1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/valuetypenode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 
  56 // Portions of code courtesy of Clifford Click
  57 
  58 // Optimization - Graph Style
  59 
  60 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  61 
  62 //=============================================================================
  63 uint MemNode::size_of() const { return sizeof(*this); }
  64 
  65 const TypePtr *MemNode::adr_type() const {
  66   Node* adr = in(Address);
  67   if (adr == NULL)  return NULL; // node is dead
  68   const TypePtr* cross_check = NULL;
  69   DEBUG_ONLY(cross_check = _adr_type);
  70   return calculate_adr_type(adr->bottom_type(), cross_check);
  71 }
  72 
  73 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  74   if (adr != NULL) {
  75     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  76       return true;
  77     }
  78   }
  79   return false;
  80 }
  81 
  82 #ifndef PRODUCT
  83 void MemNode::dump_spec(outputStream *st) const {
  84   if (in(Address) == NULL)  return; // node is dead
  85 #ifndef ASSERT
  86   // fake the missing field
  87   const TypePtr* _adr_type = NULL;
  88   if (in(Address) != NULL)
  89     _adr_type = in(Address)->bottom_type()->isa_ptr();
  90 #endif
  91   dump_adr_type(this, _adr_type, st);
  92 
  93   Compile* C = Compile::current();
  94   if (C->alias_type(_adr_type)->is_volatile()) {
  95     st->print(" Volatile!");
  96   }
  97   if (_unaligned_access) {
  98     st->print(" unaligned");
  99   }
 100   if (_mismatched_access) {
 101     st->print(" mismatched");
 102   }
 103 }
 104 
 105 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 106   st->print(" @");
 107   if (adr_type == NULL) {
 108     st->print("NULL");
 109   } else {
 110     adr_type->dump_on(st);
 111     Compile* C = Compile::current();
 112     Compile::AliasType* atp = NULL;
 113     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 114     if (atp == NULL)
 115       st->print(", idx=?\?;");
 116     else if (atp->index() == Compile::AliasIdxBot)
 117       st->print(", idx=Bot;");
 118     else if (atp->index() == Compile::AliasIdxTop)
 119       st->print(", idx=Top;");
 120     else if (atp->index() == Compile::AliasIdxRaw)
 121       st->print(", idx=Raw;");
 122     else {
 123       ciField* field = atp->field();
 124       if (field) {
 125         st->print(", name=");
 126         field->print_name_on(st);
 127       }
 128       st->print(", idx=%d;", atp->index());
 129     }
 130   }
 131 }
 132 
 133 extern void print_alias_types();
 134 
 135 #endif
 136 
 137 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 138   assert((t_oop != NULL), "sanity");
 139   bool is_instance = t_oop->is_known_instance_field();
 140   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 141                              (load != NULL) && load->is_Load() &&
 142                              (phase->is_IterGVN() != NULL);
 143   if (!(is_instance || is_boxed_value_load))
 144     return mchain;  // don't try to optimize non-instance types
 145   uint instance_id = t_oop->instance_id();
 146   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 147   Node *prev = NULL;
 148   Node *result = mchain;
 149   while (prev != result) {
 150     prev = result;
 151     if (result == start_mem)
 152       break;  // hit one of our sentinels
 153     // skip over a call which does not affect this memory slice
 154     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 155       Node *proj_in = result->in(0);
 156       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 157         break;  // hit one of our sentinels
 158       } else if (proj_in->is_Call()) {
 159         // ArrayCopyNodes processed here as well
 160         CallNode *call = proj_in->as_Call();
 161         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 162           result = call->in(TypeFunc::Memory);
 163         }
 164       } else if (proj_in->is_Initialize()) {
 165         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 166         // Stop if this is the initialization for the object instance which
 167         // contains this memory slice, otherwise skip over it.
 168         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 169           break;
 170         }
 171         if (is_instance) {
 172           result = proj_in->in(TypeFunc::Memory);
 173         } else if (is_boxed_value_load) {
 174           Node* klass = alloc->in(AllocateNode::KlassNode);
 175           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 176           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 177             result = proj_in->in(TypeFunc::Memory); // not related allocation
 178           }
 179         }
 180       } else if (proj_in->is_MemBar()) {
 181         ArrayCopyNode* ac = NULL;
 182         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 183           break;
 184         }
 185         result = proj_in->in(TypeFunc::Memory);
 186       } else {
 187         assert(false, "unexpected projection");
 188       }
 189     } else if (result->is_ClearArray()) {
 190       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 191         // Can not bypass initialization of the instance
 192         // we are looking for.
 193         break;
 194       }
 195       // Otherwise skip it (the call updated 'result' value).
 196     } else if (result->is_MergeMem()) {
 197       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 198     }
 199   }
 200   return result;
 201 }
 202 
 203 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 204   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 205   if (t_oop == NULL)
 206     return mchain;  // don't try to optimize non-oop types
 207   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 208   bool is_instance = t_oop->is_known_instance_field();
 209   PhaseIterGVN *igvn = phase->is_IterGVN();
 210   if (is_instance && igvn != NULL  && result->is_Phi()) {
 211     PhiNode *mphi = result->as_Phi();
 212     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 213     const TypePtr *t = mphi->adr_type();
 214     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 215         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 216          t->is_oopptr()->cast_to_exactness(true)
 217            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 218             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 219       // clone the Phi with our address type
 220       result = mphi->split_out_instance(t_adr, igvn);
 221     } else {
 222       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 223     }
 224   }
 225   return result;
 226 }
 227 
 228 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 229   uint alias_idx = phase->C->get_alias_index(tp);
 230   Node *mem = mmem;
 231 #ifdef ASSERT
 232   {
 233     // Check that current type is consistent with the alias index used during graph construction
 234     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 235     bool consistent =  adr_check == NULL || adr_check->empty() ||
 236                        phase->C->must_alias(adr_check, alias_idx );
 237     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 238     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 239         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 240         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 241         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 242           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 243           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 244       // don't assert if it is dead code.
 245       consistent = true;
 246     }
 247     if( !consistent ) {
 248       st->print("alias_idx==%d, adr_check==", alias_idx);
 249       if( adr_check == NULL ) {
 250         st->print("NULL");
 251       } else {
 252         adr_check->dump();
 253       }
 254       st->cr();
 255       print_alias_types();
 256       assert(consistent, "adr_check must match alias idx");
 257     }
 258   }
 259 #endif
 260   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 261   // means an array I have not precisely typed yet.  Do not do any
 262   // alias stuff with it any time soon.
 263   const TypeOopPtr *toop = tp->isa_oopptr();
 264   if( tp->base() != Type::AnyPtr &&
 265       !(toop &&
 266         toop->klass() != NULL &&
 267         toop->klass()->is_java_lang_Object() &&
 268         toop->offset() == Type::OffsetBot) ) {
 269     // compress paths and change unreachable cycles to TOP
 270     // If not, we can update the input infinitely along a MergeMem cycle
 271     // Equivalent code in PhiNode::Ideal
 272     Node* m  = phase->transform(mmem);
 273     // If transformed to a MergeMem, get the desired slice
 274     // Otherwise the returned node represents memory for every slice
 275     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 276     // Update input if it is progress over what we have now
 277   }
 278   return mem;
 279 }
 280 
 281 //--------------------------Ideal_common---------------------------------------
 282 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 283 // Unhook non-raw memories from complete (macro-expanded) initializations.
 284 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 285   // If our control input is a dead region, kill all below the region
 286   Node *ctl = in(MemNode::Control);
 287   if (ctl && remove_dead_region(phase, can_reshape))
 288     return this;
 289   ctl = in(MemNode::Control);
 290   // Don't bother trying to transform a dead node
 291   if (ctl && ctl->is_top())  return NodeSentinel;
 292 
 293   PhaseIterGVN *igvn = phase->is_IterGVN();
 294   // Wait if control on the worklist.
 295   if (ctl && can_reshape && igvn != NULL) {
 296     Node* bol = NULL;
 297     Node* cmp = NULL;
 298     if (ctl->in(0)->is_If()) {
 299       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 300       bol = ctl->in(0)->in(1);
 301       if (bol->is_Bool())
 302         cmp = ctl->in(0)->in(1)->in(1);
 303     }
 304     if (igvn->_worklist.member(ctl) ||
 305         (bol != NULL && igvn->_worklist.member(bol)) ||
 306         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 307       // This control path may be dead.
 308       // Delay this memory node transformation until the control is processed.
 309       phase->is_IterGVN()->_worklist.push(this);
 310       return NodeSentinel; // caller will return NULL
 311     }
 312   }
 313   // Ignore if memory is dead, or self-loop
 314   Node *mem = in(MemNode::Memory);
 315   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 316   assert(mem != this, "dead loop in MemNode::Ideal");
 317 
 318   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 319     // This memory slice may be dead.
 320     // Delay this mem node transformation until the memory is processed.
 321     phase->is_IterGVN()->_worklist.push(this);
 322     return NodeSentinel; // caller will return NULL
 323   }
 324 
 325   Node *address = in(MemNode::Address);
 326   const Type *t_adr = phase->type(address);
 327   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 328 
 329   if (can_reshape && igvn != NULL &&
 330       (igvn->_worklist.member(address) ||
 331        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 332     // The address's base and type may change when the address is processed.
 333     // Delay this mem node transformation until the address is processed.
 334     phase->is_IterGVN()->_worklist.push(this);
 335     return NodeSentinel; // caller will return NULL
 336   }
 337 
 338   // Do NOT remove or optimize the next lines: ensure a new alias index
 339   // is allocated for an oop pointer type before Escape Analysis.
 340   // Note: C++ will not remove it since the call has side effect.
 341   if (t_adr->isa_oopptr()) {
 342     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 343   }
 344 
 345   Node* base = NULL;
 346   if (address->is_AddP()) {
 347     base = address->in(AddPNode::Base);
 348   }
 349   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 350       !t_adr->isa_rawptr()) {
 351     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 352     // Skip this node optimization if its address has TOP base.
 353     return NodeSentinel; // caller will return NULL
 354   }
 355 
 356   // Avoid independent memory operations
 357   Node* old_mem = mem;
 358 
 359   // The code which unhooks non-raw memories from complete (macro-expanded)
 360   // initializations was removed. After macro-expansion all stores catched
 361   // by Initialize node became raw stores and there is no information
 362   // which memory slices they modify. So it is unsafe to move any memory
 363   // operation above these stores. Also in most cases hooked non-raw memories
 364   // were already unhooked by using information from detect_ptr_independence()
 365   // and find_previous_store().
 366 
 367   if (mem->is_MergeMem()) {
 368     MergeMemNode* mmem = mem->as_MergeMem();
 369     const TypePtr *tp = t_adr->is_ptr();
 370 
 371     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 372   }
 373 
 374   if (mem != old_mem) {
 375     set_req(MemNode::Memory, mem);
 376     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 377       igvn->_worklist.push(old_mem);
 378     }
 379     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 380     return this;
 381   }
 382 
 383   // let the subclass continue analyzing...
 384   return NULL;
 385 }
 386 
 387 // Helper function for proving some simple control dominations.
 388 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 389 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 390 // is not a constant (dominated by the method's StartNode).
 391 // Used by MemNode::find_previous_store to prove that the
 392 // control input of a memory operation predates (dominates)
 393 // an allocation it wants to look past.
 394 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 395   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 396     return false; // Conservative answer for dead code
 397 
 398   // Check 'dom'. Skip Proj and CatchProj nodes.
 399   dom = dom->find_exact_control(dom);
 400   if (dom == NULL || dom->is_top())
 401     return false; // Conservative answer for dead code
 402 
 403   if (dom == sub) {
 404     // For the case when, for example, 'sub' is Initialize and the original
 405     // 'dom' is Proj node of the 'sub'.
 406     return false;
 407   }
 408 
 409   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 410     return true;
 411 
 412   // 'dom' dominates 'sub' if its control edge and control edges
 413   // of all its inputs dominate or equal to sub's control edge.
 414 
 415   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 416   // Or Region for the check in LoadNode::Ideal();
 417   // 'sub' should have sub->in(0) != NULL.
 418   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 419          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 420 
 421   // Get control edge of 'sub'.
 422   Node* orig_sub = sub;
 423   sub = sub->find_exact_control(sub->in(0));
 424   if (sub == NULL || sub->is_top())
 425     return false; // Conservative answer for dead code
 426 
 427   assert(sub->is_CFG(), "expecting control");
 428 
 429   if (sub == dom)
 430     return true;
 431 
 432   if (sub->is_Start() || sub->is_Root())
 433     return false;
 434 
 435   {
 436     // Check all control edges of 'dom'.
 437 
 438     ResourceMark rm;
 439     Arena* arena = Thread::current()->resource_area();
 440     Node_List nlist(arena);
 441     Unique_Node_List dom_list(arena);
 442 
 443     dom_list.push(dom);
 444     bool only_dominating_controls = false;
 445 
 446     for (uint next = 0; next < dom_list.size(); next++) {
 447       Node* n = dom_list.at(next);
 448       if (n == orig_sub)
 449         return false; // One of dom's inputs dominated by sub.
 450       if (!n->is_CFG() && n->pinned()) {
 451         // Check only own control edge for pinned non-control nodes.
 452         n = n->find_exact_control(n->in(0));
 453         if (n == NULL || n->is_top())
 454           return false; // Conservative answer for dead code
 455         assert(n->is_CFG(), "expecting control");
 456         dom_list.push(n);
 457       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 458         only_dominating_controls = true;
 459       } else if (n->is_CFG()) {
 460         if (n->dominates(sub, nlist))
 461           only_dominating_controls = true;
 462         else
 463           return false;
 464       } else {
 465         // First, own control edge.
 466         Node* m = n->find_exact_control(n->in(0));
 467         if (m != NULL) {
 468           if (m->is_top())
 469             return false; // Conservative answer for dead code
 470           dom_list.push(m);
 471         }
 472         // Now, the rest of edges.
 473         uint cnt = n->req();
 474         for (uint i = 1; i < cnt; i++) {
 475           m = n->find_exact_control(n->in(i));
 476           if (m == NULL || m->is_top())
 477             continue;
 478           dom_list.push(m);
 479         }
 480       }
 481     }
 482     return only_dominating_controls;
 483   }
 484 }
 485 
 486 //---------------------detect_ptr_independence---------------------------------
 487 // Used by MemNode::find_previous_store to prove that two base
 488 // pointers are never equal.
 489 // The pointers are accompanied by their associated allocations,
 490 // if any, which have been previously discovered by the caller.
 491 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 492                                       Node* p2, AllocateNode* a2,
 493                                       PhaseTransform* phase) {
 494   // Attempt to prove that these two pointers cannot be aliased.
 495   // They may both manifestly be allocations, and they should differ.
 496   // Or, if they are not both allocations, they can be distinct constants.
 497   // Otherwise, one is an allocation and the other a pre-existing value.
 498   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 499     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 500   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 501     return (a1 != a2);
 502   } else if (a1 != NULL) {                  // one allocation a1
 503     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 504     return all_controls_dominate(p2, a1);
 505   } else { //(a2 != NULL)                   // one allocation a2
 506     return all_controls_dominate(p1, a2);
 507   }
 508   return false;
 509 }
 510 
 511 
 512 // Find an arraycopy that must have set (can_see_stored_value=true) or
 513 // could have set (can_see_stored_value=false) the value for this load
 514 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 515   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 516                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 517     Node* mb = mem->in(0);
 518     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 519         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 520       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 521       if (ac->is_clonebasic()) {
 522         intptr_t offset;
 523         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 524         if (alloc != NULL && alloc == ld_alloc) {
 525           return ac;
 526         }
 527       }
 528     }
 529   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 530     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 531 
 532     if (ac->is_arraycopy_validated() ||
 533         ac->is_copyof_validated() ||
 534         ac->is_copyofrange_validated()) {
 535       Node* ld_addp = in(MemNode::Address);
 536       if (ld_addp->is_AddP()) {
 537         Node* ld_base = ld_addp->in(AddPNode::Address);
 538         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 539 
 540         Node* dest = ac->in(ArrayCopyNode::Dest);
 541 
 542         if (dest == ld_base) {
 543           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 544           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 545             return ac;
 546           }
 547           if (!can_see_stored_value) {
 548             mem = ac->in(TypeFunc::Memory);
 549           }
 550         }
 551       }
 552     }
 553   }
 554   return NULL;
 555 }
 556 
 557 // The logic for reordering loads and stores uses four steps:
 558 // (a) Walk carefully past stores and initializations which we
 559 //     can prove are independent of this load.
 560 // (b) Observe that the next memory state makes an exact match
 561 //     with self (load or store), and locate the relevant store.
 562 // (c) Ensure that, if we were to wire self directly to the store,
 563 //     the optimizer would fold it up somehow.
 564 // (d) Do the rewiring, and return, depending on some other part of
 565 //     the optimizer to fold up the load.
 566 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 567 // specific to loads and stores, so they are handled by the callers.
 568 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 569 //
 570 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 571   Node*         ctrl   = in(MemNode::Control);
 572   Node*         adr    = in(MemNode::Address);
 573   intptr_t      offset = 0;
 574   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 575   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 576 
 577   if (offset == Type::OffsetBot)
 578     return NULL;            // cannot unalias unless there are precise offsets
 579 
 580   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 581   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 582 
 583   intptr_t size_in_bytes = memory_size();
 584 
 585   Node* mem = in(MemNode::Memory);   // start searching here...
 586 
 587   int cnt = 50;             // Cycle limiter
 588   for (;;) {                // While we can dance past unrelated stores...
 589     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 590 
 591     Node* prev = mem;
 592     if (mem->is_Store()) {
 593       Node* st_adr = mem->in(MemNode::Address);
 594       intptr_t st_offset = 0;
 595       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 596       if (st_base == NULL)
 597         break;              // inscrutable pointer
 598 
 599       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 600       // We need the bases to be the equal in order for the offset check to make sense.
 601       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 602         break;
 603       }
 604 
 605       if (st_offset != offset && st_offset != Type::OffsetBot) {
 606         const int MAX_STORE = BytesPerLong;
 607         if (st_offset >= offset + size_in_bytes ||
 608             st_offset <= offset - MAX_STORE ||
 609             st_offset <= offset - mem->as_Store()->memory_size()) {
 610           // Success:  The offsets are provably independent.
 611           // (You may ask, why not just test st_offset != offset and be done?
 612           // The answer is that stores of different sizes can co-exist
 613           // in the same sequence of RawMem effects.  We sometimes initialize
 614           // a whole 'tile' of array elements with a single jint or jlong.)
 615           mem = mem->in(MemNode::Memory);
 616           continue;           // (a) advance through independent store memory
 617         }
 618       }
 619       if (st_base != base &&
 620           detect_ptr_independence(base, alloc,
 621                                   st_base,
 622                                   AllocateNode::Ideal_allocation(st_base, phase),
 623                                   phase)) {
 624         // Success:  The bases are provably independent.
 625         mem = mem->in(MemNode::Memory);
 626         continue;           // (a) advance through independent store memory
 627       }
 628 
 629       // (b) At this point, if the bases or offsets do not agree, we lose,
 630       // since we have not managed to prove 'this' and 'mem' independent.
 631       if (st_base == base && st_offset == offset) {
 632         return mem;         // let caller handle steps (c), (d)
 633       }
 634 
 635     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 636       InitializeNode* st_init = mem->in(0)->as_Initialize();
 637       AllocateNode*  st_alloc = st_init->allocation();
 638       if (st_alloc == NULL)
 639         break;              // something degenerated
 640       bool known_identical = false;
 641       bool known_independent = false;
 642       if (alloc == st_alloc)
 643         known_identical = true;
 644       else if (alloc != NULL)
 645         known_independent = true;
 646       else if (all_controls_dominate(this, st_alloc))
 647         known_independent = true;
 648 
 649       if (known_independent) {
 650         // The bases are provably independent: Either they are
 651         // manifestly distinct allocations, or else the control
 652         // of this load dominates the store's allocation.
 653         int alias_idx = phase->C->get_alias_index(adr_type());
 654         if (alias_idx == Compile::AliasIdxRaw) {
 655           mem = st_alloc->in(TypeFunc::Memory);
 656         } else {
 657           mem = st_init->memory(alias_idx);
 658         }
 659         continue;           // (a) advance through independent store memory
 660       }
 661 
 662       // (b) at this point, if we are not looking at a store initializing
 663       // the same allocation we are loading from, we lose.
 664       if (known_identical) {
 665         // From caller, can_see_stored_value will consult find_captured_store.
 666         return mem;         // let caller handle steps (c), (d)
 667       }
 668 
 669     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 670       if (prev != mem) {
 671         // Found an arraycopy but it doesn't affect that load
 672         continue;
 673       }
 674       // Found an arraycopy that may affect that load
 675       return mem;
 676     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 677       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 678       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 679         // ArrayCopyNodes processed here as well.
 680         CallNode *call = mem->in(0)->as_Call();
 681         if (!call->may_modify(addr_t, phase)) {
 682           mem = call->in(TypeFunc::Memory);
 683           continue;         // (a) advance through independent call memory
 684         }
 685       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 686         ArrayCopyNode* ac = NULL;
 687         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 688           break;
 689         }
 690         mem = mem->in(0)->in(TypeFunc::Memory);
 691         continue;           // (a) advance through independent MemBar memory
 692       } else if (mem->is_ClearArray()) {
 693         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 694           // (the call updated 'mem' value)
 695           continue;         // (a) advance through independent allocation memory
 696         } else {
 697           // Can not bypass initialization of the instance
 698           // we are looking for.
 699           return mem;
 700         }
 701       } else if (mem->is_MergeMem()) {
 702         int alias_idx = phase->C->get_alias_index(adr_type());
 703         mem = mem->as_MergeMem()->memory_at(alias_idx);
 704         continue;           // (a) advance through independent MergeMem memory
 705       }
 706     }
 707 
 708     // Unless there is an explicit 'continue', we must bail out here,
 709     // because 'mem' is an inscrutable memory state (e.g., a call).
 710     break;
 711   }
 712 
 713   return NULL;              // bail out
 714 }
 715 
 716 //----------------------calculate_adr_type-------------------------------------
 717 // Helper function.  Notices when the given type of address hits top or bottom.
 718 // Also, asserts a cross-check of the type against the expected address type.
 719 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 720   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 721   #ifdef PRODUCT
 722   cross_check = NULL;
 723   #else
 724   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 725   #endif
 726   const TypePtr* tp = t->isa_ptr();
 727   if (tp == NULL) {
 728     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 729     return TypePtr::BOTTOM;           // touches lots of memory
 730   } else {
 731     #ifdef ASSERT
 732     // %%%% [phh] We don't check the alias index if cross_check is
 733     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 734     if (cross_check != NULL &&
 735         cross_check != TypePtr::BOTTOM &&
 736         cross_check != TypeRawPtr::BOTTOM) {
 737       // Recheck the alias index, to see if it has changed (due to a bug).
 738       Compile* C = Compile::current();
 739       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 740              "must stay in the original alias category");
 741       // The type of the address must be contained in the adr_type,
 742       // disregarding "null"-ness.
 743       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 744       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 745       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 746              "real address must not escape from expected memory type");
 747     }
 748     #endif
 749     return tp;
 750   }
 751 }
 752 
 753 //=============================================================================
 754 // Should LoadNode::Ideal() attempt to remove control edges?
 755 bool LoadNode::can_remove_control() const {
 756   return true;
 757 }
 758 uint LoadNode::size_of() const { return sizeof(*this); }
 759 uint LoadNode::cmp( const Node &n ) const
 760 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 761 const Type *LoadNode::bottom_type() const { return _type; }
 762 uint LoadNode::ideal_reg() const {
 763   return _type->ideal_reg();
 764 }
 765 
 766 #ifndef PRODUCT
 767 void LoadNode::dump_spec(outputStream *st) const {
 768   MemNode::dump_spec(st);
 769   if( !Verbose && !WizardMode ) {
 770     // standard dump does this in Verbose and WizardMode
 771     st->print(" #"); _type->dump_on(st);
 772   }
 773   if (!depends_only_on_test()) {
 774     st->print(" (does not depend only on test)");
 775   }
 776 }
 777 #endif
 778 
 779 #ifdef ASSERT
 780 //----------------------------is_immutable_value-------------------------------
 781 // Helper function to allow a raw load without control edge for some cases
 782 bool LoadNode::is_immutable_value(Node* adr) {
 783   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 784           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 785           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 786            in_bytes(JavaThread::osthread_offset())));
 787 }
 788 #endif
 789 
 790 //----------------------------LoadNode::make-----------------------------------
 791 // Polymorphic factory method:
 792 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 793                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 794   Compile* C = gvn.C;
 795 
 796   // sanity check the alias category against the created node type
 797   assert(!(adr_type->isa_oopptr() &&
 798            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 799          "use LoadKlassNode instead");
 800   assert(!(adr_type->isa_aryptr() &&
 801            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 802          "use LoadRangeNode instead");
 803   // Check control edge of raw loads
 804   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 805           // oop will be recorded in oop map if load crosses safepoint
 806           rt->isa_oopptr() || is_immutable_value(adr),
 807           "raw memory operations should have control edge");
 808   LoadNode* load = NULL;
 809   switch (bt) {
 810   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 811   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 812   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 813   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 814   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 815   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 816   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 817   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 818   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 819   case T_VALUETYPE:
 820   case T_OBJECT:
 821 #ifdef _LP64
 822     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 823       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 824     } else
 825 #endif
 826     {
 827       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 828       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 829     }
 830     break;
 831   default:
 832     ShouldNotReachHere();
 833     break;
 834   }
 835   assert(load != NULL, "LoadNode should have been created");
 836   if (unaligned) {
 837     load->set_unaligned_access();
 838   }
 839   if (mismatched) {
 840     load->set_mismatched_access();
 841   }
 842   if (load->Opcode() == Op_LoadN) {
 843     Node* ld = gvn.transform(load);
 844     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 845   }
 846 
 847   return load;
 848 }
 849 
 850 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 851                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 852   bool require_atomic = true;
 853   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 854   if (unaligned) {
 855     load->set_unaligned_access();
 856   }
 857   if (mismatched) {
 858     load->set_mismatched_access();
 859   }
 860   return load;
 861 }
 862 
 863 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 864                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 865   bool require_atomic = true;
 866   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 867   if (unaligned) {
 868     load->set_unaligned_access();
 869   }
 870   if (mismatched) {
 871     load->set_mismatched_access();
 872   }
 873   return load;
 874 }
 875 
 876 
 877 
 878 //------------------------------hash-------------------------------------------
 879 uint LoadNode::hash() const {
 880   // unroll addition of interesting fields
 881   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 882 }
 883 
 884 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 885   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 886     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 887     bool is_stable_ary = FoldStableValues &&
 888                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 889                          tp->isa_aryptr()->is_stable();
 890 
 891     return (eliminate_boxing && non_volatile) || is_stable_ary;
 892   }
 893 
 894   return false;
 895 }
 896 
 897 // Is the value loaded previously stored by an arraycopy? If so return
 898 // a load node that reads from the source array so we may be able to
 899 // optimize out the ArrayCopy node later.
 900 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 901 #if INCLUDE_ZGC
 902   if (UseZGC) {
 903     if (bottom_type()->make_oopptr() != NULL) {
 904       return NULL;
 905     }
 906   }
 907 #endif
 908 
 909   Node* ld_adr = in(MemNode::Address);
 910   intptr_t ld_off = 0;
 911   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 912   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 913   if (ac != NULL) {
 914     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 915 
 916     Node* mem = ac->in(TypeFunc::Memory);
 917     Node* ctl = ac->in(0);
 918     Node* src = ac->in(ArrayCopyNode::Src);
 919 
 920     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 921       return NULL;
 922     }
 923 
 924     LoadNode* ld = clone()->as_Load();
 925     Node* addp = in(MemNode::Address)->clone();
 926     if (ac->as_ArrayCopy()->is_clonebasic()) {
 927       assert(ld_alloc != NULL, "need an alloc");
 928       assert(addp->is_AddP(), "address must be addp");
 929       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 930       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 931       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 932       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 933     } else {
 934       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 935              ac->as_ArrayCopy()->is_copyof_validated() ||
 936              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 937       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 938       addp->set_req(AddPNode::Base, src);
 939       addp->set_req(AddPNode::Address, src);
 940 
 941       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 942       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 943       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 944       uint shift  = exact_log2(type2aelembytes(ary_elem));
 945 
 946       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 947 #ifdef _LP64
 948       diff = phase->transform(new ConvI2LNode(diff));
 949 #endif
 950       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 951 
 952       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 953       addp->set_req(AddPNode::Offset, offset);
 954     }
 955     addp = phase->transform(addp);
 956 #ifdef ASSERT
 957     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 958     ld->_adr_type = adr_type;
 959 #endif
 960     ld->set_req(MemNode::Address, addp);
 961     ld->set_req(0, ctl);
 962     ld->set_req(MemNode::Memory, mem);
 963     // load depends on the tests that validate the arraycopy
 964     ld->_control_dependency = Pinned;
 965     return ld;
 966   }
 967   return NULL;
 968 }
 969 
 970 
 971 //---------------------------can_see_stored_value------------------------------
 972 // This routine exists to make sure this set of tests is done the same
 973 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 974 // will change the graph shape in a way which makes memory alive twice at the
 975 // same time (uses the Oracle model of aliasing), then some
 976 // LoadXNode::Identity will fold things back to the equivalence-class model
 977 // of aliasing.
 978 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 979   Node* ld_adr = in(MemNode::Address);
 980   intptr_t ld_off = 0;
 981   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 982   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 983   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 984   // This is more general than load from boxing objects.
 985   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 986     uint alias_idx = atp->index();
 987     bool final = !atp->is_rewritable();
 988     Node* result = NULL;
 989     Node* current = st;
 990     // Skip through chains of MemBarNodes checking the MergeMems for
 991     // new states for the slice of this load.  Stop once any other
 992     // kind of node is encountered.  Loads from final memory can skip
 993     // through any kind of MemBar but normal loads shouldn't skip
 994     // through MemBarAcquire since the could allow them to move out of
 995     // a synchronized region.
 996     while (current->is_Proj()) {
 997       int opc = current->in(0)->Opcode();
 998       if ((final && (opc == Op_MemBarAcquire ||
 999                      opc == Op_MemBarAcquireLock ||
1000                      opc == Op_LoadFence)) ||
1001           opc == Op_MemBarRelease ||
1002           opc == Op_StoreFence ||
1003           opc == Op_MemBarReleaseLock ||
1004           opc == Op_MemBarStoreStore ||
1005           opc == Op_MemBarCPUOrder) {
1006         Node* mem = current->in(0)->in(TypeFunc::Memory);
1007         if (mem->is_MergeMem()) {
1008           MergeMemNode* merge = mem->as_MergeMem();
1009           Node* new_st = merge->memory_at(alias_idx);
1010           if (new_st == merge->base_memory()) {
1011             // Keep searching
1012             current = new_st;
1013             continue;
1014           }
1015           // Save the new memory state for the slice and fall through
1016           // to exit.
1017           result = new_st;
1018         }
1019       }
1020       break;
1021     }
1022     if (result != NULL) {
1023       st = result;
1024     }
1025   }
1026 
1027   // Loop around twice in the case Load -> Initialize -> Store.
1028   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1029   for (int trip = 0; trip <= 1; trip++) {
1030 
1031     if (st->is_Store()) {
1032       Node* st_adr = st->in(MemNode::Address);
1033       if (!phase->eqv(st_adr, ld_adr)) {
1034         // Try harder before giving up...  Match raw and non-raw pointers.
1035         intptr_t st_off = 0;
1036         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1037         if (alloc == NULL)       return NULL;
1038         if (alloc != ld_alloc)   return NULL;
1039         if (ld_off != st_off)    return NULL;
1040         // At this point we have proven something like this setup:
1041         //  A = Allocate(...)
1042         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1043         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1044         // (Actually, we haven't yet proven the Q's are the same.)
1045         // In other words, we are loading from a casted version of
1046         // the same pointer-and-offset that we stored to.
1047         // Thus, we are able to replace L by V.
1048       }
1049       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1050       if (store_Opcode() != st->Opcode())
1051         return NULL;
1052       return st->in(MemNode::ValueIn);
1053     }
1054 
1055     // A load from a freshly-created object always returns zero.
1056     // (This can happen after LoadNode::Ideal resets the load's memory input
1057     // to find_captured_store, which returned InitializeNode::zero_memory.)
1058     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1059         (st->in(0) == ld_alloc) &&
1060         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1061       // return a zero value for the load's basic type
1062       // (This is one of the few places where a generic PhaseTransform
1063       // can create new nodes.  Think of it as lazily manifesting
1064       // virtually pre-existing constants.)
1065       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1066       Node* default_value = ld_alloc->in(AllocateNode::DefaultValue);
1067       if (default_value != NULL) {
1068         return default_value;
1069       }
1070       assert(ld_alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null");
1071       return phase->zerocon(memory_type());
1072     }
1073 
1074     // A load from an initialization barrier can match a captured store.
1075     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1076       InitializeNode* init = st->in(0)->as_Initialize();
1077       AllocateNode* alloc = init->allocation();
1078       if ((alloc != NULL) && (alloc == ld_alloc)) {
1079         // examine a captured store value
1080         st = init->find_captured_store(ld_off, memory_size(), phase);
1081         if (st != NULL) {
1082           continue;             // take one more trip around
1083         }
1084       }
1085     }
1086 
1087     // Load boxed value from result of valueOf() call is input parameter.
1088     if (this->is_Load() && ld_adr->is_AddP() &&
1089         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1090       intptr_t ignore = 0;
1091       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1092       if (base != NULL && base->is_Proj() &&
1093           base->as_Proj()->_con == TypeFunc::Parms &&
1094           base->in(0)->is_CallStaticJava() &&
1095           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1096         return base->in(0)->in(TypeFunc::Parms);
1097       }
1098     }
1099 
1100     break;
1101   }
1102 
1103   return NULL;
1104 }
1105 
1106 //----------------------is_instance_field_load_with_local_phi------------------
1107 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1108   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1109       in(Address)->is_AddP() ) {
1110     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1111     // Only instances and boxed values.
1112     if( t_oop != NULL &&
1113         (t_oop->is_ptr_to_boxed_value() ||
1114          t_oop->is_known_instance_field()) &&
1115         t_oop->offset() != Type::OffsetBot &&
1116         t_oop->offset() != Type::OffsetTop) {
1117       return true;
1118     }
1119   }
1120   return false;
1121 }
1122 
1123 //------------------------------Identity---------------------------------------
1124 // Loads are identity if previous store is to same address
1125 Node* LoadNode::Identity(PhaseGVN* phase) {
1126   // Loading from a ValueTypePtr? The ValueTypePtr has the values of
1127   // all fields as input. Look for the field with matching offset.
1128   Node* addr = in(Address);
1129   intptr_t offset;
1130   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
1131   if (base != NULL && base->is_ValueTypePtr() && offset > oopDesc::klass_offset_in_bytes()) {
1132     Node* value = base->as_ValueTypePtr()->field_value_by_offset((int)offset, true);
1133     if (value->is_ValueType()) {
1134       // Non-flattened value type field
1135       ValueTypeNode* vt = value->as_ValueType();
1136       if (vt->is_allocated(phase)) {
1137         value = vt->get_oop();
1138       } else {
1139         // Not yet allocated, bail out
1140         value = NULL;
1141       }
1142     }
1143     if (value != NULL) {
1144       if (Opcode() == Op_LoadN) {
1145         // Encode oop value if we are loading a narrow oop
1146         assert(!phase->type(value)->isa_narrowoop(), "should already be decoded");
1147         value = phase->transform(new EncodePNode(value, bottom_type()));
1148       }
1149       return value;
1150     }
1151   }
1152 
1153   // If the previous store-maker is the right kind of Store, and the store is
1154   // to the same address, then we are equal to the value stored.
1155   Node* mem = in(Memory);
1156   Node* value = can_see_stored_value(mem, phase);
1157   if( value ) {
1158     // byte, short & char stores truncate naturally.
1159     // A load has to load the truncated value which requires
1160     // some sort of masking operation and that requires an
1161     // Ideal call instead of an Identity call.
1162     if (memory_size() < BytesPerInt) {
1163       // If the input to the store does not fit with the load's result type,
1164       // it must be truncated via an Ideal call.
1165       if (!phase->type(value)->higher_equal(phase->type(this)))
1166         return this;
1167     }
1168     // (This works even when value is a Con, but LoadNode::Value
1169     // usually runs first, producing the singleton type of the Con.)
1170     return value;
1171   }
1172 
1173   // Search for an existing data phi which was generated before for the same
1174   // instance's field to avoid infinite generation of phis in a loop.
1175   Node *region = mem->in(0);
1176   if (is_instance_field_load_with_local_phi(region)) {
1177     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1178     int this_index  = phase->C->get_alias_index(addr_t);
1179     int this_offset = addr_t->offset();
1180     int this_iid    = addr_t->instance_id();
1181     if (!addr_t->is_known_instance() &&
1182          addr_t->is_ptr_to_boxed_value()) {
1183       // Use _idx of address base (could be Phi node) for boxed values.
1184       intptr_t   ignore = 0;
1185       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1186       if (base == NULL) {
1187         return this;
1188       }
1189       this_iid = base->_idx;
1190     }
1191     const Type* this_type = bottom_type();
1192     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1193       Node* phi = region->fast_out(i);
1194       if (phi->is_Phi() && phi != mem &&
1195           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1196         return phi;
1197       }
1198     }
1199   }
1200 
1201   return this;
1202 }
1203 
1204 // Construct an equivalent unsigned load.
1205 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1206   BasicType bt = T_ILLEGAL;
1207   const Type* rt = NULL;
1208   switch (Opcode()) {
1209     case Op_LoadUB: return this;
1210     case Op_LoadUS: return this;
1211     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1212     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1213     default:
1214       assert(false, "no unsigned variant: %s", Name());
1215       return NULL;
1216   }
1217   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1218                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1219                         is_unaligned_access(), is_mismatched_access());
1220 }
1221 
1222 // Construct an equivalent signed load.
1223 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1224   BasicType bt = T_ILLEGAL;
1225   const Type* rt = NULL;
1226   switch (Opcode()) {
1227     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1228     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1229     case Op_LoadB: // fall through
1230     case Op_LoadS: // fall through
1231     case Op_LoadI: // fall through
1232     case Op_LoadL: return this;
1233     default:
1234       assert(false, "no signed variant: %s", Name());
1235       return NULL;
1236   }
1237   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1238                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1239                         is_unaligned_access(), is_mismatched_access());
1240 }
1241 
1242 // We're loading from an object which has autobox behaviour.
1243 // If this object is result of a valueOf call we'll have a phi
1244 // merging a newly allocated object and a load from the cache.
1245 // We want to replace this load with the original incoming
1246 // argument to the valueOf call.
1247 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1248   assert(phase->C->eliminate_boxing(), "sanity");
1249   intptr_t ignore = 0;
1250   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1251   if ((base == NULL) || base->is_Phi()) {
1252     // Push the loads from the phi that comes from valueOf up
1253     // through it to allow elimination of the loads and the recovery
1254     // of the original value. It is done in split_through_phi().
1255     return NULL;
1256   } else if (base->is_Load() ||
1257              (base->is_DecodeN() && base->in(1)->is_Load())) {
1258     // Eliminate the load of boxed value for integer types from the cache
1259     // array by deriving the value from the index into the array.
1260     // Capture the offset of the load and then reverse the computation.
1261 
1262     // Get LoadN node which loads a boxing object from 'cache' array.
1263     if (base->is_DecodeN()) {
1264       base = base->in(1);
1265     }
1266     if (!base->in(Address)->is_AddP()) {
1267       return NULL; // Complex address
1268     }
1269     AddPNode* address = base->in(Address)->as_AddP();
1270     Node* cache_base = address->in(AddPNode::Base);
1271     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1272       // Get ConP node which is static 'cache' field.
1273       cache_base = cache_base->in(1);
1274     }
1275     if ((cache_base != NULL) && cache_base->is_Con()) {
1276       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1277       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1278         Node* elements[4];
1279         int shift = exact_log2(type2aelembytes(T_OBJECT));
1280         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1281         if (count > 0 && elements[0]->is_Con() &&
1282             (count == 1 ||
1283              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1284                             elements[1]->in(2) == phase->intcon(shift)))) {
1285           ciObjArray* array = base_type->const_oop()->as_obj_array();
1286           // Fetch the box object cache[0] at the base of the array and get its value
1287           ciInstance* box = array->obj_at(0)->as_instance();
1288           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1289           assert(ik->is_box_klass(), "sanity");
1290           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1291           if (ik->nof_nonstatic_fields() == 1) {
1292             // This should be true nonstatic_field_at requires calling
1293             // nof_nonstatic_fields so check it anyway
1294             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1295             BasicType bt = c.basic_type();
1296             // Only integer types have boxing cache.
1297             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1298                    bt == T_BYTE    || bt == T_SHORT ||
1299                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1300             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1301             if (cache_low != (int)cache_low) {
1302               return NULL; // should not happen since cache is array indexed by value
1303             }
1304             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1305             if (offset != (int)offset) {
1306               return NULL; // should not happen since cache is array indexed by value
1307             }
1308            // Add up all the offsets making of the address of the load
1309             Node* result = elements[0];
1310             for (int i = 1; i < count; i++) {
1311               result = phase->transform(new AddXNode(result, elements[i]));
1312             }
1313             // Remove the constant offset from the address and then
1314             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1315             // remove the scaling of the offset to recover the original index.
1316             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1317               // Peel the shift off directly but wrap it in a dummy node
1318               // since Ideal can't return existing nodes
1319               result = new RShiftXNode(result->in(1), phase->intcon(0));
1320             } else if (result->is_Add() && result->in(2)->is_Con() &&
1321                        result->in(1)->Opcode() == Op_LShiftX &&
1322                        result->in(1)->in(2) == phase->intcon(shift)) {
1323               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1324               // but for boxing cache access we know that X<<Z will not overflow
1325               // (there is range check) so we do this optimizatrion by hand here.
1326               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1327               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1328             } else {
1329               result = new RShiftXNode(result, phase->intcon(shift));
1330             }
1331 #ifdef _LP64
1332             if (bt != T_LONG) {
1333               result = new ConvL2INode(phase->transform(result));
1334             }
1335 #else
1336             if (bt == T_LONG) {
1337               result = new ConvI2LNode(phase->transform(result));
1338             }
1339 #endif
1340             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1341             // Need to preserve unboxing load type if it is unsigned.
1342             switch(this->Opcode()) {
1343               case Op_LoadUB:
1344                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1345                 break;
1346               case Op_LoadUS:
1347                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1348                 break;
1349             }
1350             return result;
1351           }
1352         }
1353       }
1354     }
1355   }
1356   return NULL;
1357 }
1358 
1359 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1360   Node* region = phi->in(0);
1361   if (region == NULL) {
1362     return false; // Wait stable graph
1363   }
1364   uint cnt = phi->req();
1365   for (uint i = 1; i < cnt; i++) {
1366     Node* rc = region->in(i);
1367     if (rc == NULL || phase->type(rc) == Type::TOP)
1368       return false; // Wait stable graph
1369     Node* in = phi->in(i);
1370     if (in == NULL || phase->type(in) == Type::TOP)
1371       return false; // Wait stable graph
1372   }
1373   return true;
1374 }
1375 //------------------------------split_through_phi------------------------------
1376 // Split instance or boxed field load through Phi.
1377 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1378   Node* mem     = in(Memory);
1379   Node* address = in(Address);
1380   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1381 
1382   assert((t_oop != NULL) &&
1383          (t_oop->is_known_instance_field() ||
1384           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1385 
1386   Compile* C = phase->C;
1387   intptr_t ignore = 0;
1388   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1389   bool base_is_phi = (base != NULL) && base->is_Phi();
1390   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1391                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1392                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1393 
1394   if (!((mem->is_Phi() || base_is_phi) &&
1395         (load_boxed_values || t_oop->is_known_instance_field()))) {
1396     return NULL; // memory is not Phi
1397   }
1398 
1399   if (mem->is_Phi()) {
1400     if (!stable_phi(mem->as_Phi(), phase)) {
1401       return NULL; // Wait stable graph
1402     }
1403     uint cnt = mem->req();
1404     // Check for loop invariant memory.
1405     if (cnt == 3) {
1406       for (uint i = 1; i < cnt; i++) {
1407         Node* in = mem->in(i);
1408         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1409         if (m == mem) {
1410           set_req(Memory, mem->in(cnt - i));
1411           return this; // made change
1412         }
1413       }
1414     }
1415   }
1416   if (base_is_phi) {
1417     if (!stable_phi(base->as_Phi(), phase)) {
1418       return NULL; // Wait stable graph
1419     }
1420     uint cnt = base->req();
1421     // Check for loop invariant memory.
1422     if (cnt == 3) {
1423       for (uint i = 1; i < cnt; i++) {
1424         if (base->in(i) == base) {
1425           return NULL; // Wait stable graph
1426         }
1427       }
1428     }
1429   }
1430 
1431   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1432 
1433   // Split through Phi (see original code in loopopts.cpp).
1434   assert(C->have_alias_type(t_oop), "instance should have alias type");
1435 
1436   // Do nothing here if Identity will find a value
1437   // (to avoid infinite chain of value phis generation).
1438   if (!phase->eqv(this, this->Identity(phase)))
1439     return NULL;
1440 
1441   // Select Region to split through.
1442   Node* region;
1443   if (!base_is_phi) {
1444     assert(mem->is_Phi(), "sanity");
1445     region = mem->in(0);
1446     // Skip if the region dominates some control edge of the address.
1447     if (!MemNode::all_controls_dominate(address, region))
1448       return NULL;
1449   } else if (!mem->is_Phi()) {
1450     assert(base_is_phi, "sanity");
1451     region = base->in(0);
1452     // Skip if the region dominates some control edge of the memory.
1453     if (!MemNode::all_controls_dominate(mem, region))
1454       return NULL;
1455   } else if (base->in(0) != mem->in(0)) {
1456     assert(base_is_phi && mem->is_Phi(), "sanity");
1457     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1458       region = base->in(0);
1459     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1460       region = mem->in(0);
1461     } else {
1462       return NULL; // complex graph
1463     }
1464   } else {
1465     assert(base->in(0) == mem->in(0), "sanity");
1466     region = mem->in(0);
1467   }
1468 
1469   const Type* this_type = this->bottom_type();
1470   int this_index  = C->get_alias_index(t_oop);
1471   int this_offset = t_oop->offset();
1472   int this_iid    = t_oop->instance_id();
1473   if (!t_oop->is_known_instance() && load_boxed_values) {
1474     // Use _idx of address base for boxed values.
1475     this_iid = base->_idx;
1476   }
1477   PhaseIterGVN* igvn = phase->is_IterGVN();
1478   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1479   for (uint i = 1; i < region->req(); i++) {
1480     Node* x;
1481     Node* the_clone = NULL;
1482     if (region->in(i) == C->top()) {
1483       x = C->top();      // Dead path?  Use a dead data op
1484     } else {
1485       x = this->clone();        // Else clone up the data op
1486       the_clone = x;            // Remember for possible deletion.
1487       // Alter data node to use pre-phi inputs
1488       if (this->in(0) == region) {
1489         x->set_req(0, region->in(i));
1490       } else {
1491         x->set_req(0, NULL);
1492       }
1493       if (mem->is_Phi() && (mem->in(0) == region)) {
1494         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1495       }
1496       if (address->is_Phi() && address->in(0) == region) {
1497         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1498       }
1499       if (base_is_phi && (base->in(0) == region)) {
1500         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1501         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1502         x->set_req(Address, adr_x);
1503       }
1504     }
1505     // Check for a 'win' on some paths
1506     const Type *t = x->Value(igvn);
1507 
1508     bool singleton = t->singleton();
1509 
1510     // See comments in PhaseIdealLoop::split_thru_phi().
1511     if (singleton && t == Type::TOP) {
1512       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1513     }
1514 
1515     if (singleton) {
1516       x = igvn->makecon(t);
1517     } else {
1518       // We now call Identity to try to simplify the cloned node.
1519       // Note that some Identity methods call phase->type(this).
1520       // Make sure that the type array is big enough for
1521       // our new node, even though we may throw the node away.
1522       // (This tweaking with igvn only works because x is a new node.)
1523       igvn->set_type(x, t);
1524       // If x is a TypeNode, capture any more-precise type permanently into Node
1525       // otherwise it will be not updated during igvn->transform since
1526       // igvn->type(x) is set to x->Value() already.
1527       x->raise_bottom_type(t);
1528       Node *y = x->Identity(igvn);
1529       if (y != x) {
1530         x = y;
1531       } else {
1532         y = igvn->hash_find_insert(x);
1533         if (y) {
1534           x = y;
1535         } else {
1536           // Else x is a new node we are keeping
1537           // We do not need register_new_node_with_optimizer
1538           // because set_type has already been called.
1539           igvn->_worklist.push(x);
1540         }
1541       }
1542     }
1543     if (x != the_clone && the_clone != NULL) {
1544       igvn->remove_dead_node(the_clone);
1545     }
1546     phi->set_req(i, x);
1547   }
1548   // Record Phi
1549   igvn->register_new_node_with_optimizer(phi);
1550   return phi;
1551 }
1552 
1553 //------------------------------Ideal------------------------------------------
1554 // If the load is from Field memory and the pointer is non-null, it might be possible to
1555 // zero out the control input.
1556 // If the offset is constant and the base is an object allocation,
1557 // try to hook me up to the exact initializing store.
1558 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1559   Node* p = MemNode::Ideal_common(phase, can_reshape);
1560   if (p)  return (p == NodeSentinel) ? NULL : p;
1561 
1562   Node* ctrl    = in(MemNode::Control);
1563   Node* address = in(MemNode::Address);
1564   bool progress = false;
1565 
1566   // Skip up past a SafePoint control.  Cannot do this for Stores because
1567   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1568   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1569       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1570     ctrl = ctrl->in(0);
1571     set_req(MemNode::Control,ctrl);
1572     progress = true;
1573   }
1574 
1575   intptr_t ignore = 0;
1576   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1577   if (base != NULL
1578       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1579     // Check for useless control edge in some common special cases
1580     if (in(MemNode::Control) != NULL
1581         && can_remove_control()
1582         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1583         && all_controls_dominate(base, phase->C->start())) {
1584       // A method-invariant, non-null address (constant or 'this' argument).
1585       set_req(MemNode::Control, NULL);
1586       progress = true;
1587     }
1588   }
1589 
1590   Node* mem = in(MemNode::Memory);
1591   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1592 
1593   if (can_reshape && (addr_t != NULL)) {
1594     // try to optimize our memory input
1595     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1596     if (opt_mem != mem) {
1597       set_req(MemNode::Memory, opt_mem);
1598       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1599       return this;
1600     }
1601     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1602     if ((t_oop != NULL) &&
1603         (t_oop->is_known_instance_field() ||
1604          t_oop->is_ptr_to_boxed_value())) {
1605       PhaseIterGVN *igvn = phase->is_IterGVN();
1606       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1607         // Delay this transformation until memory Phi is processed.
1608         phase->is_IterGVN()->_worklist.push(this);
1609         return NULL;
1610       }
1611       // Split instance field load through Phi.
1612       Node* result = split_through_phi(phase);
1613       if (result != NULL) return result;
1614 
1615       if (t_oop->is_ptr_to_boxed_value()) {
1616         Node* result = eliminate_autobox(phase);
1617         if (result != NULL) return result;
1618       }
1619     }
1620   }
1621 
1622   // Is there a dominating load that loads the same value?  Leave
1623   // anything that is not a load of a field/array element (like
1624   // barriers etc.) alone
1625   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1626     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1627       Node *use = mem->fast_out(i);
1628       if (use != this &&
1629           use->Opcode() == Opcode() &&
1630           use->in(0) != NULL &&
1631           use->in(0) != in(0) &&
1632           use->in(Address) == in(Address)) {
1633         Node* ctl = in(0);
1634         for (int i = 0; i < 10 && ctl != NULL; i++) {
1635           ctl = IfNode::up_one_dom(ctl);
1636           if (ctl == use->in(0)) {
1637             set_req(0, use->in(0));
1638             return this;
1639           }
1640         }
1641       }
1642     }
1643   }
1644 
1645   // Check for prior store with a different base or offset; make Load
1646   // independent.  Skip through any number of them.  Bail out if the stores
1647   // are in an endless dead cycle and report no progress.  This is a key
1648   // transform for Reflection.  However, if after skipping through the Stores
1649   // we can't then fold up against a prior store do NOT do the transform as
1650   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1651   // array memory alive twice: once for the hoisted Load and again after the
1652   // bypassed Store.  This situation only works if EVERYBODY who does
1653   // anti-dependence work knows how to bypass.  I.e. we need all
1654   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1655   // the alias index stuff.  So instead, peek through Stores and IFF we can
1656   // fold up, do so.
1657   Node* prev_mem = find_previous_store(phase);
1658   if (prev_mem != NULL) {
1659     Node* value = can_see_arraycopy_value(prev_mem, phase);
1660     if (value != NULL) {
1661       return value;
1662     }
1663   }
1664   // Steps (a), (b):  Walk past independent stores to find an exact match.
1665   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1666     // (c) See if we can fold up on the spot, but don't fold up here.
1667     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1668     // just return a prior value, which is done by Identity calls.
1669     if (can_see_stored_value(prev_mem, phase)) {
1670       // Make ready for step (d):
1671       set_req(MemNode::Memory, prev_mem);
1672       return this;
1673     }
1674   }
1675 
1676   return progress ? this : NULL;
1677 }
1678 
1679 // Helper to recognize certain Klass fields which are invariant across
1680 // some group of array types (e.g., int[] or all T[] where T < Object).
1681 const Type*
1682 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1683                                  ciKlass* klass) const {
1684   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1685     // The field is Klass::_modifier_flags.  Return its (constant) value.
1686     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1687     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1688     return TypeInt::make(klass->modifier_flags());
1689   }
1690   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1691     // The field is Klass::_access_flags.  Return its (constant) value.
1692     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1693     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1694     return TypeInt::make(klass->access_flags());
1695   }
1696   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1697     // The field is Klass::_layout_helper.  Return its constant value if known.
1698     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1699     return TypeInt::make(klass->layout_helper());
1700   }
1701 
1702   // No match.
1703   return NULL;
1704 }
1705 
1706 //------------------------------Value-----------------------------------------
1707 const Type* LoadNode::Value(PhaseGVN* phase) const {
1708   // Either input is TOP ==> the result is TOP
1709   Node* mem = in(MemNode::Memory);
1710   const Type *t1 = phase->type(mem);
1711   if (t1 == Type::TOP)  return Type::TOP;
1712   Node* adr = in(MemNode::Address);
1713   const TypePtr* tp = phase->type(adr)->isa_ptr();
1714   if (tp == NULL || tp->empty())  return Type::TOP;
1715   int off = tp->offset();
1716   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1717   Compile* C = phase->C;
1718 
1719   // Try to guess loaded type from pointer type
1720   if (tp->isa_aryptr()) {
1721     const TypeAryPtr* ary = tp->is_aryptr();
1722     const Type* t = ary->elem();
1723 
1724     // Determine whether the reference is beyond the header or not, by comparing
1725     // the offset against the offset of the start of the array's data.
1726     // Different array types begin at slightly different offsets (12 vs. 16).
1727     // We choose T_BYTE as an example base type that is least restrictive
1728     // as to alignment, which will therefore produce the smallest
1729     // possible base offset.
1730     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1731     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1732 
1733     // Try to constant-fold a stable array element.
1734     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1735       // Make sure the reference is not into the header and the offset is constant
1736       ciObject* aobj = ary->const_oop();
1737       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1738         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1739         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1740                                                                       stable_dimension,
1741                                                                       memory_type(), is_unsigned());
1742         if (con_type != NULL) {
1743           return con_type;
1744         }
1745       }
1746     }
1747 
1748     // Don't do this for integer types. There is only potential profit if
1749     // the element type t is lower than _type; that is, for int types, if _type is
1750     // more restrictive than t.  This only happens here if one is short and the other
1751     // char (both 16 bits), and in those cases we've made an intentional decision
1752     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1753     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1754     //
1755     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1756     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1757     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1758     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1759     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1760     // In fact, that could have been the original type of p1, and p1 could have
1761     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1762     // expression (LShiftL quux 3) independently optimized to the constant 8.
1763     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1764         && (_type->isa_vect() == NULL)
1765         && t->isa_valuetype() == NULL
1766         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1767       // t might actually be lower than _type, if _type is a unique
1768       // concrete subclass of abstract class t.
1769       if (off_beyond_header) {  // is the offset beyond the header?
1770         const Type* jt = t->join_speculative(_type);
1771         // In any case, do not allow the join, per se, to empty out the type.
1772         if (jt->empty() && !t->empty()) {
1773           // This can happen if a interface-typed array narrows to a class type.
1774           jt = _type;
1775         }
1776 #ifdef ASSERT
1777         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1778           // The pointers in the autobox arrays are always non-null
1779           Node* base = adr->in(AddPNode::Base);
1780           if ((base != NULL) && base->is_DecodeN()) {
1781             // Get LoadN node which loads IntegerCache.cache field
1782             base = base->in(1);
1783           }
1784           if ((base != NULL) && base->is_Con()) {
1785             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1786             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1787               // It could be narrow oop
1788               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1789             }
1790           }
1791         }
1792 #endif
1793         return jt;
1794       }
1795     }
1796   } else if (tp->base() == Type::InstPtr) {
1797     assert( off != Type::OffsetBot ||
1798             // arrays can be cast to Objects
1799             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1800             tp->is_oopptr()->klass() == ciEnv::current()->Class_klass() ||
1801             // unsafe field access may not have a constant offset
1802             C->has_unsafe_access(),
1803             "Field accesses must be precise" );
1804     // For oop loads, we expect the _type to be precise.
1805 
1806     // Optimize loads from constant fields.
1807     const TypeInstPtr* tinst = tp->is_instptr();
1808     ciObject* const_oop = tinst->const_oop();
1809     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1810       BasicType bt = memory_type();
1811       ciType* mirror_type = const_oop->as_instance()->java_mirror_type();
1812       if (mirror_type != NULL && mirror_type->is_valuetype()) {
1813         ciValueKlass* vk = mirror_type->as_value_klass();
1814         if (off == vk->default_value_offset()) {
1815           // Loading a special hidden field that contains the oop of the default value type
1816           const Type* const_oop = TypeInstPtr::make(vk->default_value_instance());
1817           return (bt == T_NARROWOOP) ? const_oop->make_narrowoop() : const_oop;
1818         }
1819       }
1820       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
1821       if (con_type != NULL) {
1822         return con_type;
1823       }
1824     }
1825   } else if (tp->base() == Type::KlassPtr) {
1826     assert( off != Type::OffsetBot ||
1827             // arrays can be cast to Objects
1828             tp->is_klassptr()->klass() == NULL ||
1829             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1830             // also allow array-loading from the primary supertype
1831             // array during subtype checks
1832             Opcode() == Op_LoadKlass,
1833             "Field accesses must be precise" );
1834     // For klass/static loads, we expect the _type to be precise
1835   } else if (tp->base() == Type::RawPtr && !StressReflectiveCode) {
1836     if (adr->is_Load() && off == 0) {
1837       /* With mirrors being an indirect in the Klass*
1838        * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1839        * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1840        *
1841        * So check the type and klass of the node before the LoadP.
1842        */
1843       Node* adr2 = adr->in(MemNode::Address);
1844       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1845       if (tkls != NULL) {
1846         ciKlass* klass = tkls->klass();
1847         if (klass != NULL && klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1848           assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1849           assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1850           return TypeInstPtr::make(klass->java_mirror());
1851         }
1852       }
1853     } else {
1854       // Check for a load of the default value offset from the ValueKlassFixedBlock:
1855       // LoadI(LoadP(value_klass, adr_valueklass_fixed_block_offset), default_value_offset_offset)
1856       intptr_t offset = 0;
1857       Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1858       if (base != NULL && base->is_Load() && offset == in_bytes(ValueKlass::default_value_offset_offset())) {
1859         const TypeKlassPtr* tkls = phase->type(base->in(MemNode::Address))->isa_klassptr();
1860         if (tkls != NULL && tkls->is_loaded() && tkls->klass_is_exact() && tkls->isa_valuetype() &&
1861             tkls->offset() == in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset())) {
1862           assert(base->Opcode() == Op_LoadP, "must load an oop from klass");
1863           assert(Opcode() == Op_LoadI, "must load an int from fixed block");
1864           return TypeInt::make(tkls->klass()->as_value_klass()->default_value_offset());
1865         }
1866       }
1867     }
1868   }
1869 
1870   const TypeKlassPtr *tkls = tp->isa_klassptr();
1871   if (tkls != NULL && !StressReflectiveCode) {
1872     ciKlass* klass = tkls->klass();
1873     if (tkls->is_loaded() && tkls->klass_is_exact()) {
1874       // We are loading a field from a Klass metaobject whose identity
1875       // is known at compile time (the type is "exact" or "precise").
1876       // Check for fields we know are maintained as constants by the VM.
1877       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1878         // The field is Klass::_super_check_offset.  Return its (constant) value.
1879         // (Folds up type checking code.)
1880         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1881         return TypeInt::make(klass->super_check_offset());
1882       }
1883       // Compute index into primary_supers array
1884       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1885       // Check for overflowing; use unsigned compare to handle the negative case.
1886       if( depth < ciKlass::primary_super_limit() ) {
1887         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1888         // (Folds up type checking code.)
1889         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1890         ciKlass *ss = klass->super_of_depth(depth);
1891         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1892       }
1893       const Type* aift = load_array_final_field(tkls, klass);
1894       if (aift != NULL)  return aift;
1895     }
1896 
1897     // We can still check if we are loading from the primary_supers array at a
1898     // shallow enough depth.  Even though the klass is not exact, entries less
1899     // than or equal to its super depth are correct.
1900     if (tkls->is_loaded()) {
1901       ciType *inner = klass;
1902       while( inner->is_obj_array_klass() )
1903         inner = inner->as_obj_array_klass()->base_element_type();
1904       if( inner->is_instance_klass() &&
1905           !inner->as_instance_klass()->flags().is_interface() ) {
1906         // Compute index into primary_supers array
1907         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1908         // Check for overflowing; use unsigned compare to handle the negative case.
1909         if( depth < ciKlass::primary_super_limit() &&
1910             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1911           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1912           // (Folds up type checking code.)
1913           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1914           ciKlass *ss = klass->super_of_depth(depth);
1915           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1916         }
1917       }
1918     }
1919 
1920     // If the type is enough to determine that the thing is not an array,
1921     // we can give the layout_helper a positive interval type.
1922     // This will help short-circuit some reflective code.
1923     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1924         && !klass->is_array_klass() // not directly typed as an array
1925         && !klass->is_interface()  // specifically not Serializable & Cloneable
1926         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1927         ) {
1928       // Note:  When interfaces are reliable, we can narrow the interface
1929       // test to (klass != Serializable && klass != Cloneable).
1930       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1931       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1932       // The key property of this type is that it folds up tests
1933       // for array-ness, since it proves that the layout_helper is positive.
1934       // Thus, a generic value like the basic object layout helper works fine.
1935       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1936     }
1937   }
1938 
1939   // If we are loading from a freshly-allocated object, produce a zero,
1940   // if the load is provably beyond the header of the object.
1941   // (Also allow a variable load from a fresh array to produce zero.)
1942   const TypeOopPtr *tinst = tp->isa_oopptr();
1943   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1944   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1945   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1946     Node* value = can_see_stored_value(mem,phase);
1947     if (value != NULL && value->is_Con()) {
1948       assert(value->bottom_type()->higher_equal(_type),"sanity");
1949       return value->bottom_type();
1950     }
1951   }
1952 
1953   if (is_instance) {
1954     // If we have an instance type and our memory input is the
1955     // programs's initial memory state, there is no matching store,
1956     // so just return a zero of the appropriate type
1957     Node *mem = in(MemNode::Memory);
1958     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1959       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1960       return Type::get_zero_type(_type->basic_type());
1961     }
1962   }
1963   return _type;
1964 }
1965 
1966 //------------------------------match_edge-------------------------------------
1967 // Do we Match on this edge index or not?  Match only the address.
1968 uint LoadNode::match_edge(uint idx) const {
1969   return idx == MemNode::Address;
1970 }
1971 
1972 //--------------------------LoadBNode::Ideal--------------------------------------
1973 //
1974 //  If the previous store is to the same address as this load,
1975 //  and the value stored was larger than a byte, replace this load
1976 //  with the value stored truncated to a byte.  If no truncation is
1977 //  needed, the replacement is done in LoadNode::Identity().
1978 //
1979 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1980   Node* mem = in(MemNode::Memory);
1981   Node* value = can_see_stored_value(mem,phase);
1982   if( value && !phase->type(value)->higher_equal( _type ) ) {
1983     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1984     return new RShiftINode(result, phase->intcon(24));
1985   }
1986   // Identity call will handle the case where truncation is not needed.
1987   return LoadNode::Ideal(phase, can_reshape);
1988 }
1989 
1990 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1991   Node* mem = in(MemNode::Memory);
1992   Node* value = can_see_stored_value(mem,phase);
1993   if (value != NULL && value->is_Con() &&
1994       !value->bottom_type()->higher_equal(_type)) {
1995     // If the input to the store does not fit with the load's result type,
1996     // it must be truncated. We can't delay until Ideal call since
1997     // a singleton Value is needed for split_thru_phi optimization.
1998     int con = value->get_int();
1999     return TypeInt::make((con << 24) >> 24);
2000   }
2001   return LoadNode::Value(phase);
2002 }
2003 
2004 //--------------------------LoadUBNode::Ideal-------------------------------------
2005 //
2006 //  If the previous store is to the same address as this load,
2007 //  and the value stored was larger than a byte, replace this load
2008 //  with the value stored truncated to a byte.  If no truncation is
2009 //  needed, the replacement is done in LoadNode::Identity().
2010 //
2011 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2012   Node* mem = in(MemNode::Memory);
2013   Node* value = can_see_stored_value(mem, phase);
2014   if (value && !phase->type(value)->higher_equal(_type))
2015     return new AndINode(value, phase->intcon(0xFF));
2016   // Identity call will handle the case where truncation is not needed.
2017   return LoadNode::Ideal(phase, can_reshape);
2018 }
2019 
2020 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2021   Node* mem = in(MemNode::Memory);
2022   Node* value = can_see_stored_value(mem,phase);
2023   if (value != NULL && value->is_Con() &&
2024       !value->bottom_type()->higher_equal(_type)) {
2025     // If the input to the store does not fit with the load's result type,
2026     // it must be truncated. We can't delay until Ideal call since
2027     // a singleton Value is needed for split_thru_phi optimization.
2028     int con = value->get_int();
2029     return TypeInt::make(con & 0xFF);
2030   }
2031   return LoadNode::Value(phase);
2032 }
2033 
2034 //--------------------------LoadUSNode::Ideal-------------------------------------
2035 //
2036 //  If the previous store is to the same address as this load,
2037 //  and the value stored was larger than a char, replace this load
2038 //  with the value stored truncated to a char.  If no truncation is
2039 //  needed, the replacement is done in LoadNode::Identity().
2040 //
2041 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2042   Node* mem = in(MemNode::Memory);
2043   Node* value = can_see_stored_value(mem,phase);
2044   if( value && !phase->type(value)->higher_equal( _type ) )
2045     return new AndINode(value,phase->intcon(0xFFFF));
2046   // Identity call will handle the case where truncation is not needed.
2047   return LoadNode::Ideal(phase, can_reshape);
2048 }
2049 
2050 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2051   Node* mem = in(MemNode::Memory);
2052   Node* value = can_see_stored_value(mem,phase);
2053   if (value != NULL && value->is_Con() &&
2054       !value->bottom_type()->higher_equal(_type)) {
2055     // If the input to the store does not fit with the load's result type,
2056     // it must be truncated. We can't delay until Ideal call since
2057     // a singleton Value is needed for split_thru_phi optimization.
2058     int con = value->get_int();
2059     return TypeInt::make(con & 0xFFFF);
2060   }
2061   return LoadNode::Value(phase);
2062 }
2063 
2064 //--------------------------LoadSNode::Ideal--------------------------------------
2065 //
2066 //  If the previous store is to the same address as this load,
2067 //  and the value stored was larger than a short, replace this load
2068 //  with the value stored truncated to a short.  If no truncation is
2069 //  needed, the replacement is done in LoadNode::Identity().
2070 //
2071 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2072   Node* mem = in(MemNode::Memory);
2073   Node* value = can_see_stored_value(mem,phase);
2074   if( value && !phase->type(value)->higher_equal( _type ) ) {
2075     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2076     return new RShiftINode(result, phase->intcon(16));
2077   }
2078   // Identity call will handle the case where truncation is not needed.
2079   return LoadNode::Ideal(phase, can_reshape);
2080 }
2081 
2082 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2083   Node* mem = in(MemNode::Memory);
2084   Node* value = can_see_stored_value(mem,phase);
2085   if (value != NULL && value->is_Con() &&
2086       !value->bottom_type()->higher_equal(_type)) {
2087     // If the input to the store does not fit with the load's result type,
2088     // it must be truncated. We can't delay until Ideal call since
2089     // a singleton Value is needed for split_thru_phi optimization.
2090     int con = value->get_int();
2091     return TypeInt::make((con << 16) >> 16);
2092   }
2093   return LoadNode::Value(phase);
2094 }
2095 
2096 //=============================================================================
2097 //----------------------------LoadKlassNode::make------------------------------
2098 // Polymorphic factory method:
2099 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2100   // sanity check the alias category against the created node type
2101   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2102   assert(adr_type != NULL, "expecting TypeKlassPtr");
2103 #ifdef _LP64
2104   if (adr_type->is_ptr_to_narrowklass()) {
2105     assert(UseCompressedClassPointers, "no compressed klasses");
2106     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2107     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2108   }
2109 #endif
2110   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2111   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2112 }
2113 
2114 //------------------------------Value------------------------------------------
2115 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2116   return klass_value_common(phase);
2117 }
2118 
2119 // In most cases, LoadKlassNode does not have the control input set. If the control
2120 // input is set, it must not be removed (by LoadNode::Ideal()).
2121 bool LoadKlassNode::can_remove_control() const {
2122   return false;
2123 }
2124 
2125 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2126   // Either input is TOP ==> the result is TOP
2127   const Type *t1 = phase->type( in(MemNode::Memory) );
2128   if (t1 == Type::TOP)  return Type::TOP;
2129   Node *adr = in(MemNode::Address);
2130   const Type *t2 = phase->type( adr );
2131   if (t2 == Type::TOP)  return Type::TOP;
2132   const TypePtr *tp = t2->is_ptr();
2133   if (TypePtr::above_centerline(tp->ptr()) ||
2134       tp->ptr() == TypePtr::Null)  return Type::TOP;
2135 
2136   // Return a more precise klass, if possible
2137   const TypeInstPtr *tinst = tp->isa_instptr();
2138   if (tinst != NULL) {
2139     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2140     int offset = tinst->offset();
2141     if (ik == phase->C->env()->Class_klass()
2142         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2143             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2144       // We are loading a special hidden field from a Class mirror object,
2145       // the field which points to the VM's Klass metaobject.
2146       ciType* t = tinst->java_mirror_type();
2147       // java_mirror_type returns non-null for compile-time Class constants.
2148       if (t != NULL) {
2149         // constant oop => constant klass
2150         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2151           if (t->is_void()) {
2152             // We cannot create a void array.  Since void is a primitive type return null
2153             // klass.  Users of this result need to do a null check on the returned klass.
2154             return TypePtr::NULL_PTR;
2155           }
2156           return TypeKlassPtr::make(ciArrayKlass::make(t));
2157         }
2158         if (!t->is_klass()) {
2159           // a primitive Class (e.g., int.class) has NULL for a klass field
2160           return TypePtr::NULL_PTR;
2161         }
2162         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2163         return TypeKlassPtr::make(t->as_klass());
2164       }
2165       // non-constant mirror, so we can't tell what's going on
2166     }
2167     if( !ik->is_loaded() )
2168       return _type;             // Bail out if not loaded
2169     if (offset == oopDesc::klass_offset_in_bytes()) {
2170       if (tinst->klass_is_exact()) {
2171         return TypeKlassPtr::make(ik);
2172       }
2173       // See if we can become precise: no subklasses and no interface
2174       // (Note:  We need to support verified interfaces.)
2175       if (!ik->is_interface() && !ik->has_subklass()) {
2176         //assert(!UseExactTypes, "this code should be useless with exact types");
2177         // Add a dependence; if any subclass added we need to recompile
2178         if (!ik->is_final()) {
2179           // %%% should use stronger assert_unique_concrete_subtype instead
2180           phase->C->dependencies()->assert_leaf_type(ik);
2181         }
2182         // Return precise klass
2183         return TypeKlassPtr::make(ik);
2184       }
2185 
2186       // Return root of possible klass
2187       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0));
2188     }
2189   }
2190 
2191   // Check for loading klass from an array
2192   const TypeAryPtr *tary = tp->isa_aryptr();
2193   if( tary != NULL ) {
2194     ciKlass *tary_klass = tary->klass();
2195     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2196         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2197       if (tary->klass_is_exact()) {
2198         return TypeKlassPtr::make(tary_klass);
2199       }
2200       ciArrayKlass *ak = tary->klass()->as_array_klass();
2201       // If the klass is an object array, we defer the question to the
2202       // array component klass.
2203       if( ak->is_obj_array_klass() ) {
2204         assert( ak->is_loaded(), "" );
2205         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2206         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2207           ciInstanceKlass* ik = base_k->as_instance_klass();
2208           // See if we can become precise: no subklasses and no interface
2209           if (!ik->is_interface() && !ik->has_subklass()) {
2210             //assert(!UseExactTypes, "this code should be useless with exact types");
2211             // Add a dependence; if any subclass added we need to recompile
2212             if (!ik->is_final()) {
2213               phase->C->dependencies()->assert_leaf_type(ik);
2214             }
2215             // Return precise array klass
2216             return TypeKlassPtr::make(ak);
2217           }
2218         }
2219         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
2220       } else {                  // Found a type-array?
2221         //assert(!UseExactTypes, "this code should be useless with exact types");
2222         assert( ak->is_type_array_klass(), "" );
2223         return TypeKlassPtr::make(ak); // These are always precise
2224       }
2225     }
2226   }
2227 
2228   // Check for loading klass from an array klass
2229   const TypeKlassPtr *tkls = tp->isa_klassptr();
2230   if (tkls != NULL && !StressReflectiveCode) {
2231     if (!tkls->is_loaded()) {
2232       return _type;             // Bail out if not loaded
2233     }
2234     ciKlass* klass = tkls->klass();
2235     if( klass->is_obj_array_klass() &&
2236         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2237       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2238       // // Always returning precise element type is incorrect,
2239       // // e.g., element type could be object and array may contain strings
2240       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2241 
2242       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2243       // according to the element type's subclassing.
2244       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0));
2245     }
2246     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2247         tkls->offset() == in_bytes(Klass::super_offset())) {
2248       ciKlass* sup = klass->as_instance_klass()->super();
2249       // The field is Klass::_super.  Return its (constant) value.
2250       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2251       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2252     }
2253   }
2254 
2255   // Bailout case
2256   return LoadNode::Value(phase);
2257 }
2258 
2259 //------------------------------Identity---------------------------------------
2260 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2261 // Also feed through the klass in Allocate(...klass...)._klass.
2262 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2263   return klass_identity_common(phase);
2264 }
2265 
2266 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2267   Node* x = LoadNode::Identity(phase);
2268   if (x != this)  return x;
2269 
2270   // Take apart the address into an oop and and offset.
2271   // Return 'this' if we cannot.
2272   Node*    adr    = in(MemNode::Address);
2273   intptr_t offset = 0;
2274   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2275   if (base == NULL)     return this;
2276   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2277   if (toop == NULL)     return this;
2278 
2279   // Step over potential GC barrier for OopHandle resolve
2280   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2281   if (bs->is_gc_barrier_node(base)) {
2282     base = bs->step_over_gc_barrier(base);
2283   }
2284 
2285   // We can fetch the klass directly through an AllocateNode.
2286   // This works even if the klass is not constant (clone or newArray).
2287   if (offset == oopDesc::klass_offset_in_bytes()) {
2288     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2289     if (allocated_klass != NULL) {
2290       return allocated_klass;
2291     }
2292   }
2293 
2294   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2295   // See inline_native_Class_query for occurrences of these patterns.
2296   // Java Example:  x.getClass().isAssignableFrom(y)
2297   //
2298   // This improves reflective code, often making the Class
2299   // mirror go completely dead.  (Current exception:  Class
2300   // mirrors may appear in debug info, but we could clean them out by
2301   // introducing a new debug info operator for Klass.java_mirror).
2302 
2303   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2304       && offset == java_lang_Class::klass_offset_in_bytes()) {
2305     if (base->is_Load()) {
2306       Node* base2 = base->in(MemNode::Address);
2307       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2308         Node* adr2 = base2->in(MemNode::Address);
2309         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2310         if (tkls != NULL && !tkls->empty()
2311             && (tkls->klass()->is_instance_klass() ||
2312               tkls->klass()->is_array_klass())
2313             && adr2->is_AddP()
2314            ) {
2315           int mirror_field = in_bytes(Klass::java_mirror_offset());
2316           if (tkls->offset() == mirror_field) {
2317             return adr2->in(AddPNode::Base);
2318           }
2319         }
2320       }
2321     }
2322   }
2323 
2324   return this;
2325 }
2326 
2327 
2328 //------------------------------Value------------------------------------------
2329 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2330   const Type *t = klass_value_common(phase);
2331   if (t == Type::TOP)
2332     return t;
2333 
2334   return t->make_narrowklass();
2335 }
2336 
2337 //------------------------------Identity---------------------------------------
2338 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2339 // Also feed through the klass in Allocate(...klass...)._klass.
2340 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2341   Node *x = klass_identity_common(phase);
2342 
2343   const Type *t = phase->type( x );
2344   if( t == Type::TOP ) return x;
2345   if( t->isa_narrowklass()) return x;
2346   assert (!t->isa_narrowoop(), "no narrow oop here");
2347 
2348   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2349 }
2350 
2351 //------------------------------Value-----------------------------------------
2352 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2353   // Either input is TOP ==> the result is TOP
2354   const Type *t1 = phase->type( in(MemNode::Memory) );
2355   if( t1 == Type::TOP ) return Type::TOP;
2356   Node *adr = in(MemNode::Address);
2357   const Type *t2 = phase->type( adr );
2358   if( t2 == Type::TOP ) return Type::TOP;
2359   const TypePtr *tp = t2->is_ptr();
2360   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2361   const TypeAryPtr *tap = tp->isa_aryptr();
2362   if( !tap ) return _type;
2363   return tap->size();
2364 }
2365 
2366 //-------------------------------Ideal---------------------------------------
2367 // Feed through the length in AllocateArray(...length...)._length.
2368 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2369   Node* p = MemNode::Ideal_common(phase, can_reshape);
2370   if (p)  return (p == NodeSentinel) ? NULL : p;
2371 
2372   // Take apart the address into an oop and and offset.
2373   // Return 'this' if we cannot.
2374   Node*    adr    = in(MemNode::Address);
2375   intptr_t offset = 0;
2376   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2377   if (base == NULL)     return NULL;
2378   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2379   if (tary == NULL)     return NULL;
2380 
2381   // We can fetch the length directly through an AllocateArrayNode.
2382   // This works even if the length is not constant (clone or newArray).
2383   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2384     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2385     if (alloc != NULL) {
2386       Node* allocated_length = alloc->Ideal_length();
2387       Node* len = alloc->make_ideal_length(tary, phase);
2388       if (allocated_length != len) {
2389         // New CastII improves on this.
2390         return len;
2391       }
2392     }
2393   }
2394 
2395   return NULL;
2396 }
2397 
2398 //------------------------------Identity---------------------------------------
2399 // Feed through the length in AllocateArray(...length...)._length.
2400 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2401   Node* x = LoadINode::Identity(phase);
2402   if (x != this)  return x;
2403 
2404   // Take apart the address into an oop and and offset.
2405   // Return 'this' if we cannot.
2406   Node*    adr    = in(MemNode::Address);
2407   intptr_t offset = 0;
2408   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2409   if (base == NULL)     return this;
2410   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2411   if (tary == NULL)     return this;
2412 
2413   // We can fetch the length directly through an AllocateArrayNode.
2414   // This works even if the length is not constant (clone or newArray).
2415   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2416     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2417     if (alloc != NULL) {
2418       Node* allocated_length = alloc->Ideal_length();
2419       // Do not allow make_ideal_length to allocate a CastII node.
2420       Node* len = alloc->make_ideal_length(tary, phase, false);
2421       if (allocated_length == len) {
2422         // Return allocated_length only if it would not be improved by a CastII.
2423         return allocated_length;
2424       }
2425     }
2426   }
2427 
2428   return this;
2429 
2430 }
2431 
2432 //=============================================================================
2433 //---------------------------StoreNode::make-----------------------------------
2434 // Polymorphic factory method:
2435 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2436   assert((mo == unordered || mo == release), "unexpected");
2437   Compile* C = gvn.C;
2438   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2439          ctl != NULL, "raw memory operations should have control edge");
2440 
2441   switch (bt) {
2442   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2443   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2444   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2445   case T_CHAR:
2446   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2447   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2448   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2449   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2450   case T_METADATA:
2451   case T_ADDRESS:
2452   case T_VALUETYPE:
2453   case T_OBJECT:
2454 #ifdef _LP64
2455     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2456       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2457       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2458     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2459                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2460                 adr->bottom_type()->isa_rawptr())) {
2461       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2462       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2463     }
2464 #endif
2465     {
2466       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2467     }
2468   default:
2469     ShouldNotReachHere();
2470     return (StoreNode*)NULL;
2471   }
2472 }
2473 
2474 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2475   bool require_atomic = true;
2476   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2477 }
2478 
2479 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2480   bool require_atomic = true;
2481   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2482 }
2483 
2484 
2485 //--------------------------bottom_type----------------------------------------
2486 const Type *StoreNode::bottom_type() const {
2487   return Type::MEMORY;
2488 }
2489 
2490 //------------------------------hash-------------------------------------------
2491 uint StoreNode::hash() const {
2492   // unroll addition of interesting fields
2493   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2494 
2495   // Since they are not commoned, do not hash them:
2496   return NO_HASH;
2497 }
2498 
2499 //------------------------------Ideal------------------------------------------
2500 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2501 // When a store immediately follows a relevant allocation/initialization,
2502 // try to capture it into the initialization, or hoist it above.
2503 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2504   Node* p = MemNode::Ideal_common(phase, can_reshape);
2505   if (p)  return (p == NodeSentinel) ? NULL : p;
2506 
2507   Node* mem     = in(MemNode::Memory);
2508   Node* address = in(MemNode::Address);
2509   // Back-to-back stores to same address?  Fold em up.  Generally
2510   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2511   // since they must follow each StoreP operation.  Redundant StoreCMs
2512   // are eliminated just before matching in final_graph_reshape.
2513   {
2514     Node* st = mem;
2515     // If Store 'st' has more than one use, we cannot fold 'st' away.
2516     // For example, 'st' might be the final state at a conditional
2517     // return.  Or, 'st' might be used by some node which is live at
2518     // the same time 'st' is live, which might be unschedulable.  So,
2519     // require exactly ONE user until such time as we clone 'mem' for
2520     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2521     // true).
2522     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2523       // Looking at a dead closed cycle of memory?
2524       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2525       assert(Opcode() == st->Opcode() ||
2526              st->Opcode() == Op_StoreVector ||
2527              Opcode() == Op_StoreVector ||
2528              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2529              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2530              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2531              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
2532              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2533              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2534 
2535       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2536           st->as_Store()->memory_size() <= this->memory_size()) {
2537         Node* use = st->raw_out(0);
2538         phase->igvn_rehash_node_delayed(use);
2539         if (can_reshape) {
2540           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2541         } else {
2542           // It's OK to do this in the parser, since DU info is always accurate,
2543           // and the parser always refers to nodes via SafePointNode maps.
2544           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2545         }
2546         return this;
2547       }
2548       st = st->in(MemNode::Memory);
2549     }
2550   }
2551 
2552 
2553   // Capture an unaliased, unconditional, simple store into an initializer.
2554   // Or, if it is independent of the allocation, hoist it above the allocation.
2555   if (ReduceFieldZeroing && /*can_reshape &&*/
2556       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2557     InitializeNode* init = mem->in(0)->as_Initialize();
2558     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2559     if (offset > 0) {
2560       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2561       // If the InitializeNode captured me, it made a raw copy of me,
2562       // and I need to disappear.
2563       if (moved != NULL) {
2564         // %%% hack to ensure that Ideal returns a new node:
2565         mem = MergeMemNode::make(mem);
2566         return mem;             // fold me away
2567       }
2568     }
2569   }
2570 
2571   return NULL;                  // No further progress
2572 }
2573 
2574 //------------------------------Value-----------------------------------------
2575 const Type* StoreNode::Value(PhaseGVN* phase) const {
2576   // Either input is TOP ==> the result is TOP
2577   const Type *t1 = phase->type( in(MemNode::Memory) );
2578   if( t1 == Type::TOP ) return Type::TOP;
2579   const Type *t2 = phase->type( in(MemNode::Address) );
2580   if( t2 == Type::TOP ) return Type::TOP;
2581   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2582   if( t3 == Type::TOP ) return Type::TOP;
2583   return Type::MEMORY;
2584 }
2585 
2586 //------------------------------Identity---------------------------------------
2587 // Remove redundant stores:
2588 //   Store(m, p, Load(m, p)) changes to m.
2589 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2590 Node* StoreNode::Identity(PhaseGVN* phase) {
2591   Node* mem = in(MemNode::Memory);
2592   Node* adr = in(MemNode::Address);
2593   Node* val = in(MemNode::ValueIn);
2594 
2595   Node* result = this;
2596 
2597   // Load then Store?  Then the Store is useless
2598   if (val->is_Load() &&
2599       val->in(MemNode::Address)->eqv_uncast(adr) &&
2600       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2601       val->as_Load()->store_Opcode() == Opcode()) {
2602     result = mem;
2603   }
2604 
2605   // Two stores in a row of the same value?
2606   if (result == this &&
2607       mem->is_Store() &&
2608       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2609       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2610       mem->Opcode() == Opcode()) {
2611     result = mem;
2612   }
2613 
2614   // Store of zero anywhere into a freshly-allocated object?
2615   // Then the store is useless.
2616   // (It must already have been captured by the InitializeNode.)
2617   if (result == this && ReduceFieldZeroing) {
2618     // a newly allocated object is already all-zeroes everywhere
2619     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
2620         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == val)) {
2621       assert(!phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == NULL, "storing null to value array is forbidden");
2622       result = mem;
2623     }
2624 
2625     if (result == this) {
2626       // the store may also apply to zero-bits in an earlier object
2627       Node* prev_mem = find_previous_store(phase);
2628       // Steps (a), (b):  Walk past independent stores to find an exact match.
2629       if (prev_mem != NULL) {
2630         Node* prev_val = can_see_stored_value(prev_mem, phase);
2631         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2632           // prev_val and val might differ by a cast; it would be good
2633           // to keep the more informative of the two.
2634           if (phase->type(val)->is_zero_type()) {
2635             result = mem;
2636           } else if (prev_mem->is_Proj() && prev_mem->in(0)->is_Initialize()) {
2637             InitializeNode* init = prev_mem->in(0)->as_Initialize();
2638             AllocateNode* alloc = init->allocation();
2639             if (alloc != NULL && alloc->in(AllocateNode::DefaultValue) == val) {
2640               result = mem;
2641             }
2642           }
2643         }
2644       }
2645     }
2646   }
2647 
2648   if (result != this && phase->is_IterGVN() != NULL) {
2649     MemBarNode* trailing = trailing_membar();
2650     if (trailing != NULL) {
2651 #ifdef ASSERT
2652       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2653       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2654 #endif
2655       PhaseIterGVN* igvn = phase->is_IterGVN();
2656       trailing->remove(igvn);
2657     }
2658   }
2659 
2660   return result;
2661 }
2662 
2663 //------------------------------match_edge-------------------------------------
2664 // Do we Match on this edge index or not?  Match only memory & value
2665 uint StoreNode::match_edge(uint idx) const {
2666   return idx == MemNode::Address || idx == MemNode::ValueIn;
2667 }
2668 
2669 //------------------------------cmp--------------------------------------------
2670 // Do not common stores up together.  They generally have to be split
2671 // back up anyways, so do not bother.
2672 uint StoreNode::cmp( const Node &n ) const {
2673   return (&n == this);          // Always fail except on self
2674 }
2675 
2676 //------------------------------Ideal_masked_input-----------------------------
2677 // Check for a useless mask before a partial-word store
2678 // (StoreB ... (AndI valIn conIa) )
2679 // If (conIa & mask == mask) this simplifies to
2680 // (StoreB ... (valIn) )
2681 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2682   Node *val = in(MemNode::ValueIn);
2683   if( val->Opcode() == Op_AndI ) {
2684     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2685     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2686       set_req(MemNode::ValueIn, val->in(1));
2687       return this;
2688     }
2689   }
2690   return NULL;
2691 }
2692 
2693 
2694 //------------------------------Ideal_sign_extended_input----------------------
2695 // Check for useless sign-extension before a partial-word store
2696 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2697 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2698 // (StoreB ... (valIn) )
2699 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2700   Node *val = in(MemNode::ValueIn);
2701   if( val->Opcode() == Op_RShiftI ) {
2702     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2703     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2704       Node *shl = val->in(1);
2705       if( shl->Opcode() == Op_LShiftI ) {
2706         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2707         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2708           set_req(MemNode::ValueIn, shl->in(1));
2709           return this;
2710         }
2711       }
2712     }
2713   }
2714   return NULL;
2715 }
2716 
2717 //------------------------------value_never_loaded-----------------------------------
2718 // Determine whether there are any possible loads of the value stored.
2719 // For simplicity, we actually check if there are any loads from the
2720 // address stored to, not just for loads of the value stored by this node.
2721 //
2722 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2723   Node *adr = in(Address);
2724   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2725   if (adr_oop == NULL)
2726     return false;
2727   if (!adr_oop->is_known_instance_field())
2728     return false; // if not a distinct instance, there may be aliases of the address
2729   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2730     Node *use = adr->fast_out(i);
2731     if (use->is_Load() || use->is_LoadStore()) {
2732       return false;
2733     }
2734   }
2735   return true;
2736 }
2737 
2738 MemBarNode* StoreNode::trailing_membar() const {
2739   if (is_release()) {
2740     MemBarNode* trailing_mb = NULL;
2741     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2742       Node* u = fast_out(i);
2743       if (u->is_MemBar()) {
2744         if (u->as_MemBar()->trailing_store()) {
2745           assert(u->Opcode() == Op_MemBarVolatile, "");
2746           assert(trailing_mb == NULL, "only one");
2747           trailing_mb = u->as_MemBar();
2748 #ifdef ASSERT
2749           Node* leading = u->as_MemBar()->leading_membar();
2750           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2751           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2752           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2753 #endif
2754         } else {
2755           assert(u->as_MemBar()->standalone(), "");
2756         }
2757       }
2758     }
2759     return trailing_mb;
2760   }
2761   return NULL;
2762 }
2763 
2764 
2765 //=============================================================================
2766 //------------------------------Ideal------------------------------------------
2767 // If the store is from an AND mask that leaves the low bits untouched, then
2768 // we can skip the AND operation.  If the store is from a sign-extension
2769 // (a left shift, then right shift) we can skip both.
2770 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2771   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2772   if( progress != NULL ) return progress;
2773 
2774   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2775   if( progress != NULL ) return progress;
2776 
2777   // Finally check the default case
2778   return StoreNode::Ideal(phase, can_reshape);
2779 }
2780 
2781 //=============================================================================
2782 //------------------------------Ideal------------------------------------------
2783 // If the store is from an AND mask that leaves the low bits untouched, then
2784 // we can skip the AND operation
2785 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2786   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2787   if( progress != NULL ) return progress;
2788 
2789   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2790   if( progress != NULL ) return progress;
2791 
2792   // Finally check the default case
2793   return StoreNode::Ideal(phase, can_reshape);
2794 }
2795 
2796 //=============================================================================
2797 //------------------------------Identity---------------------------------------
2798 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2799   // No need to card mark when storing a null ptr
2800   Node* my_store = in(MemNode::OopStore);
2801   if (my_store->is_Store()) {
2802     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2803     if( t1 == TypePtr::NULL_PTR ) {
2804       return in(MemNode::Memory);
2805     }
2806   }
2807   return this;
2808 }
2809 
2810 //=============================================================================
2811 //------------------------------Ideal---------------------------------------
2812 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2813   Node* progress = StoreNode::Ideal(phase, can_reshape);
2814   if (progress != NULL) return progress;
2815 
2816   Node* my_store = in(MemNode::OopStore);
2817   if (my_store->is_MergeMem()) {
2818     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2819     set_req(MemNode::OopStore, mem);
2820     return this;
2821   }
2822 
2823   return NULL;
2824 }
2825 
2826 //------------------------------Value-----------------------------------------
2827 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2828   // Either input is TOP ==> the result is TOP
2829   const Type *t = phase->type( in(MemNode::Memory) );
2830   if( t == Type::TOP ) return Type::TOP;
2831   t = phase->type( in(MemNode::Address) );
2832   if( t == Type::TOP ) return Type::TOP;
2833   t = phase->type( in(MemNode::ValueIn) );
2834   if( t == Type::TOP ) return Type::TOP;
2835   // If extra input is TOP ==> the result is TOP
2836   t = phase->type( in(MemNode::OopStore) );
2837   if( t == Type::TOP ) return Type::TOP;
2838 
2839   return StoreNode::Value( phase );
2840 }
2841 
2842 
2843 //=============================================================================
2844 //----------------------------------SCMemProjNode------------------------------
2845 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2846 {
2847   return bottom_type();
2848 }
2849 
2850 //=============================================================================
2851 //----------------------------------LoadStoreNode------------------------------
2852 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2853   : Node(required),
2854     _type(rt),
2855     _adr_type(at)
2856 {
2857   init_req(MemNode::Control, c  );
2858   init_req(MemNode::Memory , mem);
2859   init_req(MemNode::Address, adr);
2860   init_req(MemNode::ValueIn, val);
2861   init_class_id(Class_LoadStore);
2862 }
2863 
2864 uint LoadStoreNode::ideal_reg() const {
2865   return _type->ideal_reg();
2866 }
2867 
2868 bool LoadStoreNode::result_not_used() const {
2869   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2870     Node *x = fast_out(i);
2871     if (x->Opcode() == Op_SCMemProj) continue;
2872     return false;
2873   }
2874   return true;
2875 }
2876 
2877 MemBarNode* LoadStoreNode::trailing_membar() const {
2878   MemBarNode* trailing = NULL;
2879   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2880     Node* u = fast_out(i);
2881     if (u->is_MemBar()) {
2882       if (u->as_MemBar()->trailing_load_store()) {
2883         assert(u->Opcode() == Op_MemBarAcquire, "");
2884         assert(trailing == NULL, "only one");
2885         trailing = u->as_MemBar();
2886 #ifdef ASSERT
2887         Node* leading = trailing->leading_membar();
2888         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2889         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2890         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2891 #endif
2892       } else {
2893         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2894       }
2895     }
2896   }
2897 
2898   return trailing;
2899 }
2900 
2901 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2902 
2903 //=============================================================================
2904 //----------------------------------LoadStoreConditionalNode--------------------
2905 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2906   init_req(ExpectedIn, ex );
2907 }
2908 
2909 //=============================================================================
2910 //-------------------------------adr_type--------------------------------------
2911 const TypePtr* ClearArrayNode::adr_type() const {
2912   Node *adr = in(3);
2913   if (adr == NULL)  return NULL; // node is dead
2914   return MemNode::calculate_adr_type(adr->bottom_type());
2915 }
2916 
2917 //------------------------------match_edge-------------------------------------
2918 // Do we Match on this edge index or not?  Do not match memory
2919 uint ClearArrayNode::match_edge(uint idx) const {
2920   return idx > 1;
2921 }
2922 
2923 //------------------------------Identity---------------------------------------
2924 // Clearing a zero length array does nothing
2925 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2926   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2927 }
2928 
2929 //------------------------------Idealize---------------------------------------
2930 // Clearing a short array is faster with stores
2931 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2932   // Already know this is a large node, do not try to ideal it
2933   if (!IdealizeClearArrayNode || _is_large) return NULL;
2934 
2935   const int unit = BytesPerLong;
2936   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2937   if (!t)  return NULL;
2938   if (!t->is_con())  return NULL;
2939   intptr_t raw_count = t->get_con();
2940   intptr_t size = raw_count;
2941   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2942   // Clearing nothing uses the Identity call.
2943   // Negative clears are possible on dead ClearArrays
2944   // (see jck test stmt114.stmt11402.val).
2945   if (size <= 0 || size % unit != 0)  return NULL;
2946   intptr_t count = size / unit;
2947   // Length too long; communicate this to matchers and assemblers.
2948   // Assemblers are responsible to produce fast hardware clears for it.
2949   if (size > InitArrayShortSize) {
2950     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
2951   }
2952   Node *mem = in(1);
2953   if( phase->type(mem)==Type::TOP ) return NULL;
2954   Node *adr = in(3);
2955   const Type* at = phase->type(adr);
2956   if( at==Type::TOP ) return NULL;
2957   const TypePtr* atp = at->isa_ptr();
2958   // adjust atp to be the correct array element address type
2959   if (atp == NULL)  atp = TypePtr::BOTTOM;
2960   else              atp = atp->add_offset(Type::OffsetBot);
2961   // Get base for derived pointer purposes
2962   if( adr->Opcode() != Op_AddP ) Unimplemented();
2963   Node *base = adr->in(1);
2964 
2965   Node *val = in(4);
2966   Node *off  = phase->MakeConX(BytesPerLong);
2967   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2968   count--;
2969   while( count-- ) {
2970     mem = phase->transform(mem);
2971     adr = phase->transform(new AddPNode(base,adr,off));
2972     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2973   }
2974   return mem;
2975 }
2976 
2977 //----------------------------step_through----------------------------------
2978 // Return allocation input memory edge if it is different instance
2979 // or itself if it is the one we are looking for.
2980 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2981   Node* n = *np;
2982   assert(n->is_ClearArray(), "sanity");
2983   intptr_t offset;
2984   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2985   // This method is called only before Allocate nodes are expanded
2986   // during macro nodes expansion. Before that ClearArray nodes are
2987   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2988   // Allocate nodes are expanded) which follows allocations.
2989   assert(alloc != NULL, "should have allocation");
2990   if (alloc->_idx == instance_id) {
2991     // Can not bypass initialization of the instance we are looking for.
2992     return false;
2993   }
2994   // Otherwise skip it.
2995   InitializeNode* init = alloc->initialization();
2996   if (init != NULL)
2997     *np = init->in(TypeFunc::Memory);
2998   else
2999     *np = alloc->in(TypeFunc::Memory);
3000   return true;
3001 }
3002 
3003 //----------------------------clear_memory-------------------------------------
3004 // Generate code to initialize object storage to zero.
3005 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3006                                    Node* val,
3007                                    Node* raw_val,
3008                                    intptr_t start_offset,
3009                                    Node* end_offset,
3010                                    PhaseGVN* phase) {
3011   intptr_t offset = start_offset;
3012 
3013   int unit = BytesPerLong;
3014   if ((offset % unit) != 0) {
3015     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3016     adr = phase->transform(adr);
3017     const TypePtr* atp = TypeRawPtr::BOTTOM;
3018     if (val != NULL) {
3019       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3020       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3021     } else {
3022       assert(raw_val == NULL, "val may not be null");
3023       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3024     }
3025     mem = phase->transform(mem);
3026     offset += BytesPerInt;
3027   }
3028   assert((offset % unit) == 0, "");
3029 
3030   // Initialize the remaining stuff, if any, with a ClearArray.
3031   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
3032 }
3033 
3034 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3035                                    Node* raw_val,
3036                                    Node* start_offset,
3037                                    Node* end_offset,
3038                                    PhaseGVN* phase) {
3039   if (start_offset == end_offset) {
3040     // nothing to do
3041     return mem;
3042   }
3043 
3044   int unit = BytesPerLong;
3045   Node* zbase = start_offset;
3046   Node* zend  = end_offset;
3047 
3048   // Scale to the unit required by the CPU:
3049   if (!Matcher::init_array_count_is_in_bytes) {
3050     Node* shift = phase->intcon(exact_log2(unit));
3051     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3052     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3053   }
3054 
3055   // Bulk clear double-words
3056   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3057   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3058   if (raw_val == NULL) {
3059     raw_val = phase->MakeConX(0);
3060   }
3061   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
3062   return phase->transform(mem);
3063 }
3064 
3065 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3066                                    Node* val,
3067                                    Node* raw_val,
3068                                    intptr_t start_offset,
3069                                    intptr_t end_offset,
3070                                    PhaseGVN* phase) {
3071   if (start_offset == end_offset) {
3072     // nothing to do
3073     return mem;
3074   }
3075 
3076   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3077   intptr_t done_offset = end_offset;
3078   if ((done_offset % BytesPerLong) != 0) {
3079     done_offset -= BytesPerInt;
3080   }
3081   if (done_offset > start_offset) {
3082     mem = clear_memory(ctl, mem, dest, val, raw_val,
3083                        start_offset, phase->MakeConX(done_offset), phase);
3084   }
3085   if (done_offset < end_offset) { // emit the final 32-bit store
3086     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3087     adr = phase->transform(adr);
3088     const TypePtr* atp = TypeRawPtr::BOTTOM;
3089     if (val != NULL) {
3090       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3091       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3092     } else {
3093       assert(raw_val == NULL, "val may not be null");
3094       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3095     }
3096     mem = phase->transform(mem);
3097     done_offset += BytesPerInt;
3098   }
3099   assert(done_offset == end_offset, "");
3100   return mem;
3101 }
3102 
3103 //=============================================================================
3104 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3105   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3106     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3107 #ifdef ASSERT
3108   , _pair_idx(0)
3109 #endif
3110 {
3111   init_class_id(Class_MemBar);
3112   Node* top = C->top();
3113   init_req(TypeFunc::I_O,top);
3114   init_req(TypeFunc::FramePtr,top);
3115   init_req(TypeFunc::ReturnAdr,top);
3116   if (precedent != NULL)
3117     init_req(TypeFunc::Parms, precedent);
3118 }
3119 
3120 //------------------------------cmp--------------------------------------------
3121 uint MemBarNode::hash() const { return NO_HASH; }
3122 uint MemBarNode::cmp( const Node &n ) const {
3123   return (&n == this);          // Always fail except on self
3124 }
3125 
3126 //------------------------------make-------------------------------------------
3127 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3128   switch (opcode) {
3129   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3130   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3131   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3132   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3133   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3134   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3135   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3136   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3137   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3138   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3139   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3140   default: ShouldNotReachHere(); return NULL;
3141   }
3142 }
3143 
3144 void MemBarNode::remove(PhaseIterGVN *igvn) {
3145   if (outcnt() != 2) {
3146     return;
3147   }
3148   if (trailing_store() || trailing_load_store()) {
3149     MemBarNode* leading = leading_membar();
3150     if (leading != NULL) {
3151       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3152       leading->remove(igvn);
3153     }
3154   }
3155   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3156   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3157 }
3158 
3159 //------------------------------Ideal------------------------------------------
3160 // Return a node which is more "ideal" than the current node.  Strip out
3161 // control copies
3162 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3163   if (remove_dead_region(phase, can_reshape)) return this;
3164   // Don't bother trying to transform a dead node
3165   if (in(0) && in(0)->is_top()) {
3166     return NULL;
3167   }
3168 
3169 #if INCLUDE_ZGC
3170   if (UseZGC) {
3171     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3172       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3173       set_req(MemBarNode::Precedent, load_node);
3174       return this;
3175     }
3176   }
3177 #endif
3178 
3179   bool progress = false;
3180   // Eliminate volatile MemBars for scalar replaced objects.
3181   if (can_reshape && req() == (Precedent+1)) {
3182     bool eliminate = false;
3183     int opc = Opcode();
3184     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3185       // Volatile field loads and stores.
3186       Node* my_mem = in(MemBarNode::Precedent);
3187       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3188       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3189         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3190         // replace this Precedent (decodeN) with the Load instead.
3191         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3192           Node* load_node = my_mem->in(1);
3193           set_req(MemBarNode::Precedent, load_node);
3194           phase->is_IterGVN()->_worklist.push(my_mem);
3195           my_mem = load_node;
3196         } else {
3197           assert(my_mem->unique_out() == this, "sanity");
3198           del_req(Precedent);
3199           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3200           my_mem = NULL;
3201         }
3202         progress = true;
3203       }
3204       if (my_mem != NULL && my_mem->is_Mem()) {
3205         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3206         // Check for scalar replaced object reference.
3207         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3208             t_oop->offset() != Type::OffsetBot &&
3209             t_oop->offset() != Type::OffsetTop) {
3210           eliminate = true;
3211         }
3212       }
3213     } else if (opc == Op_MemBarRelease) {
3214       // Final field stores.
3215       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3216       if ((alloc != NULL) && alloc->is_Allocate() &&
3217           alloc->as_Allocate()->does_not_escape_thread()) {
3218         // The allocated object does not escape.
3219         eliminate = true;
3220       }
3221     }
3222     if (eliminate) {
3223       // Replace MemBar projections by its inputs.
3224       PhaseIterGVN* igvn = phase->is_IterGVN();
3225       remove(igvn);
3226       // Must return either the original node (now dead) or a new node
3227       // (Do not return a top here, since that would break the uniqueness of top.)
3228       return new ConINode(TypeInt::ZERO);
3229     }
3230   }
3231   return progress ? this : NULL;
3232 }
3233 
3234 //------------------------------Value------------------------------------------
3235 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3236   if( !in(0) ) return Type::TOP;
3237   if( phase->type(in(0)) == Type::TOP )
3238     return Type::TOP;
3239   return TypeTuple::MEMBAR;
3240 }
3241 
3242 //------------------------------match------------------------------------------
3243 // Construct projections for memory.
3244 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3245   switch (proj->_con) {
3246   case TypeFunc::Control:
3247   case TypeFunc::Memory:
3248     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3249   }
3250   ShouldNotReachHere();
3251   return NULL;
3252 }
3253 
3254 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3255   trailing->_kind = TrailingStore;
3256   leading->_kind = LeadingStore;
3257 #ifdef ASSERT
3258   trailing->_pair_idx = leading->_idx;
3259   leading->_pair_idx = leading->_idx;
3260 #endif
3261 }
3262 
3263 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3264   trailing->_kind = TrailingLoadStore;
3265   leading->_kind = LeadingLoadStore;
3266 #ifdef ASSERT
3267   trailing->_pair_idx = leading->_idx;
3268   leading->_pair_idx = leading->_idx;
3269 #endif
3270 }
3271 
3272 MemBarNode* MemBarNode::trailing_membar() const {
3273   Node* trailing = (Node*)this;
3274   VectorSet seen(Thread::current()->resource_area());
3275   while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()) {
3276     if (seen.test_set(trailing->_idx)) {
3277       // Dying subgraph?
3278       return NULL;
3279     }
3280     for (DUIterator_Fast jmax, j = trailing->fast_outs(jmax); j < jmax; j++) {
3281       Node* next = trailing->fast_out(j);
3282       if (next != trailing && next->is_CFG()) {
3283         trailing = next;
3284         break;
3285       }
3286     }
3287   }
3288   MemBarNode* mb = trailing->as_MemBar();
3289   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3290          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3291   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3292   return mb;
3293 }
3294 
3295 MemBarNode* MemBarNode::leading_membar() const {
3296   VectorSet seen(Thread::current()->resource_area());
3297   Node* leading = in(0);
3298   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3299     if (seen.test_set(leading->_idx)) {
3300       // Dying subgraph?
3301       return NULL;
3302     }
3303     if (leading->is_Region()) {
3304       leading = leading->in(1);
3305     } else {
3306       leading = leading->in(0);
3307     }
3308   }
3309 #ifdef ASSERT
3310   Unique_Node_List wq;
3311   wq.push((Node*)this);
3312   uint found = 0;
3313   for (uint i = 0; i < wq.size(); i++) {
3314     Node* n = wq.at(i);
3315     if (n->is_Region()) {
3316       for (uint j = 1; j < n->req(); j++) {
3317         Node* in = n->in(j);
3318         if (in != NULL && !in->is_top()) {
3319           wq.push(in);
3320         }
3321       }
3322     } else {
3323       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3324         assert(n == leading, "consistency check failed");
3325         found++;
3326       } else {
3327         Node* in = n->in(0);
3328         if (in != NULL && !in->is_top()) {
3329           wq.push(in);
3330         }
3331       }
3332     }
3333   }
3334   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3335 #endif
3336   if (leading == NULL) {
3337     return NULL;
3338   }
3339   MemBarNode* mb = leading->as_MemBar();
3340   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3341          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3342   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3343   return mb;
3344 }
3345 
3346 //===========================InitializeNode====================================
3347 // SUMMARY:
3348 // This node acts as a memory barrier on raw memory, after some raw stores.
3349 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3350 // The Initialize can 'capture' suitably constrained stores as raw inits.
3351 // It can coalesce related raw stores into larger units (called 'tiles').
3352 // It can avoid zeroing new storage for memory units which have raw inits.
3353 // At macro-expansion, it is marked 'complete', and does not optimize further.
3354 //
3355 // EXAMPLE:
3356 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3357 //   ctl = incoming control; mem* = incoming memory
3358 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3359 // First allocate uninitialized memory and fill in the header:
3360 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3361 //   ctl := alloc.Control; mem* := alloc.Memory*
3362 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3363 // Then initialize to zero the non-header parts of the raw memory block:
3364 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3365 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3366 // After the initialize node executes, the object is ready for service:
3367 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3368 // Suppose its body is immediately initialized as {1,2}:
3369 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3370 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3371 //   mem.SLICE(#short[*]) := store2
3372 //
3373 // DETAILS:
3374 // An InitializeNode collects and isolates object initialization after
3375 // an AllocateNode and before the next possible safepoint.  As a
3376 // memory barrier (MemBarNode), it keeps critical stores from drifting
3377 // down past any safepoint or any publication of the allocation.
3378 // Before this barrier, a newly-allocated object may have uninitialized bits.
3379 // After this barrier, it may be treated as a real oop, and GC is allowed.
3380 //
3381 // The semantics of the InitializeNode include an implicit zeroing of
3382 // the new object from object header to the end of the object.
3383 // (The object header and end are determined by the AllocateNode.)
3384 //
3385 // Certain stores may be added as direct inputs to the InitializeNode.
3386 // These stores must update raw memory, and they must be to addresses
3387 // derived from the raw address produced by AllocateNode, and with
3388 // a constant offset.  They must be ordered by increasing offset.
3389 // The first one is at in(RawStores), the last at in(req()-1).
3390 // Unlike most memory operations, they are not linked in a chain,
3391 // but are displayed in parallel as users of the rawmem output of
3392 // the allocation.
3393 //
3394 // (See comments in InitializeNode::capture_store, which continue
3395 // the example given above.)
3396 //
3397 // When the associated Allocate is macro-expanded, the InitializeNode
3398 // may be rewritten to optimize collected stores.  A ClearArrayNode
3399 // may also be created at that point to represent any required zeroing.
3400 // The InitializeNode is then marked 'complete', prohibiting further
3401 // capturing of nearby memory operations.
3402 //
3403 // During macro-expansion, all captured initializations which store
3404 // constant values of 32 bits or smaller are coalesced (if advantageous)
3405 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3406 // initialized in fewer memory operations.  Memory words which are
3407 // covered by neither tiles nor non-constant stores are pre-zeroed
3408 // by explicit stores of zero.  (The code shape happens to do all
3409 // zeroing first, then all other stores, with both sequences occurring
3410 // in order of ascending offsets.)
3411 //
3412 // Alternatively, code may be inserted between an AllocateNode and its
3413 // InitializeNode, to perform arbitrary initialization of the new object.
3414 // E.g., the object copying intrinsics insert complex data transfers here.
3415 // The initialization must then be marked as 'complete' disable the
3416 // built-in zeroing semantics and the collection of initializing stores.
3417 //
3418 // While an InitializeNode is incomplete, reads from the memory state
3419 // produced by it are optimizable if they match the control edge and
3420 // new oop address associated with the allocation/initialization.
3421 // They return a stored value (if the offset matches) or else zero.
3422 // A write to the memory state, if it matches control and address,
3423 // and if it is to a constant offset, may be 'captured' by the
3424 // InitializeNode.  It is cloned as a raw memory operation and rewired
3425 // inside the initialization, to the raw oop produced by the allocation.
3426 // Operations on addresses which are provably distinct (e.g., to
3427 // other AllocateNodes) are allowed to bypass the initialization.
3428 //
3429 // The effect of all this is to consolidate object initialization
3430 // (both arrays and non-arrays, both piecewise and bulk) into a
3431 // single location, where it can be optimized as a unit.
3432 //
3433 // Only stores with an offset less than TrackedInitializationLimit words
3434 // will be considered for capture by an InitializeNode.  This puts a
3435 // reasonable limit on the complexity of optimized initializations.
3436 
3437 //---------------------------InitializeNode------------------------------------
3438 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3439   : MemBarNode(C, adr_type, rawoop),
3440     _is_complete(Incomplete), _does_not_escape(false)
3441 {
3442   init_class_id(Class_Initialize);
3443 
3444   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3445   assert(in(RawAddress) == rawoop, "proper init");
3446   // Note:  allocation() can be NULL, for secondary initialization barriers
3447 }
3448 
3449 // Since this node is not matched, it will be processed by the
3450 // register allocator.  Declare that there are no constraints
3451 // on the allocation of the RawAddress edge.
3452 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3453   // This edge should be set to top, by the set_complete.  But be conservative.
3454   if (idx == InitializeNode::RawAddress)
3455     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3456   return RegMask::Empty;
3457 }
3458 
3459 Node* InitializeNode::memory(uint alias_idx) {
3460   Node* mem = in(Memory);
3461   if (mem->is_MergeMem()) {
3462     return mem->as_MergeMem()->memory_at(alias_idx);
3463   } else {
3464     // incoming raw memory is not split
3465     return mem;
3466   }
3467 }
3468 
3469 bool InitializeNode::is_non_zero() {
3470   if (is_complete())  return false;
3471   remove_extra_zeroes();
3472   return (req() > RawStores);
3473 }
3474 
3475 void InitializeNode::set_complete(PhaseGVN* phase) {
3476   assert(!is_complete(), "caller responsibility");
3477   _is_complete = Complete;
3478 
3479   // After this node is complete, it contains a bunch of
3480   // raw-memory initializations.  There is no need for
3481   // it to have anything to do with non-raw memory effects.
3482   // Therefore, tell all non-raw users to re-optimize themselves,
3483   // after skipping the memory effects of this initialization.
3484   PhaseIterGVN* igvn = phase->is_IterGVN();
3485   if (igvn)  igvn->add_users_to_worklist(this);
3486 }
3487 
3488 // convenience function
3489 // return false if the init contains any stores already
3490 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3491   InitializeNode* init = initialization();
3492   if (init == NULL || init->is_complete()) {
3493     return false;
3494   }
3495   init->remove_extra_zeroes();
3496   // for now, if this allocation has already collected any inits, bail:
3497   if (init->is_non_zero())  return false;
3498   init->set_complete(phase);
3499   return true;
3500 }
3501 
3502 void InitializeNode::remove_extra_zeroes() {
3503   if (req() == RawStores)  return;
3504   Node* zmem = zero_memory();
3505   uint fill = RawStores;
3506   for (uint i = fill; i < req(); i++) {
3507     Node* n = in(i);
3508     if (n->is_top() || n == zmem)  continue;  // skip
3509     if (fill < i)  set_req(fill, n);          // compact
3510     ++fill;
3511   }
3512   // delete any empty spaces created:
3513   while (fill < req()) {
3514     del_req(fill);
3515   }
3516 }
3517 
3518 // Helper for remembering which stores go with which offsets.
3519 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3520   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3521   intptr_t offset = -1;
3522   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3523                                                phase, offset);
3524   if (base == NULL)     return -1;  // something is dead,
3525   if (offset < 0)       return -1;  //        dead, dead
3526   return offset;
3527 }
3528 
3529 // Helper for proving that an initialization expression is
3530 // "simple enough" to be folded into an object initialization.
3531 // Attempts to prove that a store's initial value 'n' can be captured
3532 // within the initialization without creating a vicious cycle, such as:
3533 //     { Foo p = new Foo(); p.next = p; }
3534 // True for constants and parameters and small combinations thereof.
3535 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3536   if (n == NULL)      return true;   // (can this really happen?)
3537   if (n->is_Proj())   n = n->in(0);
3538   if (n == this)      return false;  // found a cycle
3539   if (n->is_Con())    return true;
3540   if (n->is_Start())  return true;   // params, etc., are OK
3541   if (n->is_Root())   return true;   // even better
3542 
3543   Node* ctl = n->in(0);
3544   if (ctl != NULL && !ctl->is_top()) {
3545     if (ctl->is_Proj())  ctl = ctl->in(0);
3546     if (ctl == this)  return false;
3547 
3548     // If we already know that the enclosing memory op is pinned right after
3549     // the init, then any control flow that the store has picked up
3550     // must have preceded the init, or else be equal to the init.
3551     // Even after loop optimizations (which might change control edges)
3552     // a store is never pinned *before* the availability of its inputs.
3553     if (!MemNode::all_controls_dominate(n, this))
3554       return false;                  // failed to prove a good control
3555   }
3556 
3557   // Check data edges for possible dependencies on 'this'.
3558   if ((count += 1) > 20)  return false;  // complexity limit
3559   for (uint i = 1; i < n->req(); i++) {
3560     Node* m = n->in(i);
3561     if (m == NULL || m == n || m->is_top())  continue;
3562     uint first_i = n->find_edge(m);
3563     if (i != first_i)  continue;  // process duplicate edge just once
3564     if (!detect_init_independence(m, count)) {
3565       return false;
3566     }
3567   }
3568 
3569   return true;
3570 }
3571 
3572 // Here are all the checks a Store must pass before it can be moved into
3573 // an initialization.  Returns zero if a check fails.
3574 // On success, returns the (constant) offset to which the store applies,
3575 // within the initialized memory.
3576 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3577   const int FAIL = 0;
3578   if (st->is_unaligned_access()) {
3579     return FAIL;
3580   }
3581   if (st->req() != MemNode::ValueIn + 1)
3582     return FAIL;                // an inscrutable StoreNode (card mark?)
3583   Node* ctl = st->in(MemNode::Control);
3584   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3585     return FAIL;                // must be unconditional after the initialization
3586   Node* mem = st->in(MemNode::Memory);
3587   if (!(mem->is_Proj() && mem->in(0) == this))
3588     return FAIL;                // must not be preceded by other stores
3589   Node* adr = st->in(MemNode::Address);
3590   intptr_t offset;
3591   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3592   if (alloc == NULL)
3593     return FAIL;                // inscrutable address
3594   if (alloc != allocation())
3595     return FAIL;                // wrong allocation!  (store needs to float up)
3596   Node* val = st->in(MemNode::ValueIn);
3597   int complexity_count = 0;
3598   if (!detect_init_independence(val, complexity_count))
3599     return FAIL;                // stored value must be 'simple enough'
3600 
3601   // The Store can be captured only if nothing after the allocation
3602   // and before the Store is using the memory location that the store
3603   // overwrites.
3604   bool failed = false;
3605   // If is_complete_with_arraycopy() is true the shape of the graph is
3606   // well defined and is safe so no need for extra checks.
3607   if (!is_complete_with_arraycopy()) {
3608     // We are going to look at each use of the memory state following
3609     // the allocation to make sure nothing reads the memory that the
3610     // Store writes.
3611     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3612     int alias_idx = phase->C->get_alias_index(t_adr);
3613     ResourceMark rm;
3614     Unique_Node_List mems;
3615     mems.push(mem);
3616     Node* unique_merge = NULL;
3617     for (uint next = 0; next < mems.size(); ++next) {
3618       Node *m  = mems.at(next);
3619       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3620         Node *n = m->fast_out(j);
3621         if (n->outcnt() == 0) {
3622           continue;
3623         }
3624         if (n == st) {
3625           continue;
3626         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3627           // If the control of this use is different from the control
3628           // of the Store which is right after the InitializeNode then
3629           // this node cannot be between the InitializeNode and the
3630           // Store.
3631           continue;
3632         } else if (n->is_MergeMem()) {
3633           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3634             // We can hit a MergeMemNode (that will likely go away
3635             // later) that is a direct use of the memory state
3636             // following the InitializeNode on the same slice as the
3637             // store node that we'd like to capture. We need to check
3638             // the uses of the MergeMemNode.
3639             mems.push(n);
3640           }
3641         } else if (n->is_Mem()) {
3642           Node* other_adr = n->in(MemNode::Address);
3643           if (other_adr == adr) {
3644             failed = true;
3645             break;
3646           } else {
3647             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3648             if (other_t_adr != NULL) {
3649               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3650               if (other_alias_idx == alias_idx) {
3651                 // A load from the same memory slice as the store right
3652                 // after the InitializeNode. We check the control of the
3653                 // object/array that is loaded from. If it's the same as
3654                 // the store control then we cannot capture the store.
3655                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3656                 Node* base = other_adr;
3657                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3658                 base = base->in(AddPNode::Base);
3659                 if (base != NULL) {
3660                   base = base->uncast();
3661                   if (base->is_Proj() && base->in(0) == alloc) {
3662                     failed = true;
3663                     break;
3664                   }
3665                 }
3666               }
3667             }
3668           }
3669         } else {
3670           failed = true;
3671           break;
3672         }
3673       }
3674     }
3675   }
3676   if (failed) {
3677     if (!can_reshape) {
3678       // We decided we couldn't capture the store during parsing. We
3679       // should try again during the next IGVN once the graph is
3680       // cleaner.
3681       phase->C->record_for_igvn(st);
3682     }
3683     return FAIL;
3684   }
3685 
3686   return offset;                // success
3687 }
3688 
3689 // Find the captured store in(i) which corresponds to the range
3690 // [start..start+size) in the initialized object.
3691 // If there is one, return its index i.  If there isn't, return the
3692 // negative of the index where it should be inserted.
3693 // Return 0 if the queried range overlaps an initialization boundary
3694 // or if dead code is encountered.
3695 // If size_in_bytes is zero, do not bother with overlap checks.
3696 int InitializeNode::captured_store_insertion_point(intptr_t start,
3697                                                    int size_in_bytes,
3698                                                    PhaseTransform* phase) {
3699   const int FAIL = 0, MAX_STORE = BytesPerLong;
3700 
3701   if (is_complete())
3702     return FAIL;                // arraycopy got here first; punt
3703 
3704   assert(allocation() != NULL, "must be present");
3705 
3706   // no negatives, no header fields:
3707   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3708 
3709   // after a certain size, we bail out on tracking all the stores:
3710   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3711   if (start >= ti_limit)  return FAIL;
3712 
3713   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3714     if (i >= limit)  return -(int)i; // not found; here is where to put it
3715 
3716     Node*    st     = in(i);
3717     intptr_t st_off = get_store_offset(st, phase);
3718     if (st_off < 0) {
3719       if (st != zero_memory()) {
3720         return FAIL;            // bail out if there is dead garbage
3721       }
3722     } else if (st_off > start) {
3723       // ...we are done, since stores are ordered
3724       if (st_off < start + size_in_bytes) {
3725         return FAIL;            // the next store overlaps
3726       }
3727       return -(int)i;           // not found; here is where to put it
3728     } else if (st_off < start) {
3729       if (size_in_bytes != 0 &&
3730           start < st_off + MAX_STORE &&
3731           start < st_off + st->as_Store()->memory_size()) {
3732         return FAIL;            // the previous store overlaps
3733       }
3734     } else {
3735       if (size_in_bytes != 0 &&
3736           st->as_Store()->memory_size() != size_in_bytes) {
3737         return FAIL;            // mismatched store size
3738       }
3739       return i;
3740     }
3741 
3742     ++i;
3743   }
3744 }
3745 
3746 // Look for a captured store which initializes at the offset 'start'
3747 // with the given size.  If there is no such store, and no other
3748 // initialization interferes, then return zero_memory (the memory
3749 // projection of the AllocateNode).
3750 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3751                                           PhaseTransform* phase) {
3752   assert(stores_are_sane(phase), "");
3753   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3754   if (i == 0) {
3755     return NULL;                // something is dead
3756   } else if (i < 0) {
3757     return zero_memory();       // just primordial zero bits here
3758   } else {
3759     Node* st = in(i);           // here is the store at this position
3760     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3761     return st;
3762   }
3763 }
3764 
3765 // Create, as a raw pointer, an address within my new object at 'offset'.
3766 Node* InitializeNode::make_raw_address(intptr_t offset,
3767                                        PhaseTransform* phase) {
3768   Node* addr = in(RawAddress);
3769   if (offset != 0) {
3770     Compile* C = phase->C;
3771     addr = phase->transform( new AddPNode(C->top(), addr,
3772                                                  phase->MakeConX(offset)) );
3773   }
3774   return addr;
3775 }
3776 
3777 // Clone the given store, converting it into a raw store
3778 // initializing a field or element of my new object.
3779 // Caller is responsible for retiring the original store,
3780 // with subsume_node or the like.
3781 //
3782 // From the example above InitializeNode::InitializeNode,
3783 // here are the old stores to be captured:
3784 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3785 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3786 //
3787 // Here is the changed code; note the extra edges on init:
3788 //   alloc = (Allocate ...)
3789 //   rawoop = alloc.RawAddress
3790 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3791 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3792 //   init = (Initialize alloc.Control alloc.Memory rawoop
3793 //                      rawstore1 rawstore2)
3794 //
3795 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3796                                     PhaseTransform* phase, bool can_reshape) {
3797   assert(stores_are_sane(phase), "");
3798 
3799   if (start < 0)  return NULL;
3800   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3801 
3802   Compile* C = phase->C;
3803   int size_in_bytes = st->memory_size();
3804   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3805   if (i == 0)  return NULL;     // bail out
3806   Node* prev_mem = NULL;        // raw memory for the captured store
3807   if (i > 0) {
3808     prev_mem = in(i);           // there is a pre-existing store under this one
3809     set_req(i, C->top());       // temporarily disconnect it
3810     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3811   } else {
3812     i = -i;                     // no pre-existing store
3813     prev_mem = zero_memory();   // a slice of the newly allocated object
3814     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3815       set_req(--i, C->top());   // reuse this edge; it has been folded away
3816     else
3817       ins_req(i, C->top());     // build a new edge
3818   }
3819   Node* new_st = st->clone();
3820   new_st->set_req(MemNode::Control, in(Control));
3821   new_st->set_req(MemNode::Memory,  prev_mem);
3822   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3823   new_st = phase->transform(new_st);
3824 
3825   // At this point, new_st might have swallowed a pre-existing store
3826   // at the same offset, or perhaps new_st might have disappeared,
3827   // if it redundantly stored the same value (or zero to fresh memory).
3828 
3829   // In any case, wire it in:
3830   phase->igvn_rehash_node_delayed(this);
3831   set_req(i, new_st);
3832 
3833   // The caller may now kill the old guy.
3834   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3835   assert(check_st == new_st || check_st == NULL, "must be findable");
3836   assert(!is_complete(), "");
3837   return new_st;
3838 }
3839 
3840 static bool store_constant(jlong* tiles, int num_tiles,
3841                            intptr_t st_off, int st_size,
3842                            jlong con) {
3843   if ((st_off & (st_size-1)) != 0)
3844     return false;               // strange store offset (assume size==2**N)
3845   address addr = (address)tiles + st_off;
3846   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3847   switch (st_size) {
3848   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3849   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3850   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3851   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3852   default: return false;        // strange store size (detect size!=2**N here)
3853   }
3854   return true;                  // return success to caller
3855 }
3856 
3857 // Coalesce subword constants into int constants and possibly
3858 // into long constants.  The goal, if the CPU permits,
3859 // is to initialize the object with a small number of 64-bit tiles.
3860 // Also, convert floating-point constants to bit patterns.
3861 // Non-constants are not relevant to this pass.
3862 //
3863 // In terms of the running example on InitializeNode::InitializeNode
3864 // and InitializeNode::capture_store, here is the transformation
3865 // of rawstore1 and rawstore2 into rawstore12:
3866 //   alloc = (Allocate ...)
3867 //   rawoop = alloc.RawAddress
3868 //   tile12 = 0x00010002
3869 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3870 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3871 //
3872 void
3873 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3874                                         Node* size_in_bytes,
3875                                         PhaseGVN* phase) {
3876   Compile* C = phase->C;
3877 
3878   assert(stores_are_sane(phase), "");
3879   // Note:  After this pass, they are not completely sane,
3880   // since there may be some overlaps.
3881 
3882   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3883 
3884   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3885   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3886   size_limit = MIN2(size_limit, ti_limit);
3887   size_limit = align_up(size_limit, BytesPerLong);
3888   int num_tiles = size_limit / BytesPerLong;
3889 
3890   // allocate space for the tile map:
3891   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3892   jlong  tiles_buf[small_len];
3893   Node*  nodes_buf[small_len];
3894   jlong  inits_buf[small_len];
3895   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3896                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3897   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3898                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3899   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3900                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3901   // tiles: exact bitwise model of all primitive constants
3902   // nodes: last constant-storing node subsumed into the tiles model
3903   // inits: which bytes (in each tile) are touched by any initializations
3904 
3905   //// Pass A: Fill in the tile model with any relevant stores.
3906 
3907   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3908   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3909   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3910   Node* zmem = zero_memory(); // initially zero memory state
3911   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3912     Node* st = in(i);
3913     intptr_t st_off = get_store_offset(st, phase);
3914 
3915     // Figure out the store's offset and constant value:
3916     if (st_off < header_size)             continue; //skip (ignore header)
3917     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3918     int st_size = st->as_Store()->memory_size();
3919     if (st_off + st_size > size_limit)    break;
3920 
3921     // Record which bytes are touched, whether by constant or not.
3922     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3923       continue;                 // skip (strange store size)
3924 
3925     const Type* val = phase->type(st->in(MemNode::ValueIn));
3926     if (!val->singleton())                continue; //skip (non-con store)
3927     BasicType type = val->basic_type();
3928 
3929     jlong con = 0;
3930     switch (type) {
3931     case T_INT:    con = val->is_int()->get_con();  break;
3932     case T_LONG:   con = val->is_long()->get_con(); break;
3933     case T_FLOAT:  con = jint_cast(val->getf());    break;
3934     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3935     default:                              continue; //skip (odd store type)
3936     }
3937 
3938     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3939         st->Opcode() == Op_StoreL) {
3940       continue;                 // This StoreL is already optimal.
3941     }
3942 
3943     // Store down the constant.
3944     store_constant(tiles, num_tiles, st_off, st_size, con);
3945 
3946     intptr_t j = st_off >> LogBytesPerLong;
3947 
3948     if (type == T_INT && st_size == BytesPerInt
3949         && (st_off & BytesPerInt) == BytesPerInt) {
3950       jlong lcon = tiles[j];
3951       if (!Matcher::isSimpleConstant64(lcon) &&
3952           st->Opcode() == Op_StoreI) {
3953         // This StoreI is already optimal by itself.
3954         jint* intcon = (jint*) &tiles[j];
3955         intcon[1] = 0;  // undo the store_constant()
3956 
3957         // If the previous store is also optimal by itself, back up and
3958         // undo the action of the previous loop iteration... if we can.
3959         // But if we can't, just let the previous half take care of itself.
3960         st = nodes[j];
3961         st_off -= BytesPerInt;
3962         con = intcon[0];
3963         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3964           assert(st_off >= header_size, "still ignoring header");
3965           assert(get_store_offset(st, phase) == st_off, "must be");
3966           assert(in(i-1) == zmem, "must be");
3967           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3968           assert(con == tcon->is_int()->get_con(), "must be");
3969           // Undo the effects of the previous loop trip, which swallowed st:
3970           intcon[0] = 0;        // undo store_constant()
3971           set_req(i-1, st);     // undo set_req(i, zmem)
3972           nodes[j] = NULL;      // undo nodes[j] = st
3973           --old_subword;        // undo ++old_subword
3974         }
3975         continue;               // This StoreI is already optimal.
3976       }
3977     }
3978 
3979     // This store is not needed.
3980     set_req(i, zmem);
3981     nodes[j] = st;              // record for the moment
3982     if (st_size < BytesPerLong) // something has changed
3983           ++old_subword;        // includes int/float, but who's counting...
3984     else  ++old_long;
3985   }
3986 
3987   if ((old_subword + old_long) == 0)
3988     return;                     // nothing more to do
3989 
3990   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3991   // Be sure to insert them before overlapping non-constant stores.
3992   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3993   for (int j = 0; j < num_tiles; j++) {
3994     jlong con  = tiles[j];
3995     jlong init = inits[j];
3996     if (con == 0)  continue;
3997     jint con0,  con1;           // split the constant, address-wise
3998     jint init0, init1;          // split the init map, address-wise
3999     { union { jlong con; jint intcon[2]; } u;
4000       u.con = con;
4001       con0  = u.intcon[0];
4002       con1  = u.intcon[1];
4003       u.con = init;
4004       init0 = u.intcon[0];
4005       init1 = u.intcon[1];
4006     }
4007 
4008     Node* old = nodes[j];
4009     assert(old != NULL, "need the prior store");
4010     intptr_t offset = (j * BytesPerLong);
4011 
4012     bool split = !Matcher::isSimpleConstant64(con);
4013 
4014     if (offset < header_size) {
4015       assert(offset + BytesPerInt >= header_size, "second int counts");
4016       assert(*(jint*)&tiles[j] == 0, "junk in header");
4017       split = true;             // only the second word counts
4018       // Example:  int a[] = { 42 ... }
4019     } else if (con0 == 0 && init0 == -1) {
4020       split = true;             // first word is covered by full inits
4021       // Example:  int a[] = { ... foo(), 42 ... }
4022     } else if (con1 == 0 && init1 == -1) {
4023       split = true;             // second word is covered by full inits
4024       // Example:  int a[] = { ... 42, foo() ... }
4025     }
4026 
4027     // Here's a case where init0 is neither 0 nor -1:
4028     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4029     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4030     // In this case the tile is not split; it is (jlong)42.
4031     // The big tile is stored down, and then the foo() value is inserted.
4032     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4033 
4034     Node* ctl = old->in(MemNode::Control);
4035     Node* adr = make_raw_address(offset, phase);
4036     const TypePtr* atp = TypeRawPtr::BOTTOM;
4037 
4038     // One or two coalesced stores to plop down.
4039     Node*    st[2];
4040     intptr_t off[2];
4041     int  nst = 0;
4042     if (!split) {
4043       ++new_long;
4044       off[nst] = offset;
4045       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4046                                   phase->longcon(con), T_LONG, MemNode::unordered);
4047     } else {
4048       // Omit either if it is a zero.
4049       if (con0 != 0) {
4050         ++new_int;
4051         off[nst]  = offset;
4052         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4053                                     phase->intcon(con0), T_INT, MemNode::unordered);
4054       }
4055       if (con1 != 0) {
4056         ++new_int;
4057         offset += BytesPerInt;
4058         adr = make_raw_address(offset, phase);
4059         off[nst]  = offset;
4060         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4061                                     phase->intcon(con1), T_INT, MemNode::unordered);
4062       }
4063     }
4064 
4065     // Insert second store first, then the first before the second.
4066     // Insert each one just before any overlapping non-constant stores.
4067     while (nst > 0) {
4068       Node* st1 = st[--nst];
4069       C->copy_node_notes_to(st1, old);
4070       st1 = phase->transform(st1);
4071       offset = off[nst];
4072       assert(offset >= header_size, "do not smash header");
4073       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4074       guarantee(ins_idx != 0, "must re-insert constant store");
4075       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4076       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4077         set_req(--ins_idx, st1);
4078       else
4079         ins_req(ins_idx, st1);
4080     }
4081   }
4082 
4083   if (PrintCompilation && WizardMode)
4084     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4085                   old_subword, old_long, new_int, new_long);
4086   if (C->log() != NULL)
4087     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4088                    old_subword, old_long, new_int, new_long);
4089 
4090   // Clean up any remaining occurrences of zmem:
4091   remove_extra_zeroes();
4092 }
4093 
4094 // Explore forward from in(start) to find the first fully initialized
4095 // word, and return its offset.  Skip groups of subword stores which
4096 // together initialize full words.  If in(start) is itself part of a
4097 // fully initialized word, return the offset of in(start).  If there
4098 // are no following full-word stores, or if something is fishy, return
4099 // a negative value.
4100 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4101   int       int_map = 0;
4102   intptr_t  int_map_off = 0;
4103   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4104 
4105   for (uint i = start, limit = req(); i < limit; i++) {
4106     Node* st = in(i);
4107 
4108     intptr_t st_off = get_store_offset(st, phase);
4109     if (st_off < 0)  break;  // return conservative answer
4110 
4111     int st_size = st->as_Store()->memory_size();
4112     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4113       return st_off;            // we found a complete word init
4114     }
4115 
4116     // update the map:
4117 
4118     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4119     if (this_int_off != int_map_off) {
4120       // reset the map:
4121       int_map = 0;
4122       int_map_off = this_int_off;
4123     }
4124 
4125     int subword_off = st_off - this_int_off;
4126     int_map |= right_n_bits(st_size) << subword_off;
4127     if ((int_map & FULL_MAP) == FULL_MAP) {
4128       return this_int_off;      // we found a complete word init
4129     }
4130 
4131     // Did this store hit or cross the word boundary?
4132     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4133     if (next_int_off == this_int_off + BytesPerInt) {
4134       // We passed the current int, without fully initializing it.
4135       int_map_off = next_int_off;
4136       int_map >>= BytesPerInt;
4137     } else if (next_int_off > this_int_off + BytesPerInt) {
4138       // We passed the current and next int.
4139       return this_int_off + BytesPerInt;
4140     }
4141   }
4142 
4143   return -1;
4144 }
4145 
4146 
4147 // Called when the associated AllocateNode is expanded into CFG.
4148 // At this point, we may perform additional optimizations.
4149 // Linearize the stores by ascending offset, to make memory
4150 // activity as coherent as possible.
4151 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4152                                       intptr_t header_size,
4153                                       Node* size_in_bytes,
4154                                       PhaseGVN* phase) {
4155   assert(!is_complete(), "not already complete");
4156   assert(stores_are_sane(phase), "");
4157   assert(allocation() != NULL, "must be present");
4158 
4159   remove_extra_zeroes();
4160 
4161   if (ReduceFieldZeroing || ReduceBulkZeroing)
4162     // reduce instruction count for common initialization patterns
4163     coalesce_subword_stores(header_size, size_in_bytes, phase);
4164 
4165   Node* zmem = zero_memory();   // initially zero memory state
4166   Node* inits = zmem;           // accumulating a linearized chain of inits
4167   #ifdef ASSERT
4168   intptr_t first_offset = allocation()->minimum_header_size();
4169   intptr_t last_init_off = first_offset;  // previous init offset
4170   intptr_t last_init_end = first_offset;  // previous init offset+size
4171   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4172   #endif
4173   intptr_t zeroes_done = header_size;
4174 
4175   bool do_zeroing = true;       // we might give up if inits are very sparse
4176   int  big_init_gaps = 0;       // how many large gaps have we seen?
4177 
4178   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4179   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4180 
4181   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4182     Node* st = in(i);
4183     intptr_t st_off = get_store_offset(st, phase);
4184     if (st_off < 0)
4185       break;                    // unknown junk in the inits
4186     if (st->in(MemNode::Memory) != zmem)
4187       break;                    // complicated store chains somehow in list
4188 
4189     int st_size = st->as_Store()->memory_size();
4190     intptr_t next_init_off = st_off + st_size;
4191 
4192     if (do_zeroing && zeroes_done < next_init_off) {
4193       // See if this store needs a zero before it or under it.
4194       intptr_t zeroes_needed = st_off;
4195 
4196       if (st_size < BytesPerInt) {
4197         // Look for subword stores which only partially initialize words.
4198         // If we find some, we must lay down some word-level zeroes first,
4199         // underneath the subword stores.
4200         //
4201         // Examples:
4202         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4203         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4204         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4205         //
4206         // Note:  coalesce_subword_stores may have already done this,
4207         // if it was prompted by constant non-zero subword initializers.
4208         // But this case can still arise with non-constant stores.
4209 
4210         intptr_t next_full_store = find_next_fullword_store(i, phase);
4211 
4212         // In the examples above:
4213         //   in(i)          p   q   r   s     x   y     z
4214         //   st_off        12  13  14  15    12  13    14
4215         //   st_size        1   1   1   1     1   1     1
4216         //   next_full_s.  12  16  16  16    16  16    16
4217         //   z's_done      12  16  16  16    12  16    12
4218         //   z's_needed    12  16  16  16    16  16    16
4219         //   zsize          0   0   0   0     4   0     4
4220         if (next_full_store < 0) {
4221           // Conservative tack:  Zero to end of current word.
4222           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4223         } else {
4224           // Zero to beginning of next fully initialized word.
4225           // Or, don't zero at all, if we are already in that word.
4226           assert(next_full_store >= zeroes_needed, "must go forward");
4227           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4228           zeroes_needed = next_full_store;
4229         }
4230       }
4231 
4232       if (zeroes_needed > zeroes_done) {
4233         intptr_t zsize = zeroes_needed - zeroes_done;
4234         // Do some incremental zeroing on rawmem, in parallel with inits.
4235         zeroes_done = align_down(zeroes_done, BytesPerInt);
4236         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4237                                               allocation()->in(AllocateNode::DefaultValue),
4238                                               allocation()->in(AllocateNode::RawDefaultValue),
4239                                               zeroes_done, zeroes_needed,
4240                                               phase);
4241         zeroes_done = zeroes_needed;
4242         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4243           do_zeroing = false;   // leave the hole, next time
4244       }
4245     }
4246 
4247     // Collect the store and move on:
4248     st->set_req(MemNode::Memory, inits);
4249     inits = st;                 // put it on the linearized chain
4250     set_req(i, zmem);           // unhook from previous position
4251 
4252     if (zeroes_done == st_off)
4253       zeroes_done = next_init_off;
4254 
4255     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4256 
4257     #ifdef ASSERT
4258     // Various order invariants.  Weaker than stores_are_sane because
4259     // a large constant tile can be filled in by smaller non-constant stores.
4260     assert(st_off >= last_init_off, "inits do not reverse");
4261     last_init_off = st_off;
4262     const Type* val = NULL;
4263     if (st_size >= BytesPerInt &&
4264         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4265         (int)val->basic_type() < (int)T_OBJECT) {
4266       assert(st_off >= last_tile_end, "tiles do not overlap");
4267       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4268       last_tile_end = MAX2(last_tile_end, next_init_off);
4269     } else {
4270       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4271       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4272       assert(st_off      >= last_init_end, "inits do not overlap");
4273       last_init_end = next_init_off;  // it's a non-tile
4274     }
4275     #endif //ASSERT
4276   }
4277 
4278   remove_extra_zeroes();        // clear out all the zmems left over
4279   add_req(inits);
4280 
4281   if (!(UseTLAB && ZeroTLAB)) {
4282     // If anything remains to be zeroed, zero it all now.
4283     zeroes_done = align_down(zeroes_done, BytesPerInt);
4284     // if it is the last unused 4 bytes of an instance, forget about it
4285     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4286     if (zeroes_done + BytesPerLong >= size_limit) {
4287       AllocateNode* alloc = allocation();
4288       assert(alloc != NULL, "must be present");
4289       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4290         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4291         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4292         if (zeroes_done == k->layout_helper())
4293           zeroes_done = size_limit;
4294       }
4295     }
4296     if (zeroes_done < size_limit) {
4297       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4298                                             allocation()->in(AllocateNode::DefaultValue),
4299                                             allocation()->in(AllocateNode::RawDefaultValue),
4300                                             zeroes_done, size_in_bytes, phase);
4301     }
4302   }
4303 
4304   set_complete(phase);
4305   return rawmem;
4306 }
4307 
4308 
4309 #ifdef ASSERT
4310 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4311   if (is_complete())
4312     return true;                // stores could be anything at this point
4313   assert(allocation() != NULL, "must be present");
4314   intptr_t last_off = allocation()->minimum_header_size();
4315   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4316     Node* st = in(i);
4317     intptr_t st_off = get_store_offset(st, phase);
4318     if (st_off < 0)  continue;  // ignore dead garbage
4319     if (last_off > st_off) {
4320       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4321       this->dump(2);
4322       assert(false, "ascending store offsets");
4323       return false;
4324     }
4325     last_off = st_off + st->as_Store()->memory_size();
4326   }
4327   return true;
4328 }
4329 #endif //ASSERT
4330 
4331 
4332 
4333 
4334 //============================MergeMemNode=====================================
4335 //
4336 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4337 // contributing store or call operations.  Each contributor provides the memory
4338 // state for a particular "alias type" (see Compile::alias_type).  For example,
4339 // if a MergeMem has an input X for alias category #6, then any memory reference
4340 // to alias category #6 may use X as its memory state input, as an exact equivalent
4341 // to using the MergeMem as a whole.
4342 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4343 //
4344 // (Here, the <N> notation gives the index of the relevant adr_type.)
4345 //
4346 // In one special case (and more cases in the future), alias categories overlap.
4347 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4348 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4349 // it is exactly equivalent to that state W:
4350 //   MergeMem(<Bot>: W) <==> W
4351 //
4352 // Usually, the merge has more than one input.  In that case, where inputs
4353 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4354 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4355 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4356 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4357 //
4358 // A merge can take a "wide" memory state as one of its narrow inputs.
4359 // This simply means that the merge observes out only the relevant parts of
4360 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4361 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4362 //
4363 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4364 // and that memory slices "leak through":
4365 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4366 //
4367 // But, in such a cascade, repeated memory slices can "block the leak":
4368 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4369 //
4370 // In the last example, Y is not part of the combined memory state of the
4371 // outermost MergeMem.  The system must, of course, prevent unschedulable
4372 // memory states from arising, so you can be sure that the state Y is somehow
4373 // a precursor to state Y'.
4374 //
4375 //
4376 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4377 // of each MergeMemNode array are exactly the numerical alias indexes, including
4378 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4379 // Compile::alias_type (and kin) produce and manage these indexes.
4380 //
4381 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4382 // (Note that this provides quick access to the top node inside MergeMem methods,
4383 // without the need to reach out via TLS to Compile::current.)
4384 //
4385 // As a consequence of what was just described, a MergeMem that represents a full
4386 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4387 // containing all alias categories.
4388 //
4389 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4390 //
4391 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4392 // a memory state for the alias type <N>, or else the top node, meaning that
4393 // there is no particular input for that alias type.  Note that the length of
4394 // a MergeMem is variable, and may be extended at any time to accommodate new
4395 // memory states at larger alias indexes.  When merges grow, they are of course
4396 // filled with "top" in the unused in() positions.
4397 //
4398 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4399 // (Top was chosen because it works smoothly with passes like GCM.)
4400 //
4401 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4402 // the type of random VM bits like TLS references.)  Since it is always the
4403 // first non-Bot memory slice, some low-level loops use it to initialize an
4404 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4405 //
4406 //
4407 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4408 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4409 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4410 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4411 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4412 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4413 //
4414 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4415 // really that different from the other memory inputs.  An abbreviation called
4416 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4417 //
4418 //
4419 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4420 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4421 // that "emerges though" the base memory will be marked as excluding the alias types
4422 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4423 //
4424 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4425 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4426 //
4427 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4428 // (It is currently unimplemented.)  As you can see, the resulting merge is
4429 // actually a disjoint union of memory states, rather than an overlay.
4430 //
4431 
4432 //------------------------------MergeMemNode-----------------------------------
4433 Node* MergeMemNode::make_empty_memory() {
4434   Node* empty_memory = (Node*) Compile::current()->top();
4435   assert(empty_memory->is_top(), "correct sentinel identity");
4436   return empty_memory;
4437 }
4438 
4439 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4440   init_class_id(Class_MergeMem);
4441   // all inputs are nullified in Node::Node(int)
4442   // set_input(0, NULL);  // no control input
4443 
4444   // Initialize the edges uniformly to top, for starters.
4445   Node* empty_mem = make_empty_memory();
4446   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4447     init_req(i,empty_mem);
4448   }
4449   assert(empty_memory() == empty_mem, "");
4450 
4451   if( new_base != NULL && new_base->is_MergeMem() ) {
4452     MergeMemNode* mdef = new_base->as_MergeMem();
4453     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4454     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4455       mms.set_memory(mms.memory2());
4456     }
4457     assert(base_memory() == mdef->base_memory(), "");
4458   } else {
4459     set_base_memory(new_base);
4460   }
4461 }
4462 
4463 // Make a new, untransformed MergeMem with the same base as 'mem'.
4464 // If mem is itself a MergeMem, populate the result with the same edges.
4465 MergeMemNode* MergeMemNode::make(Node* mem) {
4466   return new MergeMemNode(mem);
4467 }
4468 
4469 //------------------------------cmp--------------------------------------------
4470 uint MergeMemNode::hash() const { return NO_HASH; }
4471 uint MergeMemNode::cmp( const Node &n ) const {
4472   return (&n == this);          // Always fail except on self
4473 }
4474 
4475 //------------------------------Identity---------------------------------------
4476 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4477   // Identity if this merge point does not record any interesting memory
4478   // disambiguations.
4479   Node* base_mem = base_memory();
4480   Node* empty_mem = empty_memory();
4481   if (base_mem != empty_mem) {  // Memory path is not dead?
4482     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4483       Node* mem = in(i);
4484       if (mem != empty_mem && mem != base_mem) {
4485         return this;            // Many memory splits; no change
4486       }
4487     }
4488   }
4489   return base_mem;              // No memory splits; ID on the one true input
4490 }
4491 
4492 //------------------------------Ideal------------------------------------------
4493 // This method is invoked recursively on chains of MergeMem nodes
4494 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4495   // Remove chain'd MergeMems
4496   //
4497   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4498   // relative to the "in(Bot)".  Since we are patching both at the same time,
4499   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4500   // but rewrite each "in(i)" relative to the new "in(Bot)".
4501   Node *progress = NULL;
4502 
4503 
4504   Node* old_base = base_memory();
4505   Node* empty_mem = empty_memory();
4506   if (old_base == empty_mem)
4507     return NULL; // Dead memory path.
4508 
4509   MergeMemNode* old_mbase;
4510   if (old_base != NULL && old_base->is_MergeMem())
4511     old_mbase = old_base->as_MergeMem();
4512   else
4513     old_mbase = NULL;
4514   Node* new_base = old_base;
4515 
4516   // simplify stacked MergeMems in base memory
4517   if (old_mbase)  new_base = old_mbase->base_memory();
4518 
4519   // the base memory might contribute new slices beyond my req()
4520   if (old_mbase)  grow_to_match(old_mbase);
4521 
4522   // Look carefully at the base node if it is a phi.
4523   PhiNode* phi_base;
4524   if (new_base != NULL && new_base->is_Phi())
4525     phi_base = new_base->as_Phi();
4526   else
4527     phi_base = NULL;
4528 
4529   Node*    phi_reg = NULL;
4530   uint     phi_len = (uint)-1;
4531   if (phi_base != NULL && !phi_base->is_copy()) {
4532     // do not examine phi if degraded to a copy
4533     phi_reg = phi_base->region();
4534     phi_len = phi_base->req();
4535     // see if the phi is unfinished
4536     for (uint i = 1; i < phi_len; i++) {
4537       if (phi_base->in(i) == NULL) {
4538         // incomplete phi; do not look at it yet!
4539         phi_reg = NULL;
4540         phi_len = (uint)-1;
4541         break;
4542       }
4543     }
4544   }
4545 
4546   // Note:  We do not call verify_sparse on entry, because inputs
4547   // can normalize to the base_memory via subsume_node or similar
4548   // mechanisms.  This method repairs that damage.
4549 
4550   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4551 
4552   // Look at each slice.
4553   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4554     Node* old_in = in(i);
4555     // calculate the old memory value
4556     Node* old_mem = old_in;
4557     if (old_mem == empty_mem)  old_mem = old_base;
4558     assert(old_mem == memory_at(i), "");
4559 
4560     // maybe update (reslice) the old memory value
4561 
4562     // simplify stacked MergeMems
4563     Node* new_mem = old_mem;
4564     MergeMemNode* old_mmem;
4565     if (old_mem != NULL && old_mem->is_MergeMem())
4566       old_mmem = old_mem->as_MergeMem();
4567     else
4568       old_mmem = NULL;
4569     if (old_mmem == this) {
4570       // This can happen if loops break up and safepoints disappear.
4571       // A merge of BotPtr (default) with a RawPtr memory derived from a
4572       // safepoint can be rewritten to a merge of the same BotPtr with
4573       // the BotPtr phi coming into the loop.  If that phi disappears
4574       // also, we can end up with a self-loop of the mergemem.
4575       // In general, if loops degenerate and memory effects disappear,
4576       // a mergemem can be left looking at itself.  This simply means
4577       // that the mergemem's default should be used, since there is
4578       // no longer any apparent effect on this slice.
4579       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4580       //       from start.  Update the input to TOP.
4581       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4582     }
4583     else if (old_mmem != NULL) {
4584       new_mem = old_mmem->memory_at(i);
4585     }
4586     // else preceding memory was not a MergeMem
4587 
4588     // replace equivalent phis (unfortunately, they do not GVN together)
4589     if (new_mem != NULL && new_mem != new_base &&
4590         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4591       if (new_mem->is_Phi()) {
4592         PhiNode* phi_mem = new_mem->as_Phi();
4593         for (uint i = 1; i < phi_len; i++) {
4594           if (phi_base->in(i) != phi_mem->in(i)) {
4595             phi_mem = NULL;
4596             break;
4597           }
4598         }
4599         if (phi_mem != NULL) {
4600           // equivalent phi nodes; revert to the def
4601           new_mem = new_base;
4602         }
4603       }
4604     }
4605 
4606     // maybe store down a new value
4607     Node* new_in = new_mem;
4608     if (new_in == new_base)  new_in = empty_mem;
4609 
4610     if (new_in != old_in) {
4611       // Warning:  Do not combine this "if" with the previous "if"
4612       // A memory slice might have be be rewritten even if it is semantically
4613       // unchanged, if the base_memory value has changed.
4614       set_req(i, new_in);
4615       progress = this;          // Report progress
4616     }
4617   }
4618 
4619   if (new_base != old_base) {
4620     set_req(Compile::AliasIdxBot, new_base);
4621     // Don't use set_base_memory(new_base), because we need to update du.
4622     assert(base_memory() == new_base, "");
4623     progress = this;
4624   }
4625 
4626   if( base_memory() == this ) {
4627     // a self cycle indicates this memory path is dead
4628     set_req(Compile::AliasIdxBot, empty_mem);
4629   }
4630 
4631   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4632   // Recursion must occur after the self cycle check above
4633   if( base_memory()->is_MergeMem() ) {
4634     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4635     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4636     if( m != NULL &&
4637         (m->is_top() ||
4638          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4639       // propagate rollup of dead cycle to self
4640       set_req(Compile::AliasIdxBot, empty_mem);
4641     }
4642   }
4643 
4644   if( base_memory() == empty_mem ) {
4645     progress = this;
4646     // Cut inputs during Parse phase only.
4647     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4648     if( !can_reshape ) {
4649       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4650         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4651       }
4652     }
4653   }
4654 
4655   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4656     // Check if PhiNode::Ideal's "Split phis through memory merges"
4657     // transform should be attempted. Look for this->phi->this cycle.
4658     uint merge_width = req();
4659     if (merge_width > Compile::AliasIdxRaw) {
4660       PhiNode* phi = base_memory()->as_Phi();
4661       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4662         if (phi->in(i) == this) {
4663           phase->is_IterGVN()->_worklist.push(phi);
4664           break;
4665         }
4666       }
4667     }
4668   }
4669 
4670   assert(progress || verify_sparse(), "please, no dups of base");
4671   return progress;
4672 }
4673 
4674 //-------------------------set_base_memory-------------------------------------
4675 void MergeMemNode::set_base_memory(Node *new_base) {
4676   Node* empty_mem = empty_memory();
4677   set_req(Compile::AliasIdxBot, new_base);
4678   assert(memory_at(req()) == new_base, "must set default memory");
4679   // Clear out other occurrences of new_base:
4680   if (new_base != empty_mem) {
4681     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4682       if (in(i) == new_base)  set_req(i, empty_mem);
4683     }
4684   }
4685 }
4686 
4687 //------------------------------out_RegMask------------------------------------
4688 const RegMask &MergeMemNode::out_RegMask() const {
4689   return RegMask::Empty;
4690 }
4691 
4692 //------------------------------dump_spec--------------------------------------
4693 #ifndef PRODUCT
4694 void MergeMemNode::dump_spec(outputStream *st) const {
4695   st->print(" {");
4696   Node* base_mem = base_memory();
4697   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4698     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4699     if (mem == base_mem) { st->print(" -"); continue; }
4700     st->print( " N%d:", mem->_idx );
4701     Compile::current()->get_adr_type(i)->dump_on(st);
4702   }
4703   st->print(" }");
4704 }
4705 #endif // !PRODUCT
4706 
4707 
4708 #ifdef ASSERT
4709 static bool might_be_same(Node* a, Node* b) {
4710   if (a == b)  return true;
4711   if (!(a->is_Phi() || b->is_Phi()))  return false;
4712   // phis shift around during optimization
4713   return true;  // pretty stupid...
4714 }
4715 
4716 // verify a narrow slice (either incoming or outgoing)
4717 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4718   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4719   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4720   if (Node::in_dump())               return;  // muzzle asserts when printing
4721   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4722   assert(n != NULL, "");
4723   // Elide intervening MergeMem's
4724   while (n->is_MergeMem()) {
4725     n = n->as_MergeMem()->memory_at(alias_idx);
4726   }
4727   Compile* C = Compile::current();
4728   const TypePtr* n_adr_type = n->adr_type();
4729   if (n == m->empty_memory()) {
4730     // Implicit copy of base_memory()
4731   } else if (n_adr_type != TypePtr::BOTTOM) {
4732     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4733     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4734   } else {
4735     // A few places like make_runtime_call "know" that VM calls are narrow,
4736     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4737     bool expected_wide_mem = false;
4738     if (n == m->base_memory()) {
4739       expected_wide_mem = true;
4740     } else if (alias_idx == Compile::AliasIdxRaw ||
4741                n == m->memory_at(Compile::AliasIdxRaw)) {
4742       expected_wide_mem = true;
4743     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4744       // memory can "leak through" calls on channels that
4745       // are write-once.  Allow this also.
4746       expected_wide_mem = true;
4747     }
4748     assert(expected_wide_mem, "expected narrow slice replacement");
4749   }
4750 }
4751 #else // !ASSERT
4752 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4753 #endif
4754 
4755 
4756 //-----------------------------memory_at---------------------------------------
4757 Node* MergeMemNode::memory_at(uint alias_idx) const {
4758   assert(alias_idx >= Compile::AliasIdxRaw ||
4759          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4760          "must avoid base_memory and AliasIdxTop");
4761 
4762   // Otherwise, it is a narrow slice.
4763   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4764   Compile *C = Compile::current();
4765   if (is_empty_memory(n)) {
4766     // the array is sparse; empty slots are the "top" node
4767     n = base_memory();
4768     assert(Node::in_dump()
4769            || n == NULL || n->bottom_type() == Type::TOP
4770            || n->adr_type() == NULL // address is TOP
4771            || n->adr_type() == TypePtr::BOTTOM
4772            || n->adr_type() == TypeRawPtr::BOTTOM
4773            || Compile::current()->AliasLevel() == 0,
4774            "must be a wide memory");
4775     // AliasLevel == 0 if we are organizing the memory states manually.
4776     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4777   } else {
4778     // make sure the stored slice is sane
4779     #ifdef ASSERT
4780     if (VMError::is_error_reported() || Node::in_dump()) {
4781     } else if (might_be_same(n, base_memory())) {
4782       // Give it a pass:  It is a mostly harmless repetition of the base.
4783       // This can arise normally from node subsumption during optimization.
4784     } else {
4785       verify_memory_slice(this, alias_idx, n);
4786     }
4787     #endif
4788   }
4789   return n;
4790 }
4791 
4792 //---------------------------set_memory_at-------------------------------------
4793 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4794   verify_memory_slice(this, alias_idx, n);
4795   Node* empty_mem = empty_memory();
4796   if (n == base_memory())  n = empty_mem;  // collapse default
4797   uint need_req = alias_idx+1;
4798   if (req() < need_req) {
4799     if (n == empty_mem)  return;  // already the default, so do not grow me
4800     // grow the sparse array
4801     do {
4802       add_req(empty_mem);
4803     } while (req() < need_req);
4804   }
4805   set_req( alias_idx, n );
4806 }
4807 
4808 
4809 
4810 //--------------------------iteration_setup------------------------------------
4811 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4812   if (other != NULL) {
4813     grow_to_match(other);
4814     // invariant:  the finite support of mm2 is within mm->req()
4815     #ifdef ASSERT
4816     for (uint i = req(); i < other->req(); i++) {
4817       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4818     }
4819     #endif
4820   }
4821   // Replace spurious copies of base_memory by top.
4822   Node* base_mem = base_memory();
4823   if (base_mem != NULL && !base_mem->is_top()) {
4824     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4825       if (in(i) == base_mem)
4826         set_req(i, empty_memory());
4827     }
4828   }
4829 }
4830 
4831 //---------------------------grow_to_match-------------------------------------
4832 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4833   Node* empty_mem = empty_memory();
4834   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4835   // look for the finite support of the other memory
4836   for (uint i = other->req(); --i >= req(); ) {
4837     if (other->in(i) != empty_mem) {
4838       uint new_len = i+1;
4839       while (req() < new_len)  add_req(empty_mem);
4840       break;
4841     }
4842   }
4843 }
4844 
4845 //---------------------------verify_sparse-------------------------------------
4846 #ifndef PRODUCT
4847 bool MergeMemNode::verify_sparse() const {
4848   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4849   Node* base_mem = base_memory();
4850   // The following can happen in degenerate cases, since empty==top.
4851   if (is_empty_memory(base_mem))  return true;
4852   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4853     assert(in(i) != NULL, "sane slice");
4854     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4855   }
4856   return true;
4857 }
4858 
4859 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4860   Node* n;
4861   n = mm->in(idx);
4862   if (mem == n)  return true;  // might be empty_memory()
4863   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4864   if (mem == n)  return true;
4865   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4866     if (mem == n)  return true;
4867     if (n == NULL)  break;
4868   }
4869   return false;
4870 }
4871 #endif // !PRODUCT