1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/access.hpp"
  50 #include "oops/fieldStreams.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/valueKlass.hpp"
  57 #include "prims/forte.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "prims/methodHandles.hpp"
  60 #include "prims/nativeLookup.hpp"
  61 #include "runtime/arguments.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/biasedLocking.hpp"
  64 #include "runtime/compilationPolicy.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/vframe.inline.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "utilities/copy.hpp"
  76 #include "utilities/dtrace.hpp"
  77 #include "utilities/events.hpp"
  78 #include "utilities/hashtable.inline.hpp"
  79 #include "utilities/macros.hpp"
  80 #include "utilities/xmlstream.hpp"
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 #if INCLUDE_G1GC
  85 #include "gc/g1/g1ThreadLocalData.hpp"
  86 #endif // INCLUDE_G1GC
  87 
  88 // Shared stub locations
  89 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  90 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  91 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  94 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  95 address             SharedRuntime::_resolve_static_call_entry;
  96 
  97 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  99 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 101 
 102 #ifdef COMPILER2
 103 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 104 #endif // COMPILER2
 105 
 106 
 107 //----------------------------generate_stubs-----------------------------------
 108 void SharedRuntime::generate_stubs() {
 109   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 110   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 111   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 112   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 113   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 114   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 115   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 116 
 117 #if COMPILER2_OR_JVMCI
 118   // Vectors are generated only by C2 and JVMCI.
 119   bool support_wide = is_wide_vector(MaxVectorSize);
 120   if (support_wide) {
 121     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 122   }
 123 #endif // COMPILER2_OR_JVMCI
 124   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 125   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 126 
 127   generate_deopt_blob();
 128 
 129 #ifdef COMPILER2
 130   generate_uncommon_trap_blob();
 131 #endif // COMPILER2
 132 }
 133 
 134 #include <math.h>
 135 
 136 // Implementation of SharedRuntime
 137 
 138 #ifndef PRODUCT
 139 // For statistics
 140 int SharedRuntime::_ic_miss_ctr = 0;
 141 int SharedRuntime::_wrong_method_ctr = 0;
 142 int SharedRuntime::_resolve_static_ctr = 0;
 143 int SharedRuntime::_resolve_virtual_ctr = 0;
 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 145 int SharedRuntime::_implicit_null_throws = 0;
 146 int SharedRuntime::_implicit_div0_throws = 0;
 147 int SharedRuntime::_throw_null_ctr = 0;
 148 
 149 int SharedRuntime::_nof_normal_calls = 0;
 150 int SharedRuntime::_nof_optimized_calls = 0;
 151 int SharedRuntime::_nof_inlined_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_calls = 0;
 153 int SharedRuntime::_nof_static_calls = 0;
 154 int SharedRuntime::_nof_inlined_static_calls = 0;
 155 int SharedRuntime::_nof_interface_calls = 0;
 156 int SharedRuntime::_nof_optimized_interface_calls = 0;
 157 int SharedRuntime::_nof_inlined_interface_calls = 0;
 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 159 int SharedRuntime::_nof_removable_exceptions = 0;
 160 
 161 int SharedRuntime::_new_instance_ctr=0;
 162 int SharedRuntime::_new_array_ctr=0;
 163 int SharedRuntime::_multi1_ctr=0;
 164 int SharedRuntime::_multi2_ctr=0;
 165 int SharedRuntime::_multi3_ctr=0;
 166 int SharedRuntime::_multi4_ctr=0;
 167 int SharedRuntime::_multi5_ctr=0;
 168 int SharedRuntime::_mon_enter_stub_ctr=0;
 169 int SharedRuntime::_mon_exit_stub_ctr=0;
 170 int SharedRuntime::_mon_enter_ctr=0;
 171 int SharedRuntime::_mon_exit_ctr=0;
 172 int SharedRuntime::_partial_subtype_ctr=0;
 173 int SharedRuntime::_jbyte_array_copy_ctr=0;
 174 int SharedRuntime::_jshort_array_copy_ctr=0;
 175 int SharedRuntime::_jint_array_copy_ctr=0;
 176 int SharedRuntime::_jlong_array_copy_ctr=0;
 177 int SharedRuntime::_oop_array_copy_ctr=0;
 178 int SharedRuntime::_checkcast_array_copy_ctr=0;
 179 int SharedRuntime::_unsafe_array_copy_ctr=0;
 180 int SharedRuntime::_generic_array_copy_ctr=0;
 181 int SharedRuntime::_slow_array_copy_ctr=0;
 182 int SharedRuntime::_find_handler_ctr=0;
 183 int SharedRuntime::_rethrow_ctr=0;
 184 
 185 int     SharedRuntime::_ICmiss_index                    = 0;
 186 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 188 
 189 
 190 void SharedRuntime::trace_ic_miss(address at) {
 191   for (int i = 0; i < _ICmiss_index; i++) {
 192     if (_ICmiss_at[i] == at) {
 193       _ICmiss_count[i]++;
 194       return;
 195     }
 196   }
 197   int index = _ICmiss_index++;
 198   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 199   _ICmiss_at[index] = at;
 200   _ICmiss_count[index] = 1;
 201 }
 202 
 203 void SharedRuntime::print_ic_miss_histogram() {
 204   if (ICMissHistogram) {
 205     tty->print_cr("IC Miss Histogram:");
 206     int tot_misses = 0;
 207     for (int i = 0; i < _ICmiss_index; i++) {
 208       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 209       tot_misses += _ICmiss_count[i];
 210     }
 211     tty->print_cr("Total IC misses: %7d", tot_misses);
 212   }
 213 }
 214 #endif // PRODUCT
 215 
 216 #if INCLUDE_G1GC
 217 
 218 // G1 write-barrier pre: executed before a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 220   if (orig == NULL) {
 221     assert(false, "should be optimized out");
 222     return;
 223   }
 224   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 225   // store the original value that was in the field reference
 226   G1ThreadLocalData::satb_mark_queue(thread).enqueue(orig);
 227 JRT_END
 228 
 229 // G1 write-barrier post: executed after a pointer store.
 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 231   G1ThreadLocalData::dirty_card_queue(thread).enqueue(card_addr);
 232 JRT_END
 233 
 234 #endif // INCLUDE_G1GC
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 238   return x * y;
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return x;
 245   } else {
 246     return x / y;
 247   }
 248 JRT_END
 249 
 250 
 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 252   if (x == min_jlong && y == CONST64(-1)) {
 253     return 0;
 254   } else {
 255     return x % y;
 256   }
 257 JRT_END
 258 
 259 
 260 const juint  float_sign_mask  = 0x7FFFFFFF;
 261 const juint  float_infinity   = 0x7F800000;
 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 263 const julong double_infinity  = CONST64(0x7FF0000000000000);
 264 
 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 266 #ifdef _WIN64
 267   // 64-bit Windows on amd64 returns the wrong values for
 268   // infinity operands.
 269   union { jfloat f; juint i; } xbits, ybits;
 270   xbits.f = x;
 271   ybits.f = y;
 272   // x Mod Infinity == x unless x is infinity
 273   if (((xbits.i & float_sign_mask) != float_infinity) &&
 274        ((ybits.i & float_sign_mask) == float_infinity) ) {
 275     return x;
 276   }
 277   return ((jfloat)fmod_winx64((double)x, (double)y));
 278 #else
 279   return ((jfloat)fmod((double)x,(double)y));
 280 #endif
 281 JRT_END
 282 
 283 
 284 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 285 #ifdef _WIN64
 286   union { jdouble d; julong l; } xbits, ybits;
 287   xbits.d = x;
 288   ybits.d = y;
 289   // x Mod Infinity == x unless x is infinity
 290   if (((xbits.l & double_sign_mask) != double_infinity) &&
 291        ((ybits.l & double_sign_mask) == double_infinity) ) {
 292     return x;
 293   }
 294   return ((jdouble)fmod_winx64((double)x, (double)y));
 295 #else
 296   return ((jdouble)fmod((double)x,(double)y));
 297 #endif
 298 JRT_END
 299 
 300 #ifdef __SOFTFP__
 301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 318   return x + y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 322   return x - y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 326   return x * y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 330   return x / y;
 331 JRT_END
 332 
 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 334   return (jfloat)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 359 JRT_END
 360 
 361 // Functions to return the opposite of the aeabi functions for nan.
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 // Intrinsics make gcc generate code for these.
 395 float  SharedRuntime::fneg(float f)   {
 396   return -f;
 397 }
 398 
 399 double SharedRuntime::dneg(double f)  {
 400   return -f;
 401 }
 402 
 403 #endif // __SOFTFP__
 404 
 405 #if defined(__SOFTFP__) || defined(E500V2)
 406 // Intrinsics make gcc generate code for these.
 407 double SharedRuntime::dabs(double f)  {
 408   return (f <= (double)0.0) ? (double)0.0 - f : f;
 409 }
 410 
 411 #endif
 412 
 413 #if defined(__SOFTFP__) || defined(PPC)
 414 double SharedRuntime::dsqrt(double f) {
 415   return sqrt(f);
 416 }
 417 #endif
 418 
 419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jint)
 423     return max_jint;
 424   if (x <= (jfloat) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jfloat) max_jlong)
 434     return max_jlong;
 435   if (x <= (jfloat) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jint)
 445     return max_jint;
 446   if (x <= (jdouble) min_jint)
 447     return min_jint;
 448   return (jint) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 453   if (g_isnan(x))
 454     return 0;
 455   if (x >= (jdouble) max_jlong)
 456     return max_jlong;
 457   if (x <= (jdouble) min_jlong)
 458     return min_jlong;
 459   return (jlong) x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 469   return (jfloat)x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 474   return (jdouble)x;
 475 JRT_END
 476 
 477 // Exception handling across interpreter/compiler boundaries
 478 //
 479 // exception_handler_for_return_address(...) returns the continuation address.
 480 // The continuation address is the entry point of the exception handler of the
 481 // previous frame depending on the return address.
 482 
 483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 484   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 486 
 487   // Reset method handle flag.
 488   thread->set_is_method_handle_return(false);
 489 
 490 #if INCLUDE_JVMCI
 491   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 492   // and other exception handler continuations do not read it
 493   thread->set_exception_pc(NULL);
 494 #endif // INCLUDE_JVMCI
 495 
 496   // The fastest case first
 497   CodeBlob* blob = CodeCache::find_blob(return_address);
 498   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 499   if (nm != NULL) {
 500     // Set flag if return address is a method handle call site.
 501     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 502     // native nmethods don't have exception handlers
 503     assert(!nm->is_native_method(), "no exception handler");
 504     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 505     if (nm->is_deopt_pc(return_address)) {
 506       // If we come here because of a stack overflow, the stack may be
 507       // unguarded. Reguard the stack otherwise if we return to the
 508       // deopt blob and the stack bang causes a stack overflow we
 509       // crash.
 510       bool guard_pages_enabled = thread->stack_guards_enabled();
 511       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 512       if (thread->reserved_stack_activation() != thread->stack_base()) {
 513         thread->set_reserved_stack_activation(thread->stack_base());
 514       }
 515       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 516       return SharedRuntime::deopt_blob()->unpack_with_exception();
 517     } else {
 518       return nm->exception_begin();
 519     }
 520   }
 521 
 522   // Entry code
 523   if (StubRoutines::returns_to_call_stub(return_address)) {
 524     return StubRoutines::catch_exception_entry();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     return Interpreter::rethrow_exception_entry();
 529   }
 530 
 531   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 532   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 533 
 534 #ifndef PRODUCT
 535   { ResourceMark rm;
 536     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 537     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 538     tty->print_cr("b) other problem");
 539   }
 540 #endif // PRODUCT
 541 
 542   ShouldNotReachHere();
 543   return NULL;
 544 }
 545 
 546 
 547 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 548   return raw_exception_handler_for_return_address(thread, return_address);
 549 JRT_END
 550 
 551 
 552 address SharedRuntime::get_poll_stub(address pc) {
 553   address stub;
 554   // Look up the code blob
 555   CodeBlob *cb = CodeCache::find_blob(pc);
 556 
 557   // Should be an nmethod
 558   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 559 
 560   // Look up the relocation information
 561   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 562     "safepoint polling: type must be poll");
 563 
 564 #ifdef ASSERT
 565   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 566     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 567     Disassembler::decode(cb);
 568     fatal("Only polling locations are used for safepoint");
 569   }
 570 #endif
 571 
 572   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 573   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 574   if (at_poll_return) {
 575     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 576            "polling page return stub not created yet");
 577     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 578   } else if (has_wide_vectors) {
 579     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 580            "polling page vectors safepoint stub not created yet");
 581     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 582   } else {
 583     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 584            "polling page safepoint stub not created yet");
 585     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 586   }
 587   log_debug(safepoint)("... found polling page %s exception at pc = "
 588                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 589                        at_poll_return ? "return" : "loop",
 590                        (intptr_t)pc, (intptr_t)stub);
 591   return stub;
 592 }
 593 
 594 
 595 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 596   assert(caller.is_interpreted_frame(), "");
 597   int args_size = ArgumentSizeComputer(sig).size() + 1;
 598   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 599   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 600   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 601   return result;
 602 }
 603 
 604 
 605 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 606   if (JvmtiExport::can_post_on_exceptions()) {
 607     vframeStream vfst(thread, true);
 608     methodHandle method = methodHandle(thread, vfst.method());
 609     address bcp = method()->bcp_from(vfst.bci());
 610     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 611   }
 612   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 613 }
 614 
 615 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 616   Handle h_exception = Exceptions::new_exception(thread, name, message);
 617   throw_and_post_jvmti_exception(thread, h_exception);
 618 }
 619 
 620 // The interpreter code to call this tracing function is only
 621 // called/generated when UL is on for redefine, class and has the right level
 622 // and tags. Since obsolete methods are never compiled, we don't have
 623 // to modify the compilers to generate calls to this function.
 624 //
 625 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 626     JavaThread* thread, Method* method))
 627   if (method->is_obsolete()) {
 628     // We are calling an obsolete method, but this is not necessarily
 629     // an error. Our method could have been redefined just after we
 630     // fetched the Method* from the constant pool.
 631     ResourceMark rm;
 632     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 633   }
 634   return 0;
 635 JRT_END
 636 
 637 // ret_pc points into caller; we are returning caller's exception handler
 638 // for given exception
 639 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 640                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 641   assert(cm != NULL, "must exist");
 642   ResourceMark rm;
 643 
 644 #if INCLUDE_JVMCI
 645   if (cm->is_compiled_by_jvmci()) {
 646     // lookup exception handler for this pc
 647     int catch_pco = ret_pc - cm->code_begin();
 648     ExceptionHandlerTable table(cm);
 649     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 650     if (t != NULL) {
 651       return cm->code_begin() + t->pco();
 652     } else {
 653       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 654     }
 655   }
 656 #endif // INCLUDE_JVMCI
 657 
 658   nmethod* nm = cm->as_nmethod();
 659   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 660   // determine handler bci, if any
 661   EXCEPTION_MARK;
 662 
 663   int handler_bci = -1;
 664   int scope_depth = 0;
 665   if (!force_unwind) {
 666     int bci = sd->bci();
 667     bool recursive_exception = false;
 668     do {
 669       bool skip_scope_increment = false;
 670       // exception handler lookup
 671       Klass* ek = exception->klass();
 672       methodHandle mh(THREAD, sd->method());
 673       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 674       if (HAS_PENDING_EXCEPTION) {
 675         recursive_exception = true;
 676         // We threw an exception while trying to find the exception handler.
 677         // Transfer the new exception to the exception handle which will
 678         // be set into thread local storage, and do another lookup for an
 679         // exception handler for this exception, this time starting at the
 680         // BCI of the exception handler which caused the exception to be
 681         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 682         // argument to ensure that the correct exception is thrown (4870175).
 683         recursive_exception_occurred = true;
 684         exception = Handle(THREAD, PENDING_EXCEPTION);
 685         CLEAR_PENDING_EXCEPTION;
 686         if (handler_bci >= 0) {
 687           bci = handler_bci;
 688           handler_bci = -1;
 689           skip_scope_increment = true;
 690         }
 691       }
 692       else {
 693         recursive_exception = false;
 694       }
 695       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 696         sd = sd->sender();
 697         if (sd != NULL) {
 698           bci = sd->bci();
 699         }
 700         ++scope_depth;
 701       }
 702     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 703   }
 704 
 705   // found handling method => lookup exception handler
 706   int catch_pco = ret_pc - nm->code_begin();
 707 
 708   ExceptionHandlerTable table(nm);
 709   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 710   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 711     // Allow abbreviated catch tables.  The idea is to allow a method
 712     // to materialize its exceptions without committing to the exact
 713     // routing of exceptions.  In particular this is needed for adding
 714     // a synthetic handler to unlock monitors when inlining
 715     // synchronized methods since the unlock path isn't represented in
 716     // the bytecodes.
 717     t = table.entry_for(catch_pco, -1, 0);
 718   }
 719 
 720 #ifdef COMPILER1
 721   if (t == NULL && nm->is_compiled_by_c1()) {
 722     assert(nm->unwind_handler_begin() != NULL, "");
 723     return nm->unwind_handler_begin();
 724   }
 725 #endif
 726 
 727   if (t == NULL) {
 728     ttyLocker ttyl;
 729     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 730     tty->print_cr("   Exception:");
 731     exception->print();
 732     tty->cr();
 733     tty->print_cr(" Compiled exception table :");
 734     table.print();
 735     nm->print_code();
 736     guarantee(false, "missing exception handler");
 737     return NULL;
 738   }
 739 
 740   return nm->code_begin() + t->pco();
 741 }
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 744   // These errors occur only at call sites
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 762   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 763   // cache sites (when the callee activation is not yet set up) so we are at a call site
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 768   throw_StackOverflowError_common(thread, false);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 772   throw_StackOverflowError_common(thread, true);
 773 JRT_END
 774 
 775 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 776   // We avoid using the normal exception construction in this case because
 777   // it performs an upcall to Java, and we're already out of stack space.
 778   Thread* THREAD = thread;
 779   Klass* k = SystemDictionary::StackOverflowError_klass();
 780   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 781   if (delayed) {
 782     java_lang_Throwable::set_message(exception_oop,
 783                                      Universe::delayed_stack_overflow_error_message());
 784   }
 785   Handle exception (thread, exception_oop);
 786   if (StackTraceInThrowable) {
 787     java_lang_Throwable::fill_in_stack_trace(exception);
 788   }
 789   // Increment counter for hs_err file reporting
 790   Atomic::inc(&Exceptions::_stack_overflow_errors);
 791   throw_and_post_jvmti_exception(thread, exception);
 792 }
 793 
 794 #if INCLUDE_JVMCI
 795 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 796   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 797   thread->set_jvmci_implicit_exception_pc(pc);
 798   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 799   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 800 }
 801 #endif // INCLUDE_JVMCI
 802 
 803 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 804                                                            address pc,
 805                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 806 {
 807   address target_pc = NULL;
 808 
 809   if (Interpreter::contains(pc)) {
 810 #ifdef CC_INTERP
 811     // C++ interpreter doesn't throw implicit exceptions
 812     ShouldNotReachHere();
 813 #else
 814     switch (exception_kind) {
 815       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 816       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 817       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 818       default:                      ShouldNotReachHere();
 819     }
 820 #endif // !CC_INTERP
 821   } else {
 822     switch (exception_kind) {
 823       case STACK_OVERFLOW: {
 824         // Stack overflow only occurs upon frame setup; the callee is
 825         // going to be unwound. Dispatch to a shared runtime stub
 826         // which will cause the StackOverflowError to be fabricated
 827         // and processed.
 828         // Stack overflow should never occur during deoptimization:
 829         // the compiled method bangs the stack by as much as the
 830         // interpreter would need in case of a deoptimization. The
 831         // deoptimization blob and uncommon trap blob bang the stack
 832         // in a debug VM to verify the correctness of the compiled
 833         // method stack banging.
 834         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 835         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 836         return StubRoutines::throw_StackOverflowError_entry();
 837       }
 838 
 839       case IMPLICIT_NULL: {
 840         if (VtableStubs::contains(pc)) {
 841           // We haven't yet entered the callee frame. Fabricate an
 842           // exception and begin dispatching it in the caller. Since
 843           // the caller was at a call site, it's safe to destroy all
 844           // caller-saved registers, as these entry points do.
 845           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 846 
 847           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 848           if (vt_stub == NULL) return NULL;
 849 
 850           if (vt_stub->is_abstract_method_error(pc)) {
 851             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 852             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 853             // Instead of throwing the abstract method error here directly, we re-resolve
 854             // and will throw the AbstractMethodError during resolve. As a result, we'll
 855             // get a more detailed error message.
 856             return SharedRuntime::get_handle_wrong_method_stub();
 857           } else {
 858             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 859             // Assert that the signal comes from the expected location in stub code.
 860             assert(vt_stub->is_null_pointer_exception(pc),
 861                    "obtained signal from unexpected location in stub code");
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864         } else {
 865           CodeBlob* cb = CodeCache::find_blob(pc);
 866 
 867           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 868           if (cb == NULL) return NULL;
 869 
 870           // Exception happened in CodeCache. Must be either:
 871           // 1. Inline-cache check in C2I handler blob,
 872           // 2. Inline-cache check in nmethod, or
 873           // 3. Implicit null exception in nmethod
 874 
 875           if (!cb->is_compiled()) {
 876             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 877             if (!is_in_blob) {
 878               // Allow normal crash reporting to handle this
 879               return NULL;
 880             }
 881             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 882             // There is no handler here, so we will simply unwind.
 883             return StubRoutines::throw_NullPointerException_at_call_entry();
 884           }
 885 
 886           // Otherwise, it's a compiled method.  Consult its exception handlers.
 887           CompiledMethod* cm = (CompiledMethod*)cb;
 888           if (cm->inlinecache_check_contains(pc)) {
 889             // exception happened inside inline-cache check code
 890             // => the nmethod is not yet active (i.e., the frame
 891             // is not set up yet) => use return address pushed by
 892             // caller => don't push another return address
 893             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 894             return StubRoutines::throw_NullPointerException_at_call_entry();
 895           }
 896 
 897           if (cm->method()->is_method_handle_intrinsic()) {
 898             // exception happened inside MH dispatch code, similar to a vtable stub
 899             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 900             return StubRoutines::throw_NullPointerException_at_call_entry();
 901           }
 902 
 903 #ifndef PRODUCT
 904           _implicit_null_throws++;
 905 #endif
 906 #if INCLUDE_JVMCI
 907           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 908             // If there's no PcDesc then we'll die way down inside of
 909             // deopt instead of just getting normal error reporting,
 910             // so only go there if it will succeed.
 911             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 912           } else {
 913 #endif // INCLUDE_JVMCI
 914           assert (cm->is_nmethod(), "Expect nmethod");
 915           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 916 #if INCLUDE_JVMCI
 917           }
 918 #endif // INCLUDE_JVMCI
 919           // If there's an unexpected fault, target_pc might be NULL,
 920           // in which case we want to fall through into the normal
 921           // error handling code.
 922         }
 923 
 924         break; // fall through
 925       }
 926 
 927 
 928       case IMPLICIT_DIVIDE_BY_ZERO: {
 929         CompiledMethod* cm = CodeCache::find_compiled(pc);
 930         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 931 #ifndef PRODUCT
 932         _implicit_div0_throws++;
 933 #endif
 934 #if INCLUDE_JVMCI
 935         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 936           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 937         } else {
 938 #endif // INCLUDE_JVMCI
 939         target_pc = cm->continuation_for_implicit_exception(pc);
 940 #if INCLUDE_JVMCI
 941         }
 942 #endif // INCLUDE_JVMCI
 943         // If there's an unexpected fault, target_pc might be NULL,
 944         // in which case we want to fall through into the normal
 945         // error handling code.
 946         break; // fall through
 947       }
 948 
 949       default: ShouldNotReachHere();
 950     }
 951 
 952     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 953 
 954     if (exception_kind == IMPLICIT_NULL) {
 955 #ifndef PRODUCT
 956       // for AbortVMOnException flag
 957       Exceptions::debug_check_abort("java.lang.NullPointerException");
 958 #endif //PRODUCT
 959       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 960     } else {
 961 #ifndef PRODUCT
 962       // for AbortVMOnException flag
 963       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 964 #endif //PRODUCT
 965       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 966     }
 967     return target_pc;
 968   }
 969 
 970   ShouldNotReachHere();
 971   return NULL;
 972 }
 973 
 974 
 975 /**
 976  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 977  * installed in the native function entry of all native Java methods before
 978  * they get linked to their actual native methods.
 979  *
 980  * \note
 981  * This method actually never gets called!  The reason is because
 982  * the interpreter's native entries call NativeLookup::lookup() which
 983  * throws the exception when the lookup fails.  The exception is then
 984  * caught and forwarded on the return from NativeLookup::lookup() call
 985  * before the call to the native function.  This might change in the future.
 986  */
 987 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 988 {
 989   // We return a bad value here to make sure that the exception is
 990   // forwarded before we look at the return value.
 991   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 992 }
 993 JNI_END
 994 
 995 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 996   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 997 }
 998 
 999 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1000 #if INCLUDE_JVMCI
1001   if (!obj->klass()->has_finalizer()) {
1002     return;
1003   }
1004 #endif // INCLUDE_JVMCI
1005   assert(oopDesc::is_oop(obj), "must be a valid oop");
1006   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1007   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1008 JRT_END
1009 
1010 
1011 jlong SharedRuntime::get_java_tid(Thread* thread) {
1012   if (thread != NULL) {
1013     if (thread->is_Java_thread()) {
1014       oop obj = ((JavaThread*)thread)->threadObj();
1015       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1016     }
1017   }
1018   return 0;
1019 }
1020 
1021 /**
1022  * This function ought to be a void function, but cannot be because
1023  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1024  * 6254741.  Once that is fixed we can remove the dummy return value.
1025  */
1026 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1027   return dtrace_object_alloc_base(Thread::current(), o, size);
1028 }
1029 
1030 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1031   assert(DTraceAllocProbes, "wrong call");
1032   Klass* klass = o->klass();
1033   Symbol* name = klass->name();
1034   HOTSPOT_OBJECT_ALLOC(
1035                    get_java_tid(thread),
1036                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1037   return 0;
1038 }
1039 
1040 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1041     JavaThread* thread, Method* method))
1042   assert(DTraceMethodProbes, "wrong call");
1043   Symbol* kname = method->klass_name();
1044   Symbol* name = method->name();
1045   Symbol* sig = method->signature();
1046   HOTSPOT_METHOD_ENTRY(
1047       get_java_tid(thread),
1048       (char *) kname->bytes(), kname->utf8_length(),
1049       (char *) name->bytes(), name->utf8_length(),
1050       (char *) sig->bytes(), sig->utf8_length());
1051   return 0;
1052 JRT_END
1053 
1054 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1055     JavaThread* thread, Method* method))
1056   assert(DTraceMethodProbes, "wrong call");
1057   Symbol* kname = method->klass_name();
1058   Symbol* name = method->name();
1059   Symbol* sig = method->signature();
1060   HOTSPOT_METHOD_RETURN(
1061       get_java_tid(thread),
1062       (char *) kname->bytes(), kname->utf8_length(),
1063       (char *) name->bytes(), name->utf8_length(),
1064       (char *) sig->bytes(), sig->utf8_length());
1065   return 0;
1066 JRT_END
1067 
1068 
1069 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1070 // for a call current in progress, i.e., arguments has been pushed on stack
1071 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1072 // vtable updates, etc.  Caller frame must be compiled.
1073 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1074   ResourceMark rm(THREAD);
1075 
1076   // last java frame on stack (which includes native call frames)
1077   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1078 
1079   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1080 }
1081 
1082 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1083   CompiledMethod* caller = vfst.nm();
1084 
1085   nmethodLocker caller_lock(caller);
1086 
1087   address pc = vfst.frame_pc();
1088   { // Get call instruction under lock because another thread may be busy patching it.
1089     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1090     return caller->attached_method_before_pc(pc);
1091   }
1092   return NULL;
1093 }
1094 
1095 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1096 // for a call current in progress, i.e., arguments has been pushed on stack
1097 // but callee has not been invoked yet.  Caller frame must be compiled.
1098 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1099                                               vframeStream& vfst,
1100                                               Bytecodes::Code& bc,
1101                                               CallInfo& callinfo, TRAPS) {
1102   Handle receiver;
1103   Handle nullHandle;  //create a handy null handle for exception returns
1104 
1105   assert(!vfst.at_end(), "Java frame must exist");
1106 
1107   // Find caller and bci from vframe
1108   methodHandle caller(THREAD, vfst.method());
1109   int          bci   = vfst.bci();
1110 
1111   Bytecode_invoke bytecode(caller, bci);
1112   int bytecode_index = bytecode.index();
1113   bc = bytecode.invoke_code();
1114 
1115   methodHandle attached_method = extract_attached_method(vfst);
1116   if (attached_method.not_null()) {
1117     methodHandle callee = bytecode.static_target(CHECK_NH);
1118     vmIntrinsics::ID id = callee->intrinsic_id();
1119     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1120     // it attaches statically resolved method to the call site.
1121     if (MethodHandles::is_signature_polymorphic(id) &&
1122         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1123       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1124 
1125       // Adjust invocation mode according to the attached method.
1126       switch (bc) {
1127         case Bytecodes::_invokeinterface:
1128           if (!attached_method->method_holder()->is_interface()) {
1129             bc = Bytecodes::_invokevirtual;
1130           }
1131           break;
1132         case Bytecodes::_invokehandle:
1133           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1134             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1135                                               : Bytecodes::_invokevirtual;
1136           }
1137           break;
1138         default:
1139           break;
1140       }
1141     } else {
1142       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1143       if (bc != Bytecodes::_invokevirtual) {
1144         // Ignore the attached method in this case to not confuse below code
1145         attached_method = NULL;
1146       }
1147     }
1148   }
1149 
1150   bool has_receiver = bc != Bytecodes::_invokestatic &&
1151                       bc != Bytecodes::_invokedynamic &&
1152                       bc != Bytecodes::_invokehandle;
1153 
1154   // Find receiver for non-static call
1155   if (has_receiver) {
1156     // This register map must be update since we need to find the receiver for
1157     // compiled frames. The receiver might be in a register.
1158     RegisterMap reg_map2(thread);
1159     frame stubFrame   = thread->last_frame();
1160     // Caller-frame is a compiled frame
1161     frame callerFrame = stubFrame.sender(&reg_map2);
1162 
1163     methodHandle callee = attached_method;
1164     if (callee.is_null()) {
1165       callee = bytecode.static_target(CHECK_NH);
1166       if (callee.is_null()) {
1167         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1168       }
1169     }
1170     if (ValueTypePassFieldsAsArgs && callee->method_holder()->is_value()) {
1171       // If the receiver is a value type that is passed as fields, no oop is available.
1172       // Resolve the call without receiver null checking.
1173       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1174       assert(!attached_method.is_null(), "must have attached method");
1175       constantPoolHandle constants(THREAD, caller->constants());
1176       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1177       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1178       return receiver; // is null
1179     } else {
1180       // Retrieve from a compiled argument list
1181       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1182 
1183       if (receiver.is_null()) {
1184         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1185       }
1186     }
1187   }
1188 
1189   // Resolve method
1190   if (attached_method.not_null()) {
1191     // Parameterized by attached method.
1192     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1193   } else {
1194     // Parameterized by bytecode.
1195     constantPoolHandle constants(THREAD, caller->constants());
1196     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1197   }
1198 
1199 #ifdef ASSERT
1200   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1201   if (has_receiver) {
1202     assert(receiver.not_null(), "should have thrown exception");
1203     Klass* receiver_klass = receiver->klass();
1204     Klass* rk = NULL;
1205     if (attached_method.not_null()) {
1206       // In case there's resolved method attached, use its holder during the check.
1207       rk = attached_method->method_holder();
1208     } else {
1209       // Klass is already loaded.
1210       constantPoolHandle constants(THREAD, caller->constants());
1211       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1212     }
1213     Klass* static_receiver_klass = rk;
1214     methodHandle callee = callinfo.selected_method();
1215     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1216            "actual receiver must be subclass of static receiver klass");
1217     if (receiver_klass->is_instance_klass()) {
1218       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1219         tty->print_cr("ERROR: Klass not yet initialized!!");
1220         receiver_klass->print();
1221       }
1222       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1223     }
1224   }
1225 #endif
1226 
1227   return receiver;
1228 }
1229 
1230 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1231   ResourceMark rm(THREAD);
1232   // We need first to check if any Java activations (compiled, interpreted)
1233   // exist on the stack since last JavaCall.  If not, we need
1234   // to get the target method from the JavaCall wrapper.
1235   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1236   methodHandle callee_method;
1237   if (vfst.at_end()) {
1238     // No Java frames were found on stack since we did the JavaCall.
1239     // Hence the stack can only contain an entry_frame.  We need to
1240     // find the target method from the stub frame.
1241     RegisterMap reg_map(thread, false);
1242     frame fr = thread->last_frame();
1243     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1244     fr = fr.sender(&reg_map);
1245     assert(fr.is_entry_frame(), "must be");
1246     // fr is now pointing to the entry frame.
1247     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1248   } else {
1249     Bytecodes::Code bc;
1250     CallInfo callinfo;
1251     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1252     callee_method = callinfo.selected_method();
1253   }
1254   assert(callee_method()->is_method(), "must be");
1255   return callee_method;
1256 }
1257 
1258 // Resolves a call.
1259 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1260                                            bool is_virtual,
1261                                            bool is_optimized, TRAPS) {
1262   methodHandle callee_method;
1263   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1264   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1265     int retry_count = 0;
1266     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1267            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1268       // If has a pending exception then there is no need to re-try to
1269       // resolve this method.
1270       // If the method has been redefined, we need to try again.
1271       // Hack: we have no way to update the vtables of arrays, so don't
1272       // require that java.lang.Object has been updated.
1273 
1274       // It is very unlikely that method is redefined more than 100 times
1275       // in the middle of resolve. If it is looping here more than 100 times
1276       // means then there could be a bug here.
1277       guarantee((retry_count++ < 100),
1278                 "Could not resolve to latest version of redefined method");
1279       // method is redefined in the middle of resolve so re-try.
1280       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1281     }
1282   }
1283   return callee_method;
1284 }
1285 
1286 // Resolves a call.  The compilers generate code for calls that go here
1287 // and are patched with the real destination of the call.
1288 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1289                                            bool is_virtual,
1290                                            bool is_optimized, TRAPS) {
1291 
1292   ResourceMark rm(thread);
1293   RegisterMap cbl_map(thread, false);
1294   frame caller_frame = thread->last_frame().sender(&cbl_map);
1295 
1296   CodeBlob* caller_cb = caller_frame.cb();
1297   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1298   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1299 
1300   // make sure caller is not getting deoptimized
1301   // and removed before we are done with it.
1302   // CLEANUP - with lazy deopt shouldn't need this lock
1303   nmethodLocker caller_lock(caller_nm);
1304 
1305   // determine call info & receiver
1306   // note: a) receiver is NULL for static calls
1307   //       b) an exception is thrown if receiver is NULL for non-static calls
1308   CallInfo call_info;
1309   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1310   Handle receiver = find_callee_info(thread, invoke_code,
1311                                      call_info, CHECK_(methodHandle()));
1312   methodHandle callee_method = call_info.selected_method();
1313 
1314   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1315          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1316          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1317          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1318          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1319 
1320   assert(caller_nm->is_alive(), "It should be alive");
1321 
1322 #ifndef PRODUCT
1323   // tracing/debugging/statistics
1324   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1325                 (is_virtual) ? (&_resolve_virtual_ctr) :
1326                                (&_resolve_static_ctr);
1327   Atomic::inc(addr);
1328 
1329   if (TraceCallFixup) {
1330     ResourceMark rm(thread);
1331     tty->print("resolving %s%s (%s) call to",
1332       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1333       Bytecodes::name(invoke_code));
1334     callee_method->print_short_name(tty);
1335     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1336                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1337   }
1338 #endif
1339 
1340   // JSR 292 key invariant:
1341   // If the resolved method is a MethodHandle invoke target, the call
1342   // site must be a MethodHandle call site, because the lambda form might tail-call
1343   // leaving the stack in a state unknown to either caller or callee
1344   // TODO detune for now but we might need it again
1345 //  assert(!callee_method->is_compiled_lambda_form() ||
1346 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1347 
1348   // Compute entry points. This might require generation of C2I converter
1349   // frames, so we cannot be holding any locks here. Furthermore, the
1350   // computation of the entry points is independent of patching the call.  We
1351   // always return the entry-point, but we only patch the stub if the call has
1352   // not been deoptimized.  Return values: For a virtual call this is an
1353   // (cached_oop, destination address) pair. For a static call/optimized
1354   // virtual this is just a destination address.
1355 
1356   StaticCallInfo static_call_info;
1357   CompiledICInfo virtual_call_info;
1358 
1359   // Make sure the callee nmethod does not get deoptimized and removed before
1360   // we are done patching the code.
1361   CompiledMethod* callee = callee_method->code();
1362 
1363   if (callee != NULL) {
1364     assert(callee->is_compiled(), "must be nmethod for patching");
1365   }
1366 
1367   if (callee != NULL && !callee->is_in_use()) {
1368     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1369     callee = NULL;
1370   }
1371   nmethodLocker nl_callee(callee);
1372 #ifdef ASSERT
1373   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1374 #endif
1375 
1376   bool is_nmethod = caller_nm->is_nmethod();
1377 
1378   if (is_virtual) {
1379     Klass* receiver_klass = NULL;
1380     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1381       // If the receiver is a value type that is passed as fields, no oop is available
1382       receiver_klass = callee_method->method_holder();
1383     } else {
1384       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1385       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1386     }
1387     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1388     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1389                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1390                      CHECK_(methodHandle()));
1391   } else {
1392     // static call
1393     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1394   }
1395 
1396   // grab lock, check for deoptimization and potentially patch caller
1397   {
1398     MutexLocker ml_patch(CompiledIC_lock);
1399 
1400     // Lock blocks for safepoint during which both nmethods can change state.
1401 
1402     // Now that we are ready to patch if the Method* was redefined then
1403     // don't update call site and let the caller retry.
1404     // Don't update call site if callee nmethod was unloaded or deoptimized.
1405     // Don't update call site if callee nmethod was replaced by an other nmethod
1406     // which may happen when multiply alive nmethod (tiered compilation)
1407     // will be supported.
1408     if (!callee_method->is_old() &&
1409         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1410 #ifdef ASSERT
1411       // We must not try to patch to jump to an already unloaded method.
1412       if (dest_entry_point != 0) {
1413         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1414         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1415                "should not call unloaded nmethod");
1416       }
1417 #endif
1418       if (is_virtual) {
1419         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1420         if (inline_cache->is_clean()) {
1421           inline_cache->set_to_monomorphic(virtual_call_info);
1422         }
1423       } else {
1424         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1425         if (ssc->is_clean()) ssc->set(static_call_info);
1426       }
1427     }
1428 
1429   } // unlock CompiledIC_lock
1430 
1431   return callee_method;
1432 }
1433 
1434 
1435 // Inline caches exist only in compiled code
1436 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1437 #ifdef ASSERT
1438   RegisterMap reg_map(thread, false);
1439   frame stub_frame = thread->last_frame();
1440   assert(stub_frame.is_runtime_frame(), "sanity check");
1441   frame caller_frame = stub_frame.sender(&reg_map);
1442   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1443 #endif /* ASSERT */
1444 
1445   methodHandle callee_method;
1446   JRT_BLOCK
1447     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1448     // Return Method* through TLS
1449     thread->set_vm_result_2(callee_method());
1450   JRT_BLOCK_END
1451   // return compiled code entry point after potential safepoints
1452   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1453   return callee_method->verified_code_entry();
1454 JRT_END
1455 
1456 
1457 // Handle call site that has been made non-entrant
1458 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1459   // 6243940 We might end up in here if the callee is deoptimized
1460   // as we race to call it.  We don't want to take a safepoint if
1461   // the caller was interpreted because the caller frame will look
1462   // interpreted to the stack walkers and arguments are now
1463   // "compiled" so it is much better to make this transition
1464   // invisible to the stack walking code. The i2c path will
1465   // place the callee method in the callee_target. It is stashed
1466   // there because if we try and find the callee by normal means a
1467   // safepoint is possible and have trouble gc'ing the compiled args.
1468   RegisterMap reg_map(thread, false);
1469   frame stub_frame = thread->last_frame();
1470   assert(stub_frame.is_runtime_frame(), "sanity check");
1471   frame caller_frame = stub_frame.sender(&reg_map);
1472 
1473   if (caller_frame.is_interpreted_frame() ||
1474       caller_frame.is_entry_frame()) {
1475     Method* callee = thread->callee_target();
1476     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1477     thread->set_vm_result_2(callee);
1478     thread->set_callee_target(NULL);
1479     return callee->get_c2i_entry();
1480   }
1481 
1482   // Must be compiled to compiled path which is safe to stackwalk
1483   methodHandle callee_method;
1484   JRT_BLOCK
1485     // Force resolving of caller (if we called from compiled frame)
1486     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1487     thread->set_vm_result_2(callee_method());
1488   JRT_BLOCK_END
1489   // return compiled code entry point after potential safepoints
1490   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1491   return callee_method->verified_code_entry();
1492 JRT_END
1493 
1494 // Handle abstract method call
1495 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1496   // Verbose error message for AbstractMethodError.
1497   // Get the called method from the invoke bytecode.
1498   vframeStream vfst(thread, true);
1499   assert(!vfst.at_end(), "Java frame must exist");
1500   methodHandle caller(vfst.method());
1501   Bytecode_invoke invoke(caller, vfst.bci());
1502   DEBUG_ONLY( invoke.verify(); )
1503 
1504   // Find the compiled caller frame.
1505   RegisterMap reg_map(thread);
1506   frame stubFrame = thread->last_frame();
1507   assert(stubFrame.is_runtime_frame(), "must be");
1508   frame callerFrame = stubFrame.sender(&reg_map);
1509   assert(callerFrame.is_compiled_frame(), "must be");
1510 
1511   // Install exception and return forward entry.
1512   address res = StubRoutines::throw_AbstractMethodError_entry();
1513   JRT_BLOCK
1514     methodHandle callee = invoke.static_target(thread);
1515     if (!callee.is_null()) {
1516       oop recv = callerFrame.retrieve_receiver(&reg_map);
1517       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1518       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1519       res = StubRoutines::forward_exception_entry();
1520     }
1521   JRT_BLOCK_END
1522   return res;
1523 JRT_END
1524 
1525 
1526 // resolve a static call and patch code
1527 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1528   methodHandle callee_method;
1529   JRT_BLOCK
1530     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1531     thread->set_vm_result_2(callee_method());
1532   JRT_BLOCK_END
1533   // return compiled code entry point after potential safepoints
1534   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1535   return callee_method->verified_code_entry();
1536 JRT_END
1537 
1538 
1539 // resolve virtual call and update inline cache to monomorphic
1540 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1541   methodHandle callee_method;
1542   JRT_BLOCK
1543     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1544     thread->set_vm_result_2(callee_method());
1545   JRT_BLOCK_END
1546   // return compiled code entry point after potential safepoints
1547   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1548   return callee_method->verified_code_entry();
1549 JRT_END
1550 
1551 
1552 // Resolve a virtual call that can be statically bound (e.g., always
1553 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1554 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1555   methodHandle callee_method;
1556   JRT_BLOCK
1557     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1558     thread->set_vm_result_2(callee_method());
1559   JRT_BLOCK_END
1560   // return compiled code entry point after potential safepoints
1561   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1562   return callee_method->verified_code_entry();
1563 JRT_END
1564 
1565 
1566 
1567 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1568   ResourceMark rm(thread);
1569   CallInfo call_info;
1570   Bytecodes::Code bc;
1571 
1572   // receiver is NULL for static calls. An exception is thrown for NULL
1573   // receivers for non-static calls
1574   Handle receiver = find_callee_info(thread, bc, call_info,
1575                                      CHECK_(methodHandle()));
1576   // Compiler1 can produce virtual call sites that can actually be statically bound
1577   // If we fell thru to below we would think that the site was going megamorphic
1578   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1579   // we'd try and do a vtable dispatch however methods that can be statically bound
1580   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1581   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1582   // plain ic_miss) and the site will be converted to an optimized virtual call site
1583   // never to miss again. I don't believe C2 will produce code like this but if it
1584   // did this would still be the correct thing to do for it too, hence no ifdef.
1585   //
1586   if (call_info.resolved_method()->can_be_statically_bound()) {
1587     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1588     if (TraceCallFixup) {
1589       RegisterMap reg_map(thread, false);
1590       frame caller_frame = thread->last_frame().sender(&reg_map);
1591       ResourceMark rm(thread);
1592       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1593       callee_method->print_short_name(tty);
1594       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1595       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1596     }
1597     return callee_method;
1598   }
1599 
1600   methodHandle callee_method = call_info.selected_method();
1601 
1602   bool should_be_mono = false;
1603 
1604 #ifndef PRODUCT
1605   Atomic::inc(&_ic_miss_ctr);
1606 
1607   // Statistics & Tracing
1608   if (TraceCallFixup) {
1609     ResourceMark rm(thread);
1610     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1611     callee_method->print_short_name(tty);
1612     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1613   }
1614 
1615   if (ICMissHistogram) {
1616     MutexLocker m(VMStatistic_lock);
1617     RegisterMap reg_map(thread, false);
1618     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1619     // produce statistics under the lock
1620     trace_ic_miss(f.pc());
1621   }
1622 #endif
1623 
1624   // install an event collector so that when a vtable stub is created the
1625   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1626   // event can't be posted when the stub is created as locks are held
1627   // - instead the event will be deferred until the event collector goes
1628   // out of scope.
1629   JvmtiDynamicCodeEventCollector event_collector;
1630 
1631   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1632   { MutexLocker ml_patch (CompiledIC_lock);
1633     RegisterMap reg_map(thread, false);
1634     frame caller_frame = thread->last_frame().sender(&reg_map);
1635     CodeBlob* cb = caller_frame.cb();
1636     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1637     if (cb->is_compiled()) {
1638       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1639       bool should_be_mono = false;
1640       if (inline_cache->is_optimized()) {
1641         if (TraceCallFixup) {
1642           ResourceMark rm(thread);
1643           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1644           callee_method->print_short_name(tty);
1645           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1646         }
1647         should_be_mono = true;
1648       } else if (inline_cache->is_icholder_call()) {
1649         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1650         if (ic_oop != NULL) {
1651 
1652           if (receiver()->klass() == ic_oop->holder_klass()) {
1653             // This isn't a real miss. We must have seen that compiled code
1654             // is now available and we want the call site converted to a
1655             // monomorphic compiled call site.
1656             // We can't assert for callee_method->code() != NULL because it
1657             // could have been deoptimized in the meantime
1658             if (TraceCallFixup) {
1659               ResourceMark rm(thread);
1660               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1661               callee_method->print_short_name(tty);
1662               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1663             }
1664             should_be_mono = true;
1665           }
1666         }
1667       }
1668 
1669       if (should_be_mono) {
1670 
1671         // We have a path that was monomorphic but was going interpreted
1672         // and now we have (or had) a compiled entry. We correct the IC
1673         // by using a new icBuffer.
1674         CompiledICInfo info;
1675         Klass* receiver_klass = receiver()->klass();
1676         inline_cache->compute_monomorphic_entry(callee_method,
1677                                                 receiver_klass,
1678                                                 inline_cache->is_optimized(),
1679                                                 false, caller_nm->is_nmethod(),
1680                                                 info, CHECK_(methodHandle()));
1681         inline_cache->set_to_monomorphic(info);
1682       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1683         // Potential change to megamorphic
1684         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1685         if (!successful) {
1686           inline_cache->set_to_clean();
1687         }
1688       } else {
1689         // Either clean or megamorphic
1690       }
1691     } else {
1692       fatal("Unimplemented");
1693     }
1694   } // Release CompiledIC_lock
1695 
1696   return callee_method;
1697 }
1698 
1699 //
1700 // Resets a call-site in compiled code so it will get resolved again.
1701 // This routines handles both virtual call sites, optimized virtual call
1702 // sites, and static call sites. Typically used to change a call sites
1703 // destination from compiled to interpreted.
1704 //
1705 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1706   ResourceMark rm(thread);
1707   RegisterMap reg_map(thread, false);
1708   frame stub_frame = thread->last_frame();
1709   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1710   frame caller = stub_frame.sender(&reg_map);
1711 
1712   // Do nothing if the frame isn't a live compiled frame.
1713   // nmethod could be deoptimized by the time we get here
1714   // so no update to the caller is needed.
1715 
1716   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1717 
1718     address pc = caller.pc();
1719 
1720     // Check for static or virtual call
1721     bool is_static_call = false;
1722     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1723 
1724     // Default call_addr is the location of the "basic" call.
1725     // Determine the address of the call we a reresolving. With
1726     // Inline Caches we will always find a recognizable call.
1727     // With Inline Caches disabled we may or may not find a
1728     // recognizable call. We will always find a call for static
1729     // calls and for optimized virtual calls. For vanilla virtual
1730     // calls it depends on the state of the UseInlineCaches switch.
1731     //
1732     // With Inline Caches disabled we can get here for a virtual call
1733     // for two reasons:
1734     //   1 - calling an abstract method. The vtable for abstract methods
1735     //       will run us thru handle_wrong_method and we will eventually
1736     //       end up in the interpreter to throw the ame.
1737     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1738     //       call and between the time we fetch the entry address and
1739     //       we jump to it the target gets deoptimized. Similar to 1
1740     //       we will wind up in the interprter (thru a c2i with c2).
1741     //
1742     address call_addr = NULL;
1743     {
1744       // Get call instruction under lock because another thread may be
1745       // busy patching it.
1746       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1747       // Location of call instruction
1748       call_addr = caller_nm->call_instruction_address(pc);
1749     }
1750     // Make sure nmethod doesn't get deoptimized and removed until
1751     // this is done with it.
1752     // CLEANUP - with lazy deopt shouldn't need this lock
1753     nmethodLocker nmlock(caller_nm);
1754 
1755     if (call_addr != NULL) {
1756       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1757       int ret = iter.next(); // Get item
1758       if (ret) {
1759         assert(iter.addr() == call_addr, "must find call");
1760         if (iter.type() == relocInfo::static_call_type) {
1761           is_static_call = true;
1762         } else {
1763           assert(iter.type() == relocInfo::virtual_call_type ||
1764                  iter.type() == relocInfo::opt_virtual_call_type
1765                 , "unexpected relocInfo. type");
1766         }
1767       } else {
1768         assert(!UseInlineCaches, "relocation info. must exist for this address");
1769       }
1770 
1771       // Cleaning the inline cache will force a new resolve. This is more robust
1772       // than directly setting it to the new destination, since resolving of calls
1773       // is always done through the same code path. (experience shows that it
1774       // leads to very hard to track down bugs, if an inline cache gets updated
1775       // to a wrong method). It should not be performance critical, since the
1776       // resolve is only done once.
1777 
1778       bool is_nmethod = caller_nm->is_nmethod();
1779       MutexLocker ml(CompiledIC_lock);
1780       if (is_static_call) {
1781         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1782         ssc->set_to_clean();
1783       } else {
1784         // compiled, dispatched call (which used to call an interpreted method)
1785         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1786         inline_cache->set_to_clean();
1787       }
1788     }
1789   }
1790 
1791   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1792 
1793 
1794 #ifndef PRODUCT
1795   Atomic::inc(&_wrong_method_ctr);
1796 
1797   if (TraceCallFixup) {
1798     ResourceMark rm(thread);
1799     tty->print("handle_wrong_method reresolving call to");
1800     callee_method->print_short_name(tty);
1801     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1802   }
1803 #endif
1804 
1805   return callee_method;
1806 }
1807 
1808 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1809   // The faulting unsafe accesses should be changed to throw the error
1810   // synchronously instead. Meanwhile the faulting instruction will be
1811   // skipped over (effectively turning it into a no-op) and an
1812   // asynchronous exception will be raised which the thread will
1813   // handle at a later point. If the instruction is a load it will
1814   // return garbage.
1815 
1816   // Request an async exception.
1817   thread->set_pending_unsafe_access_error();
1818 
1819   // Return address of next instruction to execute.
1820   return next_pc;
1821 }
1822 
1823 #ifdef ASSERT
1824 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1825                                                                 const BasicType* sig_bt,
1826                                                                 const VMRegPair* regs) {
1827   ResourceMark rm;
1828   const int total_args_passed = method->size_of_parameters();
1829   const VMRegPair*    regs_with_member_name = regs;
1830         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1831 
1832   const int member_arg_pos = total_args_passed - 1;
1833   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1834   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1835 
1836   const bool is_outgoing = method->is_method_handle_intrinsic();
1837   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1838 
1839   for (int i = 0; i < member_arg_pos; i++) {
1840     VMReg a =    regs_with_member_name[i].first();
1841     VMReg b = regs_without_member_name[i].first();
1842     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1843   }
1844   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1845 }
1846 #endif
1847 
1848 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1849   if (destination != entry_point) {
1850     CodeBlob* callee = CodeCache::find_blob(destination);
1851     // callee == cb seems weird. It means calling interpreter thru stub.
1852     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1853       // static call or optimized virtual
1854       if (TraceCallFixup) {
1855         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1856         moop->print_short_name(tty);
1857         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1858       }
1859       return true;
1860     } else {
1861       if (TraceCallFixup) {
1862         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1863         moop->print_short_name(tty);
1864         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1865       }
1866       // assert is too strong could also be resolve destinations.
1867       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1868     }
1869   } else {
1870     if (TraceCallFixup) {
1871       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1872       moop->print_short_name(tty);
1873       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1874     }
1875   }
1876   return false;
1877 }
1878 
1879 // ---------------------------------------------------------------------------
1880 // We are calling the interpreter via a c2i. Normally this would mean that
1881 // we were called by a compiled method. However we could have lost a race
1882 // where we went int -> i2c -> c2i and so the caller could in fact be
1883 // interpreted. If the caller is compiled we attempt to patch the caller
1884 // so he no longer calls into the interpreter.
1885 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1886   Method* moop(method);
1887 
1888   address entry_point = moop->from_compiled_entry_no_trampoline();
1889 
1890   // It's possible that deoptimization can occur at a call site which hasn't
1891   // been resolved yet, in which case this function will be called from
1892   // an nmethod that has been patched for deopt and we can ignore the
1893   // request for a fixup.
1894   // Also it is possible that we lost a race in that from_compiled_entry
1895   // is now back to the i2c in that case we don't need to patch and if
1896   // we did we'd leap into space because the callsite needs to use
1897   // "to interpreter" stub in order to load up the Method*. Don't
1898   // ask me how I know this...
1899 
1900   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1901   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1902     return;
1903   }
1904 
1905   // The check above makes sure this is a nmethod.
1906   CompiledMethod* nm = cb->as_compiled_method_or_null();
1907   assert(nm, "must be");
1908 
1909   // Get the return PC for the passed caller PC.
1910   address return_pc = caller_pc + frame::pc_return_offset;
1911 
1912   // There is a benign race here. We could be attempting to patch to a compiled
1913   // entry point at the same time the callee is being deoptimized. If that is
1914   // the case then entry_point may in fact point to a c2i and we'd patch the
1915   // call site with the same old data. clear_code will set code() to NULL
1916   // at the end of it. If we happen to see that NULL then we can skip trying
1917   // to patch. If we hit the window where the callee has a c2i in the
1918   // from_compiled_entry and the NULL isn't present yet then we lose the race
1919   // and patch the code with the same old data. Asi es la vida.
1920 
1921   if (moop->code() == NULL) return;
1922 
1923   if (nm->is_in_use()) {
1924 
1925     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1926     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1927     if (NativeCall::is_call_before(return_pc)) {
1928       ResourceMark mark;
1929       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1930       //
1931       // bug 6281185. We might get here after resolving a call site to a vanilla
1932       // virtual call. Because the resolvee uses the verified entry it may then
1933       // see compiled code and attempt to patch the site by calling us. This would
1934       // then incorrectly convert the call site to optimized and its downhill from
1935       // there. If you're lucky you'll get the assert in the bugid, if not you've
1936       // just made a call site that could be megamorphic into a monomorphic site
1937       // for the rest of its life! Just another racing bug in the life of
1938       // fixup_callers_callsite ...
1939       //
1940       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1941       iter.next();
1942       assert(iter.has_current(), "must have a reloc at java call site");
1943       relocInfo::relocType typ = iter.reloc()->type();
1944       if (typ != relocInfo::static_call_type &&
1945            typ != relocInfo::opt_virtual_call_type &&
1946            typ != relocInfo::static_stub_type) {
1947         return;
1948       }
1949       address destination = call->destination();
1950       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1951         call->set_destination_mt_safe(entry_point);
1952       }
1953     }
1954   }
1955 IRT_END
1956 
1957 
1958 // same as JVM_Arraycopy, but called directly from compiled code
1959 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1960                                                 oopDesc* dest, jint dest_pos,
1961                                                 jint length,
1962                                                 JavaThread* thread)) {
1963 #ifndef PRODUCT
1964   _slow_array_copy_ctr++;
1965 #endif
1966   // Check if we have null pointers
1967   if (src == NULL || dest == NULL) {
1968     THROW(vmSymbols::java_lang_NullPointerException());
1969   }
1970   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1971   // even though the copy_array API also performs dynamic checks to ensure
1972   // that src and dest are truly arrays (and are conformable).
1973   // The copy_array mechanism is awkward and could be removed, but
1974   // the compilers don't call this function except as a last resort,
1975   // so it probably doesn't matter.
1976   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1977                                         (arrayOopDesc*)dest, dest_pos,
1978                                         length, thread);
1979 }
1980 JRT_END
1981 
1982 // The caller of generate_class_cast_message() (or one of its callers)
1983 // must use a ResourceMark in order to correctly free the result.
1984 char* SharedRuntime::generate_class_cast_message(
1985     JavaThread* thread, Klass* caster_klass) {
1986 
1987   // Get target class name from the checkcast instruction
1988   vframeStream vfst(thread, true);
1989   assert(!vfst.at_end(), "Java frame must exist");
1990   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1991   constantPoolHandle cpool(thread, vfst.method()->constants());
1992   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1993   Symbol* target_klass_name = NULL;
1994   if (target_klass == NULL) {
1995     // This klass should be resolved, but just in case, get the name in the klass slot.
1996     target_klass_name = cpool->klass_name_at(cc.index());
1997   }
1998   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1999 }
2000 
2001 
2002 // The caller of generate_class_cast_message() (or one of its callers)
2003 // must use a ResourceMark in order to correctly free the result.
2004 char* SharedRuntime::generate_class_cast_message(
2005     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2006 
2007   const char* caster_name = caster_klass->class_loader_and_module_name();
2008 
2009   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2010   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2011                                                    target_klass->class_loader_and_module_name();
2012 
2013   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2014 
2015   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2016   if (message == NULL) {
2017     // Shouldn't happen, but don't cause even more problems if it does
2018     message = const_cast<char*>(caster_klass->external_name());
2019   } else {
2020     jio_snprintf(message,
2021                  msglen,
2022                  "%s cannot be cast to %s",
2023                  caster_name,
2024                  target_name);
2025   }
2026   return message;
2027 }
2028 
2029 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2030   (void) JavaThread::current()->reguard_stack();
2031 JRT_END
2032 
2033 
2034 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2035 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2036   // Disable ObjectSynchronizer::quick_enter() in default config
2037   // on AARCH64 and ARM until JDK-8153107 is resolved.
2038   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2039       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2040       !SafepointSynchronize::is_synchronizing() &&
2041       (!EnableValhalla || !_obj->klass()->is_value())) {
2042     // Only try quick_enter() if we're not trying to reach a safepoint
2043     // so that the calling thread reaches the safepoint more quickly.
2044     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2045   }
2046   // NO_ASYNC required because an async exception on the state transition destructor
2047   // would leave you with the lock held and it would never be released.
2048   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2049   // and the model is that an exception implies the method failed.
2050   JRT_BLOCK_NO_ASYNC
2051   oop obj(_obj);
2052   if (PrintBiasedLockingStatistics) {
2053     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2054   }
2055   Handle h_obj(THREAD, obj);
2056   if (UseBiasedLocking) {
2057     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2058     ObjectSynchronizer::fast_enter(h_obj, lock, true, THREAD);
2059   } else {
2060     ObjectSynchronizer::slow_enter(h_obj, lock, THREAD);
2061   }
2062   if (HAS_PENDING_EXCEPTION) {
2063     // Deoptimize the (compiled) caller frame
2064     assert(EnableValhalla && h_obj()->klass()->is_value(), "must be a value type");
2065     RegisterMap reg_map(thread);
2066     frame caller_frame = thread->last_frame().sender(&reg_map);
2067     Deoptimization::deoptimize_frame(thread, caller_frame.id());
2068   }
2069   JRT_BLOCK_END
2070 JRT_END
2071 
2072 // Handles the uncommon cases of monitor unlocking in compiled code
2073 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2074   oop obj(_obj);
2075   assert(JavaThread::current() == THREAD, "invariant");
2076   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2077   // testing was unable to ever fire the assert that guarded it so I have removed it.
2078   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2079 #undef MIGHT_HAVE_PENDING
2080 #ifdef MIGHT_HAVE_PENDING
2081   // Save and restore any pending_exception around the exception mark.
2082   // While the slow_exit must not throw an exception, we could come into
2083   // this routine with one set.
2084   oop pending_excep = NULL;
2085   const char* pending_file;
2086   int pending_line;
2087   if (HAS_PENDING_EXCEPTION) {
2088     pending_excep = PENDING_EXCEPTION;
2089     pending_file  = THREAD->exception_file();
2090     pending_line  = THREAD->exception_line();
2091     CLEAR_PENDING_EXCEPTION;
2092   }
2093 #endif /* MIGHT_HAVE_PENDING */
2094 
2095   {
2096     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2097     EXCEPTION_MARK;
2098     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2099   }
2100 
2101 #ifdef MIGHT_HAVE_PENDING
2102   if (pending_excep != NULL) {
2103     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2104   }
2105 #endif /* MIGHT_HAVE_PENDING */
2106 JRT_END
2107 
2108 #ifndef PRODUCT
2109 
2110 void SharedRuntime::print_statistics() {
2111   ttyLocker ttyl;
2112   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2113 
2114   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2115 
2116   SharedRuntime::print_ic_miss_histogram();
2117 
2118   if (CountRemovableExceptions) {
2119     if (_nof_removable_exceptions > 0) {
2120       Unimplemented(); // this counter is not yet incremented
2121       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2122     }
2123   }
2124 
2125   // Dump the JRT_ENTRY counters
2126   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2127   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2128   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2129   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2130   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2131   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2132   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2133 
2134   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2135   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2136   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2137   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2138   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2139 
2140   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2141   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2142   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2143   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2144   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2145   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2146   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2147   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2148   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2149   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2150   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2151   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2152   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2153   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2154   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2155   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2156 
2157   AdapterHandlerLibrary::print_statistics();
2158 
2159   if (xtty != NULL)  xtty->tail("statistics");
2160 }
2161 
2162 inline double percent(int x, int y) {
2163   return 100.0 * x / MAX2(y, 1);
2164 }
2165 
2166 class MethodArityHistogram {
2167  public:
2168   enum { MAX_ARITY = 256 };
2169  private:
2170   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2171   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2172   static int _max_arity;                      // max. arity seen
2173   static int _max_size;                       // max. arg size seen
2174 
2175   static void add_method_to_histogram(nmethod* nm) {
2176     Method* m = nm->method();
2177     ArgumentCount args(m->signature());
2178     int arity   = args.size() + (m->is_static() ? 0 : 1);
2179     int argsize = m->size_of_parameters();
2180     arity   = MIN2(arity, MAX_ARITY-1);
2181     argsize = MIN2(argsize, MAX_ARITY-1);
2182     int count = nm->method()->compiled_invocation_count();
2183     _arity_histogram[arity]  += count;
2184     _size_histogram[argsize] += count;
2185     _max_arity = MAX2(_max_arity, arity);
2186     _max_size  = MAX2(_max_size, argsize);
2187   }
2188 
2189   void print_histogram_helper(int n, int* histo, const char* name) {
2190     const int N = MIN2(5, n);
2191     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2192     double sum = 0;
2193     double weighted_sum = 0;
2194     int i;
2195     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2196     double rest = sum;
2197     double percent = sum / 100;
2198     for (i = 0; i <= N; i++) {
2199       rest -= histo[i];
2200       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2201     }
2202     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2203     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2204   }
2205 
2206   void print_histogram() {
2207     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2208     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2209     tty->print_cr("\nSame for parameter size (in words):");
2210     print_histogram_helper(_max_size, _size_histogram, "size");
2211     tty->cr();
2212   }
2213 
2214  public:
2215   MethodArityHistogram() {
2216     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2217     _max_arity = _max_size = 0;
2218     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2219     CodeCache::nmethods_do(add_method_to_histogram);
2220     print_histogram();
2221   }
2222 };
2223 
2224 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2225 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2226 int MethodArityHistogram::_max_arity;
2227 int MethodArityHistogram::_max_size;
2228 
2229 void SharedRuntime::print_call_statistics(int comp_total) {
2230   tty->print_cr("Calls from compiled code:");
2231   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2232   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2233   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2234   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2235   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2236   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2237   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2238   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2239   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2240   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2241   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2242   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2243   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2244   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2245   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2247   tty->cr();
2248   tty->print_cr("Note 1: counter updates are not MT-safe.");
2249   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2250   tty->print_cr("        %% in nested categories are relative to their category");
2251   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2252   tty->cr();
2253 
2254   MethodArityHistogram h;
2255 }
2256 #endif
2257 
2258 
2259 // A simple wrapper class around the calling convention information
2260 // that allows sharing of adapters for the same calling convention.
2261 class AdapterFingerPrint : public CHeapObj<mtCode> {
2262  private:
2263   enum {
2264     _basic_type_bits = 4,
2265     _basic_type_mask = right_n_bits(_basic_type_bits),
2266     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2267     _compact_int_count = 3
2268   };
2269   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2270   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2271 
2272   union {
2273     int  _compact[_compact_int_count];
2274     int* _fingerprint;
2275   } _value;
2276   int _length; // A negative length indicates the fingerprint is in the compact form,
2277                // Otherwise _value._fingerprint is the array.
2278 
2279   // Remap BasicTypes that are handled equivalently by the adapters.
2280   // These are correct for the current system but someday it might be
2281   // necessary to make this mapping platform dependent.
2282   static int adapter_encoding(BasicType in, bool is_valuetype) {
2283     switch (in) {
2284       case T_BOOLEAN:
2285       case T_BYTE:
2286       case T_SHORT:
2287       case T_CHAR: {
2288         if (is_valuetype) {
2289           // Do not widen value type field types
2290           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2291           return in;
2292         } else {
2293           // They are all promoted to T_INT in the calling convention
2294           return T_INT;
2295         }
2296       }
2297 
2298       case T_VALUETYPE: {
2299         // If value types are passed as fields, return 'in' to differentiate
2300         // between a T_VALUETYPE and a T_OBJECT in the signature.
2301         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2302       }
2303 
2304       case T_VALUETYPEPTR:
2305         return T_VALUETYPE; // TODO hack because we don't have enough bits to represent T_VALUETYPEPTR.
2306 
2307       case T_OBJECT:
2308       case T_ARRAY:
2309         // In other words, we assume that any register good enough for
2310         // an int or long is good enough for a managed pointer.
2311 #ifdef _LP64
2312         return T_LONG;
2313 #else
2314         return T_INT;
2315 #endif
2316 
2317       case T_INT:
2318       case T_LONG:
2319       case T_FLOAT:
2320       case T_DOUBLE:
2321       case T_VOID:
2322         return in;
2323 
2324       default:
2325         ShouldNotReachHere();
2326         return T_CONFLICT;
2327     }
2328   }
2329 
2330  public:
2331   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2332     // The fingerprint is based on the BasicType signature encoded
2333     // into an array of ints with eight entries per int.
2334     int* ptr;
2335     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2336     if (len <= _compact_int_count) {
2337       assert(_compact_int_count == 3, "else change next line");
2338       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2339       // Storing the signature encoded as signed chars hits about 98%
2340       // of the time.
2341       _length = -len;
2342       ptr = _value._compact;
2343     } else {
2344       _length = len;
2345       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2346       ptr = _value._fingerprint;
2347     }
2348 
2349     // Now pack the BasicTypes with 8 per int
2350     int sig_index = 0;
2351     BasicType prev_sbt = T_ILLEGAL;
2352     int vt_count = 0;
2353     for (int index = 0; index < len; index++) {
2354       int value = 0;
2355       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2356         int bt = 0;
2357         if (sig_index < total_args_passed) {
2358           BasicType sbt = sig_bt[sig_index++];
2359           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2360             // Found start of value type in signature
2361             vt_count++;
2362           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2363                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2364             // Found end of value type in signature
2365             vt_count--;
2366             assert(vt_count >= 0, "invalid vt_count");
2367           }
2368           bt = adapter_encoding(sbt, vt_count > 0);
2369           prev_sbt = sbt;
2370         }
2371         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2372         value = (value << _basic_type_bits) | bt;
2373       }
2374       ptr[index] = value;
2375     }
2376     assert(vt_count == 0, "invalid vt_count");
2377   }
2378 
2379   ~AdapterFingerPrint() {
2380     if (_length > 0) {
2381       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2382     }
2383   }
2384 
2385   int value(int index) {
2386     if (_length < 0) {
2387       return _value._compact[index];
2388     }
2389     return _value._fingerprint[index];
2390   }
2391   int length() {
2392     if (_length < 0) return -_length;
2393     return _length;
2394   }
2395 
2396   bool is_compact() {
2397     return _length <= 0;
2398   }
2399 
2400   unsigned int compute_hash() {
2401     int hash = 0;
2402     for (int i = 0; i < length(); i++) {
2403       int v = value(i);
2404       hash = (hash << 8) ^ v ^ (hash >> 5);
2405     }
2406     return (unsigned int)hash;
2407   }
2408 
2409   const char* as_string() {
2410     stringStream st;
2411     st.print("0x");
2412     for (int i = 0; i < length(); i++) {
2413       st.print("%08x", value(i));
2414     }
2415     return st.as_string();
2416   }
2417 
2418   bool equals(AdapterFingerPrint* other) {
2419     if (other->_length != _length) {
2420       return false;
2421     }
2422     if (_length < 0) {
2423       assert(_compact_int_count == 3, "else change next line");
2424       return _value._compact[0] == other->_value._compact[0] &&
2425              _value._compact[1] == other->_value._compact[1] &&
2426              _value._compact[2] == other->_value._compact[2];
2427     } else {
2428       for (int i = 0; i < _length; i++) {
2429         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2430           return false;
2431         }
2432       }
2433     }
2434     return true;
2435   }
2436 };
2437 
2438 
2439 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2440 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2441   friend class AdapterHandlerTableIterator;
2442 
2443  private:
2444 
2445 #ifndef PRODUCT
2446   static int _lookups; // number of calls to lookup
2447   static int _buckets; // number of buckets checked
2448   static int _equals;  // number of buckets checked with matching hash
2449   static int _hits;    // number of successful lookups
2450   static int _compact; // number of equals calls with compact signature
2451 #endif
2452 
2453   AdapterHandlerEntry* bucket(int i) {
2454     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2455   }
2456 
2457  public:
2458   AdapterHandlerTable()
2459     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2460 
2461   // Create a new entry suitable for insertion in the table
2462   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2463     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2464     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2465     if (DumpSharedSpaces) {
2466       ((CDSAdapterHandlerEntry*)entry)->init();
2467     }
2468     return entry;
2469   }
2470 
2471   // Insert an entry into the table
2472   void add(AdapterHandlerEntry* entry) {
2473     int index = hash_to_index(entry->hash());
2474     add_entry(index, entry);
2475   }
2476 
2477   void free_entry(AdapterHandlerEntry* entry) {
2478     entry->deallocate();
2479     BasicHashtable<mtCode>::free_entry(entry);
2480   }
2481 
2482   // Find a entry with the same fingerprint if it exists
2483   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2484     NOT_PRODUCT(_lookups++);
2485     AdapterFingerPrint fp(total_args_passed, sig_bt);
2486     unsigned int hash = fp.compute_hash();
2487     int index = hash_to_index(hash);
2488     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2489       NOT_PRODUCT(_buckets++);
2490       if (e->hash() == hash) {
2491         NOT_PRODUCT(_equals++);
2492         if (fp.equals(e->fingerprint())) {
2493 #ifndef PRODUCT
2494           if (fp.is_compact()) _compact++;
2495           _hits++;
2496 #endif
2497           return e;
2498         }
2499       }
2500     }
2501     return NULL;
2502   }
2503 
2504 #ifndef PRODUCT
2505   void print_statistics() {
2506     ResourceMark rm;
2507     int longest = 0;
2508     int empty = 0;
2509     int total = 0;
2510     int nonempty = 0;
2511     for (int index = 0; index < table_size(); index++) {
2512       int count = 0;
2513       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2514         count++;
2515       }
2516       if (count != 0) nonempty++;
2517       if (count == 0) empty++;
2518       if (count > longest) longest = count;
2519       total += count;
2520     }
2521     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2522                   empty, longest, total, total / (double)nonempty);
2523     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2524                   _lookups, _buckets, _equals, _hits, _compact);
2525   }
2526 #endif
2527 };
2528 
2529 
2530 #ifndef PRODUCT
2531 
2532 int AdapterHandlerTable::_lookups;
2533 int AdapterHandlerTable::_buckets;
2534 int AdapterHandlerTable::_equals;
2535 int AdapterHandlerTable::_hits;
2536 int AdapterHandlerTable::_compact;
2537 
2538 #endif
2539 
2540 class AdapterHandlerTableIterator : public StackObj {
2541  private:
2542   AdapterHandlerTable* _table;
2543   int _index;
2544   AdapterHandlerEntry* _current;
2545 
2546   void scan() {
2547     while (_index < _table->table_size()) {
2548       AdapterHandlerEntry* a = _table->bucket(_index);
2549       _index++;
2550       if (a != NULL) {
2551         _current = a;
2552         return;
2553       }
2554     }
2555   }
2556 
2557  public:
2558   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2559     scan();
2560   }
2561   bool has_next() {
2562     return _current != NULL;
2563   }
2564   AdapterHandlerEntry* next() {
2565     if (_current != NULL) {
2566       AdapterHandlerEntry* result = _current;
2567       _current = _current->next();
2568       if (_current == NULL) scan();
2569       return result;
2570     } else {
2571       return NULL;
2572     }
2573   }
2574 };
2575 
2576 
2577 // ---------------------------------------------------------------------------
2578 // Implementation of AdapterHandlerLibrary
2579 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2580 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2581 const int AdapterHandlerLibrary_size = 16*K;
2582 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2583 
2584 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2585   // Should be called only when AdapterHandlerLibrary_lock is active.
2586   if (_buffer == NULL) // Initialize lazily
2587       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2588   return _buffer;
2589 }
2590 
2591 extern "C" void unexpected_adapter_call() {
2592   ShouldNotCallThis();
2593 }
2594 
2595 void AdapterHandlerLibrary::initialize() {
2596   if (_adapters != NULL) return;
2597   _adapters = new AdapterHandlerTable();
2598 
2599   // Create a special handler for abstract methods.  Abstract methods
2600   // are never compiled so an i2c entry is somewhat meaningless, but
2601   // throw AbstractMethodError just in case.
2602   // Pass wrong_method_abstract for the c2i transitions to return
2603   // AbstractMethodError for invalid invocations.
2604   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2605   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2606                                                               StubRoutines::throw_AbstractMethodError_entry(),
2607                                                               wrong_method_abstract, wrong_method_abstract);
2608 }
2609 
2610 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2611                                                       address i2c_entry,
2612                                                       address c2i_entry,
2613                                                       address c2i_unverified_entry,
2614                                                       Symbol* sig_extended) {
2615   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2616 }
2617 
2618 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method, TRAPS) {
2619   AdapterHandlerEntry* entry = get_adapter0(method, CHECK_NULL);
2620   if (method->is_shared()) {
2621     // See comments around Method::link_method()
2622     MutexLocker mu(AdapterHandlerLibrary_lock);
2623     if (method->adapter() == NULL) {
2624       method->update_adapter_trampoline(entry);
2625     }
2626     address trampoline = method->from_compiled_entry();
2627     if (*(int*)trampoline == 0) {
2628       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2629       MacroAssembler _masm(&buffer);
2630       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2631       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2632 
2633       if (PrintInterpreter) {
2634         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2635       }
2636     }
2637   }
2638 
2639   return entry;
2640 }
2641 
2642 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method, TRAPS) {
2643   // Use customized signature handler.  Need to lock around updates to
2644   // the AdapterHandlerTable (it is not safe for concurrent readers
2645   // and a single writer: this could be fixed if it becomes a
2646   // problem).
2647 
2648   ResourceMark rm;
2649 
2650   NOT_PRODUCT(int insts_size = 0);
2651   AdapterBlob* new_adapter = NULL;
2652   AdapterHandlerEntry* entry = NULL;
2653   AdapterFingerPrint* fingerprint = NULL;
2654   {
2655     MutexLocker mu(AdapterHandlerLibrary_lock);
2656     // make sure data structure is initialized
2657     initialize();
2658 
2659     if (method->is_abstract()) {
2660       return _abstract_method_handler;
2661     }
2662 
2663     // Fill in the signature array, for the calling-convention call.
2664     GrowableArray<SigEntry> sig_extended;
2665     {
2666       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2667       Thread* THREAD = Thread::current();
2668       Klass* holder = method->method_holder();
2669       GrowableArray<BasicType> sig_bt_tmp;
2670 
2671       int i = 0;
2672       if (!method->is_static()) {  // Pass in receiver first
2673         if (holder->is_value()) {
2674           ValueKlass* vk = ValueKlass::cast(holder);
2675           if (!ValueTypePassFieldsAsArgs) {
2676             // If we don't pass value types as arguments or if the holder of
2677             // the method is __Value, we must pass a reference.
2678             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2679           } else {
2680             const Array<SigEntry>* sig_vk = vk->extended_sig();
2681             sig_extended.appendAll(sig_vk);
2682           }
2683         } else {
2684           sig_extended.push(SigEntry(T_OBJECT));
2685         }
2686       }
2687       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2688         Symbol* sym = ss.as_symbol_or_null();
2689         if (sym != NULL && method->method_holder()->is_declared_value_type(sym)) {
2690           if (!ValueTypePassFieldsAsArgs) {
2691             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2692           } else {
2693             // Method handle intrinsics with a __Value argument may be created during
2694             // compilation. Only do a full system dictionary lookup if the argument name
2695             // is not __Value, to avoid lookups from the compiler thread.
2696             Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2697                                    Handle(THREAD, holder->protection_domain()),
2698                                    SignatureStream::ReturnNull, CHECK_NULL);
2699             const Array<SigEntry>* sig_vk = ValueKlass::cast(k)->extended_sig();
2700             sig_extended.appendAll(sig_vk);
2701           }
2702         } else {
2703           sig_extended.push(SigEntry(ss.type()));
2704           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2705             sig_extended.push(SigEntry(T_VOID));
2706           }
2707         }
2708       }
2709     }
2710 
2711     int total_args_passed_cc = ValueTypePassFieldsAsArgs ? SigEntry::count_fields(sig_extended) : sig_extended.length();
2712     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2713     SigEntry::fill_sig_bt(sig_extended, sig_bt_cc, total_args_passed_cc, ValueTypePassFieldsAsArgs);
2714 
2715     int total_args_passed_fp = sig_extended.length();
2716     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2717     for (int i = 0; i < sig_extended.length(); i++) {
2718       sig_bt_fp[i] = sig_extended.at(i)._bt;
2719     }
2720 
2721     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2722 
2723     // Lookup method signature's fingerprint
2724     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2725 
2726 #ifdef ASSERT
2727     AdapterHandlerEntry* shared_entry = NULL;
2728     // Start adapter sharing verification only after the VM is booted.
2729     if (VerifyAdapterSharing && (entry != NULL)) {
2730       shared_entry = entry;
2731       entry = NULL;
2732     }
2733 #endif
2734 
2735     if (entry != NULL) {
2736       return entry;
2737     }
2738 
2739     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2740     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2741 
2742     // Make a C heap allocated version of the fingerprint to store in the adapter
2743     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2744 
2745     // StubRoutines::code2() is initialized after this function can be called. As a result,
2746     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2747     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2748     // stub that ensure that an I2C stub is called from an interpreter frame.
2749     bool contains_all_checks = StubRoutines::code2() != NULL;
2750 
2751     // Create I2C & C2I handlers
2752     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2753     if (buf != NULL) {
2754       CodeBuffer buffer(buf);
2755       short buffer_locs[20];
2756       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2757                                              sizeof(buffer_locs)/sizeof(relocInfo));
2758 
2759       MacroAssembler _masm(&buffer);
2760       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2761                                                      comp_args_on_stack,
2762                                                      sig_extended,
2763                                                      regs,
2764                                                      fingerprint,
2765                                                      new_adapter);
2766 #ifdef ASSERT
2767       if (VerifyAdapterSharing) {
2768         if (shared_entry != NULL) {
2769           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2770           // Release the one just created and return the original
2771           _adapters->free_entry(entry);
2772           return shared_entry;
2773         } else  {
2774           entry->save_code(buf->code_begin(), buffer.insts_size());
2775         }
2776       }
2777 #endif
2778 
2779       NOT_PRODUCT(insts_size = buffer.insts_size());
2780     }
2781     if (new_adapter == NULL) {
2782       // CodeCache is full, disable compilation
2783       // Ought to log this but compile log is only per compile thread
2784       // and we're some non descript Java thread.
2785       return NULL; // Out of CodeCache space
2786     }
2787     entry->relocate(new_adapter->content_begin());
2788 #ifndef PRODUCT
2789     // debugging suppport
2790     if (PrintAdapterHandlers || PrintStubCode) {
2791       ttyLocker ttyl;
2792       entry->print_adapter_on(tty);
2793       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2794                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2795                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2796       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2797       if (Verbose || PrintStubCode) {
2798         address first_pc = entry->base_address();
2799         if (first_pc != NULL) {
2800           Disassembler::decode(first_pc, first_pc + insts_size);
2801           tty->cr();
2802         }
2803       }
2804     }
2805 #endif
2806     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2807     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2808     if (contains_all_checks || !VerifyAdapterCalls) {
2809       _adapters->add(entry);
2810     }
2811   }
2812   // Outside of the lock
2813   if (new_adapter != NULL) {
2814     char blob_id[256];
2815     jio_snprintf(blob_id,
2816                  sizeof(blob_id),
2817                  "%s(%s)@" PTR_FORMAT,
2818                  new_adapter->name(),
2819                  fingerprint->as_string(),
2820                  new_adapter->content_begin());
2821     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2822 
2823     if (JvmtiExport::should_post_dynamic_code_generated()) {
2824       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2825     }
2826   }
2827   return entry;
2828 }
2829 
2830 address AdapterHandlerEntry::base_address() {
2831   address base = _i2c_entry;
2832   if (base == NULL)  base = _c2i_entry;
2833   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2834   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2835   return base;
2836 }
2837 
2838 void AdapterHandlerEntry::relocate(address new_base) {
2839   address old_base = base_address();
2840   assert(old_base != NULL, "");
2841   ptrdiff_t delta = new_base - old_base;
2842   if (_i2c_entry != NULL)
2843     _i2c_entry += delta;
2844   if (_c2i_entry != NULL)
2845     _c2i_entry += delta;
2846   if (_c2i_unverified_entry != NULL)
2847     _c2i_unverified_entry += delta;
2848   assert(base_address() == new_base, "");
2849 }
2850 
2851 
2852 void AdapterHandlerEntry::deallocate() {
2853   delete _fingerprint;
2854 #ifdef ASSERT
2855   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2856 #endif
2857 }
2858 
2859 
2860 #ifdef ASSERT
2861 // Capture the code before relocation so that it can be compared
2862 // against other versions.  If the code is captured after relocation
2863 // then relative instructions won't be equivalent.
2864 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2865   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2866   _saved_code_length = length;
2867   memcpy(_saved_code, buffer, length);
2868 }
2869 
2870 
2871 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2872   if (length != _saved_code_length) {
2873     return false;
2874   }
2875 
2876   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2877 }
2878 #endif
2879 
2880 
2881 /**
2882  * Create a native wrapper for this native method.  The wrapper converts the
2883  * Java-compiled calling convention to the native convention, handles
2884  * arguments, and transitions to native.  On return from the native we transition
2885  * back to java blocking if a safepoint is in progress.
2886  */
2887 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2888   ResourceMark rm;
2889   nmethod* nm = NULL;
2890 
2891   assert(method->is_native(), "must be native");
2892   assert(method->is_method_handle_intrinsic() ||
2893          method->has_native_function(), "must have something valid to call!");
2894 
2895   {
2896     // Perform the work while holding the lock, but perform any printing outside the lock
2897     MutexLocker mu(AdapterHandlerLibrary_lock);
2898     // See if somebody beat us to it
2899     if (method->code() != NULL) {
2900       return;
2901     }
2902 
2903     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2904     assert(compile_id > 0, "Must generate native wrapper");
2905 
2906 
2907     ResourceMark rm;
2908     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2909     if (buf != NULL) {
2910       CodeBuffer buffer(buf);
2911       double locs_buf[20];
2912       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2913       MacroAssembler _masm(&buffer);
2914 
2915       // Fill in the signature array, for the calling-convention call.
2916       const int total_args_passed = method->size_of_parameters();
2917 
2918       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2919       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2920       int i=0;
2921       if (!method->is_static())  // Pass in receiver first
2922         sig_bt[i++] = T_OBJECT;
2923       SignatureStream ss(method->signature());
2924       for (; !ss.at_return_type(); ss.next()) {
2925         BasicType bt = ss.type();
2926         if (bt == T_VALUETYPE) {
2927 #ifdef ASSERT
2928           Thread* THREAD = Thread::current();
2929           // Avoid class loading from compiler thread
2930           if (THREAD->can_call_java()) {
2931             Handle class_loader(THREAD, method->method_holder()->class_loader());
2932             Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2933             Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2934             assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
2935           }
2936 #endif
2937           bt = T_VALUETYPEPTR;
2938         }
2939         sig_bt[i++] = bt;  // Collect remaining bits of signature
2940         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2941           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2942       }
2943       assert(i == total_args_passed, "");
2944       BasicType ret_type = ss.type();
2945 
2946       // Now get the compiled-Java layout as input (or output) arguments.
2947       // NOTE: Stubs for compiled entry points of method handle intrinsics
2948       // are just trampolines so the argument registers must be outgoing ones.
2949       const bool is_outgoing = method->is_method_handle_intrinsic();
2950       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2951 
2952       // Generate the compiled-to-native wrapper code
2953       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2954 
2955       if (nm != NULL) {
2956         method->set_code(method, nm);
2957 
2958         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2959         if (directive->PrintAssemblyOption) {
2960           nm->print_code();
2961         }
2962         DirectivesStack::release(directive);
2963       }
2964     }
2965   } // Unlock AdapterHandlerLibrary_lock
2966 
2967 
2968   // Install the generated code.
2969   if (nm != NULL) {
2970     const char *msg = method->is_static() ? "(static)" : "";
2971     CompileTask::print_ul(nm, msg);
2972     if (PrintCompilation) {
2973       ttyLocker ttyl;
2974       CompileTask::print(tty, nm, msg);
2975     }
2976     nm->post_compiled_method_load_event();
2977   }
2978 }
2979 
2980 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2981   assert(thread == JavaThread::current(), "must be");
2982   // The code is about to enter a JNI lazy critical native method and
2983   // _needs_gc is true, so if this thread is already in a critical
2984   // section then just return, otherwise this thread should block
2985   // until needs_gc has been cleared.
2986   if (thread->in_critical()) {
2987     return;
2988   }
2989   // Lock and unlock a critical section to give the system a chance to block
2990   GCLocker::lock_critical(thread);
2991   GCLocker::unlock_critical(thread);
2992 JRT_END
2993 
2994 // -------------------------------------------------------------------------
2995 // Java-Java calling convention
2996 // (what you use when Java calls Java)
2997 
2998 //------------------------------name_for_receiver----------------------------------
2999 // For a given signature, return the VMReg for parameter 0.
3000 VMReg SharedRuntime::name_for_receiver() {
3001   VMRegPair regs;
3002   BasicType sig_bt = T_OBJECT;
3003   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3004   // Return argument 0 register.  In the LP64 build pointers
3005   // take 2 registers, but the VM wants only the 'main' name.
3006   return regs.first();
3007 }
3008 
3009 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3010   // This method is returning a data structure allocating as a
3011   // ResourceObject, so do not put any ResourceMarks in here.
3012   char *s = sig->as_C_string();
3013   int len = (int)strlen(s);
3014   s++; len--;                   // Skip opening paren
3015 
3016   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3017   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3018   int cnt = 0;
3019   if (has_receiver) {
3020     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3021   }
3022 
3023   while (*s != ')') {          // Find closing right paren
3024     switch (*s++) {            // Switch on signature character
3025     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3026     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3027     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3028     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3029     case 'I': sig_bt[cnt++] = T_INT;     break;
3030     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3031     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3032     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3033     case 'V': sig_bt[cnt++] = T_VOID;    break;
3034     case 'L':                   // Oop
3035       while (*s++ != ';');   // Skip signature
3036       sig_bt[cnt++] = T_OBJECT;
3037       break;
3038     case '[': {                 // Array
3039       do {                      // Skip optional size
3040         while (*s >= '0' && *s <= '9') s++;
3041       } while (*s++ == '[');   // Nested arrays?
3042       // Skip element type
3043       if (s[-1] == 'L')
3044         while (*s++ != ';'); // Skip signature
3045       sig_bt[cnt++] = T_ARRAY;
3046       break;
3047     }
3048     default : ShouldNotReachHere();
3049     }
3050   }
3051 
3052   if (has_appendix) {
3053     sig_bt[cnt++] = T_OBJECT;
3054   }
3055 
3056   assert(cnt < 256, "grow table size");
3057 
3058   int comp_args_on_stack;
3059   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3060 
3061   // the calling convention doesn't count out_preserve_stack_slots so
3062   // we must add that in to get "true" stack offsets.
3063 
3064   if (comp_args_on_stack) {
3065     for (int i = 0; i < cnt; i++) {
3066       VMReg reg1 = regs[i].first();
3067       if (reg1->is_stack()) {
3068         // Yuck
3069         reg1 = reg1->bias(out_preserve_stack_slots());
3070       }
3071       VMReg reg2 = regs[i].second();
3072       if (reg2->is_stack()) {
3073         // Yuck
3074         reg2 = reg2->bias(out_preserve_stack_slots());
3075       }
3076       regs[i].set_pair(reg2, reg1);
3077     }
3078   }
3079 
3080   // results
3081   *arg_size = cnt;
3082   return regs;
3083 }
3084 
3085 // OSR Migration Code
3086 //
3087 // This code is used convert interpreter frames into compiled frames.  It is
3088 // called from very start of a compiled OSR nmethod.  A temp array is
3089 // allocated to hold the interesting bits of the interpreter frame.  All
3090 // active locks are inflated to allow them to move.  The displaced headers and
3091 // active interpreter locals are copied into the temp buffer.  Then we return
3092 // back to the compiled code.  The compiled code then pops the current
3093 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3094 // copies the interpreter locals and displaced headers where it wants.
3095 // Finally it calls back to free the temp buffer.
3096 //
3097 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3098 
3099 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3100 
3101   //
3102   // This code is dependent on the memory layout of the interpreter local
3103   // array and the monitors. On all of our platforms the layout is identical
3104   // so this code is shared. If some platform lays the their arrays out
3105   // differently then this code could move to platform specific code or
3106   // the code here could be modified to copy items one at a time using
3107   // frame accessor methods and be platform independent.
3108 
3109   frame fr = thread->last_frame();
3110   assert(fr.is_interpreted_frame(), "");
3111   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3112 
3113   // Figure out how many monitors are active.
3114   int active_monitor_count = 0;
3115   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3116        kptr < fr.interpreter_frame_monitor_begin();
3117        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3118     if (kptr->obj() != NULL) active_monitor_count++;
3119   }
3120 
3121   // QQQ we could place number of active monitors in the array so that compiled code
3122   // could double check it.
3123 
3124   Method* moop = fr.interpreter_frame_method();
3125   int max_locals = moop->max_locals();
3126   // Allocate temp buffer, 1 word per local & 2 per active monitor
3127   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3128   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3129 
3130   // Copy the locals.  Order is preserved so that loading of longs works.
3131   // Since there's no GC I can copy the oops blindly.
3132   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3133   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3134                        (HeapWord*)&buf[0],
3135                        max_locals);
3136 
3137   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3138   int i = max_locals;
3139   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3140        kptr2 < fr.interpreter_frame_monitor_begin();
3141        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3142     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3143       BasicLock *lock = kptr2->lock();
3144       // Inflate so the displaced header becomes position-independent
3145       if (lock->displaced_header()->is_unlocked())
3146         ObjectSynchronizer::inflate_helper(kptr2->obj());
3147       // Now the displaced header is free to move
3148       buf[i++] = (intptr_t)lock->displaced_header();
3149       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3150     }
3151   }
3152   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3153 
3154   return buf;
3155 JRT_END
3156 
3157 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3158   FREE_C_HEAP_ARRAY(intptr_t, buf);
3159 JRT_END
3160 
3161 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3162   AdapterHandlerTableIterator iter(_adapters);
3163   while (iter.has_next()) {
3164     AdapterHandlerEntry* a = iter.next();
3165     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3166   }
3167   return false;
3168 }
3169 
3170 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3171   AdapterHandlerTableIterator iter(_adapters);
3172   while (iter.has_next()) {
3173     AdapterHandlerEntry* a = iter.next();
3174     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3175       st->print("Adapter for signature: ");
3176       a->print_adapter_on(tty);
3177       return;
3178     }
3179   }
3180   assert(false, "Should have found handler");
3181 }
3182 
3183 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3184   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3185                p2i(this), fingerprint()->as_string(),
3186                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3187 
3188 }
3189 
3190 #if INCLUDE_CDS
3191 
3192 void CDSAdapterHandlerEntry::init() {
3193   assert(DumpSharedSpaces, "used during dump time only");
3194   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3195   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3196 };
3197 
3198 #endif // INCLUDE_CDS
3199 
3200 
3201 #ifndef PRODUCT
3202 
3203 void AdapterHandlerLibrary::print_statistics() {
3204   _adapters->print_statistics();
3205 }
3206 
3207 #endif /* PRODUCT */
3208 
3209 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3210   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3211   if (thread->stack_reserved_zone_disabled()) {
3212   thread->enable_stack_reserved_zone();
3213   }
3214   thread->set_reserved_stack_activation(thread->stack_base());
3215 JRT_END
3216 
3217 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3218   ResourceMark rm(thread);
3219   frame activation;
3220   CompiledMethod* nm = NULL;
3221   int count = 1;
3222 
3223   assert(fr.is_java_frame(), "Must start on Java frame");
3224 
3225   while (true) {
3226     Method* method = NULL;
3227     bool found = false;
3228     if (fr.is_interpreted_frame()) {
3229       method = fr.interpreter_frame_method();
3230       if (method != NULL && method->has_reserved_stack_access()) {
3231         found = true;
3232       }
3233     } else {
3234       CodeBlob* cb = fr.cb();
3235       if (cb != NULL && cb->is_compiled()) {
3236         nm = cb->as_compiled_method();
3237         method = nm->method();
3238         // scope_desc_near() must be used, instead of scope_desc_at() because on
3239         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3240         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3241           method = sd->method();
3242           if (method != NULL && method->has_reserved_stack_access()) {
3243             found = true;
3244       }
3245     }
3246       }
3247     }
3248     if (found) {
3249       activation = fr;
3250       warning("Potentially dangerous stack overflow in "
3251               "ReservedStackAccess annotated method %s [%d]",
3252               method->name_and_sig_as_C_string(), count++);
3253       EventReservedStackActivation event;
3254       if (event.should_commit()) {
3255         event.set_method(method);
3256         event.commit();
3257       }
3258     }
3259     if (fr.is_first_java_frame()) {
3260       break;
3261     } else {
3262       fr = fr.java_sender();
3263     }
3264   }
3265   return activation;
3266 }
3267 
3268 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3269   // After any safepoint, just before going back to compiled code,
3270   // we inform the GC that we will be doing initializing writes to
3271   // this object in the future without emitting card-marks, so
3272   // GC may take any compensating steps.
3273 
3274   oop new_obj = thread->vm_result();
3275   if (new_obj == NULL) return;
3276 
3277   BarrierSet *bs = BarrierSet::barrier_set();
3278   bs->on_slowpath_allocation_exit(thread, new_obj);
3279 }
3280 
3281 // We are at a compiled code to interpreter call. We need backing
3282 // buffers for all value type arguments. Allocate an object array to
3283 // hold them (convenient because once we're done with it we don't have
3284 // to worry about freeing it).
3285 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3286 {
3287   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3288   ResourceMark rm;
3289   JavaThread* THREAD = thread;
3290   methodHandle callee(callee_method);
3291 
3292   int nb_slots = 0;
3293   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3294   if (has_value_receiver) {
3295     nb_slots++;
3296   }
3297   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3298   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3299   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3300     if (ss.type() == T_VALUETYPE) {
3301       nb_slots++;
3302     }
3303   }
3304   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3305   objArrayHandle array(THREAD, array_oop);
3306   int i = 0;
3307   if (has_value_receiver) {
3308     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3309     oop res = vk->allocate_instance(CHECK);
3310     array->obj_at_put(i, res);
3311     i++;
3312   }
3313   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3314     if (ss.type() == T_VALUETYPE) {
3315       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3316       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3317       ValueKlass* vk = ValueKlass::cast(k);
3318       oop res = vk->allocate_instance(CHECK);
3319       array->obj_at_put(i, res);
3320       i++;
3321     }
3322   }
3323   thread->set_vm_result(array());
3324   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3325 }
3326 JRT_END
3327 
3328 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3329 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3330 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3331 {
3332   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3333   assert(oopDesc::is_oop(array), "should be oop");
3334   for (int i = 0; i < array->length(); ++i) {
3335     instanceOop valueOop = (instanceOop)array->obj_at(i);
3336     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3337     if (vk->contains_oops()) {
3338       const address dst_oop_addr = ((address) (void*) valueOop);
3339       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3340       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3341       while (map != end) {
3342         address doop_address = dst_oop_addr + map->offset();
3343         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3344           write_ref_array((HeapWord*) doop_address, map->count());
3345         map++;
3346       }
3347     }
3348   }
3349 }
3350 JRT_END
3351 
3352 // We're returning from an interpreted method: load each field into a
3353 // register following the calling convention
3354 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3355 {
3356   assert(res->klass()->is_value(), "only value types here");
3357   ResourceMark rm;
3358   RegisterMap reg_map(thread);
3359   frame stubFrame = thread->last_frame();
3360   frame callerFrame = stubFrame.sender(&reg_map);
3361   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3362 
3363   ValueKlass* vk = ValueKlass::cast(res->klass());
3364 
3365   const Array<SigEntry>* sig_vk = vk->extended_sig() ;
3366   const Array<VMRegPair>* regs = vk->return_regs();
3367 
3368   if (regs == NULL) {
3369     // The fields of the value klass don't fit in registers, bail out
3370     return;
3371   }
3372 
3373   int j = 1;
3374   for (int i = 0; i < sig_vk->length(); i++) {
3375     BasicType bt = sig_vk->at(i)._bt;
3376     if (bt == T_VALUETYPE) {
3377       continue;
3378     }
3379     if (bt == T_VOID) {
3380       if (sig_vk->at(i-1)._bt == T_LONG ||
3381           sig_vk->at(i-1)._bt == T_DOUBLE) {
3382         j++;
3383       }
3384       continue;
3385     }
3386     int off = sig_vk->at(i)._offset;
3387     VMRegPair pair = regs->at(j);
3388     address loc = reg_map.location(pair.first());
3389     switch(bt) {
3390     case T_BOOLEAN:
3391       *(intptr_t*)loc = *(jboolean*)((address)res + off);
3392       break;
3393     case T_CHAR:
3394       *(intptr_t*)loc = *(jchar*)((address)res + off);
3395       break;
3396     case T_BYTE:
3397       *(intptr_t*)loc = *(jbyte*)((address)res + off);
3398       break;
3399     case T_SHORT:
3400       *(intptr_t*)loc = *(jshort*)((address)res + off);
3401       break;
3402     case T_INT: {
3403       jint v = *(jint*)((address)res + off);
3404       *(intptr_t*)loc = v;
3405       break;
3406     }
3407     case T_LONG:
3408 #ifdef _LP64
3409       *(intptr_t*)loc = *(jlong*)((address)res + off);
3410 #else
3411       Unimplemented();
3412 #endif
3413       break;
3414     case T_OBJECT:
3415     case T_ARRAY: {
3416       oop v = HeapAccess<>::oop_load_at(res, off);
3417       *(oop*)loc = v;
3418       break;
3419     }
3420     case T_FLOAT:
3421       *(jfloat*)loc = *(jfloat*)((address)res + off);
3422       break;
3423     case T_DOUBLE:
3424       *(jdouble*)loc = *(jdouble*)((address)res + off);
3425       break;
3426     default:
3427       ShouldNotReachHere();
3428     }
3429     j++;
3430   }
3431   assert(j == regs->length(), "missed a field?");
3432 
3433 #ifdef ASSERT
3434   VMRegPair pair = regs->at(0);
3435   address loc = reg_map.location(pair.first());
3436   assert(*(oopDesc**)loc == res, "overwritten object");
3437 #endif
3438 
3439   thread->set_vm_result(res);
3440 }
3441 JRT_END
3442 
3443 // We've returned to an interpreted method, the interpreter needs a
3444 // reference to a value type instance. Allocate it and initialize it
3445 // from field's values in registers.
3446 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3447 {
3448   ResourceMark rm;
3449   RegisterMap reg_map(thread);
3450   frame stubFrame = thread->last_frame();
3451   frame callerFrame = stubFrame.sender(&reg_map);
3452 
3453 #ifdef ASSERT
3454   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3455 #endif
3456 
3457   if (!is_set_nth_bit(res, 0)) {
3458     // We're not returning with value type fields in registers (the
3459     // calling convention didn't allow it for this value klass)
3460     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3461     thread->set_vm_result((oopDesc*)res);
3462     assert(verif_vk == NULL, "broken calling convention");
3463     return;
3464   }
3465 
3466   clear_nth_bit(res, 0);
3467   ValueKlass* vk = (ValueKlass*)res;
3468   assert(verif_vk == vk, "broken calling convention");
3469   assert(Metaspace::contains((void*)res), "should be klass");
3470 
3471   // Allocate handles for every oop fields so they are safe in case of
3472   // a safepoint when allocating
3473   GrowableArray<Handle> handles;
3474   vk->save_oop_fields(reg_map, handles);
3475 
3476   // It's unsafe to safepoint until we are here
3477 
3478   Handle new_vt;
3479   JRT_BLOCK;
3480   {
3481     Thread* THREAD = thread;
3482     oop vt = vk->realloc_result(reg_map, handles, callerFrame.is_interpreted_frame(), CHECK);
3483     new_vt = Handle(thread, vt);
3484 
3485 #ifdef ASSERT
3486     javaVFrame* vf = javaVFrame::cast(vframe::new_vframe(&callerFrame, &reg_map, thread));
3487     Method* m = vf->method();
3488     int bci = vf->bci();
3489     Bytecode_invoke inv(m, bci);
3490 
3491     methodHandle callee = inv.static_target(thread);
3492     assert(!thread->has_pending_exception(), "call resolution should work");
3493     ValueKlass* verif_vk2 = callee->returned_value_type(thread);
3494     assert(verif_vk == verif_vk2, "Bad value klass");
3495 #endif
3496   }
3497   JRT_BLOCK_END;
3498 
3499   thread->set_vm_result(new_vt());
3500 }
3501 JRT_END
3502