1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/access.hpp"
  50 #include "oops/fieldStreams.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/valueKlass.hpp"
  57 #include "prims/forte.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "prims/methodHandles.hpp"
  60 #include "prims/nativeLookup.hpp"
  61 #include "runtime/arguments.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/biasedLocking.hpp"
  64 #include "runtime/compilationPolicy.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/vframe.inline.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "utilities/copy.hpp"
  76 #include "utilities/dtrace.hpp"
  77 #include "utilities/events.hpp"
  78 #include "utilities/hashtable.inline.hpp"
  79 #include "utilities/macros.hpp"
  80 #include "utilities/xmlstream.hpp"
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 #if INCLUDE_G1GC
  85 #include "gc/g1/g1ThreadLocalData.hpp"
  86 #endif // INCLUDE_G1GC
  87 
  88 // Shared stub locations
  89 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  90 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  91 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  94 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  95 address             SharedRuntime::_resolve_static_call_entry;
  96 
  97 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  99 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 101 
 102 #ifdef COMPILER2
 103 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 104 #endif // COMPILER2
 105 
 106 
 107 //----------------------------generate_stubs-----------------------------------
 108 void SharedRuntime::generate_stubs() {
 109   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 110   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 111   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 112   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 113   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 114   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 115   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 116 
 117 #if COMPILER2_OR_JVMCI
 118   // Vectors are generated only by C2 and JVMCI.
 119   bool support_wide = is_wide_vector(MaxVectorSize);
 120   if (support_wide) {
 121     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 122   }
 123 #endif // COMPILER2_OR_JVMCI
 124   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 125   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 126 
 127   generate_deopt_blob();
 128 
 129 #ifdef COMPILER2
 130   generate_uncommon_trap_blob();
 131 #endif // COMPILER2
 132 }
 133 
 134 #include <math.h>
 135 
 136 // Implementation of SharedRuntime
 137 
 138 #ifndef PRODUCT
 139 // For statistics
 140 int SharedRuntime::_ic_miss_ctr = 0;
 141 int SharedRuntime::_wrong_method_ctr = 0;
 142 int SharedRuntime::_resolve_static_ctr = 0;
 143 int SharedRuntime::_resolve_virtual_ctr = 0;
 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 145 int SharedRuntime::_implicit_null_throws = 0;
 146 int SharedRuntime::_implicit_div0_throws = 0;
 147 int SharedRuntime::_throw_null_ctr = 0;
 148 
 149 int SharedRuntime::_nof_normal_calls = 0;
 150 int SharedRuntime::_nof_optimized_calls = 0;
 151 int SharedRuntime::_nof_inlined_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_calls = 0;
 153 int SharedRuntime::_nof_static_calls = 0;
 154 int SharedRuntime::_nof_inlined_static_calls = 0;
 155 int SharedRuntime::_nof_interface_calls = 0;
 156 int SharedRuntime::_nof_optimized_interface_calls = 0;
 157 int SharedRuntime::_nof_inlined_interface_calls = 0;
 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 159 int SharedRuntime::_nof_removable_exceptions = 0;
 160 
 161 int SharedRuntime::_new_instance_ctr=0;
 162 int SharedRuntime::_new_array_ctr=0;
 163 int SharedRuntime::_multi1_ctr=0;
 164 int SharedRuntime::_multi2_ctr=0;
 165 int SharedRuntime::_multi3_ctr=0;
 166 int SharedRuntime::_multi4_ctr=0;
 167 int SharedRuntime::_multi5_ctr=0;
 168 int SharedRuntime::_mon_enter_stub_ctr=0;
 169 int SharedRuntime::_mon_exit_stub_ctr=0;
 170 int SharedRuntime::_mon_enter_ctr=0;
 171 int SharedRuntime::_mon_exit_ctr=0;
 172 int SharedRuntime::_partial_subtype_ctr=0;
 173 int SharedRuntime::_jbyte_array_copy_ctr=0;
 174 int SharedRuntime::_jshort_array_copy_ctr=0;
 175 int SharedRuntime::_jint_array_copy_ctr=0;
 176 int SharedRuntime::_jlong_array_copy_ctr=0;
 177 int SharedRuntime::_oop_array_copy_ctr=0;
 178 int SharedRuntime::_checkcast_array_copy_ctr=0;
 179 int SharedRuntime::_unsafe_array_copy_ctr=0;
 180 int SharedRuntime::_generic_array_copy_ctr=0;
 181 int SharedRuntime::_slow_array_copy_ctr=0;
 182 int SharedRuntime::_find_handler_ctr=0;
 183 int SharedRuntime::_rethrow_ctr=0;
 184 
 185 int     SharedRuntime::_ICmiss_index                    = 0;
 186 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 188 
 189 
 190 void SharedRuntime::trace_ic_miss(address at) {
 191   for (int i = 0; i < _ICmiss_index; i++) {
 192     if (_ICmiss_at[i] == at) {
 193       _ICmiss_count[i]++;
 194       return;
 195     }
 196   }
 197   int index = _ICmiss_index++;
 198   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 199   _ICmiss_at[index] = at;
 200   _ICmiss_count[index] = 1;
 201 }
 202 
 203 void SharedRuntime::print_ic_miss_histogram() {
 204   if (ICMissHistogram) {
 205     tty->print_cr("IC Miss Histogram:");
 206     int tot_misses = 0;
 207     for (int i = 0; i < _ICmiss_index; i++) {
 208       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 209       tot_misses += _ICmiss_count[i];
 210     }
 211     tty->print_cr("Total IC misses: %7d", tot_misses);
 212   }
 213 }
 214 #endif // PRODUCT
 215 
 216 #if INCLUDE_G1GC
 217 
 218 // G1 write-barrier pre: executed before a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 220   if (orig == NULL) {
 221     assert(false, "should be optimized out");
 222     return;
 223   }
 224   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 225   // store the original value that was in the field reference
 226   G1ThreadLocalData::satb_mark_queue(thread).enqueue(orig);
 227 JRT_END
 228 
 229 // G1 write-barrier post: executed after a pointer store.
 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 231   G1ThreadLocalData::dirty_card_queue(thread).enqueue(card_addr);
 232 JRT_END
 233 
 234 #endif // INCLUDE_G1GC
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 238   return x * y;
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return x;
 245   } else {
 246     return x / y;
 247   }
 248 JRT_END
 249 
 250 
 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 252   if (x == min_jlong && y == CONST64(-1)) {
 253     return 0;
 254   } else {
 255     return x % y;
 256   }
 257 JRT_END
 258 
 259 
 260 const juint  float_sign_mask  = 0x7FFFFFFF;
 261 const juint  float_infinity   = 0x7F800000;
 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 263 const julong double_infinity  = CONST64(0x7FF0000000000000);
 264 
 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 266 #ifdef _WIN64
 267   // 64-bit Windows on amd64 returns the wrong values for
 268   // infinity operands.
 269   union { jfloat f; juint i; } xbits, ybits;
 270   xbits.f = x;
 271   ybits.f = y;
 272   // x Mod Infinity == x unless x is infinity
 273   if (((xbits.i & float_sign_mask) != float_infinity) &&
 274        ((ybits.i & float_sign_mask) == float_infinity) ) {
 275     return x;
 276   }
 277   return ((jfloat)fmod_winx64((double)x, (double)y));
 278 #else
 279   return ((jfloat)fmod((double)x,(double)y));
 280 #endif
 281 JRT_END
 282 
 283 
 284 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 285 #ifdef _WIN64
 286   union { jdouble d; julong l; } xbits, ybits;
 287   xbits.d = x;
 288   ybits.d = y;
 289   // x Mod Infinity == x unless x is infinity
 290   if (((xbits.l & double_sign_mask) != double_infinity) &&
 291        ((ybits.l & double_sign_mask) == double_infinity) ) {
 292     return x;
 293   }
 294   return ((jdouble)fmod_winx64((double)x, (double)y));
 295 #else
 296   return ((jdouble)fmod((double)x,(double)y));
 297 #endif
 298 JRT_END
 299 
 300 #ifdef __SOFTFP__
 301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 318   return x + y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 322   return x - y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 326   return x * y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 330   return x / y;
 331 JRT_END
 332 
 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 334   return (jfloat)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 359 JRT_END
 360 
 361 // Functions to return the opposite of the aeabi functions for nan.
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 // Intrinsics make gcc generate code for these.
 395 float  SharedRuntime::fneg(float f)   {
 396   return -f;
 397 }
 398 
 399 double SharedRuntime::dneg(double f)  {
 400   return -f;
 401 }
 402 
 403 #endif // __SOFTFP__
 404 
 405 #if defined(__SOFTFP__) || defined(E500V2)
 406 // Intrinsics make gcc generate code for these.
 407 double SharedRuntime::dabs(double f)  {
 408   return (f <= (double)0.0) ? (double)0.0 - f : f;
 409 }
 410 
 411 #endif
 412 
 413 #if defined(__SOFTFP__) || defined(PPC)
 414 double SharedRuntime::dsqrt(double f) {
 415   return sqrt(f);
 416 }
 417 #endif
 418 
 419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jint)
 423     return max_jint;
 424   if (x <= (jfloat) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jfloat) max_jlong)
 434     return max_jlong;
 435   if (x <= (jfloat) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jint)
 445     return max_jint;
 446   if (x <= (jdouble) min_jint)
 447     return min_jint;
 448   return (jint) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 453   if (g_isnan(x))
 454     return 0;
 455   if (x >= (jdouble) max_jlong)
 456     return max_jlong;
 457   if (x <= (jdouble) min_jlong)
 458     return min_jlong;
 459   return (jlong) x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 469   return (jfloat)x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 474   return (jdouble)x;
 475 JRT_END
 476 
 477 // Exception handling across interpreter/compiler boundaries
 478 //
 479 // exception_handler_for_return_address(...) returns the continuation address.
 480 // The continuation address is the entry point of the exception handler of the
 481 // previous frame depending on the return address.
 482 
 483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 484   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 486 
 487   // Reset method handle flag.
 488   thread->set_is_method_handle_return(false);
 489 
 490 #if INCLUDE_JVMCI
 491   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 492   // and other exception handler continuations do not read it
 493   thread->set_exception_pc(NULL);
 494 #endif // INCLUDE_JVMCI
 495 
 496   // The fastest case first
 497   CodeBlob* blob = CodeCache::find_blob(return_address);
 498   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 499   if (nm != NULL) {
 500     // Set flag if return address is a method handle call site.
 501     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 502     // native nmethods don't have exception handlers
 503     assert(!nm->is_native_method(), "no exception handler");
 504     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 505     if (nm->is_deopt_pc(return_address)) {
 506       // If we come here because of a stack overflow, the stack may be
 507       // unguarded. Reguard the stack otherwise if we return to the
 508       // deopt blob and the stack bang causes a stack overflow we
 509       // crash.
 510       bool guard_pages_enabled = thread->stack_guards_enabled();
 511       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 512       if (thread->reserved_stack_activation() != thread->stack_base()) {
 513         thread->set_reserved_stack_activation(thread->stack_base());
 514       }
 515       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 516       return SharedRuntime::deopt_blob()->unpack_with_exception();
 517     } else {
 518       return nm->exception_begin();
 519     }
 520   }
 521 
 522   // Entry code
 523   if (StubRoutines::returns_to_call_stub(return_address)) {
 524     return StubRoutines::catch_exception_entry();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     return Interpreter::rethrow_exception_entry();
 529   }
 530 
 531   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 532   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 533 
 534 #ifndef PRODUCT
 535   { ResourceMark rm;
 536     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 537     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 538     tty->print_cr("b) other problem");
 539   }
 540 #endif // PRODUCT
 541 
 542   ShouldNotReachHere();
 543   return NULL;
 544 }
 545 
 546 
 547 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 548   return raw_exception_handler_for_return_address(thread, return_address);
 549 JRT_END
 550 
 551 
 552 address SharedRuntime::get_poll_stub(address pc) {
 553   address stub;
 554   // Look up the code blob
 555   CodeBlob *cb = CodeCache::find_blob(pc);
 556 
 557   // Should be an nmethod
 558   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 559 
 560   // Look up the relocation information
 561   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 562     "safepoint polling: type must be poll");
 563 
 564 #ifdef ASSERT
 565   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 566     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 567     Disassembler::decode(cb);
 568     fatal("Only polling locations are used for safepoint");
 569   }
 570 #endif
 571 
 572   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 573   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 574   if (at_poll_return) {
 575     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 576            "polling page return stub not created yet");
 577     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 578   } else if (has_wide_vectors) {
 579     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 580            "polling page vectors safepoint stub not created yet");
 581     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 582   } else {
 583     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 584            "polling page safepoint stub not created yet");
 585     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 586   }
 587   log_debug(safepoint)("... found polling page %s exception at pc = "
 588                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 589                        at_poll_return ? "return" : "loop",
 590                        (intptr_t)pc, (intptr_t)stub);
 591   return stub;
 592 }
 593 
 594 
 595 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 596   assert(caller.is_interpreted_frame(), "");
 597   int args_size = ArgumentSizeComputer(sig).size() + 1;
 598   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 599   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 600   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 601   return result;
 602 }
 603 
 604 
 605 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 606   if (JvmtiExport::can_post_on_exceptions()) {
 607     vframeStream vfst(thread, true);
 608     methodHandle method = methodHandle(thread, vfst.method());
 609     address bcp = method()->bcp_from(vfst.bci());
 610     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 611   }
 612   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 613 }
 614 
 615 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 616   Handle h_exception = Exceptions::new_exception(thread, name, message);
 617   throw_and_post_jvmti_exception(thread, h_exception);
 618 }
 619 
 620 // The interpreter code to call this tracing function is only
 621 // called/generated when UL is on for redefine, class and has the right level
 622 // and tags. Since obsolete methods are never compiled, we don't have
 623 // to modify the compilers to generate calls to this function.
 624 //
 625 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 626     JavaThread* thread, Method* method))
 627   if (method->is_obsolete()) {
 628     // We are calling an obsolete method, but this is not necessarily
 629     // an error. Our method could have been redefined just after we
 630     // fetched the Method* from the constant pool.
 631     ResourceMark rm;
 632     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 633   }
 634   return 0;
 635 JRT_END
 636 
 637 // ret_pc points into caller; we are returning caller's exception handler
 638 // for given exception
 639 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 640                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 641   assert(cm != NULL, "must exist");
 642   ResourceMark rm;
 643 
 644 #if INCLUDE_JVMCI
 645   if (cm->is_compiled_by_jvmci()) {
 646     // lookup exception handler for this pc
 647     int catch_pco = ret_pc - cm->code_begin();
 648     ExceptionHandlerTable table(cm);
 649     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 650     if (t != NULL) {
 651       return cm->code_begin() + t->pco();
 652     } else {
 653       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 654     }
 655   }
 656 #endif // INCLUDE_JVMCI
 657 
 658   nmethod* nm = cm->as_nmethod();
 659   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 660   // determine handler bci, if any
 661   EXCEPTION_MARK;
 662 
 663   int handler_bci = -1;
 664   int scope_depth = 0;
 665   if (!force_unwind) {
 666     int bci = sd->bci();
 667     bool recursive_exception = false;
 668     do {
 669       bool skip_scope_increment = false;
 670       // exception handler lookup
 671       Klass* ek = exception->klass();
 672       methodHandle mh(THREAD, sd->method());
 673       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 674       if (HAS_PENDING_EXCEPTION) {
 675         recursive_exception = true;
 676         // We threw an exception while trying to find the exception handler.
 677         // Transfer the new exception to the exception handle which will
 678         // be set into thread local storage, and do another lookup for an
 679         // exception handler for this exception, this time starting at the
 680         // BCI of the exception handler which caused the exception to be
 681         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 682         // argument to ensure that the correct exception is thrown (4870175).
 683         recursive_exception_occurred = true;
 684         exception = Handle(THREAD, PENDING_EXCEPTION);
 685         CLEAR_PENDING_EXCEPTION;
 686         if (handler_bci >= 0) {
 687           bci = handler_bci;
 688           handler_bci = -1;
 689           skip_scope_increment = true;
 690         }
 691       }
 692       else {
 693         recursive_exception = false;
 694       }
 695       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 696         sd = sd->sender();
 697         if (sd != NULL) {
 698           bci = sd->bci();
 699         }
 700         ++scope_depth;
 701       }
 702     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 703   }
 704 
 705   // found handling method => lookup exception handler
 706   int catch_pco = ret_pc - nm->code_begin();
 707 
 708   ExceptionHandlerTable table(nm);
 709   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 710   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 711     // Allow abbreviated catch tables.  The idea is to allow a method
 712     // to materialize its exceptions without committing to the exact
 713     // routing of exceptions.  In particular this is needed for adding
 714     // a synthetic handler to unlock monitors when inlining
 715     // synchronized methods since the unlock path isn't represented in
 716     // the bytecodes.
 717     t = table.entry_for(catch_pco, -1, 0);
 718   }
 719 
 720 #ifdef COMPILER1
 721   if (t == NULL && nm->is_compiled_by_c1()) {
 722     assert(nm->unwind_handler_begin() != NULL, "");
 723     return nm->unwind_handler_begin();
 724   }
 725 #endif
 726 
 727   if (t == NULL) {
 728     ttyLocker ttyl;
 729     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 730     tty->print_cr("   Exception:");
 731     exception->print();
 732     tty->cr();
 733     tty->print_cr(" Compiled exception table :");
 734     table.print();
 735     nm->print_code();
 736     guarantee(false, "missing exception handler");
 737     return NULL;
 738   }
 739 
 740   return nm->code_begin() + t->pco();
 741 }
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 744   // These errors occur only at call sites
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 762   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 763   // cache sites (when the callee activation is not yet set up) so we are at a call site
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 768   throw_StackOverflowError_common(thread, false);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 772   throw_StackOverflowError_common(thread, true);
 773 JRT_END
 774 
 775 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 776   // We avoid using the normal exception construction in this case because
 777   // it performs an upcall to Java, and we're already out of stack space.
 778   Thread* THREAD = thread;
 779   Klass* k = SystemDictionary::StackOverflowError_klass();
 780   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 781   if (delayed) {
 782     java_lang_Throwable::set_message(exception_oop,
 783                                      Universe::delayed_stack_overflow_error_message());
 784   }
 785   Handle exception (thread, exception_oop);
 786   if (StackTraceInThrowable) {
 787     java_lang_Throwable::fill_in_stack_trace(exception);
 788   }
 789   // Increment counter for hs_err file reporting
 790   Atomic::inc(&Exceptions::_stack_overflow_errors);
 791   throw_and_post_jvmti_exception(thread, exception);
 792 }
 793 
 794 #if INCLUDE_JVMCI
 795 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 796   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 797   thread->set_jvmci_implicit_exception_pc(pc);
 798   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 799   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 800 }
 801 #endif // INCLUDE_JVMCI
 802 
 803 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 804                                                            address pc,
 805                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 806 {
 807   address target_pc = NULL;
 808 
 809   if (Interpreter::contains(pc)) {
 810 #ifdef CC_INTERP
 811     // C++ interpreter doesn't throw implicit exceptions
 812     ShouldNotReachHere();
 813 #else
 814     switch (exception_kind) {
 815       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 816       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 817       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 818       default:                      ShouldNotReachHere();
 819     }
 820 #endif // !CC_INTERP
 821   } else {
 822     switch (exception_kind) {
 823       case STACK_OVERFLOW: {
 824         // Stack overflow only occurs upon frame setup; the callee is
 825         // going to be unwound. Dispatch to a shared runtime stub
 826         // which will cause the StackOverflowError to be fabricated
 827         // and processed.
 828         // Stack overflow should never occur during deoptimization:
 829         // the compiled method bangs the stack by as much as the
 830         // interpreter would need in case of a deoptimization. The
 831         // deoptimization blob and uncommon trap blob bang the stack
 832         // in a debug VM to verify the correctness of the compiled
 833         // method stack banging.
 834         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 835         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 836         return StubRoutines::throw_StackOverflowError_entry();
 837       }
 838 
 839       case IMPLICIT_NULL: {
 840         if (VtableStubs::contains(pc)) {
 841           // We haven't yet entered the callee frame. Fabricate an
 842           // exception and begin dispatching it in the caller. Since
 843           // the caller was at a call site, it's safe to destroy all
 844           // caller-saved registers, as these entry points do.
 845           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 846 
 847           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 848           if (vt_stub == NULL) return NULL;
 849 
 850           if (vt_stub->is_abstract_method_error(pc)) {
 851             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 852             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 853             // Instead of throwing the abstract method error here directly, we re-resolve
 854             // and will throw the AbstractMethodError during resolve. As a result, we'll
 855             // get a more detailed error message.
 856             return SharedRuntime::get_handle_wrong_method_stub();
 857           } else {
 858             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 859             // Assert that the signal comes from the expected location in stub code.
 860             assert(vt_stub->is_null_pointer_exception(pc),
 861                    "obtained signal from unexpected location in stub code");
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864         } else {
 865           CodeBlob* cb = CodeCache::find_blob(pc);
 866 
 867           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 868           if (cb == NULL) return NULL;
 869 
 870           // Exception happened in CodeCache. Must be either:
 871           // 1. Inline-cache check in C2I handler blob,
 872           // 2. Inline-cache check in nmethod, or
 873           // 3. Implicit null exception in nmethod
 874 
 875           if (!cb->is_compiled()) {
 876             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 877             if (!is_in_blob) {
 878               // Allow normal crash reporting to handle this
 879               return NULL;
 880             }
 881             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 882             // There is no handler here, so we will simply unwind.
 883             return StubRoutines::throw_NullPointerException_at_call_entry();
 884           }
 885 
 886           // Otherwise, it's a compiled method.  Consult its exception handlers.
 887           CompiledMethod* cm = (CompiledMethod*)cb;
 888           if (cm->inlinecache_check_contains(pc)) {
 889             // exception happened inside inline-cache check code
 890             // => the nmethod is not yet active (i.e., the frame
 891             // is not set up yet) => use return address pushed by
 892             // caller => don't push another return address
 893             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 894             return StubRoutines::throw_NullPointerException_at_call_entry();
 895           }
 896 
 897           if (cm->method()->is_method_handle_intrinsic()) {
 898             // exception happened inside MH dispatch code, similar to a vtable stub
 899             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 900             return StubRoutines::throw_NullPointerException_at_call_entry();
 901           }
 902 
 903 #ifndef PRODUCT
 904           _implicit_null_throws++;
 905 #endif
 906 #if INCLUDE_JVMCI
 907           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 908             // If there's no PcDesc then we'll die way down inside of
 909             // deopt instead of just getting normal error reporting,
 910             // so only go there if it will succeed.
 911             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 912           } else {
 913 #endif // INCLUDE_JVMCI
 914           assert (cm->is_nmethod(), "Expect nmethod");
 915           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 916 #if INCLUDE_JVMCI
 917           }
 918 #endif // INCLUDE_JVMCI
 919           // If there's an unexpected fault, target_pc might be NULL,
 920           // in which case we want to fall through into the normal
 921           // error handling code.
 922         }
 923 
 924         break; // fall through
 925       }
 926 
 927 
 928       case IMPLICIT_DIVIDE_BY_ZERO: {
 929         CompiledMethod* cm = CodeCache::find_compiled(pc);
 930         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 931 #ifndef PRODUCT
 932         _implicit_div0_throws++;
 933 #endif
 934 #if INCLUDE_JVMCI
 935         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 936           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 937         } else {
 938 #endif // INCLUDE_JVMCI
 939         target_pc = cm->continuation_for_implicit_exception(pc);
 940 #if INCLUDE_JVMCI
 941         }
 942 #endif // INCLUDE_JVMCI
 943         // If there's an unexpected fault, target_pc might be NULL,
 944         // in which case we want to fall through into the normal
 945         // error handling code.
 946         break; // fall through
 947       }
 948 
 949       default: ShouldNotReachHere();
 950     }
 951 
 952     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 953 
 954     if (exception_kind == IMPLICIT_NULL) {
 955 #ifndef PRODUCT
 956       // for AbortVMOnException flag
 957       Exceptions::debug_check_abort("java.lang.NullPointerException");
 958 #endif //PRODUCT
 959       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 960     } else {
 961 #ifndef PRODUCT
 962       // for AbortVMOnException flag
 963       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 964 #endif //PRODUCT
 965       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 966     }
 967     return target_pc;
 968   }
 969 
 970   ShouldNotReachHere();
 971   return NULL;
 972 }
 973 
 974 
 975 /**
 976  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 977  * installed in the native function entry of all native Java methods before
 978  * they get linked to their actual native methods.
 979  *
 980  * \note
 981  * This method actually never gets called!  The reason is because
 982  * the interpreter's native entries call NativeLookup::lookup() which
 983  * throws the exception when the lookup fails.  The exception is then
 984  * caught and forwarded on the return from NativeLookup::lookup() call
 985  * before the call to the native function.  This might change in the future.
 986  */
 987 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 988 {
 989   // We return a bad value here to make sure that the exception is
 990   // forwarded before we look at the return value.
 991   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 992 }
 993 JNI_END
 994 
 995 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 996   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 997 }
 998 
 999 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1000 #if INCLUDE_JVMCI
1001   if (!obj->klass()->has_finalizer()) {
1002     return;
1003   }
1004 #endif // INCLUDE_JVMCI
1005   assert(oopDesc::is_oop(obj), "must be a valid oop");
1006   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1007   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1008 JRT_END
1009 
1010 
1011 jlong SharedRuntime::get_java_tid(Thread* thread) {
1012   if (thread != NULL) {
1013     if (thread->is_Java_thread()) {
1014       oop obj = ((JavaThread*)thread)->threadObj();
1015       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1016     }
1017   }
1018   return 0;
1019 }
1020 
1021 /**
1022  * This function ought to be a void function, but cannot be because
1023  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1024  * 6254741.  Once that is fixed we can remove the dummy return value.
1025  */
1026 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1027   return dtrace_object_alloc_base(Thread::current(), o, size);
1028 }
1029 
1030 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1031   assert(DTraceAllocProbes, "wrong call");
1032   Klass* klass = o->klass();
1033   Symbol* name = klass->name();
1034   HOTSPOT_OBJECT_ALLOC(
1035                    get_java_tid(thread),
1036                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1037   return 0;
1038 }
1039 
1040 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1041     JavaThread* thread, Method* method))
1042   assert(DTraceMethodProbes, "wrong call");
1043   Symbol* kname = method->klass_name();
1044   Symbol* name = method->name();
1045   Symbol* sig = method->signature();
1046   HOTSPOT_METHOD_ENTRY(
1047       get_java_tid(thread),
1048       (char *) kname->bytes(), kname->utf8_length(),
1049       (char *) name->bytes(), name->utf8_length(),
1050       (char *) sig->bytes(), sig->utf8_length());
1051   return 0;
1052 JRT_END
1053 
1054 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1055     JavaThread* thread, Method* method))
1056   assert(DTraceMethodProbes, "wrong call");
1057   Symbol* kname = method->klass_name();
1058   Symbol* name = method->name();
1059   Symbol* sig = method->signature();
1060   HOTSPOT_METHOD_RETURN(
1061       get_java_tid(thread),
1062       (char *) kname->bytes(), kname->utf8_length(),
1063       (char *) name->bytes(), name->utf8_length(),
1064       (char *) sig->bytes(), sig->utf8_length());
1065   return 0;
1066 JRT_END
1067 
1068 
1069 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1070 // for a call current in progress, i.e., arguments has been pushed on stack
1071 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1072 // vtable updates, etc.  Caller frame must be compiled.
1073 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1074   ResourceMark rm(THREAD);
1075 
1076   // last java frame on stack (which includes native call frames)
1077   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1078 
1079   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1080 }
1081 
1082 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1083   CompiledMethod* caller = vfst.nm();
1084 
1085   nmethodLocker caller_lock(caller);
1086 
1087   address pc = vfst.frame_pc();
1088   { // Get call instruction under lock because another thread may be busy patching it.
1089     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1090     return caller->attached_method_before_pc(pc);
1091   }
1092   return NULL;
1093 }
1094 
1095 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1096 // for a call current in progress, i.e., arguments has been pushed on stack
1097 // but callee has not been invoked yet.  Caller frame must be compiled.
1098 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1099                                               vframeStream& vfst,
1100                                               Bytecodes::Code& bc,
1101                                               CallInfo& callinfo, TRAPS) {
1102   Handle receiver;
1103   Handle nullHandle;  //create a handy null handle for exception returns
1104 
1105   assert(!vfst.at_end(), "Java frame must exist");
1106 
1107   // Find caller and bci from vframe
1108   methodHandle caller(THREAD, vfst.method());
1109   int          bci   = vfst.bci();
1110 
1111   Bytecode_invoke bytecode(caller, bci);
1112   int bytecode_index = bytecode.index();
1113   bc = bytecode.invoke_code();
1114 
1115   methodHandle attached_method = extract_attached_method(vfst);
1116   if (attached_method.not_null()) {
1117     methodHandle callee = bytecode.static_target(CHECK_NH);
1118     vmIntrinsics::ID id = callee->intrinsic_id();
1119     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1120     // it attaches statically resolved method to the call site.
1121     if (MethodHandles::is_signature_polymorphic(id) &&
1122         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1123       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1124 
1125       // Adjust invocation mode according to the attached method.
1126       switch (bc) {
1127         case Bytecodes::_invokeinterface:
1128           if (!attached_method->method_holder()->is_interface()) {
1129             bc = Bytecodes::_invokevirtual;
1130           }
1131           break;
1132         case Bytecodes::_invokehandle:
1133           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1134             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1135                                               : Bytecodes::_invokevirtual;
1136           }
1137           break;
1138         default:
1139           break;
1140       }
1141     } else {
1142       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1143       if (bc != Bytecodes::_invokevirtual) {
1144         // Ignore the attached method in this case to not confuse below code
1145         attached_method = NULL;
1146       }
1147     }
1148   }
1149 
1150   bool has_receiver = bc != Bytecodes::_invokestatic &&
1151                       bc != Bytecodes::_invokedynamic &&
1152                       bc != Bytecodes::_invokehandle;
1153 
1154   // Find receiver for non-static call
1155   if (has_receiver) {
1156     // This register map must be update since we need to find the receiver for
1157     // compiled frames. The receiver might be in a register.
1158     RegisterMap reg_map2(thread);
1159     frame stubFrame   = thread->last_frame();
1160     // Caller-frame is a compiled frame
1161     frame callerFrame = stubFrame.sender(&reg_map2);
1162 
1163     methodHandle callee = attached_method;
1164     if (callee.is_null()) {
1165       callee = bytecode.static_target(CHECK_NH);
1166       if (callee.is_null()) {
1167         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1168       }
1169     }
1170     if (ValueTypePassFieldsAsArgs && callee->method_holder()->is_value()) {
1171       // If the receiver is a value type that is passed as fields, no oop is available.
1172       // Resolve the call without receiver null checking.
1173       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1174       assert(!attached_method.is_null(), "must have attached method");
1175       constantPoolHandle constants(THREAD, caller->constants());
1176       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1177       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1178       return receiver; // is null
1179     } else {
1180       // Retrieve from a compiled argument list
1181       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1182 
1183       if (receiver.is_null()) {
1184         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1185       }
1186     }
1187   }
1188 
1189   // Resolve method
1190   if (attached_method.not_null()) {
1191     // Parameterized by attached method.
1192     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1193   } else {
1194     // Parameterized by bytecode.
1195     constantPoolHandle constants(THREAD, caller->constants());
1196     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1197   }
1198 
1199 #ifdef ASSERT
1200   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1201   if (has_receiver) {
1202     assert(receiver.not_null(), "should have thrown exception");
1203     Klass* receiver_klass = receiver->klass();
1204     Klass* rk = NULL;
1205     if (attached_method.not_null()) {
1206       // In case there's resolved method attached, use its holder during the check.
1207       rk = attached_method->method_holder();
1208     } else {
1209       // Klass is already loaded.
1210       constantPoolHandle constants(THREAD, caller->constants());
1211       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1212     }
1213     Klass* static_receiver_klass = rk;
1214     methodHandle callee = callinfo.selected_method();
1215     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1216            "actual receiver must be subclass of static receiver klass");
1217     if (receiver_klass->is_instance_klass()) {
1218       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1219         tty->print_cr("ERROR: Klass not yet initialized!!");
1220         receiver_klass->print();
1221       }
1222       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1223     }
1224   }
1225 #endif
1226 
1227   return receiver;
1228 }
1229 
1230 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1231   ResourceMark rm(THREAD);
1232   // We need first to check if any Java activations (compiled, interpreted)
1233   // exist on the stack since last JavaCall.  If not, we need
1234   // to get the target method from the JavaCall wrapper.
1235   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1236   methodHandle callee_method;
1237   if (vfst.at_end()) {
1238     // No Java frames were found on stack since we did the JavaCall.
1239     // Hence the stack can only contain an entry_frame.  We need to
1240     // find the target method from the stub frame.
1241     RegisterMap reg_map(thread, false);
1242     frame fr = thread->last_frame();
1243     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1244     fr = fr.sender(&reg_map);
1245     assert(fr.is_entry_frame(), "must be");
1246     // fr is now pointing to the entry frame.
1247     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1248   } else {
1249     Bytecodes::Code bc;
1250     CallInfo callinfo;
1251     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1252     callee_method = callinfo.selected_method();
1253   }
1254   assert(callee_method()->is_method(), "must be");
1255   return callee_method;
1256 }
1257 
1258 // Resolves a call.
1259 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1260                                            bool is_virtual,
1261                                            bool is_optimized, TRAPS) {
1262   methodHandle callee_method;
1263   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1264   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1265     int retry_count = 0;
1266     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1267            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1268       // If has a pending exception then there is no need to re-try to
1269       // resolve this method.
1270       // If the method has been redefined, we need to try again.
1271       // Hack: we have no way to update the vtables of arrays, so don't
1272       // require that java.lang.Object has been updated.
1273 
1274       // It is very unlikely that method is redefined more than 100 times
1275       // in the middle of resolve. If it is looping here more than 100 times
1276       // means then there could be a bug here.
1277       guarantee((retry_count++ < 100),
1278                 "Could not resolve to latest version of redefined method");
1279       // method is redefined in the middle of resolve so re-try.
1280       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1281     }
1282   }
1283   return callee_method;
1284 }
1285 
1286 // Resolves a call.  The compilers generate code for calls that go here
1287 // and are patched with the real destination of the call.
1288 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1289                                            bool is_virtual,
1290                                            bool is_optimized, TRAPS) {
1291 
1292   ResourceMark rm(thread);
1293   RegisterMap cbl_map(thread, false);
1294   frame caller_frame = thread->last_frame().sender(&cbl_map);
1295 
1296   CodeBlob* caller_cb = caller_frame.cb();
1297   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1298   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1299 
1300   // make sure caller is not getting deoptimized
1301   // and removed before we are done with it.
1302   // CLEANUP - with lazy deopt shouldn't need this lock
1303   nmethodLocker caller_lock(caller_nm);
1304 
1305   // determine call info & receiver
1306   // note: a) receiver is NULL for static calls
1307   //       b) an exception is thrown if receiver is NULL for non-static calls
1308   CallInfo call_info;
1309   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1310   Handle receiver = find_callee_info(thread, invoke_code,
1311                                      call_info, CHECK_(methodHandle()));
1312   methodHandle callee_method = call_info.selected_method();
1313 
1314   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1315          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1316          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1317          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1318          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1319 
1320   assert(caller_nm->is_alive(), "It should be alive");
1321 
1322 #ifndef PRODUCT
1323   // tracing/debugging/statistics
1324   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1325                 (is_virtual) ? (&_resolve_virtual_ctr) :
1326                                (&_resolve_static_ctr);
1327   Atomic::inc(addr);
1328 
1329   if (TraceCallFixup) {
1330     ResourceMark rm(thread);
1331     tty->print("resolving %s%s (%s) call to",
1332       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1333       Bytecodes::name(invoke_code));
1334     callee_method->print_short_name(tty);
1335     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1336                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1337   }
1338 #endif
1339 
1340   // JSR 292 key invariant:
1341   // If the resolved method is a MethodHandle invoke target, the call
1342   // site must be a MethodHandle call site, because the lambda form might tail-call
1343   // leaving the stack in a state unknown to either caller or callee
1344   // TODO detune for now but we might need it again
1345 //  assert(!callee_method->is_compiled_lambda_form() ||
1346 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1347 
1348   // Compute entry points. This might require generation of C2I converter
1349   // frames, so we cannot be holding any locks here. Furthermore, the
1350   // computation of the entry points is independent of patching the call.  We
1351   // always return the entry-point, but we only patch the stub if the call has
1352   // not been deoptimized.  Return values: For a virtual call this is an
1353   // (cached_oop, destination address) pair. For a static call/optimized
1354   // virtual this is just a destination address.
1355 
1356   StaticCallInfo static_call_info;
1357   CompiledICInfo virtual_call_info;
1358 
1359   // Make sure the callee nmethod does not get deoptimized and removed before
1360   // we are done patching the code.
1361   CompiledMethod* callee = callee_method->code();
1362 
1363   if (callee != NULL) {
1364     assert(callee->is_compiled(), "must be nmethod for patching");
1365   }
1366 
1367   if (callee != NULL && !callee->is_in_use()) {
1368     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1369     callee = NULL;
1370   }
1371   nmethodLocker nl_callee(callee);
1372 #ifdef ASSERT
1373   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1374 #endif
1375 
1376   bool is_nmethod = caller_nm->is_nmethod();
1377 
1378   if (is_virtual) {
1379     Klass* receiver_klass = NULL;
1380     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1381       // If the receiver is a value type that is passed as fields, no oop is available
1382       receiver_klass = callee_method->method_holder();
1383     } else {
1384       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1385       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1386     }
1387     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1388     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1389                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1390                      CHECK_(methodHandle()));
1391   } else {
1392     // static call
1393     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1394   }
1395 
1396   // grab lock, check for deoptimization and potentially patch caller
1397   {
1398     MutexLocker ml_patch(CompiledIC_lock);
1399 
1400     // Lock blocks for safepoint during which both nmethods can change state.
1401 
1402     // Now that we are ready to patch if the Method* was redefined then
1403     // don't update call site and let the caller retry.
1404     // Don't update call site if callee nmethod was unloaded or deoptimized.
1405     // Don't update call site if callee nmethod was replaced by an other nmethod
1406     // which may happen when multiply alive nmethod (tiered compilation)
1407     // will be supported.
1408     if (!callee_method->is_old() &&
1409         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1410 #ifdef ASSERT
1411       // We must not try to patch to jump to an already unloaded method.
1412       if (dest_entry_point != 0) {
1413         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1414         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1415                "should not call unloaded nmethod");
1416       }
1417 #endif
1418       if (is_virtual) {
1419         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1420         if (inline_cache->is_clean()) {
1421           inline_cache->set_to_monomorphic(virtual_call_info);
1422         }
1423       } else {
1424         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1425         if (ssc->is_clean()) ssc->set(static_call_info);
1426       }
1427     }
1428 
1429   } // unlock CompiledIC_lock
1430 
1431   return callee_method;
1432 }
1433 
1434 
1435 // Inline caches exist only in compiled code
1436 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1437 #ifdef ASSERT
1438   RegisterMap reg_map(thread, false);
1439   frame stub_frame = thread->last_frame();
1440   assert(stub_frame.is_runtime_frame(), "sanity check");
1441   frame caller_frame = stub_frame.sender(&reg_map);
1442   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1443 #endif /* ASSERT */
1444 
1445   methodHandle callee_method;
1446   JRT_BLOCK
1447     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1448     // Return Method* through TLS
1449     thread->set_vm_result_2(callee_method());
1450   JRT_BLOCK_END
1451   // return compiled code entry point after potential safepoints
1452   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1453   return callee_method->verified_code_entry();
1454 JRT_END
1455 
1456 
1457 // Handle call site that has been made non-entrant
1458 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1459   // 6243940 We might end up in here if the callee is deoptimized
1460   // as we race to call it.  We don't want to take a safepoint if
1461   // the caller was interpreted because the caller frame will look
1462   // interpreted to the stack walkers and arguments are now
1463   // "compiled" so it is much better to make this transition
1464   // invisible to the stack walking code. The i2c path will
1465   // place the callee method in the callee_target. It is stashed
1466   // there because if we try and find the callee by normal means a
1467   // safepoint is possible and have trouble gc'ing the compiled args.
1468   RegisterMap reg_map(thread, false);
1469   frame stub_frame = thread->last_frame();
1470   assert(stub_frame.is_runtime_frame(), "sanity check");
1471   frame caller_frame = stub_frame.sender(&reg_map);
1472 
1473   if (caller_frame.is_interpreted_frame() ||
1474       caller_frame.is_entry_frame()) {
1475     Method* callee = thread->callee_target();
1476     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1477     thread->set_vm_result_2(callee);
1478     thread->set_callee_target(NULL);
1479     return callee->get_c2i_entry();
1480   }
1481 
1482   // Must be compiled to compiled path which is safe to stackwalk
1483   methodHandle callee_method;
1484   JRT_BLOCK
1485     // Force resolving of caller (if we called from compiled frame)
1486     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1487     thread->set_vm_result_2(callee_method());
1488   JRT_BLOCK_END
1489   // return compiled code entry point after potential safepoints
1490   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1491   return callee_method->verified_code_entry();
1492 JRT_END
1493 
1494 // Handle abstract method call
1495 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1496   // Verbose error message for AbstractMethodError.
1497   // Get the called method from the invoke bytecode.
1498   vframeStream vfst(thread, true);
1499   assert(!vfst.at_end(), "Java frame must exist");
1500   methodHandle caller(vfst.method());
1501   Bytecode_invoke invoke(caller, vfst.bci());
1502   DEBUG_ONLY( invoke.verify(); )
1503 
1504   // Find the compiled caller frame.
1505   RegisterMap reg_map(thread);
1506   frame stubFrame = thread->last_frame();
1507   assert(stubFrame.is_runtime_frame(), "must be");
1508   frame callerFrame = stubFrame.sender(&reg_map);
1509   assert(callerFrame.is_compiled_frame(), "must be");
1510 
1511   // Install exception and return forward entry.
1512   address res = StubRoutines::throw_AbstractMethodError_entry();
1513   JRT_BLOCK
1514     methodHandle callee = invoke.static_target(thread);
1515     if (!callee.is_null()) {
1516       oop recv = callerFrame.retrieve_receiver(&reg_map);
1517       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1518       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1519       res = StubRoutines::forward_exception_entry();
1520     }
1521   JRT_BLOCK_END
1522   return res;
1523 JRT_END
1524 
1525 
1526 // resolve a static call and patch code
1527 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1528   methodHandle callee_method;
1529   JRT_BLOCK
1530     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1531     thread->set_vm_result_2(callee_method());
1532   JRT_BLOCK_END
1533   // return compiled code entry point after potential safepoints
1534   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1535   return callee_method->verified_code_entry();
1536 JRT_END
1537 
1538 
1539 // resolve virtual call and update inline cache to monomorphic
1540 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1541   methodHandle callee_method;
1542   JRT_BLOCK
1543     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1544     thread->set_vm_result_2(callee_method());
1545   JRT_BLOCK_END
1546   // return compiled code entry point after potential safepoints
1547   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1548   return callee_method->verified_code_entry();
1549 JRT_END
1550 
1551 
1552 // Resolve a virtual call that can be statically bound (e.g., always
1553 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1554 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1555   methodHandle callee_method;
1556   JRT_BLOCK
1557     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1558     thread->set_vm_result_2(callee_method());
1559   JRT_BLOCK_END
1560   // return compiled code entry point after potential safepoints
1561   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1562   return callee_method->verified_code_entry();
1563 JRT_END
1564 
1565 
1566 
1567 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1568   ResourceMark rm(thread);
1569   CallInfo call_info;
1570   Bytecodes::Code bc;
1571 
1572   // receiver is NULL for static calls. An exception is thrown for NULL
1573   // receivers for non-static calls
1574   Handle receiver = find_callee_info(thread, bc, call_info,
1575                                      CHECK_(methodHandle()));
1576   // Compiler1 can produce virtual call sites that can actually be statically bound
1577   // If we fell thru to below we would think that the site was going megamorphic
1578   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1579   // we'd try and do a vtable dispatch however methods that can be statically bound
1580   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1581   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1582   // plain ic_miss) and the site will be converted to an optimized virtual call site
1583   // never to miss again. I don't believe C2 will produce code like this but if it
1584   // did this would still be the correct thing to do for it too, hence no ifdef.
1585   //
1586   if (call_info.resolved_method()->can_be_statically_bound()) {
1587     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1588     if (TraceCallFixup) {
1589       RegisterMap reg_map(thread, false);
1590       frame caller_frame = thread->last_frame().sender(&reg_map);
1591       ResourceMark rm(thread);
1592       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1593       callee_method->print_short_name(tty);
1594       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1595       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1596     }
1597     return callee_method;
1598   }
1599 
1600   methodHandle callee_method = call_info.selected_method();
1601 
1602   bool should_be_mono = false;
1603 
1604 #ifndef PRODUCT
1605   Atomic::inc(&_ic_miss_ctr);
1606 
1607   // Statistics & Tracing
1608   if (TraceCallFixup) {
1609     ResourceMark rm(thread);
1610     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1611     callee_method->print_short_name(tty);
1612     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1613   }
1614 
1615   if (ICMissHistogram) {
1616     MutexLocker m(VMStatistic_lock);
1617     RegisterMap reg_map(thread, false);
1618     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1619     // produce statistics under the lock
1620     trace_ic_miss(f.pc());
1621   }
1622 #endif
1623 
1624   // install an event collector so that when a vtable stub is created the
1625   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1626   // event can't be posted when the stub is created as locks are held
1627   // - instead the event will be deferred until the event collector goes
1628   // out of scope.
1629   JvmtiDynamicCodeEventCollector event_collector;
1630 
1631   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1632   { MutexLocker ml_patch (CompiledIC_lock);
1633     RegisterMap reg_map(thread, false);
1634     frame caller_frame = thread->last_frame().sender(&reg_map);
1635     CodeBlob* cb = caller_frame.cb();
1636     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1637     if (cb->is_compiled()) {
1638       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1639       bool should_be_mono = false;
1640       if (inline_cache->is_optimized()) {
1641         if (TraceCallFixup) {
1642           ResourceMark rm(thread);
1643           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1644           callee_method->print_short_name(tty);
1645           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1646         }
1647         should_be_mono = true;
1648       } else if (inline_cache->is_icholder_call()) {
1649         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1650         if (ic_oop != NULL) {
1651 
1652           if (receiver()->klass() == ic_oop->holder_klass()) {
1653             // This isn't a real miss. We must have seen that compiled code
1654             // is now available and we want the call site converted to a
1655             // monomorphic compiled call site.
1656             // We can't assert for callee_method->code() != NULL because it
1657             // could have been deoptimized in the meantime
1658             if (TraceCallFixup) {
1659               ResourceMark rm(thread);
1660               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1661               callee_method->print_short_name(tty);
1662               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1663             }
1664             should_be_mono = true;
1665           }
1666         }
1667       }
1668 
1669       if (should_be_mono) {
1670 
1671         // We have a path that was monomorphic but was going interpreted
1672         // and now we have (or had) a compiled entry. We correct the IC
1673         // by using a new icBuffer.
1674         CompiledICInfo info;
1675         Klass* receiver_klass = receiver()->klass();
1676         inline_cache->compute_monomorphic_entry(callee_method,
1677                                                 receiver_klass,
1678                                                 inline_cache->is_optimized(),
1679                                                 false, caller_nm->is_nmethod(),
1680                                                 info, CHECK_(methodHandle()));
1681         inline_cache->set_to_monomorphic(info);
1682       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1683         // Potential change to megamorphic
1684         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1685         if (!successful) {
1686           inline_cache->set_to_clean();
1687         }
1688       } else {
1689         // Either clean or megamorphic
1690       }
1691     } else {
1692       fatal("Unimplemented");
1693     }
1694   } // Release CompiledIC_lock
1695 
1696   return callee_method;
1697 }
1698 
1699 //
1700 // Resets a call-site in compiled code so it will get resolved again.
1701 // This routines handles both virtual call sites, optimized virtual call
1702 // sites, and static call sites. Typically used to change a call sites
1703 // destination from compiled to interpreted.
1704 //
1705 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1706   ResourceMark rm(thread);
1707   RegisterMap reg_map(thread, false);
1708   frame stub_frame = thread->last_frame();
1709   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1710   frame caller = stub_frame.sender(&reg_map);
1711 
1712   // Do nothing if the frame isn't a live compiled frame.
1713   // nmethod could be deoptimized by the time we get here
1714   // so no update to the caller is needed.
1715 
1716   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1717 
1718     address pc = caller.pc();
1719 
1720     // Check for static or virtual call
1721     bool is_static_call = false;
1722     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1723 
1724     // Default call_addr is the location of the "basic" call.
1725     // Determine the address of the call we a reresolving. With
1726     // Inline Caches we will always find a recognizable call.
1727     // With Inline Caches disabled we may or may not find a
1728     // recognizable call. We will always find a call for static
1729     // calls and for optimized virtual calls. For vanilla virtual
1730     // calls it depends on the state of the UseInlineCaches switch.
1731     //
1732     // With Inline Caches disabled we can get here for a virtual call
1733     // for two reasons:
1734     //   1 - calling an abstract method. The vtable for abstract methods
1735     //       will run us thru handle_wrong_method and we will eventually
1736     //       end up in the interpreter to throw the ame.
1737     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1738     //       call and between the time we fetch the entry address and
1739     //       we jump to it the target gets deoptimized. Similar to 1
1740     //       we will wind up in the interprter (thru a c2i with c2).
1741     //
1742     address call_addr = NULL;
1743     {
1744       // Get call instruction under lock because another thread may be
1745       // busy patching it.
1746       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1747       // Location of call instruction
1748       call_addr = caller_nm->call_instruction_address(pc);
1749     }
1750     // Make sure nmethod doesn't get deoptimized and removed until
1751     // this is done with it.
1752     // CLEANUP - with lazy deopt shouldn't need this lock
1753     nmethodLocker nmlock(caller_nm);
1754 
1755     if (call_addr != NULL) {
1756       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1757       int ret = iter.next(); // Get item
1758       if (ret) {
1759         assert(iter.addr() == call_addr, "must find call");
1760         if (iter.type() == relocInfo::static_call_type) {
1761           is_static_call = true;
1762         } else {
1763           assert(iter.type() == relocInfo::virtual_call_type ||
1764                  iter.type() == relocInfo::opt_virtual_call_type
1765                 , "unexpected relocInfo. type");
1766         }
1767       } else {
1768         assert(!UseInlineCaches, "relocation info. must exist for this address");
1769       }
1770 
1771       // Cleaning the inline cache will force a new resolve. This is more robust
1772       // than directly setting it to the new destination, since resolving of calls
1773       // is always done through the same code path. (experience shows that it
1774       // leads to very hard to track down bugs, if an inline cache gets updated
1775       // to a wrong method). It should not be performance critical, since the
1776       // resolve is only done once.
1777 
1778       bool is_nmethod = caller_nm->is_nmethod();
1779       MutexLocker ml(CompiledIC_lock);
1780       if (is_static_call) {
1781         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1782         ssc->set_to_clean();
1783       } else {
1784         // compiled, dispatched call (which used to call an interpreted method)
1785         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1786         inline_cache->set_to_clean();
1787       }
1788     }
1789   }
1790 
1791   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1792 
1793 
1794 #ifndef PRODUCT
1795   Atomic::inc(&_wrong_method_ctr);
1796 
1797   if (TraceCallFixup) {
1798     ResourceMark rm(thread);
1799     tty->print("handle_wrong_method reresolving call to");
1800     callee_method->print_short_name(tty);
1801     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1802   }
1803 #endif
1804 
1805   return callee_method;
1806 }
1807 
1808 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1809   // The faulting unsafe accesses should be changed to throw the error
1810   // synchronously instead. Meanwhile the faulting instruction will be
1811   // skipped over (effectively turning it into a no-op) and an
1812   // asynchronous exception will be raised which the thread will
1813   // handle at a later point. If the instruction is a load it will
1814   // return garbage.
1815 
1816   // Request an async exception.
1817   thread->set_pending_unsafe_access_error();
1818 
1819   // Return address of next instruction to execute.
1820   return next_pc;
1821 }
1822 
1823 #ifdef ASSERT
1824 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1825                                                                 const BasicType* sig_bt,
1826                                                                 const VMRegPair* regs) {
1827   ResourceMark rm;
1828   const int total_args_passed = method->size_of_parameters();
1829   const VMRegPair*    regs_with_member_name = regs;
1830         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1831 
1832   const int member_arg_pos = total_args_passed - 1;
1833   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1834   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1835 
1836   const bool is_outgoing = method->is_method_handle_intrinsic();
1837   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1838 
1839   for (int i = 0; i < member_arg_pos; i++) {
1840     VMReg a =    regs_with_member_name[i].first();
1841     VMReg b = regs_without_member_name[i].first();
1842     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1843   }
1844   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1845 }
1846 #endif
1847 
1848 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1849   if (destination != entry_point) {
1850     CodeBlob* callee = CodeCache::find_blob(destination);
1851     // callee == cb seems weird. It means calling interpreter thru stub.
1852     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1853       // static call or optimized virtual
1854       if (TraceCallFixup) {
1855         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1856         moop->print_short_name(tty);
1857         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1858       }
1859       return true;
1860     } else {
1861       if (TraceCallFixup) {
1862         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1863         moop->print_short_name(tty);
1864         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1865       }
1866       // assert is too strong could also be resolve destinations.
1867       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1868     }
1869   } else {
1870     if (TraceCallFixup) {
1871       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1872       moop->print_short_name(tty);
1873       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1874     }
1875   }
1876   return false;
1877 }
1878 
1879 // ---------------------------------------------------------------------------
1880 // We are calling the interpreter via a c2i. Normally this would mean that
1881 // we were called by a compiled method. However we could have lost a race
1882 // where we went int -> i2c -> c2i and so the caller could in fact be
1883 // interpreted. If the caller is compiled we attempt to patch the caller
1884 // so he no longer calls into the interpreter.
1885 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1886   Method* moop(method);
1887 
1888   address entry_point = moop->from_compiled_entry_no_trampoline();
1889 
1890   // It's possible that deoptimization can occur at a call site which hasn't
1891   // been resolved yet, in which case this function will be called from
1892   // an nmethod that has been patched for deopt and we can ignore the
1893   // request for a fixup.
1894   // Also it is possible that we lost a race in that from_compiled_entry
1895   // is now back to the i2c in that case we don't need to patch and if
1896   // we did we'd leap into space because the callsite needs to use
1897   // "to interpreter" stub in order to load up the Method*. Don't
1898   // ask me how I know this...
1899 
1900   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1901   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1902     return;
1903   }
1904 
1905   // The check above makes sure this is a nmethod.
1906   CompiledMethod* nm = cb->as_compiled_method_or_null();
1907   assert(nm, "must be");
1908 
1909   // Get the return PC for the passed caller PC.
1910   address return_pc = caller_pc + frame::pc_return_offset;
1911 
1912   // There is a benign race here. We could be attempting to patch to a compiled
1913   // entry point at the same time the callee is being deoptimized. If that is
1914   // the case then entry_point may in fact point to a c2i and we'd patch the
1915   // call site with the same old data. clear_code will set code() to NULL
1916   // at the end of it. If we happen to see that NULL then we can skip trying
1917   // to patch. If we hit the window where the callee has a c2i in the
1918   // from_compiled_entry and the NULL isn't present yet then we lose the race
1919   // and patch the code with the same old data. Asi es la vida.
1920 
1921   if (moop->code() == NULL) return;
1922 
1923   if (nm->is_in_use()) {
1924 
1925     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1926     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1927     if (NativeCall::is_call_before(return_pc)) {
1928       ResourceMark mark;
1929       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1930       //
1931       // bug 6281185. We might get here after resolving a call site to a vanilla
1932       // virtual call. Because the resolvee uses the verified entry it may then
1933       // see compiled code and attempt to patch the site by calling us. This would
1934       // then incorrectly convert the call site to optimized and its downhill from
1935       // there. If you're lucky you'll get the assert in the bugid, if not you've
1936       // just made a call site that could be megamorphic into a monomorphic site
1937       // for the rest of its life! Just another racing bug in the life of
1938       // fixup_callers_callsite ...
1939       //
1940       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1941       iter.next();
1942       assert(iter.has_current(), "must have a reloc at java call site");
1943       relocInfo::relocType typ = iter.reloc()->type();
1944       if (typ != relocInfo::static_call_type &&
1945            typ != relocInfo::opt_virtual_call_type &&
1946            typ != relocInfo::static_stub_type) {
1947         return;
1948       }
1949       address destination = call->destination();
1950       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1951         call->set_destination_mt_safe(entry_point);
1952       }
1953     }
1954   }
1955 IRT_END
1956 
1957 
1958 // same as JVM_Arraycopy, but called directly from compiled code
1959 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1960                                                 oopDesc* dest, jint dest_pos,
1961                                                 jint length,
1962                                                 JavaThread* thread)) {
1963 #ifndef PRODUCT
1964   _slow_array_copy_ctr++;
1965 #endif
1966   // Check if we have null pointers
1967   if (src == NULL || dest == NULL) {
1968     THROW(vmSymbols::java_lang_NullPointerException());
1969   }
1970   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1971   // even though the copy_array API also performs dynamic checks to ensure
1972   // that src and dest are truly arrays (and are conformable).
1973   // The copy_array mechanism is awkward and could be removed, but
1974   // the compilers don't call this function except as a last resort,
1975   // so it probably doesn't matter.
1976   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1977                                         (arrayOopDesc*)dest, dest_pos,
1978                                         length, thread);
1979 }
1980 JRT_END
1981 
1982 // The caller of generate_class_cast_message() (or one of its callers)
1983 // must use a ResourceMark in order to correctly free the result.
1984 char* SharedRuntime::generate_class_cast_message(
1985     JavaThread* thread, Klass* caster_klass) {
1986 
1987   // Get target class name from the checkcast instruction
1988   vframeStream vfst(thread, true);
1989   assert(!vfst.at_end(), "Java frame must exist");
1990   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1991   constantPoolHandle cpool(thread, vfst.method()->constants());
1992   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1993   Symbol* target_klass_name = NULL;
1994   if (target_klass == NULL) {
1995     // This klass should be resolved, but just in case, get the name in the klass slot.
1996     target_klass_name = cpool->klass_name_at(cc.index());
1997   }
1998   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1999 }
2000 
2001 
2002 // The caller of generate_class_cast_message() (or one of its callers)
2003 // must use a ResourceMark in order to correctly free the result.
2004 char* SharedRuntime::generate_class_cast_message(
2005     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2006 
2007   const char* caster_name = caster_klass->class_loader_and_module_name();
2008 
2009   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2010   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2011                                                    target_klass->class_loader_and_module_name();
2012 
2013   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2014 
2015   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2016   if (message == NULL) {
2017     // Shouldn't happen, but don't cause even more problems if it does
2018     message = const_cast<char*>(caster_klass->external_name());
2019   } else {
2020     jio_snprintf(message,
2021                  msglen,
2022                  "%s cannot be cast to %s",
2023                  caster_name,
2024                  target_name);
2025   }
2026   return message;
2027 }
2028 
2029 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2030   (void) JavaThread::current()->reguard_stack();
2031 JRT_END
2032 
2033 
2034 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2035 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2036   // Disable ObjectSynchronizer::quick_enter() in default config
2037   // on AARCH64 and ARM until JDK-8153107 is resolved.
2038   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2039       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2040       !SafepointSynchronize::is_synchronizing()) {
2041     // Only try quick_enter() if we're not trying to reach a safepoint
2042     // so that the calling thread reaches the safepoint more quickly.
2043     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2044   }
2045   // NO_ASYNC required because an async exception on the state transition destructor
2046   // would leave you with the lock held and it would never be released.
2047   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2048   // and the model is that an exception implies the method failed.
2049   JRT_BLOCK_NO_ASYNC
2050   oop obj(_obj);
2051   if (PrintBiasedLockingStatistics) {
2052     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2053   }
2054   Handle h_obj(THREAD, obj);
2055   if (UseBiasedLocking) {
2056     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2057     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2058   } else {
2059     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2060   }
2061   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2062   JRT_BLOCK_END
2063 JRT_END
2064 
2065 // Handles the uncommon cases of monitor unlocking in compiled code
2066 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2067    oop obj(_obj);
2068   assert(JavaThread::current() == THREAD, "invariant");
2069   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2070   // testing was unable to ever fire the assert that guarded it so I have removed it.
2071   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2072 #undef MIGHT_HAVE_PENDING
2073 #ifdef MIGHT_HAVE_PENDING
2074   // Save and restore any pending_exception around the exception mark.
2075   // While the slow_exit must not throw an exception, we could come into
2076   // this routine with one set.
2077   oop pending_excep = NULL;
2078   const char* pending_file;
2079   int pending_line;
2080   if (HAS_PENDING_EXCEPTION) {
2081     pending_excep = PENDING_EXCEPTION;
2082     pending_file  = THREAD->exception_file();
2083     pending_line  = THREAD->exception_line();
2084     CLEAR_PENDING_EXCEPTION;
2085   }
2086 #endif /* MIGHT_HAVE_PENDING */
2087 
2088   {
2089     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2090     EXCEPTION_MARK;
2091     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2092   }
2093 
2094 #ifdef MIGHT_HAVE_PENDING
2095   if (pending_excep != NULL) {
2096     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2097   }
2098 #endif /* MIGHT_HAVE_PENDING */
2099 JRT_END
2100 
2101 #ifndef PRODUCT
2102 
2103 void SharedRuntime::print_statistics() {
2104   ttyLocker ttyl;
2105   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2106 
2107   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2108 
2109   SharedRuntime::print_ic_miss_histogram();
2110 
2111   if (CountRemovableExceptions) {
2112     if (_nof_removable_exceptions > 0) {
2113       Unimplemented(); // this counter is not yet incremented
2114       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2115     }
2116   }
2117 
2118   // Dump the JRT_ENTRY counters
2119   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2120   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2121   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2122   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2123   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2124   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2125   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2126 
2127   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2128   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2129   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2130   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2131   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2132 
2133   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2134   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2135   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2136   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2137   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2138   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2139   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2140   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2141   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2142   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2143   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2144   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2145   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2146   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2147   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2148   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2149 
2150   AdapterHandlerLibrary::print_statistics();
2151 
2152   if (xtty != NULL)  xtty->tail("statistics");
2153 }
2154 
2155 inline double percent(int x, int y) {
2156   return 100.0 * x / MAX2(y, 1);
2157 }
2158 
2159 class MethodArityHistogram {
2160  public:
2161   enum { MAX_ARITY = 256 };
2162  private:
2163   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2164   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2165   static int _max_arity;                      // max. arity seen
2166   static int _max_size;                       // max. arg size seen
2167 
2168   static void add_method_to_histogram(nmethod* nm) {
2169     Method* m = nm->method();
2170     ArgumentCount args(m->signature());
2171     int arity   = args.size() + (m->is_static() ? 0 : 1);
2172     int argsize = m->size_of_parameters();
2173     arity   = MIN2(arity, MAX_ARITY-1);
2174     argsize = MIN2(argsize, MAX_ARITY-1);
2175     int count = nm->method()->compiled_invocation_count();
2176     _arity_histogram[arity]  += count;
2177     _size_histogram[argsize] += count;
2178     _max_arity = MAX2(_max_arity, arity);
2179     _max_size  = MAX2(_max_size, argsize);
2180   }
2181 
2182   void print_histogram_helper(int n, int* histo, const char* name) {
2183     const int N = MIN2(5, n);
2184     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2185     double sum = 0;
2186     double weighted_sum = 0;
2187     int i;
2188     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2189     double rest = sum;
2190     double percent = sum / 100;
2191     for (i = 0; i <= N; i++) {
2192       rest -= histo[i];
2193       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2194     }
2195     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2196     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2197   }
2198 
2199   void print_histogram() {
2200     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2201     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2202     tty->print_cr("\nSame for parameter size (in words):");
2203     print_histogram_helper(_max_size, _size_histogram, "size");
2204     tty->cr();
2205   }
2206 
2207  public:
2208   MethodArityHistogram() {
2209     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2210     _max_arity = _max_size = 0;
2211     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2212     CodeCache::nmethods_do(add_method_to_histogram);
2213     print_histogram();
2214   }
2215 };
2216 
2217 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2218 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2219 int MethodArityHistogram::_max_arity;
2220 int MethodArityHistogram::_max_size;
2221 
2222 void SharedRuntime::print_call_statistics(int comp_total) {
2223   tty->print_cr("Calls from compiled code:");
2224   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2225   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2226   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2227   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2228   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2229   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2230   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2231   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2232   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2233   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2234   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2235   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2236   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2237   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2238   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2239   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2240   tty->cr();
2241   tty->print_cr("Note 1: counter updates are not MT-safe.");
2242   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2243   tty->print_cr("        %% in nested categories are relative to their category");
2244   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2245   tty->cr();
2246 
2247   MethodArityHistogram h;
2248 }
2249 #endif
2250 
2251 
2252 // A simple wrapper class around the calling convention information
2253 // that allows sharing of adapters for the same calling convention.
2254 class AdapterFingerPrint : public CHeapObj<mtCode> {
2255  private:
2256   enum {
2257     _basic_type_bits = 4,
2258     _basic_type_mask = right_n_bits(_basic_type_bits),
2259     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2260     _compact_int_count = 3
2261   };
2262   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2263   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2264 
2265   union {
2266     int  _compact[_compact_int_count];
2267     int* _fingerprint;
2268   } _value;
2269   int _length; // A negative length indicates the fingerprint is in the compact form,
2270                // Otherwise _value._fingerprint is the array.
2271 
2272   // Remap BasicTypes that are handled equivalently by the adapters.
2273   // These are correct for the current system but someday it might be
2274   // necessary to make this mapping platform dependent.
2275   static int adapter_encoding(BasicType in, bool is_valuetype) {
2276     switch (in) {
2277       case T_BOOLEAN:
2278       case T_BYTE:
2279       case T_SHORT:
2280       case T_CHAR: {
2281         if (is_valuetype) {
2282           // Do not widen value type field types
2283           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2284           return in;
2285         } else {
2286           // They are all promoted to T_INT in the calling convention
2287           return T_INT;
2288         }
2289       }
2290 
2291       case T_VALUETYPE: {
2292         // If value types are passed as fields, return 'in' to differentiate
2293         // between a T_VALUETYPE and a T_OBJECT in the signature.
2294         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2295       }
2296 
2297       case T_VALUETYPEPTR:
2298         return T_VALUETYPE; // TODO hack because we don't have enough bits to represent T_VALUETYPEPTR.
2299 
2300       case T_OBJECT:
2301       case T_ARRAY:
2302         // In other words, we assume that any register good enough for
2303         // an int or long is good enough for a managed pointer.
2304 #ifdef _LP64
2305         return T_LONG;
2306 #else
2307         return T_INT;
2308 #endif
2309 
2310       case T_INT:
2311       case T_LONG:
2312       case T_FLOAT:
2313       case T_DOUBLE:
2314       case T_VOID:
2315         return in;
2316 
2317       default:
2318         ShouldNotReachHere();
2319         return T_CONFLICT;
2320     }
2321   }
2322 
2323  public:
2324   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2325     // The fingerprint is based on the BasicType signature encoded
2326     // into an array of ints with eight entries per int.
2327     int* ptr;
2328     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2329     if (len <= _compact_int_count) {
2330       assert(_compact_int_count == 3, "else change next line");
2331       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2332       // Storing the signature encoded as signed chars hits about 98%
2333       // of the time.
2334       _length = -len;
2335       ptr = _value._compact;
2336     } else {
2337       _length = len;
2338       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2339       ptr = _value._fingerprint;
2340     }
2341 
2342     // Now pack the BasicTypes with 8 per int
2343     int sig_index = 0;
2344     BasicType prev_sbt = T_ILLEGAL;
2345     int vt_count = 0;
2346     for (int index = 0; index < len; index++) {
2347       int value = 0;
2348       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2349         int bt = 0;
2350         if (sig_index < total_args_passed) {
2351           BasicType sbt = sig_bt[sig_index++];
2352           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2353             // Found start of value type in signature
2354             vt_count++;
2355           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2356                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2357             // Found end of value type in signature
2358             vt_count--;
2359             assert(vt_count >= 0, "invalid vt_count");
2360           }
2361           bt = adapter_encoding(sbt, vt_count > 0);
2362           prev_sbt = sbt;
2363         }
2364         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2365         value = (value << _basic_type_bits) | bt;
2366       }
2367       ptr[index] = value;
2368     }
2369     assert(vt_count == 0, "invalid vt_count");
2370   }
2371 
2372   ~AdapterFingerPrint() {
2373     if (_length > 0) {
2374       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2375     }
2376   }
2377 
2378   int value(int index) {
2379     if (_length < 0) {
2380       return _value._compact[index];
2381     }
2382     return _value._fingerprint[index];
2383   }
2384   int length() {
2385     if (_length < 0) return -_length;
2386     return _length;
2387   }
2388 
2389   bool is_compact() {
2390     return _length <= 0;
2391   }
2392 
2393   unsigned int compute_hash() {
2394     int hash = 0;
2395     for (int i = 0; i < length(); i++) {
2396       int v = value(i);
2397       hash = (hash << 8) ^ v ^ (hash >> 5);
2398     }
2399     return (unsigned int)hash;
2400   }
2401 
2402   const char* as_string() {
2403     stringStream st;
2404     st.print("0x");
2405     for (int i = 0; i < length(); i++) {
2406       st.print("%08x", value(i));
2407     }
2408     return st.as_string();
2409   }
2410 
2411   bool equals(AdapterFingerPrint* other) {
2412     if (other->_length != _length) {
2413       return false;
2414     }
2415     if (_length < 0) {
2416       assert(_compact_int_count == 3, "else change next line");
2417       return _value._compact[0] == other->_value._compact[0] &&
2418              _value._compact[1] == other->_value._compact[1] &&
2419              _value._compact[2] == other->_value._compact[2];
2420     } else {
2421       for (int i = 0; i < _length; i++) {
2422         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2423           return false;
2424         }
2425       }
2426     }
2427     return true;
2428   }
2429 };
2430 
2431 
2432 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2433 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2434   friend class AdapterHandlerTableIterator;
2435 
2436  private:
2437 
2438 #ifndef PRODUCT
2439   static int _lookups; // number of calls to lookup
2440   static int _buckets; // number of buckets checked
2441   static int _equals;  // number of buckets checked with matching hash
2442   static int _hits;    // number of successful lookups
2443   static int _compact; // number of equals calls with compact signature
2444 #endif
2445 
2446   AdapterHandlerEntry* bucket(int i) {
2447     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2448   }
2449 
2450  public:
2451   AdapterHandlerTable()
2452     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2453 
2454   // Create a new entry suitable for insertion in the table
2455   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2456     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2457     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2458     if (DumpSharedSpaces) {
2459       ((CDSAdapterHandlerEntry*)entry)->init();
2460     }
2461     return entry;
2462   }
2463 
2464   // Insert an entry into the table
2465   void add(AdapterHandlerEntry* entry) {
2466     int index = hash_to_index(entry->hash());
2467     add_entry(index, entry);
2468   }
2469 
2470   void free_entry(AdapterHandlerEntry* entry) {
2471     entry->deallocate();
2472     BasicHashtable<mtCode>::free_entry(entry);
2473   }
2474 
2475   // Find a entry with the same fingerprint if it exists
2476   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2477     NOT_PRODUCT(_lookups++);
2478     AdapterFingerPrint fp(total_args_passed, sig_bt);
2479     unsigned int hash = fp.compute_hash();
2480     int index = hash_to_index(hash);
2481     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2482       NOT_PRODUCT(_buckets++);
2483       if (e->hash() == hash) {
2484         NOT_PRODUCT(_equals++);
2485         if (fp.equals(e->fingerprint())) {
2486 #ifndef PRODUCT
2487           if (fp.is_compact()) _compact++;
2488           _hits++;
2489 #endif
2490           return e;
2491         }
2492       }
2493     }
2494     return NULL;
2495   }
2496 
2497 #ifndef PRODUCT
2498   void print_statistics() {
2499     ResourceMark rm;
2500     int longest = 0;
2501     int empty = 0;
2502     int total = 0;
2503     int nonempty = 0;
2504     for (int index = 0; index < table_size(); index++) {
2505       int count = 0;
2506       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2507         count++;
2508       }
2509       if (count != 0) nonempty++;
2510       if (count == 0) empty++;
2511       if (count > longest) longest = count;
2512       total += count;
2513     }
2514     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2515                   empty, longest, total, total / (double)nonempty);
2516     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2517                   _lookups, _buckets, _equals, _hits, _compact);
2518   }
2519 #endif
2520 };
2521 
2522 
2523 #ifndef PRODUCT
2524 
2525 int AdapterHandlerTable::_lookups;
2526 int AdapterHandlerTable::_buckets;
2527 int AdapterHandlerTable::_equals;
2528 int AdapterHandlerTable::_hits;
2529 int AdapterHandlerTable::_compact;
2530 
2531 #endif
2532 
2533 class AdapterHandlerTableIterator : public StackObj {
2534  private:
2535   AdapterHandlerTable* _table;
2536   int _index;
2537   AdapterHandlerEntry* _current;
2538 
2539   void scan() {
2540     while (_index < _table->table_size()) {
2541       AdapterHandlerEntry* a = _table->bucket(_index);
2542       _index++;
2543       if (a != NULL) {
2544         _current = a;
2545         return;
2546       }
2547     }
2548   }
2549 
2550  public:
2551   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2552     scan();
2553   }
2554   bool has_next() {
2555     return _current != NULL;
2556   }
2557   AdapterHandlerEntry* next() {
2558     if (_current != NULL) {
2559       AdapterHandlerEntry* result = _current;
2560       _current = _current->next();
2561       if (_current == NULL) scan();
2562       return result;
2563     } else {
2564       return NULL;
2565     }
2566   }
2567 };
2568 
2569 
2570 // ---------------------------------------------------------------------------
2571 // Implementation of AdapterHandlerLibrary
2572 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2573 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2574 const int AdapterHandlerLibrary_size = 16*K;
2575 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2576 
2577 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2578   // Should be called only when AdapterHandlerLibrary_lock is active.
2579   if (_buffer == NULL) // Initialize lazily
2580       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2581   return _buffer;
2582 }
2583 
2584 extern "C" void unexpected_adapter_call() {
2585   ShouldNotCallThis();
2586 }
2587 
2588 void AdapterHandlerLibrary::initialize() {
2589   if (_adapters != NULL) return;
2590   _adapters = new AdapterHandlerTable();
2591 
2592   // Create a special handler for abstract methods.  Abstract methods
2593   // are never compiled so an i2c entry is somewhat meaningless, but
2594   // throw AbstractMethodError just in case.
2595   // Pass wrong_method_abstract for the c2i transitions to return
2596   // AbstractMethodError for invalid invocations.
2597   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2598   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2599                                                               StubRoutines::throw_AbstractMethodError_entry(),
2600                                                               wrong_method_abstract, wrong_method_abstract);
2601 }
2602 
2603 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2604                                                       address i2c_entry,
2605                                                       address c2i_entry,
2606                                                       address c2i_unverified_entry,
2607                                                       Symbol* sig_extended) {
2608   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2609 }
2610 
2611 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method, TRAPS) {
2612   AdapterHandlerEntry* entry = get_adapter0(method, CHECK_NULL);
2613   if (method->is_shared()) {
2614     // See comments around Method::link_method()
2615     MutexLocker mu(AdapterHandlerLibrary_lock);
2616     if (method->adapter() == NULL) {
2617       method->update_adapter_trampoline(entry);
2618     }
2619     address trampoline = method->from_compiled_entry();
2620     if (*(int*)trampoline == 0) {
2621       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2622       MacroAssembler _masm(&buffer);
2623       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2624       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2625 
2626       if (PrintInterpreter) {
2627         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2628       }
2629     }
2630   }
2631 
2632   return entry;
2633 }
2634 
2635 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method, TRAPS) {
2636   // Use customized signature handler.  Need to lock around updates to
2637   // the AdapterHandlerTable (it is not safe for concurrent readers
2638   // and a single writer: this could be fixed if it becomes a
2639   // problem).
2640 
2641   ResourceMark rm;
2642 
2643   NOT_PRODUCT(int insts_size = 0);
2644   AdapterBlob* new_adapter = NULL;
2645   AdapterHandlerEntry* entry = NULL;
2646   AdapterFingerPrint* fingerprint = NULL;
2647   {
2648     MutexLocker mu(AdapterHandlerLibrary_lock);
2649     // make sure data structure is initialized
2650     initialize();
2651 
2652     if (method->is_abstract()) {
2653       return _abstract_method_handler;
2654     }
2655 
2656     // Fill in the signature array, for the calling-convention call.
2657     GrowableArray<SigEntry> sig_extended;
2658     {
2659       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2660       Thread* THREAD = Thread::current();
2661       Klass* holder = method->method_holder();
2662       GrowableArray<BasicType> sig_bt_tmp;
2663 
2664       int i = 0;
2665       if (!method->is_static()) {  // Pass in receiver first
2666         if (holder->is_value()) {
2667           ValueKlass* vk = ValueKlass::cast(holder);
2668           if (!ValueTypePassFieldsAsArgs) {
2669             // If we don't pass value types as arguments or if the holder of
2670             // the method is __Value, we must pass a reference.
2671             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2672           } else {
2673             const Array<SigEntry>* sig_vk = vk->extended_sig();
2674             sig_extended.appendAll(sig_vk);
2675           }
2676         } else {
2677           sig_extended.push(SigEntry(T_OBJECT));
2678         }
2679       }
2680       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2681         Symbol* sym = ss.as_symbol_or_null();
2682         if (sym != NULL && method->method_holder()->is_declared_value_type(sym)) {
2683           if (!ValueTypePassFieldsAsArgs) {
2684             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2685           } else {
2686             // Method handle intrinsics with a __Value argument may be created during
2687             // compilation. Only do a full system dictionary lookup if the argument name
2688             // is not __Value, to avoid lookups from the compiler thread.
2689             Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2690                                    Handle(THREAD, holder->protection_domain()),
2691                                    SignatureStream::ReturnNull, CHECK_NULL);
2692             const Array<SigEntry>* sig_vk = ValueKlass::cast(k)->extended_sig();
2693             sig_extended.appendAll(sig_vk);
2694           }
2695         } else {
2696           sig_extended.push(SigEntry(ss.type()));
2697           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2698             sig_extended.push(SigEntry(T_VOID));
2699           }
2700         }
2701       }
2702     }
2703 
2704     int total_args_passed_cc = ValueTypePassFieldsAsArgs ? SigEntry::count_fields(sig_extended) : sig_extended.length();
2705     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2706     SigEntry::fill_sig_bt(sig_extended, sig_bt_cc, total_args_passed_cc, ValueTypePassFieldsAsArgs);
2707 
2708     int total_args_passed_fp = sig_extended.length();
2709     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2710     for (int i = 0; i < sig_extended.length(); i++) {
2711       sig_bt_fp[i] = sig_extended.at(i)._bt;
2712     }
2713 
2714     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2715 
2716     // Lookup method signature's fingerprint
2717     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2718 
2719 #ifdef ASSERT
2720     AdapterHandlerEntry* shared_entry = NULL;
2721     // Start adapter sharing verification only after the VM is booted.
2722     if (VerifyAdapterSharing && (entry != NULL)) {
2723       shared_entry = entry;
2724       entry = NULL;
2725     }
2726 #endif
2727 
2728     if (entry != NULL) {
2729       return entry;
2730     }
2731 
2732     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2733     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2734 
2735     // Make a C heap allocated version of the fingerprint to store in the adapter
2736     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2737 
2738     // StubRoutines::code2() is initialized after this function can be called. As a result,
2739     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2740     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2741     // stub that ensure that an I2C stub is called from an interpreter frame.
2742     bool contains_all_checks = StubRoutines::code2() != NULL;
2743 
2744     // Create I2C & C2I handlers
2745     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2746     if (buf != NULL) {
2747       CodeBuffer buffer(buf);
2748       short buffer_locs[20];
2749       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2750                                              sizeof(buffer_locs)/sizeof(relocInfo));
2751 
2752       MacroAssembler _masm(&buffer);
2753       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2754                                                      comp_args_on_stack,
2755                                                      sig_extended,
2756                                                      regs,
2757                                                      fingerprint,
2758                                                      new_adapter);
2759 #ifdef ASSERT
2760       if (VerifyAdapterSharing) {
2761         if (shared_entry != NULL) {
2762           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2763           // Release the one just created and return the original
2764           _adapters->free_entry(entry);
2765           return shared_entry;
2766         } else  {
2767           entry->save_code(buf->code_begin(), buffer.insts_size());
2768         }
2769       }
2770 #endif
2771 
2772       NOT_PRODUCT(insts_size = buffer.insts_size());
2773     }
2774     if (new_adapter == NULL) {
2775       // CodeCache is full, disable compilation
2776       // Ought to log this but compile log is only per compile thread
2777       // and we're some non descript Java thread.
2778       return NULL; // Out of CodeCache space
2779     }
2780     entry->relocate(new_adapter->content_begin());
2781 #ifndef PRODUCT
2782     // debugging suppport
2783     if (PrintAdapterHandlers || PrintStubCode) {
2784       ttyLocker ttyl;
2785       entry->print_adapter_on(tty);
2786       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2787                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2788                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2789       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2790       if (Verbose || PrintStubCode) {
2791         address first_pc = entry->base_address();
2792         if (first_pc != NULL) {
2793           Disassembler::decode(first_pc, first_pc + insts_size);
2794           tty->cr();
2795         }
2796       }
2797     }
2798 #endif
2799     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2800     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2801     if (contains_all_checks || !VerifyAdapterCalls) {
2802       _adapters->add(entry);
2803     }
2804   }
2805   // Outside of the lock
2806   if (new_adapter != NULL) {
2807     char blob_id[256];
2808     jio_snprintf(blob_id,
2809                  sizeof(blob_id),
2810                  "%s(%s)@" PTR_FORMAT,
2811                  new_adapter->name(),
2812                  fingerprint->as_string(),
2813                  new_adapter->content_begin());
2814     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2815 
2816     if (JvmtiExport::should_post_dynamic_code_generated()) {
2817       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2818     }
2819   }
2820   return entry;
2821 }
2822 
2823 address AdapterHandlerEntry::base_address() {
2824   address base = _i2c_entry;
2825   if (base == NULL)  base = _c2i_entry;
2826   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2827   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2828   return base;
2829 }
2830 
2831 void AdapterHandlerEntry::relocate(address new_base) {
2832   address old_base = base_address();
2833   assert(old_base != NULL, "");
2834   ptrdiff_t delta = new_base - old_base;
2835   if (_i2c_entry != NULL)
2836     _i2c_entry += delta;
2837   if (_c2i_entry != NULL)
2838     _c2i_entry += delta;
2839   if (_c2i_unverified_entry != NULL)
2840     _c2i_unverified_entry += delta;
2841   assert(base_address() == new_base, "");
2842 }
2843 
2844 
2845 void AdapterHandlerEntry::deallocate() {
2846   delete _fingerprint;
2847 #ifdef ASSERT
2848   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2849 #endif
2850 }
2851 
2852 
2853 #ifdef ASSERT
2854 // Capture the code before relocation so that it can be compared
2855 // against other versions.  If the code is captured after relocation
2856 // then relative instructions won't be equivalent.
2857 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2858   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2859   _saved_code_length = length;
2860   memcpy(_saved_code, buffer, length);
2861 }
2862 
2863 
2864 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2865   if (length != _saved_code_length) {
2866     return false;
2867   }
2868 
2869   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2870 }
2871 #endif
2872 
2873 
2874 /**
2875  * Create a native wrapper for this native method.  The wrapper converts the
2876  * Java-compiled calling convention to the native convention, handles
2877  * arguments, and transitions to native.  On return from the native we transition
2878  * back to java blocking if a safepoint is in progress.
2879  */
2880 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2881   ResourceMark rm;
2882   nmethod* nm = NULL;
2883 
2884   assert(method->is_native(), "must be native");
2885   assert(method->is_method_handle_intrinsic() ||
2886          method->has_native_function(), "must have something valid to call!");
2887 
2888   {
2889     // Perform the work while holding the lock, but perform any printing outside the lock
2890     MutexLocker mu(AdapterHandlerLibrary_lock);
2891     // See if somebody beat us to it
2892     if (method->code() != NULL) {
2893       return;
2894     }
2895 
2896     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2897     assert(compile_id > 0, "Must generate native wrapper");
2898 
2899 
2900     ResourceMark rm;
2901     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2902     if (buf != NULL) {
2903       CodeBuffer buffer(buf);
2904       double locs_buf[20];
2905       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2906       MacroAssembler _masm(&buffer);
2907 
2908       // Fill in the signature array, for the calling-convention call.
2909       const int total_args_passed = method->size_of_parameters();
2910 
2911       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2912       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2913       int i=0;
2914       if (!method->is_static())  // Pass in receiver first
2915         sig_bt[i++] = T_OBJECT;
2916       SignatureStream ss(method->signature());
2917       for (; !ss.at_return_type(); ss.next()) {
2918         BasicType bt = ss.type();
2919         if (bt == T_VALUETYPE) {
2920 #ifdef ASSERT
2921           Thread* THREAD = Thread::current();
2922           // Avoid class loading from compiler thread
2923           if (THREAD->can_call_java()) {
2924             Handle class_loader(THREAD, method->method_holder()->class_loader());
2925             Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2926             Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2927             assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
2928           }
2929 #endif
2930           bt = T_VALUETYPEPTR;
2931         }
2932         sig_bt[i++] = bt;  // Collect remaining bits of signature
2933         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2934           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2935       }
2936       assert(i == total_args_passed, "");
2937       BasicType ret_type = ss.type();
2938 
2939       // Now get the compiled-Java layout as input (or output) arguments.
2940       // NOTE: Stubs for compiled entry points of method handle intrinsics
2941       // are just trampolines so the argument registers must be outgoing ones.
2942       const bool is_outgoing = method->is_method_handle_intrinsic();
2943       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2944 
2945       // Generate the compiled-to-native wrapper code
2946       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2947 
2948       if (nm != NULL) {
2949         method->set_code(method, nm);
2950 
2951         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2952         if (directive->PrintAssemblyOption) {
2953           nm->print_code();
2954         }
2955         DirectivesStack::release(directive);
2956       }
2957     }
2958   } // Unlock AdapterHandlerLibrary_lock
2959 
2960 
2961   // Install the generated code.
2962   if (nm != NULL) {
2963     const char *msg = method->is_static() ? "(static)" : "";
2964     CompileTask::print_ul(nm, msg);
2965     if (PrintCompilation) {
2966       ttyLocker ttyl;
2967       CompileTask::print(tty, nm, msg);
2968     }
2969     nm->post_compiled_method_load_event();
2970   }
2971 }
2972 
2973 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2974   assert(thread == JavaThread::current(), "must be");
2975   // The code is about to enter a JNI lazy critical native method and
2976   // _needs_gc is true, so if this thread is already in a critical
2977   // section then just return, otherwise this thread should block
2978   // until needs_gc has been cleared.
2979   if (thread->in_critical()) {
2980     return;
2981   }
2982   // Lock and unlock a critical section to give the system a chance to block
2983   GCLocker::lock_critical(thread);
2984   GCLocker::unlock_critical(thread);
2985 JRT_END
2986 
2987 // -------------------------------------------------------------------------
2988 // Java-Java calling convention
2989 // (what you use when Java calls Java)
2990 
2991 //------------------------------name_for_receiver----------------------------------
2992 // For a given signature, return the VMReg for parameter 0.
2993 VMReg SharedRuntime::name_for_receiver() {
2994   VMRegPair regs;
2995   BasicType sig_bt = T_OBJECT;
2996   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2997   // Return argument 0 register.  In the LP64 build pointers
2998   // take 2 registers, but the VM wants only the 'main' name.
2999   return regs.first();
3000 }
3001 
3002 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3003   // This method is returning a data structure allocating as a
3004   // ResourceObject, so do not put any ResourceMarks in here.
3005   char *s = sig->as_C_string();
3006   int len = (int)strlen(s);
3007   s++; len--;                   // Skip opening paren
3008 
3009   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3010   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3011   int cnt = 0;
3012   if (has_receiver) {
3013     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3014   }
3015 
3016   while (*s != ')') {          // Find closing right paren
3017     switch (*s++) {            // Switch on signature character
3018     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3019     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3020     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3021     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3022     case 'I': sig_bt[cnt++] = T_INT;     break;
3023     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3024     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3025     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3026     case 'V': sig_bt[cnt++] = T_VOID;    break;
3027     case 'L':                   // Oop
3028       while (*s++ != ';');   // Skip signature
3029       sig_bt[cnt++] = T_OBJECT;
3030       break;
3031     case '[': {                 // Array
3032       do {                      // Skip optional size
3033         while (*s >= '0' && *s <= '9') s++;
3034       } while (*s++ == '[');   // Nested arrays?
3035       // Skip element type
3036       if (s[-1] == 'L')
3037         while (*s++ != ';'); // Skip signature
3038       sig_bt[cnt++] = T_ARRAY;
3039       break;
3040     }
3041     default : ShouldNotReachHere();
3042     }
3043   }
3044 
3045   if (has_appendix) {
3046     sig_bt[cnt++] = T_OBJECT;
3047   }
3048 
3049   assert(cnt < 256, "grow table size");
3050 
3051   int comp_args_on_stack;
3052   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3053 
3054   // the calling convention doesn't count out_preserve_stack_slots so
3055   // we must add that in to get "true" stack offsets.
3056 
3057   if (comp_args_on_stack) {
3058     for (int i = 0; i < cnt; i++) {
3059       VMReg reg1 = regs[i].first();
3060       if (reg1->is_stack()) {
3061         // Yuck
3062         reg1 = reg1->bias(out_preserve_stack_slots());
3063       }
3064       VMReg reg2 = regs[i].second();
3065       if (reg2->is_stack()) {
3066         // Yuck
3067         reg2 = reg2->bias(out_preserve_stack_slots());
3068       }
3069       regs[i].set_pair(reg2, reg1);
3070     }
3071   }
3072 
3073   // results
3074   *arg_size = cnt;
3075   return regs;
3076 }
3077 
3078 // OSR Migration Code
3079 //
3080 // This code is used convert interpreter frames into compiled frames.  It is
3081 // called from very start of a compiled OSR nmethod.  A temp array is
3082 // allocated to hold the interesting bits of the interpreter frame.  All
3083 // active locks are inflated to allow them to move.  The displaced headers and
3084 // active interpreter locals are copied into the temp buffer.  Then we return
3085 // back to the compiled code.  The compiled code then pops the current
3086 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3087 // copies the interpreter locals and displaced headers where it wants.
3088 // Finally it calls back to free the temp buffer.
3089 //
3090 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3091 
3092 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3093 
3094   //
3095   // This code is dependent on the memory layout of the interpreter local
3096   // array and the monitors. On all of our platforms the layout is identical
3097   // so this code is shared. If some platform lays the their arrays out
3098   // differently then this code could move to platform specific code or
3099   // the code here could be modified to copy items one at a time using
3100   // frame accessor methods and be platform independent.
3101 
3102   frame fr = thread->last_frame();
3103   assert(fr.is_interpreted_frame(), "");
3104   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3105 
3106   // Figure out how many monitors are active.
3107   int active_monitor_count = 0;
3108   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3109        kptr < fr.interpreter_frame_monitor_begin();
3110        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3111     if (kptr->obj() != NULL) active_monitor_count++;
3112   }
3113 
3114   // QQQ we could place number of active monitors in the array so that compiled code
3115   // could double check it.
3116 
3117   Method* moop = fr.interpreter_frame_method();
3118   int max_locals = moop->max_locals();
3119   // Allocate temp buffer, 1 word per local & 2 per active monitor
3120   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3121   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3122 
3123   // Copy the locals.  Order is preserved so that loading of longs works.
3124   // Since there's no GC I can copy the oops blindly.
3125   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3126   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3127                        (HeapWord*)&buf[0],
3128                        max_locals);
3129 
3130   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3131   int i = max_locals;
3132   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3133        kptr2 < fr.interpreter_frame_monitor_begin();
3134        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3135     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3136       BasicLock *lock = kptr2->lock();
3137       // Inflate so the displaced header becomes position-independent
3138       if (lock->displaced_header()->is_unlocked())
3139         ObjectSynchronizer::inflate_helper(kptr2->obj());
3140       // Now the displaced header is free to move
3141       buf[i++] = (intptr_t)lock->displaced_header();
3142       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3143     }
3144   }
3145   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3146 
3147   return buf;
3148 JRT_END
3149 
3150 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3151   FREE_C_HEAP_ARRAY(intptr_t, buf);
3152 JRT_END
3153 
3154 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3155   AdapterHandlerTableIterator iter(_adapters);
3156   while (iter.has_next()) {
3157     AdapterHandlerEntry* a = iter.next();
3158     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3159   }
3160   return false;
3161 }
3162 
3163 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3164   AdapterHandlerTableIterator iter(_adapters);
3165   while (iter.has_next()) {
3166     AdapterHandlerEntry* a = iter.next();
3167     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3168       st->print("Adapter for signature: ");
3169       a->print_adapter_on(tty);
3170       return;
3171     }
3172   }
3173   assert(false, "Should have found handler");
3174 }
3175 
3176 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3177   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3178                p2i(this), fingerprint()->as_string(),
3179                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3180 
3181 }
3182 
3183 #if INCLUDE_CDS
3184 
3185 void CDSAdapterHandlerEntry::init() {
3186   assert(DumpSharedSpaces, "used during dump time only");
3187   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3188   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3189 };
3190 
3191 #endif // INCLUDE_CDS
3192 
3193 
3194 #ifndef PRODUCT
3195 
3196 void AdapterHandlerLibrary::print_statistics() {
3197   _adapters->print_statistics();
3198 }
3199 
3200 #endif /* PRODUCT */
3201 
3202 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3203   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3204   if (thread->stack_reserved_zone_disabled()) {
3205   thread->enable_stack_reserved_zone();
3206   }
3207   thread->set_reserved_stack_activation(thread->stack_base());
3208 JRT_END
3209 
3210 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3211   ResourceMark rm(thread);
3212   frame activation;
3213   CompiledMethod* nm = NULL;
3214   int count = 1;
3215 
3216   assert(fr.is_java_frame(), "Must start on Java frame");
3217 
3218   while (true) {
3219     Method* method = NULL;
3220     bool found = false;
3221     if (fr.is_interpreted_frame()) {
3222       method = fr.interpreter_frame_method();
3223       if (method != NULL && method->has_reserved_stack_access()) {
3224         found = true;
3225       }
3226     } else {
3227       CodeBlob* cb = fr.cb();
3228       if (cb != NULL && cb->is_compiled()) {
3229         nm = cb->as_compiled_method();
3230         method = nm->method();
3231         // scope_desc_near() must be used, instead of scope_desc_at() because on
3232         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3233         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3234           method = sd->method();
3235           if (method != NULL && method->has_reserved_stack_access()) {
3236             found = true;
3237       }
3238     }
3239       }
3240     }
3241     if (found) {
3242       activation = fr;
3243       warning("Potentially dangerous stack overflow in "
3244               "ReservedStackAccess annotated method %s [%d]",
3245               method->name_and_sig_as_C_string(), count++);
3246       EventReservedStackActivation event;
3247       if (event.should_commit()) {
3248         event.set_method(method);
3249         event.commit();
3250       }
3251     }
3252     if (fr.is_first_java_frame()) {
3253       break;
3254     } else {
3255       fr = fr.java_sender();
3256     }
3257   }
3258   return activation;
3259 }
3260 
3261 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3262   // After any safepoint, just before going back to compiled code,
3263   // we inform the GC that we will be doing initializing writes to
3264   // this object in the future without emitting card-marks, so
3265   // GC may take any compensating steps.
3266 
3267   oop new_obj = thread->vm_result();
3268   if (new_obj == NULL) return;
3269 
3270   BarrierSet *bs = BarrierSet::barrier_set();
3271   bs->on_slowpath_allocation_exit(thread, new_obj);
3272 }
3273 
3274 // We are at a compiled code to interpreter call. We need backing
3275 // buffers for all value type arguments. Allocate an object array to
3276 // hold them (convenient because once we're done with it we don't have
3277 // to worry about freeing it).
3278 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3279 {
3280   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3281   ResourceMark rm;
3282   JavaThread* THREAD = thread;
3283   methodHandle callee(callee_method);
3284 
3285   int nb_slots = 0;
3286   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3287   if (has_value_receiver) {
3288     nb_slots++;
3289   }
3290   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3291   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3292   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3293     if (ss.type() == T_VALUETYPE) {
3294       nb_slots++;
3295     }
3296   }
3297   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3298   objArrayHandle array(THREAD, array_oop);
3299   int i = 0;
3300   if (has_value_receiver) {
3301     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3302     oop res = vk->allocate_instance(CHECK);
3303     array->obj_at_put(i, res);
3304     i++;
3305   }
3306   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3307     if (ss.type() == T_VALUETYPE) {
3308       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3309       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3310       ValueKlass* vk = ValueKlass::cast(k);
3311       oop res = vk->allocate_instance(CHECK);
3312       array->obj_at_put(i, res);
3313       i++;
3314     }
3315   }
3316   thread->set_vm_result(array());
3317   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3318 }
3319 JRT_END
3320 
3321 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3322 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3323 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3324 {
3325   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3326   assert(oopDesc::is_oop(array), "should be oop");
3327   for (int i = 0; i < array->length(); ++i) {
3328     instanceOop valueOop = (instanceOop)array->obj_at(i);
3329     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3330     if (vk->contains_oops()) {
3331       const address dst_oop_addr = ((address) (void*) valueOop);
3332       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3333       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3334       while (map != end) {
3335         address doop_address = dst_oop_addr + map->offset();
3336         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3337           write_ref_array((HeapWord*) doop_address, map->count());
3338         map++;
3339       }
3340     }
3341   }
3342 }
3343 JRT_END
3344 
3345 // We're returning from an interpreted method: load each field into a
3346 // register following the calling convention
3347 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3348 {
3349   assert(res->klass()->is_value(), "only value types here");
3350   ResourceMark rm;
3351   RegisterMap reg_map(thread);
3352   frame stubFrame = thread->last_frame();
3353   frame callerFrame = stubFrame.sender(&reg_map);
3354   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3355 
3356   ValueKlass* vk = ValueKlass::cast(res->klass());
3357 
3358   const Array<SigEntry>* sig_vk = vk->extended_sig() ;
3359   const Array<VMRegPair>* regs = vk->return_regs();
3360 
3361   if (regs == NULL) {
3362     // The fields of the value klass don't fit in registers, bail out
3363     return;
3364   }
3365 
3366   int j = 1;
3367   for (int i = 0; i < sig_vk->length(); i++) {
3368     BasicType bt = sig_vk->at(i)._bt;
3369     if (bt == T_VALUETYPE) {
3370       continue;
3371     }
3372     if (bt == T_VOID) {
3373       if (sig_vk->at(i-1)._bt == T_LONG ||
3374           sig_vk->at(i-1)._bt == T_DOUBLE) {
3375         j++;
3376       }
3377       continue;
3378     }
3379     int off = sig_vk->at(i)._offset;
3380     VMRegPair pair = regs->at(j);
3381     address loc = reg_map.location(pair.first());
3382     switch(bt) {
3383     case T_BOOLEAN:
3384       *(intptr_t*)loc = *(jboolean*)((address)res + off);
3385       break;
3386     case T_CHAR:
3387       *(intptr_t*)loc = *(jchar*)((address)res + off);
3388       break;
3389     case T_BYTE:
3390       *(intptr_t*)loc = *(jbyte*)((address)res + off);
3391       break;
3392     case T_SHORT:
3393       *(intptr_t*)loc = *(jshort*)((address)res + off);
3394       break;
3395     case T_INT: {
3396       jint v = *(jint*)((address)res + off);
3397       *(intptr_t*)loc = v;
3398       break;
3399     }
3400     case T_LONG:
3401 #ifdef _LP64
3402       *(intptr_t*)loc = *(jlong*)((address)res + off);
3403 #else
3404       Unimplemented();
3405 #endif
3406       break;
3407     case T_OBJECT:
3408     case T_ARRAY: {
3409       oop v = HeapAccess<>::oop_load_at(res, off);
3410       *(oop*)loc = v;
3411       break;
3412     }
3413     case T_FLOAT:
3414       *(jfloat*)loc = *(jfloat*)((address)res + off);
3415       break;
3416     case T_DOUBLE:
3417       *(jdouble*)loc = *(jdouble*)((address)res + off);
3418       break;
3419     default:
3420       ShouldNotReachHere();
3421     }
3422     j++;
3423   }
3424   assert(j == regs->length(), "missed a field?");
3425 
3426 #ifdef ASSERT
3427   VMRegPair pair = regs->at(0);
3428   address loc = reg_map.location(pair.first());
3429   assert(*(oopDesc**)loc == res, "overwritten object");
3430 #endif
3431 
3432   thread->set_vm_result(res);
3433 }
3434 JRT_END
3435 
3436 // We've returned to an interpreted method, the interpreter needs a
3437 // reference to a value type instance. Allocate it and initialize it
3438 // from field's values in registers.
3439 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3440 {
3441   ResourceMark rm;
3442   RegisterMap reg_map(thread);
3443   frame stubFrame = thread->last_frame();
3444   frame callerFrame = stubFrame.sender(&reg_map);
3445 
3446 #ifdef ASSERT
3447   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3448 #endif
3449 
3450   if (!is_set_nth_bit(res, 0)) {
3451     // We're not returning with value type fields in registers (the
3452     // calling convention didn't allow it for this value klass)
3453     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3454     thread->set_vm_result((oopDesc*)res);
3455     assert(verif_vk == NULL, "broken calling convention");
3456     return;
3457   }
3458 
3459   clear_nth_bit(res, 0);
3460   ValueKlass* vk = (ValueKlass*)res;
3461   assert(verif_vk == vk, "broken calling convention");
3462   assert(Metaspace::contains((void*)res), "should be klass");
3463 
3464   // Allocate handles for every oop fields so they are safe in case of
3465   // a safepoint when allocating
3466   GrowableArray<Handle> handles;
3467   vk->save_oop_fields(reg_map, handles);
3468 
3469   // It's unsafe to safepoint until we are here
3470 
3471   Handle new_vt;
3472   JRT_BLOCK;
3473   {
3474     Thread* THREAD = thread;
3475     oop vt = vk->realloc_result(reg_map, handles, callerFrame.is_interpreted_frame(), CHECK);
3476     new_vt = Handle(thread, vt);
3477 
3478 #ifdef ASSERT
3479     javaVFrame* vf = javaVFrame::cast(vframe::new_vframe(&callerFrame, &reg_map, thread));
3480     Method* m = vf->method();
3481     int bci = vf->bci();
3482     Bytecode_invoke inv(m, bci);
3483 
3484     methodHandle callee = inv.static_target(thread);
3485     assert(!thread->has_pending_exception(), "call resolution should work");
3486     ValueKlass* verif_vk2 = callee->returned_value_type(thread);
3487     assert(verif_vk == verif_vk2, "Bad value klass");
3488 #endif
3489   }
3490   JRT_BLOCK_END;
3491 
3492   thread->set_vm_result(new_vt());
3493 }
3494 JRT_END
3495