1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "utilities/align.hpp"
  44 #if INCLUDE_ZGC
  45 #include "gc/z/zBarrierSetRuntime.hpp"
  46 #endif // INCLUDE_ZGC
  47 
  48 OptoReg::Name OptoReg::c_frame_pointer;
  49 
  50 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  51 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  52 RegMask Matcher::STACK_ONLY_mask;
  53 RegMask Matcher::c_frame_ptr_mask;
  54 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  55 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  56 
  57 //---------------------------Matcher-------------------------------------------
  58 Matcher::Matcher()
  59 : PhaseTransform( Phase::Ins_Select ),
  60   _states_arena(Chunk::medium_size, mtCompiler),
  61   _visited(&_states_arena),
  62   _shared(&_states_arena),
  63   _dontcare(&_states_arena),
  64   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  65   _swallowed(swallowed),
  66   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  67   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  68   _must_clone(must_clone),
  69   _shared_nodes(C->comp_arena()),
  70 #ifdef ASSERT
  71   _old2new_map(C->comp_arena()),
  72   _new2old_map(C->comp_arena()),
  73 #endif
  74   _allocation_started(false),
  75   _ruleName(ruleName),
  76   _register_save_policy(register_save_policy),
  77   _c_reg_save_policy(c_reg_save_policy),
  78   _register_save_type(register_save_type) {
  79   C->set_matcher(this);
  80 
  81   idealreg2spillmask  [Op_RegI] = NULL;
  82   idealreg2spillmask  [Op_RegN] = NULL;
  83   idealreg2spillmask  [Op_RegL] = NULL;
  84   idealreg2spillmask  [Op_RegF] = NULL;
  85   idealreg2spillmask  [Op_RegD] = NULL;
  86   idealreg2spillmask  [Op_RegP] = NULL;
  87   idealreg2spillmask  [Op_VecS] = NULL;
  88   idealreg2spillmask  [Op_VecD] = NULL;
  89   idealreg2spillmask  [Op_VecX] = NULL;
  90   idealreg2spillmask  [Op_VecY] = NULL;
  91   idealreg2spillmask  [Op_VecZ] = NULL;
  92   idealreg2spillmask  [Op_RegFlags] = NULL;
  93 
  94   idealreg2debugmask  [Op_RegI] = NULL;
  95   idealreg2debugmask  [Op_RegN] = NULL;
  96   idealreg2debugmask  [Op_RegL] = NULL;
  97   idealreg2debugmask  [Op_RegF] = NULL;
  98   idealreg2debugmask  [Op_RegD] = NULL;
  99   idealreg2debugmask  [Op_RegP] = NULL;
 100   idealreg2debugmask  [Op_VecS] = NULL;
 101   idealreg2debugmask  [Op_VecD] = NULL;
 102   idealreg2debugmask  [Op_VecX] = NULL;
 103   idealreg2debugmask  [Op_VecY] = NULL;
 104   idealreg2debugmask  [Op_VecZ] = NULL;
 105   idealreg2debugmask  [Op_RegFlags] = NULL;
 106 
 107   idealreg2mhdebugmask[Op_RegI] = NULL;
 108   idealreg2mhdebugmask[Op_RegN] = NULL;
 109   idealreg2mhdebugmask[Op_RegL] = NULL;
 110   idealreg2mhdebugmask[Op_RegF] = NULL;
 111   idealreg2mhdebugmask[Op_RegD] = NULL;
 112   idealreg2mhdebugmask[Op_RegP] = NULL;
 113   idealreg2mhdebugmask[Op_VecS] = NULL;
 114   idealreg2mhdebugmask[Op_VecD] = NULL;
 115   idealreg2mhdebugmask[Op_VecX] = NULL;
 116   idealreg2mhdebugmask[Op_VecY] = NULL;
 117   idealreg2mhdebugmask[Op_VecZ] = NULL;
 118   idealreg2mhdebugmask[Op_RegFlags] = NULL;
 119 
 120   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 121 }
 122 
 123 //------------------------------warp_incoming_stk_arg------------------------
 124 // This warps a VMReg into an OptoReg::Name
 125 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 126   OptoReg::Name warped;
 127   if( reg->is_stack() ) {  // Stack slot argument?
 128     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 129     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 130     if( warped >= _in_arg_limit )
 131       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 132     if (!RegMask::can_represent_arg(warped)) {
 133       // the compiler cannot represent this method's calling sequence
 134       C->record_method_not_compilable("unsupported incoming calling sequence");
 135       return OptoReg::Bad;
 136     }
 137     return warped;
 138   }
 139   return OptoReg::as_OptoReg(reg);
 140 }
 141 
 142 //---------------------------compute_old_SP------------------------------------
 143 OptoReg::Name Compile::compute_old_SP() {
 144   int fixed    = fixed_slots();
 145   int preserve = in_preserve_stack_slots();
 146   return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
 147 }
 148 
 149 
 150 
 151 #ifdef ASSERT
 152 void Matcher::verify_new_nodes_only(Node* xroot) {
 153   // Make sure that the new graph only references new nodes
 154   ResourceMark rm;
 155   Unique_Node_List worklist;
 156   VectorSet visited(Thread::current()->resource_area());
 157   worklist.push(xroot);
 158   while (worklist.size() > 0) {
 159     Node* n = worklist.pop();
 160     visited <<= n->_idx;
 161     assert(C->node_arena()->contains(n), "dead node");
 162     for (uint j = 0; j < n->req(); j++) {
 163       Node* in = n->in(j);
 164       if (in != NULL) {
 165         assert(C->node_arena()->contains(in), "dead node");
 166         if (!visited.test(in->_idx)) {
 167           worklist.push(in);
 168         }
 169       }
 170     }
 171   }
 172 }
 173 #endif
 174 
 175 // Array of RegMask, one per returned values (value type instances can
 176 // be returned as multiple return values, one per field)
 177 RegMask* Matcher::return_values_mask(const TypeTuple *range) {
 178   uint cnt = range->cnt() - TypeFunc::Parms;
 179   if (cnt == 0) {
 180     return NULL;
 181   }
 182   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 183 
 184   if (!ValueTypeReturnedAsFields) {
 185     // Get ideal-register return type
 186     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 187     // Get machine return register
 188     OptoRegPair regs = return_value(ireg, false);
 189 
 190     // And mask for same
 191     mask[0].Clear();
 192     mask[0].Insert(regs.first());
 193     if (OptoReg::is_valid(regs.second())) {
 194       mask[0].Insert(regs.second());
 195     }
 196   } else {
 197     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 198     VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 199 
 200     for (uint i = 0; i < cnt; i++) {
 201       sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 202     }
 203 
 204     int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 205     assert(regs > 0, "should have been tested during graph construction");
 206     for (uint i = 0; i < cnt; i++) {
 207       mask[i].Clear();
 208 
 209       OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 210       if (OptoReg::is_valid(reg1)) {
 211         mask[i].Insert(reg1);
 212       }
 213       OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 214       if (OptoReg::is_valid(reg2)) {
 215         mask[i].Insert(reg2);
 216       }
 217     }
 218   }
 219   return mask;
 220 }
 221 
 222 //---------------------------match---------------------------------------------
 223 void Matcher::match( ) {
 224   if( MaxLabelRootDepth < 100 ) { // Too small?
 225     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 226     MaxLabelRootDepth = 100;
 227   }
 228   // One-time initialization of some register masks.
 229   init_spill_mask( C->root()->in(1) );
 230   _return_addr_mask = return_addr();
 231 #ifdef _LP64
 232   // Pointers take 2 slots in 64-bit land
 233   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 234 #endif
 235 
 236   // Map Java-signature return types into return register-value
 237   // machine registers.
 238   const TypeTuple *range = C->tf()->range_cc();
 239   _return_values_mask = return_values_mask(range);
 240 
 241   // ---------------
 242   // Frame Layout
 243 
 244   // Need the method signature to determine the incoming argument types,
 245   // because the types determine which registers the incoming arguments are
 246   // in, and this affects the matched code.
 247   const TypeTuple *domain = C->tf()->domain_cc();
 248   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 249   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 250   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 251   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 252   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 253   uint i;
 254   for( i = 0; i<argcnt; i++ ) {
 255     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 256   }
 257 
 258   // Pass array of ideal registers and length to USER code (from the AD file)
 259   // that will convert this to an array of register numbers.
 260   const StartNode *start = C->start();
 261   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 262 #ifdef ASSERT
 263   // Sanity check users' calling convention.  Real handy while trying to
 264   // get the initial port correct.
 265   { for (uint i = 0; i<argcnt; i++) {
 266       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 267         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 268         _parm_regs[i].set_bad();
 269         continue;
 270       }
 271       VMReg parm_reg = vm_parm_regs[i].first();
 272       assert(parm_reg->is_valid(), "invalid arg?");
 273       if (parm_reg->is_reg()) {
 274         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 275         assert(can_be_java_arg(opto_parm_reg) ||
 276                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 277                opto_parm_reg == inline_cache_reg(),
 278                "parameters in register must be preserved by runtime stubs");
 279       }
 280       for (uint j = 0; j < i; j++) {
 281         assert(parm_reg != vm_parm_regs[j].first(),
 282                "calling conv. must produce distinct regs");
 283       }
 284     }
 285   }
 286 #endif
 287 
 288   // Do some initial frame layout.
 289 
 290   // Compute the old incoming SP (may be called FP) as
 291   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 292   _old_SP = C->compute_old_SP();
 293   assert( is_even(_old_SP), "must be even" );
 294 
 295   // Compute highest incoming stack argument as
 296   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 297   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 298   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 299   for( i = 0; i < argcnt; i++ ) {
 300     // Permit args to have no register
 301     _calling_convention_mask[i].Clear();
 302     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 303       continue;
 304     }
 305     // calling_convention returns stack arguments as a count of
 306     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 307     // the allocators point of view, taking into account all the
 308     // preserve area, locks & pad2.
 309 
 310     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 311     if( OptoReg::is_valid(reg1))
 312       _calling_convention_mask[i].Insert(reg1);
 313 
 314     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 315     if( OptoReg::is_valid(reg2))
 316       _calling_convention_mask[i].Insert(reg2);
 317 
 318     // Saved biased stack-slot register number
 319     _parm_regs[i].set_pair(reg2, reg1);
 320   }
 321 
 322   // Finally, make sure the incoming arguments take up an even number of
 323   // words, in case the arguments or locals need to contain doubleword stack
 324   // slots.  The rest of the system assumes that stack slot pairs (in
 325   // particular, in the spill area) which look aligned will in fact be
 326   // aligned relative to the stack pointer in the target machine.  Double
 327   // stack slots will always be allocated aligned.
 328   _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
 329 
 330   // Compute highest outgoing stack argument as
 331   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 332   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 333   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 334 
 335   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 336     // the compiler cannot represent this method's calling sequence
 337     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 338   }
 339 
 340   if (C->failing())  return;  // bailed out on incoming arg failure
 341 
 342   // ---------------
 343   // Collect roots of matcher trees.  Every node for which
 344   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 345   // can be a valid interior of some tree.
 346   find_shared( C->root() );
 347   find_shared( C->top() );
 348 
 349   C->print_method(PHASE_BEFORE_MATCHING);
 350 
 351   // Create new ideal node ConP #NULL even if it does exist in old space
 352   // to avoid false sharing if the corresponding mach node is not used.
 353   // The corresponding mach node is only used in rare cases for derived
 354   // pointers.
 355   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 356 
 357   // Swap out to old-space; emptying new-space
 358   Arena *old = C->node_arena()->move_contents(C->old_arena());
 359 
 360   // Save debug and profile information for nodes in old space:
 361   _old_node_note_array = C->node_note_array();
 362   if (_old_node_note_array != NULL) {
 363     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 364                            (C->comp_arena(), _old_node_note_array->length(),
 365                             0, NULL));
 366   }
 367 
 368   // Pre-size the new_node table to avoid the need for range checks.
 369   grow_new_node_array(C->unique());
 370 
 371   // Reset node counter so MachNodes start with _idx at 0
 372   int live_nodes = C->live_nodes();
 373   C->set_unique(0);
 374   C->reset_dead_node_list();
 375 
 376   // Recursively match trees from old space into new space.
 377   // Correct leaves of new-space Nodes; they point to old-space.
 378   _visited.Clear();             // Clear visit bits for xform call
 379   C->set_cached_top_node(xform( C->top(), live_nodes ));
 380   if (!C->failing()) {
 381     Node* xroot =        xform( C->root(), 1 );
 382     if (xroot == NULL) {
 383       Matcher::soft_match_failure();  // recursive matching process failed
 384       C->record_method_not_compilable("instruction match failed");
 385     } else {
 386       // During matching shared constants were attached to C->root()
 387       // because xroot wasn't available yet, so transfer the uses to
 388       // the xroot.
 389       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 390         Node* n = C->root()->fast_out(j);
 391         if (C->node_arena()->contains(n)) {
 392           assert(n->in(0) == C->root(), "should be control user");
 393           n->set_req(0, xroot);
 394           --j;
 395           --jmax;
 396         }
 397       }
 398 
 399       // Generate new mach node for ConP #NULL
 400       assert(new_ideal_null != NULL, "sanity");
 401       _mach_null = match_tree(new_ideal_null);
 402       // Don't set control, it will confuse GCM since there are no uses.
 403       // The control will be set when this node is used first time
 404       // in find_base_for_derived().
 405       assert(_mach_null != NULL, "");
 406 
 407       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 408 
 409 #ifdef ASSERT
 410       verify_new_nodes_only(xroot);
 411 #endif
 412     }
 413   }
 414   if (C->top() == NULL || C->root() == NULL) {
 415     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 416   }
 417   if (C->failing()) {
 418     // delete old;
 419     old->destruct_contents();
 420     return;
 421   }
 422   assert( C->top(), "" );
 423   assert( C->root(), "" );
 424   validate_null_checks();
 425 
 426   // Now smoke old-space
 427   NOT_DEBUG( old->destruct_contents() );
 428 
 429   // ------------------------
 430   // Set up save-on-entry registers
 431   Fixup_Save_On_Entry( );
 432 }
 433 
 434 
 435 //------------------------------Fixup_Save_On_Entry----------------------------
 436 // The stated purpose of this routine is to take care of save-on-entry
 437 // registers.  However, the overall goal of the Match phase is to convert into
 438 // machine-specific instructions which have RegMasks to guide allocation.
 439 // So what this procedure really does is put a valid RegMask on each input
 440 // to the machine-specific variations of all Return, TailCall and Halt
 441 // instructions.  It also adds edgs to define the save-on-entry values (and of
 442 // course gives them a mask).
 443 
 444 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 445   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 446   // Do all the pre-defined register masks
 447   rms[TypeFunc::Control  ] = RegMask::Empty;
 448   rms[TypeFunc::I_O      ] = RegMask::Empty;
 449   rms[TypeFunc::Memory   ] = RegMask::Empty;
 450   rms[TypeFunc::ReturnAdr] = ret_adr;
 451   rms[TypeFunc::FramePtr ] = fp;
 452   return rms;
 453 }
 454 
 455 //---------------------------init_first_stack_mask-----------------------------
 456 // Create the initial stack mask used by values spilling to the stack.
 457 // Disallow any debug info in outgoing argument areas by setting the
 458 // initial mask accordingly.
 459 void Matcher::init_first_stack_mask() {
 460 
 461   // Allocate storage for spill masks as masks for the appropriate load type.
 462   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 463 
 464   idealreg2spillmask  [Op_RegN] = &rms[0];
 465   idealreg2spillmask  [Op_RegI] = &rms[1];
 466   idealreg2spillmask  [Op_RegL] = &rms[2];
 467   idealreg2spillmask  [Op_RegF] = &rms[3];
 468   idealreg2spillmask  [Op_RegD] = &rms[4];
 469   idealreg2spillmask  [Op_RegP] = &rms[5];
 470 
 471   idealreg2debugmask  [Op_RegN] = &rms[6];
 472   idealreg2debugmask  [Op_RegI] = &rms[7];
 473   idealreg2debugmask  [Op_RegL] = &rms[8];
 474   idealreg2debugmask  [Op_RegF] = &rms[9];
 475   idealreg2debugmask  [Op_RegD] = &rms[10];
 476   idealreg2debugmask  [Op_RegP] = &rms[11];
 477 
 478   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 479   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 480   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 481   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 482   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 483   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 484 
 485   idealreg2spillmask  [Op_VecS] = &rms[18];
 486   idealreg2spillmask  [Op_VecD] = &rms[19];
 487   idealreg2spillmask  [Op_VecX] = &rms[20];
 488   idealreg2spillmask  [Op_VecY] = &rms[21];
 489   idealreg2spillmask  [Op_VecZ] = &rms[22];
 490 
 491   OptoReg::Name i;
 492 
 493   // At first, start with the empty mask
 494   C->FIRST_STACK_mask().Clear();
 495 
 496   // Check if method has a reserved entry in the argument stack area that
 497   // should not be used for spilling because it holds the return address.
 498   OptoRegPair res_entry;
 499   if (C->needs_stack_repair()) {
 500     int res_idx = C->get_res_entry()._offset;
 501     res_entry = _parm_regs[res_idx];
 502   }
 503 
 504   // Add in the incoming argument area
 505   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 506   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 507     if (i == res_entry.first() || i == res_entry.second()) {
 508       continue; // Skip reserved slot to avoid spilling
 509     }
 510     C->FIRST_STACK_mask().Insert(i);
 511   }
 512   // Add in all bits past the outgoing argument area
 513   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 514             "must be able to represent all call arguments in reg mask");
 515   OptoReg::Name init = _out_arg_limit;
 516   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 517     C->FIRST_STACK_mask().Insert(i);
 518   }
 519   // Finally, set the "infinite stack" bit.
 520   C->FIRST_STACK_mask().set_AllStack();
 521 
 522   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 523   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 524   // Keep spill masks aligned.
 525   aligned_stack_mask.clear_to_pairs();
 526   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 527 
 528   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 529 #ifdef _LP64
 530   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 531    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 532    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 533 #else
 534    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 535 #endif
 536   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 537    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 538   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 539    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 540   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 541    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 542   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 543    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 544 
 545   if (Matcher::vector_size_supported(T_BYTE,4)) {
 546     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 547      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 548   }
 549   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 550     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 551     // RA guarantees such alignment since it is needed for Double and Long values.
 552     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 553      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 554   }
 555   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 556     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 557     //
 558     // RA can use input arguments stack slots for spills but until RA
 559     // we don't know frame size and offset of input arg stack slots.
 560     //
 561     // Exclude last input arg stack slots to avoid spilling vectors there
 562     // otherwise vector spills could stomp over stack slots in caller frame.
 563     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 564     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 565       aligned_stack_mask.Remove(in);
 566       in = OptoReg::add(in, -1);
 567     }
 568      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 569      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 570     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 571      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 572   }
 573   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 574     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 575     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 576     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 577       aligned_stack_mask.Remove(in);
 578       in = OptoReg::add(in, -1);
 579     }
 580      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 581      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 582     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 583      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 584   }
 585   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 586     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 587     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 588     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 589       aligned_stack_mask.Remove(in);
 590       in = OptoReg::add(in, -1);
 591     }
 592      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 593      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 594     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 595      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 596   }
 597    if (UseFPUForSpilling) {
 598      // This mask logic assumes that the spill operations are
 599      // symmetric and that the registers involved are the same size.
 600      // On sparc for instance we may have to use 64 bit moves will
 601      // kill 2 registers when used with F0-F31.
 602      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 603      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 604 #ifdef _LP64
 605      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 606      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 607      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 608      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 609 #else
 610      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 611 #ifdef ARM
 612      // ARM has support for moving 64bit values between a pair of
 613      // integer registers and a double register
 614      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 615      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 616 #endif
 617 #endif
 618    }
 619 
 620   // Make up debug masks.  Any spill slot plus callee-save registers.
 621   // Caller-save registers are assumed to be trashable by the various
 622   // inline-cache fixup routines.
 623   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 624   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 625   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 626   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 627   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 628   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 629 
 630   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 631   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 632   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 633   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 634   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 635   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 636 
 637   // Prevent stub compilations from attempting to reference
 638   // callee-saved registers from debug info
 639   bool exclude_soe = !Compile::current()->is_method_compilation();
 640 
 641   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 642     // registers the caller has to save do not work
 643     if( _register_save_policy[i] == 'C' ||
 644         _register_save_policy[i] == 'A' ||
 645         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 646       idealreg2debugmask  [Op_RegN]->Remove(i);
 647       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 648       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 649       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 650       idealreg2debugmask  [Op_RegD]->Remove(i);
 651       idealreg2debugmask  [Op_RegP]->Remove(i);
 652 
 653       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 654       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 655       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 656       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 657       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 658       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 659     }
 660   }
 661 
 662   // Subtract the register we use to save the SP for MethodHandle
 663   // invokes to from the debug mask.
 664   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 665   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 666   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 667   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 668   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 669   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 670   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 671 }
 672 
 673 //---------------------------is_save_on_entry----------------------------------
 674 bool Matcher::is_save_on_entry( int reg ) {
 675   return
 676     _register_save_policy[reg] == 'E' ||
 677     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 678     // Also save argument registers in the trampolining stubs
 679     (C->save_argument_registers() && is_spillable_arg(reg));
 680 }
 681 
 682 //---------------------------Fixup_Save_On_Entry-------------------------------
 683 void Matcher::Fixup_Save_On_Entry( ) {
 684   init_first_stack_mask();
 685 
 686   Node *root = C->root();       // Short name for root
 687   // Count number of save-on-entry registers.
 688   uint soe_cnt = number_of_saved_registers();
 689   uint i;
 690 
 691   // Find the procedure Start Node
 692   StartNode *start = C->start();
 693   assert( start, "Expect a start node" );
 694 
 695   // Save argument registers in the trampolining stubs
 696   if( C->save_argument_registers() )
 697     for( i = 0; i < _last_Mach_Reg; i++ )
 698       if( is_spillable_arg(i) )
 699         soe_cnt++;
 700 
 701   // Input RegMask array shared by all Returns.
 702   // The type for doubles and longs has a count of 2, but
 703   // there is only 1 returned value
 704   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 705   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 706   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 707     ret_rms[i] = _return_values_mask[i-TypeFunc::Parms];
 708   }
 709 
 710   // Input RegMask array shared by all Rethrows.
 711   uint reth_edge_cnt = TypeFunc::Parms+1;
 712   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 713   // Rethrow takes exception oop only, but in the argument 0 slot.
 714   OptoReg::Name reg = find_receiver(false);
 715   if (reg >= 0) {
 716     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 717 #ifdef _LP64
 718     // Need two slots for ptrs in 64-bit land
 719     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 720 #endif
 721   }
 722 
 723   // Input RegMask array shared by all TailCalls
 724   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 725   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 726 
 727   // Input RegMask array shared by all TailJumps
 728   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 729   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 730 
 731   // TailCalls have 2 returned values (target & moop), whose masks come
 732   // from the usual MachNode/MachOper mechanism.  Find a sample
 733   // TailCall to extract these masks and put the correct masks into
 734   // the tail_call_rms array.
 735   for( i=1; i < root->req(); i++ ) {
 736     MachReturnNode *m = root->in(i)->as_MachReturn();
 737     if( m->ideal_Opcode() == Op_TailCall ) {
 738       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 739       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 740       break;
 741     }
 742   }
 743 
 744   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 745   // from the usual MachNode/MachOper mechanism.  Find a sample
 746   // TailJump to extract these masks and put the correct masks into
 747   // the tail_jump_rms array.
 748   for( i=1; i < root->req(); i++ ) {
 749     MachReturnNode *m = root->in(i)->as_MachReturn();
 750     if( m->ideal_Opcode() == Op_TailJump ) {
 751       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 752       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 753       break;
 754     }
 755   }
 756 
 757   // Input RegMask array shared by all Halts
 758   uint halt_edge_cnt = TypeFunc::Parms;
 759   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 760 
 761   // Capture the return input masks into each exit flavor
 762   for( i=1; i < root->req(); i++ ) {
 763     MachReturnNode *exit = root->in(i)->as_MachReturn();
 764     switch( exit->ideal_Opcode() ) {
 765       case Op_Return   : exit->_in_rms = ret_rms;  break;
 766       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 767       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 768       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 769       case Op_Halt     : exit->_in_rms = halt_rms; break;
 770       default          : ShouldNotReachHere();
 771     }
 772   }
 773 
 774   // Next unused projection number from Start.
 775   int proj_cnt = C->tf()->domain_cc()->cnt();
 776 
 777   // Do all the save-on-entry registers.  Make projections from Start for
 778   // them, and give them a use at the exit points.  To the allocator, they
 779   // look like incoming register arguments.
 780   for( i = 0; i < _last_Mach_Reg; i++ ) {
 781     if( is_save_on_entry(i) ) {
 782 
 783       // Add the save-on-entry to the mask array
 784       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 785       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 786       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 787       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 788       // Halts need the SOE registers, but only in the stack as debug info.
 789       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 790       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 791 
 792       Node *mproj;
 793 
 794       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 795       // into a single RegD.
 796       if( (i&1) == 0 &&
 797           _register_save_type[i  ] == Op_RegF &&
 798           _register_save_type[i+1] == Op_RegF &&
 799           is_save_on_entry(i+1) ) {
 800         // Add other bit for double
 801         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 802         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 803         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 804         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 805         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 806         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 807         proj_cnt += 2;          // Skip 2 for doubles
 808       }
 809       else if( (i&1) == 1 &&    // Else check for high half of double
 810                _register_save_type[i-1] == Op_RegF &&
 811                _register_save_type[i  ] == Op_RegF &&
 812                is_save_on_entry(i-1) ) {
 813         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 814         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 815         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 816         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 817         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 818         mproj = C->top();
 819       }
 820       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 821       // into a single RegL.
 822       else if( (i&1) == 0 &&
 823           _register_save_type[i  ] == Op_RegI &&
 824           _register_save_type[i+1] == Op_RegI &&
 825         is_save_on_entry(i+1) ) {
 826         // Add other bit for long
 827         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 828         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 829         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 830         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 831         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 832         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 833         proj_cnt += 2;          // Skip 2 for longs
 834       }
 835       else if( (i&1) == 1 &&    // Else check for high half of long
 836                _register_save_type[i-1] == Op_RegI &&
 837                _register_save_type[i  ] == Op_RegI &&
 838                is_save_on_entry(i-1) ) {
 839         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 840         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 841         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 842         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 843         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 844         mproj = C->top();
 845       } else {
 846         // Make a projection for it off the Start
 847         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 848       }
 849 
 850       ret_edge_cnt ++;
 851       reth_edge_cnt ++;
 852       tail_call_edge_cnt ++;
 853       tail_jump_edge_cnt ++;
 854       halt_edge_cnt ++;
 855 
 856       // Add a use of the SOE register to all exit paths
 857       for( uint j=1; j < root->req(); j++ )
 858         root->in(j)->add_req(mproj);
 859     } // End of if a save-on-entry register
 860   } // End of for all machine registers
 861 }
 862 
 863 //------------------------------init_spill_mask--------------------------------
 864 void Matcher::init_spill_mask( Node *ret ) {
 865   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 866 
 867   OptoReg::c_frame_pointer = c_frame_pointer();
 868   c_frame_ptr_mask = c_frame_pointer();
 869 #ifdef _LP64
 870   // pointers are twice as big
 871   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 872 #endif
 873 
 874   // Start at OptoReg::stack0()
 875   STACK_ONLY_mask.Clear();
 876   OptoReg::Name init = OptoReg::stack2reg(0);
 877   // STACK_ONLY_mask is all stack bits
 878   OptoReg::Name i;
 879   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 880     STACK_ONLY_mask.Insert(i);
 881   // Also set the "infinite stack" bit.
 882   STACK_ONLY_mask.set_AllStack();
 883 
 884   // Copy the register names over into the shared world
 885   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 886     // SharedInfo::regName[i] = regName[i];
 887     // Handy RegMasks per machine register
 888     mreg2regmask[i].Insert(i);
 889   }
 890 
 891   // Grab the Frame Pointer
 892   Node *fp  = ret->in(TypeFunc::FramePtr);
 893   Node *mem = ret->in(TypeFunc::Memory);
 894   const TypePtr* atp = TypePtr::BOTTOM;
 895   // Share frame pointer while making spill ops
 896   set_shared(fp);
 897 
 898   // Compute generic short-offset Loads
 899 #ifdef _LP64
 900   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 901 #endif
 902   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 903   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 904   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 905   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 906   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 907   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 908          spillD != NULL && spillP != NULL, "");
 909   // Get the ADLC notion of the right regmask, for each basic type.
 910 #ifdef _LP64
 911   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 912 #endif
 913   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 914   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 915   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 916   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 917   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 918 
 919   // Vector regmasks.
 920   if (Matcher::vector_size_supported(T_BYTE,4)) {
 921     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 922     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 923     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 924   }
 925   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 926     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 927     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 928   }
 929   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 930     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 931     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 932   }
 933   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 934     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 935     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 936   }
 937   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 938     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 939     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 940   }
 941 }
 942 
 943 #ifdef ASSERT
 944 static void match_alias_type(Compile* C, Node* n, Node* m) {
 945   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 946   const TypePtr* nat = n->adr_type();
 947   const TypePtr* mat = m->adr_type();
 948   int nidx = C->get_alias_index(nat);
 949   int midx = C->get_alias_index(mat);
 950   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 951   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 952     for (uint i = 1; i < n->req(); i++) {
 953       Node* n1 = n->in(i);
 954       const TypePtr* n1at = n1->adr_type();
 955       if (n1at != NULL) {
 956         nat = n1at;
 957         nidx = C->get_alias_index(n1at);
 958       }
 959     }
 960   }
 961   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 962   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 963     switch (n->Opcode()) {
 964     case Op_PrefetchAllocation:
 965       nidx = Compile::AliasIdxRaw;
 966       nat = TypeRawPtr::BOTTOM;
 967       break;
 968     }
 969   }
 970   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 971     switch (n->Opcode()) {
 972     case Op_ClearArray:
 973       midx = Compile::AliasIdxRaw;
 974       mat = TypeRawPtr::BOTTOM;
 975       break;
 976     }
 977   }
 978   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 979     switch (n->Opcode()) {
 980     case Op_Return:
 981     case Op_Rethrow:
 982     case Op_Halt:
 983     case Op_TailCall:
 984     case Op_TailJump:
 985       nidx = Compile::AliasIdxBot;
 986       nat = TypePtr::BOTTOM;
 987       break;
 988     }
 989   }
 990   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 991     switch (n->Opcode()) {
 992     case Op_StrComp:
 993     case Op_StrEquals:
 994     case Op_StrIndexOf:
 995     case Op_StrIndexOfChar:
 996     case Op_AryEq:
 997     case Op_HasNegatives:
 998     case Op_MemBarVolatile:
 999     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
1000     case Op_StrInflatedCopy:
1001     case Op_StrCompressedCopy:
1002     case Op_OnSpinWait:
1003     case Op_EncodeISOArray:
1004       nidx = Compile::AliasIdxTop;
1005       nat = NULL;
1006       break;
1007     }
1008   }
1009   if (nidx != midx) {
1010     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
1011       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
1012       n->dump();
1013       m->dump();
1014     }
1015     assert(C->subsume_loads() && C->must_alias(nat, midx),
1016            "must not lose alias info when matching");
1017   }
1018 }
1019 #endif
1020 
1021 //------------------------------xform------------------------------------------
1022 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1023 // Node in new-space.  Given a new-space Node, recursively walk his children.
1024 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1025 Node *Matcher::xform( Node *n, int max_stack ) {
1026   // Use one stack to keep both: child's node/state and parent's node/index
1027   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1028   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1029   while (mstack.is_nonempty()) {
1030     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1031     if (C->failing()) return NULL;
1032     n = mstack.node();          // Leave node on stack
1033     Node_State nstate = mstack.state();
1034     if (nstate == Visit) {
1035       mstack.set_state(Post_Visit);
1036       Node *oldn = n;
1037       // Old-space or new-space check
1038       if (!C->node_arena()->contains(n)) {
1039         // Old space!
1040         Node* m;
1041         if (has_new_node(n)) {  // Not yet Label/Reduced
1042           m = new_node(n);
1043         } else {
1044           if (!is_dontcare(n)) { // Matcher can match this guy
1045             // Calls match special.  They match alone with no children.
1046             // Their children, the incoming arguments, match normally.
1047             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1048             if (C->failing())  return NULL;
1049             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1050             if (n->is_MemBar()) {
1051               m->as_MachMemBar()->set_adr_type(n->adr_type());
1052             }
1053           } else {                  // Nothing the matcher cares about
1054             if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
1055               // Convert to machine-dependent projection
1056               RegMask* mask = NULL;
1057               if (n->in(0)->is_Call()) {
1058                 mask = return_values_mask(n->in(0)->as_Call()->tf()->range_cc());
1059               }
1060               m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1061 #ifdef ASSERT
1062               _new2old_map.map(m->_idx, n);
1063 #endif
1064               if (m->in(0) != NULL) // m might be top
1065                 collect_null_checks(m, n);
1066             } else {                // Else just a regular 'ol guy
1067               m = n->clone();       // So just clone into new-space
1068 #ifdef ASSERT
1069               _new2old_map.map(m->_idx, n);
1070 #endif
1071               // Def-Use edges will be added incrementally as Uses
1072               // of this node are matched.
1073               assert(m->outcnt() == 0, "no Uses of this clone yet");
1074             }
1075           }
1076 
1077           set_new_node(n, m);       // Map old to new
1078           if (_old_node_note_array != NULL) {
1079             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1080                                                   n->_idx);
1081             C->set_node_notes_at(m->_idx, nn);
1082           }
1083           debug_only(match_alias_type(C, n, m));
1084         }
1085         n = m;    // n is now a new-space node
1086         mstack.set_node(n);
1087       }
1088 
1089       // New space!
1090       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1091 
1092       int i;
1093       // Put precedence edges on stack first (match them last).
1094       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1095         Node *m = oldn->in(i);
1096         if (m == NULL) break;
1097         // set -1 to call add_prec() instead of set_req() during Step1
1098         mstack.push(m, Visit, n, -1);
1099       }
1100 
1101       // Handle precedence edges for interior nodes
1102       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1103         Node *m = n->in(i);
1104         if (m == NULL || C->node_arena()->contains(m)) continue;
1105         n->rm_prec(i);
1106         // set -1 to call add_prec() instead of set_req() during Step1
1107         mstack.push(m, Visit, n, -1);
1108       }
1109 
1110       // For constant debug info, I'd rather have unmatched constants.
1111       int cnt = n->req();
1112       JVMState* jvms = n->jvms();
1113       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1114 
1115       // Now do only debug info.  Clone constants rather than matching.
1116       // Constants are represented directly in the debug info without
1117       // the need for executable machine instructions.
1118       // Monitor boxes are also represented directly.
1119       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1120         Node *m = n->in(i);          // Get input
1121         int op = m->Opcode();
1122         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1123         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1124             op == Op_ConF || op == Op_ConD || op == Op_ConL
1125             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1126             ) {
1127           m = m->clone();
1128 #ifdef ASSERT
1129           _new2old_map.map(m->_idx, n);
1130 #endif
1131           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1132           mstack.push(m->in(0), Visit, m, 0);
1133         } else {
1134           mstack.push(m, Visit, n, i);
1135         }
1136       }
1137 
1138       // And now walk his children, and convert his inputs to new-space.
1139       for( ; i >= 0; --i ) { // For all normal inputs do
1140         Node *m = n->in(i);  // Get input
1141         if(m != NULL)
1142           mstack.push(m, Visit, n, i);
1143       }
1144 
1145     }
1146     else if (nstate == Post_Visit) {
1147       // Set xformed input
1148       Node *p = mstack.parent();
1149       if (p != NULL) { // root doesn't have parent
1150         int i = (int)mstack.index();
1151         if (i >= 0)
1152           p->set_req(i, n); // required input
1153         else if (i == -1)
1154           p->add_prec(n);   // precedence input
1155         else
1156           ShouldNotReachHere();
1157       }
1158       mstack.pop(); // remove processed node from stack
1159     }
1160     else {
1161       ShouldNotReachHere();
1162     }
1163   } // while (mstack.is_nonempty())
1164   return n; // Return new-space Node
1165 }
1166 
1167 //------------------------------warp_outgoing_stk_arg------------------------
1168 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1169   // Convert outgoing argument location to a pre-biased stack offset
1170   if (reg->is_stack()) {
1171     OptoReg::Name warped = reg->reg2stack();
1172     // Adjust the stack slot offset to be the register number used
1173     // by the allocator.
1174     warped = OptoReg::add(begin_out_arg_area, warped);
1175     // Keep track of the largest numbered stack slot used for an arg.
1176     // Largest used slot per call-site indicates the amount of stack
1177     // that is killed by the call.
1178     if( warped >= out_arg_limit_per_call )
1179       out_arg_limit_per_call = OptoReg::add(warped,1);
1180     if (!RegMask::can_represent_arg(warped)) {
1181       C->record_method_not_compilable("unsupported calling sequence");
1182       return OptoReg::Bad;
1183     }
1184     return warped;
1185   }
1186   return OptoReg::as_OptoReg(reg);
1187 }
1188 
1189 
1190 //------------------------------match_sfpt-------------------------------------
1191 // Helper function to match call instructions.  Calls match special.
1192 // They match alone with no children.  Their children, the incoming
1193 // arguments, match normally.
1194 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1195   MachSafePointNode *msfpt = NULL;
1196   MachCallNode      *mcall = NULL;
1197   uint               cnt;
1198   // Split out case for SafePoint vs Call
1199   CallNode *call;
1200   const TypeTuple *domain;
1201   ciMethod*        method = NULL;
1202   bool             is_method_handle_invoke = false;  // for special kill effects
1203   if( sfpt->is_Call() ) {
1204     call = sfpt->as_Call();
1205     domain = call->tf()->domain_cc();
1206     cnt = domain->cnt();
1207 
1208     // Match just the call, nothing else
1209     MachNode *m = match_tree(call);
1210     if (C->failing())  return NULL;
1211     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1212 
1213     // Copy data from the Ideal SafePoint to the machine version
1214     mcall = m->as_MachCall();
1215 
1216     mcall->set_tf(         call->tf());
1217     mcall->set_entry_point(call->entry_point());
1218     mcall->set_cnt(        call->cnt());
1219 
1220     if( mcall->is_MachCallJava() ) {
1221       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1222       const CallJavaNode *call_java =  call->as_CallJava();
1223       method = call_java->method();
1224       mcall_java->_method = method;
1225       mcall_java->_bci = call_java->_bci;
1226       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1227       is_method_handle_invoke = call_java->is_method_handle_invoke();
1228       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1229       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1230       if (is_method_handle_invoke) {
1231         C->set_has_method_handle_invokes(true);
1232       }
1233       if( mcall_java->is_MachCallStaticJava() )
1234         mcall_java->as_MachCallStaticJava()->_name =
1235          call_java->as_CallStaticJava()->_name;
1236       if( mcall_java->is_MachCallDynamicJava() )
1237         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1238          call_java->as_CallDynamicJava()->_vtable_index;
1239     }
1240     else if( mcall->is_MachCallRuntime() ) {
1241       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1242     }
1243     msfpt = mcall;
1244   }
1245   // This is a non-call safepoint
1246   else {
1247     call = NULL;
1248     domain = NULL;
1249     MachNode *mn = match_tree(sfpt);
1250     if (C->failing())  return NULL;
1251     msfpt = mn->as_MachSafePoint();
1252     cnt = TypeFunc::Parms;
1253   }
1254 
1255   // Advertise the correct memory effects (for anti-dependence computation).
1256   msfpt->set_adr_type(sfpt->adr_type());
1257 
1258   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1259   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1260   // Empty them all.
1261   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1262 
1263   // Do all the pre-defined non-Empty register masks
1264   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1265   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1266 
1267   // Place first outgoing argument can possibly be put.
1268   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1269   assert( is_even(begin_out_arg_area), "" );
1270   // Compute max outgoing register number per call site.
1271   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1272   // Calls to C may hammer extra stack slots above and beyond any arguments.
1273   // These are usually backing store for register arguments for varargs.
1274   if( call != NULL && call->is_CallRuntime() )
1275     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1276 
1277 
1278   // Do the normal argument list (parameters) register masks
1279   // Null entry point is a special cast where the target of the call
1280   // is in a register.
1281   int adj = (call != NULL && call->entry_point() == NULL) ? 1 : 0;
1282   int argcnt = cnt - TypeFunc::Parms - adj;
1283   if( argcnt > 0 ) {          // Skip it all if we have no args
1284     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1285     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1286     int i;
1287     for( i = 0; i < argcnt; i++ ) {
1288       sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1289     }
1290     // V-call to pick proper calling convention
1291     call->calling_convention( sig_bt, parm_regs, argcnt );
1292 
1293 #ifdef ASSERT
1294     // Sanity check users' calling convention.  Really handy during
1295     // the initial porting effort.  Fairly expensive otherwise.
1296     { for (int i = 0; i<argcnt; i++) {
1297       if( !parm_regs[i].first()->is_valid() &&
1298           !parm_regs[i].second()->is_valid() ) continue;
1299       VMReg reg1 = parm_regs[i].first();
1300       VMReg reg2 = parm_regs[i].second();
1301       for (int j = 0; j < i; j++) {
1302         if( !parm_regs[j].first()->is_valid() &&
1303             !parm_regs[j].second()->is_valid() ) continue;
1304         VMReg reg3 = parm_regs[j].first();
1305         VMReg reg4 = parm_regs[j].second();
1306         if( !reg1->is_valid() ) {
1307           assert( !reg2->is_valid(), "valid halvsies" );
1308         } else if( !reg3->is_valid() ) {
1309           assert( !reg4->is_valid(), "valid halvsies" );
1310         } else {
1311           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1312           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1313           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1314           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1315           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1316           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1317         }
1318       }
1319     }
1320     }
1321 #endif
1322 
1323     // Visit each argument.  Compute its outgoing register mask.
1324     // Return results now can have 2 bits returned.
1325     // Compute max over all outgoing arguments both per call-site
1326     // and over the entire method.
1327     for( i = 0; i < argcnt; i++ ) {
1328       // Address of incoming argument mask to fill in
1329       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1330       if( !parm_regs[i].first()->is_valid() &&
1331           !parm_regs[i].second()->is_valid() ) {
1332         continue;               // Avoid Halves
1333       }
1334       // Grab first register, adjust stack slots and insert in mask.
1335       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1336       if (OptoReg::is_valid(reg1)) {
1337         rm->Insert( reg1 );
1338       }
1339       // Grab second register (if any), adjust stack slots and insert in mask.
1340       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1341       if (OptoReg::is_valid(reg2)) {
1342         rm->Insert( reg2 );
1343       }
1344     } // End of for all arguments
1345 
1346     // Compute number of stack slots needed to restore stack in case of
1347     // Pascal-style argument popping.
1348     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1349   }
1350 
1351   // Compute the max stack slot killed by any call.  These will not be
1352   // available for debug info, and will be used to adjust FIRST_STACK_mask
1353   // after all call sites have been visited.
1354   if( _out_arg_limit < out_arg_limit_per_call)
1355     _out_arg_limit = out_arg_limit_per_call;
1356 
1357   if (mcall) {
1358     // Kill the outgoing argument area, including any non-argument holes and
1359     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1360     // Since the max-per-method covers the max-per-call-site and debug info
1361     // is excluded on the max-per-method basis, debug info cannot land in
1362     // this killed area.
1363     uint r_cnt = mcall->tf()->range_sig()->cnt();
1364     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1365     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1366       C->record_method_not_compilable("unsupported outgoing calling sequence");
1367     } else {
1368       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1369         proj->_rout.Insert(OptoReg::Name(i));
1370     }
1371     if (proj->_rout.is_NotEmpty()) {
1372       push_projection(proj);
1373     }
1374   }
1375   // Transfer the safepoint information from the call to the mcall
1376   // Move the JVMState list
1377   msfpt->set_jvms(sfpt->jvms());
1378   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1379     jvms->set_map(sfpt);
1380   }
1381 
1382   // Debug inputs begin just after the last incoming parameter
1383   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1384          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1385 
1386   // Move the OopMap
1387   msfpt->_oop_map = sfpt->_oop_map;
1388 
1389   // Add additional edges.
1390   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1391     // For these calls we can not add MachConstantBase in expand(), as the
1392     // ins are not complete then.
1393     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1394     if (msfpt->jvms() &&
1395         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1396       // We added an edge before jvms, so we must adapt the position of the ins.
1397       msfpt->jvms()->adapt_position(+1);
1398     }
1399   }
1400 
1401   // Registers killed by the call are set in the local scheduling pass
1402   // of Global Code Motion.
1403   return msfpt;
1404 }
1405 
1406 //---------------------------match_tree----------------------------------------
1407 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1408 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1409 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1410 // a Load's result RegMask for memoization in idealreg2regmask[]
1411 MachNode *Matcher::match_tree( const Node *n ) {
1412   assert( n->Opcode() != Op_Phi, "cannot match" );
1413   assert( !n->is_block_start(), "cannot match" );
1414   // Set the mark for all locally allocated State objects.
1415   // When this call returns, the _states_arena arena will be reset
1416   // freeing all State objects.
1417   ResourceMark rm( &_states_arena );
1418 
1419   LabelRootDepth = 0;
1420 
1421   // StoreNodes require their Memory input to match any LoadNodes
1422   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1423 #ifdef ASSERT
1424   Node* save_mem_node = _mem_node;
1425   _mem_node = n->is_Store() ? (Node*)n : NULL;
1426 #endif
1427   // State object for root node of match tree
1428   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1429   State *s = new (&_states_arena) State;
1430   s->_kids[0] = NULL;
1431   s->_kids[1] = NULL;
1432   s->_leaf = (Node*)n;
1433   // Label the input tree, allocating labels from top-level arena
1434   Label_Root( n, s, n->in(0), mem );
1435   if (C->failing())  return NULL;
1436 
1437   // The minimum cost match for the whole tree is found at the root State
1438   uint mincost = max_juint;
1439   uint cost = max_juint;
1440   uint i;
1441   for( i = 0; i < NUM_OPERANDS; i++ ) {
1442     if( s->valid(i) &&                // valid entry and
1443         s->_cost[i] < cost &&         // low cost and
1444         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1445       cost = s->_cost[mincost=i];
1446   }
1447   if (mincost == max_juint) {
1448 #ifndef PRODUCT
1449     tty->print("No matching rule for:");
1450     s->dump();
1451 #endif
1452     Matcher::soft_match_failure();
1453     return NULL;
1454   }
1455   // Reduce input tree based upon the state labels to machine Nodes
1456   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1457 #ifdef ASSERT
1458   _old2new_map.map(n->_idx, m);
1459   _new2old_map.map(m->_idx, (Node*)n);
1460 #endif
1461 
1462   // Add any Matcher-ignored edges
1463   uint cnt = n->req();
1464   uint start = 1;
1465   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1466   if( n->is_AddP() ) {
1467     assert( mem == (Node*)1, "" );
1468     start = AddPNode::Base+1;
1469   }
1470   for( i = start; i < cnt; i++ ) {
1471     if( !n->match_edge(i) ) {
1472       if( i < m->req() )
1473         m->ins_req( i, n->in(i) );
1474       else
1475         m->add_req( n->in(i) );
1476     }
1477   }
1478 
1479   debug_only( _mem_node = save_mem_node; )
1480   return m;
1481 }
1482 
1483 
1484 //------------------------------match_into_reg---------------------------------
1485 // Choose to either match this Node in a register or part of the current
1486 // match tree.  Return true for requiring a register and false for matching
1487 // as part of the current match tree.
1488 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1489 
1490   const Type *t = m->bottom_type();
1491 
1492   if (t->singleton()) {
1493     // Never force constants into registers.  Allow them to match as
1494     // constants or registers.  Copies of the same value will share
1495     // the same register.  See find_shared_node.
1496     return false;
1497   } else {                      // Not a constant
1498     // Stop recursion if they have different Controls.
1499     Node* m_control = m->in(0);
1500     // Control of load's memory can post-dominates load's control.
1501     // So use it since load can't float above its memory.
1502     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1503     if (control && m_control && control != m_control && control != mem_control) {
1504 
1505       // Actually, we can live with the most conservative control we
1506       // find, if it post-dominates the others.  This allows us to
1507       // pick up load/op/store trees where the load can float a little
1508       // above the store.
1509       Node *x = control;
1510       const uint max_scan = 6;  // Arbitrary scan cutoff
1511       uint j;
1512       for (j=0; j<max_scan; j++) {
1513         if (x->is_Region())     // Bail out at merge points
1514           return true;
1515         x = x->in(0);
1516         if (x == m_control)     // Does 'control' post-dominate
1517           break;                // m->in(0)?  If so, we can use it
1518         if (x == mem_control)   // Does 'control' post-dominate
1519           break;                // mem_control?  If so, we can use it
1520       }
1521       if (j == max_scan)        // No post-domination before scan end?
1522         return true;            // Then break the match tree up
1523     }
1524     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1525         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1526       // These are commonly used in address expressions and can
1527       // efficiently fold into them on X64 in some cases.
1528       return false;
1529     }
1530   }
1531 
1532   // Not forceable cloning.  If shared, put it into a register.
1533   return shared;
1534 }
1535 
1536 
1537 //------------------------------Instruction Selection--------------------------
1538 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1539 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1540 // things the Matcher does not match (e.g., Memory), and things with different
1541 // Controls (hence forced into different blocks).  We pass in the Control
1542 // selected for this entire State tree.
1543 
1544 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1545 // Store and the Load must have identical Memories (as well as identical
1546 // pointers).  Since the Matcher does not have anything for Memory (and
1547 // does not handle DAGs), I have to match the Memory input myself.  If the
1548 // Tree root is a Store, I require all Loads to have the identical memory.
1549 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1550   // Since Label_Root is a recursive function, its possible that we might run
1551   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1552   LabelRootDepth++;
1553   if (LabelRootDepth > MaxLabelRootDepth) {
1554     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1555     return NULL;
1556   }
1557   uint care = 0;                // Edges matcher cares about
1558   uint cnt = n->req();
1559   uint i = 0;
1560 
1561   // Examine children for memory state
1562   // Can only subsume a child into your match-tree if that child's memory state
1563   // is not modified along the path to another input.
1564   // It is unsafe even if the other inputs are separate roots.
1565   Node *input_mem = NULL;
1566   for( i = 1; i < cnt; i++ ) {
1567     if( !n->match_edge(i) ) continue;
1568     Node *m = n->in(i);         // Get ith input
1569     assert( m, "expect non-null children" );
1570     if( m->is_Load() ) {
1571       if( input_mem == NULL ) {
1572         input_mem = m->in(MemNode::Memory);
1573       } else if( input_mem != m->in(MemNode::Memory) ) {
1574         input_mem = NodeSentinel;
1575       }
1576     }
1577   }
1578 
1579   for( i = 1; i < cnt; i++ ){// For my children
1580     if( !n->match_edge(i) ) continue;
1581     Node *m = n->in(i);         // Get ith input
1582     // Allocate states out of a private arena
1583     State *s = new (&_states_arena) State;
1584     svec->_kids[care++] = s;
1585     assert( care <= 2, "binary only for now" );
1586 
1587     // Recursively label the State tree.
1588     s->_kids[0] = NULL;
1589     s->_kids[1] = NULL;
1590     s->_leaf = m;
1591 
1592     // Check for leaves of the State Tree; things that cannot be a part of
1593     // the current tree.  If it finds any, that value is matched as a
1594     // register operand.  If not, then the normal matching is used.
1595     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1596         //
1597         // Stop recursion if this is LoadNode and the root of this tree is a
1598         // StoreNode and the load & store have different memories.
1599         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1600         // Can NOT include the match of a subtree when its memory state
1601         // is used by any of the other subtrees
1602         (input_mem == NodeSentinel) ) {
1603       // Print when we exclude matching due to different memory states at input-loads
1604       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1605         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1606         tty->print_cr("invalid input_mem");
1607       }
1608       // Switch to a register-only opcode; this value must be in a register
1609       // and cannot be subsumed as part of a larger instruction.
1610       s->DFA( m->ideal_reg(), m );
1611 
1612     } else {
1613       // If match tree has no control and we do, adopt it for entire tree
1614       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1615         control = m->in(0);         // Pick up control
1616       // Else match as a normal part of the match tree.
1617       control = Label_Root(m,s,control,mem);
1618       if (C->failing()) return NULL;
1619     }
1620   }
1621 
1622 
1623   // Call DFA to match this node, and return
1624   svec->DFA( n->Opcode(), n );
1625 
1626 #ifdef ASSERT
1627   uint x;
1628   for( x = 0; x < _LAST_MACH_OPER; x++ )
1629     if( svec->valid(x) )
1630       break;
1631 
1632   if (x >= _LAST_MACH_OPER) {
1633     n->dump();
1634     svec->dump();
1635     assert( false, "bad AD file" );
1636   }
1637 #endif
1638   return control;
1639 }
1640 
1641 
1642 // Con nodes reduced using the same rule can share their MachNode
1643 // which reduces the number of copies of a constant in the final
1644 // program.  The register allocator is free to split uses later to
1645 // split live ranges.
1646 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1647   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1648 
1649   // See if this Con has already been reduced using this rule.
1650   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1651   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1652   if (last != NULL && rule == last->rule()) {
1653     // Don't expect control change for DecodeN
1654     if (leaf->is_DecodeNarrowPtr())
1655       return last;
1656     // Get the new space root.
1657     Node* xroot = new_node(C->root());
1658     if (xroot == NULL) {
1659       // This shouldn't happen give the order of matching.
1660       return NULL;
1661     }
1662 
1663     // Shared constants need to have their control be root so they
1664     // can be scheduled properly.
1665     Node* control = last->in(0);
1666     if (control != xroot) {
1667       if (control == NULL || control == C->root()) {
1668         last->set_req(0, xroot);
1669       } else {
1670         assert(false, "unexpected control");
1671         return NULL;
1672       }
1673     }
1674     return last;
1675   }
1676   return NULL;
1677 }
1678 
1679 
1680 //------------------------------ReduceInst-------------------------------------
1681 // Reduce a State tree (with given Control) into a tree of MachNodes.
1682 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1683 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1684 // Each MachNode has a number of complicated MachOper operands; each
1685 // MachOper also covers a further tree of Ideal Nodes.
1686 
1687 // The root of the Ideal match tree is always an instruction, so we enter
1688 // the recursion here.  After building the MachNode, we need to recurse
1689 // the tree checking for these cases:
1690 // (1) Child is an instruction -
1691 //     Build the instruction (recursively), add it as an edge.
1692 //     Build a simple operand (register) to hold the result of the instruction.
1693 // (2) Child is an interior part of an instruction -
1694 //     Skip over it (do nothing)
1695 // (3) Child is the start of a operand -
1696 //     Build the operand, place it inside the instruction
1697 //     Call ReduceOper.
1698 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1699   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1700 
1701   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1702   if (shared_node != NULL) {
1703     return shared_node;
1704   }
1705 
1706   // Build the object to represent this state & prepare for recursive calls
1707   MachNode *mach = s->MachNodeGenerator(rule);
1708   guarantee(mach != NULL, "Missing MachNode");
1709   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1710   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1711   Node *leaf = s->_leaf;
1712   // Check for instruction or instruction chain rule
1713   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1714     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1715            "duplicating node that's already been matched");
1716     // Instruction
1717     mach->add_req( leaf->in(0) ); // Set initial control
1718     // Reduce interior of complex instruction
1719     ReduceInst_Interior( s, rule, mem, mach, 1 );
1720   } else {
1721     // Instruction chain rules are data-dependent on their inputs
1722     mach->add_req(0);             // Set initial control to none
1723     ReduceInst_Chain_Rule( s, rule, mem, mach );
1724   }
1725 
1726   // If a Memory was used, insert a Memory edge
1727   if( mem != (Node*)1 ) {
1728     mach->ins_req(MemNode::Memory,mem);
1729 #ifdef ASSERT
1730     // Verify adr type after matching memory operation
1731     const MachOper* oper = mach->memory_operand();
1732     if (oper != NULL && oper != (MachOper*)-1) {
1733       // It has a unique memory operand.  Find corresponding ideal mem node.
1734       Node* m = NULL;
1735       if (leaf->is_Mem()) {
1736         m = leaf;
1737       } else {
1738         m = _mem_node;
1739         assert(m != NULL && m->is_Mem(), "expecting memory node");
1740       }
1741       const Type* mach_at = mach->adr_type();
1742       // DecodeN node consumed by an address may have different type
1743       // than its input. Don't compare types for such case.
1744       if (m->adr_type() != mach_at &&
1745           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1746            (m->in(MemNode::Address)->is_AddP() &&
1747             m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1748            (m->in(MemNode::Address)->is_AddP() &&
1749             m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1750             m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1751         mach_at = m->adr_type();
1752       }
1753       if (m->adr_type() != mach_at) {
1754         m->dump();
1755         tty->print_cr("mach:");
1756         mach->dump(1);
1757       }
1758       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1759     }
1760 #endif
1761   }
1762 
1763   // If the _leaf is an AddP, insert the base edge
1764   if (leaf->is_AddP()) {
1765     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1766   }
1767 
1768   uint number_of_projections_prior = number_of_projections();
1769 
1770   // Perform any 1-to-many expansions required
1771   MachNode *ex = mach->Expand(s, _projection_list, mem);
1772   if (ex != mach) {
1773     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1774     if( ex->in(1)->is_Con() )
1775       ex->in(1)->set_req(0, C->root());
1776     // Remove old node from the graph
1777     for( uint i=0; i<mach->req(); i++ ) {
1778       mach->set_req(i,NULL);
1779     }
1780 #ifdef ASSERT
1781     _new2old_map.map(ex->_idx, s->_leaf);
1782 #endif
1783   }
1784 
1785   // PhaseChaitin::fixup_spills will sometimes generate spill code
1786   // via the matcher.  By the time, nodes have been wired into the CFG,
1787   // and any further nodes generated by expand rules will be left hanging
1788   // in space, and will not get emitted as output code.  Catch this.
1789   // Also, catch any new register allocation constraints ("projections")
1790   // generated belatedly during spill code generation.
1791   if (_allocation_started) {
1792     guarantee(ex == mach, "no expand rules during spill generation");
1793     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1794   }
1795 
1796   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1797     // Record the con for sharing
1798     _shared_nodes.map(leaf->_idx, ex);
1799   }
1800 
1801   return ex;
1802 }
1803 
1804 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1805   for (uint i = n->req(); i < n->len(); i++) {
1806     if (n->in(i) != NULL) {
1807       mach->add_prec(n->in(i));
1808     }
1809   }
1810 }
1811 
1812 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1813   // 'op' is what I am expecting to receive
1814   int op = _leftOp[rule];
1815   // Operand type to catch childs result
1816   // This is what my child will give me.
1817   int opnd_class_instance = s->_rule[op];
1818   // Choose between operand class or not.
1819   // This is what I will receive.
1820   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1821   // New rule for child.  Chase operand classes to get the actual rule.
1822   int newrule = s->_rule[catch_op];
1823 
1824   if( newrule < NUM_OPERANDS ) {
1825     // Chain from operand or operand class, may be output of shared node
1826     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1827             "Bad AD file: Instruction chain rule must chain from operand");
1828     // Insert operand into array of operands for this instruction
1829     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1830 
1831     ReduceOper( s, newrule, mem, mach );
1832   } else {
1833     // Chain from the result of an instruction
1834     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1835     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1836     Node *mem1 = (Node*)1;
1837     debug_only(Node *save_mem_node = _mem_node;)
1838     mach->add_req( ReduceInst(s, newrule, mem1) );
1839     debug_only(_mem_node = save_mem_node;)
1840   }
1841   return;
1842 }
1843 
1844 
1845 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1846   handle_precedence_edges(s->_leaf, mach);
1847 
1848   if( s->_leaf->is_Load() ) {
1849     Node *mem2 = s->_leaf->in(MemNode::Memory);
1850     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1851     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1852     mem = mem2;
1853   }
1854   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1855     if( mach->in(0) == NULL )
1856       mach->set_req(0, s->_leaf->in(0));
1857   }
1858 
1859   // Now recursively walk the state tree & add operand list.
1860   for( uint i=0; i<2; i++ ) {   // binary tree
1861     State *newstate = s->_kids[i];
1862     if( newstate == NULL ) break;      // Might only have 1 child
1863     // 'op' is what I am expecting to receive
1864     int op;
1865     if( i == 0 ) {
1866       op = _leftOp[rule];
1867     } else {
1868       op = _rightOp[rule];
1869     }
1870     // Operand type to catch childs result
1871     // This is what my child will give me.
1872     int opnd_class_instance = newstate->_rule[op];
1873     // Choose between operand class or not.
1874     // This is what I will receive.
1875     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1876     // New rule for child.  Chase operand classes to get the actual rule.
1877     int newrule = newstate->_rule[catch_op];
1878 
1879     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1880       // Operand/operandClass
1881       // Insert operand into array of operands for this instruction
1882       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1883       ReduceOper( newstate, newrule, mem, mach );
1884 
1885     } else {                    // Child is internal operand or new instruction
1886       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1887         // internal operand --> call ReduceInst_Interior
1888         // Interior of complex instruction.  Do nothing but recurse.
1889         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1890       } else {
1891         // instruction --> call build operand(  ) to catch result
1892         //             --> ReduceInst( newrule )
1893         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1894         Node *mem1 = (Node*)1;
1895         debug_only(Node *save_mem_node = _mem_node;)
1896         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1897         debug_only(_mem_node = save_mem_node;)
1898       }
1899     }
1900     assert( mach->_opnds[num_opnds-1], "" );
1901   }
1902   return num_opnds;
1903 }
1904 
1905 // This routine walks the interior of possible complex operands.
1906 // At each point we check our children in the match tree:
1907 // (1) No children -
1908 //     We are a leaf; add _leaf field as an input to the MachNode
1909 // (2) Child is an internal operand -
1910 //     Skip over it ( do nothing )
1911 // (3) Child is an instruction -
1912 //     Call ReduceInst recursively and
1913 //     and instruction as an input to the MachNode
1914 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1915   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1916   State *kid = s->_kids[0];
1917   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1918 
1919   // Leaf?  And not subsumed?
1920   if( kid == NULL && !_swallowed[rule] ) {
1921     mach->add_req( s->_leaf );  // Add leaf pointer
1922     return;                     // Bail out
1923   }
1924 
1925   if( s->_leaf->is_Load() ) {
1926     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1927     mem = s->_leaf->in(MemNode::Memory);
1928     debug_only(_mem_node = s->_leaf;)
1929   }
1930 
1931   handle_precedence_edges(s->_leaf, mach);
1932 
1933   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1934     if( !mach->in(0) )
1935       mach->set_req(0,s->_leaf->in(0));
1936     else {
1937       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1938     }
1939   }
1940 
1941   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1942     int newrule;
1943     if( i == 0)
1944       newrule = kid->_rule[_leftOp[rule]];
1945     else
1946       newrule = kid->_rule[_rightOp[rule]];
1947 
1948     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1949       // Internal operand; recurse but do nothing else
1950       ReduceOper( kid, newrule, mem, mach );
1951 
1952     } else {                    // Child is a new instruction
1953       // Reduce the instruction, and add a direct pointer from this
1954       // machine instruction to the newly reduced one.
1955       Node *mem1 = (Node*)1;
1956       debug_only(Node *save_mem_node = _mem_node;)
1957       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1958       debug_only(_mem_node = save_mem_node;)
1959     }
1960   }
1961 }
1962 
1963 
1964 // -------------------------------------------------------------------------
1965 // Java-Java calling convention
1966 // (what you use when Java calls Java)
1967 
1968 //------------------------------find_receiver----------------------------------
1969 // For a given signature, return the OptoReg for parameter 0.
1970 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1971   VMRegPair regs;
1972   BasicType sig_bt = T_OBJECT;
1973   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1974   // Return argument 0 register.  In the LP64 build pointers
1975   // take 2 registers, but the VM wants only the 'main' name.
1976   return OptoReg::as_OptoReg(regs.first());
1977 }
1978 
1979 // This function identifies sub-graphs in which a 'load' node is
1980 // input to two different nodes, and such that it can be matched
1981 // with BMI instructions like blsi, blsr, etc.
1982 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1983 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1984 // refers to the same node.
1985 #ifdef X86
1986 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1987 // This is a temporary solution until we make DAGs expressible in ADL.
1988 template<typename ConType>
1989 class FusedPatternMatcher {
1990   Node* _op1_node;
1991   Node* _mop_node;
1992   int _con_op;
1993 
1994   static int match_next(Node* n, int next_op, int next_op_idx) {
1995     if (n->in(1) == NULL || n->in(2) == NULL) {
1996       return -1;
1997     }
1998 
1999     if (next_op_idx == -1) { // n is commutative, try rotations
2000       if (n->in(1)->Opcode() == next_op) {
2001         return 1;
2002       } else if (n->in(2)->Opcode() == next_op) {
2003         return 2;
2004       }
2005     } else {
2006       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
2007       if (n->in(next_op_idx)->Opcode() == next_op) {
2008         return next_op_idx;
2009       }
2010     }
2011     return -1;
2012   }
2013 public:
2014   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
2015     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
2016 
2017   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
2018              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
2019              typename ConType::NativeType con_value) {
2020     if (_op1_node->Opcode() != op1) {
2021       return false;
2022     }
2023     if (_mop_node->outcnt() > 2) {
2024       return false;
2025     }
2026     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
2027     if (op1_op2_idx == -1) {
2028       return false;
2029     }
2030     // Memory operation must be the other edge
2031     int op1_mop_idx = (op1_op2_idx & 1) + 1;
2032 
2033     // Check that the mop node is really what we want
2034     if (_op1_node->in(op1_mop_idx) == _mop_node) {
2035       Node *op2_node = _op1_node->in(op1_op2_idx);
2036       if (op2_node->outcnt() > 1) {
2037         return false;
2038       }
2039       assert(op2_node->Opcode() == op2, "Should be");
2040       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
2041       if (op2_con_idx == -1) {
2042         return false;
2043       }
2044       // Memory operation must be the other edge
2045       int op2_mop_idx = (op2_con_idx & 1) + 1;
2046       // Check that the memory operation is the same node
2047       if (op2_node->in(op2_mop_idx) == _mop_node) {
2048         // Now check the constant
2049         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
2050         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
2051           return true;
2052         }
2053       }
2054     }
2055     return false;
2056   }
2057 };
2058 
2059 
2060 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2061   if (n != NULL && m != NULL) {
2062     if (m->Opcode() == Op_LoadI) {
2063       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2064       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2065              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2066              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2067     } else if (m->Opcode() == Op_LoadL) {
2068       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2069       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2070              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2071              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2072     }
2073   }
2074   return false;
2075 }
2076 #endif // X86
2077 
2078 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2079   Node *off = m->in(AddPNode::Offset);
2080   if (off->is_Con()) {
2081     address_visited.test_set(m->_idx); // Flag as address_visited
2082     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2083     // Clone X+offset as it also folds into most addressing expressions
2084     mstack.push(off, Visit);
2085     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2086     return true;
2087   }
2088   return false;
2089 }
2090 
2091 // A method-klass-holder may be passed in the inline_cache_reg
2092 // and then expanded into the inline_cache_reg and a method_oop register
2093 //   defined in ad_<arch>.cpp
2094 
2095 //------------------------------find_shared------------------------------------
2096 // Set bits if Node is shared or otherwise a root
2097 void Matcher::find_shared( Node *n ) {
2098   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2099   MStack mstack(C->live_nodes() * 2);
2100   // Mark nodes as address_visited if they are inputs to an address expression
2101   VectorSet address_visited(Thread::current()->resource_area());
2102   mstack.push(n, Visit);     // Don't need to pre-visit root node
2103   while (mstack.is_nonempty()) {
2104     n = mstack.node();       // Leave node on stack
2105     Node_State nstate = mstack.state();
2106     uint nop = n->Opcode();
2107     if (nstate == Pre_Visit) {
2108       if (address_visited.test(n->_idx)) { // Visited in address already?
2109         // Flag as visited and shared now.
2110         set_visited(n);
2111       }
2112       if (is_visited(n)) {   // Visited already?
2113         // Node is shared and has no reason to clone.  Flag it as shared.
2114         // This causes it to match into a register for the sharing.
2115         set_shared(n);       // Flag as shared and
2116         mstack.pop();        // remove node from stack
2117         continue;
2118       }
2119       nstate = Visit; // Not already visited; so visit now
2120     }
2121     if (nstate == Visit) {
2122       mstack.set_state(Post_Visit);
2123       set_visited(n);   // Flag as visited now
2124       bool mem_op = false;
2125       int mem_addr_idx = MemNode::Address;
2126 
2127       switch( nop ) {  // Handle some opcodes special
2128       case Op_Phi:             // Treat Phis as shared roots
2129       case Op_Parm:
2130       case Op_Proj:            // All handled specially during matching
2131       case Op_SafePointScalarObject:
2132         set_shared(n);
2133         set_dontcare(n);
2134         break;
2135       case Op_If:
2136       case Op_CountedLoopEnd:
2137         mstack.set_state(Alt_Post_Visit); // Alternative way
2138         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2139         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2140         // Bool and CmpX side-by-side, because it can only get at constants
2141         // that are at the leaves of Match trees, and the Bool's condition acts
2142         // as a constant here.
2143         mstack.push(n->in(1), Visit);         // Clone the Bool
2144         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2145         continue; // while (mstack.is_nonempty())
2146       case Op_ConvI2D:         // These forms efficiently match with a prior
2147       case Op_ConvI2F:         //   Load but not a following Store
2148         if( n->in(1)->is_Load() &&        // Prior load
2149             n->outcnt() == 1 &&           // Not already shared
2150             n->unique_out()->is_Store() ) // Following store
2151           set_shared(n);       // Force it to be a root
2152         break;
2153       case Op_ReverseBytesI:
2154       case Op_ReverseBytesL:
2155         if( n->in(1)->is_Load() &&        // Prior load
2156             n->outcnt() == 1 )            // Not already shared
2157           set_shared(n);                  // Force it to be a root
2158         break;
2159       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2160       case Op_IfFalse:
2161       case Op_IfTrue:
2162       case Op_MachProj:
2163       case Op_MergeMem:
2164       case Op_Catch:
2165       case Op_CatchProj:
2166       case Op_CProj:
2167       case Op_JumpProj:
2168       case Op_JProj:
2169       case Op_NeverBranch:
2170         set_dontcare(n);
2171         break;
2172       case Op_Jump:
2173         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2174         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2175         continue;                             // while (mstack.is_nonempty())
2176       case Op_StrComp:
2177       case Op_StrEquals:
2178       case Op_StrIndexOf:
2179       case Op_StrIndexOfChar:
2180       case Op_AryEq:
2181       case Op_HasNegatives:
2182       case Op_StrInflatedCopy:
2183       case Op_StrCompressedCopy:
2184       case Op_EncodeISOArray:
2185       case Op_FmaD:
2186       case Op_FmaF:
2187       case Op_FmaVD:
2188       case Op_FmaVF:
2189         set_shared(n); // Force result into register (it will be anyways)
2190         break;
2191       case Op_ConP: {  // Convert pointers above the centerline to NUL
2192         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2193         const TypePtr* tp = tn->type()->is_ptr();
2194         if (tp->_ptr == TypePtr::AnyNull) {
2195           tn->set_type(TypePtr::NULL_PTR);
2196         }
2197         break;
2198       }
2199       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2200         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2201         const TypePtr* tp = tn->type()->make_ptr();
2202         if (tp && tp->_ptr == TypePtr::AnyNull) {
2203           tn->set_type(TypeNarrowOop::NULL_PTR);
2204         }
2205         break;
2206       }
2207       case Op_Binary:         // These are introduced in the Post_Visit state.
2208         ShouldNotReachHere();
2209         break;
2210       case Op_ClearArray:
2211       case Op_SafePoint:
2212         mem_op = true;
2213         break;
2214 #if INCLUDE_ZGC
2215       case Op_CallLeaf:
2216         if (UseZGC) {
2217           if (n->as_Call()->entry_point() == ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr() ||
2218               n->as_Call()->entry_point() == ZBarrierSetRuntime::load_barrier_on_weak_oop_field_preloaded_addr()) {
2219             mem_op = true;
2220             mem_addr_idx = TypeFunc::Parms+1;
2221           }
2222           break;
2223         }
2224 #endif
2225       default:
2226         if( n->is_Store() ) {
2227           // Do match stores, despite no ideal reg
2228           mem_op = true;
2229           break;
2230         }
2231         if( n->is_Mem() ) { // Loads and LoadStores
2232           mem_op = true;
2233           // Loads must be root of match tree due to prior load conflict
2234           if( C->subsume_loads() == false )
2235             set_shared(n);
2236         }
2237         // Fall into default case
2238         if( !n->ideal_reg() )
2239           set_dontcare(n);  // Unmatchable Nodes
2240       } // end_switch
2241 
2242       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2243         Node *m = n->in(i); // Get ith input
2244         if (m == NULL) continue;  // Ignore NULLs
2245         uint mop = m->Opcode();
2246 
2247         // Must clone all producers of flags, or we will not match correctly.
2248         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2249         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2250         // are also there, so we may match a float-branch to int-flags and
2251         // expect the allocator to haul the flags from the int-side to the
2252         // fp-side.  No can do.
2253         if( _must_clone[mop] ) {
2254           mstack.push(m, Visit);
2255           continue; // for(int i = ...)
2256         }
2257 
2258         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2259           // Bases used in addresses must be shared but since
2260           // they are shared through a DecodeN they may appear
2261           // to have a single use so force sharing here.
2262           set_shared(m->in(AddPNode::Base)->in(1));
2263         }
2264 
2265         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2266 #ifdef X86
2267         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2268           mstack.push(m, Visit);
2269           continue;
2270         }
2271 #endif
2272 
2273         // Clone addressing expressions as they are "free" in memory access instructions
2274         if (mem_op && i == mem_addr_idx && mop == Op_AddP &&
2275             // When there are other uses besides address expressions
2276             // put it on stack and mark as shared.
2277             !is_visited(m)) {
2278           // Some inputs for address expression are not put on stack
2279           // to avoid marking them as shared and forcing them into register
2280           // if they are used only in address expressions.
2281           // But they should be marked as shared if there are other uses
2282           // besides address expressions.
2283 
2284           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2285             continue;
2286           }
2287         }   // if( mem_op &&
2288         mstack.push(m, Pre_Visit);
2289       }     // for(int i = ...)
2290     }
2291     else if (nstate == Alt_Post_Visit) {
2292       mstack.pop(); // Remove node from stack
2293       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2294       // shared and all users of the Bool need to move the Cmp in parallel.
2295       // This leaves both the Bool and the If pointing at the Cmp.  To
2296       // prevent the Matcher from trying to Match the Cmp along both paths
2297       // BoolNode::match_edge always returns a zero.
2298 
2299       // We reorder the Op_If in a pre-order manner, so we can visit without
2300       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2301       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2302     }
2303     else if (nstate == Post_Visit) {
2304       mstack.pop(); // Remove node from stack
2305 
2306       // Now hack a few special opcodes
2307       switch( n->Opcode() ) {       // Handle some opcodes special
2308       case Op_StorePConditional:
2309       case Op_StoreIConditional:
2310       case Op_StoreLConditional:
2311       case Op_CompareAndExchangeB:
2312       case Op_CompareAndExchangeS:
2313       case Op_CompareAndExchangeI:
2314       case Op_CompareAndExchangeL:
2315       case Op_CompareAndExchangeP:
2316       case Op_CompareAndExchangeN:
2317       case Op_WeakCompareAndSwapB:
2318       case Op_WeakCompareAndSwapS:
2319       case Op_WeakCompareAndSwapI:
2320       case Op_WeakCompareAndSwapL:
2321       case Op_WeakCompareAndSwapP:
2322       case Op_WeakCompareAndSwapN:
2323       case Op_CompareAndSwapB:
2324       case Op_CompareAndSwapS:
2325       case Op_CompareAndSwapI:
2326       case Op_CompareAndSwapL:
2327       case Op_CompareAndSwapP:
2328       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2329         Node *newval = n->in(MemNode::ValueIn );
2330         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2331         Node *pair = new BinaryNode( oldval, newval );
2332         n->set_req(MemNode::ValueIn,pair);
2333         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2334         break;
2335       }
2336       case Op_CMoveD:              // Convert trinary to binary-tree
2337       case Op_CMoveF:
2338       case Op_CMoveI:
2339       case Op_CMoveL:
2340       case Op_CMoveN:
2341       case Op_CMoveP:
2342       case Op_CMoveVF:
2343       case Op_CMoveVD:  {
2344         // Restructure into a binary tree for Matching.  It's possible that
2345         // we could move this code up next to the graph reshaping for IfNodes
2346         // or vice-versa, but I do not want to debug this for Ladybird.
2347         // 10/2/2000 CNC.
2348         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2349         n->set_req(1,pair1);
2350         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2351         n->set_req(2,pair2);
2352         n->del_req(3);
2353         break;
2354       }
2355       case Op_LoopLimit: {
2356         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2357         n->set_req(1,pair1);
2358         n->set_req(2,n->in(3));
2359         n->del_req(3);
2360         break;
2361       }
2362       case Op_StrEquals:
2363       case Op_StrIndexOfChar: {
2364         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2365         n->set_req(2,pair1);
2366         n->set_req(3,n->in(4));
2367         n->del_req(4);
2368         break;
2369       }
2370       case Op_StrComp:
2371       case Op_StrIndexOf: {
2372         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2373         n->set_req(2,pair1);
2374         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2375         n->set_req(3,pair2);
2376         n->del_req(5);
2377         n->del_req(4);
2378         break;
2379       }
2380       case Op_StrCompressedCopy:
2381       case Op_StrInflatedCopy:
2382       case Op_EncodeISOArray: {
2383         // Restructure into a binary tree for Matching.
2384         Node* pair = new BinaryNode(n->in(3), n->in(4));
2385         n->set_req(3, pair);
2386         n->del_req(4);
2387         break;
2388       }
2389       case Op_FmaD:
2390       case Op_FmaF:
2391       case Op_FmaVD:
2392       case Op_FmaVF: {
2393         // Restructure into a binary tree for Matching.
2394         Node* pair = new BinaryNode(n->in(1), n->in(2));
2395         n->set_req(2, pair);
2396         n->set_req(1, n->in(3));
2397         n->del_req(3);
2398         break;
2399       }
2400       case Op_ClearArray: {
2401         Node* pair = new BinaryNode(n->in(2), n->in(3));
2402         n->set_req(2, pair);
2403         n->set_req(3, n->in(4));
2404         n->del_req(4);
2405         break;
2406       }
2407       default:
2408         break;
2409       }
2410     }
2411     else {
2412       ShouldNotReachHere();
2413     }
2414   } // end of while (mstack.is_nonempty())
2415 }
2416 
2417 #ifdef ASSERT
2418 // machine-independent root to machine-dependent root
2419 void Matcher::dump_old2new_map() {
2420   _old2new_map.dump();
2421 }
2422 #endif
2423 
2424 //---------------------------collect_null_checks-------------------------------
2425 // Find null checks in the ideal graph; write a machine-specific node for
2426 // it.  Used by later implicit-null-check handling.  Actually collects
2427 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2428 // value being tested.
2429 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2430   Node *iff = proj->in(0);
2431   if( iff->Opcode() == Op_If ) {
2432     // During matching If's have Bool & Cmp side-by-side
2433     BoolNode *b = iff->in(1)->as_Bool();
2434     Node *cmp = iff->in(2);
2435     int opc = cmp->Opcode();
2436     if (opc != Op_CmpP && opc != Op_CmpN) return;
2437 
2438     const Type* ct = cmp->in(2)->bottom_type();
2439     if (ct == TypePtr::NULL_PTR ||
2440         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2441 
2442       bool push_it = false;
2443       if( proj->Opcode() == Op_IfTrue ) {
2444 #ifndef PRODUCT
2445         extern int all_null_checks_found;
2446         all_null_checks_found++;
2447 #endif
2448         if( b->_test._test == BoolTest::ne ) {
2449           push_it = true;
2450         }
2451       } else {
2452         assert( proj->Opcode() == Op_IfFalse, "" );
2453         if( b->_test._test == BoolTest::eq ) {
2454           push_it = true;
2455         }
2456       }
2457       if( push_it ) {
2458         _null_check_tests.push(proj);
2459         Node* val = cmp->in(1);
2460 #ifdef _LP64
2461         if (val->bottom_type()->isa_narrowoop() &&
2462             !Matcher::narrow_oop_use_complex_address()) {
2463           //
2464           // Look for DecodeN node which should be pinned to orig_proj.
2465           // On platforms (Sparc) which can not handle 2 adds
2466           // in addressing mode we have to keep a DecodeN node and
2467           // use it to do implicit NULL check in address.
2468           //
2469           // DecodeN node was pinned to non-null path (orig_proj) during
2470           // CastPP transformation in final_graph_reshaping_impl().
2471           //
2472           uint cnt = orig_proj->outcnt();
2473           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2474             Node* d = orig_proj->raw_out(i);
2475             if (d->is_DecodeN() && d->in(1) == val) {
2476               val = d;
2477               val->set_req(0, NULL); // Unpin now.
2478               // Mark this as special case to distinguish from
2479               // a regular case: CmpP(DecodeN, NULL).
2480               val = (Node*)(((intptr_t)val) | 1);
2481               break;
2482             }
2483           }
2484         }
2485 #endif
2486         _null_check_tests.push(val);
2487       }
2488     }
2489   }
2490 }
2491 
2492 //---------------------------validate_null_checks------------------------------
2493 // Its possible that the value being NULL checked is not the root of a match
2494 // tree.  If so, I cannot use the value in an implicit null check.
2495 void Matcher::validate_null_checks( ) {
2496   uint cnt = _null_check_tests.size();
2497   for( uint i=0; i < cnt; i+=2 ) {
2498     Node *test = _null_check_tests[i];
2499     Node *val = _null_check_tests[i+1];
2500     bool is_decoden = ((intptr_t)val) & 1;
2501     val = (Node*)(((intptr_t)val) & ~1);
2502     if (has_new_node(val)) {
2503       Node* new_val = new_node(val);
2504       if (is_decoden) {
2505         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2506         // Note: new_val may have a control edge if
2507         // the original ideal node DecodeN was matched before
2508         // it was unpinned in Matcher::collect_null_checks().
2509         // Unpin the mach node and mark it.
2510         new_val->set_req(0, NULL);
2511         new_val = (Node*)(((intptr_t)new_val) | 1);
2512       }
2513       // Is a match-tree root, so replace with the matched value
2514       _null_check_tests.map(i+1, new_val);
2515     } else {
2516       // Yank from candidate list
2517       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2518       _null_check_tests.map(i,_null_check_tests[--cnt]);
2519       _null_check_tests.pop();
2520       _null_check_tests.pop();
2521       i-=2;
2522     }
2523   }
2524 }
2525 
2526 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2527 // atomic instruction acting as a store_load barrier without any
2528 // intervening volatile load, and thus we don't need a barrier here.
2529 // We retain the Node to act as a compiler ordering barrier.
2530 bool Matcher::post_store_load_barrier(const Node* vmb) {
2531   Compile* C = Compile::current();
2532   assert(vmb->is_MemBar(), "");
2533   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2534   const MemBarNode* membar = vmb->as_MemBar();
2535 
2536   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2537   Node* ctrl = NULL;
2538   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2539     Node* p = membar->fast_out(i);
2540     assert(p->is_Proj(), "only projections here");
2541     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2542         !C->node_arena()->contains(p)) { // Unmatched old-space only
2543       ctrl = p;
2544       break;
2545     }
2546   }
2547   assert((ctrl != NULL), "missing control projection");
2548 
2549   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2550     Node *x = ctrl->fast_out(j);
2551     int xop = x->Opcode();
2552 
2553     // We don't need current barrier if we see another or a lock
2554     // before seeing volatile load.
2555     //
2556     // Op_Fastunlock previously appeared in the Op_* list below.
2557     // With the advent of 1-0 lock operations we're no longer guaranteed
2558     // that a monitor exit operation contains a serializing instruction.
2559 
2560     if (xop == Op_MemBarVolatile ||
2561         xop == Op_CompareAndExchangeB ||
2562         xop == Op_CompareAndExchangeS ||
2563         xop == Op_CompareAndExchangeI ||
2564         xop == Op_CompareAndExchangeL ||
2565         xop == Op_CompareAndExchangeP ||
2566         xop == Op_CompareAndExchangeN ||
2567         xop == Op_WeakCompareAndSwapB ||
2568         xop == Op_WeakCompareAndSwapS ||
2569         xop == Op_WeakCompareAndSwapL ||
2570         xop == Op_WeakCompareAndSwapP ||
2571         xop == Op_WeakCompareAndSwapN ||
2572         xop == Op_WeakCompareAndSwapI ||
2573         xop == Op_CompareAndSwapB ||
2574         xop == Op_CompareAndSwapS ||
2575         xop == Op_CompareAndSwapL ||
2576         xop == Op_CompareAndSwapP ||
2577         xop == Op_CompareAndSwapN ||
2578         xop == Op_CompareAndSwapI) {
2579       return true;
2580     }
2581 
2582     // Op_FastLock previously appeared in the Op_* list above.
2583     // With biased locking we're no longer guaranteed that a monitor
2584     // enter operation contains a serializing instruction.
2585     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2586       return true;
2587     }
2588 
2589     if (x->is_MemBar()) {
2590       // We must retain this membar if there is an upcoming volatile
2591       // load, which will be followed by acquire membar.
2592       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2593         return false;
2594       } else {
2595         // For other kinds of barriers, check by pretending we
2596         // are them, and seeing if we can be removed.
2597         return post_store_load_barrier(x->as_MemBar());
2598       }
2599     }
2600 
2601     // probably not necessary to check for these
2602     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2603       return false;
2604     }
2605   }
2606   return false;
2607 }
2608 
2609 // Check whether node n is a branch to an uncommon trap that we could
2610 // optimize as test with very high branch costs in case of going to
2611 // the uncommon trap. The code must be able to be recompiled to use
2612 // a cheaper test.
2613 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2614   // Don't do it for natives, adapters, or runtime stubs
2615   Compile *C = Compile::current();
2616   if (!C->is_method_compilation()) return false;
2617 
2618   assert(n->is_If(), "You should only call this on if nodes.");
2619   IfNode *ifn = n->as_If();
2620 
2621   Node *ifFalse = NULL;
2622   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2623     if (ifn->fast_out(i)->is_IfFalse()) {
2624       ifFalse = ifn->fast_out(i);
2625       break;
2626     }
2627   }
2628   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2629 
2630   Node *reg = ifFalse;
2631   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2632                // Alternatively use visited set?  Seems too expensive.
2633   while (reg != NULL && cnt > 0) {
2634     CallNode *call = NULL;
2635     RegionNode *nxt_reg = NULL;
2636     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2637       Node *o = reg->fast_out(i);
2638       if (o->is_Call()) {
2639         call = o->as_Call();
2640       }
2641       if (o->is_Region()) {
2642         nxt_reg = o->as_Region();
2643       }
2644     }
2645 
2646     if (call &&
2647         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2648       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2649       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2650         jint tr_con = trtype->is_int()->get_con();
2651         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2652         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2653         assert((int)reason < (int)BitsPerInt, "recode bit map");
2654 
2655         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2656             && action != Deoptimization::Action_none) {
2657           // This uncommon trap is sure to recompile, eventually.
2658           // When that happens, C->too_many_traps will prevent
2659           // this transformation from happening again.
2660           return true;
2661         }
2662       }
2663     }
2664 
2665     reg = nxt_reg;
2666     cnt--;
2667   }
2668 
2669   return false;
2670 }
2671 
2672 //=============================================================================
2673 //---------------------------State---------------------------------------------
2674 State::State(void) {
2675 #ifdef ASSERT
2676   _id = 0;
2677   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2678   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2679   //memset(_cost, -1, sizeof(_cost));
2680   //memset(_rule, -1, sizeof(_rule));
2681 #endif
2682   memset(_valid, 0, sizeof(_valid));
2683 }
2684 
2685 #ifdef ASSERT
2686 State::~State() {
2687   _id = 99;
2688   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2689   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2690   memset(_cost, -3, sizeof(_cost));
2691   memset(_rule, -3, sizeof(_rule));
2692 }
2693 #endif
2694 
2695 #ifndef PRODUCT
2696 //---------------------------dump----------------------------------------------
2697 void State::dump() {
2698   tty->print("\n");
2699   dump(0);
2700 }
2701 
2702 void State::dump(int depth) {
2703   for( int j = 0; j < depth; j++ )
2704     tty->print("   ");
2705   tty->print("--N: ");
2706   _leaf->dump();
2707   uint i;
2708   for( i = 0; i < _LAST_MACH_OPER; i++ )
2709     // Check for valid entry
2710     if( valid(i) ) {
2711       for( int j = 0; j < depth; j++ )
2712         tty->print("   ");
2713         assert(_cost[i] != max_juint, "cost must be a valid value");
2714         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2715         tty->print_cr("%s  %d  %s",
2716                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2717       }
2718   tty->cr();
2719 
2720   for( i=0; i<2; i++ )
2721     if( _kids[i] )
2722       _kids[i]->dump(depth+1);
2723 }
2724 #endif