1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/valuetypenode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 
  56 // Portions of code courtesy of Clifford Click
  57 
  58 // Optimization - Graph Style
  59 
  60 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  61 
  62 //=============================================================================
  63 uint MemNode::size_of() const { return sizeof(*this); }
  64 
  65 const TypePtr *MemNode::adr_type() const {
  66   Node* adr = in(Address);
  67   if (adr == NULL)  return NULL; // node is dead
  68   const TypePtr* cross_check = NULL;
  69   DEBUG_ONLY(cross_check = _adr_type);
  70   return calculate_adr_type(adr->bottom_type(), cross_check);
  71 }
  72 
  73 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  74   if (adr != NULL) {
  75     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  76       return true;
  77     }
  78   }
  79   return false;
  80 }
  81 
  82 #ifndef PRODUCT
  83 void MemNode::dump_spec(outputStream *st) const {
  84   if (in(Address) == NULL)  return; // node is dead
  85 #ifndef ASSERT
  86   // fake the missing field
  87   const TypePtr* _adr_type = NULL;
  88   if (in(Address) != NULL)
  89     _adr_type = in(Address)->bottom_type()->isa_ptr();
  90 #endif
  91   dump_adr_type(this, _adr_type, st);
  92 
  93   Compile* C = Compile::current();
  94   if (C->alias_type(_adr_type)->is_volatile()) {
  95     st->print(" Volatile!");
  96   }
  97   if (_unaligned_access) {
  98     st->print(" unaligned");
  99   }
 100   if (_mismatched_access) {
 101     st->print(" mismatched");
 102   }
 103 }
 104 
 105 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 106   st->print(" @");
 107   if (adr_type == NULL) {
 108     st->print("NULL");
 109   } else {
 110     adr_type->dump_on(st);
 111     Compile* C = Compile::current();
 112     Compile::AliasType* atp = NULL;
 113     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 114     if (atp == NULL)
 115       st->print(", idx=?\?;");
 116     else if (atp->index() == Compile::AliasIdxBot)
 117       st->print(", idx=Bot;");
 118     else if (atp->index() == Compile::AliasIdxTop)
 119       st->print(", idx=Top;");
 120     else if (atp->index() == Compile::AliasIdxRaw)
 121       st->print(", idx=Raw;");
 122     else {
 123       ciField* field = atp->field();
 124       if (field) {
 125         st->print(", name=");
 126         field->print_name_on(st);
 127       }
 128       st->print(", idx=%d;", atp->index());
 129     }
 130   }
 131 }
 132 
 133 extern void print_alias_types();
 134 
 135 #endif
 136 
 137 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 138   assert((t_oop != NULL), "sanity");
 139   bool is_instance = t_oop->is_known_instance_field();
 140   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 141                              (load != NULL) && load->is_Load() &&
 142                              (phase->is_IterGVN() != NULL);
 143   if (!(is_instance || is_boxed_value_load))
 144     return mchain;  // don't try to optimize non-instance types
 145   uint instance_id = t_oop->instance_id();
 146   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 147   Node *prev = NULL;
 148   Node *result = mchain;
 149   while (prev != result) {
 150     prev = result;
 151     if (result == start_mem)
 152       break;  // hit one of our sentinels
 153     // skip over a call which does not affect this memory slice
 154     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 155       Node *proj_in = result->in(0);
 156       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 157         break;  // hit one of our sentinels
 158       } else if (proj_in->is_Call()) {
 159         // ArrayCopyNodes processed here as well
 160         CallNode *call = proj_in->as_Call();
 161         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 162           result = call->in(TypeFunc::Memory);
 163         }
 164       } else if (proj_in->is_Initialize()) {
 165         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 166         // Stop if this is the initialization for the object instance which
 167         // contains this memory slice, otherwise skip over it.
 168         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 169           break;
 170         }
 171         if (is_instance) {
 172           result = proj_in->in(TypeFunc::Memory);
 173         } else if (is_boxed_value_load) {
 174           Node* klass = alloc->in(AllocateNode::KlassNode);
 175           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 176           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 177             result = proj_in->in(TypeFunc::Memory); // not related allocation
 178           }
 179         }
 180       } else if (proj_in->is_MemBar()) {
 181         ArrayCopyNode* ac = NULL;
 182         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 183           break;
 184         }
 185         result = proj_in->in(TypeFunc::Memory);
 186       } else {
 187         assert(false, "unexpected projection");
 188       }
 189     } else if (result->is_ClearArray()) {
 190       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 191         // Can not bypass initialization of the instance
 192         // we are looking for.
 193         break;
 194       }
 195       // Otherwise skip it (the call updated 'result' value).
 196     } else if (result->is_MergeMem()) {
 197       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 198     }
 199   }
 200   return result;
 201 }
 202 
 203 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 204   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 205   if (t_oop == NULL)
 206     return mchain;  // don't try to optimize non-oop types
 207   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 208   bool is_instance = t_oop->is_known_instance_field();
 209   PhaseIterGVN *igvn = phase->is_IterGVN();
 210   if (is_instance && igvn != NULL  && result->is_Phi()) {
 211     PhiNode *mphi = result->as_Phi();
 212     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 213     const TypePtr *t = mphi->adr_type();
 214     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 215         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 216          t->is_oopptr()->cast_to_exactness(true)
 217            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 218             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 219       // clone the Phi with our address type
 220       result = mphi->split_out_instance(t_adr, igvn);
 221     } else {
 222       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 223     }
 224   }
 225   return result;
 226 }
 227 
 228 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 229   uint alias_idx = phase->C->get_alias_index(tp);
 230   Node *mem = mmem;
 231 #ifdef ASSERT
 232   {
 233     // Check that current type is consistent with the alias index used during graph construction
 234     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 235     bool consistent =  adr_check == NULL || adr_check->empty() ||
 236                        phase->C->must_alias(adr_check, alias_idx );
 237     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 238     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 239         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 240         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 241         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 242           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 243           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 244       // don't assert if it is dead code.
 245       consistent = true;
 246     }
 247     if( !consistent ) {
 248       st->print("alias_idx==%d, adr_check==", alias_idx);
 249       if( adr_check == NULL ) {
 250         st->print("NULL");
 251       } else {
 252         adr_check->dump();
 253       }
 254       st->cr();
 255       print_alias_types();
 256       assert(consistent, "adr_check must match alias idx");
 257     }
 258   }
 259 #endif
 260   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 261   // means an array I have not precisely typed yet.  Do not do any
 262   // alias stuff with it any time soon.
 263   const TypeOopPtr *toop = tp->isa_oopptr();
 264   if( tp->base() != Type::AnyPtr &&
 265       !(toop &&
 266         toop->klass() != NULL &&
 267         toop->klass()->is_java_lang_Object() &&
 268         toop->offset() == Type::OffsetBot) ) {
 269     // compress paths and change unreachable cycles to TOP
 270     // If not, we can update the input infinitely along a MergeMem cycle
 271     // Equivalent code in PhiNode::Ideal
 272     Node* m  = phase->transform(mmem);
 273     // If transformed to a MergeMem, get the desired slice
 274     // Otherwise the returned node represents memory for every slice
 275     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 276     // Update input if it is progress over what we have now
 277   }
 278   return mem;
 279 }
 280 
 281 //--------------------------Ideal_common---------------------------------------
 282 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 283 // Unhook non-raw memories from complete (macro-expanded) initializations.
 284 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 285   // If our control input is a dead region, kill all below the region
 286   Node *ctl = in(MemNode::Control);
 287   if (ctl && remove_dead_region(phase, can_reshape))
 288     return this;
 289   ctl = in(MemNode::Control);
 290   // Don't bother trying to transform a dead node
 291   if (ctl && ctl->is_top())  return NodeSentinel;
 292 
 293   PhaseIterGVN *igvn = phase->is_IterGVN();
 294   // Wait if control on the worklist.
 295   if (ctl && can_reshape && igvn != NULL) {
 296     Node* bol = NULL;
 297     Node* cmp = NULL;
 298     if (ctl->in(0)->is_If()) {
 299       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 300       bol = ctl->in(0)->in(1);
 301       if (bol->is_Bool())
 302         cmp = ctl->in(0)->in(1)->in(1);
 303     }
 304     if (igvn->_worklist.member(ctl) ||
 305         (bol != NULL && igvn->_worklist.member(bol)) ||
 306         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 307       // This control path may be dead.
 308       // Delay this memory node transformation until the control is processed.
 309       phase->is_IterGVN()->_worklist.push(this);
 310       return NodeSentinel; // caller will return NULL
 311     }
 312   }
 313   // Ignore if memory is dead, or self-loop
 314   Node *mem = in(MemNode::Memory);
 315   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 316   assert(mem != this, "dead loop in MemNode::Ideal");
 317 
 318   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 319     // This memory slice may be dead.
 320     // Delay this mem node transformation until the memory is processed.
 321     phase->is_IterGVN()->_worklist.push(this);
 322     return NodeSentinel; // caller will return NULL
 323   }
 324 
 325   Node *address = in(MemNode::Address);
 326   const Type *t_adr = phase->type(address);
 327   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 328 
 329   if (can_reshape && igvn != NULL &&
 330       (igvn->_worklist.member(address) ||
 331        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 332     // The address's base and type may change when the address is processed.
 333     // Delay this mem node transformation until the address is processed.
 334     phase->is_IterGVN()->_worklist.push(this);
 335     return NodeSentinel; // caller will return NULL
 336   }
 337 
 338   // Do NOT remove or optimize the next lines: ensure a new alias index
 339   // is allocated for an oop pointer type before Escape Analysis.
 340   // Note: C++ will not remove it since the call has side effect.
 341   if (t_adr->isa_oopptr()) {
 342     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 343   }
 344 
 345   Node* base = NULL;
 346   if (address->is_AddP()) {
 347     base = address->in(AddPNode::Base);
 348   }
 349   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 350       !t_adr->isa_rawptr()) {
 351     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 352     // Skip this node optimization if its address has TOP base.
 353     return NodeSentinel; // caller will return NULL
 354   }
 355 
 356   // Avoid independent memory operations
 357   Node* old_mem = mem;
 358 
 359   // The code which unhooks non-raw memories from complete (macro-expanded)
 360   // initializations was removed. After macro-expansion all stores catched
 361   // by Initialize node became raw stores and there is no information
 362   // which memory slices they modify. So it is unsafe to move any memory
 363   // operation above these stores. Also in most cases hooked non-raw memories
 364   // were already unhooked by using information from detect_ptr_independence()
 365   // and find_previous_store().
 366 
 367   if (mem->is_MergeMem()) {
 368     MergeMemNode* mmem = mem->as_MergeMem();
 369     const TypePtr *tp = t_adr->is_ptr();
 370 
 371     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 372   }
 373 
 374   if (mem != old_mem) {
 375     set_req(MemNode::Memory, mem);
 376     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 377       igvn->_worklist.push(old_mem);
 378     }
 379     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 380     return this;
 381   }
 382 
 383   // let the subclass continue analyzing...
 384   return NULL;
 385 }
 386 
 387 // Helper function for proving some simple control dominations.
 388 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 389 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 390 // is not a constant (dominated by the method's StartNode).
 391 // Used by MemNode::find_previous_store to prove that the
 392 // control input of a memory operation predates (dominates)
 393 // an allocation it wants to look past.
 394 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 395   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 396     return false; // Conservative answer for dead code
 397 
 398   // Check 'dom'. Skip Proj and CatchProj nodes.
 399   dom = dom->find_exact_control(dom);
 400   if (dom == NULL || dom->is_top())
 401     return false; // Conservative answer for dead code
 402 
 403   if (dom == sub) {
 404     // For the case when, for example, 'sub' is Initialize and the original
 405     // 'dom' is Proj node of the 'sub'.
 406     return false;
 407   }
 408 
 409   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 410     return true;
 411 
 412   // 'dom' dominates 'sub' if its control edge and control edges
 413   // of all its inputs dominate or equal to sub's control edge.
 414 
 415   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 416   // Or Region for the check in LoadNode::Ideal();
 417   // 'sub' should have sub->in(0) != NULL.
 418   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 419          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 420 
 421   // Get control edge of 'sub'.
 422   Node* orig_sub = sub;
 423   sub = sub->find_exact_control(sub->in(0));
 424   if (sub == NULL || sub->is_top())
 425     return false; // Conservative answer for dead code
 426 
 427   assert(sub->is_CFG(), "expecting control");
 428 
 429   if (sub == dom)
 430     return true;
 431 
 432   if (sub->is_Start() || sub->is_Root())
 433     return false;
 434 
 435   {
 436     // Check all control edges of 'dom'.
 437 
 438     ResourceMark rm;
 439     Arena* arena = Thread::current()->resource_area();
 440     Node_List nlist(arena);
 441     Unique_Node_List dom_list(arena);
 442 
 443     dom_list.push(dom);
 444     bool only_dominating_controls = false;
 445 
 446     for (uint next = 0; next < dom_list.size(); next++) {
 447       Node* n = dom_list.at(next);
 448       if (n == orig_sub)
 449         return false; // One of dom's inputs dominated by sub.
 450       if (!n->is_CFG() && n->pinned()) {
 451         // Check only own control edge for pinned non-control nodes.
 452         n = n->find_exact_control(n->in(0));
 453         if (n == NULL || n->is_top())
 454           return false; // Conservative answer for dead code
 455         assert(n->is_CFG(), "expecting control");
 456         dom_list.push(n);
 457       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 458         only_dominating_controls = true;
 459       } else if (n->is_CFG()) {
 460         if (n->dominates(sub, nlist))
 461           only_dominating_controls = true;
 462         else
 463           return false;
 464       } else {
 465         // First, own control edge.
 466         Node* m = n->find_exact_control(n->in(0));
 467         if (m != NULL) {
 468           if (m->is_top())
 469             return false; // Conservative answer for dead code
 470           dom_list.push(m);
 471         }
 472         // Now, the rest of edges.
 473         uint cnt = n->req();
 474         for (uint i = 1; i < cnt; i++) {
 475           m = n->find_exact_control(n->in(i));
 476           if (m == NULL || m->is_top())
 477             continue;
 478           dom_list.push(m);
 479         }
 480       }
 481     }
 482     return only_dominating_controls;
 483   }
 484 }
 485 
 486 //---------------------detect_ptr_independence---------------------------------
 487 // Used by MemNode::find_previous_store to prove that two base
 488 // pointers are never equal.
 489 // The pointers are accompanied by their associated allocations,
 490 // if any, which have been previously discovered by the caller.
 491 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 492                                       Node* p2, AllocateNode* a2,
 493                                       PhaseTransform* phase) {
 494   // Attempt to prove that these two pointers cannot be aliased.
 495   // They may both manifestly be allocations, and they should differ.
 496   // Or, if they are not both allocations, they can be distinct constants.
 497   // Otherwise, one is an allocation and the other a pre-existing value.
 498   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 499     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 500   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 501     return (a1 != a2);
 502   } else if (a1 != NULL) {                  // one allocation a1
 503     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 504     return all_controls_dominate(p2, a1);
 505   } else { //(a2 != NULL)                   // one allocation a2
 506     return all_controls_dominate(p1, a2);
 507   }
 508   return false;
 509 }
 510 
 511 
 512 // Find an arraycopy that must have set (can_see_stored_value=true) or
 513 // could have set (can_see_stored_value=false) the value for this load
 514 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 515   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 516                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 517     Node* mb = mem->in(0);
 518     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 519         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 520       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 521       if (ac->is_clonebasic()) {
 522         intptr_t offset;
 523         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 524         if (alloc != NULL && alloc == ld_alloc) {
 525           return ac;
 526         }
 527       }
 528     }
 529   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 530     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 531 
 532     if (ac->is_arraycopy_validated() ||
 533         ac->is_copyof_validated() ||
 534         ac->is_copyofrange_validated()) {
 535       Node* ld_addp = in(MemNode::Address);
 536       if (ld_addp->is_AddP()) {
 537         Node* ld_base = ld_addp->in(AddPNode::Address);
 538         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 539 
 540         Node* dest = ac->in(ArrayCopyNode::Dest);
 541 
 542         if (dest == ld_base) {
 543           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 544           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 545             return ac;
 546           }
 547           if (!can_see_stored_value) {
 548             mem = ac->in(TypeFunc::Memory);
 549           }
 550         }
 551       }
 552     }
 553   }
 554   return NULL;
 555 }
 556 
 557 // The logic for reordering loads and stores uses four steps:
 558 // (a) Walk carefully past stores and initializations which we
 559 //     can prove are independent of this load.
 560 // (b) Observe that the next memory state makes an exact match
 561 //     with self (load or store), and locate the relevant store.
 562 // (c) Ensure that, if we were to wire self directly to the store,
 563 //     the optimizer would fold it up somehow.
 564 // (d) Do the rewiring, and return, depending on some other part of
 565 //     the optimizer to fold up the load.
 566 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 567 // specific to loads and stores, so they are handled by the callers.
 568 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 569 //
 570 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 571   Node*         ctrl   = in(MemNode::Control);
 572   Node*         adr    = in(MemNode::Address);
 573   intptr_t      offset = 0;
 574   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 575   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 576 
 577   if (offset == Type::OffsetBot)
 578     return NULL;            // cannot unalias unless there are precise offsets
 579 
 580   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 581   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 582 
 583   intptr_t size_in_bytes = memory_size();
 584 
 585   Node* mem = in(MemNode::Memory);   // start searching here...
 586 
 587   int cnt = 50;             // Cycle limiter
 588   for (;;) {                // While we can dance past unrelated stores...
 589     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 590 
 591     Node* prev = mem;
 592     if (mem->is_Store()) {
 593       Node* st_adr = mem->in(MemNode::Address);
 594       intptr_t st_offset = 0;
 595       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 596       if (st_base == NULL)
 597         break;              // inscrutable pointer
 598 
 599       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 600       // We need the bases to be the equal in order for the offset check to make sense.
 601       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 602         break;
 603       }
 604 
 605       if (st_offset != offset && st_offset != Type::OffsetBot) {
 606         const int MAX_STORE = BytesPerLong;
 607         if (st_offset >= offset + size_in_bytes ||
 608             st_offset <= offset - MAX_STORE ||
 609             st_offset <= offset - mem->as_Store()->memory_size()) {
 610           // Success:  The offsets are provably independent.
 611           // (You may ask, why not just test st_offset != offset and be done?
 612           // The answer is that stores of different sizes can co-exist
 613           // in the same sequence of RawMem effects.  We sometimes initialize
 614           // a whole 'tile' of array elements with a single jint or jlong.)
 615           mem = mem->in(MemNode::Memory);
 616           continue;           // (a) advance through independent store memory
 617         }
 618       }
 619       if (st_base != base &&
 620           detect_ptr_independence(base, alloc,
 621                                   st_base,
 622                                   AllocateNode::Ideal_allocation(st_base, phase),
 623                                   phase)) {
 624         // Success:  The bases are provably independent.
 625         mem = mem->in(MemNode::Memory);
 626         continue;           // (a) advance through independent store memory
 627       }
 628 
 629       // (b) At this point, if the bases or offsets do not agree, we lose,
 630       // since we have not managed to prove 'this' and 'mem' independent.
 631       if (st_base == base && st_offset == offset) {
 632         return mem;         // let caller handle steps (c), (d)
 633       }
 634 
 635     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 636       InitializeNode* st_init = mem->in(0)->as_Initialize();
 637       AllocateNode*  st_alloc = st_init->allocation();
 638       if (st_alloc == NULL)
 639         break;              // something degenerated
 640       bool known_identical = false;
 641       bool known_independent = false;
 642       if (alloc == st_alloc)
 643         known_identical = true;
 644       else if (alloc != NULL)
 645         known_independent = true;
 646       else if (all_controls_dominate(this, st_alloc))
 647         known_independent = true;
 648 
 649       if (known_independent) {
 650         // The bases are provably independent: Either they are
 651         // manifestly distinct allocations, or else the control
 652         // of this load dominates the store's allocation.
 653         int alias_idx = phase->C->get_alias_index(adr_type());
 654         if (alias_idx == Compile::AliasIdxRaw) {
 655           mem = st_alloc->in(TypeFunc::Memory);
 656         } else {
 657           mem = st_init->memory(alias_idx);
 658         }
 659         continue;           // (a) advance through independent store memory
 660       }
 661 
 662       // (b) at this point, if we are not looking at a store initializing
 663       // the same allocation we are loading from, we lose.
 664       if (known_identical) {
 665         // From caller, can_see_stored_value will consult find_captured_store.
 666         return mem;         // let caller handle steps (c), (d)
 667       }
 668 
 669     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 670       if (prev != mem) {
 671         // Found an arraycopy but it doesn't affect that load
 672         continue;
 673       }
 674       // Found an arraycopy that may affect that load
 675       return mem;
 676     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 677       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 678       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 679         // ArrayCopyNodes processed here as well.
 680         CallNode *call = mem->in(0)->as_Call();
 681         if (!call->may_modify(addr_t, phase)) {
 682           mem = call->in(TypeFunc::Memory);
 683           continue;         // (a) advance through independent call memory
 684         }
 685       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 686         ArrayCopyNode* ac = NULL;
 687         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 688           break;
 689         }
 690         mem = mem->in(0)->in(TypeFunc::Memory);
 691         continue;           // (a) advance through independent MemBar memory
 692       } else if (mem->is_ClearArray()) {
 693         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 694           // (the call updated 'mem' value)
 695           continue;         // (a) advance through independent allocation memory
 696         } else {
 697           // Can not bypass initialization of the instance
 698           // we are looking for.
 699           return mem;
 700         }
 701       } else if (mem->is_MergeMem()) {
 702         int alias_idx = phase->C->get_alias_index(adr_type());
 703         mem = mem->as_MergeMem()->memory_at(alias_idx);
 704         continue;           // (a) advance through independent MergeMem memory
 705       }
 706     }
 707 
 708     // Unless there is an explicit 'continue', we must bail out here,
 709     // because 'mem' is an inscrutable memory state (e.g., a call).
 710     break;
 711   }
 712 
 713   return NULL;              // bail out
 714 }
 715 
 716 //----------------------calculate_adr_type-------------------------------------
 717 // Helper function.  Notices when the given type of address hits top or bottom.
 718 // Also, asserts a cross-check of the type against the expected address type.
 719 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 720   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 721   #ifdef PRODUCT
 722   cross_check = NULL;
 723   #else
 724   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 725   #endif
 726   const TypePtr* tp = t->isa_ptr();
 727   if (tp == NULL) {
 728     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 729     return TypePtr::BOTTOM;           // touches lots of memory
 730   } else {
 731     #ifdef ASSERT
 732     // %%%% [phh] We don't check the alias index if cross_check is
 733     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 734     if (cross_check != NULL &&
 735         cross_check != TypePtr::BOTTOM &&
 736         cross_check != TypeRawPtr::BOTTOM) {
 737       // Recheck the alias index, to see if it has changed (due to a bug).
 738       Compile* C = Compile::current();
 739       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 740              "must stay in the original alias category");
 741       // The type of the address must be contained in the adr_type,
 742       // disregarding "null"-ness.
 743       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 744       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 745       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 746              "real address must not escape from expected memory type");
 747     }
 748     #endif
 749     return tp;
 750   }
 751 }
 752 
 753 //=============================================================================
 754 // Should LoadNode::Ideal() attempt to remove control edges?
 755 bool LoadNode::can_remove_control() const {
 756   return true;
 757 }
 758 uint LoadNode::size_of() const { return sizeof(*this); }
 759 uint LoadNode::cmp( const Node &n ) const
 760 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 761 const Type *LoadNode::bottom_type() const { return _type; }
 762 uint LoadNode::ideal_reg() const {
 763   return _type->ideal_reg();
 764 }
 765 
 766 #ifndef PRODUCT
 767 void LoadNode::dump_spec(outputStream *st) const {
 768   MemNode::dump_spec(st);
 769   if( !Verbose && !WizardMode ) {
 770     // standard dump does this in Verbose and WizardMode
 771     st->print(" #"); _type->dump_on(st);
 772   }
 773   if (!depends_only_on_test()) {
 774     st->print(" (does not depend only on test)");
 775   }
 776 }
 777 #endif
 778 
 779 #ifdef ASSERT
 780 //----------------------------is_immutable_value-------------------------------
 781 // Helper function to allow a raw load without control edge for some cases
 782 bool LoadNode::is_immutable_value(Node* adr) {
 783   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 784           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 785           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 786            in_bytes(JavaThread::osthread_offset())));
 787 }
 788 #endif
 789 
 790 //----------------------------LoadNode::make-----------------------------------
 791 // Polymorphic factory method:
 792 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 793                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 794   Compile* C = gvn.C;
 795 
 796   // sanity check the alias category against the created node type
 797   assert(!(adr_type->isa_oopptr() &&
 798            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 799          "use LoadKlassNode instead");
 800   assert(!(adr_type->isa_aryptr() &&
 801            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 802          "use LoadRangeNode instead");
 803   // Check control edge of raw loads
 804   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 805           // oop will be recorded in oop map if load crosses safepoint
 806           rt->isa_oopptr() || is_immutable_value(adr),
 807           "raw memory operations should have control edge");
 808   LoadNode* load = NULL;
 809   switch (bt) {
 810   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 811   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 812   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 813   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 814   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 815   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 816   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 817   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 818   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 819   case T_VALUETYPE:
 820   case T_VALUETYPEPTR:
 821   case T_OBJECT:
 822 #ifdef _LP64
 823     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 824       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 825     } else
 826 #endif
 827     {
 828       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 829       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 830     }
 831     break;
 832   default:
 833     ShouldNotReachHere();
 834     break;
 835   }
 836   assert(load != NULL, "LoadNode should have been created");
 837   if (unaligned) {
 838     load->set_unaligned_access();
 839   }
 840   if (mismatched) {
 841     load->set_mismatched_access();
 842   }
 843   if (load->Opcode() == Op_LoadN) {
 844     Node* ld = gvn.transform(load);
 845     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 846   }
 847 
 848   return load;
 849 }
 850 
 851 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 852                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 853   bool require_atomic = true;
 854   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 855   if (unaligned) {
 856     load->set_unaligned_access();
 857   }
 858   if (mismatched) {
 859     load->set_mismatched_access();
 860   }
 861   return load;
 862 }
 863 
 864 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 865                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 866   bool require_atomic = true;
 867   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 868   if (unaligned) {
 869     load->set_unaligned_access();
 870   }
 871   if (mismatched) {
 872     load->set_mismatched_access();
 873   }
 874   return load;
 875 }
 876 
 877 
 878 
 879 //------------------------------hash-------------------------------------------
 880 uint LoadNode::hash() const {
 881   // unroll addition of interesting fields
 882   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 883 }
 884 
 885 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 886   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 887     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 888     bool is_stable_ary = FoldStableValues &&
 889                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 890                          tp->isa_aryptr()->is_stable();
 891 
 892     return (eliminate_boxing && non_volatile) || is_stable_ary;
 893   }
 894 
 895   return false;
 896 }
 897 
 898 // Is the value loaded previously stored by an arraycopy? If so return
 899 // a load node that reads from the source array so we may be able to
 900 // optimize out the ArrayCopy node later.
 901 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 902 #if INCLUDE_ZGC
 903   if (UseZGC) {
 904     if (bottom_type()->make_oopptr() != NULL) {
 905       return NULL;
 906     }
 907   }
 908 #endif
 909 
 910   Node* ld_adr = in(MemNode::Address);
 911   intptr_t ld_off = 0;
 912   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 913   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 914   if (ac != NULL) {
 915     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 916 
 917     Node* mem = ac->in(TypeFunc::Memory);
 918     Node* ctl = ac->in(0);
 919     Node* src = ac->in(ArrayCopyNode::Src);
 920 
 921     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 922       return NULL;
 923     }
 924 
 925     LoadNode* ld = clone()->as_Load();
 926     Node* addp = in(MemNode::Address)->clone();
 927     if (ac->as_ArrayCopy()->is_clonebasic()) {
 928       assert(ld_alloc != NULL, "need an alloc");
 929       assert(addp->is_AddP(), "address must be addp");
 930       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 931       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 932       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 933       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 934     } else {
 935       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 936              ac->as_ArrayCopy()->is_copyof_validated() ||
 937              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 938       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 939       addp->set_req(AddPNode::Base, src);
 940       addp->set_req(AddPNode::Address, src);
 941 
 942       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 943       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 944       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 945       uint shift  = exact_log2(type2aelembytes(ary_elem));
 946 
 947       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 948 #ifdef _LP64
 949       diff = phase->transform(new ConvI2LNode(diff));
 950 #endif
 951       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 952 
 953       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 954       addp->set_req(AddPNode::Offset, offset);
 955     }
 956     addp = phase->transform(addp);
 957 #ifdef ASSERT
 958     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 959     ld->_adr_type = adr_type;
 960 #endif
 961     ld->set_req(MemNode::Address, addp);
 962     ld->set_req(0, ctl);
 963     ld->set_req(MemNode::Memory, mem);
 964     // load depends on the tests that validate the arraycopy
 965     ld->_control_dependency = Pinned;
 966     return ld;
 967   }
 968   return NULL;
 969 }
 970 
 971 
 972 //---------------------------can_see_stored_value------------------------------
 973 // This routine exists to make sure this set of tests is done the same
 974 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 975 // will change the graph shape in a way which makes memory alive twice at the
 976 // same time (uses the Oracle model of aliasing), then some
 977 // LoadXNode::Identity will fold things back to the equivalence-class model
 978 // of aliasing.
 979 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 980   Node* ld_adr = in(MemNode::Address);
 981   intptr_t ld_off = 0;
 982   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 983   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 984   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 985   // This is more general than load from boxing objects.
 986   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 987     uint alias_idx = atp->index();
 988     bool final = !atp->is_rewritable();
 989     Node* result = NULL;
 990     Node* current = st;
 991     // Skip through chains of MemBarNodes checking the MergeMems for
 992     // new states for the slice of this load.  Stop once any other
 993     // kind of node is encountered.  Loads from final memory can skip
 994     // through any kind of MemBar but normal loads shouldn't skip
 995     // through MemBarAcquire since the could allow them to move out of
 996     // a synchronized region.
 997     while (current->is_Proj()) {
 998       int opc = current->in(0)->Opcode();
 999       if ((final && (opc == Op_MemBarAcquire ||
1000                      opc == Op_MemBarAcquireLock ||
1001                      opc == Op_LoadFence)) ||
1002           opc == Op_MemBarRelease ||
1003           opc == Op_StoreFence ||
1004           opc == Op_MemBarReleaseLock ||
1005           opc == Op_MemBarStoreStore ||
1006           opc == Op_MemBarCPUOrder) {
1007         Node* mem = current->in(0)->in(TypeFunc::Memory);
1008         if (mem->is_MergeMem()) {
1009           MergeMemNode* merge = mem->as_MergeMem();
1010           Node* new_st = merge->memory_at(alias_idx);
1011           if (new_st == merge->base_memory()) {
1012             // Keep searching
1013             current = new_st;
1014             continue;
1015           }
1016           // Save the new memory state for the slice and fall through
1017           // to exit.
1018           result = new_st;
1019         }
1020       }
1021       break;
1022     }
1023     if (result != NULL) {
1024       st = result;
1025     }
1026   }
1027 
1028   // Loop around twice in the case Load -> Initialize -> Store.
1029   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1030   for (int trip = 0; trip <= 1; trip++) {
1031 
1032     if (st->is_Store()) {
1033       Node* st_adr = st->in(MemNode::Address);
1034       if (!phase->eqv(st_adr, ld_adr)) {
1035         // Try harder before giving up...  Match raw and non-raw pointers.
1036         intptr_t st_off = 0;
1037         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1038         if (alloc == NULL)       return NULL;
1039         if (alloc != ld_alloc)   return NULL;
1040         if (ld_off != st_off)    return NULL;
1041         // At this point we have proven something like this setup:
1042         //  A = Allocate(...)
1043         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1044         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1045         // (Actually, we haven't yet proven the Q's are the same.)
1046         // In other words, we are loading from a casted version of
1047         // the same pointer-and-offset that we stored to.
1048         // Thus, we are able to replace L by V.
1049       }
1050       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1051       if (store_Opcode() != st->Opcode())
1052         return NULL;
1053       return st->in(MemNode::ValueIn);
1054     }
1055 
1056     // A load from a freshly-created object always returns zero.
1057     // (This can happen after LoadNode::Ideal resets the load's memory input
1058     // to find_captured_store, which returned InitializeNode::zero_memory.)
1059     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1060         (st->in(0) == ld_alloc) &&
1061         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1062       // return a zero value for the load's basic type
1063       // (This is one of the few places where a generic PhaseTransform
1064       // can create new nodes.  Think of it as lazily manifesting
1065       // virtually pre-existing constants.)
1066       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1067       Node* default_value = ld_alloc->in(AllocateNode::DefaultValue);
1068       if (default_value != NULL) {
1069         return default_value;
1070       }
1071       assert(ld_alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null");
1072       return phase->zerocon(memory_type());
1073     }
1074 
1075     // A load from an initialization barrier can match a captured store.
1076     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1077       InitializeNode* init = st->in(0)->as_Initialize();
1078       AllocateNode* alloc = init->allocation();
1079       if ((alloc != NULL) && (alloc == ld_alloc)) {
1080         // examine a captured store value
1081         st = init->find_captured_store(ld_off, memory_size(), phase);
1082         if (st != NULL) {
1083           continue;             // take one more trip around
1084         }
1085       }
1086     }
1087 
1088     // Load boxed value from result of valueOf() call is input parameter.
1089     if (this->is_Load() && ld_adr->is_AddP() &&
1090         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1091       intptr_t ignore = 0;
1092       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1093       if (base != NULL && base->is_Proj() &&
1094           base->as_Proj()->_con == TypeFunc::Parms &&
1095           base->in(0)->is_CallStaticJava() &&
1096           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1097         return base->in(0)->in(TypeFunc::Parms);
1098       }
1099     }
1100 
1101     break;
1102   }
1103 
1104   return NULL;
1105 }
1106 
1107 //----------------------is_instance_field_load_with_local_phi------------------
1108 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1109   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1110       in(Address)->is_AddP() ) {
1111     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1112     // Only instances and boxed values.
1113     if( t_oop != NULL &&
1114         (t_oop->is_ptr_to_boxed_value() ||
1115          t_oop->is_known_instance_field()) &&
1116         t_oop->offset() != Type::OffsetBot &&
1117         t_oop->offset() != Type::OffsetTop) {
1118       return true;
1119     }
1120   }
1121   return false;
1122 }
1123 
1124 //------------------------------Identity---------------------------------------
1125 // Loads are identity if previous store is to same address
1126 Node* LoadNode::Identity(PhaseGVN* phase) {
1127   // Loading from a ValueTypePtr? The ValueTypePtr has the values of
1128   // all fields as input. Look for the field with matching offset.
1129   Node* addr = in(Address);
1130   intptr_t offset;
1131   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
1132   if (base != NULL && base->is_ValueTypePtr() && offset > oopDesc::klass_offset_in_bytes()) {
1133     Node* value = base->as_ValueTypePtr()->field_value_by_offset((int)offset, true);
1134     if (value->is_ValueType()) {
1135       // Non-flattened value type field
1136       ValueTypeNode* vt = value->as_ValueType();
1137       if (vt->is_allocated(phase)) {
1138         value = vt->get_oop();
1139       } else {
1140         // Not yet allocated, bail out
1141         value = NULL;
1142       }
1143     }
1144     if (value != NULL) {
1145       if (Opcode() == Op_LoadN) {
1146         // Encode oop value if we are loading a narrow oop
1147         assert(!phase->type(value)->isa_narrowoop(), "should already be decoded");
1148         value = phase->transform(new EncodePNode(value, bottom_type()));
1149       }
1150       return value;
1151     }
1152   }
1153 
1154   // If the previous store-maker is the right kind of Store, and the store is
1155   // to the same address, then we are equal to the value stored.
1156   Node* mem = in(Memory);
1157   Node* value = can_see_stored_value(mem, phase);
1158   if( value ) {
1159     // byte, short & char stores truncate naturally.
1160     // A load has to load the truncated value which requires
1161     // some sort of masking operation and that requires an
1162     // Ideal call instead of an Identity call.
1163     if (memory_size() < BytesPerInt) {
1164       // If the input to the store does not fit with the load's result type,
1165       // it must be truncated via an Ideal call.
1166       if (!phase->type(value)->higher_equal(phase->type(this)))
1167         return this;
1168     }
1169     // (This works even when value is a Con, but LoadNode::Value
1170     // usually runs first, producing the singleton type of the Con.)
1171     return value;
1172   }
1173 
1174   // Search for an existing data phi which was generated before for the same
1175   // instance's field to avoid infinite generation of phis in a loop.
1176   Node *region = mem->in(0);
1177   if (is_instance_field_load_with_local_phi(region)) {
1178     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1179     int this_index  = phase->C->get_alias_index(addr_t);
1180     int this_offset = addr_t->offset();
1181     int this_iid    = addr_t->instance_id();
1182     if (!addr_t->is_known_instance() &&
1183          addr_t->is_ptr_to_boxed_value()) {
1184       // Use _idx of address base (could be Phi node) for boxed values.
1185       intptr_t   ignore = 0;
1186       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1187       if (base == NULL) {
1188         return this;
1189       }
1190       this_iid = base->_idx;
1191     }
1192     const Type* this_type = bottom_type();
1193     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1194       Node* phi = region->fast_out(i);
1195       if (phi->is_Phi() && phi != mem &&
1196           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1197         return phi;
1198       }
1199     }
1200   }
1201 
1202   return this;
1203 }
1204 
1205 // Construct an equivalent unsigned load.
1206 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1207   BasicType bt = T_ILLEGAL;
1208   const Type* rt = NULL;
1209   switch (Opcode()) {
1210     case Op_LoadUB: return this;
1211     case Op_LoadUS: return this;
1212     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1213     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1214     default:
1215       assert(false, "no unsigned variant: %s", Name());
1216       return NULL;
1217   }
1218   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1219                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1220                         is_unaligned_access(), is_mismatched_access());
1221 }
1222 
1223 // Construct an equivalent signed load.
1224 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1225   BasicType bt = T_ILLEGAL;
1226   const Type* rt = NULL;
1227   switch (Opcode()) {
1228     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1229     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1230     case Op_LoadB: // fall through
1231     case Op_LoadS: // fall through
1232     case Op_LoadI: // fall through
1233     case Op_LoadL: return this;
1234     default:
1235       assert(false, "no signed variant: %s", Name());
1236       return NULL;
1237   }
1238   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1239                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1240                         is_unaligned_access(), is_mismatched_access());
1241 }
1242 
1243 // We're loading from an object which has autobox behaviour.
1244 // If this object is result of a valueOf call we'll have a phi
1245 // merging a newly allocated object and a load from the cache.
1246 // We want to replace this load with the original incoming
1247 // argument to the valueOf call.
1248 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1249   assert(phase->C->eliminate_boxing(), "sanity");
1250   intptr_t ignore = 0;
1251   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1252   if ((base == NULL) || base->is_Phi()) {
1253     // Push the loads from the phi that comes from valueOf up
1254     // through it to allow elimination of the loads and the recovery
1255     // of the original value. It is done in split_through_phi().
1256     return NULL;
1257   } else if (base->is_Load() ||
1258              (base->is_DecodeN() && base->in(1)->is_Load())) {
1259     // Eliminate the load of boxed value for integer types from the cache
1260     // array by deriving the value from the index into the array.
1261     // Capture the offset of the load and then reverse the computation.
1262 
1263     // Get LoadN node which loads a boxing object from 'cache' array.
1264     if (base->is_DecodeN()) {
1265       base = base->in(1);
1266     }
1267     if (!base->in(Address)->is_AddP()) {
1268       return NULL; // Complex address
1269     }
1270     AddPNode* address = base->in(Address)->as_AddP();
1271     Node* cache_base = address->in(AddPNode::Base);
1272     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1273       // Get ConP node which is static 'cache' field.
1274       cache_base = cache_base->in(1);
1275     }
1276     if ((cache_base != NULL) && cache_base->is_Con()) {
1277       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1278       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1279         Node* elements[4];
1280         int shift = exact_log2(type2aelembytes(T_OBJECT));
1281         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1282         if (count > 0 && elements[0]->is_Con() &&
1283             (count == 1 ||
1284              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1285                             elements[1]->in(2) == phase->intcon(shift)))) {
1286           ciObjArray* array = base_type->const_oop()->as_obj_array();
1287           // Fetch the box object cache[0] at the base of the array and get its value
1288           ciInstance* box = array->obj_at(0)->as_instance();
1289           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1290           assert(ik->is_box_klass(), "sanity");
1291           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1292           if (ik->nof_nonstatic_fields() == 1) {
1293             // This should be true nonstatic_field_at requires calling
1294             // nof_nonstatic_fields so check it anyway
1295             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1296             BasicType bt = c.basic_type();
1297             // Only integer types have boxing cache.
1298             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1299                    bt == T_BYTE    || bt == T_SHORT ||
1300                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1301             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1302             if (cache_low != (int)cache_low) {
1303               return NULL; // should not happen since cache is array indexed by value
1304             }
1305             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1306             if (offset != (int)offset) {
1307               return NULL; // should not happen since cache is array indexed by value
1308             }
1309            // Add up all the offsets making of the address of the load
1310             Node* result = elements[0];
1311             for (int i = 1; i < count; i++) {
1312               result = phase->transform(new AddXNode(result, elements[i]));
1313             }
1314             // Remove the constant offset from the address and then
1315             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1316             // remove the scaling of the offset to recover the original index.
1317             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1318               // Peel the shift off directly but wrap it in a dummy node
1319               // since Ideal can't return existing nodes
1320               result = new RShiftXNode(result->in(1), phase->intcon(0));
1321             } else if (result->is_Add() && result->in(2)->is_Con() &&
1322                        result->in(1)->Opcode() == Op_LShiftX &&
1323                        result->in(1)->in(2) == phase->intcon(shift)) {
1324               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1325               // but for boxing cache access we know that X<<Z will not overflow
1326               // (there is range check) so we do this optimizatrion by hand here.
1327               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1328               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1329             } else {
1330               result = new RShiftXNode(result, phase->intcon(shift));
1331             }
1332 #ifdef _LP64
1333             if (bt != T_LONG) {
1334               result = new ConvL2INode(phase->transform(result));
1335             }
1336 #else
1337             if (bt == T_LONG) {
1338               result = new ConvI2LNode(phase->transform(result));
1339             }
1340 #endif
1341             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1342             // Need to preserve unboxing load type if it is unsigned.
1343             switch(this->Opcode()) {
1344               case Op_LoadUB:
1345                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1346                 break;
1347               case Op_LoadUS:
1348                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1349                 break;
1350             }
1351             return result;
1352           }
1353         }
1354       }
1355     }
1356   }
1357   return NULL;
1358 }
1359 
1360 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1361   Node* region = phi->in(0);
1362   if (region == NULL) {
1363     return false; // Wait stable graph
1364   }
1365   uint cnt = phi->req();
1366   for (uint i = 1; i < cnt; i++) {
1367     Node* rc = region->in(i);
1368     if (rc == NULL || phase->type(rc) == Type::TOP)
1369       return false; // Wait stable graph
1370     Node* in = phi->in(i);
1371     if (in == NULL || phase->type(in) == Type::TOP)
1372       return false; // Wait stable graph
1373   }
1374   return true;
1375 }
1376 //------------------------------split_through_phi------------------------------
1377 // Split instance or boxed field load through Phi.
1378 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1379   Node* mem     = in(Memory);
1380   Node* address = in(Address);
1381   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1382 
1383   assert((t_oop != NULL) &&
1384          (t_oop->is_known_instance_field() ||
1385           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1386 
1387   Compile* C = phase->C;
1388   intptr_t ignore = 0;
1389   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1390   bool base_is_phi = (base != NULL) && base->is_Phi();
1391   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1392                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1393                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1394 
1395   if (!((mem->is_Phi() || base_is_phi) &&
1396         (load_boxed_values || t_oop->is_known_instance_field()))) {
1397     return NULL; // memory is not Phi
1398   }
1399 
1400   if (mem->is_Phi()) {
1401     if (!stable_phi(mem->as_Phi(), phase)) {
1402       return NULL; // Wait stable graph
1403     }
1404     uint cnt = mem->req();
1405     // Check for loop invariant memory.
1406     if (cnt == 3) {
1407       for (uint i = 1; i < cnt; i++) {
1408         Node* in = mem->in(i);
1409         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1410         if (m == mem) {
1411           set_req(Memory, mem->in(cnt - i));
1412           return this; // made change
1413         }
1414       }
1415     }
1416   }
1417   if (base_is_phi) {
1418     if (!stable_phi(base->as_Phi(), phase)) {
1419       return NULL; // Wait stable graph
1420     }
1421     uint cnt = base->req();
1422     // Check for loop invariant memory.
1423     if (cnt == 3) {
1424       for (uint i = 1; i < cnt; i++) {
1425         if (base->in(i) == base) {
1426           return NULL; // Wait stable graph
1427         }
1428       }
1429     }
1430   }
1431 
1432   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1433 
1434   // Split through Phi (see original code in loopopts.cpp).
1435   assert(C->have_alias_type(t_oop), "instance should have alias type");
1436 
1437   // Do nothing here if Identity will find a value
1438   // (to avoid infinite chain of value phis generation).
1439   if (!phase->eqv(this, this->Identity(phase)))
1440     return NULL;
1441 
1442   // Select Region to split through.
1443   Node* region;
1444   if (!base_is_phi) {
1445     assert(mem->is_Phi(), "sanity");
1446     region = mem->in(0);
1447     // Skip if the region dominates some control edge of the address.
1448     if (!MemNode::all_controls_dominate(address, region))
1449       return NULL;
1450   } else if (!mem->is_Phi()) {
1451     assert(base_is_phi, "sanity");
1452     region = base->in(0);
1453     // Skip if the region dominates some control edge of the memory.
1454     if (!MemNode::all_controls_dominate(mem, region))
1455       return NULL;
1456   } else if (base->in(0) != mem->in(0)) {
1457     assert(base_is_phi && mem->is_Phi(), "sanity");
1458     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1459       region = base->in(0);
1460     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1461       region = mem->in(0);
1462     } else {
1463       return NULL; // complex graph
1464     }
1465   } else {
1466     assert(base->in(0) == mem->in(0), "sanity");
1467     region = mem->in(0);
1468   }
1469 
1470   const Type* this_type = this->bottom_type();
1471   int this_index  = C->get_alias_index(t_oop);
1472   int this_offset = t_oop->offset();
1473   int this_iid    = t_oop->instance_id();
1474   if (!t_oop->is_known_instance() && load_boxed_values) {
1475     // Use _idx of address base for boxed values.
1476     this_iid = base->_idx;
1477   }
1478   PhaseIterGVN* igvn = phase->is_IterGVN();
1479   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1480   for (uint i = 1; i < region->req(); i++) {
1481     Node* x;
1482     Node* the_clone = NULL;
1483     if (region->in(i) == C->top()) {
1484       x = C->top();      // Dead path?  Use a dead data op
1485     } else {
1486       x = this->clone();        // Else clone up the data op
1487       the_clone = x;            // Remember for possible deletion.
1488       // Alter data node to use pre-phi inputs
1489       if (this->in(0) == region) {
1490         x->set_req(0, region->in(i));
1491       } else {
1492         x->set_req(0, NULL);
1493       }
1494       if (mem->is_Phi() && (mem->in(0) == region)) {
1495         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1496       }
1497       if (address->is_Phi() && address->in(0) == region) {
1498         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1499       }
1500       if (base_is_phi && (base->in(0) == region)) {
1501         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1502         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1503         x->set_req(Address, adr_x);
1504       }
1505     }
1506     // Check for a 'win' on some paths
1507     const Type *t = x->Value(igvn);
1508 
1509     bool singleton = t->singleton();
1510 
1511     // See comments in PhaseIdealLoop::split_thru_phi().
1512     if (singleton && t == Type::TOP) {
1513       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1514     }
1515 
1516     if (singleton) {
1517       x = igvn->makecon(t);
1518     } else {
1519       // We now call Identity to try to simplify the cloned node.
1520       // Note that some Identity methods call phase->type(this).
1521       // Make sure that the type array is big enough for
1522       // our new node, even though we may throw the node away.
1523       // (This tweaking with igvn only works because x is a new node.)
1524       igvn->set_type(x, t);
1525       // If x is a TypeNode, capture any more-precise type permanently into Node
1526       // otherwise it will be not updated during igvn->transform since
1527       // igvn->type(x) is set to x->Value() already.
1528       x->raise_bottom_type(t);
1529       Node *y = x->Identity(igvn);
1530       if (y != x) {
1531         x = y;
1532       } else {
1533         y = igvn->hash_find_insert(x);
1534         if (y) {
1535           x = y;
1536         } else {
1537           // Else x is a new node we are keeping
1538           // We do not need register_new_node_with_optimizer
1539           // because set_type has already been called.
1540           igvn->_worklist.push(x);
1541         }
1542       }
1543     }
1544     if (x != the_clone && the_clone != NULL) {
1545       igvn->remove_dead_node(the_clone);
1546     }
1547     phi->set_req(i, x);
1548   }
1549   // Record Phi
1550   igvn->register_new_node_with_optimizer(phi);
1551   return phi;
1552 }
1553 
1554 //------------------------------Ideal------------------------------------------
1555 // If the load is from Field memory and the pointer is non-null, it might be possible to
1556 // zero out the control input.
1557 // If the offset is constant and the base is an object allocation,
1558 // try to hook me up to the exact initializing store.
1559 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1560   Node* p = MemNode::Ideal_common(phase, can_reshape);
1561   if (p)  return (p == NodeSentinel) ? NULL : p;
1562 
1563   Node* ctrl    = in(MemNode::Control);
1564   Node* address = in(MemNode::Address);
1565   bool progress = false;
1566 
1567   // Skip up past a SafePoint control.  Cannot do this for Stores because
1568   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1569   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1570       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1571     ctrl = ctrl->in(0);
1572     set_req(MemNode::Control,ctrl);
1573     progress = true;
1574   }
1575 
1576   intptr_t ignore = 0;
1577   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1578   if (base != NULL
1579       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1580     // Check for useless control edge in some common special cases
1581     if (in(MemNode::Control) != NULL
1582         && can_remove_control()
1583         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1584         && all_controls_dominate(base, phase->C->start())) {
1585       // A method-invariant, non-null address (constant or 'this' argument).
1586       set_req(MemNode::Control, NULL);
1587       progress = true;
1588     }
1589   }
1590 
1591   Node* mem = in(MemNode::Memory);
1592   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1593 
1594   if (can_reshape && (addr_t != NULL)) {
1595     // try to optimize our memory input
1596     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1597     if (opt_mem != mem) {
1598       set_req(MemNode::Memory, opt_mem);
1599       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1600       return this;
1601     }
1602     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1603     if ((t_oop != NULL) &&
1604         (t_oop->is_known_instance_field() ||
1605          t_oop->is_ptr_to_boxed_value())) {
1606       PhaseIterGVN *igvn = phase->is_IterGVN();
1607       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1608         // Delay this transformation until memory Phi is processed.
1609         phase->is_IterGVN()->_worklist.push(this);
1610         return NULL;
1611       }
1612       // Split instance field load through Phi.
1613       Node* result = split_through_phi(phase);
1614       if (result != NULL) return result;
1615 
1616       if (t_oop->is_ptr_to_boxed_value()) {
1617         Node* result = eliminate_autobox(phase);
1618         if (result != NULL) return result;
1619       }
1620     }
1621   }
1622 
1623   // Is there a dominating load that loads the same value?  Leave
1624   // anything that is not a load of a field/array element (like
1625   // barriers etc.) alone
1626   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1627     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1628       Node *use = mem->fast_out(i);
1629       if (use != this &&
1630           use->Opcode() == Opcode() &&
1631           use->in(0) != NULL &&
1632           use->in(0) != in(0) &&
1633           use->in(Address) == in(Address)) {
1634         Node* ctl = in(0);
1635         for (int i = 0; i < 10 && ctl != NULL; i++) {
1636           ctl = IfNode::up_one_dom(ctl);
1637           if (ctl == use->in(0)) {
1638             set_req(0, use->in(0));
1639             return this;
1640           }
1641         }
1642       }
1643     }
1644   }
1645 
1646   // Check for prior store with a different base or offset; make Load
1647   // independent.  Skip through any number of them.  Bail out if the stores
1648   // are in an endless dead cycle and report no progress.  This is a key
1649   // transform for Reflection.  However, if after skipping through the Stores
1650   // we can't then fold up against a prior store do NOT do the transform as
1651   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1652   // array memory alive twice: once for the hoisted Load and again after the
1653   // bypassed Store.  This situation only works if EVERYBODY who does
1654   // anti-dependence work knows how to bypass.  I.e. we need all
1655   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1656   // the alias index stuff.  So instead, peek through Stores and IFF we can
1657   // fold up, do so.
1658   Node* prev_mem = find_previous_store(phase);
1659   if (prev_mem != NULL) {
1660     Node* value = can_see_arraycopy_value(prev_mem, phase);
1661     if (value != NULL) {
1662       return value;
1663     }
1664   }
1665   // Steps (a), (b):  Walk past independent stores to find an exact match.
1666   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1667     // (c) See if we can fold up on the spot, but don't fold up here.
1668     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1669     // just return a prior value, which is done by Identity calls.
1670     if (can_see_stored_value(prev_mem, phase)) {
1671       // Make ready for step (d):
1672       set_req(MemNode::Memory, prev_mem);
1673       return this;
1674     }
1675   }
1676 
1677   return progress ? this : NULL;
1678 }
1679 
1680 // Helper to recognize certain Klass fields which are invariant across
1681 // some group of array types (e.g., int[] or all T[] where T < Object).
1682 const Type*
1683 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1684                                  ciKlass* klass) const {
1685   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1686     // The field is Klass::_modifier_flags.  Return its (constant) value.
1687     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1688     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1689     return TypeInt::make(klass->modifier_flags());
1690   }
1691   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1692     // The field is Klass::_access_flags.  Return its (constant) value.
1693     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1694     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1695     return TypeInt::make(klass->access_flags());
1696   }
1697   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1698     // The field is Klass::_layout_helper.  Return its constant value if known.
1699     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1700     return TypeInt::make(klass->layout_helper());
1701   }
1702 
1703   // No match.
1704   return NULL;
1705 }
1706 
1707 //------------------------------Value-----------------------------------------
1708 const Type* LoadNode::Value(PhaseGVN* phase) const {
1709   // Either input is TOP ==> the result is TOP
1710   Node* mem = in(MemNode::Memory);
1711   const Type *t1 = phase->type(mem);
1712   if (t1 == Type::TOP)  return Type::TOP;
1713   Node* adr = in(MemNode::Address);
1714   const TypePtr* tp = phase->type(adr)->isa_ptr();
1715   if (tp == NULL || tp->empty())  return Type::TOP;
1716   int off = tp->offset();
1717   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1718   Compile* C = phase->C;
1719 
1720   // Try to guess loaded type from pointer type
1721   if (tp->isa_aryptr()) {
1722     const TypeAryPtr* ary = tp->is_aryptr();
1723     const Type* t = ary->elem();
1724 
1725     // Determine whether the reference is beyond the header or not, by comparing
1726     // the offset against the offset of the start of the array's data.
1727     // Different array types begin at slightly different offsets (12 vs. 16).
1728     // We choose T_BYTE as an example base type that is least restrictive
1729     // as to alignment, which will therefore produce the smallest
1730     // possible base offset.
1731     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1732     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1733 
1734     // Try to constant-fold a stable array element.
1735     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1736       // Make sure the reference is not into the header and the offset is constant
1737       ciObject* aobj = ary->const_oop();
1738       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1739         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1740         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1741                                                                       stable_dimension,
1742                                                                       memory_type(), is_unsigned());
1743         if (con_type != NULL) {
1744           return con_type;
1745         }
1746       }
1747     }
1748 
1749     // Don't do this for integer types. There is only potential profit if
1750     // the element type t is lower than _type; that is, for int types, if _type is
1751     // more restrictive than t.  This only happens here if one is short and the other
1752     // char (both 16 bits), and in those cases we've made an intentional decision
1753     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1754     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1755     //
1756     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1757     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1758     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1759     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1760     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1761     // In fact, that could have been the original type of p1, and p1 could have
1762     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1763     // expression (LShiftL quux 3) independently optimized to the constant 8.
1764     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1765         && (_type->isa_vect() == NULL)
1766         && t->isa_valuetype() == NULL
1767         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1768       // t might actually be lower than _type, if _type is a unique
1769       // concrete subclass of abstract class t.
1770       if (off_beyond_header) {  // is the offset beyond the header?
1771         const Type* jt = t->join_speculative(_type);
1772         // In any case, do not allow the join, per se, to empty out the type.
1773         if (jt->empty() && !t->empty()) {
1774           // This can happen if a interface-typed array narrows to a class type.
1775           jt = _type;
1776         }
1777 #ifdef ASSERT
1778         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1779           // The pointers in the autobox arrays are always non-null
1780           Node* base = adr->in(AddPNode::Base);
1781           if ((base != NULL) && base->is_DecodeN()) {
1782             // Get LoadN node which loads IntegerCache.cache field
1783             base = base->in(1);
1784           }
1785           if ((base != NULL) && base->is_Con()) {
1786             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1787             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1788               // It could be narrow oop
1789               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1790             }
1791           }
1792         }
1793 #endif
1794         return jt;
1795       }
1796     }
1797   } else if (tp->base() == Type::InstPtr) {
1798     assert( off != Type::OffsetBot ||
1799             // arrays can be cast to Objects
1800             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1801             tp->is_oopptr()->klass() == ciEnv::current()->Class_klass() ||
1802             // unsafe field access may not have a constant offset
1803             C->has_unsafe_access(),
1804             "Field accesses must be precise" );
1805     // For oop loads, we expect the _type to be precise.
1806 
1807     // Optimize loads from constant fields.
1808     const TypeInstPtr* tinst = tp->is_instptr();
1809     ciObject* const_oop = tinst->const_oop();
1810     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1811       BasicType bt = memory_type();
1812       ciType* mirror_type = const_oop->as_instance()->java_mirror_type();
1813       if (mirror_type != NULL && mirror_type->is_valuetype()) {
1814         ciValueKlass* vk = mirror_type->as_value_klass();
1815         if (off == vk->default_value_offset()) {
1816           // Loading a special hidden field that contains the oop of the default value type
1817           const Type* const_oop = TypeInstPtr::make(vk->default_value_instance());
1818           return (bt == T_NARROWOOP) ? const_oop->make_narrowoop() : const_oop;
1819         }
1820       }
1821       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
1822       if (con_type != NULL) {
1823         return con_type;
1824       }
1825     }
1826   } else if (tp->base() == Type::KlassPtr) {
1827     assert( off != Type::OffsetBot ||
1828             // arrays can be cast to Objects
1829             tp->is_klassptr()->klass() == NULL ||
1830             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1831             // also allow array-loading from the primary supertype
1832             // array during subtype checks
1833             Opcode() == Op_LoadKlass,
1834             "Field accesses must be precise" );
1835     // For klass/static loads, we expect the _type to be precise
1836   } else if (tp->base() == Type::RawPtr && !StressReflectiveCode) {
1837     if (adr->is_Load() && off == 0) {
1838       /* With mirrors being an indirect in the Klass*
1839        * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1840        * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1841        *
1842        * So check the type and klass of the node before the LoadP.
1843        */
1844       Node* adr2 = adr->in(MemNode::Address);
1845       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1846       if (tkls != NULL) {
1847         ciKlass* klass = tkls->klass();
1848         if (klass != NULL && klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1849           assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1850           assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1851           return TypeInstPtr::make(klass->java_mirror());
1852         }
1853       }
1854     } else {
1855       // Check for a load of the default value offset from the ValueKlassFixedBlock:
1856       // LoadI(LoadP(value_klass, adr_valueklass_fixed_block_offset), default_value_offset_offset)
1857       intptr_t offset = 0;
1858       Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1859       if (base != NULL && base->is_Load() && offset == in_bytes(ValueKlass::default_value_offset_offset())) {
1860         const TypeKlassPtr* tkls = phase->type(base->in(MemNode::Address))->isa_klassptr();
1861         if (tkls != NULL && tkls->is_loaded() && tkls->klass_is_exact() && tkls->isa_valuetype() &&
1862             tkls->offset() == in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset())) {
1863           assert(base->Opcode() == Op_LoadP, "must load an oop from klass");
1864           assert(Opcode() == Op_LoadI, "must load an int from fixed block");
1865           return TypeInt::make(tkls->klass()->as_value_klass()->default_value_offset());
1866         }
1867       }
1868     }
1869   }
1870 
1871   const TypeKlassPtr *tkls = tp->isa_klassptr();
1872   if (tkls != NULL && !StressReflectiveCode) {
1873     ciKlass* klass = tkls->klass();
1874     if (tkls->is_loaded() && tkls->klass_is_exact()) {
1875       // We are loading a field from a Klass metaobject whose identity
1876       // is known at compile time (the type is "exact" or "precise").
1877       // Check for fields we know are maintained as constants by the VM.
1878       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1879         // The field is Klass::_super_check_offset.  Return its (constant) value.
1880         // (Folds up type checking code.)
1881         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1882         return TypeInt::make(klass->super_check_offset());
1883       }
1884       // Compute index into primary_supers array
1885       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1886       // Check for overflowing; use unsigned compare to handle the negative case.
1887       if( depth < ciKlass::primary_super_limit() ) {
1888         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1889         // (Folds up type checking code.)
1890         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1891         ciKlass *ss = klass->super_of_depth(depth);
1892         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1893       }
1894       const Type* aift = load_array_final_field(tkls, klass);
1895       if (aift != NULL)  return aift;
1896     }
1897 
1898     // We can still check if we are loading from the primary_supers array at a
1899     // shallow enough depth.  Even though the klass is not exact, entries less
1900     // than or equal to its super depth are correct.
1901     if (tkls->is_loaded()) {
1902       ciType *inner = klass;
1903       while( inner->is_obj_array_klass() )
1904         inner = inner->as_obj_array_klass()->base_element_type();
1905       if( inner->is_instance_klass() &&
1906           !inner->as_instance_klass()->flags().is_interface() ) {
1907         // Compute index into primary_supers array
1908         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1909         // Check for overflowing; use unsigned compare to handle the negative case.
1910         if( depth < ciKlass::primary_super_limit() &&
1911             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1912           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1913           // (Folds up type checking code.)
1914           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1915           ciKlass *ss = klass->super_of_depth(depth);
1916           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1917         }
1918       }
1919     }
1920 
1921     // If the type is enough to determine that the thing is not an array,
1922     // we can give the layout_helper a positive interval type.
1923     // This will help short-circuit some reflective code.
1924     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1925         && !klass->is_array_klass() // not directly typed as an array
1926         && !klass->is_interface()  // specifically not Serializable & Cloneable
1927         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1928         ) {
1929       // Note:  When interfaces are reliable, we can narrow the interface
1930       // test to (klass != Serializable && klass != Cloneable).
1931       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1932       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1933       // The key property of this type is that it folds up tests
1934       // for array-ness, since it proves that the layout_helper is positive.
1935       // Thus, a generic value like the basic object layout helper works fine.
1936       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1937     }
1938   }
1939 
1940   // If we are loading from a freshly-allocated object, produce a zero,
1941   // if the load is provably beyond the header of the object.
1942   // (Also allow a variable load from a fresh array to produce zero.)
1943   const TypeOopPtr *tinst = tp->isa_oopptr();
1944   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1945   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1946   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1947     Node* value = can_see_stored_value(mem,phase);
1948     if (value != NULL && value->is_Con()) {
1949       assert(value->bottom_type()->higher_equal(_type),"sanity");
1950       return value->bottom_type();
1951     }
1952   }
1953 
1954   if (is_instance) {
1955     // If we have an instance type and our memory input is the
1956     // programs's initial memory state, there is no matching store,
1957     // so just return a zero of the appropriate type
1958     Node *mem = in(MemNode::Memory);
1959     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1960       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1961       return Type::get_zero_type(_type->basic_type());
1962     }
1963   }
1964   return _type;
1965 }
1966 
1967 //------------------------------match_edge-------------------------------------
1968 // Do we Match on this edge index or not?  Match only the address.
1969 uint LoadNode::match_edge(uint idx) const {
1970   return idx == MemNode::Address;
1971 }
1972 
1973 //--------------------------LoadBNode::Ideal--------------------------------------
1974 //
1975 //  If the previous store is to the same address as this load,
1976 //  and the value stored was larger than a byte, replace this load
1977 //  with the value stored truncated to a byte.  If no truncation is
1978 //  needed, the replacement is done in LoadNode::Identity().
1979 //
1980 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1981   Node* mem = in(MemNode::Memory);
1982   Node* value = can_see_stored_value(mem,phase);
1983   if( value && !phase->type(value)->higher_equal( _type ) ) {
1984     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1985     return new RShiftINode(result, phase->intcon(24));
1986   }
1987   // Identity call will handle the case where truncation is not needed.
1988   return LoadNode::Ideal(phase, can_reshape);
1989 }
1990 
1991 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1992   Node* mem = in(MemNode::Memory);
1993   Node* value = can_see_stored_value(mem,phase);
1994   if (value != NULL && value->is_Con() &&
1995       !value->bottom_type()->higher_equal(_type)) {
1996     // If the input to the store does not fit with the load's result type,
1997     // it must be truncated. We can't delay until Ideal call since
1998     // a singleton Value is needed for split_thru_phi optimization.
1999     int con = value->get_int();
2000     return TypeInt::make((con << 24) >> 24);
2001   }
2002   return LoadNode::Value(phase);
2003 }
2004 
2005 //--------------------------LoadUBNode::Ideal-------------------------------------
2006 //
2007 //  If the previous store is to the same address as this load,
2008 //  and the value stored was larger than a byte, replace this load
2009 //  with the value stored truncated to a byte.  If no truncation is
2010 //  needed, the replacement is done in LoadNode::Identity().
2011 //
2012 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2013   Node* mem = in(MemNode::Memory);
2014   Node* value = can_see_stored_value(mem, phase);
2015   if (value && !phase->type(value)->higher_equal(_type))
2016     return new AndINode(value, phase->intcon(0xFF));
2017   // Identity call will handle the case where truncation is not needed.
2018   return LoadNode::Ideal(phase, can_reshape);
2019 }
2020 
2021 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2022   Node* mem = in(MemNode::Memory);
2023   Node* value = can_see_stored_value(mem,phase);
2024   if (value != NULL && value->is_Con() &&
2025       !value->bottom_type()->higher_equal(_type)) {
2026     // If the input to the store does not fit with the load's result type,
2027     // it must be truncated. We can't delay until Ideal call since
2028     // a singleton Value is needed for split_thru_phi optimization.
2029     int con = value->get_int();
2030     return TypeInt::make(con & 0xFF);
2031   }
2032   return LoadNode::Value(phase);
2033 }
2034 
2035 //--------------------------LoadUSNode::Ideal-------------------------------------
2036 //
2037 //  If the previous store is to the same address as this load,
2038 //  and the value stored was larger than a char, replace this load
2039 //  with the value stored truncated to a char.  If no truncation is
2040 //  needed, the replacement is done in LoadNode::Identity().
2041 //
2042 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2043   Node* mem = in(MemNode::Memory);
2044   Node* value = can_see_stored_value(mem,phase);
2045   if( value && !phase->type(value)->higher_equal( _type ) )
2046     return new AndINode(value,phase->intcon(0xFFFF));
2047   // Identity call will handle the case where truncation is not needed.
2048   return LoadNode::Ideal(phase, can_reshape);
2049 }
2050 
2051 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2052   Node* mem = in(MemNode::Memory);
2053   Node* value = can_see_stored_value(mem,phase);
2054   if (value != NULL && value->is_Con() &&
2055       !value->bottom_type()->higher_equal(_type)) {
2056     // If the input to the store does not fit with the load's result type,
2057     // it must be truncated. We can't delay until Ideal call since
2058     // a singleton Value is needed for split_thru_phi optimization.
2059     int con = value->get_int();
2060     return TypeInt::make(con & 0xFFFF);
2061   }
2062   return LoadNode::Value(phase);
2063 }
2064 
2065 //--------------------------LoadSNode::Ideal--------------------------------------
2066 //
2067 //  If the previous store is to the same address as this load,
2068 //  and the value stored was larger than a short, replace this load
2069 //  with the value stored truncated to a short.  If no truncation is
2070 //  needed, the replacement is done in LoadNode::Identity().
2071 //
2072 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2073   Node* mem = in(MemNode::Memory);
2074   Node* value = can_see_stored_value(mem,phase);
2075   if( value && !phase->type(value)->higher_equal( _type ) ) {
2076     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2077     return new RShiftINode(result, phase->intcon(16));
2078   }
2079   // Identity call will handle the case where truncation is not needed.
2080   return LoadNode::Ideal(phase, can_reshape);
2081 }
2082 
2083 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2084   Node* mem = in(MemNode::Memory);
2085   Node* value = can_see_stored_value(mem,phase);
2086   if (value != NULL && value->is_Con() &&
2087       !value->bottom_type()->higher_equal(_type)) {
2088     // If the input to the store does not fit with the load's result type,
2089     // it must be truncated. We can't delay until Ideal call since
2090     // a singleton Value is needed for split_thru_phi optimization.
2091     int con = value->get_int();
2092     return TypeInt::make((con << 16) >> 16);
2093   }
2094   return LoadNode::Value(phase);
2095 }
2096 
2097 //=============================================================================
2098 //----------------------------LoadKlassNode::make------------------------------
2099 // Polymorphic factory method:
2100 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2101   // sanity check the alias category against the created node type
2102   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2103   assert(adr_type != NULL, "expecting TypeKlassPtr");
2104 #ifdef _LP64
2105   if (adr_type->is_ptr_to_narrowklass()) {
2106     assert(UseCompressedClassPointers, "no compressed klasses");
2107     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2108     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2109   }
2110 #endif
2111   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2112   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2113 }
2114 
2115 //------------------------------Value------------------------------------------
2116 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2117   return klass_value_common(phase);
2118 }
2119 
2120 // In most cases, LoadKlassNode does not have the control input set. If the control
2121 // input is set, it must not be removed (by LoadNode::Ideal()).
2122 bool LoadKlassNode::can_remove_control() const {
2123   return false;
2124 }
2125 
2126 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2127   // Either input is TOP ==> the result is TOP
2128   const Type *t1 = phase->type( in(MemNode::Memory) );
2129   if (t1 == Type::TOP)  return Type::TOP;
2130   Node *adr = in(MemNode::Address);
2131   const Type *t2 = phase->type( adr );
2132   if (t2 == Type::TOP)  return Type::TOP;
2133   const TypePtr *tp = t2->is_ptr();
2134   if (TypePtr::above_centerline(tp->ptr()) ||
2135       tp->ptr() == TypePtr::Null)  return Type::TOP;
2136 
2137   // Return a more precise klass, if possible
2138   const TypeInstPtr *tinst = tp->isa_instptr();
2139   if (tinst != NULL) {
2140     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2141     int offset = tinst->offset();
2142     if (ik == phase->C->env()->Class_klass()
2143         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2144             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2145       // We are loading a special hidden field from a Class mirror object,
2146       // the field which points to the VM's Klass metaobject.
2147       ciType* t = tinst->java_mirror_type();
2148       // java_mirror_type returns non-null for compile-time Class constants.
2149       if (t != NULL) {
2150         // constant oop => constant klass
2151         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2152           if (t->is_void()) {
2153             // We cannot create a void array.  Since void is a primitive type return null
2154             // klass.  Users of this result need to do a null check on the returned klass.
2155             return TypePtr::NULL_PTR;
2156           }
2157           return TypeKlassPtr::make(ciArrayKlass::make(t));
2158         }
2159         if (!t->is_klass()) {
2160           // a primitive Class (e.g., int.class) has NULL for a klass field
2161           return TypePtr::NULL_PTR;
2162         }
2163         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2164         return TypeKlassPtr::make(t->as_klass());
2165       }
2166       // non-constant mirror, so we can't tell what's going on
2167     }
2168     if( !ik->is_loaded() )
2169       return _type;             // Bail out if not loaded
2170     if (offset == oopDesc::klass_offset_in_bytes()) {
2171       if (tinst->klass_is_exact()) {
2172         return TypeKlassPtr::make(ik);
2173       }
2174       // See if we can become precise: no subklasses and no interface
2175       // (Note:  We need to support verified interfaces.)
2176       if (!ik->is_interface() && !ik->has_subklass()) {
2177         //assert(!UseExactTypes, "this code should be useless with exact types");
2178         // Add a dependence; if any subclass added we need to recompile
2179         if (!ik->is_final()) {
2180           // %%% should use stronger assert_unique_concrete_subtype instead
2181           phase->C->dependencies()->assert_leaf_type(ik);
2182         }
2183         // Return precise klass
2184         return TypeKlassPtr::make(ik);
2185       }
2186 
2187       // Return root of possible klass
2188       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0));
2189     }
2190   }
2191 
2192   // Check for loading klass from an array
2193   const TypeAryPtr *tary = tp->isa_aryptr();
2194   if( tary != NULL ) {
2195     ciKlass *tary_klass = tary->klass();
2196     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2197         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2198       if (tary->klass_is_exact()) {
2199         return TypeKlassPtr::make(tary_klass);
2200       }
2201       ciArrayKlass *ak = tary->klass()->as_array_klass();
2202       // If the klass is an object array, we defer the question to the
2203       // array component klass.
2204       if( ak->is_obj_array_klass() ) {
2205         assert( ak->is_loaded(), "" );
2206         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2207         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2208           ciInstanceKlass* ik = base_k->as_instance_klass();
2209           // See if we can become precise: no subklasses and no interface
2210           if (!ik->is_interface() && !ik->has_subklass()) {
2211             //assert(!UseExactTypes, "this code should be useless with exact types");
2212             // Add a dependence; if any subclass added we need to recompile
2213             if (!ik->is_final()) {
2214               phase->C->dependencies()->assert_leaf_type(ik);
2215             }
2216             // Return precise array klass
2217             return TypeKlassPtr::make(ak);
2218           }
2219         }
2220         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
2221       } else {                  // Found a type-array?
2222         //assert(!UseExactTypes, "this code should be useless with exact types");
2223         assert( ak->is_type_array_klass(), "" );
2224         return TypeKlassPtr::make(ak); // These are always precise
2225       }
2226     }
2227   }
2228 
2229   // Check for loading klass from an array klass
2230   const TypeKlassPtr *tkls = tp->isa_klassptr();
2231   if (tkls != NULL && !StressReflectiveCode) {
2232     if (!tkls->is_loaded()) {
2233       return _type;             // Bail out if not loaded
2234     }
2235     ciKlass* klass = tkls->klass();
2236     if( klass->is_obj_array_klass() &&
2237         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2238       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2239       // // Always returning precise element type is incorrect,
2240       // // e.g., element type could be object and array may contain strings
2241       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2242 
2243       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2244       // according to the element type's subclassing.
2245       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0));
2246     }
2247     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2248         tkls->offset() == in_bytes(Klass::super_offset())) {
2249       ciKlass* sup = klass->as_instance_klass()->super();
2250       // The field is Klass::_super.  Return its (constant) value.
2251       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2252       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2253     }
2254   }
2255 
2256   // Bailout case
2257   return LoadNode::Value(phase);
2258 }
2259 
2260 //------------------------------Identity---------------------------------------
2261 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2262 // Also feed through the klass in Allocate(...klass...)._klass.
2263 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2264   return klass_identity_common(phase);
2265 }
2266 
2267 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2268   Node* x = LoadNode::Identity(phase);
2269   if (x != this)  return x;
2270 
2271   // Take apart the address into an oop and and offset.
2272   // Return 'this' if we cannot.
2273   Node*    adr    = in(MemNode::Address);
2274   intptr_t offset = 0;
2275   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2276   if (base == NULL)     return this;
2277   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2278   if (toop == NULL)     return this;
2279 
2280   // Step over potential GC barrier for OopHandle resolve
2281   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2282   if (bs->is_gc_barrier_node(base)) {
2283     base = bs->step_over_gc_barrier(base);
2284   }
2285 
2286   // We can fetch the klass directly through an AllocateNode.
2287   // This works even if the klass is not constant (clone or newArray).
2288   if (offset == oopDesc::klass_offset_in_bytes()) {
2289     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2290     if (allocated_klass != NULL) {
2291       return allocated_klass;
2292     }
2293   }
2294 
2295   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2296   // See inline_native_Class_query for occurrences of these patterns.
2297   // Java Example:  x.getClass().isAssignableFrom(y)
2298   //
2299   // This improves reflective code, often making the Class
2300   // mirror go completely dead.  (Current exception:  Class
2301   // mirrors may appear in debug info, but we could clean them out by
2302   // introducing a new debug info operator for Klass.java_mirror).
2303 
2304   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2305       && offset == java_lang_Class::klass_offset_in_bytes()) {
2306     if (base->is_Load()) {
2307       Node* base2 = base->in(MemNode::Address);
2308       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2309         Node* adr2 = base2->in(MemNode::Address);
2310         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2311         if (tkls != NULL && !tkls->empty()
2312             && (tkls->klass()->is_instance_klass() ||
2313               tkls->klass()->is_array_klass())
2314             && adr2->is_AddP()
2315            ) {
2316           int mirror_field = in_bytes(Klass::java_mirror_offset());
2317           if (tkls->offset() == mirror_field) {
2318             return adr2->in(AddPNode::Base);
2319           }
2320         }
2321       }
2322     }
2323   }
2324 
2325   return this;
2326 }
2327 
2328 
2329 //------------------------------Value------------------------------------------
2330 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2331   const Type *t = klass_value_common(phase);
2332   if (t == Type::TOP)
2333     return t;
2334 
2335   return t->make_narrowklass();
2336 }
2337 
2338 //------------------------------Identity---------------------------------------
2339 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2340 // Also feed through the klass in Allocate(...klass...)._klass.
2341 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2342   Node *x = klass_identity_common(phase);
2343 
2344   const Type *t = phase->type( x );
2345   if( t == Type::TOP ) return x;
2346   if( t->isa_narrowklass()) return x;
2347   assert (!t->isa_narrowoop(), "no narrow oop here");
2348 
2349   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2350 }
2351 
2352 //------------------------------Value-----------------------------------------
2353 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2354   // Either input is TOP ==> the result is TOP
2355   const Type *t1 = phase->type( in(MemNode::Memory) );
2356   if( t1 == Type::TOP ) return Type::TOP;
2357   Node *adr = in(MemNode::Address);
2358   const Type *t2 = phase->type( adr );
2359   if( t2 == Type::TOP ) return Type::TOP;
2360   const TypePtr *tp = t2->is_ptr();
2361   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2362   const TypeAryPtr *tap = tp->isa_aryptr();
2363   if( !tap ) return _type;
2364   return tap->size();
2365 }
2366 
2367 //-------------------------------Ideal---------------------------------------
2368 // Feed through the length in AllocateArray(...length...)._length.
2369 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2370   Node* p = MemNode::Ideal_common(phase, can_reshape);
2371   if (p)  return (p == NodeSentinel) ? NULL : p;
2372 
2373   // Take apart the address into an oop and and offset.
2374   // Return 'this' if we cannot.
2375   Node*    adr    = in(MemNode::Address);
2376   intptr_t offset = 0;
2377   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2378   if (base == NULL)     return NULL;
2379   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2380   if (tary == NULL)     return NULL;
2381 
2382   // We can fetch the length directly through an AllocateArrayNode.
2383   // This works even if the length is not constant (clone or newArray).
2384   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2385     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2386     if (alloc != NULL) {
2387       Node* allocated_length = alloc->Ideal_length();
2388       Node* len = alloc->make_ideal_length(tary, phase);
2389       if (allocated_length != len) {
2390         // New CastII improves on this.
2391         return len;
2392       }
2393     }
2394   }
2395 
2396   return NULL;
2397 }
2398 
2399 //------------------------------Identity---------------------------------------
2400 // Feed through the length in AllocateArray(...length...)._length.
2401 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2402   Node* x = LoadINode::Identity(phase);
2403   if (x != this)  return x;
2404 
2405   // Take apart the address into an oop and and offset.
2406   // Return 'this' if we cannot.
2407   Node*    adr    = in(MemNode::Address);
2408   intptr_t offset = 0;
2409   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2410   if (base == NULL)     return this;
2411   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2412   if (tary == NULL)     return this;
2413 
2414   // We can fetch the length directly through an AllocateArrayNode.
2415   // This works even if the length is not constant (clone or newArray).
2416   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2417     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2418     if (alloc != NULL) {
2419       Node* allocated_length = alloc->Ideal_length();
2420       // Do not allow make_ideal_length to allocate a CastII node.
2421       Node* len = alloc->make_ideal_length(tary, phase, false);
2422       if (allocated_length == len) {
2423         // Return allocated_length only if it would not be improved by a CastII.
2424         return allocated_length;
2425       }
2426     }
2427   }
2428 
2429   return this;
2430 
2431 }
2432 
2433 //=============================================================================
2434 //---------------------------StoreNode::make-----------------------------------
2435 // Polymorphic factory method:
2436 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2437   assert((mo == unordered || mo == release), "unexpected");
2438   Compile* C = gvn.C;
2439   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2440          ctl != NULL, "raw memory operations should have control edge");
2441 
2442   switch (bt) {
2443   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2444   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2445   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2446   case T_CHAR:
2447   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2448   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2449   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2450   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2451   case T_METADATA:
2452   case T_ADDRESS:
2453   case T_VALUETYPE:
2454   case T_OBJECT:
2455 #ifdef _LP64
2456     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2457       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2458       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2459     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2460                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2461                 adr->bottom_type()->isa_rawptr())) {
2462       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2463       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2464     }
2465 #endif
2466     {
2467       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2468     }
2469   default:
2470     ShouldNotReachHere();
2471     return (StoreNode*)NULL;
2472   }
2473 }
2474 
2475 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2476   bool require_atomic = true;
2477   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2478 }
2479 
2480 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2481   bool require_atomic = true;
2482   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2483 }
2484 
2485 
2486 //--------------------------bottom_type----------------------------------------
2487 const Type *StoreNode::bottom_type() const {
2488   return Type::MEMORY;
2489 }
2490 
2491 //------------------------------hash-------------------------------------------
2492 uint StoreNode::hash() const {
2493   // unroll addition of interesting fields
2494   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2495 
2496   // Since they are not commoned, do not hash them:
2497   return NO_HASH;
2498 }
2499 
2500 //------------------------------Ideal------------------------------------------
2501 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2502 // When a store immediately follows a relevant allocation/initialization,
2503 // try to capture it into the initialization, or hoist it above.
2504 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2505   Node* p = MemNode::Ideal_common(phase, can_reshape);
2506   if (p)  return (p == NodeSentinel) ? NULL : p;
2507 
2508   Node* mem     = in(MemNode::Memory);
2509   Node* address = in(MemNode::Address);
2510   // Back-to-back stores to same address?  Fold em up.  Generally
2511   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2512   // since they must follow each StoreP operation.  Redundant StoreCMs
2513   // are eliminated just before matching in final_graph_reshape.
2514   {
2515     Node* st = mem;
2516     // If Store 'st' has more than one use, we cannot fold 'st' away.
2517     // For example, 'st' might be the final state at a conditional
2518     // return.  Or, 'st' might be used by some node which is live at
2519     // the same time 'st' is live, which might be unschedulable.  So,
2520     // require exactly ONE user until such time as we clone 'mem' for
2521     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2522     // true).
2523     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2524       // Looking at a dead closed cycle of memory?
2525       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2526       assert(Opcode() == st->Opcode() ||
2527              st->Opcode() == Op_StoreVector ||
2528              Opcode() == Op_StoreVector ||
2529              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2530              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2531              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2532              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
2533              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2534              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2535 
2536       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2537           st->as_Store()->memory_size() <= this->memory_size()) {
2538         Node* use = st->raw_out(0);
2539         phase->igvn_rehash_node_delayed(use);
2540         if (can_reshape) {
2541           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2542         } else {
2543           // It's OK to do this in the parser, since DU info is always accurate,
2544           // and the parser always refers to nodes via SafePointNode maps.
2545           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2546         }
2547         return this;
2548       }
2549       st = st->in(MemNode::Memory);
2550     }
2551   }
2552 
2553 
2554   // Capture an unaliased, unconditional, simple store into an initializer.
2555   // Or, if it is independent of the allocation, hoist it above the allocation.
2556   if (ReduceFieldZeroing && /*can_reshape &&*/
2557       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2558     InitializeNode* init = mem->in(0)->as_Initialize();
2559     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2560     if (offset > 0) {
2561       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2562       // If the InitializeNode captured me, it made a raw copy of me,
2563       // and I need to disappear.
2564       if (moved != NULL) {
2565         // %%% hack to ensure that Ideal returns a new node:
2566         mem = MergeMemNode::make(mem);
2567         return mem;             // fold me away
2568       }
2569     }
2570   }
2571 
2572   return NULL;                  // No further progress
2573 }
2574 
2575 //------------------------------Value-----------------------------------------
2576 const Type* StoreNode::Value(PhaseGVN* phase) const {
2577   // Either input is TOP ==> the result is TOP
2578   const Type *t1 = phase->type( in(MemNode::Memory) );
2579   if( t1 == Type::TOP ) return Type::TOP;
2580   const Type *t2 = phase->type( in(MemNode::Address) );
2581   if( t2 == Type::TOP ) return Type::TOP;
2582   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2583   if( t3 == Type::TOP ) return Type::TOP;
2584   return Type::MEMORY;
2585 }
2586 
2587 //------------------------------Identity---------------------------------------
2588 // Remove redundant stores:
2589 //   Store(m, p, Load(m, p)) changes to m.
2590 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2591 Node* StoreNode::Identity(PhaseGVN* phase) {
2592   Node* mem = in(MemNode::Memory);
2593   Node* adr = in(MemNode::Address);
2594   Node* val = in(MemNode::ValueIn);
2595 
2596   Node* result = this;
2597 
2598   // Load then Store?  Then the Store is useless
2599   if (val->is_Load() &&
2600       val->in(MemNode::Address)->eqv_uncast(adr) &&
2601       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2602       val->as_Load()->store_Opcode() == Opcode()) {
2603     result = mem;
2604   }
2605 
2606   // Two stores in a row of the same value?
2607   if (result == this &&
2608       mem->is_Store() &&
2609       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2610       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2611       mem->Opcode() == Opcode()) {
2612     result = mem;
2613   }
2614 
2615   // Store of zero anywhere into a freshly-allocated object?
2616   // Then the store is useless.
2617   // (It must already have been captured by the InitializeNode.)
2618   if (result == this && ReduceFieldZeroing) {
2619     // a newly allocated object is already all-zeroes everywhere
2620     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
2621         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == val)) {
2622       assert(!phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == NULL, "storing null to value array is forbidden");
2623       result = mem;
2624     }
2625 
2626     if (result == this) {
2627       // the store may also apply to zero-bits in an earlier object
2628       Node* prev_mem = find_previous_store(phase);
2629       // Steps (a), (b):  Walk past independent stores to find an exact match.
2630       if (prev_mem != NULL) {
2631         Node* prev_val = can_see_stored_value(prev_mem, phase);
2632         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2633           // prev_val and val might differ by a cast; it would be good
2634           // to keep the more informative of the two.
2635           if (phase->type(val)->is_zero_type()) {
2636             result = mem;
2637           } else if (prev_mem->is_Proj() && prev_mem->in(0)->is_Initialize()) {
2638             InitializeNode* init = prev_mem->in(0)->as_Initialize();
2639             AllocateNode* alloc = init->allocation();
2640             if (alloc != NULL && alloc->in(AllocateNode::DefaultValue) == val) {
2641               result = mem;
2642             }
2643           }
2644         }
2645       }
2646     }
2647   }
2648 
2649   if (result != this && phase->is_IterGVN() != NULL) {
2650     MemBarNode* trailing = trailing_membar();
2651     if (trailing != NULL) {
2652 #ifdef ASSERT
2653       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2654       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2655 #endif
2656       PhaseIterGVN* igvn = phase->is_IterGVN();
2657       trailing->remove(igvn);
2658     }
2659   }
2660 
2661   return result;
2662 }
2663 
2664 //------------------------------match_edge-------------------------------------
2665 // Do we Match on this edge index or not?  Match only memory & value
2666 uint StoreNode::match_edge(uint idx) const {
2667   return idx == MemNode::Address || idx == MemNode::ValueIn;
2668 }
2669 
2670 //------------------------------cmp--------------------------------------------
2671 // Do not common stores up together.  They generally have to be split
2672 // back up anyways, so do not bother.
2673 uint StoreNode::cmp( const Node &n ) const {
2674   return (&n == this);          // Always fail except on self
2675 }
2676 
2677 //------------------------------Ideal_masked_input-----------------------------
2678 // Check for a useless mask before a partial-word store
2679 // (StoreB ... (AndI valIn conIa) )
2680 // If (conIa & mask == mask) this simplifies to
2681 // (StoreB ... (valIn) )
2682 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2683   Node *val = in(MemNode::ValueIn);
2684   if( val->Opcode() == Op_AndI ) {
2685     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2686     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2687       set_req(MemNode::ValueIn, val->in(1));
2688       return this;
2689     }
2690   }
2691   return NULL;
2692 }
2693 
2694 
2695 //------------------------------Ideal_sign_extended_input----------------------
2696 // Check for useless sign-extension before a partial-word store
2697 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2698 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2699 // (StoreB ... (valIn) )
2700 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2701   Node *val = in(MemNode::ValueIn);
2702   if( val->Opcode() == Op_RShiftI ) {
2703     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2704     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2705       Node *shl = val->in(1);
2706       if( shl->Opcode() == Op_LShiftI ) {
2707         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2708         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2709           set_req(MemNode::ValueIn, shl->in(1));
2710           return this;
2711         }
2712       }
2713     }
2714   }
2715   return NULL;
2716 }
2717 
2718 //------------------------------value_never_loaded-----------------------------------
2719 // Determine whether there are any possible loads of the value stored.
2720 // For simplicity, we actually check if there are any loads from the
2721 // address stored to, not just for loads of the value stored by this node.
2722 //
2723 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2724   Node *adr = in(Address);
2725   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2726   if (adr_oop == NULL)
2727     return false;
2728   if (!adr_oop->is_known_instance_field())
2729     return false; // if not a distinct instance, there may be aliases of the address
2730   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2731     Node *use = adr->fast_out(i);
2732     if (use->is_Load() || use->is_LoadStore()) {
2733       return false;
2734     }
2735   }
2736   return true;
2737 }
2738 
2739 MemBarNode* StoreNode::trailing_membar() const {
2740   if (is_release()) {
2741     MemBarNode* trailing_mb = NULL;
2742     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2743       Node* u = fast_out(i);
2744       if (u->is_MemBar()) {
2745         if (u->as_MemBar()->trailing_store()) {
2746           assert(u->Opcode() == Op_MemBarVolatile, "");
2747           assert(trailing_mb == NULL, "only one");
2748           trailing_mb = u->as_MemBar();
2749 #ifdef ASSERT
2750           Node* leading = u->as_MemBar()->leading_membar();
2751           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2752           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2753           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2754 #endif
2755         } else {
2756           assert(u->as_MemBar()->standalone(), "");
2757         }
2758       }
2759     }
2760     return trailing_mb;
2761   }
2762   return NULL;
2763 }
2764 
2765 
2766 //=============================================================================
2767 //------------------------------Ideal------------------------------------------
2768 // If the store is from an AND mask that leaves the low bits untouched, then
2769 // we can skip the AND operation.  If the store is from a sign-extension
2770 // (a left shift, then right shift) we can skip both.
2771 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2772   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2773   if( progress != NULL ) return progress;
2774 
2775   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2776   if( progress != NULL ) return progress;
2777 
2778   // Finally check the default case
2779   return StoreNode::Ideal(phase, can_reshape);
2780 }
2781 
2782 //=============================================================================
2783 //------------------------------Ideal------------------------------------------
2784 // If the store is from an AND mask that leaves the low bits untouched, then
2785 // we can skip the AND operation
2786 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2787   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2788   if( progress != NULL ) return progress;
2789 
2790   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2791   if( progress != NULL ) return progress;
2792 
2793   // Finally check the default case
2794   return StoreNode::Ideal(phase, can_reshape);
2795 }
2796 
2797 //=============================================================================
2798 //------------------------------Identity---------------------------------------
2799 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2800   // No need to card mark when storing a null ptr
2801   Node* my_store = in(MemNode::OopStore);
2802   if (my_store->is_Store()) {
2803     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2804     if( t1 == TypePtr::NULL_PTR ) {
2805       return in(MemNode::Memory);
2806     }
2807   }
2808   return this;
2809 }
2810 
2811 //=============================================================================
2812 //------------------------------Ideal---------------------------------------
2813 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2814   Node* progress = StoreNode::Ideal(phase, can_reshape);
2815   if (progress != NULL) return progress;
2816 
2817   Node* my_store = in(MemNode::OopStore);
2818   if (my_store->is_MergeMem()) {
2819     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2820     set_req(MemNode::OopStore, mem);
2821     return this;
2822   }
2823 
2824   return NULL;
2825 }
2826 
2827 //------------------------------Value-----------------------------------------
2828 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2829   // Either input is TOP ==> the result is TOP
2830   const Type *t = phase->type( in(MemNode::Memory) );
2831   if( t == Type::TOP ) return Type::TOP;
2832   t = phase->type( in(MemNode::Address) );
2833   if( t == Type::TOP ) return Type::TOP;
2834   t = phase->type( in(MemNode::ValueIn) );
2835   if( t == Type::TOP ) return Type::TOP;
2836   // If extra input is TOP ==> the result is TOP
2837   t = phase->type( in(MemNode::OopStore) );
2838   if( t == Type::TOP ) return Type::TOP;
2839 
2840   return StoreNode::Value( phase );
2841 }
2842 
2843 
2844 //=============================================================================
2845 //----------------------------------SCMemProjNode------------------------------
2846 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2847 {
2848   return bottom_type();
2849 }
2850 
2851 //=============================================================================
2852 //----------------------------------LoadStoreNode------------------------------
2853 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2854   : Node(required),
2855     _type(rt),
2856     _adr_type(at)
2857 {
2858   init_req(MemNode::Control, c  );
2859   init_req(MemNode::Memory , mem);
2860   init_req(MemNode::Address, adr);
2861   init_req(MemNode::ValueIn, val);
2862   init_class_id(Class_LoadStore);
2863 }
2864 
2865 uint LoadStoreNode::ideal_reg() const {
2866   return _type->ideal_reg();
2867 }
2868 
2869 bool LoadStoreNode::result_not_used() const {
2870   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2871     Node *x = fast_out(i);
2872     if (x->Opcode() == Op_SCMemProj) continue;
2873     return false;
2874   }
2875   return true;
2876 }
2877 
2878 MemBarNode* LoadStoreNode::trailing_membar() const {
2879   MemBarNode* trailing = NULL;
2880   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2881     Node* u = fast_out(i);
2882     if (u->is_MemBar()) {
2883       if (u->as_MemBar()->trailing_load_store()) {
2884         assert(u->Opcode() == Op_MemBarAcquire, "");
2885         assert(trailing == NULL, "only one");
2886         trailing = u->as_MemBar();
2887 #ifdef ASSERT
2888         Node* leading = trailing->leading_membar();
2889         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2890         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2891         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2892 #endif
2893       } else {
2894         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2895       }
2896     }
2897   }
2898 
2899   return trailing;
2900 }
2901 
2902 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2903 
2904 //=============================================================================
2905 //----------------------------------LoadStoreConditionalNode--------------------
2906 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2907   init_req(ExpectedIn, ex );
2908 }
2909 
2910 //=============================================================================
2911 //-------------------------------adr_type--------------------------------------
2912 const TypePtr* ClearArrayNode::adr_type() const {
2913   Node *adr = in(3);
2914   if (adr == NULL)  return NULL; // node is dead
2915   return MemNode::calculate_adr_type(adr->bottom_type());
2916 }
2917 
2918 //------------------------------match_edge-------------------------------------
2919 // Do we Match on this edge index or not?  Do not match memory
2920 uint ClearArrayNode::match_edge(uint idx) const {
2921   return idx > 1;
2922 }
2923 
2924 //------------------------------Identity---------------------------------------
2925 // Clearing a zero length array does nothing
2926 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2927   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2928 }
2929 
2930 //------------------------------Idealize---------------------------------------
2931 // Clearing a short array is faster with stores
2932 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2933   // Already know this is a large node, do not try to ideal it
2934   if (!IdealizeClearArrayNode || _is_large) return NULL;
2935 
2936   const int unit = BytesPerLong;
2937   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2938   if (!t)  return NULL;
2939   if (!t->is_con())  return NULL;
2940   intptr_t raw_count = t->get_con();
2941   intptr_t size = raw_count;
2942   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2943   // Clearing nothing uses the Identity call.
2944   // Negative clears are possible on dead ClearArrays
2945   // (see jck test stmt114.stmt11402.val).
2946   if (size <= 0 || size % unit != 0)  return NULL;
2947   intptr_t count = size / unit;
2948   // Length too long; communicate this to matchers and assemblers.
2949   // Assemblers are responsible to produce fast hardware clears for it.
2950   if (size > InitArrayShortSize) {
2951     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
2952   }
2953   Node *mem = in(1);
2954   if( phase->type(mem)==Type::TOP ) return NULL;
2955   Node *adr = in(3);
2956   const Type* at = phase->type(adr);
2957   if( at==Type::TOP ) return NULL;
2958   const TypePtr* atp = at->isa_ptr();
2959   // adjust atp to be the correct array element address type
2960   if (atp == NULL)  atp = TypePtr::BOTTOM;
2961   else              atp = atp->add_offset(Type::OffsetBot);
2962   // Get base for derived pointer purposes
2963   if( adr->Opcode() != Op_AddP ) Unimplemented();
2964   Node *base = adr->in(1);
2965 
2966   Node *val = in(4);
2967   Node *off  = phase->MakeConX(BytesPerLong);
2968   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2969   count--;
2970   while( count-- ) {
2971     mem = phase->transform(mem);
2972     adr = phase->transform(new AddPNode(base,adr,off));
2973     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2974   }
2975   return mem;
2976 }
2977 
2978 //----------------------------step_through----------------------------------
2979 // Return allocation input memory edge if it is different instance
2980 // or itself if it is the one we are looking for.
2981 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2982   Node* n = *np;
2983   assert(n->is_ClearArray(), "sanity");
2984   intptr_t offset;
2985   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2986   // This method is called only before Allocate nodes are expanded
2987   // during macro nodes expansion. Before that ClearArray nodes are
2988   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2989   // Allocate nodes are expanded) which follows allocations.
2990   assert(alloc != NULL, "should have allocation");
2991   if (alloc->_idx == instance_id) {
2992     // Can not bypass initialization of the instance we are looking for.
2993     return false;
2994   }
2995   // Otherwise skip it.
2996   InitializeNode* init = alloc->initialization();
2997   if (init != NULL)
2998     *np = init->in(TypeFunc::Memory);
2999   else
3000     *np = alloc->in(TypeFunc::Memory);
3001   return true;
3002 }
3003 
3004 //----------------------------clear_memory-------------------------------------
3005 // Generate code to initialize object storage to zero.
3006 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3007                                    Node* val,
3008                                    Node* raw_val,
3009                                    intptr_t start_offset,
3010                                    Node* end_offset,
3011                                    PhaseGVN* phase) {
3012   intptr_t offset = start_offset;
3013 
3014   int unit = BytesPerLong;
3015   if ((offset % unit) != 0) {
3016     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3017     adr = phase->transform(adr);
3018     const TypePtr* atp = TypeRawPtr::BOTTOM;
3019     if (val != NULL) {
3020       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3021       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3022     } else {
3023       assert(raw_val == NULL, "val may not be null");
3024       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3025     }
3026     mem = phase->transform(mem);
3027     offset += BytesPerInt;
3028   }
3029   assert((offset % unit) == 0, "");
3030 
3031   // Initialize the remaining stuff, if any, with a ClearArray.
3032   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
3033 }
3034 
3035 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3036                                    Node* raw_val,
3037                                    Node* start_offset,
3038                                    Node* end_offset,
3039                                    PhaseGVN* phase) {
3040   if (start_offset == end_offset) {
3041     // nothing to do
3042     return mem;
3043   }
3044 
3045   int unit = BytesPerLong;
3046   Node* zbase = start_offset;
3047   Node* zend  = end_offset;
3048 
3049   // Scale to the unit required by the CPU:
3050   if (!Matcher::init_array_count_is_in_bytes) {
3051     Node* shift = phase->intcon(exact_log2(unit));
3052     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3053     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3054   }
3055 
3056   // Bulk clear double-words
3057   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3058   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3059   if (raw_val == NULL) {
3060     raw_val = phase->MakeConX(0);
3061   }
3062   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
3063   return phase->transform(mem);
3064 }
3065 
3066 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3067                                    Node* val,
3068                                    Node* raw_val,
3069                                    intptr_t start_offset,
3070                                    intptr_t end_offset,
3071                                    PhaseGVN* phase) {
3072   if (start_offset == end_offset) {
3073     // nothing to do
3074     return mem;
3075   }
3076 
3077   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3078   intptr_t done_offset = end_offset;
3079   if ((done_offset % BytesPerLong) != 0) {
3080     done_offset -= BytesPerInt;
3081   }
3082   if (done_offset > start_offset) {
3083     mem = clear_memory(ctl, mem, dest, val, raw_val,
3084                        start_offset, phase->MakeConX(done_offset), phase);
3085   }
3086   if (done_offset < end_offset) { // emit the final 32-bit store
3087     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3088     adr = phase->transform(adr);
3089     const TypePtr* atp = TypeRawPtr::BOTTOM;
3090     if (val != NULL) {
3091       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3092       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3093     } else {
3094       assert(raw_val == NULL, "val may not be null");
3095       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3096     }
3097     mem = phase->transform(mem);
3098     done_offset += BytesPerInt;
3099   }
3100   assert(done_offset == end_offset, "");
3101   return mem;
3102 }
3103 
3104 //=============================================================================
3105 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3106   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3107     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3108 #ifdef ASSERT
3109   , _pair_idx(0)
3110 #endif
3111 {
3112   init_class_id(Class_MemBar);
3113   Node* top = C->top();
3114   init_req(TypeFunc::I_O,top);
3115   init_req(TypeFunc::FramePtr,top);
3116   init_req(TypeFunc::ReturnAdr,top);
3117   if (precedent != NULL)
3118     init_req(TypeFunc::Parms, precedent);
3119 }
3120 
3121 //------------------------------cmp--------------------------------------------
3122 uint MemBarNode::hash() const { return NO_HASH; }
3123 uint MemBarNode::cmp( const Node &n ) const {
3124   return (&n == this);          // Always fail except on self
3125 }
3126 
3127 //------------------------------make-------------------------------------------
3128 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3129   switch (opcode) {
3130   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3131   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3132   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3133   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3134   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3135   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3136   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3137   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3138   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3139   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3140   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3141   default: ShouldNotReachHere(); return NULL;
3142   }
3143 }
3144 
3145 void MemBarNode::remove(PhaseIterGVN *igvn) {
3146   if (outcnt() != 2) {
3147     return;
3148   }
3149   if (trailing_store() || trailing_load_store()) {
3150     MemBarNode* leading = leading_membar();
3151     if (leading != NULL) {
3152       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3153       leading->remove(igvn);
3154     }
3155   }
3156   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3157   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3158 }
3159 
3160 //------------------------------Ideal------------------------------------------
3161 // Return a node which is more "ideal" than the current node.  Strip out
3162 // control copies
3163 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3164   if (remove_dead_region(phase, can_reshape)) return this;
3165   // Don't bother trying to transform a dead node
3166   if (in(0) && in(0)->is_top()) {
3167     return NULL;
3168   }
3169 
3170 #if INCLUDE_ZGC
3171   if (UseZGC) {
3172     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3173       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3174       set_req(MemBarNode::Precedent, load_node);
3175       return this;
3176     }
3177   }
3178 #endif
3179 
3180   bool progress = false;
3181   // Eliminate volatile MemBars for scalar replaced objects.
3182   if (can_reshape && req() == (Precedent+1)) {
3183     bool eliminate = false;
3184     int opc = Opcode();
3185     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3186       // Volatile field loads and stores.
3187       Node* my_mem = in(MemBarNode::Precedent);
3188       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3189       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3190         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3191         // replace this Precedent (decodeN) with the Load instead.
3192         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3193           Node* load_node = my_mem->in(1);
3194           set_req(MemBarNode::Precedent, load_node);
3195           phase->is_IterGVN()->_worklist.push(my_mem);
3196           my_mem = load_node;
3197         } else {
3198           assert(my_mem->unique_out() == this, "sanity");
3199           del_req(Precedent);
3200           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3201           my_mem = NULL;
3202         }
3203         progress = true;
3204       }
3205       if (my_mem != NULL && my_mem->is_Mem()) {
3206         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3207         // Check for scalar replaced object reference.
3208         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3209             t_oop->offset() != Type::OffsetBot &&
3210             t_oop->offset() != Type::OffsetTop) {
3211           eliminate = true;
3212         }
3213       }
3214     } else if (opc == Op_MemBarRelease) {
3215       // Final field stores.
3216       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3217       if ((alloc != NULL) && alloc->is_Allocate() &&
3218           alloc->as_Allocate()->does_not_escape_thread()) {
3219         // The allocated object does not escape.
3220         eliminate = true;
3221       }
3222     }
3223     if (eliminate) {
3224       // Replace MemBar projections by its inputs.
3225       PhaseIterGVN* igvn = phase->is_IterGVN();
3226       remove(igvn);
3227       // Must return either the original node (now dead) or a new node
3228       // (Do not return a top here, since that would break the uniqueness of top.)
3229       return new ConINode(TypeInt::ZERO);
3230     }
3231   }
3232   return progress ? this : NULL;
3233 }
3234 
3235 //------------------------------Value------------------------------------------
3236 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3237   if( !in(0) ) return Type::TOP;
3238   if( phase->type(in(0)) == Type::TOP )
3239     return Type::TOP;
3240   return TypeTuple::MEMBAR;
3241 }
3242 
3243 //------------------------------match------------------------------------------
3244 // Construct projections for memory.
3245 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3246   switch (proj->_con) {
3247   case TypeFunc::Control:
3248   case TypeFunc::Memory:
3249     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3250   }
3251   ShouldNotReachHere();
3252   return NULL;
3253 }
3254 
3255 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3256   trailing->_kind = TrailingStore;
3257   leading->_kind = LeadingStore;
3258 #ifdef ASSERT
3259   trailing->_pair_idx = leading->_idx;
3260   leading->_pair_idx = leading->_idx;
3261 #endif
3262 }
3263 
3264 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3265   trailing->_kind = TrailingLoadStore;
3266   leading->_kind = LeadingLoadStore;
3267 #ifdef ASSERT
3268   trailing->_pair_idx = leading->_idx;
3269   leading->_pair_idx = leading->_idx;
3270 #endif
3271 }
3272 
3273 MemBarNode* MemBarNode::trailing_membar() const {
3274   Node* trailing = (Node*)this;
3275   VectorSet seen(Thread::current()->resource_area());
3276   while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()) {
3277     if (seen.test_set(trailing->_idx)) {
3278       // Dying subgraph?
3279       return NULL;
3280     }
3281     for (DUIterator_Fast jmax, j = trailing->fast_outs(jmax); j < jmax; j++) {
3282       Node* next = trailing->fast_out(j);
3283       if (next != trailing && next->is_CFG()) {
3284         trailing = next;
3285         break;
3286       }
3287     }
3288   }
3289   MemBarNode* mb = trailing->as_MemBar();
3290   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3291          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3292   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3293   return mb;
3294 }
3295 
3296 MemBarNode* MemBarNode::leading_membar() const {
3297   VectorSet seen(Thread::current()->resource_area());
3298   Node* leading = in(0);
3299   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3300     if (seen.test_set(leading->_idx)) {
3301       // Dying subgraph?
3302       return NULL;
3303     }
3304     if (leading->is_Region()) {
3305       leading = leading->in(1);
3306     } else {
3307       leading = leading->in(0);
3308     }
3309   }
3310 #ifdef ASSERT
3311   Unique_Node_List wq;
3312   wq.push((Node*)this);
3313   uint found = 0;
3314   for (uint i = 0; i < wq.size(); i++) {
3315     Node* n = wq.at(i);
3316     if (n->is_Region()) {
3317       for (uint j = 1; j < n->req(); j++) {
3318         Node* in = n->in(j);
3319         if (in != NULL && !in->is_top()) {
3320           wq.push(in);
3321         }
3322       }
3323     } else {
3324       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3325         assert(n == leading, "consistency check failed");
3326         found++;
3327       } else {
3328         Node* in = n->in(0);
3329         if (in != NULL && !in->is_top()) {
3330           wq.push(in);
3331         }
3332       }
3333     }
3334   }
3335   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3336 #endif
3337   if (leading == NULL) {
3338     return NULL;
3339   }
3340   MemBarNode* mb = leading->as_MemBar();
3341   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3342          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3343   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3344   return mb;
3345 }
3346 
3347 //===========================InitializeNode====================================
3348 // SUMMARY:
3349 // This node acts as a memory barrier on raw memory, after some raw stores.
3350 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3351 // The Initialize can 'capture' suitably constrained stores as raw inits.
3352 // It can coalesce related raw stores into larger units (called 'tiles').
3353 // It can avoid zeroing new storage for memory units which have raw inits.
3354 // At macro-expansion, it is marked 'complete', and does not optimize further.
3355 //
3356 // EXAMPLE:
3357 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3358 //   ctl = incoming control; mem* = incoming memory
3359 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3360 // First allocate uninitialized memory and fill in the header:
3361 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3362 //   ctl := alloc.Control; mem* := alloc.Memory*
3363 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3364 // Then initialize to zero the non-header parts of the raw memory block:
3365 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3366 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3367 // After the initialize node executes, the object is ready for service:
3368 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3369 // Suppose its body is immediately initialized as {1,2}:
3370 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3371 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3372 //   mem.SLICE(#short[*]) := store2
3373 //
3374 // DETAILS:
3375 // An InitializeNode collects and isolates object initialization after
3376 // an AllocateNode and before the next possible safepoint.  As a
3377 // memory barrier (MemBarNode), it keeps critical stores from drifting
3378 // down past any safepoint or any publication of the allocation.
3379 // Before this barrier, a newly-allocated object may have uninitialized bits.
3380 // After this barrier, it may be treated as a real oop, and GC is allowed.
3381 //
3382 // The semantics of the InitializeNode include an implicit zeroing of
3383 // the new object from object header to the end of the object.
3384 // (The object header and end are determined by the AllocateNode.)
3385 //
3386 // Certain stores may be added as direct inputs to the InitializeNode.
3387 // These stores must update raw memory, and they must be to addresses
3388 // derived from the raw address produced by AllocateNode, and with
3389 // a constant offset.  They must be ordered by increasing offset.
3390 // The first one is at in(RawStores), the last at in(req()-1).
3391 // Unlike most memory operations, they are not linked in a chain,
3392 // but are displayed in parallel as users of the rawmem output of
3393 // the allocation.
3394 //
3395 // (See comments in InitializeNode::capture_store, which continue
3396 // the example given above.)
3397 //
3398 // When the associated Allocate is macro-expanded, the InitializeNode
3399 // may be rewritten to optimize collected stores.  A ClearArrayNode
3400 // may also be created at that point to represent any required zeroing.
3401 // The InitializeNode is then marked 'complete', prohibiting further
3402 // capturing of nearby memory operations.
3403 //
3404 // During macro-expansion, all captured initializations which store
3405 // constant values of 32 bits or smaller are coalesced (if advantageous)
3406 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3407 // initialized in fewer memory operations.  Memory words which are
3408 // covered by neither tiles nor non-constant stores are pre-zeroed
3409 // by explicit stores of zero.  (The code shape happens to do all
3410 // zeroing first, then all other stores, with both sequences occurring
3411 // in order of ascending offsets.)
3412 //
3413 // Alternatively, code may be inserted between an AllocateNode and its
3414 // InitializeNode, to perform arbitrary initialization of the new object.
3415 // E.g., the object copying intrinsics insert complex data transfers here.
3416 // The initialization must then be marked as 'complete' disable the
3417 // built-in zeroing semantics and the collection of initializing stores.
3418 //
3419 // While an InitializeNode is incomplete, reads from the memory state
3420 // produced by it are optimizable if they match the control edge and
3421 // new oop address associated with the allocation/initialization.
3422 // They return a stored value (if the offset matches) or else zero.
3423 // A write to the memory state, if it matches control and address,
3424 // and if it is to a constant offset, may be 'captured' by the
3425 // InitializeNode.  It is cloned as a raw memory operation and rewired
3426 // inside the initialization, to the raw oop produced by the allocation.
3427 // Operations on addresses which are provably distinct (e.g., to
3428 // other AllocateNodes) are allowed to bypass the initialization.
3429 //
3430 // The effect of all this is to consolidate object initialization
3431 // (both arrays and non-arrays, both piecewise and bulk) into a
3432 // single location, where it can be optimized as a unit.
3433 //
3434 // Only stores with an offset less than TrackedInitializationLimit words
3435 // will be considered for capture by an InitializeNode.  This puts a
3436 // reasonable limit on the complexity of optimized initializations.
3437 
3438 //---------------------------InitializeNode------------------------------------
3439 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3440   : MemBarNode(C, adr_type, rawoop),
3441     _is_complete(Incomplete), _does_not_escape(false)
3442 {
3443   init_class_id(Class_Initialize);
3444 
3445   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3446   assert(in(RawAddress) == rawoop, "proper init");
3447   // Note:  allocation() can be NULL, for secondary initialization barriers
3448 }
3449 
3450 // Since this node is not matched, it will be processed by the
3451 // register allocator.  Declare that there are no constraints
3452 // on the allocation of the RawAddress edge.
3453 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3454   // This edge should be set to top, by the set_complete.  But be conservative.
3455   if (idx == InitializeNode::RawAddress)
3456     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3457   return RegMask::Empty;
3458 }
3459 
3460 Node* InitializeNode::memory(uint alias_idx) {
3461   Node* mem = in(Memory);
3462   if (mem->is_MergeMem()) {
3463     return mem->as_MergeMem()->memory_at(alias_idx);
3464   } else {
3465     // incoming raw memory is not split
3466     return mem;
3467   }
3468 }
3469 
3470 bool InitializeNode::is_non_zero() {
3471   if (is_complete())  return false;
3472   remove_extra_zeroes();
3473   return (req() > RawStores);
3474 }
3475 
3476 void InitializeNode::set_complete(PhaseGVN* phase) {
3477   assert(!is_complete(), "caller responsibility");
3478   _is_complete = Complete;
3479 
3480   // After this node is complete, it contains a bunch of
3481   // raw-memory initializations.  There is no need for
3482   // it to have anything to do with non-raw memory effects.
3483   // Therefore, tell all non-raw users to re-optimize themselves,
3484   // after skipping the memory effects of this initialization.
3485   PhaseIterGVN* igvn = phase->is_IterGVN();
3486   if (igvn)  igvn->add_users_to_worklist(this);
3487 }
3488 
3489 // convenience function
3490 // return false if the init contains any stores already
3491 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3492   InitializeNode* init = initialization();
3493   if (init == NULL || init->is_complete()) {
3494     return false;
3495   }
3496   init->remove_extra_zeroes();
3497   // for now, if this allocation has already collected any inits, bail:
3498   if (init->is_non_zero())  return false;
3499   init->set_complete(phase);
3500   return true;
3501 }
3502 
3503 void InitializeNode::remove_extra_zeroes() {
3504   if (req() == RawStores)  return;
3505   Node* zmem = zero_memory();
3506   uint fill = RawStores;
3507   for (uint i = fill; i < req(); i++) {
3508     Node* n = in(i);
3509     if (n->is_top() || n == zmem)  continue;  // skip
3510     if (fill < i)  set_req(fill, n);          // compact
3511     ++fill;
3512   }
3513   // delete any empty spaces created:
3514   while (fill < req()) {
3515     del_req(fill);
3516   }
3517 }
3518 
3519 // Helper for remembering which stores go with which offsets.
3520 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3521   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3522   intptr_t offset = -1;
3523   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3524                                                phase, offset);
3525   if (base == NULL)     return -1;  // something is dead,
3526   if (offset < 0)       return -1;  //        dead, dead
3527   return offset;
3528 }
3529 
3530 // Helper for proving that an initialization expression is
3531 // "simple enough" to be folded into an object initialization.
3532 // Attempts to prove that a store's initial value 'n' can be captured
3533 // within the initialization without creating a vicious cycle, such as:
3534 //     { Foo p = new Foo(); p.next = p; }
3535 // True for constants and parameters and small combinations thereof.
3536 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3537   if (n == NULL)      return true;   // (can this really happen?)
3538   if (n->is_Proj())   n = n->in(0);
3539   if (n == this)      return false;  // found a cycle
3540   if (n->is_Con())    return true;
3541   if (n->is_Start())  return true;   // params, etc., are OK
3542   if (n->is_Root())   return true;   // even better
3543 
3544   Node* ctl = n->in(0);
3545   if (ctl != NULL && !ctl->is_top()) {
3546     if (ctl->is_Proj())  ctl = ctl->in(0);
3547     if (ctl == this)  return false;
3548 
3549     // If we already know that the enclosing memory op is pinned right after
3550     // the init, then any control flow that the store has picked up
3551     // must have preceded the init, or else be equal to the init.
3552     // Even after loop optimizations (which might change control edges)
3553     // a store is never pinned *before* the availability of its inputs.
3554     if (!MemNode::all_controls_dominate(n, this))
3555       return false;                  // failed to prove a good control
3556   }
3557 
3558   // Check data edges for possible dependencies on 'this'.
3559   if ((count += 1) > 20)  return false;  // complexity limit
3560   for (uint i = 1; i < n->req(); i++) {
3561     Node* m = n->in(i);
3562     if (m == NULL || m == n || m->is_top())  continue;
3563     uint first_i = n->find_edge(m);
3564     if (i != first_i)  continue;  // process duplicate edge just once
3565     if (!detect_init_independence(m, count)) {
3566       return false;
3567     }
3568   }
3569 
3570   return true;
3571 }
3572 
3573 // Here are all the checks a Store must pass before it can be moved into
3574 // an initialization.  Returns zero if a check fails.
3575 // On success, returns the (constant) offset to which the store applies,
3576 // within the initialized memory.
3577 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3578   const int FAIL = 0;
3579   if (st->is_unaligned_access()) {
3580     return FAIL;
3581   }
3582   if (st->req() != MemNode::ValueIn + 1)
3583     return FAIL;                // an inscrutable StoreNode (card mark?)
3584   Node* ctl = st->in(MemNode::Control);
3585   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3586     return FAIL;                // must be unconditional after the initialization
3587   Node* mem = st->in(MemNode::Memory);
3588   if (!(mem->is_Proj() && mem->in(0) == this))
3589     return FAIL;                // must not be preceded by other stores
3590   Node* adr = st->in(MemNode::Address);
3591   intptr_t offset;
3592   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3593   if (alloc == NULL)
3594     return FAIL;                // inscrutable address
3595   if (alloc != allocation())
3596     return FAIL;                // wrong allocation!  (store needs to float up)
3597   Node* val = st->in(MemNode::ValueIn);
3598   int complexity_count = 0;
3599   if (!detect_init_independence(val, complexity_count))
3600     return FAIL;                // stored value must be 'simple enough'
3601 
3602   // The Store can be captured only if nothing after the allocation
3603   // and before the Store is using the memory location that the store
3604   // overwrites.
3605   bool failed = false;
3606   // If is_complete_with_arraycopy() is true the shape of the graph is
3607   // well defined and is safe so no need for extra checks.
3608   if (!is_complete_with_arraycopy()) {
3609     // We are going to look at each use of the memory state following
3610     // the allocation to make sure nothing reads the memory that the
3611     // Store writes.
3612     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3613     int alias_idx = phase->C->get_alias_index(t_adr);
3614     ResourceMark rm;
3615     Unique_Node_List mems;
3616     mems.push(mem);
3617     Node* unique_merge = NULL;
3618     for (uint next = 0; next < mems.size(); ++next) {
3619       Node *m  = mems.at(next);
3620       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3621         Node *n = m->fast_out(j);
3622         if (n->outcnt() == 0) {
3623           continue;
3624         }
3625         if (n == st) {
3626           continue;
3627         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3628           // If the control of this use is different from the control
3629           // of the Store which is right after the InitializeNode then
3630           // this node cannot be between the InitializeNode and the
3631           // Store.
3632           continue;
3633         } else if (n->is_MergeMem()) {
3634           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3635             // We can hit a MergeMemNode (that will likely go away
3636             // later) that is a direct use of the memory state
3637             // following the InitializeNode on the same slice as the
3638             // store node that we'd like to capture. We need to check
3639             // the uses of the MergeMemNode.
3640             mems.push(n);
3641           }
3642         } else if (n->is_Mem()) {
3643           Node* other_adr = n->in(MemNode::Address);
3644           if (other_adr == adr) {
3645             failed = true;
3646             break;
3647           } else {
3648             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3649             if (other_t_adr != NULL) {
3650               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3651               if (other_alias_idx == alias_idx) {
3652                 // A load from the same memory slice as the store right
3653                 // after the InitializeNode. We check the control of the
3654                 // object/array that is loaded from. If it's the same as
3655                 // the store control then we cannot capture the store.
3656                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3657                 Node* base = other_adr;
3658                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3659                 base = base->in(AddPNode::Base);
3660                 if (base != NULL) {
3661                   base = base->uncast();
3662                   if (base->is_Proj() && base->in(0) == alloc) {
3663                     failed = true;
3664                     break;
3665                   }
3666                 }
3667               }
3668             }
3669           }
3670         } else {
3671           failed = true;
3672           break;
3673         }
3674       }
3675     }
3676   }
3677   if (failed) {
3678     if (!can_reshape) {
3679       // We decided we couldn't capture the store during parsing. We
3680       // should try again during the next IGVN once the graph is
3681       // cleaner.
3682       phase->C->record_for_igvn(st);
3683     }
3684     return FAIL;
3685   }
3686 
3687   return offset;                // success
3688 }
3689 
3690 // Find the captured store in(i) which corresponds to the range
3691 // [start..start+size) in the initialized object.
3692 // If there is one, return its index i.  If there isn't, return the
3693 // negative of the index where it should be inserted.
3694 // Return 0 if the queried range overlaps an initialization boundary
3695 // or if dead code is encountered.
3696 // If size_in_bytes is zero, do not bother with overlap checks.
3697 int InitializeNode::captured_store_insertion_point(intptr_t start,
3698                                                    int size_in_bytes,
3699                                                    PhaseTransform* phase) {
3700   const int FAIL = 0, MAX_STORE = BytesPerLong;
3701 
3702   if (is_complete())
3703     return FAIL;                // arraycopy got here first; punt
3704 
3705   assert(allocation() != NULL, "must be present");
3706 
3707   // no negatives, no header fields:
3708   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3709 
3710   // after a certain size, we bail out on tracking all the stores:
3711   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3712   if (start >= ti_limit)  return FAIL;
3713 
3714   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3715     if (i >= limit)  return -(int)i; // not found; here is where to put it
3716 
3717     Node*    st     = in(i);
3718     intptr_t st_off = get_store_offset(st, phase);
3719     if (st_off < 0) {
3720       if (st != zero_memory()) {
3721         return FAIL;            // bail out if there is dead garbage
3722       }
3723     } else if (st_off > start) {
3724       // ...we are done, since stores are ordered
3725       if (st_off < start + size_in_bytes) {
3726         return FAIL;            // the next store overlaps
3727       }
3728       return -(int)i;           // not found; here is where to put it
3729     } else if (st_off < start) {
3730       if (size_in_bytes != 0 &&
3731           start < st_off + MAX_STORE &&
3732           start < st_off + st->as_Store()->memory_size()) {
3733         return FAIL;            // the previous store overlaps
3734       }
3735     } else {
3736       if (size_in_bytes != 0 &&
3737           st->as_Store()->memory_size() != size_in_bytes) {
3738         return FAIL;            // mismatched store size
3739       }
3740       return i;
3741     }
3742 
3743     ++i;
3744   }
3745 }
3746 
3747 // Look for a captured store which initializes at the offset 'start'
3748 // with the given size.  If there is no such store, and no other
3749 // initialization interferes, then return zero_memory (the memory
3750 // projection of the AllocateNode).
3751 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3752                                           PhaseTransform* phase) {
3753   assert(stores_are_sane(phase), "");
3754   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3755   if (i == 0) {
3756     return NULL;                // something is dead
3757   } else if (i < 0) {
3758     return zero_memory();       // just primordial zero bits here
3759   } else {
3760     Node* st = in(i);           // here is the store at this position
3761     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3762     return st;
3763   }
3764 }
3765 
3766 // Create, as a raw pointer, an address within my new object at 'offset'.
3767 Node* InitializeNode::make_raw_address(intptr_t offset,
3768                                        PhaseTransform* phase) {
3769   Node* addr = in(RawAddress);
3770   if (offset != 0) {
3771     Compile* C = phase->C;
3772     addr = phase->transform( new AddPNode(C->top(), addr,
3773                                                  phase->MakeConX(offset)) );
3774   }
3775   return addr;
3776 }
3777 
3778 // Clone the given store, converting it into a raw store
3779 // initializing a field or element of my new object.
3780 // Caller is responsible for retiring the original store,
3781 // with subsume_node or the like.
3782 //
3783 // From the example above InitializeNode::InitializeNode,
3784 // here are the old stores to be captured:
3785 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3786 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3787 //
3788 // Here is the changed code; note the extra edges on init:
3789 //   alloc = (Allocate ...)
3790 //   rawoop = alloc.RawAddress
3791 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3792 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3793 //   init = (Initialize alloc.Control alloc.Memory rawoop
3794 //                      rawstore1 rawstore2)
3795 //
3796 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3797                                     PhaseTransform* phase, bool can_reshape) {
3798   assert(stores_are_sane(phase), "");
3799 
3800   if (start < 0)  return NULL;
3801   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3802 
3803   Compile* C = phase->C;
3804   int size_in_bytes = st->memory_size();
3805   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3806   if (i == 0)  return NULL;     // bail out
3807   Node* prev_mem = NULL;        // raw memory for the captured store
3808   if (i > 0) {
3809     prev_mem = in(i);           // there is a pre-existing store under this one
3810     set_req(i, C->top());       // temporarily disconnect it
3811     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3812   } else {
3813     i = -i;                     // no pre-existing store
3814     prev_mem = zero_memory();   // a slice of the newly allocated object
3815     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3816       set_req(--i, C->top());   // reuse this edge; it has been folded away
3817     else
3818       ins_req(i, C->top());     // build a new edge
3819   }
3820   Node* new_st = st->clone();
3821   new_st->set_req(MemNode::Control, in(Control));
3822   new_st->set_req(MemNode::Memory,  prev_mem);
3823   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3824   new_st = phase->transform(new_st);
3825 
3826   // At this point, new_st might have swallowed a pre-existing store
3827   // at the same offset, or perhaps new_st might have disappeared,
3828   // if it redundantly stored the same value (or zero to fresh memory).
3829 
3830   // In any case, wire it in:
3831   phase->igvn_rehash_node_delayed(this);
3832   set_req(i, new_st);
3833 
3834   // The caller may now kill the old guy.
3835   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3836   assert(check_st == new_st || check_st == NULL, "must be findable");
3837   assert(!is_complete(), "");
3838   return new_st;
3839 }
3840 
3841 static bool store_constant(jlong* tiles, int num_tiles,
3842                            intptr_t st_off, int st_size,
3843                            jlong con) {
3844   if ((st_off & (st_size-1)) != 0)
3845     return false;               // strange store offset (assume size==2**N)
3846   address addr = (address)tiles + st_off;
3847   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3848   switch (st_size) {
3849   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3850   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3851   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3852   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3853   default: return false;        // strange store size (detect size!=2**N here)
3854   }
3855   return true;                  // return success to caller
3856 }
3857 
3858 // Coalesce subword constants into int constants and possibly
3859 // into long constants.  The goal, if the CPU permits,
3860 // is to initialize the object with a small number of 64-bit tiles.
3861 // Also, convert floating-point constants to bit patterns.
3862 // Non-constants are not relevant to this pass.
3863 //
3864 // In terms of the running example on InitializeNode::InitializeNode
3865 // and InitializeNode::capture_store, here is the transformation
3866 // of rawstore1 and rawstore2 into rawstore12:
3867 //   alloc = (Allocate ...)
3868 //   rawoop = alloc.RawAddress
3869 //   tile12 = 0x00010002
3870 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3871 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3872 //
3873 void
3874 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3875                                         Node* size_in_bytes,
3876                                         PhaseGVN* phase) {
3877   Compile* C = phase->C;
3878 
3879   assert(stores_are_sane(phase), "");
3880   // Note:  After this pass, they are not completely sane,
3881   // since there may be some overlaps.
3882 
3883   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3884 
3885   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3886   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3887   size_limit = MIN2(size_limit, ti_limit);
3888   size_limit = align_up(size_limit, BytesPerLong);
3889   int num_tiles = size_limit / BytesPerLong;
3890 
3891   // allocate space for the tile map:
3892   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3893   jlong  tiles_buf[small_len];
3894   Node*  nodes_buf[small_len];
3895   jlong  inits_buf[small_len];
3896   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3897                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3898   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3899                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3900   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3901                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3902   // tiles: exact bitwise model of all primitive constants
3903   // nodes: last constant-storing node subsumed into the tiles model
3904   // inits: which bytes (in each tile) are touched by any initializations
3905 
3906   //// Pass A: Fill in the tile model with any relevant stores.
3907 
3908   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3909   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3910   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3911   Node* zmem = zero_memory(); // initially zero memory state
3912   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3913     Node* st = in(i);
3914     intptr_t st_off = get_store_offset(st, phase);
3915 
3916     // Figure out the store's offset and constant value:
3917     if (st_off < header_size)             continue; //skip (ignore header)
3918     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3919     int st_size = st->as_Store()->memory_size();
3920     if (st_off + st_size > size_limit)    break;
3921 
3922     // Record which bytes are touched, whether by constant or not.
3923     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3924       continue;                 // skip (strange store size)
3925 
3926     const Type* val = phase->type(st->in(MemNode::ValueIn));
3927     if (!val->singleton())                continue; //skip (non-con store)
3928     BasicType type = val->basic_type();
3929 
3930     jlong con = 0;
3931     switch (type) {
3932     case T_INT:    con = val->is_int()->get_con();  break;
3933     case T_LONG:   con = val->is_long()->get_con(); break;
3934     case T_FLOAT:  con = jint_cast(val->getf());    break;
3935     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3936     default:                              continue; //skip (odd store type)
3937     }
3938 
3939     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3940         st->Opcode() == Op_StoreL) {
3941       continue;                 // This StoreL is already optimal.
3942     }
3943 
3944     // Store down the constant.
3945     store_constant(tiles, num_tiles, st_off, st_size, con);
3946 
3947     intptr_t j = st_off >> LogBytesPerLong;
3948 
3949     if (type == T_INT && st_size == BytesPerInt
3950         && (st_off & BytesPerInt) == BytesPerInt) {
3951       jlong lcon = tiles[j];
3952       if (!Matcher::isSimpleConstant64(lcon) &&
3953           st->Opcode() == Op_StoreI) {
3954         // This StoreI is already optimal by itself.
3955         jint* intcon = (jint*) &tiles[j];
3956         intcon[1] = 0;  // undo the store_constant()
3957 
3958         // If the previous store is also optimal by itself, back up and
3959         // undo the action of the previous loop iteration... if we can.
3960         // But if we can't, just let the previous half take care of itself.
3961         st = nodes[j];
3962         st_off -= BytesPerInt;
3963         con = intcon[0];
3964         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3965           assert(st_off >= header_size, "still ignoring header");
3966           assert(get_store_offset(st, phase) == st_off, "must be");
3967           assert(in(i-1) == zmem, "must be");
3968           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3969           assert(con == tcon->is_int()->get_con(), "must be");
3970           // Undo the effects of the previous loop trip, which swallowed st:
3971           intcon[0] = 0;        // undo store_constant()
3972           set_req(i-1, st);     // undo set_req(i, zmem)
3973           nodes[j] = NULL;      // undo nodes[j] = st
3974           --old_subword;        // undo ++old_subword
3975         }
3976         continue;               // This StoreI is already optimal.
3977       }
3978     }
3979 
3980     // This store is not needed.
3981     set_req(i, zmem);
3982     nodes[j] = st;              // record for the moment
3983     if (st_size < BytesPerLong) // something has changed
3984           ++old_subword;        // includes int/float, but who's counting...
3985     else  ++old_long;
3986   }
3987 
3988   if ((old_subword + old_long) == 0)
3989     return;                     // nothing more to do
3990 
3991   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3992   // Be sure to insert them before overlapping non-constant stores.
3993   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3994   for (int j = 0; j < num_tiles; j++) {
3995     jlong con  = tiles[j];
3996     jlong init = inits[j];
3997     if (con == 0)  continue;
3998     jint con0,  con1;           // split the constant, address-wise
3999     jint init0, init1;          // split the init map, address-wise
4000     { union { jlong con; jint intcon[2]; } u;
4001       u.con = con;
4002       con0  = u.intcon[0];
4003       con1  = u.intcon[1];
4004       u.con = init;
4005       init0 = u.intcon[0];
4006       init1 = u.intcon[1];
4007     }
4008 
4009     Node* old = nodes[j];
4010     assert(old != NULL, "need the prior store");
4011     intptr_t offset = (j * BytesPerLong);
4012 
4013     bool split = !Matcher::isSimpleConstant64(con);
4014 
4015     if (offset < header_size) {
4016       assert(offset + BytesPerInt >= header_size, "second int counts");
4017       assert(*(jint*)&tiles[j] == 0, "junk in header");
4018       split = true;             // only the second word counts
4019       // Example:  int a[] = { 42 ... }
4020     } else if (con0 == 0 && init0 == -1) {
4021       split = true;             // first word is covered by full inits
4022       // Example:  int a[] = { ... foo(), 42 ... }
4023     } else if (con1 == 0 && init1 == -1) {
4024       split = true;             // second word is covered by full inits
4025       // Example:  int a[] = { ... 42, foo() ... }
4026     }
4027 
4028     // Here's a case where init0 is neither 0 nor -1:
4029     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4030     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4031     // In this case the tile is not split; it is (jlong)42.
4032     // The big tile is stored down, and then the foo() value is inserted.
4033     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4034 
4035     Node* ctl = old->in(MemNode::Control);
4036     Node* adr = make_raw_address(offset, phase);
4037     const TypePtr* atp = TypeRawPtr::BOTTOM;
4038 
4039     // One or two coalesced stores to plop down.
4040     Node*    st[2];
4041     intptr_t off[2];
4042     int  nst = 0;
4043     if (!split) {
4044       ++new_long;
4045       off[nst] = offset;
4046       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4047                                   phase->longcon(con), T_LONG, MemNode::unordered);
4048     } else {
4049       // Omit either if it is a zero.
4050       if (con0 != 0) {
4051         ++new_int;
4052         off[nst]  = offset;
4053         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4054                                     phase->intcon(con0), T_INT, MemNode::unordered);
4055       }
4056       if (con1 != 0) {
4057         ++new_int;
4058         offset += BytesPerInt;
4059         adr = make_raw_address(offset, phase);
4060         off[nst]  = offset;
4061         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4062                                     phase->intcon(con1), T_INT, MemNode::unordered);
4063       }
4064     }
4065 
4066     // Insert second store first, then the first before the second.
4067     // Insert each one just before any overlapping non-constant stores.
4068     while (nst > 0) {
4069       Node* st1 = st[--nst];
4070       C->copy_node_notes_to(st1, old);
4071       st1 = phase->transform(st1);
4072       offset = off[nst];
4073       assert(offset >= header_size, "do not smash header");
4074       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4075       guarantee(ins_idx != 0, "must re-insert constant store");
4076       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4077       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4078         set_req(--ins_idx, st1);
4079       else
4080         ins_req(ins_idx, st1);
4081     }
4082   }
4083 
4084   if (PrintCompilation && WizardMode)
4085     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4086                   old_subword, old_long, new_int, new_long);
4087   if (C->log() != NULL)
4088     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4089                    old_subword, old_long, new_int, new_long);
4090 
4091   // Clean up any remaining occurrences of zmem:
4092   remove_extra_zeroes();
4093 }
4094 
4095 // Explore forward from in(start) to find the first fully initialized
4096 // word, and return its offset.  Skip groups of subword stores which
4097 // together initialize full words.  If in(start) is itself part of a
4098 // fully initialized word, return the offset of in(start).  If there
4099 // are no following full-word stores, or if something is fishy, return
4100 // a negative value.
4101 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4102   int       int_map = 0;
4103   intptr_t  int_map_off = 0;
4104   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4105 
4106   for (uint i = start, limit = req(); i < limit; i++) {
4107     Node* st = in(i);
4108 
4109     intptr_t st_off = get_store_offset(st, phase);
4110     if (st_off < 0)  break;  // return conservative answer
4111 
4112     int st_size = st->as_Store()->memory_size();
4113     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4114       return st_off;            // we found a complete word init
4115     }
4116 
4117     // update the map:
4118 
4119     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4120     if (this_int_off != int_map_off) {
4121       // reset the map:
4122       int_map = 0;
4123       int_map_off = this_int_off;
4124     }
4125 
4126     int subword_off = st_off - this_int_off;
4127     int_map |= right_n_bits(st_size) << subword_off;
4128     if ((int_map & FULL_MAP) == FULL_MAP) {
4129       return this_int_off;      // we found a complete word init
4130     }
4131 
4132     // Did this store hit or cross the word boundary?
4133     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4134     if (next_int_off == this_int_off + BytesPerInt) {
4135       // We passed the current int, without fully initializing it.
4136       int_map_off = next_int_off;
4137       int_map >>= BytesPerInt;
4138     } else if (next_int_off > this_int_off + BytesPerInt) {
4139       // We passed the current and next int.
4140       return this_int_off + BytesPerInt;
4141     }
4142   }
4143 
4144   return -1;
4145 }
4146 
4147 
4148 // Called when the associated AllocateNode is expanded into CFG.
4149 // At this point, we may perform additional optimizations.
4150 // Linearize the stores by ascending offset, to make memory
4151 // activity as coherent as possible.
4152 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4153                                       intptr_t header_size,
4154                                       Node* size_in_bytes,
4155                                       PhaseGVN* phase) {
4156   assert(!is_complete(), "not already complete");
4157   assert(stores_are_sane(phase), "");
4158   assert(allocation() != NULL, "must be present");
4159 
4160   remove_extra_zeroes();
4161 
4162   if (ReduceFieldZeroing || ReduceBulkZeroing)
4163     // reduce instruction count for common initialization patterns
4164     coalesce_subword_stores(header_size, size_in_bytes, phase);
4165 
4166   Node* zmem = zero_memory();   // initially zero memory state
4167   Node* inits = zmem;           // accumulating a linearized chain of inits
4168   #ifdef ASSERT
4169   intptr_t first_offset = allocation()->minimum_header_size();
4170   intptr_t last_init_off = first_offset;  // previous init offset
4171   intptr_t last_init_end = first_offset;  // previous init offset+size
4172   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4173   #endif
4174   intptr_t zeroes_done = header_size;
4175 
4176   bool do_zeroing = true;       // we might give up if inits are very sparse
4177   int  big_init_gaps = 0;       // how many large gaps have we seen?
4178 
4179   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4180   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4181 
4182   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4183     Node* st = in(i);
4184     intptr_t st_off = get_store_offset(st, phase);
4185     if (st_off < 0)
4186       break;                    // unknown junk in the inits
4187     if (st->in(MemNode::Memory) != zmem)
4188       break;                    // complicated store chains somehow in list
4189 
4190     int st_size = st->as_Store()->memory_size();
4191     intptr_t next_init_off = st_off + st_size;
4192 
4193     if (do_zeroing && zeroes_done < next_init_off) {
4194       // See if this store needs a zero before it or under it.
4195       intptr_t zeroes_needed = st_off;
4196 
4197       if (st_size < BytesPerInt) {
4198         // Look for subword stores which only partially initialize words.
4199         // If we find some, we must lay down some word-level zeroes first,
4200         // underneath the subword stores.
4201         //
4202         // Examples:
4203         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4204         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4205         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4206         //
4207         // Note:  coalesce_subword_stores may have already done this,
4208         // if it was prompted by constant non-zero subword initializers.
4209         // But this case can still arise with non-constant stores.
4210 
4211         intptr_t next_full_store = find_next_fullword_store(i, phase);
4212 
4213         // In the examples above:
4214         //   in(i)          p   q   r   s     x   y     z
4215         //   st_off        12  13  14  15    12  13    14
4216         //   st_size        1   1   1   1     1   1     1
4217         //   next_full_s.  12  16  16  16    16  16    16
4218         //   z's_done      12  16  16  16    12  16    12
4219         //   z's_needed    12  16  16  16    16  16    16
4220         //   zsize          0   0   0   0     4   0     4
4221         if (next_full_store < 0) {
4222           // Conservative tack:  Zero to end of current word.
4223           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4224         } else {
4225           // Zero to beginning of next fully initialized word.
4226           // Or, don't zero at all, if we are already in that word.
4227           assert(next_full_store >= zeroes_needed, "must go forward");
4228           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4229           zeroes_needed = next_full_store;
4230         }
4231       }
4232 
4233       if (zeroes_needed > zeroes_done) {
4234         intptr_t zsize = zeroes_needed - zeroes_done;
4235         // Do some incremental zeroing on rawmem, in parallel with inits.
4236         zeroes_done = align_down(zeroes_done, BytesPerInt);
4237         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4238                                               allocation()->in(AllocateNode::DefaultValue),
4239                                               allocation()->in(AllocateNode::RawDefaultValue),
4240                                               zeroes_done, zeroes_needed,
4241                                               phase);
4242         zeroes_done = zeroes_needed;
4243         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4244           do_zeroing = false;   // leave the hole, next time
4245       }
4246     }
4247 
4248     // Collect the store and move on:
4249     st->set_req(MemNode::Memory, inits);
4250     inits = st;                 // put it on the linearized chain
4251     set_req(i, zmem);           // unhook from previous position
4252 
4253     if (zeroes_done == st_off)
4254       zeroes_done = next_init_off;
4255 
4256     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4257 
4258     #ifdef ASSERT
4259     // Various order invariants.  Weaker than stores_are_sane because
4260     // a large constant tile can be filled in by smaller non-constant stores.
4261     assert(st_off >= last_init_off, "inits do not reverse");
4262     last_init_off = st_off;
4263     const Type* val = NULL;
4264     if (st_size >= BytesPerInt &&
4265         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4266         (int)val->basic_type() < (int)T_OBJECT) {
4267       assert(st_off >= last_tile_end, "tiles do not overlap");
4268       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4269       last_tile_end = MAX2(last_tile_end, next_init_off);
4270     } else {
4271       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4272       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4273       assert(st_off      >= last_init_end, "inits do not overlap");
4274       last_init_end = next_init_off;  // it's a non-tile
4275     }
4276     #endif //ASSERT
4277   }
4278 
4279   remove_extra_zeroes();        // clear out all the zmems left over
4280   add_req(inits);
4281 
4282   if (!(UseTLAB && ZeroTLAB)) {
4283     // If anything remains to be zeroed, zero it all now.
4284     zeroes_done = align_down(zeroes_done, BytesPerInt);
4285     // if it is the last unused 4 bytes of an instance, forget about it
4286     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4287     if (zeroes_done + BytesPerLong >= size_limit) {
4288       AllocateNode* alloc = allocation();
4289       assert(alloc != NULL, "must be present");
4290       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4291         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4292         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4293         if (zeroes_done == k->layout_helper())
4294           zeroes_done = size_limit;
4295       }
4296     }
4297     if (zeroes_done < size_limit) {
4298       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4299                                             allocation()->in(AllocateNode::DefaultValue),
4300                                             allocation()->in(AllocateNode::RawDefaultValue),
4301                                             zeroes_done, size_in_bytes, phase);
4302     }
4303   }
4304 
4305   set_complete(phase);
4306   return rawmem;
4307 }
4308 
4309 
4310 #ifdef ASSERT
4311 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4312   if (is_complete())
4313     return true;                // stores could be anything at this point
4314   assert(allocation() != NULL, "must be present");
4315   intptr_t last_off = allocation()->minimum_header_size();
4316   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4317     Node* st = in(i);
4318     intptr_t st_off = get_store_offset(st, phase);
4319     if (st_off < 0)  continue;  // ignore dead garbage
4320     if (last_off > st_off) {
4321       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4322       this->dump(2);
4323       assert(false, "ascending store offsets");
4324       return false;
4325     }
4326     last_off = st_off + st->as_Store()->memory_size();
4327   }
4328   return true;
4329 }
4330 #endif //ASSERT
4331 
4332 
4333 
4334 
4335 //============================MergeMemNode=====================================
4336 //
4337 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4338 // contributing store or call operations.  Each contributor provides the memory
4339 // state for a particular "alias type" (see Compile::alias_type).  For example,
4340 // if a MergeMem has an input X for alias category #6, then any memory reference
4341 // to alias category #6 may use X as its memory state input, as an exact equivalent
4342 // to using the MergeMem as a whole.
4343 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4344 //
4345 // (Here, the <N> notation gives the index of the relevant adr_type.)
4346 //
4347 // In one special case (and more cases in the future), alias categories overlap.
4348 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4349 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4350 // it is exactly equivalent to that state W:
4351 //   MergeMem(<Bot>: W) <==> W
4352 //
4353 // Usually, the merge has more than one input.  In that case, where inputs
4354 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4355 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4356 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4357 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4358 //
4359 // A merge can take a "wide" memory state as one of its narrow inputs.
4360 // This simply means that the merge observes out only the relevant parts of
4361 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4362 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4363 //
4364 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4365 // and that memory slices "leak through":
4366 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4367 //
4368 // But, in such a cascade, repeated memory slices can "block the leak":
4369 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4370 //
4371 // In the last example, Y is not part of the combined memory state of the
4372 // outermost MergeMem.  The system must, of course, prevent unschedulable
4373 // memory states from arising, so you can be sure that the state Y is somehow
4374 // a precursor to state Y'.
4375 //
4376 //
4377 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4378 // of each MergeMemNode array are exactly the numerical alias indexes, including
4379 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4380 // Compile::alias_type (and kin) produce and manage these indexes.
4381 //
4382 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4383 // (Note that this provides quick access to the top node inside MergeMem methods,
4384 // without the need to reach out via TLS to Compile::current.)
4385 //
4386 // As a consequence of what was just described, a MergeMem that represents a full
4387 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4388 // containing all alias categories.
4389 //
4390 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4391 //
4392 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4393 // a memory state for the alias type <N>, or else the top node, meaning that
4394 // there is no particular input for that alias type.  Note that the length of
4395 // a MergeMem is variable, and may be extended at any time to accommodate new
4396 // memory states at larger alias indexes.  When merges grow, they are of course
4397 // filled with "top" in the unused in() positions.
4398 //
4399 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4400 // (Top was chosen because it works smoothly with passes like GCM.)
4401 //
4402 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4403 // the type of random VM bits like TLS references.)  Since it is always the
4404 // first non-Bot memory slice, some low-level loops use it to initialize an
4405 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4406 //
4407 //
4408 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4409 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4410 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4411 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4412 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4413 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4414 //
4415 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4416 // really that different from the other memory inputs.  An abbreviation called
4417 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4418 //
4419 //
4420 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4421 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4422 // that "emerges though" the base memory will be marked as excluding the alias types
4423 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4424 //
4425 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4426 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4427 //
4428 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4429 // (It is currently unimplemented.)  As you can see, the resulting merge is
4430 // actually a disjoint union of memory states, rather than an overlay.
4431 //
4432 
4433 //------------------------------MergeMemNode-----------------------------------
4434 Node* MergeMemNode::make_empty_memory() {
4435   Node* empty_memory = (Node*) Compile::current()->top();
4436   assert(empty_memory->is_top(), "correct sentinel identity");
4437   return empty_memory;
4438 }
4439 
4440 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4441   init_class_id(Class_MergeMem);
4442   // all inputs are nullified in Node::Node(int)
4443   // set_input(0, NULL);  // no control input
4444 
4445   // Initialize the edges uniformly to top, for starters.
4446   Node* empty_mem = make_empty_memory();
4447   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4448     init_req(i,empty_mem);
4449   }
4450   assert(empty_memory() == empty_mem, "");
4451 
4452   if( new_base != NULL && new_base->is_MergeMem() ) {
4453     MergeMemNode* mdef = new_base->as_MergeMem();
4454     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4455     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4456       mms.set_memory(mms.memory2());
4457     }
4458     assert(base_memory() == mdef->base_memory(), "");
4459   } else {
4460     set_base_memory(new_base);
4461   }
4462 }
4463 
4464 // Make a new, untransformed MergeMem with the same base as 'mem'.
4465 // If mem is itself a MergeMem, populate the result with the same edges.
4466 MergeMemNode* MergeMemNode::make(Node* mem) {
4467   return new MergeMemNode(mem);
4468 }
4469 
4470 //------------------------------cmp--------------------------------------------
4471 uint MergeMemNode::hash() const { return NO_HASH; }
4472 uint MergeMemNode::cmp( const Node &n ) const {
4473   return (&n == this);          // Always fail except on self
4474 }
4475 
4476 //------------------------------Identity---------------------------------------
4477 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4478   // Identity if this merge point does not record any interesting memory
4479   // disambiguations.
4480   Node* base_mem = base_memory();
4481   Node* empty_mem = empty_memory();
4482   if (base_mem != empty_mem) {  // Memory path is not dead?
4483     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4484       Node* mem = in(i);
4485       if (mem != empty_mem && mem != base_mem) {
4486         return this;            // Many memory splits; no change
4487       }
4488     }
4489   }
4490   return base_mem;              // No memory splits; ID on the one true input
4491 }
4492 
4493 //------------------------------Ideal------------------------------------------
4494 // This method is invoked recursively on chains of MergeMem nodes
4495 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4496   // Remove chain'd MergeMems
4497   //
4498   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4499   // relative to the "in(Bot)".  Since we are patching both at the same time,
4500   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4501   // but rewrite each "in(i)" relative to the new "in(Bot)".
4502   Node *progress = NULL;
4503 
4504 
4505   Node* old_base = base_memory();
4506   Node* empty_mem = empty_memory();
4507   if (old_base == empty_mem)
4508     return NULL; // Dead memory path.
4509 
4510   MergeMemNode* old_mbase;
4511   if (old_base != NULL && old_base->is_MergeMem())
4512     old_mbase = old_base->as_MergeMem();
4513   else
4514     old_mbase = NULL;
4515   Node* new_base = old_base;
4516 
4517   // simplify stacked MergeMems in base memory
4518   if (old_mbase)  new_base = old_mbase->base_memory();
4519 
4520   // the base memory might contribute new slices beyond my req()
4521   if (old_mbase)  grow_to_match(old_mbase);
4522 
4523   // Look carefully at the base node if it is a phi.
4524   PhiNode* phi_base;
4525   if (new_base != NULL && new_base->is_Phi())
4526     phi_base = new_base->as_Phi();
4527   else
4528     phi_base = NULL;
4529 
4530   Node*    phi_reg = NULL;
4531   uint     phi_len = (uint)-1;
4532   if (phi_base != NULL && !phi_base->is_copy()) {
4533     // do not examine phi if degraded to a copy
4534     phi_reg = phi_base->region();
4535     phi_len = phi_base->req();
4536     // see if the phi is unfinished
4537     for (uint i = 1; i < phi_len; i++) {
4538       if (phi_base->in(i) == NULL) {
4539         // incomplete phi; do not look at it yet!
4540         phi_reg = NULL;
4541         phi_len = (uint)-1;
4542         break;
4543       }
4544     }
4545   }
4546 
4547   // Note:  We do not call verify_sparse on entry, because inputs
4548   // can normalize to the base_memory via subsume_node or similar
4549   // mechanisms.  This method repairs that damage.
4550 
4551   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4552 
4553   // Look at each slice.
4554   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4555     Node* old_in = in(i);
4556     // calculate the old memory value
4557     Node* old_mem = old_in;
4558     if (old_mem == empty_mem)  old_mem = old_base;
4559     assert(old_mem == memory_at(i), "");
4560 
4561     // maybe update (reslice) the old memory value
4562 
4563     // simplify stacked MergeMems
4564     Node* new_mem = old_mem;
4565     MergeMemNode* old_mmem;
4566     if (old_mem != NULL && old_mem->is_MergeMem())
4567       old_mmem = old_mem->as_MergeMem();
4568     else
4569       old_mmem = NULL;
4570     if (old_mmem == this) {
4571       // This can happen if loops break up and safepoints disappear.
4572       // A merge of BotPtr (default) with a RawPtr memory derived from a
4573       // safepoint can be rewritten to a merge of the same BotPtr with
4574       // the BotPtr phi coming into the loop.  If that phi disappears
4575       // also, we can end up with a self-loop of the mergemem.
4576       // In general, if loops degenerate and memory effects disappear,
4577       // a mergemem can be left looking at itself.  This simply means
4578       // that the mergemem's default should be used, since there is
4579       // no longer any apparent effect on this slice.
4580       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4581       //       from start.  Update the input to TOP.
4582       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4583     }
4584     else if (old_mmem != NULL) {
4585       new_mem = old_mmem->memory_at(i);
4586     }
4587     // else preceding memory was not a MergeMem
4588 
4589     // replace equivalent phis (unfortunately, they do not GVN together)
4590     if (new_mem != NULL && new_mem != new_base &&
4591         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4592       if (new_mem->is_Phi()) {
4593         PhiNode* phi_mem = new_mem->as_Phi();
4594         for (uint i = 1; i < phi_len; i++) {
4595           if (phi_base->in(i) != phi_mem->in(i)) {
4596             phi_mem = NULL;
4597             break;
4598           }
4599         }
4600         if (phi_mem != NULL) {
4601           // equivalent phi nodes; revert to the def
4602           new_mem = new_base;
4603         }
4604       }
4605     }
4606 
4607     // maybe store down a new value
4608     Node* new_in = new_mem;
4609     if (new_in == new_base)  new_in = empty_mem;
4610 
4611     if (new_in != old_in) {
4612       // Warning:  Do not combine this "if" with the previous "if"
4613       // A memory slice might have be be rewritten even if it is semantically
4614       // unchanged, if the base_memory value has changed.
4615       set_req(i, new_in);
4616       progress = this;          // Report progress
4617     }
4618   }
4619 
4620   if (new_base != old_base) {
4621     set_req(Compile::AliasIdxBot, new_base);
4622     // Don't use set_base_memory(new_base), because we need to update du.
4623     assert(base_memory() == new_base, "");
4624     progress = this;
4625   }
4626 
4627   if( base_memory() == this ) {
4628     // a self cycle indicates this memory path is dead
4629     set_req(Compile::AliasIdxBot, empty_mem);
4630   }
4631 
4632   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4633   // Recursion must occur after the self cycle check above
4634   if( base_memory()->is_MergeMem() ) {
4635     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4636     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4637     if( m != NULL &&
4638         (m->is_top() ||
4639          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4640       // propagate rollup of dead cycle to self
4641       set_req(Compile::AliasIdxBot, empty_mem);
4642     }
4643   }
4644 
4645   if( base_memory() == empty_mem ) {
4646     progress = this;
4647     // Cut inputs during Parse phase only.
4648     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4649     if( !can_reshape ) {
4650       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4651         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4652       }
4653     }
4654   }
4655 
4656   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4657     // Check if PhiNode::Ideal's "Split phis through memory merges"
4658     // transform should be attempted. Look for this->phi->this cycle.
4659     uint merge_width = req();
4660     if (merge_width > Compile::AliasIdxRaw) {
4661       PhiNode* phi = base_memory()->as_Phi();
4662       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4663         if (phi->in(i) == this) {
4664           phase->is_IterGVN()->_worklist.push(phi);
4665           break;
4666         }
4667       }
4668     }
4669   }
4670 
4671   assert(progress || verify_sparse(), "please, no dups of base");
4672   return progress;
4673 }
4674 
4675 //-------------------------set_base_memory-------------------------------------
4676 void MergeMemNode::set_base_memory(Node *new_base) {
4677   Node* empty_mem = empty_memory();
4678   set_req(Compile::AliasIdxBot, new_base);
4679   assert(memory_at(req()) == new_base, "must set default memory");
4680   // Clear out other occurrences of new_base:
4681   if (new_base != empty_mem) {
4682     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4683       if (in(i) == new_base)  set_req(i, empty_mem);
4684     }
4685   }
4686 }
4687 
4688 //------------------------------out_RegMask------------------------------------
4689 const RegMask &MergeMemNode::out_RegMask() const {
4690   return RegMask::Empty;
4691 }
4692 
4693 //------------------------------dump_spec--------------------------------------
4694 #ifndef PRODUCT
4695 void MergeMemNode::dump_spec(outputStream *st) const {
4696   st->print(" {");
4697   Node* base_mem = base_memory();
4698   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4699     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4700     if (mem == base_mem) { st->print(" -"); continue; }
4701     st->print( " N%d:", mem->_idx );
4702     Compile::current()->get_adr_type(i)->dump_on(st);
4703   }
4704   st->print(" }");
4705 }
4706 #endif // !PRODUCT
4707 
4708 
4709 #ifdef ASSERT
4710 static bool might_be_same(Node* a, Node* b) {
4711   if (a == b)  return true;
4712   if (!(a->is_Phi() || b->is_Phi()))  return false;
4713   // phis shift around during optimization
4714   return true;  // pretty stupid...
4715 }
4716 
4717 // verify a narrow slice (either incoming or outgoing)
4718 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4719   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4720   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4721   if (Node::in_dump())               return;  // muzzle asserts when printing
4722   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4723   assert(n != NULL, "");
4724   // Elide intervening MergeMem's
4725   while (n->is_MergeMem()) {
4726     n = n->as_MergeMem()->memory_at(alias_idx);
4727   }
4728   Compile* C = Compile::current();
4729   const TypePtr* n_adr_type = n->adr_type();
4730   if (n == m->empty_memory()) {
4731     // Implicit copy of base_memory()
4732   } else if (n_adr_type != TypePtr::BOTTOM) {
4733     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4734     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4735   } else {
4736     // A few places like make_runtime_call "know" that VM calls are narrow,
4737     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4738     bool expected_wide_mem = false;
4739     if (n == m->base_memory()) {
4740       expected_wide_mem = true;
4741     } else if (alias_idx == Compile::AliasIdxRaw ||
4742                n == m->memory_at(Compile::AliasIdxRaw)) {
4743       expected_wide_mem = true;
4744     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4745       // memory can "leak through" calls on channels that
4746       // are write-once.  Allow this also.
4747       expected_wide_mem = true;
4748     }
4749     assert(expected_wide_mem, "expected narrow slice replacement");
4750   }
4751 }
4752 #else // !ASSERT
4753 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4754 #endif
4755 
4756 
4757 //-----------------------------memory_at---------------------------------------
4758 Node* MergeMemNode::memory_at(uint alias_idx) const {
4759   assert(alias_idx >= Compile::AliasIdxRaw ||
4760          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4761          "must avoid base_memory and AliasIdxTop");
4762 
4763   // Otherwise, it is a narrow slice.
4764   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4765   Compile *C = Compile::current();
4766   if (is_empty_memory(n)) {
4767     // the array is sparse; empty slots are the "top" node
4768     n = base_memory();
4769     assert(Node::in_dump()
4770            || n == NULL || n->bottom_type() == Type::TOP
4771            || n->adr_type() == NULL // address is TOP
4772            || n->adr_type() == TypePtr::BOTTOM
4773            || n->adr_type() == TypeRawPtr::BOTTOM
4774            || Compile::current()->AliasLevel() == 0,
4775            "must be a wide memory");
4776     // AliasLevel == 0 if we are organizing the memory states manually.
4777     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4778   } else {
4779     // make sure the stored slice is sane
4780     #ifdef ASSERT
4781     if (VMError::is_error_reported() || Node::in_dump()) {
4782     } else if (might_be_same(n, base_memory())) {
4783       // Give it a pass:  It is a mostly harmless repetition of the base.
4784       // This can arise normally from node subsumption during optimization.
4785     } else {
4786       verify_memory_slice(this, alias_idx, n);
4787     }
4788     #endif
4789   }
4790   return n;
4791 }
4792 
4793 //---------------------------set_memory_at-------------------------------------
4794 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4795   verify_memory_slice(this, alias_idx, n);
4796   Node* empty_mem = empty_memory();
4797   if (n == base_memory())  n = empty_mem;  // collapse default
4798   uint need_req = alias_idx+1;
4799   if (req() < need_req) {
4800     if (n == empty_mem)  return;  // already the default, so do not grow me
4801     // grow the sparse array
4802     do {
4803       add_req(empty_mem);
4804     } while (req() < need_req);
4805   }
4806   set_req( alias_idx, n );
4807 }
4808 
4809 
4810 
4811 //--------------------------iteration_setup------------------------------------
4812 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4813   if (other != NULL) {
4814     grow_to_match(other);
4815     // invariant:  the finite support of mm2 is within mm->req()
4816     #ifdef ASSERT
4817     for (uint i = req(); i < other->req(); i++) {
4818       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4819     }
4820     #endif
4821   }
4822   // Replace spurious copies of base_memory by top.
4823   Node* base_mem = base_memory();
4824   if (base_mem != NULL && !base_mem->is_top()) {
4825     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4826       if (in(i) == base_mem)
4827         set_req(i, empty_memory());
4828     }
4829   }
4830 }
4831 
4832 //---------------------------grow_to_match-------------------------------------
4833 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4834   Node* empty_mem = empty_memory();
4835   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4836   // look for the finite support of the other memory
4837   for (uint i = other->req(); --i >= req(); ) {
4838     if (other->in(i) != empty_mem) {
4839       uint new_len = i+1;
4840       while (req() < new_len)  add_req(empty_mem);
4841       break;
4842     }
4843   }
4844 }
4845 
4846 //---------------------------verify_sparse-------------------------------------
4847 #ifndef PRODUCT
4848 bool MergeMemNode::verify_sparse() const {
4849   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4850   Node* base_mem = base_memory();
4851   // The following can happen in degenerate cases, since empty==top.
4852   if (is_empty_memory(base_mem))  return true;
4853   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4854     assert(in(i) != NULL, "sane slice");
4855     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4856   }
4857   return true;
4858 }
4859 
4860 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4861   Node* n;
4862   n = mm->in(idx);
4863   if (mem == n)  return true;  // might be empty_memory()
4864   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4865   if (mem == n)  return true;
4866   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4867     if (mem == n)  return true;
4868     if (n == NULL)  break;
4869   }
4870   return false;
4871 }
4872 #endif // !PRODUCT