336     __ movl(Address(rsi,12), rdx);
 337 
 338     //
 339     // Check if OS has enabled XGETBV instruction to access XCR0
 340     // (OSXSAVE feature flag) and CPU supports AVX
 341     //
 342     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 343     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 344     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 345     __ cmpl(rcx, 0x18000000);
 346     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 347 
 348     __ movl(rax, 0x6);
 349     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 350     __ cmpl(rax, 0x6);
 351     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 352 
 353     // we need to bridge farther than imm8, so we use this island as a thunk
 354     __ bind(done);
 355     __ jmp(wrapup);
 356 
 357     __ bind(start_simd_check);
 358     //
 359     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 360     // registers are not restored after a signal processing.
 361     // Generate SEGV here (reference through NULL)
 362     // and check upper YMM/ZMM bits after it.
 363     //
 364     intx saved_useavx = UseAVX;
 365     intx saved_usesse = UseSSE;
 366     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 367     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 368     __ movl(rax, 0x10000);
 369     __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 370     __ cmpl(rax, 0x10000);
 371     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 372     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 373     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 374     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 375     __ movl(rax, 0xE0);
 376     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 377     __ cmpl(rax, 0xE0);
 378     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 379 
 380     // If UseAVX is unitialized or is set by the user to include EVEX
 381     if (use_evex) {
 382       // EVEX setup: run in lowest evex mode
 383       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 384       UseAVX = 3;
 385       UseSSE = 2;
 386 #ifdef _WINDOWS
 387       // xmm5-xmm15 are not preserved by caller on windows
 388       // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
 389       __ subptr(rsp, 64);
 390       __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
 391 #ifdef _LP64
 392       __ subptr(rsp, 64);
 393       __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
 394       __ subptr(rsp, 64);
 395       __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
 396 #endif // _LP64
 397 #endif // _WINDOWS
 398 
 399       // load value into all 64 bytes of zmm7 register
 400       __ movl(rcx, VM_Version::ymm_test_value());
 401       __ movdl(xmm0, rcx);
 402       __ movl(rcx, 0xffff);
 403       __ kmovwl(k1, rcx);
 404       __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 405       __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 406 #ifdef _LP64
 407       __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 408       __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 409 #endif
 410       VM_Version::clean_cpuFeatures();
 411       __ jmp(save_restore_except);
 412     }
 413 
 414     __ bind(legacy_setup);
 415     // AVX setup
 416     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 417     UseAVX = 1;
 418     UseSSE = 2;
 419 #ifdef _WINDOWS
 420     __ subptr(rsp, 32);
 421     __ vmovdqu(Address(rsp, 0), xmm7);
 422 #ifdef _LP64
 423     __ subptr(rsp, 32);
 424     __ vmovdqu(Address(rsp, 0), xmm8);
 425     __ subptr(rsp, 32);
 426     __ vmovdqu(Address(rsp, 0), xmm15);
 427 #endif // _LP64
 428 #endif // _WINDOWS
 429 
 430     // load value into all 32 bytes of ymm7 register
 431     __ movl(rcx, VM_Version::ymm_test_value());
 432 
 433     __ movdl(xmm0, rcx);
 434     __ pshufd(xmm0, xmm0, 0x00);
 435     __ vinsertf128_high(xmm0, xmm0);
 436     __ vmovdqu(xmm7, xmm0);
 437 #ifdef _LP64
 438     __ vmovdqu(xmm8, xmm0);
 439     __ vmovdqu(xmm15, xmm0);
 440 #endif
 441     VM_Version::clean_cpuFeatures();
 442 
 443     __ bind(save_restore_except);
 444     __ xorl(rsi, rsi);
 445     VM_Version::set_cpuinfo_segv_addr(__ pc());
 446     // Generate SEGV
 447     __ movl(rax, Address(rsi, 0));
 448 
 449     VM_Version::set_cpuinfo_cont_addr(__ pc());
 450     // Returns here after signal. Save xmm0 to check it later.
 451 
 452     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 453     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 454     __ movl(rax, 0x10000);
 455     __ andl(rax, Address(rsi, 4));
 456     __ cmpl(rax, 0x10000);
 457     __ jcc(Assembler::notEqual, legacy_save_restore);
 458     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 459     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 460     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 461     __ movl(rax, 0xE0);
 462     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 463     __ cmpl(rax, 0xE0);
 464     __ jcc(Assembler::notEqual, legacy_save_restore);
 465 
 466     // If UseAVX is unitialized or is set by the user to include EVEX
 467     if (use_evex) {
 468       // EVEX check: run in lowest evex mode
 469       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 470       UseAVX = 3;
 471       UseSSE = 2;
 472       __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 473       __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 474       __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 475 #ifdef _LP64
 476       __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 477       __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 478 #endif
 479 
 480 #ifdef _WINDOWS
 481 #ifdef _LP64
 482       __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
 483       __ addptr(rsp, 64);
 484       __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
 485       __ addptr(rsp, 64);
 486 #endif // _LP64
 487       __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
 488       __ addptr(rsp, 64);
 489 #endif // _WINDOWS
 490       generate_vzeroupper(wrapup);
 491       VM_Version::clean_cpuFeatures();
 492       UseAVX = saved_useavx;
 493       UseSSE = saved_usesse;
 494       __ jmp(wrapup);
 495    }
 496 
 497     __ bind(legacy_save_restore);
 498     // AVX check
 499     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 500     UseAVX = 1;
 501     UseSSE = 2;
 502     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 503     __ vmovdqu(Address(rsi, 0), xmm0);
 504     __ vmovdqu(Address(rsi, 32), xmm7);
 505 #ifdef _LP64
 506     __ vmovdqu(Address(rsi, 64), xmm8);
 507     __ vmovdqu(Address(rsi, 96), xmm15);
 508 #endif
 509 
 510 #ifdef _WINDOWS
 511 #ifdef _LP64
 512     __ vmovdqu(xmm15, Address(rsp, 0));
 513     __ addptr(rsp, 32);
 514     __ vmovdqu(xmm8, Address(rsp, 0));
 515     __ addptr(rsp, 32);
 516 #endif // _LP64
 517     __ vmovdqu(xmm7, Address(rsp, 0));
 518     __ addptr(rsp, 32);
 519 #endif // _WINDOWS
 520     generate_vzeroupper(wrapup);
 521     VM_Version::clean_cpuFeatures();
 522     UseAVX = saved_useavx;
 523     UseSSE = saved_usesse;
 524 
 525     __ bind(wrapup);
 526     __ popf();
 527     __ pop(rsi);
 528     __ pop(rbx);
 529     __ pop(rbp);
 530     __ ret(0);
 531 
 532 #   undef __
 533 
 534     return start;
 535   };
 536   void generate_vzeroupper(Label& L_wrapup) {
 537 #   define __ _masm->
 538     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 539     __ cmpl(Address(rsi, 4), 0x756e6547);  // 'uneG'
 540     __ jcc(Assembler::notEqual, L_wrapup);
 541     __ movl(rcx, 0x0FFF0FF0);
 542     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 543     __ andl(rcx, Address(rsi, 0));
 544     __ cmpl(rcx, 0x00050670);              // If it is Xeon Phi 3200/5200/7200
 545     __ jcc(Assembler::equal, L_wrapup);
 546     __ cmpl(rcx, 0x00080650);              // If it is Future Xeon Phi
 547     __ jcc(Assembler::equal, L_wrapup);
 548     __ vzeroupper();
 549 #   undef __
 550   }
 551 };
 552 
 553 void VM_Version::get_processor_features() {
 554 
 555   _cpu = 4; // 486 by default
 556   _model = 0;
 557   _stepping = 0;
 558   _features = 0;
 559   _logical_processors_per_package = 1;
 560   // i486 internal cache is both I&D and has a 16-byte line size
 561   _L1_data_cache_line_size = 16;
 562 
 563   // Get raw processor info
 564 
 565   get_cpu_info_stub(&_cpuid_info);
 566 
 567   assert_is_initialized();
 568   _cpu = extended_cpu_family();
 569   _model = extended_cpu_model();
 570   _stepping = cpu_stepping();
 571 
 572   if (cpu_family() > 4) { // it supports CPUID
 573     _features = feature_flags();
 574     // Logical processors are only available on P4s and above,
 575     // and only if hyperthreading is available.
 576     _logical_processors_per_package = logical_processor_count();
 577     _L1_data_cache_line_size = L1_line_size();
 578   }
 579 
 580   _supports_cx8 = supports_cmpxchg8();
 581   // xchg and xadd instructions
 582   _supports_atomic_getset4 = true;
 583   _supports_atomic_getadd4 = true;
 584   LP64_ONLY(_supports_atomic_getset8 = true);
 585   LP64_ONLY(_supports_atomic_getadd8 = true);
 586 
 587 #ifdef _LP64
 588   // OS should support SSE for x64 and hardware should support at least SSE2.
 589   if (!VM_Version::supports_sse2()) {
 590     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 591   }
 592   // in 64 bit the use of SSE2 is the minimum
 593   if (UseSSE < 2) UseSSE = 2;
 594 #endif
 595 
 596 #ifdef AMD64
 597   // flush_icache_stub have to be generated first.
 598   // That is why Icache line size is hard coded in ICache class,
 599   // see icache_x86.hpp. It is also the reason why we can't use
 600   // clflush instruction in 32-bit VM since it could be running
 601   // on CPU which does not support it.
 602   //
 603   // The only thing we can do is to verify that flushed
 604   // ICache::line_size has correct value.
 605   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 606   // clflush_size is size in quadwords (8 bytes).
 607   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 608 #endif
 609 
 610   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 611   if (!os::supports_sse())
 612     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 613 
 614   if (UseSSE < 4) {
 615     _features &= ~CPU_SSE4_1;
 616     _features &= ~CPU_SSE4_2;
 617   }
 618 
 619   if (UseSSE < 3) {
 620     _features &= ~CPU_SSE3;
 621     _features &= ~CPU_SSSE3;
 622     _features &= ~CPU_SSE4A;
 623   }
 624 
 625   if (UseSSE < 2)
 626     _features &= ~CPU_SSE2;
 627 
 628   if (UseSSE < 1)
 629     _features &= ~CPU_SSE;
 630 
 631   // first try initial setting and detect what we can support
 632   int use_avx_limit = 0;
 633   if (UseAVX > 0) {
 634     if (UseAVX > 2 && supports_evex()) {
 635       use_avx_limit = 3;
 636     } else if (UseAVX > 1 && supports_avx2()) {
 637       use_avx_limit = 2;
 638     } else if (UseAVX > 0 && supports_avx()) {
 639       use_avx_limit = 1;
 640     } else {
 641       use_avx_limit = 0;
 642     }
 643   }
 644   if (FLAG_IS_DEFAULT(UseAVX)) {
 645     FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
 646   } else if (UseAVX > use_avx_limit) {
 647     warning("UseAVX=%d is not supported on this CPU, setting it to UseAVX=%d", (int) UseAVX, use_avx_limit);
 648     FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
 649   } else if (UseAVX < 0) {
 650     warning("UseAVX=%d is not valid, setting it to UseAVX=0", (int) UseAVX);
 651     FLAG_SET_DEFAULT(UseAVX, 0);
 652   }
 653 
 654   if (UseAVX < 3) {
 655     _features &= ~CPU_AVX512F;
 656     _features &= ~CPU_AVX512DQ;
 657     _features &= ~CPU_AVX512CD;
 658     _features &= ~CPU_AVX512BW;
 659     _features &= ~CPU_AVX512VL;
 660   }
 661 
 662   if (UseAVX < 2)
 663     _features &= ~CPU_AVX2;
 664 
 665   if (UseAVX < 1) {
 666     _features &= ~CPU_AVX;
 667     _features &= ~CPU_VZEROUPPER;
 668   }
 669 
 670   if (logical_processors_per_package() == 1) {
 671     // HT processor could be installed on a system which doesn't support HT.
 672     _features &= ~CPU_HT;
 673   }
 674 
 675   if( is_intel() ) { // Intel cpus specific settings
 676     if (is_knights_family()) {
 677       _features &= ~CPU_VZEROUPPER;
 678     }
 679   }
 680 
 681   char buf[256];
 682   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 683                cores_per_cpu(), threads_per_core(),
 684                cpu_family(), _model, _stepping,
 685                (supports_cmov() ? ", cmov" : ""),
 686                (supports_cmpxchg8() ? ", cx8" : ""),
 687                (supports_fxsr() ? ", fxsr" : ""),
 688                (supports_mmx()  ? ", mmx"  : ""),
 689                (supports_sse()  ? ", sse"  : ""),
 690                (supports_sse2() ? ", sse2" : ""),
 691                (supports_sse3() ? ", sse3" : ""),
 692                (supports_ssse3()? ", ssse3": ""),
 693                (supports_sse4_1() ? ", sse4.1" : ""),
 694                (supports_sse4_2() ? ", sse4.2" : ""),
 695                (supports_popcnt() ? ", popcnt" : ""),
 696                (supports_avx()    ? ", avx" : ""),
 697                (supports_avx2()   ? ", avx2" : ""),
 698                (supports_aes()    ? ", aes" : ""),
 699                (supports_clmul()  ? ", clmul" : ""),
 700                (supports_erms()   ? ", erms" : ""),
 701                (supports_rtm()    ? ", rtm" : ""),
 702                (supports_mmx_ext() ? ", mmxext" : ""),
 703                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 704                (supports_lzcnt()   ? ", lzcnt": ""),
 705                (supports_sse4a()   ? ", sse4a": ""),
 706                (supports_ht() ? ", ht": ""),
 707                (supports_tsc() ? ", tsc": ""),
 708                (supports_tscinv_bit() ? ", tscinvbit": ""),
 709                (supports_tscinv() ? ", tscinv": ""),
 710                (supports_bmi1() ? ", bmi1" : ""),
 711                (supports_bmi2() ? ", bmi2" : ""),
 712                (supports_adx() ? ", adx" : ""),
 713                (supports_evex() ? ", evex" : ""),
 714                (supports_sha() ? ", sha" : ""),
 715                (supports_fma() ? ", fma" : ""));
 716   _features_string = os::strdup(buf);
 717 
 718   // UseSSE is set to the smaller of what hardware supports and what
 719   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 720   // older Pentiums which do not support it.
 721   int use_sse_limit = 0;
 722   if (UseSSE > 0) {
 723     if (UseSSE > 3 && supports_sse4_1()) {
 724       use_sse_limit = 4;
 725     } else if (UseSSE > 2 && supports_sse3()) {
 726       use_sse_limit = 3;
 727     } else if (UseSSE > 1 && supports_sse2()) {
 728       use_sse_limit = 2;
 729     } else if (UseSSE > 0 && supports_sse()) {
 730       use_sse_limit = 1;
 731     } else {
 732       use_sse_limit = 0;
 733     }
 734   }
 735   if (FLAG_IS_DEFAULT(UseSSE)) {
 736     FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
 737   } else if (UseSSE > use_sse_limit) {
 738     warning("UseSSE=%d is not supported on this CPU, setting it to UseSSE=%d", (int) UseSSE, use_sse_limit);
 739     FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
 740   } else if (UseSSE < 0) {
 741     warning("UseSSE=%d is not valid, setting it to UseSSE=0", (int) UseSSE);
 742     FLAG_SET_DEFAULT(UseSSE, 0);
 743   }
 744 
 745   // Use AES instructions if available.
 746   if (supports_aes()) {
 747     if (FLAG_IS_DEFAULT(UseAES)) {
 748       FLAG_SET_DEFAULT(UseAES, true);
 749     }
 750     if (!UseAES) {
 751       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 752         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 753       }
 754       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 755     } else {
 756       if (UseSSE > 2) {
 757         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 758           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 759         }
 760       } else {
 761         // The AES intrinsic stubs require AES instruction support (of course)
 762         // but also require sse3 mode or higher for instructions it use.
 763         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 764           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 765         }
 766         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 767       }
 768 
 769       // --AES-CTR begins--
 770       if (!UseAESIntrinsics) {
 771         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 772           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 773           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 774         }
 775       } else {
 776         if(supports_sse4_1()) {
 777           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 778             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 779           }
 780         } else {
 781            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 782            // but also require sse4.1 mode or higher for instructions it use.
 783           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 784              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 785            }
 786            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 787         }
 788       }
 789       // --AES-CTR ends--
 790     }
 791   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 792     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 793       warning("AES instructions are not available on this CPU");
 794       FLAG_SET_DEFAULT(UseAES, false);
 795     }
 796     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 797       warning("AES intrinsics are not available on this CPU");
 798       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 799     }
 800     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 801       warning("AES-CTR intrinsics are not available on this CPU");
 802       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 803     }
 804   }
 805 
 806   // Use CLMUL instructions if available.
 807   if (supports_clmul()) {
 808     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 809       UseCLMUL = true;
 810     }
 811   } else if (UseCLMUL) {
 812     if (!FLAG_IS_DEFAULT(UseCLMUL))
 813       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 814     FLAG_SET_DEFAULT(UseCLMUL, false);
 815   }
 816 
 817   if (UseCLMUL && (UseSSE > 2)) {
 818     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 819       UseCRC32Intrinsics = true;
 820     }
 821   } else if (UseCRC32Intrinsics) {
 822     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 823       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
 824     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 825   }
 826 
 827   if (supports_sse4_2() && supports_clmul()) {
 828     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 829       UseCRC32CIntrinsics = true;
 830     }
 831   } else if (UseCRC32CIntrinsics) {
 832     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 833       warning("CRC32C intrinsics are not available on this CPU");
 834     }
 835     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 836   }
 837 
 838   // GHASH/GCM intrinsics
 839   if (UseCLMUL && (UseSSE > 2)) {
 840     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 841       UseGHASHIntrinsics = true;
 842     }
 843   } else if (UseGHASHIntrinsics) {
 844     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 845       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 846     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 847   }
 848 
 849   if (supports_fma() && UseSSE >= 2) { // Check UseSSE since FMA code uses SSE instructions
 850     if (FLAG_IS_DEFAULT(UseFMA)) {
 851       UseFMA = true;
 852     }
 853   } else if (UseFMA) {
 854     warning("FMA instructions are not available on this CPU");
 855     FLAG_SET_DEFAULT(UseFMA, false);
 856   }
 857 
 858   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 859     if (FLAG_IS_DEFAULT(UseSHA)) {
 860       UseSHA = true;
 861     }
 862   } else if (UseSHA) {
 863     warning("SHA instructions are not available on this CPU");
 864     FLAG_SET_DEFAULT(UseSHA, false);
 865   }
 866 
 867   if (supports_sha() && UseSHA) {
 868     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 869       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 870     }
 871   } else if (UseSHA1Intrinsics) {
 872     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 873     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 874   }
 875 
 876   if (UseSHA) {
 877     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 878       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 879     }
 880   } else if (UseSHA256Intrinsics) {
 881     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 882     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 883   }
 884 
 885   if (UseSHA LP64_ONLY(&& supports_avx2() && supports_bmi2())) {
 886     if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
 887       FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
 888     }
 889   } else if (UseSHA512Intrinsics) {
 890     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 891     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 892   }
 893 
 894   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 895     FLAG_SET_DEFAULT(UseSHA, false);
 896   }
 897 
 898   if (UseAdler32Intrinsics) {
 899     warning("Adler32Intrinsics not available on this CPU.");
 900     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 901   }
 902 
 903   if (!supports_rtm() && UseRTMLocking) {
 904     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 905     // setting during arguments processing. See use_biased_locking().
 906     // VM_Version_init() is executed after UseBiasedLocking is used
 907     // in Thread::allocate().
 908     vm_exit_during_initialization("RTM instructions are not available on this CPU");
 909   }
 910 
 911 #if INCLUDE_RTM_OPT
 912   if (UseRTMLocking) {
 913     if (is_client_compilation_mode_vm()) {
 914       // Only C2 does RTM locking optimization.
 915       // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 916       // setting during arguments processing. See use_biased_locking().
 917       vm_exit_during_initialization("RTM locking optimization is not supported in emulated client VM");
 918     }
 919     if (is_intel_family_core()) {
 920       if ((_model == CPU_MODEL_HASWELL_E3) ||
 921           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
 922           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
 923         // currently a collision between SKL and HSW_E3
 924         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
 925           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this "
 926                                         "platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
 927         } else {
 928           warning("UseRTMLocking is only available as experimental option on this platform.");
 929         }
 930       }
 931     }
 932     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
 933       // RTM locking should be used only for applications with
 934       // high lock contention. For now we do not use it by default.
 935       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
 936     }
 937   } else { // !UseRTMLocking
 938     if (UseRTMForStackLocks) {
 939       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
 940         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
 941       }
 942       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
 943     }
 944     if (UseRTMDeopt) {
 945       FLAG_SET_DEFAULT(UseRTMDeopt, false);
 946     }
 947     if (PrintPreciseRTMLockingStatistics) {
 948       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
 949     }
 950   }
 951 #else
 952   if (UseRTMLocking) {
 953     // Only C2 does RTM locking optimization.
 954     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 955     // setting during arguments processing. See use_biased_locking().
 956     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 957   }
 958 #endif
 959 
 960 #ifdef COMPILER2
 961   if (UseFPUForSpilling) {
 962     if (UseSSE < 2) {
 963       // Only supported with SSE2+
 964       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 965     }
 966   }
 967 #endif
 968 #if COMPILER2_OR_JVMCI
 969   if (MaxVectorSize > 0) {
 970     if (!is_power_of_2(MaxVectorSize)) {
 971       warning("MaxVectorSize must be a power of 2");
 972       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 973     }
 974     if (UseSSE < 2) {
 975       // Vectors (in XMM) are only supported with SSE2+
 976       if (MaxVectorSize > 0) {
 977         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 978           warning("MaxVectorSize must be 0");
 979         FLAG_SET_DEFAULT(MaxVectorSize, 0);
 980       }
 981     }
 982     else if (UseAVX == 0 || !os_supports_avx_vectors()) {
 983       // 32 bytes vectors (in YMM) are only supported with AVX+
 984       if (MaxVectorSize > 16) {
 985         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 986           warning("MaxVectorSize must be <= 16");
 987         FLAG_SET_DEFAULT(MaxVectorSize, 16);
 988       }
 989     }
 990     else if (UseAVX == 1 || UseAVX == 2) {
 991       // 64 bytes vectors (in ZMM) are only supported with AVX 3
 992       if (MaxVectorSize > 32) {
 993         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 994           warning("MaxVectorSize must be <= 32");
 995         FLAG_SET_DEFAULT(MaxVectorSize, 32);
 996       }
 997     }
 998     else if (UseAVX > 2 ) {
 999       if (MaxVectorSize > 64) {
1000         if (!FLAG_IS_DEFAULT(MaxVectorSize))
1001           warning("MaxVectorSize must be <= 64");
1002         FLAG_SET_DEFAULT(MaxVectorSize, 64);
1003       }
1004     }
1005 #if defined(COMPILER2) && defined(ASSERT)
1006     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
1007       tty->print_cr("State of YMM registers after signal handle:");
1008       int nreg = 2 LP64_ONLY(+2);
1009       const char* ymm_name[4] = {"0", "7", "8", "15"};
1010       for (int i = 0; i < nreg; i++) {
1011         tty->print("YMM%s:", ymm_name[i]);
1012         for (int j = 7; j >=0; j--) {
1013           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
1014         }
1015         tty->cr();
1016       }
1017     }
1018 #endif // COMPILER2 && ASSERT
1019   }
1020 #endif // COMPILER2_OR_JVMCI
1021 
1022 #ifdef COMPILER2
1023 #ifdef _LP64
1024   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1025     UseMultiplyToLenIntrinsic = true;
1026   }
1027   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1028     UseSquareToLenIntrinsic = true;
1029   }
1030   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1031     UseMulAddIntrinsic = true;
1032   }
1033   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1034     UseMontgomeryMultiplyIntrinsic = true;
1035   }
1036   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1037     UseMontgomerySquareIntrinsic = true;
1038   }
1039 #else
1040   if (UseMultiplyToLenIntrinsic) {
1041     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1042       warning("multiplyToLen intrinsic is not available in 32-bit VM");
1043     }
1044     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
1045   }
1046   if (UseMontgomeryMultiplyIntrinsic) {
1047     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1048       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
1049     }
1050     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
1051   }
1052   if (UseMontgomerySquareIntrinsic) {
1053     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1054       warning("montgomerySquare intrinsic is not available in 32-bit VM");
1055     }
1056     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
1057   }
1058   if (UseSquareToLenIntrinsic) {
1059     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1060       warning("squareToLen intrinsic is not available in 32-bit VM");
1061     }
1062     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
1063   }
1064   if (UseMulAddIntrinsic) {
1065     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1066       warning("mulAdd intrinsic is not available in 32-bit VM");
1067     }
1068     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
1069   }
1070 #endif
1071 #endif // COMPILER2
1072 
1073   // On new cpus instructions which update whole XMM register should be used
1074   // to prevent partial register stall due to dependencies on high half.
1075   //
1076   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
1077   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
1078   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
1079   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
1080 
1081   if( is_amd() ) { // AMD cpus specific settings
1082     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
1083       // Use it on new AMD cpus starting from Opteron.
1084       UseAddressNop = true;
1085     }
1086     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
1087       // Use it on new AMD cpus starting from Opteron.
1088       UseNewLongLShift = true;
1089     }
1090     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1091       if (supports_sse4a()) {
1092         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
1093       } else {
1094         UseXmmLoadAndClearUpper = false;
1095       }
1096     }
1097     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1098       if( supports_sse4a() ) {
1099         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
1100       } else {
1101         UseXmmRegToRegMoveAll = false;
1102       }
1103     }
1104     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
1105       if( supports_sse4a() ) {
1106         UseXmmI2F = true;
1107       } else {
1108         UseXmmI2F = false;
1109       }
1110     }
1111     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
1112       if( supports_sse4a() ) {
1113         UseXmmI2D = true;
1114       } else {
1115         UseXmmI2D = false;
1116       }
1117     }
1118     if (supports_sse4_2()) {
1119       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1120         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1121       }
1122     } else {
1123       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1124         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1125       }
1126       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1127     }
1128 
1129     // some defaults for AMD family 15h
1130     if ( cpu_family() == 0x15 ) {
1131       // On family 15h processors default is no sw prefetch
1132       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1133         FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
1134       }
1135       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
1136       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1137         FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1138       }
1139       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
1140       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1141         FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
1142       }
1143       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1144         FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
1145       }
1146     }
1147 
1148 #ifdef COMPILER2
1149     if (cpu_family() < 0x17 && MaxVectorSize > 16) {
1150       // Limit vectors size to 16 bytes on AMD cpus < 17h.
1151       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1152     }
1153 #endif // COMPILER2
1154 
1155     // Some defaults for AMD family 17h
1156     if ( cpu_family() == 0x17 ) {
1157       // On family 17h processors use XMM and UnalignedLoadStores for Array Copy
1158       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1159         FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
1160       }
1161       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1162         FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
1163       }
1164 #ifdef COMPILER2
1165       if (supports_sse4_2() && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1166         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1167       }
1168 #endif
1169     }
1170   }
1171 
1172   if( is_intel() ) { // Intel cpus specific settings
1173     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
1174       UseStoreImmI16 = false; // don't use it on Intel cpus
1175     }
1176     if( cpu_family() == 6 || cpu_family() == 15 ) {
1177       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
1178         // Use it on all Intel cpus starting from PentiumPro
1179         UseAddressNop = true;
1180       }
1181     }
1182     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1183       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1184     }
1185     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1186       if( supports_sse3() ) {
1187         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1188       } else {
1189         UseXmmRegToRegMoveAll = false;
1190       }
1191     }
1192     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
1193 #ifdef COMPILER2
1194       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
1195         // For new Intel cpus do the next optimization:
1196         // don't align the beginning of a loop if there are enough instructions
1197         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1198         // in current fetch line (OptoLoopAlignment) or the padding
1199         // is big (> MaxLoopPad).
1200         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1201         // generated NOP instructions. 11 is the largest size of one
1202         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1203         MaxLoopPad = 11;
1204       }
1205 #endif // COMPILER2
1206       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1207         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1208       }
1209       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
1210         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1211           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1212         }
1213       }
1214       if (supports_sse4_2()) {
1215         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1216           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1217         }
1218       } else {
1219         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1220           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1221         }
1222         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1223       }
1224     }
1225     if (is_atom_family() || is_knights_family()) {
1226 #ifdef COMPILER2
1227       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1228         OptoScheduling = true;
1229       }
1230 #endif
1231       if (supports_sse4_2()) { // Silvermont
1232         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1233           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1234         }
1235       }
1236       if (FLAG_IS_DEFAULT(UseIncDec)) {
1237         FLAG_SET_DEFAULT(UseIncDec, false);
1238       }
1239     }
1240     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1241       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1242     }
1243   }
1244 
1245 #ifdef _LP64
1246   if (UseSSE42Intrinsics) {
1247     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1248       UseVectorizedMismatchIntrinsic = true;
1249     }
1250   } else if (UseVectorizedMismatchIntrinsic) {
1251     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1252       warning("vectorizedMismatch intrinsics are not available on this CPU");
1253     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1254   }
1255 #else
1256   if (UseVectorizedMismatchIntrinsic) {
1257     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1258       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1259     }
1260     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1261   }
1262 #endif // _LP64
1263 
1264   // Use count leading zeros count instruction if available.
1265   if (supports_lzcnt()) {
1266     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1267       UseCountLeadingZerosInstruction = true;
1268     }
1269    } else if (UseCountLeadingZerosInstruction) {
1270     warning("lzcnt instruction is not available on this CPU");
1271     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1272   }
1273 
1274   // Use count trailing zeros instruction if available
1275   if (supports_bmi1()) {
1276     // tzcnt does not require VEX prefix
1277     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1278       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1279         // Don't use tzcnt if BMI1 is switched off on command line.
1280         UseCountTrailingZerosInstruction = false;
1281       } else {
1282         UseCountTrailingZerosInstruction = true;
1283       }
1284     }
1285   } else if (UseCountTrailingZerosInstruction) {
1286     warning("tzcnt instruction is not available on this CPU");
1287     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1288   }
1289 
1290   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1291   // VEX prefix is generated only when AVX > 0.
1292   if (supports_bmi1() && supports_avx()) {
1293     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1294       UseBMI1Instructions = true;
1295     }
1296   } else if (UseBMI1Instructions) {
1297     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1298     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1299   }
1300 
1301   if (supports_bmi2() && supports_avx()) {
1302     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1303       UseBMI2Instructions = true;
1304     }
1305   } else if (UseBMI2Instructions) {
1306     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1307     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1308   }
1309 
1310   // Use population count instruction if available.
1311   if (supports_popcnt()) {
1312     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1313       UsePopCountInstruction = true;
1314     }
1315   } else if (UsePopCountInstruction) {
1316     warning("POPCNT instruction is not available on this CPU");
1317     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1318   }
1319 
1320   // Use fast-string operations if available.
1321   if (supports_erms()) {
1322     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1323       UseFastStosb = true;
1324     }
1325   } else if (UseFastStosb) {
1326     warning("fast-string operations are not available on this CPU");
1327     FLAG_SET_DEFAULT(UseFastStosb, false);
1328   }
1329 
1330 #ifdef COMPILER2
1331   if (FLAG_IS_DEFAULT(AlignVector)) {
1332     // Modern processors allow misaligned memory operations for vectors.
1333     AlignVector = !UseUnalignedLoadStores;
1334   }
1335 #endif // COMPILER2
1336 
1337   if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1338     if (AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch()) {
1339       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
1340     } else if (!supports_sse() && supports_3dnow_prefetch()) {
1341       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1342     }
1343   }
1344 
1345   // Allocation prefetch settings
1346   intx cache_line_size = prefetch_data_size();
1347   if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) &&
1348       (cache_line_size > AllocatePrefetchStepSize)) {
1349     FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
1350   }
1351 
1352   if ((AllocatePrefetchDistance == 0) && (AllocatePrefetchStyle != 0)) {
1353     assert(!FLAG_IS_DEFAULT(AllocatePrefetchDistance), "default value should not be 0");
1354     if (!FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1355       warning("AllocatePrefetchDistance is set to 0 which disable prefetching. Ignoring AllocatePrefetchStyle flag.");
1356     }
1357     FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
1358   }
1359 
1360   if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
1361     bool use_watermark_prefetch = (AllocatePrefetchStyle == 2);
1362     FLAG_SET_DEFAULT(AllocatePrefetchDistance, allocate_prefetch_distance(use_watermark_prefetch));
1363   }
1364 
1365   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1366     if (FLAG_IS_DEFAULT(AllocatePrefetchLines) &&
1367         supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1368       FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1369     }
1370 #ifdef COMPILER2
1371     if (FLAG_IS_DEFAULT(UseFPUForSpilling) && supports_sse4_2()) {
1372       FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1373     }
1374 #endif
1375   }
1376 
1377 #ifdef _LP64
1378   // Prefetch settings
1379 
1380   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
1381   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
1382   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
1383   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
1384 
1385   // gc copy/scan is disabled if prefetchw isn't supported, because
1386   // Prefetch::write emits an inlined prefetchw on Linux.
1387   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
1388   // The used prefetcht0 instruction works for both amd64 and em64t.
1389 
1390   if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) {
1391     FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 576);
1392   }
1393   if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) {
1394     FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 576);
1395   }
1396   if (FLAG_IS_DEFAULT(PrefetchFieldsAhead)) {
1397     FLAG_SET_DEFAULT(PrefetchFieldsAhead, 1);
1398   }
1399 #endif
1400 
1401   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1402      (cache_line_size > ContendedPaddingWidth))
1403      ContendedPaddingWidth = cache_line_size;
1404 
1405   // This machine allows unaligned memory accesses
1406   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1407     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1408   }
1409 
1410 #ifndef PRODUCT
1411   if (log_is_enabled(Info, os, cpu)) {
1412     LogStream ls(Log(os, cpu)::info());
1413     outputStream* log = &ls;
1414     log->print_cr("Logical CPUs per core: %u",
1415                   logical_processors_per_package());
1416     log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1417     log->print("UseSSE=%d", (int) UseSSE);
1418     if (UseAVX > 0) {
1419       log->print("  UseAVX=%d", (int) UseAVX);
1420     }
1421     if (UseAES) {
1422       log->print("  UseAES=1");
1423     }
1424 #ifdef COMPILER2
1425     if (MaxVectorSize > 0) {
1426       log->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1427     }
1428 #endif
1429     log->cr();
1430     log->print("Allocation");
1431     if (AllocatePrefetchStyle <= 0 || (UseSSE == 0 && !supports_3dnow_prefetch())) {
1432       log->print_cr(": no prefetching");
1433     } else {
1434       log->print(" prefetching: ");
1435       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1436         log->print("PREFETCHW");
1437       } else if (UseSSE >= 1) {
1438         if (AllocatePrefetchInstr == 0) {
1439           log->print("PREFETCHNTA");
1440         } else if (AllocatePrefetchInstr == 1) {
1441           log->print("PREFETCHT0");
1442         } else if (AllocatePrefetchInstr == 2) {
1443           log->print("PREFETCHT2");
1444         } else if (AllocatePrefetchInstr == 3) {
1445           log->print("PREFETCHW");
1446         }
1447       }
1448       if (AllocatePrefetchLines > 1) {
1449         log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1450       } else {
1451         log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1452       }
1453     }
1454 
1455     if (PrefetchCopyIntervalInBytes > 0) {
1456       log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1457     }
1458     if (PrefetchScanIntervalInBytes > 0) {
1459       log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1460     }
1461     if (PrefetchFieldsAhead > 0) {
1462       log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1463     }
1464     if (ContendedPaddingWidth > 0) {
1465       log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1466     }
1467   }
1468 #endif // !PRODUCT
1469 }
1470 
1471 bool VM_Version::use_biased_locking() {
1472 #if INCLUDE_RTM_OPT
1473   // RTM locking is most useful when there is high lock contention and
1474   // low data contention.  With high lock contention the lock is usually
1475   // inflated and biased locking is not suitable for that case.
1476   // RTM locking code requires that biased locking is off.
1477   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1478   // because it is used by Thread::allocate() which is called before
1479   // VM_Version::initialize().
1480   if (UseRTMLocking && UseBiasedLocking) {
1481     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1482       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1483     } else {
1484       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1485       UseBiasedLocking = false;
1486     }
1487   }
1488 #endif
1489   return UseBiasedLocking;
1490 }
1491 
1492 void VM_Version::initialize() {
1493   ResourceMark rm;
1494   // Making this stub must be FIRST use of assembler
1495 
1496   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1497   if (stub_blob == NULL) {
1498     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1499   }
1500   CodeBuffer c(stub_blob);
1501   VM_Version_StubGenerator g(&c);
1502   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1503                                      g.generate_get_cpu_info());
1504 
1505   get_processor_features();
1506 }