1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CastIINode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CompareAndSwapNode;
  64 class CompareAndExchangeNode;
  65 class CountedLoopNode;
  66 class CountedLoopEndNode;
  67 class DecodeNarrowPtrNode;
  68 class DecodeNNode;
  69 class DecodeNKlassNode;
  70 class EncodeNarrowPtrNode;
  71 class EncodePNode;
  72 class EncodePKlassNode;
  73 class FastLockNode;
  74 class FastUnlockNode;
  75 class IfNode;
  76 class IfProjNode;
  77 class IfFalseNode;
  78 class IfTrueNode;
  79 class InitializeNode;
  80 class JVMState;
  81 class JumpNode;
  82 class JumpProjNode;
  83 class LoadNode;
  84 class LoadBarrierNode;
  85 class LoadBarrierSlowRegNode;
  86 class LoadBarrierWeakSlowRegNode;
  87 class LoadStoreNode;
  88 class LockNode;
  89 class LoopNode;
  90 class MachBranchNode;
  91 class MachCallDynamicJavaNode;
  92 class MachCallJavaNode;
  93 class MachCallLeafNode;
  94 class MachCallNode;
  95 class MachCallRuntimeNode;
  96 class MachCallStaticJavaNode;
  97 class MachConstantBaseNode;
  98 class MachConstantNode;
  99 class MachGotoNode;
 100 class MachIfNode;
 101 class MachJumpNode;
 102 class MachNode;
 103 class MachNullCheckNode;
 104 class MachProjNode;
 105 class MachReturnNode;
 106 class MachSafePointNode;
 107 class MachSpillCopyNode;
 108 class MachTempNode;
 109 class MachMergeNode;
 110 class MachMemBarNode;
 111 class Matcher;
 112 class MemBarNode;
 113 class MemBarStoreStoreNode;
 114 class MemNode;
 115 class MergeMemNode;
 116 class MulNode;
 117 class MultiNode;
 118 class MultiBranchNode;
 119 class NeverBranchNode;
 120 class OuterStripMinedLoopNode;
 121 class OuterStripMinedLoopEndNode;
 122 class Node;
 123 class Node_Array;
 124 class Node_List;
 125 class Node_Stack;
 126 class NullCheckNode;
 127 class OopMap;
 128 class ParmNode;
 129 class PCTableNode;
 130 class PhaseCCP;
 131 class PhaseGVN;
 132 class PhaseIterGVN;
 133 class PhaseRegAlloc;
 134 class PhaseTransform;
 135 class PhaseValues;
 136 class PhiNode;
 137 class Pipeline;
 138 class ProjNode;
 139 class RangeCheckNode;
 140 class RegMask;
 141 class RegionNode;
 142 class RootNode;
 143 class SafePointNode;
 144 class SafePointScalarObjectNode;
 145 class StartNode;
 146 class State;
 147 class StoreNode;
 148 class SubNode;
 149 class Type;
 150 class TypeNode;
 151 class UnlockNode;
 152 class ValueTypeBaseNode;
 153 class ValueTypeNode;
 154 class ValueTypePtrNode;
 155 class VectorNode;
 156 class LoadVectorNode;
 157 class StoreVectorNode;
 158 class VectorSet;
 159 typedef void (*NFunc)(Node&,void*);
 160 extern "C" {
 161   typedef int (*C_sort_func_t)(const void *, const void *);
 162 }
 163 
 164 // The type of all node counts and indexes.
 165 // It must hold at least 16 bits, but must also be fast to load and store.
 166 // This type, if less than 32 bits, could limit the number of possible nodes.
 167 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 168 typedef unsigned int node_idx_t;
 169 
 170 
 171 #ifndef OPTO_DU_ITERATOR_ASSERT
 172 #ifdef ASSERT
 173 #define OPTO_DU_ITERATOR_ASSERT 1
 174 #else
 175 #define OPTO_DU_ITERATOR_ASSERT 0
 176 #endif
 177 #endif //OPTO_DU_ITERATOR_ASSERT
 178 
 179 #if OPTO_DU_ITERATOR_ASSERT
 180 class DUIterator;
 181 class DUIterator_Fast;
 182 class DUIterator_Last;
 183 #else
 184 typedef uint   DUIterator;
 185 typedef Node** DUIterator_Fast;
 186 typedef Node** DUIterator_Last;
 187 #endif
 188 
 189 // Node Sentinel
 190 #define NodeSentinel (Node*)-1
 191 
 192 // Unknown count frequency
 193 #define COUNT_UNKNOWN (-1.0f)
 194 
 195 //------------------------------Node-------------------------------------------
 196 // Nodes define actions in the program.  They create values, which have types.
 197 // They are both vertices in a directed graph and program primitives.  Nodes
 198 // are labeled; the label is the "opcode", the primitive function in the lambda
 199 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 200 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 201 // the Node's function.  These inputs also define a Type equation for the Node.
 202 // Solving these Type equations amounts to doing dataflow analysis.
 203 // Control and data are uniformly represented in the graph.  Finally, Nodes
 204 // have a unique dense integer index which is used to index into side arrays
 205 // whenever I have phase-specific information.
 206 
 207 class Node {
 208   friend class VMStructs;
 209 
 210   // Lots of restrictions on cloning Nodes
 211   Node(const Node&);            // not defined; linker error to use these
 212   Node &operator=(const Node &rhs);
 213 
 214 public:
 215   friend class Compile;
 216   #if OPTO_DU_ITERATOR_ASSERT
 217   friend class DUIterator_Common;
 218   friend class DUIterator;
 219   friend class DUIterator_Fast;
 220   friend class DUIterator_Last;
 221   #endif
 222 
 223   // Because Nodes come and go, I define an Arena of Node structures to pull
 224   // from.  This should allow fast access to node creation & deletion.  This
 225   // field is a local cache of a value defined in some "program fragment" for
 226   // which these Nodes are just a part of.
 227 
 228   inline void* operator new(size_t x) throw() {
 229     Compile* C = Compile::current();
 230     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 231     return (void*)n;
 232   }
 233 
 234   // Delete is a NOP
 235   void operator delete( void *ptr ) {}
 236   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 237   void destruct();
 238 
 239   // Create a new Node.  Required is the number is of inputs required for
 240   // semantic correctness.
 241   Node( uint required );
 242 
 243   // Create a new Node with given input edges.
 244   // This version requires use of the "edge-count" new.
 245   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 246   Node( Node *n0 );
 247   Node( Node *n0, Node *n1 );
 248   Node( Node *n0, Node *n1, Node *n2 );
 249   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 250   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 251   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 252   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 253             Node *n4, Node *n5, Node *n6 );
 254 
 255   // Clone an inherited Node given only the base Node type.
 256   Node* clone() const;
 257 
 258   // Clone a Node, immediately supplying one or two new edges.
 259   // The first and second arguments, if non-null, replace in(1) and in(2),
 260   // respectively.
 261   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 262     Node* nn = clone();
 263     if (in1 != NULL)  nn->set_req(1, in1);
 264     if (in2 != NULL)  nn->set_req(2, in2);
 265     return nn;
 266   }
 267 
 268 private:
 269   // Shared setup for the above constructors.
 270   // Handles all interactions with Compile::current.
 271   // Puts initial values in all Node fields except _idx.
 272   // Returns the initial value for _idx, which cannot
 273   // be initialized by assignment.
 274   inline int Init(int req);
 275 
 276 //----------------- input edge handling
 277 protected:
 278   friend class PhaseCFG;        // Access to address of _in array elements
 279   Node **_in;                   // Array of use-def references to Nodes
 280   Node **_out;                  // Array of def-use references to Nodes
 281 
 282   // Input edges are split into two categories.  Required edges are required
 283   // for semantic correctness; order is important and NULLs are allowed.
 284   // Precedence edges are used to help determine execution order and are
 285   // added, e.g., for scheduling purposes.  They are unordered and not
 286   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 287   // are required, from _cnt to _max-1 are precedence edges.
 288   node_idx_t _cnt;              // Total number of required Node inputs.
 289 
 290   node_idx_t _max;              // Actual length of input array.
 291 
 292   // Output edges are an unordered list of def-use edges which exactly
 293   // correspond to required input edges which point from other nodes
 294   // to this one.  Thus the count of the output edges is the number of
 295   // users of this node.
 296   node_idx_t _outcnt;           // Total number of Node outputs.
 297 
 298   node_idx_t _outmax;           // Actual length of output array.
 299 
 300   // Grow the actual input array to the next larger power-of-2 bigger than len.
 301   void grow( uint len );
 302   // Grow the output array to the next larger power-of-2 bigger than len.
 303   void out_grow( uint len );
 304 
 305  public:
 306   // Each Node is assigned a unique small/dense number.  This number is used
 307   // to index into auxiliary arrays of data and bit vectors.
 308   // The field _idx is declared constant to defend against inadvertent assignments,
 309   // since it is used by clients as a naked field. However, the field's value can be
 310   // changed using the set_idx() method.
 311   //
 312   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 313   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 314   // preserved in _parse_idx.
 315   const node_idx_t _idx;
 316   DEBUG_ONLY(const node_idx_t _parse_idx;)
 317 
 318   // Get the (read-only) number of input edges
 319   uint req() const { return _cnt; }
 320   uint len() const { return _max; }
 321   // Get the (read-only) number of output edges
 322   uint outcnt() const { return _outcnt; }
 323 
 324 #if OPTO_DU_ITERATOR_ASSERT
 325   // Iterate over the out-edges of this node.  Deletions are illegal.
 326   inline DUIterator outs() const;
 327   // Use this when the out array might have changed to suppress asserts.
 328   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 329   // Does the node have an out at this position?  (Used for iteration.)
 330   inline bool has_out(DUIterator& i) const;
 331   inline Node*    out(DUIterator& i) const;
 332   // Iterate over the out-edges of this node.  All changes are illegal.
 333   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 334   inline Node*    fast_out(DUIterator_Fast& i) const;
 335   // Iterate over the out-edges of this node, deleting one at a time.
 336   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 337   inline Node*    last_out(DUIterator_Last& i) const;
 338   // The inline bodies of all these methods are after the iterator definitions.
 339 #else
 340   // Iterate over the out-edges of this node.  Deletions are illegal.
 341   // This iteration uses integral indexes, to decouple from array reallocations.
 342   DUIterator outs() const  { return 0; }
 343   // Use this when the out array might have changed to suppress asserts.
 344   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 345 
 346   // Reference to the i'th output Node.  Error if out of bounds.
 347   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 348   // Does the node have an out at this position?  (Used for iteration.)
 349   bool has_out(DUIterator i) const { return i < _outcnt; }
 350 
 351   // Iterate over the out-edges of this node.  All changes are illegal.
 352   // This iteration uses a pointer internal to the out array.
 353   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 354     Node** out = _out;
 355     // Assign a limit pointer to the reference argument:
 356     max = out + (ptrdiff_t)_outcnt;
 357     // Return the base pointer:
 358     return out;
 359   }
 360   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 361   // Iterate over the out-edges of this node, deleting one at a time.
 362   // This iteration uses a pointer internal to the out array.
 363   DUIterator_Last last_outs(DUIterator_Last& min) const {
 364     Node** out = _out;
 365     // Assign a limit pointer to the reference argument:
 366     min = out;
 367     // Return the pointer to the start of the iteration:
 368     return out + (ptrdiff_t)_outcnt - 1;
 369   }
 370   Node*    last_out(DUIterator_Last i) const  { return *i; }
 371 #endif
 372 
 373   // Reference to the i'th input Node.  Error if out of bounds.
 374   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 375   // Reference to the i'th input Node.  NULL if out of bounds.
 376   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 377   // Reference to the i'th output Node.  Error if out of bounds.
 378   // Use this accessor sparingly.  We are going trying to use iterators instead.
 379   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 380   // Return the unique out edge.
 381   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 382   // Delete out edge at position 'i' by moving last out edge to position 'i'
 383   void  raw_del_out(uint i) {
 384     assert(i < _outcnt,"oob");
 385     assert(_outcnt > 0,"oob");
 386     #if OPTO_DU_ITERATOR_ASSERT
 387     // Record that a change happened here.
 388     debug_only(_last_del = _out[i]; ++_del_tick);
 389     #endif
 390     _out[i] = _out[--_outcnt];
 391     // Smash the old edge so it can't be used accidentally.
 392     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 393   }
 394 
 395 #ifdef ASSERT
 396   bool is_dead() const;
 397 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 398 #endif
 399   // Check whether node has become unreachable
 400   bool is_unreachable(PhaseIterGVN &igvn) const;
 401 
 402   // Set a required input edge, also updates corresponding output edge
 403   void add_req( Node *n ); // Append a NEW required input
 404   void add_req( Node *n0, Node *n1 ) {
 405     add_req(n0); add_req(n1); }
 406   void add_req( Node *n0, Node *n1, Node *n2 ) {
 407     add_req(n0); add_req(n1); add_req(n2); }
 408   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 409   void del_req( uint idx ); // Delete required edge & compact
 410   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 411   void ins_req( uint i, Node *n ); // Insert a NEW required input
 412   void set_req( uint i, Node *n ) {
 413     assert( is_not_dead(n), "can not use dead node");
 414     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 415     assert( !VerifyHashTableKeys || _hash_lock == 0,
 416             "remove node from hash table before modifying it");
 417     Node** p = &_in[i];    // cache this._in, across the del_out call
 418     if (*p != NULL)  (*p)->del_out((Node *)this);
 419     (*p) = n;
 420     if (n != NULL)      n->add_out((Node *)this);
 421     Compile::current()->record_modified_node(this);
 422   }
 423   // Light version of set_req() to init inputs after node creation.
 424   void init_req( uint i, Node *n ) {
 425     assert( i == 0 && this == n ||
 426             is_not_dead(n), "can not use dead node");
 427     assert( i < _cnt, "oob");
 428     assert( !VerifyHashTableKeys || _hash_lock == 0,
 429             "remove node from hash table before modifying it");
 430     assert( _in[i] == NULL, "sanity");
 431     _in[i] = n;
 432     if (n != NULL)      n->add_out((Node *)this);
 433     Compile::current()->record_modified_node(this);
 434   }
 435   // Find first occurrence of n among my edges:
 436   int find_edge(Node* n);
 437   int find_prec_edge(Node* n) {
 438     for (uint i = req(); i < len(); i++) {
 439       if (_in[i] == n) return i;
 440       if (_in[i] == NULL) {
 441         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
 442         break;
 443       }
 444     }
 445     return -1;
 446   }
 447   int replace_edge(Node* old, Node* neww);
 448   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 449   // NULL out all inputs to eliminate incoming Def-Use edges.
 450   // Return the number of edges between 'n' and 'this'
 451   int  disconnect_inputs(Node *n, Compile *c);
 452 
 453   // Quickly, return true if and only if I am Compile::current()->top().
 454   bool is_top() const {
 455     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 456     return (_out == NULL);
 457   }
 458   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 459   void setup_is_top();
 460 
 461   // Strip away casting.  (It is depth-limited.)
 462   Node* uncast() const;
 463   // Return whether two Nodes are equivalent, after stripping casting.
 464   bool eqv_uncast(const Node* n) const {
 465     return (this->uncast() == n->uncast());
 466   }
 467 
 468   // Find out of current node that matches opcode.
 469   Node* find_out_with(int opcode);
 470   // Return true if the current node has an out that matches opcode.
 471   bool has_out_with(int opcode);
 472   // Return true if the current node has an out that matches any of the opcodes.
 473   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 474 
 475 private:
 476   static Node* uncast_helper(const Node* n);
 477 
 478   // Add an output edge to the end of the list
 479   void add_out( Node *n ) {
 480     if (is_top())  return;
 481     if( _outcnt == _outmax ) out_grow(_outcnt);
 482     _out[_outcnt++] = n;
 483   }
 484   // Delete an output edge
 485   void del_out( Node *n ) {
 486     if (is_top())  return;
 487     Node** outp = &_out[_outcnt];
 488     // Find and remove n
 489     do {
 490       assert(outp > _out, "Missing Def-Use edge");
 491     } while (*--outp != n);
 492     *outp = _out[--_outcnt];
 493     // Smash the old edge so it can't be used accidentally.
 494     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 495     // Record that a change happened here.
 496     #if OPTO_DU_ITERATOR_ASSERT
 497     debug_only(_last_del = n; ++_del_tick);
 498     #endif
 499   }
 500   // Close gap after removing edge.
 501   void close_prec_gap_at(uint gap) {
 502     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 503     uint i = gap;
 504     Node *last = NULL;
 505     for (; i < _max-1; ++i) {
 506       Node *next = _in[i+1];
 507       if (next == NULL) break;
 508       last = next;
 509     }
 510     _in[gap] = last; // Move last slot to empty one.
 511     _in[i] = NULL;   // NULL out last slot.
 512   }
 513 
 514 public:
 515   // Globally replace this node by a given new node, updating all uses.
 516   void replace_by(Node* new_node);
 517   // Globally replace this node by a given new node, updating all uses
 518   // and cutting input edges of old node.
 519   void subsume_by(Node* new_node, Compile* c) {
 520     replace_by(new_node);
 521     disconnect_inputs(NULL, c);
 522   }
 523   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 524   // Find the one non-null required input.  RegionNode only
 525   Node *nonnull_req() const;
 526   // Add or remove precedence edges
 527   void add_prec( Node *n );
 528   void rm_prec( uint i );
 529 
 530   // Note: prec(i) will not necessarily point to n if edge already exists.
 531   void set_prec( uint i, Node *n ) {
 532     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 533     assert(is_not_dead(n), "can not use dead node");
 534     assert(i >= _cnt, "not a precedence edge");
 535     // Avoid spec violation: duplicated prec edge.
 536     if (_in[i] == n) return;
 537     if (n == NULL || find_prec_edge(n) != -1) {
 538       rm_prec(i);
 539       return;
 540     }
 541     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 542     _in[i] = n;
 543     if (n != NULL) n->add_out((Node *)this);
 544   }
 545 
 546   // Set this node's index, used by cisc_version to replace current node
 547   void set_idx(uint new_idx) {
 548     const node_idx_t* ref = &_idx;
 549     *(node_idx_t*)ref = new_idx;
 550   }
 551   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 552   void swap_edges(uint i1, uint i2) {
 553     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 554     // Def-Use info is unchanged
 555     Node* n1 = in(i1);
 556     Node* n2 = in(i2);
 557     _in[i1] = n2;
 558     _in[i2] = n1;
 559     // If this node is in the hash table, make sure it doesn't need a rehash.
 560     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 561   }
 562 
 563   // Iterators over input Nodes for a Node X are written as:
 564   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 565   // NOTE: Required edges can contain embedded NULL pointers.
 566 
 567 //----------------- Other Node Properties
 568 
 569   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 570   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 571   //
 572   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 573   // the type of the node the ID represents; another subset of an ID's bits are reserved
 574   // for the superclasses of the node represented by the ID.
 575   //
 576   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 577   // returns false. A.is_A() returns true.
 578   //
 579   // If two classes, A and B, have the same superclass, a different bit of A's class id
 580   // is reserved for A's type than for B's type. That bit is specified by the third
 581   // parameter in the macro DEFINE_CLASS_ID.
 582   //
 583   // By convention, classes with deeper hierarchy are declared first. Moreover,
 584   // classes with the same hierarchy depth are sorted by usage frequency.
 585   //
 586   // The query method masks the bits to cut off bits of subclasses and then compares
 587   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 588   //
 589   //  Class_MachCall=30, ClassMask_MachCall=31
 590   // 12               8               4               0
 591   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 592   //                                  |   |   |   |
 593   //                                  |   |   |   Bit_Mach=2
 594   //                                  |   |   Bit_MachReturn=4
 595   //                                  |   Bit_MachSafePoint=8
 596   //                                  Bit_MachCall=16
 597   //
 598   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 599   // 12               8               4               0
 600   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 601   //                              |   |   |
 602   //                              |   |   Bit_Region=8
 603   //                              |   Bit_Loop=16
 604   //                              Bit_CountedLoop=32
 605 
 606   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 607   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 608   Class_##cl = Class_##supcl + Bit_##cl , \
 609   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 610 
 611   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 612   // so that it's values fits into 16 bits.
 613   enum NodeClasses {
 614     Bit_Node   = 0x0000,
 615     Class_Node = 0x0000,
 616     ClassMask_Node = 0xFFFF,
 617 
 618     DEFINE_CLASS_ID(Multi, Node, 0)
 619       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 620         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 621           DEFINE_CLASS_ID(CallJava,         Call, 0)
 622             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 623             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 624           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 625             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 626           DEFINE_CLASS_ID(Allocate,         Call, 2)
 627             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 628           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 629             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 630             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 631           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 632       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 633         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 634           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 635           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 636         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 637           DEFINE_CLASS_ID(CountedLoopEnd,         If, 0)
 638           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 639           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 640         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 641       DEFINE_CLASS_ID(Start,       Multi, 2)
 642       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 643         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 644         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 645       DEFINE_CLASS_ID(LoadBarrier, Multi, 4)
 646 
 647     DEFINE_CLASS_ID(Mach,  Node, 1)
 648       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 649         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 650           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 651             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 652               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 653               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 654             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 655               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 656       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 657         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 658         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 659         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 660       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 661       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 662       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 663       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 664         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 665       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 666       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 667 
 668     DEFINE_CLASS_ID(Type,  Node, 2)
 669       DEFINE_CLASS_ID(Phi,   Type, 0)
 670       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 671         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 672         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 673       DEFINE_CLASS_ID(CMove, Type, 3)
 674       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 675       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 676         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 677         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 678       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 679         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 680         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 681       DEFINE_CLASS_ID(ValueTypeBase, Type, 7)
 682         DEFINE_CLASS_ID(ValueType, ValueTypeBase, 0)
 683         DEFINE_CLASS_ID(ValueTypePtr, ValueTypeBase, 1)
 684 
 685     DEFINE_CLASS_ID(Proj,  Node, 3)
 686       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 687       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 688       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 689         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 690         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 691       DEFINE_CLASS_ID(Parm,      Proj, 4)
 692       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 693 
 694     DEFINE_CLASS_ID(Mem,   Node, 4)
 695       DEFINE_CLASS_ID(Load,  Mem, 0)
 696         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 697           DEFINE_CLASS_ID(LoadBarrierSlowReg, Load, 1)
 698           DEFINE_CLASS_ID(LoadBarrierWeakSlowReg, Load, 2)
 699       DEFINE_CLASS_ID(Store, Mem, 1)
 700         DEFINE_CLASS_ID(StoreVector, Store, 0)
 701       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 702         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 703           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 704         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 705 
 706     DEFINE_CLASS_ID(Region, Node, 5)
 707       DEFINE_CLASS_ID(Loop, Region, 0)
 708         DEFINE_CLASS_ID(Root,                Loop, 0)
 709         DEFINE_CLASS_ID(CountedLoop,         Loop, 1)
 710         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 711 
 712     DEFINE_CLASS_ID(Sub,   Node, 6)
 713       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 714         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 715         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 716 
 717     DEFINE_CLASS_ID(MergeMem, Node, 7)
 718     DEFINE_CLASS_ID(Bool,     Node, 8)
 719     DEFINE_CLASS_ID(AddP,     Node, 9)
 720     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 721     DEFINE_CLASS_ID(Add,      Node, 11)
 722     DEFINE_CLASS_ID(Mul,      Node, 12)
 723     DEFINE_CLASS_ID(Vector,   Node, 13)
 724     DEFINE_CLASS_ID(ClearArray, Node, 14)
 725 
 726     _max_classes  = ClassMask_ClearArray
 727   };
 728   #undef DEFINE_CLASS_ID
 729 
 730   // Flags are sorted by usage frequency.
 731   enum NodeFlags {
 732     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 733     Flag_rematerialize               = Flag_is_Copy << 1,
 734     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 735     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 736     Flag_is_Con                      = Flag_is_macro << 1,
 737     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 738     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 739     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 740     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 741     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 742     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 743     Flag_is_reduction                = Flag_has_call << 1,
 744     Flag_is_scheduled                = Flag_is_reduction << 1,
 745     Flag_has_vector_mask_set         = Flag_is_scheduled << 1,
 746     Flag_is_expensive                = Flag_has_vector_mask_set << 1,
 747     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 748   };
 749 
 750 private:
 751   jushort _class_id;
 752   jushort _flags;
 753 
 754 protected:
 755   // These methods should be called from constructors only.
 756   void init_class_id(jushort c) {
 757     assert(c <= _max_classes, "invalid node class");
 758     _class_id = c; // cast out const
 759   }
 760   void init_flags(jushort fl) {
 761     assert(fl <= _max_flags, "invalid node flag");
 762     _flags |= fl;
 763   }
 764   void clear_flag(jushort fl) {
 765     assert(fl <= _max_flags, "invalid node flag");
 766     _flags &= ~fl;
 767   }
 768 
 769 public:
 770   const jushort class_id() const { return _class_id; }
 771 
 772   const jushort flags() const { return _flags; }
 773 
 774   void add_flag(jushort fl) { init_flags(fl); }
 775 
 776   void remove_flag(jushort fl) { clear_flag(fl); }
 777 
 778   // Return a dense integer opcode number
 779   virtual int Opcode() const;
 780 
 781   // Virtual inherited Node size
 782   virtual uint size_of() const;
 783 
 784   // Other interesting Node properties
 785   #define DEFINE_CLASS_QUERY(type)                           \
 786   bool is_##type() const {                                   \
 787     return ((_class_id & ClassMask_##type) == Class_##type); \
 788   }                                                          \
 789   type##Node *as_##type() const {                            \
 790     assert(is_##type(), "invalid node class");               \
 791     return (type##Node*)this;                                \
 792   }                                                          \
 793   type##Node* isa_##type() const {                           \
 794     return (is_##type()) ? as_##type() : NULL;               \
 795   }
 796 
 797   DEFINE_CLASS_QUERY(AbstractLock)
 798   DEFINE_CLASS_QUERY(Add)
 799   DEFINE_CLASS_QUERY(AddP)
 800   DEFINE_CLASS_QUERY(Allocate)
 801   DEFINE_CLASS_QUERY(AllocateArray)
 802   DEFINE_CLASS_QUERY(ArrayCopy)
 803   DEFINE_CLASS_QUERY(Bool)
 804   DEFINE_CLASS_QUERY(BoxLock)
 805   DEFINE_CLASS_QUERY(Call)
 806   DEFINE_CLASS_QUERY(CallDynamicJava)
 807   DEFINE_CLASS_QUERY(CallJava)
 808   DEFINE_CLASS_QUERY(CallLeaf)
 809   DEFINE_CLASS_QUERY(CallRuntime)
 810   DEFINE_CLASS_QUERY(CallStaticJava)
 811   DEFINE_CLASS_QUERY(Catch)
 812   DEFINE_CLASS_QUERY(CatchProj)
 813   DEFINE_CLASS_QUERY(CheckCastPP)
 814   DEFINE_CLASS_QUERY(CastII)
 815   DEFINE_CLASS_QUERY(ConstraintCast)
 816   DEFINE_CLASS_QUERY(ClearArray)
 817   DEFINE_CLASS_QUERY(CMove)
 818   DEFINE_CLASS_QUERY(Cmp)
 819   DEFINE_CLASS_QUERY(CountedLoop)
 820   DEFINE_CLASS_QUERY(CountedLoopEnd)
 821   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 822   DEFINE_CLASS_QUERY(DecodeN)
 823   DEFINE_CLASS_QUERY(DecodeNKlass)
 824   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 825   DEFINE_CLASS_QUERY(EncodeP)
 826   DEFINE_CLASS_QUERY(EncodePKlass)
 827   DEFINE_CLASS_QUERY(FastLock)
 828   DEFINE_CLASS_QUERY(FastUnlock)
 829   DEFINE_CLASS_QUERY(If)
 830   DEFINE_CLASS_QUERY(RangeCheck)
 831   DEFINE_CLASS_QUERY(IfProj)
 832   DEFINE_CLASS_QUERY(IfFalse)
 833   DEFINE_CLASS_QUERY(IfTrue)
 834   DEFINE_CLASS_QUERY(Initialize)
 835   DEFINE_CLASS_QUERY(Jump)
 836   DEFINE_CLASS_QUERY(JumpProj)
 837   DEFINE_CLASS_QUERY(Load)
 838   DEFINE_CLASS_QUERY(LoadStore)
 839   DEFINE_CLASS_QUERY(LoadBarrier)
 840   DEFINE_CLASS_QUERY(LoadBarrierSlowReg)
 841   DEFINE_CLASS_QUERY(LoadBarrierWeakSlowReg)
 842   DEFINE_CLASS_QUERY(Lock)
 843   DEFINE_CLASS_QUERY(Loop)
 844   DEFINE_CLASS_QUERY(Mach)
 845   DEFINE_CLASS_QUERY(MachBranch)
 846   DEFINE_CLASS_QUERY(MachCall)
 847   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 848   DEFINE_CLASS_QUERY(MachCallJava)
 849   DEFINE_CLASS_QUERY(MachCallLeaf)
 850   DEFINE_CLASS_QUERY(MachCallRuntime)
 851   DEFINE_CLASS_QUERY(MachCallStaticJava)
 852   DEFINE_CLASS_QUERY(MachConstantBase)
 853   DEFINE_CLASS_QUERY(MachConstant)
 854   DEFINE_CLASS_QUERY(MachGoto)
 855   DEFINE_CLASS_QUERY(MachIf)
 856   DEFINE_CLASS_QUERY(MachJump)
 857   DEFINE_CLASS_QUERY(MachNullCheck)
 858   DEFINE_CLASS_QUERY(MachProj)
 859   DEFINE_CLASS_QUERY(MachReturn)
 860   DEFINE_CLASS_QUERY(MachSafePoint)
 861   DEFINE_CLASS_QUERY(MachSpillCopy)
 862   DEFINE_CLASS_QUERY(MachTemp)
 863   DEFINE_CLASS_QUERY(MachMemBar)
 864   DEFINE_CLASS_QUERY(MachMerge)
 865   DEFINE_CLASS_QUERY(Mem)
 866   DEFINE_CLASS_QUERY(MemBar)
 867   DEFINE_CLASS_QUERY(MemBarStoreStore)
 868   DEFINE_CLASS_QUERY(MergeMem)
 869   DEFINE_CLASS_QUERY(Mul)
 870   DEFINE_CLASS_QUERY(Multi)
 871   DEFINE_CLASS_QUERY(MultiBranch)
 872   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 873   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 874   DEFINE_CLASS_QUERY(Parm)
 875   DEFINE_CLASS_QUERY(PCTable)
 876   DEFINE_CLASS_QUERY(Phi)
 877   DEFINE_CLASS_QUERY(Proj)
 878   DEFINE_CLASS_QUERY(Region)
 879   DEFINE_CLASS_QUERY(Root)
 880   DEFINE_CLASS_QUERY(SafePoint)
 881   DEFINE_CLASS_QUERY(SafePointScalarObject)
 882   DEFINE_CLASS_QUERY(Start)
 883   DEFINE_CLASS_QUERY(Store)
 884   DEFINE_CLASS_QUERY(Sub)
 885   DEFINE_CLASS_QUERY(Type)
 886   DEFINE_CLASS_QUERY(ValueType)
 887   DEFINE_CLASS_QUERY(ValueTypeBase)
 888   DEFINE_CLASS_QUERY(ValueTypePtr)
 889   DEFINE_CLASS_QUERY(Vector)
 890   DEFINE_CLASS_QUERY(LoadVector)
 891   DEFINE_CLASS_QUERY(StoreVector)
 892   DEFINE_CLASS_QUERY(Unlock)
 893 
 894   #undef DEFINE_CLASS_QUERY
 895 
 896   // duplicate of is_MachSpillCopy()
 897   bool is_SpillCopy () const {
 898     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 899   }
 900 
 901   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 902   // The data node which is safe to leave in dead loop during IGVN optimization.
 903   bool is_dead_loop_safe() const {
 904     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 905            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 906             (!is_Proj() || !in(0)->is_Allocate()));
 907   }
 908 
 909   // is_Copy() returns copied edge index (0 or 1)
 910   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 911 
 912   virtual bool is_CFG() const { return false; }
 913 
 914   // If this node is control-dependent on a test, can it be
 915   // rerouted to a dominating equivalent test?  This is usually
 916   // true of non-CFG nodes, but can be false for operations which
 917   // depend for their correct sequencing on more than one test.
 918   // (In that case, hoisting to a dominating test may silently
 919   // skip some other important test.)
 920   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 921 
 922   // When building basic blocks, I need to have a notion of block beginning
 923   // Nodes, next block selector Nodes (block enders), and next block
 924   // projections.  These calls need to work on their machine equivalents.  The
 925   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 926   bool is_block_start() const {
 927     if ( is_Region() )
 928       return this == (const Node*)in(0);
 929     else
 930       return is_Start();
 931   }
 932 
 933   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 934   // Goto and Return.  This call also returns the block ending Node.
 935   virtual const Node *is_block_proj() const;
 936 
 937   // The node is a "macro" node which needs to be expanded before matching
 938   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 939   // The node is expensive: the best control is set during loop opts
 940   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 941 
 942   // An arithmetic node which accumulates a data in a loop.
 943   // It must have the loop's phi as input and provide a def to the phi.
 944   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 945 
 946   // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
 947   bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
 948 
 949   // Used in lcm to mark nodes that have scheduled
 950   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
 951 
 952 //----------------- Optimization
 953 
 954   // Get the worst-case Type output for this Node.
 955   virtual const class Type *bottom_type() const;
 956 
 957   // If we find a better type for a node, try to record it permanently.
 958   // Return true if this node actually changed.
 959   // Be sure to do the hash_delete game in the "rehash" variant.
 960   void raise_bottom_type(const Type* new_type);
 961 
 962   // Get the address type with which this node uses and/or defs memory,
 963   // or NULL if none.  The address type is conservatively wide.
 964   // Returns non-null for calls, membars, loads, stores, etc.
 965   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 966   virtual const class TypePtr *adr_type() const { return NULL; }
 967 
 968   // Return an existing node which computes the same function as this node.
 969   // The optimistic combined algorithm requires this to return a Node which
 970   // is a small number of steps away (e.g., one of my inputs).
 971   virtual Node* Identity(PhaseGVN* phase);
 972 
 973   // Return the set of values this Node can take on at runtime.
 974   virtual const Type* Value(PhaseGVN* phase) const;
 975 
 976   // Return a node which is more "ideal" than the current node.
 977   // The invariants on this call are subtle.  If in doubt, read the
 978   // treatise in node.cpp above the default implemention AND TEST WITH
 979   // +VerifyIterativeGVN!
 980   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 981 
 982   // Some nodes have specific Ideal subgraph transformations only if they are
 983   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 984   // for the transformations to happen.
 985   bool has_special_unique_user() const;
 986 
 987   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 988   Node* find_exact_control(Node* ctrl);
 989 
 990   // Check if 'this' node dominates or equal to 'sub'.
 991   bool dominates(Node* sub, Node_List &nlist);
 992 
 993 protected:
 994   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 995 public:
 996 
 997   // See if there is valid pipeline info
 998   static  const Pipeline *pipeline_class();
 999   virtual const Pipeline *pipeline() const;
1000 
1001   // Compute the latency from the def to this instruction of the ith input node
1002   uint latency(uint i);
1003 
1004   // Hash & compare functions, for pessimistic value numbering
1005 
1006   // If the hash function returns the special sentinel value NO_HASH,
1007   // the node is guaranteed never to compare equal to any other node.
1008   // If we accidentally generate a hash with value NO_HASH the node
1009   // won't go into the table and we'll lose a little optimization.
1010   enum { NO_HASH = 0 };
1011   virtual uint hash() const;
1012   virtual uint cmp( const Node &n ) const;
1013 
1014   // Operation appears to be iteratively computed (such as an induction variable)
1015   // It is possible for this operation to return false for a loop-varying
1016   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1017   bool is_iteratively_computed();
1018 
1019   // Determine if a node is Counted loop induction variable.
1020   // The method is defined in loopnode.cpp.
1021   const Node* is_loop_iv() const;
1022 
1023   // Return a node with opcode "opc" and same inputs as "this" if one can
1024   // be found; Otherwise return NULL;
1025   Node* find_similar(int opc);
1026 
1027   // Return the unique control out if only one. Null if none or more than one.
1028   Node* unique_ctrl_out() const;
1029 
1030   // Set control or add control as precedence edge
1031   void ensure_control_or_add_prec(Node* c);
1032 
1033 //----------------- Code Generation
1034 
1035   // Ideal register class for Matching.  Zero means unmatched instruction
1036   // (these are cloned instead of converted to machine nodes).
1037   virtual uint ideal_reg() const;
1038 
1039   static const uint NotAMachineReg;   // must be > max. machine register
1040 
1041   // Do we Match on this edge index or not?  Generally false for Control
1042   // and true for everything else.  Weird for calls & returns.
1043   virtual uint match_edge(uint idx) const;
1044 
1045   // Register class output is returned in
1046   virtual const RegMask &out_RegMask() const;
1047   // Register class input is expected in
1048   virtual const RegMask &in_RegMask(uint) const;
1049   // Should we clone rather than spill this instruction?
1050   bool rematerialize() const;
1051 
1052   // Return JVM State Object if this Node carries debug info, or NULL otherwise
1053   virtual JVMState* jvms() const;
1054 
1055   // Print as assembly
1056   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1057   // Emit bytes starting at parameter 'ptr'
1058   // Bump 'ptr' by the number of output bytes
1059   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1060   // Size of instruction in bytes
1061   virtual uint size(PhaseRegAlloc *ra_) const;
1062 
1063   // Convenience function to extract an integer constant from a node.
1064   // If it is not an integer constant (either Con, CastII, or Mach),
1065   // return value_if_unknown.
1066   jint find_int_con(jint value_if_unknown) const {
1067     const TypeInt* t = find_int_type();
1068     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1069   }
1070   // Return the constant, knowing it is an integer constant already
1071   jint get_int() const {
1072     const TypeInt* t = find_int_type();
1073     guarantee(t != NULL, "must be con");
1074     return t->get_con();
1075   }
1076   // Here's where the work is done.  Can produce non-constant int types too.
1077   const TypeInt* find_int_type() const;
1078 
1079   // Same thing for long (and intptr_t, via type.hpp):
1080   jlong get_long() const {
1081     const TypeLong* t = find_long_type();
1082     guarantee(t != NULL, "must be con");
1083     return t->get_con();
1084   }
1085   jlong find_long_con(jint value_if_unknown) const {
1086     const TypeLong* t = find_long_type();
1087     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1088   }
1089   const TypeLong* find_long_type() const;
1090 
1091   const TypePtr* get_ptr_type() const;
1092 
1093   // These guys are called by code generated by ADLC:
1094   intptr_t get_ptr() const;
1095   intptr_t get_narrowcon() const;
1096   jdouble getd() const;
1097   jfloat getf() const;
1098 
1099   // Nodes which are pinned into basic blocks
1100   virtual bool pinned() const { return false; }
1101 
1102   // Nodes which use memory without consuming it, hence need antidependences
1103   // More specifically, needs_anti_dependence_check returns true iff the node
1104   // (a) does a load, and (b) does not perform a store (except perhaps to a
1105   // stack slot or some other unaliased location).
1106   bool needs_anti_dependence_check() const;
1107 
1108   // Return which operand this instruction may cisc-spill. In other words,
1109   // return operand position that can convert from reg to memory access
1110   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1111   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1112 
1113 //----------------- Graph walking
1114 public:
1115   // Walk and apply member functions recursively.
1116   // Supplied (this) pointer is root.
1117   void walk(NFunc pre, NFunc post, void *env);
1118   static void nop(Node &, void*); // Dummy empty function
1119   static void packregion( Node &n, void* );
1120 private:
1121   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1122 
1123 //----------------- Printing, etc
1124 public:
1125 #ifndef PRODUCT
1126   Node* find(int idx) const;         // Search the graph for the given idx.
1127   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1128   void dump() const { dump("\n"); }  // Print this node.
1129   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1130   void dump(int depth) const;        // Print this node, recursively to depth d
1131   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1132   void dump_comp() const;            // Print this node in compact representation.
1133   // Print this node in compact representation.
1134   void dump_comp(const char* suffix, outputStream *st = tty) const;
1135   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1136   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1137   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1138   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1139   // Print compact per-node info
1140   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1141   void dump_related() const;             // Print related nodes (depends on node at hand).
1142   // Print related nodes up to given depths for input and output nodes.
1143   void dump_related(uint d_in, uint d_out) const;
1144   void dump_related_compact() const;     // Print related nodes in compact representation.
1145   // Collect related nodes.
1146   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1147   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1148   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1149 
1150   // Node collectors, to be used in implementations of Node::rel().
1151   // Collect the entire data input graph. Include control inputs if requested.
1152   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1153   // Collect the entire control input graph. Include data inputs if requested.
1154   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1155   // Collect the entire output graph until hitting and including control nodes.
1156   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1157 
1158   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1159   void verify() const;               // Check Def-Use info for my subgraph
1160   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1161 
1162   // This call defines a class-unique string used to identify class instances
1163   virtual const char *Name() const;
1164 
1165   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1166   // RegMask Print Functions
1167   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1168   void dump_out_regmask() { out_RegMask().dump(); }
1169   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1170   void fast_dump() const {
1171     tty->print("%4d: %-17s", _idx, Name());
1172     for (uint i = 0; i < len(); i++)
1173       if (in(i))
1174         tty->print(" %4d", in(i)->_idx);
1175       else
1176         tty->print(" NULL");
1177     tty->print("\n");
1178   }
1179 #endif
1180 #ifdef ASSERT
1181   void verify_construction();
1182   bool verify_jvms(const JVMState* jvms) const;
1183   int  _debug_idx;                     // Unique value assigned to every node.
1184   int   debug_idx() const              { return _debug_idx; }
1185   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1186 
1187   Node* _debug_orig;                   // Original version of this, if any.
1188   Node*  debug_orig() const            { return _debug_orig; }
1189   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1190 
1191   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1192   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1193   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1194 
1195   static void init_NodeProperty();
1196 
1197   #if OPTO_DU_ITERATOR_ASSERT
1198   const Node* _last_del;               // The last deleted node.
1199   uint        _del_tick;               // Bumped when a deletion happens..
1200   #endif
1201 #endif
1202 };
1203 
1204 
1205 #ifndef PRODUCT
1206 
1207 // Used in debugging code to avoid walking across dead or uninitialized edges.
1208 inline bool NotANode(const Node* n) {
1209   if (n == NULL)                   return true;
1210   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1211   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1212   return false;
1213 }
1214 
1215 #endif
1216 
1217 
1218 //-----------------------------------------------------------------------------
1219 // Iterators over DU info, and associated Node functions.
1220 
1221 #if OPTO_DU_ITERATOR_ASSERT
1222 
1223 // Common code for assertion checking on DU iterators.
1224 class DUIterator_Common {
1225 #ifdef ASSERT
1226  protected:
1227   bool         _vdui;               // cached value of VerifyDUIterators
1228   const Node*  _node;               // the node containing the _out array
1229   uint         _outcnt;             // cached node->_outcnt
1230   uint         _del_tick;           // cached node->_del_tick
1231   Node*        _last;               // last value produced by the iterator
1232 
1233   void sample(const Node* node);    // used by c'tor to set up for verifies
1234   void verify(const Node* node, bool at_end_ok = false);
1235   void verify_resync();
1236   void reset(const DUIterator_Common& that);
1237 
1238 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1239   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1240 #else
1241   #define I_VDUI_ONLY(i,x) { }
1242 #endif //ASSERT
1243 };
1244 
1245 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1246 
1247 // Default DU iterator.  Allows appends onto the out array.
1248 // Allows deletion from the out array only at the current point.
1249 // Usage:
1250 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1251 //    Node* y = x->out(i);
1252 //    ...
1253 //  }
1254 // Compiles in product mode to a unsigned integer index, which indexes
1255 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1256 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1257 // before continuing the loop.  You must delete only the last-produced
1258 // edge.  You must delete only a single copy of the last-produced edge,
1259 // or else you must delete all copies at once (the first time the edge
1260 // is produced by the iterator).
1261 class DUIterator : public DUIterator_Common {
1262   friend class Node;
1263 
1264   // This is the index which provides the product-mode behavior.
1265   // Whatever the product-mode version of the system does to the
1266   // DUI index is done to this index.  All other fields in
1267   // this class are used only for assertion checking.
1268   uint         _idx;
1269 
1270   #ifdef ASSERT
1271   uint         _refresh_tick;    // Records the refresh activity.
1272 
1273   void sample(const Node* node); // Initialize _refresh_tick etc.
1274   void verify(const Node* node, bool at_end_ok = false);
1275   void verify_increment();       // Verify an increment operation.
1276   void verify_resync();          // Verify that we can back up over a deletion.
1277   void verify_finish();          // Verify that the loop terminated properly.
1278   void refresh();                // Resample verification info.
1279   void reset(const DUIterator& that);  // Resample after assignment.
1280   #endif
1281 
1282   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1283     { _idx = 0;                         debug_only(sample(node)); }
1284 
1285  public:
1286   // initialize to garbage; clear _vdui to disable asserts
1287   DUIterator()
1288     { /*initialize to garbage*/         debug_only(_vdui = false); }
1289 
1290   void operator++(int dummy_to_specify_postfix_op)
1291     { _idx++;                           VDUI_ONLY(verify_increment()); }
1292 
1293   void operator--()
1294     { VDUI_ONLY(verify_resync());       --_idx; }
1295 
1296   ~DUIterator()
1297     { VDUI_ONLY(verify_finish()); }
1298 
1299   void operator=(const DUIterator& that)
1300     { _idx = that._idx;                 debug_only(reset(that)); }
1301 };
1302 
1303 DUIterator Node::outs() const
1304   { return DUIterator(this, 0); }
1305 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1306   { I_VDUI_ONLY(i, i.refresh());        return i; }
1307 bool Node::has_out(DUIterator& i) const
1308   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1309 Node*    Node::out(DUIterator& i) const
1310   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1311 
1312 
1313 // Faster DU iterator.  Disallows insertions into the out array.
1314 // Allows deletion from the out array only at the current point.
1315 // Usage:
1316 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1317 //    Node* y = x->fast_out(i);
1318 //    ...
1319 //  }
1320 // Compiles in product mode to raw Node** pointer arithmetic, with
1321 // no reloading of pointers from the original node x.  If you delete,
1322 // you must perform "--i; --imax" just before continuing the loop.
1323 // If you delete multiple copies of the same edge, you must decrement
1324 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1325 class DUIterator_Fast : public DUIterator_Common {
1326   friend class Node;
1327   friend class DUIterator_Last;
1328 
1329   // This is the pointer which provides the product-mode behavior.
1330   // Whatever the product-mode version of the system does to the
1331   // DUI pointer is done to this pointer.  All other fields in
1332   // this class are used only for assertion checking.
1333   Node**       _outp;
1334 
1335   #ifdef ASSERT
1336   void verify(const Node* node, bool at_end_ok = false);
1337   void verify_limit();
1338   void verify_resync();
1339   void verify_relimit(uint n);
1340   void reset(const DUIterator_Fast& that);
1341   #endif
1342 
1343   // Note:  offset must be signed, since -1 is sometimes passed
1344   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1345     { _outp = node->_out + offset;      debug_only(sample(node)); }
1346 
1347  public:
1348   // initialize to garbage; clear _vdui to disable asserts
1349   DUIterator_Fast()
1350     { /*initialize to garbage*/         debug_only(_vdui = false); }
1351 
1352   void operator++(int dummy_to_specify_postfix_op)
1353     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1354 
1355   void operator--()
1356     { VDUI_ONLY(verify_resync());       --_outp; }
1357 
1358   void operator-=(uint n)   // applied to the limit only
1359     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1360 
1361   bool operator<(DUIterator_Fast& limit) {
1362     I_VDUI_ONLY(*this, this->verify(_node, true));
1363     I_VDUI_ONLY(limit, limit.verify_limit());
1364     return _outp < limit._outp;
1365   }
1366 
1367   void operator=(const DUIterator_Fast& that)
1368     { _outp = that._outp;               debug_only(reset(that)); }
1369 };
1370 
1371 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1372   // Assign a limit pointer to the reference argument:
1373   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1374   // Return the base pointer:
1375   return DUIterator_Fast(this, 0);
1376 }
1377 Node* Node::fast_out(DUIterator_Fast& i) const {
1378   I_VDUI_ONLY(i, i.verify(this));
1379   return debug_only(i._last=) *i._outp;
1380 }
1381 
1382 
1383 // Faster DU iterator.  Requires each successive edge to be removed.
1384 // Does not allow insertion of any edges.
1385 // Usage:
1386 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1387 //    Node* y = x->last_out(i);
1388 //    ...
1389 //  }
1390 // Compiles in product mode to raw Node** pointer arithmetic, with
1391 // no reloading of pointers from the original node x.
1392 class DUIterator_Last : private DUIterator_Fast {
1393   friend class Node;
1394 
1395   #ifdef ASSERT
1396   void verify(const Node* node, bool at_end_ok = false);
1397   void verify_limit();
1398   void verify_step(uint num_edges);
1399   #endif
1400 
1401   // Note:  offset must be signed, since -1 is sometimes passed
1402   DUIterator_Last(const Node* node, ptrdiff_t offset)
1403     : DUIterator_Fast(node, offset) { }
1404 
1405   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1406   void operator<(int)                              {} // do not use
1407 
1408  public:
1409   DUIterator_Last() { }
1410   // initialize to garbage
1411 
1412   void operator--()
1413     { _outp--;              VDUI_ONLY(verify_step(1));  }
1414 
1415   void operator-=(uint n)
1416     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1417 
1418   bool operator>=(DUIterator_Last& limit) {
1419     I_VDUI_ONLY(*this, this->verify(_node, true));
1420     I_VDUI_ONLY(limit, limit.verify_limit());
1421     return _outp >= limit._outp;
1422   }
1423 
1424   void operator=(const DUIterator_Last& that)
1425     { DUIterator_Fast::operator=(that); }
1426 };
1427 
1428 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1429   // Assign a limit pointer to the reference argument:
1430   imin = DUIterator_Last(this, 0);
1431   // Return the initial pointer:
1432   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1433 }
1434 Node* Node::last_out(DUIterator_Last& i) const {
1435   I_VDUI_ONLY(i, i.verify(this));
1436   return debug_only(i._last=) *i._outp;
1437 }
1438 
1439 #endif //OPTO_DU_ITERATOR_ASSERT
1440 
1441 #undef I_VDUI_ONLY
1442 #undef VDUI_ONLY
1443 
1444 // An Iterator that truly follows the iterator pattern.  Doesn't
1445 // support deletion but could be made to.
1446 //
1447 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1448 //     Node* m = i.get();
1449 //
1450 class SimpleDUIterator : public StackObj {
1451  private:
1452   Node* node;
1453   DUIterator_Fast i;
1454   DUIterator_Fast imax;
1455  public:
1456   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1457   bool has_next() { return i < imax; }
1458   void next() { i++; }
1459   Node* get() { return node->fast_out(i); }
1460 };
1461 
1462 
1463 //-----------------------------------------------------------------------------
1464 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1465 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1466 // Note that the constructor just zeros things, and since I use Arena
1467 // allocation I do not need a destructor to reclaim storage.
1468 class Node_Array : public ResourceObj {
1469   friend class VMStructs;
1470 protected:
1471   Arena *_a;                    // Arena to allocate in
1472   uint   _max;
1473   Node **_nodes;
1474   void   grow( uint i );        // Grow array node to fit
1475 public:
1476   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1477     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1478     for( int i = 0; i < OptoNodeListSize; i++ ) {
1479       _nodes[i] = NULL;
1480     }
1481   }
1482 
1483   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1484   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1485   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1486   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1487   Node **adr() { return _nodes; }
1488   // Extend the mapping: index i maps to Node *n.
1489   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1490   void insert( uint i, Node *n );
1491   void remove( uint i );        // Remove, preserving order
1492   void sort( C_sort_func_t func);
1493   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1494   void clear();                 // Set all entries to NULL, keep storage
1495   uint Size() const { return _max; }
1496   void dump() const;
1497 };
1498 
1499 class Node_List : public Node_Array {
1500   friend class VMStructs;
1501   uint _cnt;
1502 public:
1503   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1504   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1505   bool contains(const Node* n) const {
1506     for (uint e = 0; e < size(); e++) {
1507       if (at(e) == n) return true;
1508     }
1509     return false;
1510   }
1511   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1512   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1513   void push( Node *b ) { map(_cnt++,b); }
1514   void yank( Node *n );         // Find and remove
1515   Node *pop() { return _nodes[--_cnt]; }
1516   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1517   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1518   uint size() const { return _cnt; }
1519   void dump() const;
1520   void dump_simple() const;
1521 };
1522 
1523 //------------------------------Unique_Node_List-------------------------------
1524 class Unique_Node_List : public Node_List {
1525   friend class VMStructs;
1526   VectorSet _in_worklist;
1527   uint _clock_index;            // Index in list where to pop from next
1528 public:
1529   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1530   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1531 
1532   void remove( Node *n );
1533   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1534   VectorSet &member_set(){ return _in_worklist; }
1535 
1536   void push( Node *b ) {
1537     if( !_in_worklist.test_set(b->_idx) )
1538       Node_List::push(b);
1539   }
1540   Node *pop() {
1541     if( _clock_index >= size() ) _clock_index = 0;
1542     Node *b = at(_clock_index);
1543     map( _clock_index, Node_List::pop());
1544     if (size() != 0) _clock_index++; // Always start from 0
1545     _in_worklist >>= b->_idx;
1546     return b;
1547   }
1548   Node *remove( uint i ) {
1549     Node *b = Node_List::at(i);
1550     _in_worklist >>= b->_idx;
1551     map(i,Node_List::pop());
1552     return b;
1553   }
1554   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1555   void  clear() {
1556     _in_worklist.Clear();        // Discards storage but grows automatically
1557     Node_List::clear();
1558     _clock_index = 0;
1559   }
1560 
1561   // Used after parsing to remove useless nodes before Iterative GVN
1562   void remove_useless_nodes(VectorSet &useful);
1563 
1564 #ifndef PRODUCT
1565   void print_set() const { _in_worklist.print(); }
1566 #endif
1567 };
1568 
1569 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1570 inline void Compile::record_for_igvn(Node* n) {
1571   _for_igvn->push(n);
1572 }
1573 
1574 //------------------------------Node_Stack-------------------------------------
1575 class Node_Stack {
1576   friend class VMStructs;
1577 protected:
1578   struct INode {
1579     Node *node; // Processed node
1580     uint  indx; // Index of next node's child
1581   };
1582   INode *_inode_top; // tos, stack grows up
1583   INode *_inode_max; // End of _inodes == _inodes + _max
1584   INode *_inodes;    // Array storage for the stack
1585   Arena *_a;         // Arena to allocate in
1586   void grow();
1587 public:
1588   Node_Stack(int size) {
1589     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1590     _a = Thread::current()->resource_area();
1591     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1592     _inode_max = _inodes + max;
1593     _inode_top = _inodes - 1; // stack is empty
1594   }
1595 
1596   Node_Stack(Arena *a, int size) : _a(a) {
1597     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1598     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1599     _inode_max = _inodes + max;
1600     _inode_top = _inodes - 1; // stack is empty
1601   }
1602 
1603   void pop() {
1604     assert(_inode_top >= _inodes, "node stack underflow");
1605     --_inode_top;
1606   }
1607   void push(Node *n, uint i) {
1608     ++_inode_top;
1609     if (_inode_top >= _inode_max) grow();
1610     INode *top = _inode_top; // optimization
1611     top->node = n;
1612     top->indx = i;
1613   }
1614   Node *node() const {
1615     return _inode_top->node;
1616   }
1617   Node* node_at(uint i) const {
1618     assert(_inodes + i <= _inode_top, "in range");
1619     return _inodes[i].node;
1620   }
1621   uint index() const {
1622     return _inode_top->indx;
1623   }
1624   uint index_at(uint i) const {
1625     assert(_inodes + i <= _inode_top, "in range");
1626     return _inodes[i].indx;
1627   }
1628   void set_node(Node *n) {
1629     _inode_top->node = n;
1630   }
1631   void set_index(uint i) {
1632     _inode_top->indx = i;
1633   }
1634   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1635   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1636   bool is_nonempty() const { return (_inode_top >= _inodes); }
1637   bool is_empty() const { return (_inode_top < _inodes); }
1638   void clear() { _inode_top = _inodes - 1; } // retain storage
1639 
1640   // Node_Stack is used to map nodes.
1641   Node* find(uint idx) const;
1642 };
1643 
1644 
1645 //-----------------------------Node_Notes--------------------------------------
1646 // Debugging or profiling annotations loosely and sparsely associated
1647 // with some nodes.  See Compile::node_notes_at for the accessor.
1648 class Node_Notes {
1649   friend class VMStructs;
1650   JVMState* _jvms;
1651 
1652 public:
1653   Node_Notes(JVMState* jvms = NULL) {
1654     _jvms = jvms;
1655   }
1656 
1657   JVMState* jvms()            { return _jvms; }
1658   void  set_jvms(JVMState* x) {        _jvms = x; }
1659 
1660   // True if there is nothing here.
1661   bool is_clear() {
1662     return (_jvms == NULL);
1663   }
1664 
1665   // Make there be nothing here.
1666   void clear() {
1667     _jvms = NULL;
1668   }
1669 
1670   // Make a new, clean node notes.
1671   static Node_Notes* make(Compile* C) {
1672     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1673     nn->clear();
1674     return nn;
1675   }
1676 
1677   Node_Notes* clone(Compile* C) {
1678     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1679     (*nn) = (*this);
1680     return nn;
1681   }
1682 
1683   // Absorb any information from source.
1684   bool update_from(Node_Notes* source) {
1685     bool changed = false;
1686     if (source != NULL) {
1687       if (source->jvms() != NULL) {
1688         set_jvms(source->jvms());
1689         changed = true;
1690       }
1691     }
1692     return changed;
1693   }
1694 };
1695 
1696 // Inlined accessors for Compile::node_nodes that require the preceding class:
1697 inline Node_Notes*
1698 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1699                            int idx, bool can_grow) {
1700   assert(idx >= 0, "oob");
1701   int block_idx = (idx >> _log2_node_notes_block_size);
1702   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1703   if (grow_by >= 0) {
1704     if (!can_grow) return NULL;
1705     grow_node_notes(arr, grow_by + 1);
1706   }
1707   if (arr == NULL) return NULL;
1708   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1709   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1710 }
1711 
1712 inline bool
1713 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1714   if (value == NULL || value->is_clear())
1715     return false;  // nothing to write => write nothing
1716   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1717   assert(loc != NULL, "");
1718   return loc->update_from(value);
1719 }
1720 
1721 
1722 //------------------------------TypeNode---------------------------------------
1723 // Node with a Type constant.
1724 class TypeNode : public Node {
1725 protected:
1726   virtual uint hash() const;    // Check the type
1727   virtual uint cmp( const Node &n ) const;
1728   virtual uint size_of() const; // Size is bigger
1729   const Type* const _type;
1730 public:
1731   void set_type(const Type* t) {
1732     assert(t != NULL, "sanity");
1733     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1734     *(const Type**)&_type = t;   // cast away const-ness
1735     // If this node is in the hash table, make sure it doesn't need a rehash.
1736     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1737   }
1738   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1739   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1740     init_class_id(Class_Type);
1741   }
1742   virtual const Type* Value(PhaseGVN* phase) const;
1743   virtual const Type *bottom_type() const;
1744   virtual       uint  ideal_reg() const;
1745 #ifndef PRODUCT
1746   virtual void dump_spec(outputStream *st) const;
1747   virtual void dump_compact_spec(outputStream *st) const;
1748 #endif
1749 };
1750 
1751 #endif // SHARE_VM_OPTO_NODE_HPP