1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 142   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 143   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 144   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 145   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 146   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 147   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 148   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 149   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 150   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 151   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 152   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 153   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 154   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 155 };
 156 
 157 // Map ideal registers (machine types) to ideal types
 158 const Type *Type::mreg2type[_last_machine_leaf];
 159 
 160 // Map basic types to canonical Type* pointers.
 161 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 162 
 163 // Map basic types to constant-zero Types.
 164 const Type* Type::            _zero_type[T_CONFLICT+1];
 165 
 166 // Map basic types to array-body alias types.
 167 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 168 
 169 //=============================================================================
 170 // Convenience common pre-built types.
 171 const Type *Type::ABIO;         // State-of-machine only
 172 const Type *Type::BOTTOM;       // All values
 173 const Type *Type::CONTROL;      // Control only
 174 const Type *Type::DOUBLE;       // All doubles
 175 const Type *Type::FLOAT;        // All floats
 176 const Type *Type::HALF;         // Placeholder half of doublewide type
 177 const Type *Type::MEMORY;       // Abstract store only
 178 const Type *Type::RETURN_ADDRESS;
 179 const Type *Type::TOP;          // No values in set
 180 
 181 //------------------------------get_const_type---------------------------
 182 const Type* Type::get_const_type(ciType* type) {
 183   if (type == NULL) {
 184     return NULL;
 185   } else if (type->is_primitive_type()) {
 186     return get_const_basic_type(type->basic_type());
 187   } else {
 188     return TypeOopPtr::make_from_klass(type->as_klass());
 189   }
 190 }
 191 
 192 //---------------------------array_element_basic_type---------------------------------
 193 // Mapping to the array element's basic type.
 194 BasicType Type::array_element_basic_type() const {
 195   BasicType bt = basic_type();
 196   if (bt == T_INT) {
 197     if (this == TypeInt::INT)   return T_INT;
 198     if (this == TypeInt::CHAR)  return T_CHAR;
 199     if (this == TypeInt::BYTE)  return T_BYTE;
 200     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 201     if (this == TypeInt::SHORT) return T_SHORT;
 202     return T_VOID;
 203   }
 204   return bt;
 205 }
 206 
 207 // For two instance arrays of same dimension, return the base element types.
 208 // Otherwise or if the arrays have different dimensions, return NULL.
 209 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 210                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 211 
 212   if (e1) *e1 = NULL;
 213   if (e2) *e2 = NULL;
 214   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 215   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 216 
 217   if (a1tap != NULL && a2tap != NULL) {
 218     // Handle multidimensional arrays
 219     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 220     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 221     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 222       a1tap = a1tp->is_aryptr();
 223       a2tap = a2tp->is_aryptr();
 224       a1tp = a1tap->elem()->make_ptr();
 225       a2tp = a2tap->elem()->make_ptr();
 226     }
 227     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 228       if (e1) *e1 = a1tp->is_instptr();
 229       if (e2) *e2 = a2tp->is_instptr();
 230     }
 231   }
 232 }
 233 
 234 //---------------------------get_typeflow_type---------------------------------
 235 // Import a type produced by ciTypeFlow.
 236 const Type* Type::get_typeflow_type(ciType* type) {
 237   switch (type->basic_type()) {
 238 
 239   case ciTypeFlow::StateVector::T_BOTTOM:
 240     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 241     return Type::BOTTOM;
 242 
 243   case ciTypeFlow::StateVector::T_TOP:
 244     assert(type == ciTypeFlow::StateVector::top_type(), "");
 245     return Type::TOP;
 246 
 247   case ciTypeFlow::StateVector::T_NULL:
 248     assert(type == ciTypeFlow::StateVector::null_type(), "");
 249     return TypePtr::NULL_PTR;
 250 
 251   case ciTypeFlow::StateVector::T_LONG2:
 252     // The ciTypeFlow pass pushes a long, then the half.
 253     // We do the same.
 254     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 255     return TypeInt::TOP;
 256 
 257   case ciTypeFlow::StateVector::T_DOUBLE2:
 258     // The ciTypeFlow pass pushes double, then the half.
 259     // Our convention is the same.
 260     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 261     return Type::TOP;
 262 
 263   case T_ADDRESS:
 264     assert(type->is_return_address(), "");
 265     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 266 
 267   case T_VALUETYPE: {
 268     bool is_never_null = type->is_never_null();
 269     ciValueKlass* vk = type->unwrap()->as_value_klass();
 270     if (vk->is_scalarizable() && is_never_null) {
 271       return TypeValueType::make(vk);
 272     } else {
 273       return TypeOopPtr::make_from_klass(vk)->join_speculative(is_never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 274     }
 275   }
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 297     case T_CHAR:     return TypeInt::make(constant.as_char());
 298     case T_BYTE:     return TypeInt::make(constant.as_byte());
 299     case T_SHORT:    return TypeInt::make(constant.as_short());
 300     case T_INT:      return TypeInt::make(constant.as_int());
 301     case T_LONG:     return TypeLong::make(constant.as_long());
 302     case T_FLOAT:    return TypeF::make(constant.as_float());
 303     case T_DOUBLE:   return TypeD::make(constant.as_double());
 304     case T_ARRAY:
 305     case T_VALUETYPE:
 306     case T_OBJECT: {
 307         // cases:
 308         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 309         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 310         // An oop is not scavengable if it is in the perm gen.
 311         const Type* con_type = NULL;
 312         ciObject* oop_constant = constant.as_object();
 313         if (oop_constant->is_null_object()) {
 314           con_type = Type::get_zero_type(T_OBJECT);
 315         } else {
 316           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 317           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 318           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 319             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 320           }
 321           if (stable_dimension > 0) {
 322             assert(FoldStableValues, "sanity");
 323             assert(!con_type->is_zero_type(), "default value for stable field");
 324             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 325           }
 326         }
 327         if (is_narrow_oop) {
 328           con_type = con_type->make_narrowoop();
 329         }
 330         return con_type;
 331       }
 332     case T_ILLEGAL:
 333       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 334       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 335       return NULL;
 336     default:
 337       // Fall through to failure
 338       return NULL;
 339   }
 340 }
 341 
 342 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 343   BasicType conbt = con.basic_type();
 344   switch (conbt) {
 345     case T_BOOLEAN: conbt = T_BYTE;   break;
 346     case T_ARRAY:   conbt = T_OBJECT; break;
 347     case T_VALUETYPE: conbt = T_OBJECT; break;
 348     default:                          break;
 349   }
 350   switch (loadbt) {
 351     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 352     case T_NARROWOOP: loadbt = T_OBJECT; break;
 353     case T_ARRAY:     loadbt = T_OBJECT; break;
 354     case T_VALUETYPE: loadbt = T_OBJECT; break;
 355     case T_ADDRESS:   loadbt = T_OBJECT; break;
 356     default:                             break;
 357   }
 358   if (conbt == loadbt) {
 359     if (is_unsigned && conbt == T_BYTE) {
 360       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 361       return ciConstant(T_INT, con.as_int() & 0xFF);
 362     } else {
 363       return con;
 364     }
 365   }
 366   if (conbt == T_SHORT && loadbt == T_CHAR) {
 367     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 368     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 369   }
 370   return ciConstant(); // T_ILLEGAL
 371 }
 372 
 373 // Try to constant-fold a stable array element.
 374 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 375                                                    BasicType loadbt, bool is_unsigned_load) {
 376   // Decode the results of GraphKit::array_element_address.
 377   ciConstant element_value = array->element_value_by_offset(off);
 378   if (element_value.basic_type() == T_ILLEGAL) {
 379     return NULL; // wrong offset
 380   }
 381   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 382 
 383   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 384          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 385 
 386   if (con.is_valid() &&          // not a mismatched access
 387       !con.is_null_or_zero()) {  // not a default value
 388     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 389     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 390   }
 391   return NULL;
 392 }
 393 
 394 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 395   ciField* field;
 396   ciType* type = holder->java_mirror_type();
 397   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 398     // Static field
 399     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 400   } else {
 401     // Instance field
 402     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 403   }
 404   if (field == NULL) {
 405     return NULL; // Wrong offset
 406   }
 407   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 408 }
 409 
 410 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 411                                            BasicType loadbt, bool is_unsigned_load) {
 412   if (!field->is_constant()) {
 413     return NULL; // Non-constant field
 414   }
 415   ciConstant field_value;
 416   if (field->is_static()) {
 417     // final static field
 418     field_value = field->constant_value();
 419   } else if (holder != NULL) {
 420     // final or stable non-static field
 421     // Treat final non-static fields of trusted classes (classes in
 422     // java.lang.invoke and sun.invoke packages and subpackages) as
 423     // compile time constants.
 424     field_value = field->constant_value_of(holder);
 425   }
 426   if (!field_value.is_valid()) {
 427     return NULL; // Not a constant
 428   }
 429 
 430   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 431 
 432   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 433          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 434 
 435   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 436   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 437   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 438 
 439   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 440                                             stable_dimension, is_narrow_oop,
 441                                             field->is_autobox_cache());
 442   if (con_type != NULL && field->is_call_site_target()) {
 443     ciCallSite* call_site = holder->as_call_site();
 444     if (!call_site->is_constant_call_site()) {
 445       ciMethodHandle* target = con.as_object()->as_method_handle();
 446       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 447     }
 448   }
 449   return con_type;
 450 }
 451 
 452 //------------------------------make-------------------------------------------
 453 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 454 // and look for an existing copy in the type dictionary.
 455 const Type *Type::make( enum TYPES t ) {
 456   return (new Type(t))->hashcons();
 457 }
 458 
 459 //------------------------------cmp--------------------------------------------
 460 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 461   if( t1->_base != t2->_base )
 462     return 1;                   // Missed badly
 463   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 464   return !t1->eq(t2);           // Return ZERO if equal
 465 }
 466 
 467 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 468   if (!include_speculative) {
 469     return remove_speculative();
 470   }
 471   return this;
 472 }
 473 
 474 //------------------------------hash-------------------------------------------
 475 int Type::uhash( const Type *const t ) {
 476   return t->hash();
 477 }
 478 
 479 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 480 
 481 //--------------------------Initialize_shared----------------------------------
 482 void Type::Initialize_shared(Compile* current) {
 483   // This method does not need to be locked because the first system
 484   // compilations (stub compilations) occur serially.  If they are
 485   // changed to proceed in parallel, then this section will need
 486   // locking.
 487 
 488   Arena* save = current->type_arena();
 489   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 490 
 491   current->set_type_arena(shared_type_arena);
 492   _shared_type_dict =
 493     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 494                                   shared_type_arena, 128 );
 495   current->set_type_dict(_shared_type_dict);
 496 
 497   // Make shared pre-built types.
 498   CONTROL = make(Control);      // Control only
 499   TOP     = make(Top);          // No values in set
 500   MEMORY  = make(Memory);       // Abstract store only
 501   ABIO    = make(Abio);         // State-of-machine only
 502   RETURN_ADDRESS=make(Return_Address);
 503   FLOAT   = make(FloatBot);     // All floats
 504   DOUBLE  = make(DoubleBot);    // All doubles
 505   BOTTOM  = make(Bottom);       // Everything
 506   HALF    = make(Half);         // Placeholder half of doublewide type
 507 
 508   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 509   TypeF::ONE  = TypeF::make(1.0); // Float 1
 510 
 511   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 512   TypeD::ONE  = TypeD::make(1.0); // Double 1
 513 
 514   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 515   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 516   TypeInt::ONE     = TypeInt::make( 1);  //  1
 517   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 518   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 519   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 520   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 521   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 522   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 523   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 524   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 525   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 526   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 527   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 528   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 529   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 530   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 531   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 532   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 533   // CmpL is overloaded both as the bytecode computation returning
 534   // a trinary (-1,0,+1) integer result AND as an efficient long
 535   // compare returning optimizer ideal-type flags.
 536   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 537   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 538   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 539   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 540   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 541 
 542   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 543   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 544   TypeLong::ONE     = TypeLong::make( 1);        //  1
 545   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 546   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 547   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 548   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 549   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 550 
 551   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 552   fboth[0] = Type::CONTROL;
 553   fboth[1] = Type::CONTROL;
 554   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 555 
 556   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 557   ffalse[0] = Type::CONTROL;
 558   ffalse[1] = Type::TOP;
 559   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 560 
 561   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 562   fneither[0] = Type::TOP;
 563   fneither[1] = Type::TOP;
 564   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 565 
 566   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 567   ftrue[0] = Type::TOP;
 568   ftrue[1] = Type::CONTROL;
 569   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 570 
 571   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 572   floop[0] = Type::CONTROL;
 573   floop[1] = TypeInt::INT;
 574   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 575 
 576   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 577   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 578   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 579 
 580   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 581   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 582 
 583   const Type **fmembar = TypeTuple::fields(0);
 584   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 585 
 586   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 587   fsc[0] = TypeInt::CC;
 588   fsc[1] = Type::MEMORY;
 589   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 590 
 591   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 592   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 593   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 594   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 595                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 596   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 597                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 598   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 599 
 600   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 601 
 602   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 603   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 604 
 605   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 606 
 607   mreg2type[Op_Node] = Type::BOTTOM;
 608   mreg2type[Op_Set ] = 0;
 609   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 610   mreg2type[Op_RegI] = TypeInt::INT;
 611   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 612   mreg2type[Op_RegF] = Type::FLOAT;
 613   mreg2type[Op_RegD] = Type::DOUBLE;
 614   mreg2type[Op_RegL] = TypeLong::LONG;
 615   mreg2type[Op_RegFlags] = TypeInt::CC;
 616 
 617   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 618 
 619   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 620 
 621 #ifdef _LP64
 622   if (UseCompressedOops) {
 623     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 624     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 625   } else
 626 #endif
 627   {
 628     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 629     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 630   }
 631   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 632   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 633   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 634   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 635   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 636   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 637   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 638 
 639   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 640   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 641   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 642   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 643   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 644   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 645   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 646   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 647   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 648   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 649   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 650   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 651   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 652 
 653   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 654   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 655   TypeKlassPtr::BOTTOM = EnableValhalla ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 656 
 657   const Type **fi2c = TypeTuple::fields(2);
 658   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 659   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 660   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 661 
 662   const Type **intpair = TypeTuple::fields(2);
 663   intpair[0] = TypeInt::INT;
 664   intpair[1] = TypeInt::INT;
 665   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 666 
 667   const Type **longpair = TypeTuple::fields(2);
 668   longpair[0] = TypeLong::LONG;
 669   longpair[1] = TypeLong::LONG;
 670   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 671 
 672   const Type **intccpair = TypeTuple::fields(2);
 673   intccpair[0] = TypeInt::INT;
 674   intccpair[1] = TypeInt::CC;
 675   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 676 
 677   const Type **longccpair = TypeTuple::fields(2);
 678   longccpair[0] = TypeLong::LONG;
 679   longccpair[1] = TypeInt::CC;
 680   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 681 
 682   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 683   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 684   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 685   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 686   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 687   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 688   _const_basic_type[T_INT]         = TypeInt::INT;
 689   _const_basic_type[T_LONG]        = TypeLong::LONG;
 690   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 691   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 692   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 693   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 694   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 695   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 696   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 697   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 698 
 699   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 700   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 701   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 702   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 703   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 704   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 705   _zero_type[T_INT]         = TypeInt::ZERO;
 706   _zero_type[T_LONG]        = TypeLong::ZERO;
 707   _zero_type[T_FLOAT]       = TypeF::ZERO;
 708   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 709   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 710   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 711   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 712   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 713   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 714 
 715   // get_zero_type() should not happen for T_CONFLICT
 716   _zero_type[T_CONFLICT]= NULL;
 717 
 718   // Vector predefined types, it needs initialized _const_basic_type[].
 719   if (Matcher::vector_size_supported(T_BYTE,4)) {
 720     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 721   }
 722   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 723     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 724   }
 725   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 726     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 727   }
 728   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 729     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 730   }
 731   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 732     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 733   }
 734   mreg2type[Op_VecS] = TypeVect::VECTS;
 735   mreg2type[Op_VecD] = TypeVect::VECTD;
 736   mreg2type[Op_VecX] = TypeVect::VECTX;
 737   mreg2type[Op_VecY] = TypeVect::VECTY;
 738   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 739 
 740   // Restore working type arena.
 741   current->set_type_arena(save);
 742   current->set_type_dict(NULL);
 743 }
 744 
 745 //------------------------------Initialize-------------------------------------
 746 void Type::Initialize(Compile* current) {
 747   assert(current->type_arena() != NULL, "must have created type arena");
 748 
 749   if (_shared_type_dict == NULL) {
 750     Initialize_shared(current);
 751   }
 752 
 753   Arena* type_arena = current->type_arena();
 754 
 755   // Create the hash-cons'ing dictionary with top-level storage allocation
 756   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 757   current->set_type_dict(tdic);
 758 
 759   // Transfer the shared types.
 760   DictI i(_shared_type_dict);
 761   for( ; i.test(); ++i ) {
 762     Type* t = (Type*)i._value;
 763     tdic->Insert(t,t);  // New Type, insert into Type table
 764   }
 765 }
 766 
 767 //------------------------------hashcons---------------------------------------
 768 // Do the hash-cons trick.  If the Type already exists in the type table,
 769 // delete the current Type and return the existing Type.  Otherwise stick the
 770 // current Type in the Type table.
 771 const Type *Type::hashcons(void) {
 772   debug_only(base());           // Check the assertion in Type::base().
 773   // Look up the Type in the Type dictionary
 774   Dict *tdic = type_dict();
 775   Type* old = (Type*)(tdic->Insert(this, this, false));
 776   if( old ) {                   // Pre-existing Type?
 777     if( old != this )           // Yes, this guy is not the pre-existing?
 778       delete this;              // Yes, Nuke this guy
 779     assert( old->_dual, "" );
 780     return old;                 // Return pre-existing
 781   }
 782 
 783   // Every type has a dual (to make my lattice symmetric).
 784   // Since we just discovered a new Type, compute its dual right now.
 785   assert( !_dual, "" );         // No dual yet
 786   _dual = xdual();              // Compute the dual
 787   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 788     _dual = this;
 789     return this;
 790   }
 791   assert( !_dual->_dual, "" );  // No reverse dual yet
 792   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 793   // New Type, insert into Type table
 794   tdic->Insert((void*)_dual,(void*)_dual);
 795   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 796 #ifdef ASSERT
 797   Type *dual_dual = (Type*)_dual->xdual();
 798   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 799   delete dual_dual;
 800 #endif
 801   return this;                  // Return new Type
 802 }
 803 
 804 //------------------------------eq---------------------------------------------
 805 // Structural equality check for Type representations
 806 bool Type::eq( const Type * ) const {
 807   return true;                  // Nothing else can go wrong
 808 }
 809 
 810 //------------------------------hash-------------------------------------------
 811 // Type-specific hashing function.
 812 int Type::hash(void) const {
 813   return _base;
 814 }
 815 
 816 //------------------------------is_finite--------------------------------------
 817 // Has a finite value
 818 bool Type::is_finite() const {
 819   return false;
 820 }
 821 
 822 //------------------------------is_nan-----------------------------------------
 823 // Is not a number (NaN)
 824 bool Type::is_nan()    const {
 825   return false;
 826 }
 827 
 828 //----------------------interface_vs_oop---------------------------------------
 829 #ifdef ASSERT
 830 bool Type::interface_vs_oop_helper(const Type *t) const {
 831   bool result = false;
 832 
 833   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 834   const TypePtr*    t_ptr =    t->make_ptr();
 835   if( this_ptr == NULL || t_ptr == NULL )
 836     return result;
 837 
 838   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 839   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 840   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 841     bool this_interface = this_inst->klass()->is_interface();
 842     bool    t_interface =    t_inst->klass()->is_interface();
 843     result = this_interface ^ t_interface;
 844   }
 845 
 846   return result;
 847 }
 848 
 849 bool Type::interface_vs_oop(const Type *t) const {
 850   if (interface_vs_oop_helper(t)) {
 851     return true;
 852   }
 853   // Now check the speculative parts as well
 854   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 855   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 856   if (this_spec != NULL && t_spec != NULL) {
 857     if (this_spec->interface_vs_oop_helper(t_spec)) {
 858       return true;
 859     }
 860     return false;
 861   }
 862   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 863     return true;
 864   }
 865   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 866     return true;
 867   }
 868   return false;
 869 }
 870 
 871 #endif
 872 
 873 //------------------------------meet-------------------------------------------
 874 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 875 // commutative and the lattice is symmetric.
 876 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 877   if (isa_narrowoop() && t->isa_narrowoop()) {
 878     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 879     return result->make_narrowoop();
 880   }
 881   if (isa_narrowklass() && t->isa_narrowklass()) {
 882     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 883     return result->make_narrowklass();
 884   }
 885 
 886   const Type *this_t = maybe_remove_speculative(include_speculative);
 887   t = t->maybe_remove_speculative(include_speculative);
 888 
 889   const Type *mt = this_t->xmeet(t);
 890   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 891   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 892 #ifdef ASSERT
 893   assert(mt == t->xmeet(this_t), "meet not commutative");
 894   const Type* dual_join = mt->_dual;
 895   const Type *t2t    = dual_join->xmeet(t->_dual);
 896   const Type *t2this = dual_join->xmeet(this_t->_dual);
 897 
 898   // Interface meet Oop is Not Symmetric:
 899   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 900   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 901 
 902   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 903     tty->print_cr("=== Meet Not Symmetric ===");
 904     tty->print("t   =                   ");              t->dump(); tty->cr();
 905     tty->print("this=                   ");         this_t->dump(); tty->cr();
 906     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 907 
 908     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 909     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 910     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 911 
 912     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 913     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 914 
 915     fatal("meet not symmetric" );
 916   }
 917 #endif
 918   return mt;
 919 }
 920 
 921 //------------------------------xmeet------------------------------------------
 922 // Compute the MEET of two types.  It returns a new Type object.
 923 const Type *Type::xmeet( const Type *t ) const {
 924   // Perform a fast test for common case; meeting the same types together.
 925   if( this == t ) return this;  // Meeting same type-rep?
 926 
 927   // Meeting TOP with anything?
 928   if( _base == Top ) return t;
 929 
 930   // Meeting BOTTOM with anything?
 931   if( _base == Bottom ) return BOTTOM;
 932 
 933   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 934   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 935   switch (t->base()) {  // Switch on original type
 936 
 937   // Cut in half the number of cases I must handle.  Only need cases for when
 938   // the given enum "t->type" is less than or equal to the local enum "type".
 939   case FloatCon:
 940   case DoubleCon:
 941   case Int:
 942   case Long:
 943     return t->xmeet(this);
 944 
 945   case OopPtr:
 946     return t->xmeet(this);
 947 
 948   case InstPtr:
 949     return t->xmeet(this);
 950 
 951   case MetadataPtr:
 952   case KlassPtr:
 953     return t->xmeet(this);
 954 
 955   case AryPtr:
 956     return t->xmeet(this);
 957 
 958   case NarrowOop:
 959     return t->xmeet(this);
 960 
 961   case NarrowKlass:
 962     return t->xmeet(this);
 963 
 964   case ValueType:
 965     return t->xmeet(this);
 966 
 967   case Bad:                     // Type check
 968   default:                      // Bogus type not in lattice
 969     typerr(t);
 970     return Type::BOTTOM;
 971 
 972   case Bottom:                  // Ye Olde Default
 973     return t;
 974 
 975   case FloatTop:
 976     if( _base == FloatTop ) return this;
 977   case FloatBot:                // Float
 978     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 979     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 980     typerr(t);
 981     return Type::BOTTOM;
 982 
 983   case DoubleTop:
 984     if( _base == DoubleTop ) return this;
 985   case DoubleBot:               // Double
 986     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 987     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 988     typerr(t);
 989     return Type::BOTTOM;
 990 
 991   // These next few cases must match exactly or it is a compile-time error.
 992   case Control:                 // Control of code
 993   case Abio:                    // State of world outside of program
 994   case Memory:
 995     if( _base == t->_base )  return this;
 996     typerr(t);
 997     return Type::BOTTOM;
 998 
 999   case Top:                     // Top of the lattice
1000     return this;
1001   }
1002 
1003   // The type is unchanged
1004   return this;
1005 }
1006 
1007 //-----------------------------filter------------------------------------------
1008 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1009   const Type* ft = join_helper(kills, include_speculative);
1010   if (ft->empty())
1011     return Type::TOP;           // Canonical empty value
1012   return ft;
1013 }
1014 
1015 //------------------------------xdual------------------------------------------
1016 // Compute dual right now.
1017 const Type::TYPES Type::dual_type[Type::lastype] = {
1018   Bad,          // Bad
1019   Control,      // Control
1020   Bottom,       // Top
1021   Bad,          // Int - handled in v-call
1022   Bad,          // Long - handled in v-call
1023   Half,         // Half
1024   Bad,          // NarrowOop - handled in v-call
1025   Bad,          // NarrowKlass - handled in v-call
1026 
1027   Bad,          // Tuple - handled in v-call
1028   Bad,          // Array - handled in v-call
1029   Bad,          // VectorS - handled in v-call
1030   Bad,          // VectorD - handled in v-call
1031   Bad,          // VectorX - handled in v-call
1032   Bad,          // VectorY - handled in v-call
1033   Bad,          // VectorZ - handled in v-call
1034   Bad,          // ValueType - handled in v-call
1035 
1036   Bad,          // AnyPtr - handled in v-call
1037   Bad,          // RawPtr - handled in v-call
1038   Bad,          // OopPtr - handled in v-call
1039   Bad,          // InstPtr - handled in v-call
1040   Bad,          // AryPtr - handled in v-call
1041 
1042   Bad,          //  MetadataPtr - handled in v-call
1043   Bad,          // KlassPtr - handled in v-call
1044 
1045   Bad,          // Function - handled in v-call
1046   Abio,         // Abio
1047   Return_Address,// Return_Address
1048   Memory,       // Memory
1049   FloatBot,     // FloatTop
1050   FloatCon,     // FloatCon
1051   FloatTop,     // FloatBot
1052   DoubleBot,    // DoubleTop
1053   DoubleCon,    // DoubleCon
1054   DoubleTop,    // DoubleBot
1055   Top           // Bottom
1056 };
1057 
1058 const Type *Type::xdual() const {
1059   // Note: the base() accessor asserts the sanity of _base.
1060   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1061   return new Type(_type_info[_base].dual_type);
1062 }
1063 
1064 //------------------------------has_memory-------------------------------------
1065 bool Type::has_memory() const {
1066   Type::TYPES tx = base();
1067   if (tx == Memory) return true;
1068   if (tx == Tuple) {
1069     const TypeTuple *t = is_tuple();
1070     for (uint i=0; i < t->cnt(); i++) {
1071       tx = t->field_at(i)->base();
1072       if (tx == Memory)  return true;
1073     }
1074   }
1075   return false;
1076 }
1077 
1078 #ifndef PRODUCT
1079 //------------------------------dump2------------------------------------------
1080 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1081   st->print("%s", _type_info[_base].msg);
1082 }
1083 
1084 //------------------------------dump-------------------------------------------
1085 void Type::dump_on(outputStream *st) const {
1086   ResourceMark rm;
1087   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1088   dump2(d,1, st);
1089   if (is_ptr_to_narrowoop()) {
1090     st->print(" [narrow]");
1091   } else if (is_ptr_to_narrowklass()) {
1092     st->print(" [narrowklass]");
1093   }
1094 }
1095 
1096 //-----------------------------------------------------------------------------
1097 const char* Type::str(const Type* t) {
1098   stringStream ss;
1099   t->dump_on(&ss);
1100   return ss.as_string();
1101 }
1102 #endif
1103 
1104 //------------------------------singleton--------------------------------------
1105 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1106 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1107 bool Type::singleton(void) const {
1108   return _base == Top || _base == Half;
1109 }
1110 
1111 //------------------------------empty------------------------------------------
1112 // TRUE if Type is a type with no values, FALSE otherwise.
1113 bool Type::empty(void) const {
1114   switch (_base) {
1115   case DoubleTop:
1116   case FloatTop:
1117   case Top:
1118     return true;
1119 
1120   case Half:
1121   case Abio:
1122   case Return_Address:
1123   case Memory:
1124   case Bottom:
1125   case FloatBot:
1126   case DoubleBot:
1127     return false;  // never a singleton, therefore never empty
1128 
1129   default:
1130     ShouldNotReachHere();
1131     return false;
1132   }
1133 }
1134 
1135 //------------------------------dump_stats-------------------------------------
1136 // Dump collected statistics to stderr
1137 #ifndef PRODUCT
1138 void Type::dump_stats() {
1139   tty->print("Types made: %d\n", type_dict()->Size());
1140 }
1141 #endif
1142 
1143 //------------------------------typerr-----------------------------------------
1144 void Type::typerr( const Type *t ) const {
1145 #ifndef PRODUCT
1146   tty->print("\nError mixing types: ");
1147   dump();
1148   tty->print(" and ");
1149   t->dump();
1150   tty->print("\n");
1151 #endif
1152   ShouldNotReachHere();
1153 }
1154 
1155 
1156 //=============================================================================
1157 // Convenience common pre-built types.
1158 const TypeF *TypeF::ZERO;       // Floating point zero
1159 const TypeF *TypeF::ONE;        // Floating point one
1160 
1161 //------------------------------make-------------------------------------------
1162 // Create a float constant
1163 const TypeF *TypeF::make(float f) {
1164   return (TypeF*)(new TypeF(f))->hashcons();
1165 }
1166 
1167 //------------------------------meet-------------------------------------------
1168 // Compute the MEET of two types.  It returns a new Type object.
1169 const Type *TypeF::xmeet( const Type *t ) const {
1170   // Perform a fast test for common case; meeting the same types together.
1171   if( this == t ) return this;  // Meeting same type-rep?
1172 
1173   // Current "this->_base" is FloatCon
1174   switch (t->base()) {          // Switch on original type
1175   case AnyPtr:                  // Mixing with oops happens when javac
1176   case RawPtr:                  // reuses local variables
1177   case OopPtr:
1178   case InstPtr:
1179   case AryPtr:
1180   case MetadataPtr:
1181   case KlassPtr:
1182   case NarrowOop:
1183   case NarrowKlass:
1184   case Int:
1185   case Long:
1186   case DoubleTop:
1187   case DoubleCon:
1188   case DoubleBot:
1189   case Bottom:                  // Ye Olde Default
1190     return Type::BOTTOM;
1191 
1192   case FloatBot:
1193     return t;
1194 
1195   default:                      // All else is a mistake
1196     typerr(t);
1197 
1198   case FloatCon:                // Float-constant vs Float-constant?
1199     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1200                                 // must compare bitwise as positive zero, negative zero and NaN have
1201                                 // all the same representation in C++
1202       return FLOAT;             // Return generic float
1203                                 // Equal constants
1204   case Top:
1205   case FloatTop:
1206     break;                      // Return the float constant
1207   }
1208   return this;                  // Return the float constant
1209 }
1210 
1211 //------------------------------xdual------------------------------------------
1212 // Dual: symmetric
1213 const Type *TypeF::xdual() const {
1214   return this;
1215 }
1216 
1217 //------------------------------eq---------------------------------------------
1218 // Structural equality check for Type representations
1219 bool TypeF::eq(const Type *t) const {
1220   // Bitwise comparison to distinguish between +/-0. These values must be treated
1221   // as different to be consistent with C1 and the interpreter.
1222   return (jint_cast(_f) == jint_cast(t->getf()));
1223 }
1224 
1225 //------------------------------hash-------------------------------------------
1226 // Type-specific hashing function.
1227 int TypeF::hash(void) const {
1228   return *(int*)(&_f);
1229 }
1230 
1231 //------------------------------is_finite--------------------------------------
1232 // Has a finite value
1233 bool TypeF::is_finite() const {
1234   return g_isfinite(getf()) != 0;
1235 }
1236 
1237 //------------------------------is_nan-----------------------------------------
1238 // Is not a number (NaN)
1239 bool TypeF::is_nan()    const {
1240   return g_isnan(getf()) != 0;
1241 }
1242 
1243 //------------------------------dump2------------------------------------------
1244 // Dump float constant Type
1245 #ifndef PRODUCT
1246 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1247   Type::dump2(d,depth, st);
1248   st->print("%f", _f);
1249 }
1250 #endif
1251 
1252 //------------------------------singleton--------------------------------------
1253 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1254 // constants (Ldi nodes).  Singletons are integer, float or double constants
1255 // or a single symbol.
1256 bool TypeF::singleton(void) const {
1257   return true;                  // Always a singleton
1258 }
1259 
1260 bool TypeF::empty(void) const {
1261   return false;                 // always exactly a singleton
1262 }
1263 
1264 //=============================================================================
1265 // Convenience common pre-built types.
1266 const TypeD *TypeD::ZERO;       // Floating point zero
1267 const TypeD *TypeD::ONE;        // Floating point one
1268 
1269 //------------------------------make-------------------------------------------
1270 const TypeD *TypeD::make(double d) {
1271   return (TypeD*)(new TypeD(d))->hashcons();
1272 }
1273 
1274 //------------------------------meet-------------------------------------------
1275 // Compute the MEET of two types.  It returns a new Type object.
1276 const Type *TypeD::xmeet( const Type *t ) const {
1277   // Perform a fast test for common case; meeting the same types together.
1278   if( this == t ) return this;  // Meeting same type-rep?
1279 
1280   // Current "this->_base" is DoubleCon
1281   switch (t->base()) {          // Switch on original type
1282   case AnyPtr:                  // Mixing with oops happens when javac
1283   case RawPtr:                  // reuses local variables
1284   case OopPtr:
1285   case InstPtr:
1286   case AryPtr:
1287   case MetadataPtr:
1288   case KlassPtr:
1289   case NarrowOop:
1290   case NarrowKlass:
1291   case Int:
1292   case Long:
1293   case FloatTop:
1294   case FloatCon:
1295   case FloatBot:
1296   case Bottom:                  // Ye Olde Default
1297     return Type::BOTTOM;
1298 
1299   case DoubleBot:
1300     return t;
1301 
1302   default:                      // All else is a mistake
1303     typerr(t);
1304 
1305   case DoubleCon:               // Double-constant vs Double-constant?
1306     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1307       return DOUBLE;            // Return generic double
1308   case Top:
1309   case DoubleTop:
1310     break;
1311   }
1312   return this;                  // Return the double constant
1313 }
1314 
1315 //------------------------------xdual------------------------------------------
1316 // Dual: symmetric
1317 const Type *TypeD::xdual() const {
1318   return this;
1319 }
1320 
1321 //------------------------------eq---------------------------------------------
1322 // Structural equality check for Type representations
1323 bool TypeD::eq(const Type *t) const {
1324   // Bitwise comparison to distinguish between +/-0. These values must be treated
1325   // as different to be consistent with C1 and the interpreter.
1326   return (jlong_cast(_d) == jlong_cast(t->getd()));
1327 }
1328 
1329 //------------------------------hash-------------------------------------------
1330 // Type-specific hashing function.
1331 int TypeD::hash(void) const {
1332   return *(int*)(&_d);
1333 }
1334 
1335 //------------------------------is_finite--------------------------------------
1336 // Has a finite value
1337 bool TypeD::is_finite() const {
1338   return g_isfinite(getd()) != 0;
1339 }
1340 
1341 //------------------------------is_nan-----------------------------------------
1342 // Is not a number (NaN)
1343 bool TypeD::is_nan()    const {
1344   return g_isnan(getd()) != 0;
1345 }
1346 
1347 //------------------------------dump2------------------------------------------
1348 // Dump double constant Type
1349 #ifndef PRODUCT
1350 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1351   Type::dump2(d,depth,st);
1352   st->print("%f", _d);
1353 }
1354 #endif
1355 
1356 //------------------------------singleton--------------------------------------
1357 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1358 // constants (Ldi nodes).  Singletons are integer, float or double constants
1359 // or a single symbol.
1360 bool TypeD::singleton(void) const {
1361   return true;                  // Always a singleton
1362 }
1363 
1364 bool TypeD::empty(void) const {
1365   return false;                 // always exactly a singleton
1366 }
1367 
1368 //=============================================================================
1369 // Convience common pre-built types.
1370 const TypeInt *TypeInt::MINUS_1;// -1
1371 const TypeInt *TypeInt::ZERO;   // 0
1372 const TypeInt *TypeInt::ONE;    // 1
1373 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1374 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1375 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1376 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1377 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1378 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1379 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1380 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1381 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1382 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1383 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1384 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1385 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1386 const TypeInt *TypeInt::INT;    // 32-bit integers
1387 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1388 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1389 
1390 //------------------------------TypeInt----------------------------------------
1391 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1392 }
1393 
1394 //------------------------------make-------------------------------------------
1395 const TypeInt *TypeInt::make( jint lo ) {
1396   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1397 }
1398 
1399 static int normalize_int_widen( jint lo, jint hi, int w ) {
1400   // Certain normalizations keep us sane when comparing types.
1401   // The 'SMALLINT' covers constants and also CC and its relatives.
1402   if (lo <= hi) {
1403     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1404     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1405   } else {
1406     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1407     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1408   }
1409   return w;
1410 }
1411 
1412 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1413   w = normalize_int_widen(lo, hi, w);
1414   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1415 }
1416 
1417 //------------------------------meet-------------------------------------------
1418 // Compute the MEET of two types.  It returns a new Type representation object
1419 // with reference count equal to the number of Types pointing at it.
1420 // Caller should wrap a Types around it.
1421 const Type *TypeInt::xmeet( const Type *t ) const {
1422   // Perform a fast test for common case; meeting the same types together.
1423   if( this == t ) return this;  // Meeting same type?
1424 
1425   // Currently "this->_base" is a TypeInt
1426   switch (t->base()) {          // Switch on original type
1427   case AnyPtr:                  // Mixing with oops happens when javac
1428   case RawPtr:                  // reuses local variables
1429   case OopPtr:
1430   case InstPtr:
1431   case AryPtr:
1432   case MetadataPtr:
1433   case KlassPtr:
1434   case NarrowOop:
1435   case NarrowKlass:
1436   case Long:
1437   case FloatTop:
1438   case FloatCon:
1439   case FloatBot:
1440   case DoubleTop:
1441   case DoubleCon:
1442   case DoubleBot:
1443   case Bottom:                  // Ye Olde Default
1444     return Type::BOTTOM;
1445   default:                      // All else is a mistake
1446     typerr(t);
1447   case Top:                     // No change
1448     return this;
1449   case Int:                     // Int vs Int?
1450     break;
1451   }
1452 
1453   // Expand covered set
1454   const TypeInt *r = t->is_int();
1455   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1456 }
1457 
1458 //------------------------------xdual------------------------------------------
1459 // Dual: reverse hi & lo; flip widen
1460 const Type *TypeInt::xdual() const {
1461   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1462   return new TypeInt(_hi,_lo,w);
1463 }
1464 
1465 //------------------------------widen------------------------------------------
1466 // Only happens for optimistic top-down optimizations.
1467 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1468   // Coming from TOP or such; no widening
1469   if( old->base() != Int ) return this;
1470   const TypeInt *ot = old->is_int();
1471 
1472   // If new guy is equal to old guy, no widening
1473   if( _lo == ot->_lo && _hi == ot->_hi )
1474     return old;
1475 
1476   // If new guy contains old, then we widened
1477   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1478     // New contains old
1479     // If new guy is already wider than old, no widening
1480     if( _widen > ot->_widen ) return this;
1481     // If old guy was a constant, do not bother
1482     if (ot->_lo == ot->_hi)  return this;
1483     // Now widen new guy.
1484     // Check for widening too far
1485     if (_widen == WidenMax) {
1486       int max = max_jint;
1487       int min = min_jint;
1488       if (limit->isa_int()) {
1489         max = limit->is_int()->_hi;
1490         min = limit->is_int()->_lo;
1491       }
1492       if (min < _lo && _hi < max) {
1493         // If neither endpoint is extremal yet, push out the endpoint
1494         // which is closer to its respective limit.
1495         if (_lo >= 0 ||                 // easy common case
1496             (juint)(_lo - min) >= (juint)(max - _hi)) {
1497           // Try to widen to an unsigned range type of 31 bits:
1498           return make(_lo, max, WidenMax);
1499         } else {
1500           return make(min, _hi, WidenMax);
1501         }
1502       }
1503       return TypeInt::INT;
1504     }
1505     // Returned widened new guy
1506     return make(_lo,_hi,_widen+1);
1507   }
1508 
1509   // If old guy contains new, then we probably widened too far & dropped to
1510   // bottom.  Return the wider fellow.
1511   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1512     return old;
1513 
1514   //fatal("Integer value range is not subset");
1515   //return this;
1516   return TypeInt::INT;
1517 }
1518 
1519 //------------------------------narrow---------------------------------------
1520 // Only happens for pessimistic optimizations.
1521 const Type *TypeInt::narrow( const Type *old ) const {
1522   if (_lo >= _hi)  return this;   // already narrow enough
1523   if (old == NULL)  return this;
1524   const TypeInt* ot = old->isa_int();
1525   if (ot == NULL)  return this;
1526   jint olo = ot->_lo;
1527   jint ohi = ot->_hi;
1528 
1529   // If new guy is equal to old guy, no narrowing
1530   if (_lo == olo && _hi == ohi)  return old;
1531 
1532   // If old guy was maximum range, allow the narrowing
1533   if (olo == min_jint && ohi == max_jint)  return this;
1534 
1535   if (_lo < olo || _hi > ohi)
1536     return this;                // doesn't narrow; pretty wierd
1537 
1538   // The new type narrows the old type, so look for a "death march".
1539   // See comments on PhaseTransform::saturate.
1540   juint nrange = (juint)_hi - _lo;
1541   juint orange = (juint)ohi - olo;
1542   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1543     // Use the new type only if the range shrinks a lot.
1544     // We do not want the optimizer computing 2^31 point by point.
1545     return old;
1546   }
1547 
1548   return this;
1549 }
1550 
1551 //-----------------------------filter------------------------------------------
1552 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1553   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1554   if (ft == NULL || ft->empty())
1555     return Type::TOP;           // Canonical empty value
1556   if (ft->_widen < this->_widen) {
1557     // Do not allow the value of kill->_widen to affect the outcome.
1558     // The widen bits must be allowed to run freely through the graph.
1559     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1560   }
1561   return ft;
1562 }
1563 
1564 //------------------------------eq---------------------------------------------
1565 // Structural equality check for Type representations
1566 bool TypeInt::eq( const Type *t ) const {
1567   const TypeInt *r = t->is_int(); // Handy access
1568   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1569 }
1570 
1571 //------------------------------hash-------------------------------------------
1572 // Type-specific hashing function.
1573 int TypeInt::hash(void) const {
1574   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1575 }
1576 
1577 //------------------------------is_finite--------------------------------------
1578 // Has a finite value
1579 bool TypeInt::is_finite() const {
1580   return true;
1581 }
1582 
1583 //------------------------------dump2------------------------------------------
1584 // Dump TypeInt
1585 #ifndef PRODUCT
1586 static const char* intname(char* buf, jint n) {
1587   if (n == min_jint)
1588     return "min";
1589   else if (n < min_jint + 10000)
1590     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1591   else if (n == max_jint)
1592     return "max";
1593   else if (n > max_jint - 10000)
1594     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1595   else
1596     sprintf(buf, INT32_FORMAT, n);
1597   return buf;
1598 }
1599 
1600 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1601   char buf[40], buf2[40];
1602   if (_lo == min_jint && _hi == max_jint)
1603     st->print("int");
1604   else if (is_con())
1605     st->print("int:%s", intname(buf, get_con()));
1606   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1607     st->print("bool");
1608   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1609     st->print("byte");
1610   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1611     st->print("char");
1612   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1613     st->print("short");
1614   else if (_hi == max_jint)
1615     st->print("int:>=%s", intname(buf, _lo));
1616   else if (_lo == min_jint)
1617     st->print("int:<=%s", intname(buf, _hi));
1618   else
1619     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1620 
1621   if (_widen != 0 && this != TypeInt::INT)
1622     st->print(":%.*s", _widen, "wwww");
1623 }
1624 #endif
1625 
1626 //------------------------------singleton--------------------------------------
1627 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1628 // constants.
1629 bool TypeInt::singleton(void) const {
1630   return _lo >= _hi;
1631 }
1632 
1633 bool TypeInt::empty(void) const {
1634   return _lo > _hi;
1635 }
1636 
1637 //=============================================================================
1638 // Convenience common pre-built types.
1639 const TypeLong *TypeLong::MINUS_1;// -1
1640 const TypeLong *TypeLong::ZERO; // 0
1641 const TypeLong *TypeLong::ONE;  // 1
1642 const TypeLong *TypeLong::POS;  // >=0
1643 const TypeLong *TypeLong::LONG; // 64-bit integers
1644 const TypeLong *TypeLong::INT;  // 32-bit subrange
1645 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1646 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1647 
1648 //------------------------------TypeLong---------------------------------------
1649 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1650 }
1651 
1652 //------------------------------make-------------------------------------------
1653 const TypeLong *TypeLong::make( jlong lo ) {
1654   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1655 }
1656 
1657 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1658   // Certain normalizations keep us sane when comparing types.
1659   // The 'SMALLINT' covers constants.
1660   if (lo <= hi) {
1661     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1662     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1663   } else {
1664     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1665     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1666   }
1667   return w;
1668 }
1669 
1670 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1671   w = normalize_long_widen(lo, hi, w);
1672   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1673 }
1674 
1675 
1676 //------------------------------meet-------------------------------------------
1677 // Compute the MEET of two types.  It returns a new Type representation object
1678 // with reference count equal to the number of Types pointing at it.
1679 // Caller should wrap a Types around it.
1680 const Type *TypeLong::xmeet( const Type *t ) const {
1681   // Perform a fast test for common case; meeting the same types together.
1682   if( this == t ) return this;  // Meeting same type?
1683 
1684   // Currently "this->_base" is a TypeLong
1685   switch (t->base()) {          // Switch on original type
1686   case AnyPtr:                  // Mixing with oops happens when javac
1687   case RawPtr:                  // reuses local variables
1688   case OopPtr:
1689   case InstPtr:
1690   case AryPtr:
1691   case MetadataPtr:
1692   case KlassPtr:
1693   case NarrowOop:
1694   case NarrowKlass:
1695   case Int:
1696   case FloatTop:
1697   case FloatCon:
1698   case FloatBot:
1699   case DoubleTop:
1700   case DoubleCon:
1701   case DoubleBot:
1702   case Bottom:                  // Ye Olde Default
1703     return Type::BOTTOM;
1704   default:                      // All else is a mistake
1705     typerr(t);
1706   case Top:                     // No change
1707     return this;
1708   case Long:                    // Long vs Long?
1709     break;
1710   }
1711 
1712   // Expand covered set
1713   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1714   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1715 }
1716 
1717 //------------------------------xdual------------------------------------------
1718 // Dual: reverse hi & lo; flip widen
1719 const Type *TypeLong::xdual() const {
1720   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1721   return new TypeLong(_hi,_lo,w);
1722 }
1723 
1724 //------------------------------widen------------------------------------------
1725 // Only happens for optimistic top-down optimizations.
1726 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1727   // Coming from TOP or such; no widening
1728   if( old->base() != Long ) return this;
1729   const TypeLong *ot = old->is_long();
1730 
1731   // If new guy is equal to old guy, no widening
1732   if( _lo == ot->_lo && _hi == ot->_hi )
1733     return old;
1734 
1735   // If new guy contains old, then we widened
1736   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1737     // New contains old
1738     // If new guy is already wider than old, no widening
1739     if( _widen > ot->_widen ) return this;
1740     // If old guy was a constant, do not bother
1741     if (ot->_lo == ot->_hi)  return this;
1742     // Now widen new guy.
1743     // Check for widening too far
1744     if (_widen == WidenMax) {
1745       jlong max = max_jlong;
1746       jlong min = min_jlong;
1747       if (limit->isa_long()) {
1748         max = limit->is_long()->_hi;
1749         min = limit->is_long()->_lo;
1750       }
1751       if (min < _lo && _hi < max) {
1752         // If neither endpoint is extremal yet, push out the endpoint
1753         // which is closer to its respective limit.
1754         if (_lo >= 0 ||                 // easy common case
1755             ((julong)_lo - min) >= ((julong)max - _hi)) {
1756           // Try to widen to an unsigned range type of 32/63 bits:
1757           if (max >= max_juint && _hi < max_juint)
1758             return make(_lo, max_juint, WidenMax);
1759           else
1760             return make(_lo, max, WidenMax);
1761         } else {
1762           return make(min, _hi, WidenMax);
1763         }
1764       }
1765       return TypeLong::LONG;
1766     }
1767     // Returned widened new guy
1768     return make(_lo,_hi,_widen+1);
1769   }
1770 
1771   // If old guy contains new, then we probably widened too far & dropped to
1772   // bottom.  Return the wider fellow.
1773   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1774     return old;
1775 
1776   //  fatal("Long value range is not subset");
1777   // return this;
1778   return TypeLong::LONG;
1779 }
1780 
1781 //------------------------------narrow----------------------------------------
1782 // Only happens for pessimistic optimizations.
1783 const Type *TypeLong::narrow( const Type *old ) const {
1784   if (_lo >= _hi)  return this;   // already narrow enough
1785   if (old == NULL)  return this;
1786   const TypeLong* ot = old->isa_long();
1787   if (ot == NULL)  return this;
1788   jlong olo = ot->_lo;
1789   jlong ohi = ot->_hi;
1790 
1791   // If new guy is equal to old guy, no narrowing
1792   if (_lo == olo && _hi == ohi)  return old;
1793 
1794   // If old guy was maximum range, allow the narrowing
1795   if (olo == min_jlong && ohi == max_jlong)  return this;
1796 
1797   if (_lo < olo || _hi > ohi)
1798     return this;                // doesn't narrow; pretty wierd
1799 
1800   // The new type narrows the old type, so look for a "death march".
1801   // See comments on PhaseTransform::saturate.
1802   julong nrange = _hi - _lo;
1803   julong orange = ohi - olo;
1804   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1805     // Use the new type only if the range shrinks a lot.
1806     // We do not want the optimizer computing 2^31 point by point.
1807     return old;
1808   }
1809 
1810   return this;
1811 }
1812 
1813 //-----------------------------filter------------------------------------------
1814 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1815   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1816   if (ft == NULL || ft->empty())
1817     return Type::TOP;           // Canonical empty value
1818   if (ft->_widen < this->_widen) {
1819     // Do not allow the value of kill->_widen to affect the outcome.
1820     // The widen bits must be allowed to run freely through the graph.
1821     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1822   }
1823   return ft;
1824 }
1825 
1826 //------------------------------eq---------------------------------------------
1827 // Structural equality check for Type representations
1828 bool TypeLong::eq( const Type *t ) const {
1829   const TypeLong *r = t->is_long(); // Handy access
1830   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1831 }
1832 
1833 //------------------------------hash-------------------------------------------
1834 // Type-specific hashing function.
1835 int TypeLong::hash(void) const {
1836   return (int)(_lo+_hi+_widen+(int)Type::Long);
1837 }
1838 
1839 //------------------------------is_finite--------------------------------------
1840 // Has a finite value
1841 bool TypeLong::is_finite() const {
1842   return true;
1843 }
1844 
1845 //------------------------------dump2------------------------------------------
1846 // Dump TypeLong
1847 #ifndef PRODUCT
1848 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1849   if (n > x) {
1850     if (n >= x + 10000)  return NULL;
1851     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1852   } else if (n < x) {
1853     if (n <= x - 10000)  return NULL;
1854     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1855   } else {
1856     return xname;
1857   }
1858   return buf;
1859 }
1860 
1861 static const char* longname(char* buf, jlong n) {
1862   const char* str;
1863   if (n == min_jlong)
1864     return "min";
1865   else if (n < min_jlong + 10000)
1866     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1867   else if (n == max_jlong)
1868     return "max";
1869   else if (n > max_jlong - 10000)
1870     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1871   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1872     return str;
1873   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1874     return str;
1875   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1876     return str;
1877   else
1878     sprintf(buf, JLONG_FORMAT, n);
1879   return buf;
1880 }
1881 
1882 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1883   char buf[80], buf2[80];
1884   if (_lo == min_jlong && _hi == max_jlong)
1885     st->print("long");
1886   else if (is_con())
1887     st->print("long:%s", longname(buf, get_con()));
1888   else if (_hi == max_jlong)
1889     st->print("long:>=%s", longname(buf, _lo));
1890   else if (_lo == min_jlong)
1891     st->print("long:<=%s", longname(buf, _hi));
1892   else
1893     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1894 
1895   if (_widen != 0 && this != TypeLong::LONG)
1896     st->print(":%.*s", _widen, "wwww");
1897 }
1898 #endif
1899 
1900 //------------------------------singleton--------------------------------------
1901 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1902 // constants
1903 bool TypeLong::singleton(void) const {
1904   return _lo >= _hi;
1905 }
1906 
1907 bool TypeLong::empty(void) const {
1908   return _lo > _hi;
1909 }
1910 
1911 //=============================================================================
1912 // Convenience common pre-built types.
1913 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1914 const TypeTuple *TypeTuple::IFFALSE;
1915 const TypeTuple *TypeTuple::IFTRUE;
1916 const TypeTuple *TypeTuple::IFNEITHER;
1917 const TypeTuple *TypeTuple::LOOPBODY;
1918 const TypeTuple *TypeTuple::MEMBAR;
1919 const TypeTuple *TypeTuple::STORECONDITIONAL;
1920 const TypeTuple *TypeTuple::START_I2C;
1921 const TypeTuple *TypeTuple::INT_PAIR;
1922 const TypeTuple *TypeTuple::LONG_PAIR;
1923 const TypeTuple *TypeTuple::INT_CC_PAIR;
1924 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1925 
1926 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos, SigEntry* res_entry = NULL) {
1927   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1928     if (res_entry != NULL && (int)pos == (res_entry->_offset + TypeFunc::Parms)) {
1929       // Add reserved entry
1930       field_array[pos++] = Type::get_const_basic_type(res_entry->_bt);
1931       if (res_entry->_bt == T_LONG || res_entry->_bt == T_DOUBLE) {
1932         field_array[pos++] = Type::HALF;
1933       }
1934     }
1935     ciField* field = vk->nonstatic_field_at(j);
1936     BasicType bt = field->type()->basic_type();
1937     const Type* ft = Type::get_const_type(field->type());
1938     field_array[pos++] = ft;
1939     if (bt == T_LONG || bt == T_DOUBLE) {
1940       field_array[pos++] = Type::HALF;
1941     }
1942   }
1943 }
1944 
1945 //------------------------------make-------------------------------------------
1946 // Make a TypeTuple from the range of a method signature
1947 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1948   ciType* return_type = sig->return_type();
1949   return make_range(return_type, sig->returns_never_null(), ret_vt_fields);
1950 }
1951 
1952 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool never_null, bool ret_vt_fields) {
1953   uint arg_cnt = 0;
1954   if (ret_vt_fields) {
1955     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1956   }
1957   if (ret_vt_fields) {
1958     ciValueKlass* vk = (ciValueKlass*)return_type;
1959     arg_cnt = vk->value_arg_slots()+1;
1960   } else {
1961     arg_cnt = return_type->size();
1962   }
1963 
1964   const Type **field_array = fields(arg_cnt);
1965   switch (return_type->basic_type()) {
1966   case T_LONG:
1967     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1968     field_array[TypeFunc::Parms+1] = Type::HALF;
1969     break;
1970   case T_DOUBLE:
1971     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1972     field_array[TypeFunc::Parms+1] = Type::HALF;
1973     break;
1974   case T_OBJECT:
1975   case T_ARRAY:
1976   case T_BOOLEAN:
1977   case T_CHAR:
1978   case T_FLOAT:
1979   case T_BYTE:
1980   case T_SHORT:
1981   case T_INT:
1982     field_array[TypeFunc::Parms] = get_const_type(return_type);
1983     break;
1984   case T_VALUETYPE:
1985     if (ret_vt_fields) {
1986       ciValueKlass* vk = (ciValueKlass*)return_type;
1987       uint pos = TypeFunc::Parms;
1988       field_array[pos] = TypePtr::BOTTOM;
1989       pos++;
1990       collect_value_fields(vk, field_array, pos);
1991     } else {
1992       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
1993     }
1994     break;
1995   case T_VOID:
1996     break;
1997   default:
1998     ShouldNotReachHere();
1999   }
2000   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2001 }
2002 
2003 // Make a TypeTuple from the domain of a method signature
2004 const TypeTuple *TypeTuple::make_domain(ciMethod* method, bool vt_fields_as_args) {
2005   ciInstanceKlass* recv = method->is_static() ? NULL : method->holder();
2006   ciSignature* sig = method->signature();
2007   uint arg_cnt = sig->size();
2008 
2009   int vt_extra = 0;
2010   SigEntry res_entry = method->get_Method()->get_res_entry();
2011   if (vt_fields_as_args) {
2012     for (int i = 0; i < sig->count(); i++) {
2013       ciType* type = sig->type_at(i);
2014       if (type->is_valuetype()) {
2015         vt_extra += type->as_value_klass()->value_arg_slots()-1;
2016       }
2017     }
2018     if (res_entry._offset != -1) {
2019       // Account for the reserved stack slot
2020       vt_extra += type2size[res_entry._bt];
2021     }
2022   }
2023 
2024   uint pos = TypeFunc::Parms;
2025   const Type **field_array;
2026   if (recv != NULL) {
2027     arg_cnt++;
2028     // TODO for now, don't scalarize value type receivers because of interface calls
2029     //bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype();
2030     bool vt_fields_for_recv = false;
2031     if (vt_fields_for_recv) {
2032       vt_extra += recv->as_value_klass()->value_arg_slots()-1;
2033     }
2034     field_array = fields(arg_cnt + vt_extra);
2035     // Use get_const_type here because it respects UseUniqueSubclasses:
2036     if (vt_fields_for_recv) {
2037       collect_value_fields(recv->as_value_klass(), field_array, pos, &res_entry);
2038     } else {
2039       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2040     }
2041   } else {
2042     field_array = fields(arg_cnt + vt_extra);
2043   }
2044 
2045   int i = 0;
2046   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2047     ciType* type = sig->type_at(i);
2048 
2049     switch (type->basic_type()) {
2050     case T_LONG:
2051       field_array[pos++] = TypeLong::LONG;
2052       field_array[pos++] = Type::HALF;
2053       break;
2054     case T_DOUBLE:
2055       field_array[pos++] = Type::DOUBLE;
2056       field_array[pos++] = Type::HALF;
2057       break;
2058     case T_OBJECT:
2059     case T_ARRAY:
2060     case T_FLOAT:
2061     case T_INT:
2062       field_array[pos++] = get_const_type(type);
2063       break;
2064     case T_BOOLEAN:
2065     case T_CHAR:
2066     case T_BYTE:
2067     case T_SHORT:
2068       field_array[pos++] = TypeInt::INT;
2069       break;
2070     case T_VALUETYPE: {
2071       if (vt_fields_as_args) {
2072         collect_value_fields(type->as_value_klass(), field_array, pos, &res_entry);
2073       } else {
2074         field_array[pos++] = get_const_type(type)->join_speculative(sig->is_never_null_at(i) ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2075       }
2076       break;
2077     }
2078     default:
2079       ShouldNotReachHere();
2080     }
2081     i++;
2082 
2083     if (vt_fields_as_args && (int)pos == (res_entry._offset + TypeFunc::Parms)) {
2084       // Add reserved entry
2085       field_array[pos++] = Type::get_const_basic_type(res_entry._bt);
2086       if (res_entry._bt == T_LONG || res_entry._bt == T_DOUBLE) {
2087         field_array[pos++] = Type::HALF;
2088       }
2089     }
2090   }
2091   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2092 
2093   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2094 }
2095 
2096 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2097   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2098 }
2099 
2100 //------------------------------fields-----------------------------------------
2101 // Subroutine call type with space allocated for argument types
2102 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2103 const Type **TypeTuple::fields( uint arg_cnt ) {
2104   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2105   flds[TypeFunc::Control  ] = Type::CONTROL;
2106   flds[TypeFunc::I_O      ] = Type::ABIO;
2107   flds[TypeFunc::Memory   ] = Type::MEMORY;
2108   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2109   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2110 
2111   return flds;
2112 }
2113 
2114 //------------------------------meet-------------------------------------------
2115 // Compute the MEET of two types.  It returns a new Type object.
2116 const Type *TypeTuple::xmeet( const Type *t ) const {
2117   // Perform a fast test for common case; meeting the same types together.
2118   if( this == t ) return this;  // Meeting same type-rep?
2119 
2120   // Current "this->_base" is Tuple
2121   switch (t->base()) {          // switch on original type
2122 
2123   case Bottom:                  // Ye Olde Default
2124     return t;
2125 
2126   default:                      // All else is a mistake
2127     typerr(t);
2128 
2129   case Tuple: {                 // Meeting 2 signatures?
2130     const TypeTuple *x = t->is_tuple();
2131     assert( _cnt == x->_cnt, "" );
2132     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2133     for( uint i=0; i<_cnt; i++ )
2134       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2135     return TypeTuple::make(_cnt,fields);
2136   }
2137   case Top:
2138     break;
2139   }
2140   return this;                  // Return the double constant
2141 }
2142 
2143 //------------------------------xdual------------------------------------------
2144 // Dual: compute field-by-field dual
2145 const Type *TypeTuple::xdual() const {
2146   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2147   for( uint i=0; i<_cnt; i++ )
2148     fields[i] = _fields[i]->dual();
2149   return new TypeTuple(_cnt,fields);
2150 }
2151 
2152 //------------------------------eq---------------------------------------------
2153 // Structural equality check for Type representations
2154 bool TypeTuple::eq( const Type *t ) const {
2155   const TypeTuple *s = (const TypeTuple *)t;
2156   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2157   for (uint i = 0; i < _cnt; i++)
2158     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2159       return false;             // Missed
2160   return true;
2161 }
2162 
2163 //------------------------------hash-------------------------------------------
2164 // Type-specific hashing function.
2165 int TypeTuple::hash(void) const {
2166   intptr_t sum = _cnt;
2167   for( uint i=0; i<_cnt; i++ )
2168     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2169   return sum;
2170 }
2171 
2172 //------------------------------dump2------------------------------------------
2173 // Dump signature Type
2174 #ifndef PRODUCT
2175 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2176   st->print("{");
2177   if( !depth || d[this] ) {     // Check for recursive print
2178     st->print("...}");
2179     return;
2180   }
2181   d.Insert((void*)this, (void*)this);   // Stop recursion
2182   if( _cnt ) {
2183     uint i;
2184     for( i=0; i<_cnt-1; i++ ) {
2185       st->print("%d:", i);
2186       _fields[i]->dump2(d, depth-1, st);
2187       st->print(", ");
2188     }
2189     st->print("%d:", i);
2190     _fields[i]->dump2(d, depth-1, st);
2191   }
2192   st->print("}");
2193 }
2194 #endif
2195 
2196 //------------------------------singleton--------------------------------------
2197 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2198 // constants (Ldi nodes).  Singletons are integer, float or double constants
2199 // or a single symbol.
2200 bool TypeTuple::singleton(void) const {
2201   return false;                 // Never a singleton
2202 }
2203 
2204 bool TypeTuple::empty(void) const {
2205   for( uint i=0; i<_cnt; i++ ) {
2206     if (_fields[i]->empty())  return true;
2207   }
2208   return false;
2209 }
2210 
2211 //=============================================================================
2212 // Convenience common pre-built types.
2213 
2214 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2215   // Certain normalizations keep us sane when comparing types.
2216   // We do not want arrayOop variables to differ only by the wideness
2217   // of their index types.  Pick minimum wideness, since that is the
2218   // forced wideness of small ranges anyway.
2219   if (size->_widen != Type::WidenMin)
2220     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2221   else
2222     return size;
2223 }
2224 
2225 //------------------------------make-------------------------------------------
2226 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2227   if (elem->is_valuetypeptr()) {
2228     // Value type array elements cannot be NULL
2229     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2230   }
2231   if (UseCompressedOops && elem->isa_oopptr()) {
2232     elem = elem->make_narrowoop();
2233   }
2234   size = normalize_array_size(size);
2235   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2236 }
2237 
2238 //------------------------------meet-------------------------------------------
2239 // Compute the MEET of two types.  It returns a new Type object.
2240 const Type *TypeAry::xmeet( const Type *t ) const {
2241   // Perform a fast test for common case; meeting the same types together.
2242   if( this == t ) return this;  // Meeting same type-rep?
2243 
2244   // Current "this->_base" is Ary
2245   switch (t->base()) {          // switch on original type
2246 
2247   case Bottom:                  // Ye Olde Default
2248     return t;
2249 
2250   default:                      // All else is a mistake
2251     typerr(t);
2252 
2253   case Array: {                 // Meeting 2 arrays?
2254     const TypeAry *a = t->is_ary();
2255     return TypeAry::make(_elem->meet_speculative(a->_elem),
2256                          _size->xmeet(a->_size)->is_int(),
2257                          _stable & a->_stable);
2258   }
2259   case Top:
2260     break;
2261   }
2262   return this;                  // Return the double constant
2263 }
2264 
2265 //------------------------------xdual------------------------------------------
2266 // Dual: compute field-by-field dual
2267 const Type *TypeAry::xdual() const {
2268   const TypeInt* size_dual = _size->dual()->is_int();
2269   size_dual = normalize_array_size(size_dual);
2270   return new TypeAry(_elem->dual(), size_dual, !_stable);
2271 }
2272 
2273 //------------------------------eq---------------------------------------------
2274 // Structural equality check for Type representations
2275 bool TypeAry::eq( const Type *t ) const {
2276   const TypeAry *a = (const TypeAry*)t;
2277   return _elem == a->_elem &&
2278     _stable == a->_stable &&
2279     _size == a->_size;
2280 }
2281 
2282 //------------------------------hash-------------------------------------------
2283 // Type-specific hashing function.
2284 int TypeAry::hash(void) const {
2285   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2286 }
2287 
2288 /**
2289  * Return same type without a speculative part in the element
2290  */
2291 const Type* TypeAry::remove_speculative() const {
2292   return make(_elem->remove_speculative(), _size, _stable);
2293 }
2294 
2295 /**
2296  * Return same type with cleaned up speculative part of element
2297  */
2298 const Type* TypeAry::cleanup_speculative() const {
2299   return make(_elem->cleanup_speculative(), _size, _stable);
2300 }
2301 
2302 /**
2303  * Return same type but with a different inline depth (used for speculation)
2304  *
2305  * @param depth  depth to meet with
2306  */
2307 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2308   if (!UseInlineDepthForSpeculativeTypes) {
2309     return this;
2310   }
2311   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2312 }
2313 
2314 //----------------------interface_vs_oop---------------------------------------
2315 #ifdef ASSERT
2316 bool TypeAry::interface_vs_oop(const Type *t) const {
2317   const TypeAry* t_ary = t->is_ary();
2318   if (t_ary) {
2319     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2320     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2321     if(this_ptr != NULL && t_ptr != NULL) {
2322       return this_ptr->interface_vs_oop(t_ptr);
2323     }
2324   }
2325   return false;
2326 }
2327 #endif
2328 
2329 //------------------------------dump2------------------------------------------
2330 #ifndef PRODUCT
2331 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2332   if (_stable)  st->print("stable:");
2333   _elem->dump2(d, depth, st);
2334   st->print("[");
2335   _size->dump2(d, depth, st);
2336   st->print("]");
2337 }
2338 #endif
2339 
2340 //------------------------------singleton--------------------------------------
2341 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2342 // constants (Ldi nodes).  Singletons are integer, float or double constants
2343 // or a single symbol.
2344 bool TypeAry::singleton(void) const {
2345   return false;                 // Never a singleton
2346 }
2347 
2348 bool TypeAry::empty(void) const {
2349   return _elem->empty() || _size->empty();
2350 }
2351 
2352 //--------------------------ary_must_be_exact----------------------------------
2353 bool TypeAry::ary_must_be_exact() const {
2354   if (!UseExactTypes)       return false;
2355   // This logic looks at the element type of an array, and returns true
2356   // if the element type is either a primitive or a final instance class.
2357   // In such cases, an array built on this ary must have no subclasses.
2358   if (_elem == BOTTOM)      return false;  // general array not exact
2359   if (_elem == TOP   )      return false;  // inverted general array not exact
2360   const TypeOopPtr*  toop = NULL;
2361   if (UseCompressedOops && _elem->isa_narrowoop()) {
2362     toop = _elem->make_ptr()->isa_oopptr();
2363   } else {
2364     toop = _elem->isa_oopptr();
2365   }
2366   if (!toop)                return true;   // a primitive type, like int
2367   ciKlass* tklass = toop->klass();
2368   if (tklass == NULL)       return false;  // unloaded class
2369   if (!tklass->is_loaded()) return false;  // unloaded class
2370   const TypeInstPtr* tinst;
2371   if (_elem->isa_narrowoop())
2372     tinst = _elem->make_ptr()->isa_instptr();
2373   else
2374     tinst = _elem->isa_instptr();
2375   if (tinst)
2376     return tklass->as_instance_klass()->is_final();
2377   const TypeAryPtr*  tap;
2378   if (_elem->isa_narrowoop())
2379     tap = _elem->make_ptr()->isa_aryptr();
2380   else
2381     tap = _elem->isa_aryptr();
2382   if (tap)
2383     return tap->ary()->ary_must_be_exact();
2384   return false;
2385 }
2386 
2387 //==============================TypeValueType=======================================
2388 
2389 //------------------------------make-------------------------------------------
2390 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2391   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2392 }
2393 
2394 //------------------------------meet-------------------------------------------
2395 // Compute the MEET of two types.  It returns a new Type object.
2396 const Type* TypeValueType::xmeet(const Type* t) const {
2397   // Perform a fast test for common case; meeting the same types together.
2398   if(this == t) return this;  // Meeting same type-rep?
2399 
2400   // Current "this->_base" is ValueType
2401   switch (t->base()) {          // switch on original type
2402 
2403   case Int:
2404   case Long:
2405   case FloatTop:
2406   case FloatCon:
2407   case FloatBot:
2408   case DoubleTop:
2409   case DoubleCon:
2410   case DoubleBot:
2411   case NarrowKlass:
2412   case Bottom:
2413     return Type::BOTTOM;
2414 
2415   case OopPtr:
2416   case MetadataPtr:
2417   case KlassPtr:
2418   case RawPtr:
2419     return TypePtr::BOTTOM;
2420 
2421   case Top:
2422     return this;
2423 
2424   case NarrowOop: {
2425     const Type* res = t->make_ptr()->xmeet(this);
2426     if (res->isa_ptr()) {
2427       return res->make_narrowoop();
2428     }
2429     return res;
2430   }
2431 
2432   case AryPtr:
2433   case InstPtr: {
2434     return t->xmeet(this);
2435   }
2436 
2437   case ValueType: {
2438     // All value types inherit from Object
2439     return TypeInstPtr::NOTNULL;
2440   }
2441 
2442   default:                      // All else is a mistake
2443     typerr(t);
2444 
2445   }
2446   return this;
2447 }
2448 
2449 //------------------------------xdual------------------------------------------
2450 const Type* TypeValueType::xdual() const {
2451   return this;
2452 }
2453 
2454 //------------------------------eq---------------------------------------------
2455 // Structural equality check for Type representations
2456 bool TypeValueType::eq(const Type* t) const {
2457   const TypeValueType* vt = t->is_valuetype();
2458   return (_vk == vt->value_klass());
2459 }
2460 
2461 //------------------------------hash-------------------------------------------
2462 // Type-specific hashing function.
2463 int TypeValueType::hash(void) const {
2464   return (intptr_t)_vk;
2465 }
2466 
2467 //------------------------------singleton--------------------------------------
2468 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2469 bool TypeValueType::singleton(void) const {
2470   return false;
2471 }
2472 
2473 //------------------------------empty------------------------------------------
2474 // TRUE if Type is a type with no values, FALSE otherwise.
2475 bool TypeValueType::empty(void) const {
2476   return false;
2477 }
2478 
2479 //------------------------------dump2------------------------------------------
2480 #ifndef PRODUCT
2481 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2482   int count = _vk->nof_declared_nonstatic_fields();
2483   st->print("valuetype[%d]:{", count);
2484   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2485   for (int i = 1; i < count; ++i) {
2486     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2487   }
2488   st->print("}");
2489 }
2490 #endif
2491 
2492 //==============================TypeVect=======================================
2493 // Convenience common pre-built types.
2494 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2495 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2496 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2497 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2498 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2499 
2500 //------------------------------make-------------------------------------------
2501 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2502   BasicType elem_bt = elem->array_element_basic_type();
2503   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2504   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2505   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2506   int size = length * type2aelembytes(elem_bt);
2507   switch (Matcher::vector_ideal_reg(size)) {
2508   case Op_VecS:
2509     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2510   case Op_RegL:
2511   case Op_VecD:
2512   case Op_RegD:
2513     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2514   case Op_VecX:
2515     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2516   case Op_VecY:
2517     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2518   case Op_VecZ:
2519     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2520   }
2521  ShouldNotReachHere();
2522   return NULL;
2523 }
2524 
2525 //------------------------------meet-------------------------------------------
2526 // Compute the MEET of two types.  It returns a new Type object.
2527 const Type *TypeVect::xmeet( const Type *t ) const {
2528   // Perform a fast test for common case; meeting the same types together.
2529   if( this == t ) return this;  // Meeting same type-rep?
2530 
2531   // Current "this->_base" is Vector
2532   switch (t->base()) {          // switch on original type
2533 
2534   case Bottom:                  // Ye Olde Default
2535     return t;
2536 
2537   default:                      // All else is a mistake
2538     typerr(t);
2539 
2540   case VectorS:
2541   case VectorD:
2542   case VectorX:
2543   case VectorY:
2544   case VectorZ: {                // Meeting 2 vectors?
2545     const TypeVect* v = t->is_vect();
2546     assert(  base() == v->base(), "");
2547     assert(length() == v->length(), "");
2548     assert(element_basic_type() == v->element_basic_type(), "");
2549     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2550   }
2551   case Top:
2552     break;
2553   }
2554   return this;
2555 }
2556 
2557 //------------------------------xdual------------------------------------------
2558 // Dual: compute field-by-field dual
2559 const Type *TypeVect::xdual() const {
2560   return new TypeVect(base(), _elem->dual(), _length);
2561 }
2562 
2563 //------------------------------eq---------------------------------------------
2564 // Structural equality check for Type representations
2565 bool TypeVect::eq(const Type *t) const {
2566   const TypeVect *v = t->is_vect();
2567   return (_elem == v->_elem) && (_length == v->_length);
2568 }
2569 
2570 //------------------------------hash-------------------------------------------
2571 // Type-specific hashing function.
2572 int TypeVect::hash(void) const {
2573   return (intptr_t)_elem + (intptr_t)_length;
2574 }
2575 
2576 //------------------------------singleton--------------------------------------
2577 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2578 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2579 // constant value (when vector is created with Replicate code).
2580 bool TypeVect::singleton(void) const {
2581 // There is no Con node for vectors yet.
2582 //  return _elem->singleton();
2583   return false;
2584 }
2585 
2586 bool TypeVect::empty(void) const {
2587   return _elem->empty();
2588 }
2589 
2590 //------------------------------dump2------------------------------------------
2591 #ifndef PRODUCT
2592 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2593   switch (base()) {
2594   case VectorS:
2595     st->print("vectors["); break;
2596   case VectorD:
2597     st->print("vectord["); break;
2598   case VectorX:
2599     st->print("vectorx["); break;
2600   case VectorY:
2601     st->print("vectory["); break;
2602   case VectorZ:
2603     st->print("vectorz["); break;
2604   default:
2605     ShouldNotReachHere();
2606   }
2607   st->print("%d]:{", _length);
2608   _elem->dump2(d, depth, st);
2609   st->print("}");
2610 }
2611 #endif
2612 
2613 
2614 //=============================================================================
2615 // Convenience common pre-built types.
2616 const TypePtr *TypePtr::NULL_PTR;
2617 const TypePtr *TypePtr::NOTNULL;
2618 const TypePtr *TypePtr::BOTTOM;
2619 
2620 //------------------------------meet-------------------------------------------
2621 // Meet over the PTR enum
2622 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2623   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2624   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2625   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2626   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2627   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2628   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2629   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2630 };
2631 
2632 //------------------------------make-------------------------------------------
2633 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2634   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2635 }
2636 
2637 //------------------------------cast_to_ptr_type-------------------------------
2638 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2639   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2640   if( ptr == _ptr ) return this;
2641   return make(_base, ptr, _offset, _speculative, _inline_depth);
2642 }
2643 
2644 //------------------------------get_con----------------------------------------
2645 intptr_t TypePtr::get_con() const {
2646   assert( _ptr == Null, "" );
2647   return offset();
2648 }
2649 
2650 //------------------------------meet-------------------------------------------
2651 // Compute the MEET of two types.  It returns a new Type object.
2652 const Type *TypePtr::xmeet(const Type *t) const {
2653   const Type* res = xmeet_helper(t);
2654   if (res->isa_ptr() == NULL) {
2655     return res;
2656   }
2657 
2658   const TypePtr* res_ptr = res->is_ptr();
2659   if (res_ptr->speculative() != NULL) {
2660     // type->speculative() == NULL means that speculation is no better
2661     // than type, i.e. type->speculative() == type. So there are 2
2662     // ways to represent the fact that we have no useful speculative
2663     // data and we should use a single one to be able to test for
2664     // equality between types. Check whether type->speculative() ==
2665     // type and set speculative to NULL if it is the case.
2666     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2667       return res_ptr->remove_speculative();
2668     }
2669   }
2670 
2671   return res;
2672 }
2673 
2674 const Type *TypePtr::xmeet_helper(const Type *t) const {
2675   // Perform a fast test for common case; meeting the same types together.
2676   if( this == t ) return this;  // Meeting same type-rep?
2677 
2678   // Current "this->_base" is AnyPtr
2679   switch (t->base()) {          // switch on original type
2680   case Int:                     // Mixing ints & oops happens when javac
2681   case Long:                    // reuses local variables
2682   case FloatTop:
2683   case FloatCon:
2684   case FloatBot:
2685   case DoubleTop:
2686   case DoubleCon:
2687   case DoubleBot:
2688   case NarrowOop:
2689   case NarrowKlass:
2690   case Bottom:                  // Ye Olde Default
2691     return Type::BOTTOM;
2692   case Top:
2693     return this;
2694 
2695   case AnyPtr: {                // Meeting to AnyPtrs
2696     const TypePtr *tp = t->is_ptr();
2697     const TypePtr* speculative = xmeet_speculative(tp);
2698     int depth = meet_inline_depth(tp->inline_depth());
2699     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2700   }
2701   case RawPtr:                  // For these, flip the call around to cut down
2702   case OopPtr:
2703   case InstPtr:                 // on the cases I have to handle.
2704   case AryPtr:
2705   case MetadataPtr:
2706   case KlassPtr:
2707     return t->xmeet(this);      // Call in reverse direction
2708   default:                      // All else is a mistake
2709     typerr(t);
2710 
2711   }
2712   return this;
2713 }
2714 
2715 //------------------------------meet_offset------------------------------------
2716 Type::Offset TypePtr::meet_offset(int offset) const {
2717   return _offset.meet(Offset(offset));
2718 }
2719 
2720 //------------------------------dual_offset------------------------------------
2721 Type::Offset TypePtr::dual_offset() const {
2722   return _offset.dual();
2723 }
2724 
2725 //------------------------------xdual------------------------------------------
2726 // Dual: compute field-by-field dual
2727 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2728   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2729 };
2730 const Type *TypePtr::xdual() const {
2731   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2732 }
2733 
2734 //------------------------------xadd_offset------------------------------------
2735 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2736   return _offset.add(offset);
2737 }
2738 
2739 //------------------------------add_offset-------------------------------------
2740 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2741   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2742 }
2743 
2744 //------------------------------eq---------------------------------------------
2745 // Structural equality check for Type representations
2746 bool TypePtr::eq( const Type *t ) const {
2747   const TypePtr *a = (const TypePtr*)t;
2748   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2749 }
2750 
2751 //------------------------------hash-------------------------------------------
2752 // Type-specific hashing function.
2753 int TypePtr::hash(void) const {
2754   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2755 ;
2756 }
2757 
2758 /**
2759  * Return same type without a speculative part
2760  */
2761 const Type* TypePtr::remove_speculative() const {
2762   if (_speculative == NULL) {
2763     return this;
2764   }
2765   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2766   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2767 }
2768 
2769 /**
2770  * Return same type but drop speculative part if we know we won't use
2771  * it
2772  */
2773 const Type* TypePtr::cleanup_speculative() const {
2774   if (speculative() == NULL) {
2775     return this;
2776   }
2777   const Type* no_spec = remove_speculative();
2778   // If this is NULL_PTR then we don't need the speculative type
2779   // (with_inline_depth in case the current type inline depth is
2780   // InlineDepthTop)
2781   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2782     return no_spec;
2783   }
2784   if (above_centerline(speculative()->ptr())) {
2785     return no_spec;
2786   }
2787   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2788   // If the speculative may be null and is an inexact klass then it
2789   // doesn't help
2790   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2791       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2792     return no_spec;
2793   }
2794   return this;
2795 }
2796 
2797 /**
2798  * dual of the speculative part of the type
2799  */
2800 const TypePtr* TypePtr::dual_speculative() const {
2801   if (_speculative == NULL) {
2802     return NULL;
2803   }
2804   return _speculative->dual()->is_ptr();
2805 }
2806 
2807 /**
2808  * meet of the speculative parts of 2 types
2809  *
2810  * @param other  type to meet with
2811  */
2812 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2813   bool this_has_spec = (_speculative != NULL);
2814   bool other_has_spec = (other->speculative() != NULL);
2815 
2816   if (!this_has_spec && !other_has_spec) {
2817     return NULL;
2818   }
2819 
2820   // If we are at a point where control flow meets and one branch has
2821   // a speculative type and the other has not, we meet the speculative
2822   // type of one branch with the actual type of the other. If the
2823   // actual type is exact and the speculative is as well, then the
2824   // result is a speculative type which is exact and we can continue
2825   // speculation further.
2826   const TypePtr* this_spec = _speculative;
2827   const TypePtr* other_spec = other->speculative();
2828 
2829   if (!this_has_spec) {
2830     this_spec = this;
2831   }
2832 
2833   if (!other_has_spec) {
2834     other_spec = other;
2835   }
2836 
2837   return this_spec->meet(other_spec)->is_ptr();
2838 }
2839 
2840 /**
2841  * dual of the inline depth for this type (used for speculation)
2842  */
2843 int TypePtr::dual_inline_depth() const {
2844   return -inline_depth();
2845 }
2846 
2847 /**
2848  * meet of 2 inline depths (used for speculation)
2849  *
2850  * @param depth  depth to meet with
2851  */
2852 int TypePtr::meet_inline_depth(int depth) const {
2853   return MAX2(inline_depth(), depth);
2854 }
2855 
2856 /**
2857  * Are the speculative parts of 2 types equal?
2858  *
2859  * @param other  type to compare this one to
2860  */
2861 bool TypePtr::eq_speculative(const TypePtr* other) const {
2862   if (_speculative == NULL || other->speculative() == NULL) {
2863     return _speculative == other->speculative();
2864   }
2865 
2866   if (_speculative->base() != other->speculative()->base()) {
2867     return false;
2868   }
2869 
2870   return _speculative->eq(other->speculative());
2871 }
2872 
2873 /**
2874  * Hash of the speculative part of the type
2875  */
2876 int TypePtr::hash_speculative() const {
2877   if (_speculative == NULL) {
2878     return 0;
2879   }
2880 
2881   return _speculative->hash();
2882 }
2883 
2884 /**
2885  * add offset to the speculative part of the type
2886  *
2887  * @param offset  offset to add
2888  */
2889 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2890   if (_speculative == NULL) {
2891     return NULL;
2892   }
2893   return _speculative->add_offset(offset)->is_ptr();
2894 }
2895 
2896 /**
2897  * return exact klass from the speculative type if there's one
2898  */
2899 ciKlass* TypePtr::speculative_type() const {
2900   if (_speculative != NULL && _speculative->isa_oopptr()) {
2901     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2902     if (speculative->klass_is_exact()) {
2903       return speculative->klass();
2904     }
2905   }
2906   return NULL;
2907 }
2908 
2909 /**
2910  * return true if speculative type may be null
2911  */
2912 bool TypePtr::speculative_maybe_null() const {
2913   if (_speculative != NULL) {
2914     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2915     return speculative->maybe_null();
2916   }
2917   return true;
2918 }
2919 
2920 bool TypePtr::speculative_always_null() const {
2921   if (_speculative != NULL) {
2922     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2923     return speculative == TypePtr::NULL_PTR;
2924   }
2925   return false;
2926 }
2927 
2928 /**
2929  * Same as TypePtr::speculative_type() but return the klass only if
2930  * the speculative tells us is not null
2931  */
2932 ciKlass* TypePtr::speculative_type_not_null() const {
2933   if (speculative_maybe_null()) {
2934     return NULL;
2935   }
2936   return speculative_type();
2937 }
2938 
2939 /**
2940  * Check whether new profiling would improve speculative type
2941  *
2942  * @param   exact_kls    class from profiling
2943  * @param   inline_depth inlining depth of profile point
2944  *
2945  * @return  true if type profile is valuable
2946  */
2947 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2948   // no profiling?
2949   if (exact_kls == NULL) {
2950     return false;
2951   }
2952   if (speculative() == TypePtr::NULL_PTR) {
2953     return false;
2954   }
2955   // no speculative type or non exact speculative type?
2956   if (speculative_type() == NULL) {
2957     return true;
2958   }
2959   // If the node already has an exact speculative type keep it,
2960   // unless it was provided by profiling that is at a deeper
2961   // inlining level. Profiling at a higher inlining depth is
2962   // expected to be less accurate.
2963   if (_speculative->inline_depth() == InlineDepthBottom) {
2964     return false;
2965   }
2966   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2967   return inline_depth < _speculative->inline_depth();
2968 }
2969 
2970 /**
2971  * Check whether new profiling would improve ptr (= tells us it is non
2972  * null)
2973  *
2974  * @param   ptr_kind always null or not null?
2975  *
2976  * @return  true if ptr profile is valuable
2977  */
2978 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2979   // profiling doesn't tell us anything useful
2980   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2981     return false;
2982   }
2983   // We already know this is not null
2984   if (!this->maybe_null()) {
2985     return false;
2986   }
2987   // We already know the speculative type cannot be null
2988   if (!speculative_maybe_null()) {
2989     return false;
2990   }
2991   // We already know this is always null
2992   if (this == TypePtr::NULL_PTR) {
2993     return false;
2994   }
2995   // We already know the speculative type is always null
2996   if (speculative_always_null()) {
2997     return false;
2998   }
2999   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
3000     return false;
3001   }
3002   return true;
3003 }
3004 
3005 //------------------------------dump2------------------------------------------
3006 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3007   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
3008 };
3009 
3010 #ifndef PRODUCT
3011 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3012   if( _ptr == Null ) st->print("NULL");
3013   else st->print("%s *", ptr_msg[_ptr]);
3014   _offset.dump2(st);
3015   dump_inline_depth(st);
3016   dump_speculative(st);
3017 }
3018 
3019 /**
3020  *dump the speculative part of the type
3021  */
3022 void TypePtr::dump_speculative(outputStream *st) const {
3023   if (_speculative != NULL) {
3024     st->print(" (speculative=");
3025     _speculative->dump_on(st);
3026     st->print(")");
3027   }
3028 }
3029 
3030 /**
3031  *dump the inline depth of the type
3032  */
3033 void TypePtr::dump_inline_depth(outputStream *st) const {
3034   if (_inline_depth != InlineDepthBottom) {
3035     if (_inline_depth == InlineDepthTop) {
3036       st->print(" (inline_depth=InlineDepthTop)");
3037     } else {
3038       st->print(" (inline_depth=%d)", _inline_depth);
3039     }
3040   }
3041 }
3042 #endif
3043 
3044 //------------------------------singleton--------------------------------------
3045 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3046 // constants
3047 bool TypePtr::singleton(void) const {
3048   // TopPTR, Null, AnyNull, Constant are all singletons
3049   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3050 }
3051 
3052 bool TypePtr::empty(void) const {
3053   return (_offset == Offset::top) || above_centerline(_ptr);
3054 }
3055 
3056 //=============================================================================
3057 // Convenience common pre-built types.
3058 const TypeRawPtr *TypeRawPtr::BOTTOM;
3059 const TypeRawPtr *TypeRawPtr::NOTNULL;
3060 
3061 //------------------------------make-------------------------------------------
3062 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3063   assert( ptr != Constant, "what is the constant?" );
3064   assert( ptr != Null, "Use TypePtr for NULL" );
3065   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3066 }
3067 
3068 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3069   assert( bits, "Use TypePtr for NULL" );
3070   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3071 }
3072 
3073 //------------------------------cast_to_ptr_type-------------------------------
3074 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3075   assert( ptr != Constant, "what is the constant?" );
3076   assert( ptr != Null, "Use TypePtr for NULL" );
3077   assert( _bits==0, "Why cast a constant address?");
3078   if( ptr == _ptr ) return this;
3079   return make(ptr);
3080 }
3081 
3082 //------------------------------get_con----------------------------------------
3083 intptr_t TypeRawPtr::get_con() const {
3084   assert( _ptr == Null || _ptr == Constant, "" );
3085   return (intptr_t)_bits;
3086 }
3087 
3088 //------------------------------meet-------------------------------------------
3089 // Compute the MEET of two types.  It returns a new Type object.
3090 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3091   // Perform a fast test for common case; meeting the same types together.
3092   if( this == t ) return this;  // Meeting same type-rep?
3093 
3094   // Current "this->_base" is RawPtr
3095   switch( t->base() ) {         // switch on original type
3096   case Bottom:                  // Ye Olde Default
3097     return t;
3098   case Top:
3099     return this;
3100   case AnyPtr:                  // Meeting to AnyPtrs
3101     break;
3102   case RawPtr: {                // might be top, bot, any/not or constant
3103     enum PTR tptr = t->is_ptr()->ptr();
3104     enum PTR ptr = meet_ptr( tptr );
3105     if( ptr == Constant ) {     // Cannot be equal constants, so...
3106       if( tptr == Constant && _ptr != Constant)  return t;
3107       if( _ptr == Constant && tptr != Constant)  return this;
3108       ptr = NotNull;            // Fall down in lattice
3109     }
3110     return make( ptr );
3111   }
3112 
3113   case OopPtr:
3114   case InstPtr:
3115   case AryPtr:
3116   case MetadataPtr:
3117   case KlassPtr:
3118     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3119   default:                      // All else is a mistake
3120     typerr(t);
3121   }
3122 
3123   // Found an AnyPtr type vs self-RawPtr type
3124   const TypePtr *tp = t->is_ptr();
3125   switch (tp->ptr()) {
3126   case TypePtr::TopPTR:  return this;
3127   case TypePtr::BotPTR:  return t;
3128   case TypePtr::Null:
3129     if( _ptr == TypePtr::TopPTR ) return t;
3130     return TypeRawPtr::BOTTOM;
3131   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3132   case TypePtr::AnyNull:
3133     if( _ptr == TypePtr::Constant) return this;
3134     return make( meet_ptr(TypePtr::AnyNull) );
3135   default: ShouldNotReachHere();
3136   }
3137   return this;
3138 }
3139 
3140 //------------------------------xdual------------------------------------------
3141 // Dual: compute field-by-field dual
3142 const Type *TypeRawPtr::xdual() const {
3143   return new TypeRawPtr( dual_ptr(), _bits );
3144 }
3145 
3146 //------------------------------add_offset-------------------------------------
3147 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3148   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3149   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3150   if( offset == 0 ) return this; // No change
3151   switch (_ptr) {
3152   case TypePtr::TopPTR:
3153   case TypePtr::BotPTR:
3154   case TypePtr::NotNull:
3155     return this;
3156   case TypePtr::Null:
3157   case TypePtr::Constant: {
3158     address bits = _bits+offset;
3159     if ( bits == 0 ) return TypePtr::NULL_PTR;
3160     return make( bits );
3161   }
3162   default:  ShouldNotReachHere();
3163   }
3164   return NULL;                  // Lint noise
3165 }
3166 
3167 //------------------------------eq---------------------------------------------
3168 // Structural equality check for Type representations
3169 bool TypeRawPtr::eq( const Type *t ) const {
3170   const TypeRawPtr *a = (const TypeRawPtr*)t;
3171   return _bits == a->_bits && TypePtr::eq(t);
3172 }
3173 
3174 //------------------------------hash-------------------------------------------
3175 // Type-specific hashing function.
3176 int TypeRawPtr::hash(void) const {
3177   return (intptr_t)_bits + TypePtr::hash();
3178 }
3179 
3180 //------------------------------dump2------------------------------------------
3181 #ifndef PRODUCT
3182 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3183   if( _ptr == Constant )
3184     st->print(INTPTR_FORMAT, p2i(_bits));
3185   else
3186     st->print("rawptr:%s", ptr_msg[_ptr]);
3187 }
3188 #endif
3189 
3190 //=============================================================================
3191 // Convenience common pre-built type.
3192 const TypeOopPtr *TypeOopPtr::BOTTOM;
3193 
3194 //------------------------------TypeOopPtr-------------------------------------
3195 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3196                        int instance_id, const TypePtr* speculative, int inline_depth)
3197   : TypePtr(t, ptr, offset, speculative, inline_depth),
3198     _const_oop(o), _klass(k),
3199     _klass_is_exact(xk),
3200     _is_ptr_to_narrowoop(false),
3201     _is_ptr_to_narrowklass(false),
3202     _is_ptr_to_boxed_value(false),
3203     _instance_id(instance_id) {
3204   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3205       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3206     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3207   }
3208 #ifdef _LP64
3209   if (this->offset() != 0) {
3210     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3211       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3212     } else if (klass() == NULL) {
3213       // Array with unknown body type
3214       assert(this->isa_aryptr(), "only arrays without klass");
3215       _is_ptr_to_narrowoop = UseCompressedOops;
3216     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3217       if (klass()->is_obj_array_klass()) {
3218         _is_ptr_to_narrowoop = true;
3219       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3220         // Check if the field of the value type array element contains oops
3221         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3222         int foffset = field_offset.get() + vk->first_field_offset();
3223         ciField* field = vk->get_field_by_offset(foffset, false);
3224         assert(field != NULL, "missing field");
3225         BasicType bt = field->layout_type();
3226         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3227       }
3228     } else if (klass()->is_instance_klass()) {
3229       if (this->isa_klassptr()) {
3230         // Perm objects don't use compressed references
3231       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3232         // unsafe access
3233         _is_ptr_to_narrowoop = UseCompressedOops;
3234       } else { // exclude unsafe ops
3235         assert(this->isa_instptr(), "must be an instance ptr.");
3236         if (klass() == ciEnv::current()->Class_klass() &&
3237             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3238              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3239           // Special hidden fields from the Class.
3240           assert(this->isa_instptr(), "must be an instance ptr.");
3241           _is_ptr_to_narrowoop = false;
3242         } else if (klass() == ciEnv::current()->Class_klass() &&
3243                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3244           // Static fields
3245           assert(o != NULL, "must be constant");
3246           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3247           BasicType basic_elem_type;
3248           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3249             // Special hidden field that contains the oop of the default value type
3250             basic_elem_type = T_VALUETYPE;
3251           } else {
3252             ciField* field = ik->get_field_by_offset(this->offset(), true);
3253             assert(field != NULL, "missing field");
3254             basic_elem_type = field->layout_type();
3255           }
3256           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3257                                                        basic_elem_type == T_VALUETYPE ||
3258                                                        basic_elem_type == T_ARRAY);
3259         } else {
3260           // Instance fields which contains a compressed oop references.
3261           ciInstanceKlass* ik = klass()->as_instance_klass();
3262           ciField* field = ik->get_field_by_offset(this->offset(), false);
3263           if (field != NULL) {
3264             BasicType basic_elem_type = field->layout_type();
3265             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3266                                                          basic_elem_type == T_VALUETYPE ||
3267                                                          basic_elem_type == T_ARRAY);
3268           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3269             // Compile::find_alias_type() cast exactness on all types to verify
3270             // that it does not affect alias type.
3271             _is_ptr_to_narrowoop = UseCompressedOops;
3272           } else {
3273             // Type for the copy start in LibraryCallKit::inline_native_clone().
3274             _is_ptr_to_narrowoop = UseCompressedOops;
3275           }
3276         }
3277       }
3278     }
3279   }
3280 #endif
3281 }
3282 
3283 //------------------------------make-------------------------------------------
3284 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3285                                    const TypePtr* speculative, int inline_depth) {
3286   assert(ptr != Constant, "no constant generic pointers");
3287   ciKlass*  k = Compile::current()->env()->Object_klass();
3288   bool      xk = false;
3289   ciObject* o = NULL;
3290   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3291 }
3292 
3293 
3294 //------------------------------cast_to_ptr_type-------------------------------
3295 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3296   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3297   if( ptr == _ptr ) return this;
3298   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3299 }
3300 
3301 //-----------------------------cast_to_instance_id----------------------------
3302 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3303   // There are no instances of a general oop.
3304   // Return self unchanged.
3305   return this;
3306 }
3307 
3308 //-----------------------------cast_to_exactness-------------------------------
3309 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3310   // There is no such thing as an exact general oop.
3311   // Return self unchanged.
3312   return this;
3313 }
3314 
3315 
3316 //------------------------------as_klass_type----------------------------------
3317 // Return the klass type corresponding to this instance or array type.
3318 // It is the type that is loaded from an object of this type.
3319 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3320   ciKlass* k = klass();
3321   bool    xk = klass_is_exact();
3322   if (k == NULL)
3323     return TypeKlassPtr::OBJECT;
3324   else
3325     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3326 }
3327 
3328 //------------------------------meet-------------------------------------------
3329 // Compute the MEET of two types.  It returns a new Type object.
3330 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3331   // Perform a fast test for common case; meeting the same types together.
3332   if( this == t ) return this;  // Meeting same type-rep?
3333 
3334   // Current "this->_base" is OopPtr
3335   switch (t->base()) {          // switch on original type
3336 
3337   case Int:                     // Mixing ints & oops happens when javac
3338   case Long:                    // reuses local variables
3339   case FloatTop:
3340   case FloatCon:
3341   case FloatBot:
3342   case DoubleTop:
3343   case DoubleCon:
3344   case DoubleBot:
3345   case NarrowOop:
3346   case NarrowKlass:
3347   case Bottom:                  // Ye Olde Default
3348     return Type::BOTTOM;
3349   case Top:
3350     return this;
3351 
3352   default:                      // All else is a mistake
3353     typerr(t);
3354 
3355   case RawPtr:
3356   case MetadataPtr:
3357   case KlassPtr:
3358     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3359 
3360   case AnyPtr: {
3361     // Found an AnyPtr type vs self-OopPtr type
3362     const TypePtr *tp = t->is_ptr();
3363     Offset offset = meet_offset(tp->offset());
3364     PTR ptr = meet_ptr(tp->ptr());
3365     const TypePtr* speculative = xmeet_speculative(tp);
3366     int depth = meet_inline_depth(tp->inline_depth());
3367     switch (tp->ptr()) {
3368     case Null:
3369       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3370       // else fall through:
3371     case TopPTR:
3372     case AnyNull: {
3373       int instance_id = meet_instance_id(InstanceTop);
3374       return make(ptr, offset, instance_id, speculative, depth);
3375     }
3376     case BotPTR:
3377     case NotNull:
3378       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3379     default: typerr(t);
3380     }
3381   }
3382 
3383   case OopPtr: {                 // Meeting to other OopPtrs
3384     const TypeOopPtr *tp = t->is_oopptr();
3385     int instance_id = meet_instance_id(tp->instance_id());
3386     const TypePtr* speculative = xmeet_speculative(tp);
3387     int depth = meet_inline_depth(tp->inline_depth());
3388     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3389   }
3390 
3391   case InstPtr:                  // For these, flip the call around to cut down
3392   case AryPtr:
3393     return t->xmeet(this);      // Call in reverse direction
3394 
3395   } // End of switch
3396   return this;                  // Return the double constant
3397 }
3398 
3399 
3400 //------------------------------xdual------------------------------------------
3401 // Dual of a pure heap pointer.  No relevant klass or oop information.
3402 const Type *TypeOopPtr::xdual() const {
3403   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3404   assert(const_oop() == NULL,             "no constants here");
3405   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3406 }
3407 
3408 //--------------------------make_from_klass_common-----------------------------
3409 // Computes the element-type given a klass.
3410 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3411   if (klass->is_instance_klass() || klass->is_valuetype()) {
3412     Compile* C = Compile::current();
3413     Dependencies* deps = C->dependencies();
3414     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3415     // Element is an instance
3416     bool klass_is_exact = false;
3417     if (klass->is_loaded()) {
3418       // Try to set klass_is_exact.
3419       ciInstanceKlass* ik = klass->as_instance_klass();
3420       klass_is_exact = ik->is_final();
3421       if (!klass_is_exact && klass_change
3422           && deps != NULL && UseUniqueSubclasses) {
3423         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3424         if (sub != NULL) {
3425           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3426           klass = ik = sub;
3427           klass_is_exact = sub->is_final();
3428         }
3429       }
3430       if (!klass_is_exact && try_for_exact
3431           && deps != NULL && UseExactTypes) {
3432         if (!ik->is_interface() && !ik->has_subklass()) {
3433           // Add a dependence; if concrete subclass added we need to recompile
3434           deps->assert_leaf_type(ik);
3435           klass_is_exact = true;
3436         }
3437       }
3438     }
3439     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3440   } else if (klass->is_obj_array_klass()) {
3441     // Element is an object or value array. Recursively call ourself.
3442     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3443     bool xk = etype->klass_is_exact();
3444     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3445     // We used to pass NotNull in here, asserting that the sub-arrays
3446     // are all not-null.  This is not true in generally, as code can
3447     // slam NULLs down in the subarrays.
3448     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3449     return arr;
3450   } else if (klass->is_type_array_klass()) {
3451     // Element is an typeArray
3452     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3453     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3454     // We used to pass NotNull in here, asserting that the array pointer
3455     // is not-null. That was not true in general.
3456     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3457     return arr;
3458   } else if (klass->is_value_array_klass()) {
3459     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3460     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3461     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3462     return arr;
3463   } else {
3464     ShouldNotReachHere();
3465     return NULL;
3466   }
3467 }
3468 
3469 //------------------------------make_from_constant-----------------------------
3470 // Make a java pointer from an oop constant
3471 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3472   assert(!o->is_null_object(), "null object not yet handled here.");
3473   ciKlass* klass = o->klass();
3474   if (klass->is_instance_klass() || klass->is_valuetype()) {
3475     // Element is an instance or value type
3476     if (require_constant) {
3477       if (!o->can_be_constant())  return NULL;
3478     } else if (!o->should_be_constant()) {
3479       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3480     }
3481     return TypeInstPtr::make(o);
3482   } else if (klass->is_obj_array_klass()) {
3483     // Element is an object array. Recursively call ourself.
3484     const TypeOopPtr *etype =
3485       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3486     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3487     // We used to pass NotNull in here, asserting that the sub-arrays
3488     // are all not-null.  This is not true in generally, as code can
3489     // slam NULLs down in the subarrays.
3490     if (require_constant) {
3491       if (!o->can_be_constant())  return NULL;
3492     } else if (!o->should_be_constant()) {
3493       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3494     }
3495     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3496     return arr;
3497   } else if (klass->is_type_array_klass()) {
3498     // Element is an typeArray
3499     const Type* etype =
3500       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3501     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3502     // We used to pass NotNull in here, asserting that the array pointer
3503     // is not-null. That was not true in general.
3504     if (require_constant) {
3505       if (!o->can_be_constant())  return NULL;
3506     } else if (!o->should_be_constant()) {
3507       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3508     }
3509     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3510     return arr;
3511   } else if (klass->is_value_array_klass()) {
3512     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3513     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3514     // We used to pass NotNull in here, asserting that the sub-arrays
3515     // are all not-null.  This is not true in generally, as code can
3516     // slam NULLs down in the subarrays.
3517     if (require_constant) {
3518       if (!o->can_be_constant())  return NULL;
3519     } else if (!o->should_be_constant()) {
3520       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3521     }
3522     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3523     return arr;
3524   }
3525 
3526   fatal("unhandled object type");
3527   return NULL;
3528 }
3529 
3530 //------------------------------get_con----------------------------------------
3531 intptr_t TypeOopPtr::get_con() const {
3532   assert( _ptr == Null || _ptr == Constant, "" );
3533   assert(offset() >= 0, "");
3534 
3535   if (offset() != 0) {
3536     // After being ported to the compiler interface, the compiler no longer
3537     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3538     // to a handle at compile time.  This handle is embedded in the generated
3539     // code and dereferenced at the time the nmethod is made.  Until that time,
3540     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3541     // have access to the addresses!).  This does not seem to currently happen,
3542     // but this assertion here is to help prevent its occurence.
3543     tty->print_cr("Found oop constant with non-zero offset");
3544     ShouldNotReachHere();
3545   }
3546 
3547   return (intptr_t)const_oop()->constant_encoding();
3548 }
3549 
3550 
3551 //-----------------------------filter------------------------------------------
3552 // Do not allow interface-vs.-noninterface joins to collapse to top.
3553 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3554 
3555   const Type* ft = join_helper(kills, include_speculative);
3556   const TypeInstPtr* ftip = ft->isa_instptr();
3557   const TypeInstPtr* ktip = kills->isa_instptr();
3558 
3559   if (ft->empty()) {
3560     // Check for evil case of 'this' being a class and 'kills' expecting an
3561     // interface.  This can happen because the bytecodes do not contain
3562     // enough type info to distinguish a Java-level interface variable
3563     // from a Java-level object variable.  If we meet 2 classes which
3564     // both implement interface I, but their meet is at 'j/l/O' which
3565     // doesn't implement I, we have no way to tell if the result should
3566     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3567     // into a Phi which "knows" it's an Interface type we'll have to
3568     // uplift the type.
3569     if (!empty()) {
3570       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3571         return kills;           // Uplift to interface
3572       }
3573       // Also check for evil cases of 'this' being a class array
3574       // and 'kills' expecting an array of interfaces.
3575       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3576       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3577         return kills;           // Uplift to array of interface
3578       }
3579     }
3580 
3581     return Type::TOP;           // Canonical empty value
3582   }
3583 
3584   // If we have an interface-typed Phi or cast and we narrow to a class type,
3585   // the join should report back the class.  However, if we have a J/L/Object
3586   // class-typed Phi and an interface flows in, it's possible that the meet &
3587   // join report an interface back out.  This isn't possible but happens
3588   // because the type system doesn't interact well with interfaces.
3589   if (ftip != NULL && ktip != NULL &&
3590       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3591       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3592     assert(!ftip->klass_is_exact(), "interface could not be exact");
3593     return ktip->cast_to_ptr_type(ftip->ptr());
3594   }
3595 
3596   return ft;
3597 }
3598 
3599 //------------------------------eq---------------------------------------------
3600 // Structural equality check for Type representations
3601 bool TypeOopPtr::eq( const Type *t ) const {
3602   const TypeOopPtr *a = (const TypeOopPtr*)t;
3603   if (_klass_is_exact != a->_klass_is_exact ||
3604       _instance_id != a->_instance_id)  return false;
3605   ciObject* one = const_oop();
3606   ciObject* two = a->const_oop();
3607   if (one == NULL || two == NULL) {
3608     return (one == two) && TypePtr::eq(t);
3609   } else {
3610     return one->equals(two) && TypePtr::eq(t);
3611   }
3612 }
3613 
3614 //------------------------------hash-------------------------------------------
3615 // Type-specific hashing function.
3616 int TypeOopPtr::hash(void) const {
3617   return
3618     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3619              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3620 }
3621 
3622 //------------------------------dump2------------------------------------------
3623 #ifndef PRODUCT
3624 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3625   st->print("oopptr:%s", ptr_msg[_ptr]);
3626   if( _klass_is_exact ) st->print(":exact");
3627   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3628   _offset.dump2(st);
3629   if (_instance_id == InstanceTop)
3630     st->print(",iid=top");
3631   else if (_instance_id != InstanceBot)
3632     st->print(",iid=%d",_instance_id);
3633 
3634   dump_inline_depth(st);
3635   dump_speculative(st);
3636 }
3637 #endif
3638 
3639 //------------------------------singleton--------------------------------------
3640 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3641 // constants
3642 bool TypeOopPtr::singleton(void) const {
3643   // detune optimizer to not generate constant oop + constant offset as a constant!
3644   // TopPTR, Null, AnyNull, Constant are all singletons
3645   return (offset() == 0) && !below_centerline(_ptr);
3646 }
3647 
3648 //------------------------------add_offset-------------------------------------
3649 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3650   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3651 }
3652 
3653 /**
3654  * Return same type without a speculative part
3655  */
3656 const Type* TypeOopPtr::remove_speculative() const {
3657   if (_speculative == NULL) {
3658     return this;
3659   }
3660   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3661   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3662 }
3663 
3664 /**
3665  * Return same type but drop speculative part if we know we won't use
3666  * it
3667  */
3668 const Type* TypeOopPtr::cleanup_speculative() const {
3669   // If the klass is exact and the ptr is not null then there's
3670   // nothing that the speculative type can help us with
3671   if (klass_is_exact() && !maybe_null()) {
3672     return remove_speculative();
3673   }
3674   return TypePtr::cleanup_speculative();
3675 }
3676 
3677 /**
3678  * Return same type but with a different inline depth (used for speculation)
3679  *
3680  * @param depth  depth to meet with
3681  */
3682 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3683   if (!UseInlineDepthForSpeculativeTypes) {
3684     return this;
3685   }
3686   return make(_ptr, _offset, _instance_id, _speculative, depth);
3687 }
3688 
3689 //------------------------------meet_instance_id--------------------------------
3690 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3691   // Either is 'TOP' instance?  Return the other instance!
3692   if( _instance_id == InstanceTop ) return  instance_id;
3693   if(  instance_id == InstanceTop ) return _instance_id;
3694   // If either is different, return 'BOTTOM' instance
3695   if( _instance_id != instance_id ) return InstanceBot;
3696   return _instance_id;
3697 }
3698 
3699 //------------------------------dual_instance_id--------------------------------
3700 int TypeOopPtr::dual_instance_id( ) const {
3701   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3702   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3703   return _instance_id;              // Map everything else into self
3704 }
3705 
3706 /**
3707  * Check whether new profiling would improve speculative type
3708  *
3709  * @param   exact_kls    class from profiling
3710  * @param   inline_depth inlining depth of profile point
3711  *
3712  * @return  true if type profile is valuable
3713  */
3714 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3715   // no way to improve an already exact type
3716   if (klass_is_exact()) {
3717     return false;
3718   }
3719   return TypePtr::would_improve_type(exact_kls, inline_depth);
3720 }
3721 
3722 //=============================================================================
3723 // Convenience common pre-built types.
3724 const TypeInstPtr *TypeInstPtr::NOTNULL;
3725 const TypeInstPtr *TypeInstPtr::BOTTOM;
3726 const TypeInstPtr *TypeInstPtr::MIRROR;
3727 const TypeInstPtr *TypeInstPtr::MARK;
3728 const TypeInstPtr *TypeInstPtr::KLASS;
3729 
3730 //------------------------------TypeInstPtr-------------------------------------
3731 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3732                          int instance_id, const TypePtr* speculative, int inline_depth)
3733   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3734     _name(k->name()) {
3735    assert(k != NULL &&
3736           (k->is_loaded() || o == NULL),
3737           "cannot have constants with non-loaded klass");
3738 };
3739 
3740 //------------------------------make-------------------------------------------
3741 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3742                                      ciKlass* k,
3743                                      bool xk,
3744                                      ciObject* o,
3745                                      Offset offset,
3746                                      int instance_id,
3747                                      const TypePtr* speculative,
3748                                      int inline_depth) {
3749   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3750   // Either const_oop() is NULL or else ptr is Constant
3751   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3752           "constant pointers must have a value supplied" );
3753   // Ptr is never Null
3754   assert( ptr != Null, "NULL pointers are not typed" );
3755 
3756   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3757   if (!UseExactTypes)  xk = false;
3758   if (ptr == Constant) {
3759     // Note:  This case includes meta-object constants, such as methods.
3760     xk = true;
3761   } else if (k->is_loaded()) {
3762     ciInstanceKlass* ik = k->as_instance_klass();
3763     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3764     if (xk && ik->is_interface())  xk = false;  // no exact interface
3765   }
3766 
3767   // Now hash this baby
3768   TypeInstPtr *result =
3769     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3770 
3771   return result;
3772 }
3773 
3774 /**
3775  *  Create constant type for a constant boxed value
3776  */
3777 const Type* TypeInstPtr::get_const_boxed_value() const {
3778   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3779   assert((const_oop() != NULL), "should be called only for constant object");
3780   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3781   BasicType bt = constant.basic_type();
3782   switch (bt) {
3783     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3784     case T_INT:      return TypeInt::make(constant.as_int());
3785     case T_CHAR:     return TypeInt::make(constant.as_char());
3786     case T_BYTE:     return TypeInt::make(constant.as_byte());
3787     case T_SHORT:    return TypeInt::make(constant.as_short());
3788     case T_FLOAT:    return TypeF::make(constant.as_float());
3789     case T_DOUBLE:   return TypeD::make(constant.as_double());
3790     case T_LONG:     return TypeLong::make(constant.as_long());
3791     default:         break;
3792   }
3793   fatal("Invalid boxed value type '%s'", type2name(bt));
3794   return NULL;
3795 }
3796 
3797 //------------------------------cast_to_ptr_type-------------------------------
3798 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3799   if( ptr == _ptr ) return this;
3800   // Reconstruct _sig info here since not a problem with later lazy
3801   // construction, _sig will show up on demand.
3802   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3803 }
3804 
3805 
3806 //-----------------------------cast_to_exactness-------------------------------
3807 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3808   if( klass_is_exact == _klass_is_exact ) return this;
3809   if (!UseExactTypes)  return this;
3810   if (!_klass->is_loaded())  return this;
3811   ciInstanceKlass* ik = _klass->as_instance_klass();
3812   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3813   if( ik->is_interface() )              return this;  // cannot set xk
3814   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3815 }
3816 
3817 //-----------------------------cast_to_instance_id----------------------------
3818 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3819   if( instance_id == _instance_id ) return this;
3820   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3821 }
3822 
3823 //------------------------------xmeet_unloaded---------------------------------
3824 // Compute the MEET of two InstPtrs when at least one is unloaded.
3825 // Assume classes are different since called after check for same name/class-loader
3826 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3827     Offset off = meet_offset(tinst->offset());
3828     PTR ptr = meet_ptr(tinst->ptr());
3829     int instance_id = meet_instance_id(tinst->instance_id());
3830     const TypePtr* speculative = xmeet_speculative(tinst);
3831     int depth = meet_inline_depth(tinst->inline_depth());
3832 
3833     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3834     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3835     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3836       //
3837       // Meet unloaded class with java/lang/Object
3838       //
3839       // Meet
3840       //          |                     Unloaded Class
3841       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3842       //  ===================================================================
3843       //   TOP    | ..........................Unloaded......................|
3844       //  AnyNull |  U-AN    |................Unloaded......................|
3845       // Constant | ... O-NN .................................. |   O-BOT   |
3846       //  NotNull | ... O-NN .................................. |   O-BOT   |
3847       //  BOTTOM  | ........................Object-BOTTOM ..................|
3848       //
3849       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3850       //
3851       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3852       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3853       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3854       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3855         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3856         else                                      { return TypeInstPtr::NOTNULL; }
3857       }
3858       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3859 
3860       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3861     }
3862 
3863     // Both are unloaded, not the same class, not Object
3864     // Or meet unloaded with a different loaded class, not java/lang/Object
3865     if( ptr != TypePtr::BotPTR ) {
3866       return TypeInstPtr::NOTNULL;
3867     }
3868     return TypeInstPtr::BOTTOM;
3869 }
3870 
3871 
3872 //------------------------------meet-------------------------------------------
3873 // Compute the MEET of two types.  It returns a new Type object.
3874 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3875   // Perform a fast test for common case; meeting the same types together.
3876   if( this == t ) return this;  // Meeting same type-rep?
3877 
3878   // Current "this->_base" is Pointer
3879   switch (t->base()) {          // switch on original type
3880 
3881   case Int:                     // Mixing ints & oops happens when javac
3882   case Long:                    // reuses local variables
3883   case FloatTop:
3884   case FloatCon:
3885   case FloatBot:
3886   case DoubleTop:
3887   case DoubleCon:
3888   case DoubleBot:
3889   case NarrowOop:
3890   case NarrowKlass:
3891   case Bottom:                  // Ye Olde Default
3892     return Type::BOTTOM;
3893   case Top:
3894     return this;
3895 
3896   default:                      // All else is a mistake
3897     typerr(t);
3898 
3899   case MetadataPtr:
3900   case KlassPtr:
3901   case RawPtr: return TypePtr::BOTTOM;
3902 
3903   case AryPtr: {                // All arrays inherit from Object class
3904     const TypeAryPtr *tp = t->is_aryptr();
3905     Offset offset = meet_offset(tp->offset());
3906     PTR ptr = meet_ptr(tp->ptr());
3907     int instance_id = meet_instance_id(tp->instance_id());
3908     const TypePtr* speculative = xmeet_speculative(tp);
3909     int depth = meet_inline_depth(tp->inline_depth());
3910     switch (ptr) {
3911     case TopPTR:
3912     case AnyNull:                // Fall 'down' to dual of object klass
3913       // For instances when a subclass meets a superclass we fall
3914       // below the centerline when the superclass is exact. We need to
3915       // do the same here.
3916       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3917         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3918       } else {
3919         // cannot subclass, so the meet has to fall badly below the centerline
3920         ptr = NotNull;
3921         instance_id = InstanceBot;
3922         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3923       }
3924     case Constant:
3925     case NotNull:
3926     case BotPTR:                // Fall down to object klass
3927       // LCA is object_klass, but if we subclass from the top we can do better
3928       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3929         // If 'this' (InstPtr) is above the centerline and it is Object class
3930         // then we can subclass in the Java class hierarchy.
3931         // For instances when a subclass meets a superclass we fall
3932         // below the centerline when the superclass is exact. We need
3933         // to do the same here.
3934         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3935           // that is, tp's array type is a subtype of my klass
3936           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3937                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3938         }
3939       }
3940       // The other case cannot happen, since I cannot be a subtype of an array.
3941       // The meet falls down to Object class below centerline.
3942       if( ptr == Constant )
3943          ptr = NotNull;
3944       instance_id = InstanceBot;
3945       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3946     default: typerr(t);
3947     }
3948   }
3949 
3950   case OopPtr: {                // Meeting to OopPtrs
3951     // Found a OopPtr type vs self-InstPtr type
3952     const TypeOopPtr *tp = t->is_oopptr();
3953     Offset offset = meet_offset(tp->offset());
3954     PTR ptr = meet_ptr(tp->ptr());
3955     switch (tp->ptr()) {
3956     case TopPTR:
3957     case AnyNull: {
3958       int instance_id = meet_instance_id(InstanceTop);
3959       const TypePtr* speculative = xmeet_speculative(tp);
3960       int depth = meet_inline_depth(tp->inline_depth());
3961       return make(ptr, klass(), klass_is_exact(),
3962                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3963     }
3964     case NotNull:
3965     case BotPTR: {
3966       int instance_id = meet_instance_id(tp->instance_id());
3967       const TypePtr* speculative = xmeet_speculative(tp);
3968       int depth = meet_inline_depth(tp->inline_depth());
3969       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3970     }
3971     default: typerr(t);
3972     }
3973   }
3974 
3975   case AnyPtr: {                // Meeting to AnyPtrs
3976     // Found an AnyPtr type vs self-InstPtr type
3977     const TypePtr *tp = t->is_ptr();
3978     Offset offset = meet_offset(tp->offset());
3979     PTR ptr = meet_ptr(tp->ptr());
3980     int instance_id = meet_instance_id(InstanceTop);
3981     const TypePtr* speculative = xmeet_speculative(tp);
3982     int depth = meet_inline_depth(tp->inline_depth());
3983     switch (tp->ptr()) {
3984     case Null:
3985       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3986       // else fall through to AnyNull
3987     case TopPTR:
3988     case AnyNull: {
3989       return make(ptr, klass(), klass_is_exact(),
3990                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3991     }
3992     case NotNull:
3993     case BotPTR:
3994       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3995     default: typerr(t);
3996     }
3997   }
3998 
3999   /*
4000                  A-top         }
4001                /   |   \       }  Tops
4002            B-top A-any C-top   }
4003               | /  |  \ |      }  Any-nulls
4004            B-any   |   C-any   }
4005               |    |    |
4006            B-con A-con C-con   } constants; not comparable across classes
4007               |    |    |
4008            B-not   |   C-not   }
4009               | \  |  / |      }  not-nulls
4010            B-bot A-not C-bot   }
4011                \   |   /       }  Bottoms
4012                  A-bot         }
4013   */
4014 
4015   case InstPtr: {                // Meeting 2 Oops?
4016     // Found an InstPtr sub-type vs self-InstPtr type
4017     const TypeInstPtr *tinst = t->is_instptr();
4018     Offset off = meet_offset( tinst->offset() );
4019     PTR ptr = meet_ptr( tinst->ptr() );
4020     int instance_id = meet_instance_id(tinst->instance_id());
4021     const TypePtr* speculative = xmeet_speculative(tinst);
4022     int depth = meet_inline_depth(tinst->inline_depth());
4023 
4024     // Check for easy case; klasses are equal (and perhaps not loaded!)
4025     // If we have constants, then we created oops so classes are loaded
4026     // and we can handle the constants further down.  This case handles
4027     // both-not-loaded or both-loaded classes
4028     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4029       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4030     }
4031 
4032     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4033     ciKlass* tinst_klass = tinst->klass();
4034     ciKlass* this_klass  = this->klass();
4035     bool tinst_xk = tinst->klass_is_exact();
4036     bool this_xk  = this->klass_is_exact();
4037     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4038       // One of these classes has not been loaded
4039       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4040 #ifndef PRODUCT
4041       if( PrintOpto && Verbose ) {
4042         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4043         tty->print("  this == "); this->dump(); tty->cr();
4044         tty->print(" tinst == "); tinst->dump(); tty->cr();
4045       }
4046 #endif
4047       return unloaded_meet;
4048     }
4049 
4050     // Handle mixing oops and interfaces first.
4051     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4052                                         tinst_klass == ciEnv::current()->Object_klass())) {
4053       ciKlass *tmp = tinst_klass; // Swap interface around
4054       tinst_klass = this_klass;
4055       this_klass = tmp;
4056       bool tmp2 = tinst_xk;
4057       tinst_xk = this_xk;
4058       this_xk = tmp2;
4059     }
4060     if (tinst_klass->is_interface() &&
4061         !(this_klass->is_interface() ||
4062           // Treat java/lang/Object as an honorary interface,
4063           // because we need a bottom for the interface hierarchy.
4064           this_klass == ciEnv::current()->Object_klass())) {
4065       // Oop meets interface!
4066 
4067       // See if the oop subtypes (implements) interface.
4068       ciKlass *k;
4069       bool xk;
4070       if( this_klass->is_subtype_of( tinst_klass ) ) {
4071         // Oop indeed subtypes.  Now keep oop or interface depending
4072         // on whether we are both above the centerline or either is
4073         // below the centerline.  If we are on the centerline
4074         // (e.g., Constant vs. AnyNull interface), use the constant.
4075         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4076         // If we are keeping this_klass, keep its exactness too.
4077         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4078       } else {                  // Does not implement, fall to Object
4079         // Oop does not implement interface, so mixing falls to Object
4080         // just like the verifier does (if both are above the
4081         // centerline fall to interface)
4082         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4083         xk = above_centerline(ptr) ? tinst_xk : false;
4084         // Watch out for Constant vs. AnyNull interface.
4085         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4086         instance_id = InstanceBot;
4087       }
4088       ciObject* o = NULL;  // the Constant value, if any
4089       if (ptr == Constant) {
4090         // Find out which constant.
4091         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4092       }
4093       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4094     }
4095 
4096     // Either oop vs oop or interface vs interface or interface vs Object
4097 
4098     // !!! Here's how the symmetry requirement breaks down into invariants:
4099     // If we split one up & one down AND they subtype, take the down man.
4100     // If we split one up & one down AND they do NOT subtype, "fall hard".
4101     // If both are up and they subtype, take the subtype class.
4102     // If both are up and they do NOT subtype, "fall hard".
4103     // If both are down and they subtype, take the supertype class.
4104     // If both are down and they do NOT subtype, "fall hard".
4105     // Constants treated as down.
4106 
4107     // Now, reorder the above list; observe that both-down+subtype is also
4108     // "fall hard"; "fall hard" becomes the default case:
4109     // If we split one up & one down AND they subtype, take the down man.
4110     // If both are up and they subtype, take the subtype class.
4111 
4112     // If both are down and they subtype, "fall hard".
4113     // If both are down and they do NOT subtype, "fall hard".
4114     // If both are up and they do NOT subtype, "fall hard".
4115     // If we split one up & one down AND they do NOT subtype, "fall hard".
4116 
4117     // If a proper subtype is exact, and we return it, we return it exactly.
4118     // If a proper supertype is exact, there can be no subtyping relationship!
4119     // If both types are equal to the subtype, exactness is and-ed below the
4120     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4121 
4122     // Check for subtyping:
4123     ciKlass *subtype = NULL;
4124     bool subtype_exact = false;
4125     if( tinst_klass->equals(this_klass) ) {
4126       subtype = this_klass;
4127       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4128     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4129       subtype = this_klass;     // Pick subtyping class
4130       subtype_exact = this_xk;
4131     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4132       subtype = tinst_klass;    // Pick subtyping class
4133       subtype_exact = tinst_xk;
4134     }
4135 
4136     if( subtype ) {
4137       if( above_centerline(ptr) ) { // both are up?
4138         this_klass = tinst_klass = subtype;
4139         this_xk = tinst_xk = subtype_exact;
4140       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4141         this_klass = tinst_klass; // tinst is down; keep down man
4142         this_xk = tinst_xk;
4143       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4144         tinst_klass = this_klass; // this is down; keep down man
4145         tinst_xk = this_xk;
4146       } else {
4147         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4148       }
4149     }
4150 
4151     // Check for classes now being equal
4152     if (tinst_klass->equals(this_klass)) {
4153       // If the klasses are equal, the constants may still differ.  Fall to
4154       // NotNull if they do (neither constant is NULL; that is a special case
4155       // handled elsewhere).
4156       ciObject* o = NULL;             // Assume not constant when done
4157       ciObject* this_oop  = const_oop();
4158       ciObject* tinst_oop = tinst->const_oop();
4159       if( ptr == Constant ) {
4160         if (this_oop != NULL && tinst_oop != NULL &&
4161             this_oop->equals(tinst_oop) )
4162           o = this_oop;
4163         else if (above_centerline(this ->_ptr))
4164           o = tinst_oop;
4165         else if (above_centerline(tinst ->_ptr))
4166           o = this_oop;
4167         else
4168           ptr = NotNull;
4169       }
4170       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4171     } // Else classes are not equal
4172 
4173     // Since klasses are different, we require a LCA in the Java
4174     // class hierarchy - which means we have to fall to at least NotNull.
4175     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4176       ptr = NotNull;
4177 
4178     instance_id = InstanceBot;
4179 
4180     // Now we find the LCA of Java classes
4181     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4182     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4183   } // End of case InstPtr
4184 
4185   case ValueType: {
4186     const TypeValueType *tv = t->is_valuetype();
4187 
4188     if (above_centerline(ptr())) {
4189       if (tv->value_klass()->is_subtype_of(_klass)) {
4190         return t;
4191       } else {
4192         return TypeInstPtr::make(NotNull, _klass);
4193       }
4194     } else {
4195       if (tv->value_klass()->is_subtype_of(_klass)) {
4196         return TypeInstPtr::make(ptr(), _klass);
4197       } else {
4198         return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4199       }
4200     }
4201   }
4202 
4203   } // End of switch
4204   return this;                  // Return the double constant
4205 }
4206 
4207 
4208 //------------------------java_mirror_type--------------------------------------
4209 ciType* TypeInstPtr::java_mirror_type() const {
4210   // must be a singleton type
4211   if( const_oop() == NULL )  return NULL;
4212 
4213   // must be of type java.lang.Class
4214   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4215 
4216   return const_oop()->as_instance()->java_mirror_type();
4217 }
4218 
4219 
4220 //------------------------------xdual------------------------------------------
4221 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4222 // inheritance mechanism.
4223 const Type *TypeInstPtr::xdual() const {
4224   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4225 }
4226 
4227 //------------------------------eq---------------------------------------------
4228 // Structural equality check for Type representations
4229 bool TypeInstPtr::eq( const Type *t ) const {
4230   const TypeInstPtr *p = t->is_instptr();
4231   return
4232     klass()->equals(p->klass()) &&
4233     TypeOopPtr::eq(p);          // Check sub-type stuff
4234 }
4235 
4236 //------------------------------hash-------------------------------------------
4237 // Type-specific hashing function.
4238 int TypeInstPtr::hash(void) const {
4239   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4240   return hash;
4241 }
4242 
4243 //------------------------------dump2------------------------------------------
4244 // Dump oop Type
4245 #ifndef PRODUCT
4246 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4247   // Print the name of the klass.
4248   klass()->print_name_on(st);
4249 
4250   switch( _ptr ) {
4251   case Constant:
4252     // TO DO: Make CI print the hex address of the underlying oop.
4253     if (WizardMode || Verbose) {
4254       const_oop()->print_oop(st);
4255     }
4256   case BotPTR:
4257     if (!WizardMode && !Verbose) {
4258       if( _klass_is_exact ) st->print(":exact");
4259       break;
4260     }
4261   case TopPTR:
4262   case AnyNull:
4263   case NotNull:
4264     st->print(":%s", ptr_msg[_ptr]);
4265     if( _klass_is_exact ) st->print(":exact");
4266     break;
4267   default:
4268     break;
4269   }
4270 
4271   _offset.dump2(st);
4272 
4273   st->print(" *");
4274   if (_instance_id == InstanceTop)
4275     st->print(",iid=top");
4276   else if (_instance_id != InstanceBot)
4277     st->print(",iid=%d",_instance_id);
4278 
4279   dump_inline_depth(st);
4280   dump_speculative(st);
4281 }
4282 #endif
4283 
4284 //------------------------------add_offset-------------------------------------
4285 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4286   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4287               _instance_id, add_offset_speculative(offset), _inline_depth);
4288 }
4289 
4290 const Type *TypeInstPtr::remove_speculative() const {
4291   if (_speculative == NULL) {
4292     return this;
4293   }
4294   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4295   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4296               _instance_id, NULL, _inline_depth);
4297 }
4298 
4299 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4300   if (!UseInlineDepthForSpeculativeTypes) {
4301     return this;
4302   }
4303   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4304 }
4305 
4306 //=============================================================================
4307 // Convenience common pre-built types.
4308 const TypeAryPtr *TypeAryPtr::RANGE;
4309 const TypeAryPtr *TypeAryPtr::OOPS;
4310 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4311 const TypeAryPtr *TypeAryPtr::BYTES;
4312 const TypeAryPtr *TypeAryPtr::SHORTS;
4313 const TypeAryPtr *TypeAryPtr::CHARS;
4314 const TypeAryPtr *TypeAryPtr::INTS;
4315 const TypeAryPtr *TypeAryPtr::LONGS;
4316 const TypeAryPtr *TypeAryPtr::FLOATS;
4317 const TypeAryPtr *TypeAryPtr::DOUBLES;
4318 
4319 //------------------------------make-------------------------------------------
4320 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4321                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4322   assert(!(k == NULL && ary->_elem->isa_int()),
4323          "integral arrays must be pre-equipped with a class");
4324   if (!xk)  xk = ary->ary_must_be_exact();
4325   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4326   if (!UseExactTypes)  xk = (ptr == Constant);
4327   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4328 }
4329 
4330 //------------------------------make-------------------------------------------
4331 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4332                                    int instance_id, const TypePtr* speculative, int inline_depth,
4333                                    bool is_autobox_cache) {
4334   assert(!(k == NULL && ary->_elem->isa_int()),
4335          "integral arrays must be pre-equipped with a class");
4336   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4337   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4338   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4339   if (!UseExactTypes)  xk = (ptr == Constant);
4340   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4341 }
4342 
4343 //------------------------------cast_to_ptr_type-------------------------------
4344 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4345   if( ptr == _ptr ) return this;
4346   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4347 }
4348 
4349 
4350 //-----------------------------cast_to_exactness-------------------------------
4351 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4352   if( klass_is_exact == _klass_is_exact ) return this;
4353   if (!UseExactTypes)  return this;
4354   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4355   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4356 }
4357 
4358 //-----------------------------cast_to_instance_id----------------------------
4359 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4360   if( instance_id == _instance_id ) return this;
4361   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4362 }
4363 
4364 //-----------------------------narrow_size_type-------------------------------
4365 // Local cache for arrayOopDesc::max_array_length(etype),
4366 // which is kind of slow (and cached elsewhere by other users).
4367 static jint max_array_length_cache[T_CONFLICT+1];
4368 static jint max_array_length(BasicType etype) {
4369   jint& cache = max_array_length_cache[etype];
4370   jint res = cache;
4371   if (res == 0) {
4372     switch (etype) {
4373     case T_NARROWOOP:
4374       etype = T_OBJECT;
4375       break;
4376     case T_NARROWKLASS:
4377     case T_CONFLICT:
4378     case T_ILLEGAL:
4379     case T_VOID:
4380       etype = T_BYTE;           // will produce conservatively high value
4381       break;
4382     default:
4383       break;
4384     }
4385     cache = res = arrayOopDesc::max_array_length(etype);
4386   }
4387   return res;
4388 }
4389 
4390 // Narrow the given size type to the index range for the given array base type.
4391 // Return NULL if the resulting int type becomes empty.
4392 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4393   jint hi = size->_hi;
4394   jint lo = size->_lo;
4395   jint min_lo = 0;
4396   jint max_hi = max_array_length(elem()->basic_type());
4397   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4398   bool chg = false;
4399   if (lo < min_lo) {
4400     lo = min_lo;
4401     if (size->is_con()) {
4402       hi = lo;
4403     }
4404     chg = true;
4405   }
4406   if (hi > max_hi) {
4407     hi = max_hi;
4408     if (size->is_con()) {
4409       lo = hi;
4410     }
4411     chg = true;
4412   }
4413   // Negative length arrays will produce weird intermediate dead fast-path code
4414   if (lo > hi)
4415     return TypeInt::ZERO;
4416   if (!chg)
4417     return size;
4418   return TypeInt::make(lo, hi, Type::WidenMin);
4419 }
4420 
4421 //-------------------------------cast_to_size----------------------------------
4422 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4423   assert(new_size != NULL, "");
4424   new_size = narrow_size_type(new_size);
4425   if (new_size == size())  return this;
4426   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4427   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4428 }
4429 
4430 //------------------------------cast_to_stable---------------------------------
4431 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4432   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4433     return this;
4434 
4435   const Type* elem = this->elem();
4436   const TypePtr* elem_ptr = elem->make_ptr();
4437 
4438   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4439     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4440     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4441   }
4442 
4443   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4444 
4445   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4446 }
4447 
4448 //-----------------------------stable_dimension--------------------------------
4449 int TypeAryPtr::stable_dimension() const {
4450   if (!is_stable())  return 0;
4451   int dim = 1;
4452   const TypePtr* elem_ptr = elem()->make_ptr();
4453   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4454     dim += elem_ptr->is_aryptr()->stable_dimension();
4455   return dim;
4456 }
4457 
4458 //----------------------cast_to_autobox_cache-----------------------------------
4459 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4460   if (is_autobox_cache() == cache)  return this;
4461   const TypeOopPtr* etype = elem()->make_oopptr();
4462   if (etype == NULL)  return this;
4463   // The pointers in the autobox arrays are always non-null.
4464   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4465   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4466   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4467   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4468 }
4469 
4470 //------------------------------eq---------------------------------------------
4471 // Structural equality check for Type representations
4472 bool TypeAryPtr::eq( const Type *t ) const {
4473   const TypeAryPtr *p = t->is_aryptr();
4474   return
4475     _ary == p->_ary &&  // Check array
4476     TypeOopPtr::eq(p) &&// Check sub-parts
4477     _field_offset == p->_field_offset;
4478 }
4479 
4480 //------------------------------hash-------------------------------------------
4481 // Type-specific hashing function.
4482 int TypeAryPtr::hash(void) const {
4483   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4484 }
4485 
4486 //------------------------------meet-------------------------------------------
4487 // Compute the MEET of two types.  It returns a new Type object.
4488 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4489   // Perform a fast test for common case; meeting the same types together.
4490   if( this == t ) return this;  // Meeting same type-rep?
4491   // Current "this->_base" is Pointer
4492   switch (t->base()) {          // switch on original type
4493 
4494   // Mixing ints & oops happens when javac reuses local variables
4495   case Int:
4496   case Long:
4497   case FloatTop:
4498   case FloatCon:
4499   case FloatBot:
4500   case DoubleTop:
4501   case DoubleCon:
4502   case DoubleBot:
4503   case NarrowOop:
4504   case NarrowKlass:
4505   case Bottom:                  // Ye Olde Default
4506     return Type::BOTTOM;
4507   case Top:
4508     return this;
4509 
4510   default:                      // All else is a mistake
4511     typerr(t);
4512 
4513   case OopPtr: {                // Meeting to OopPtrs
4514     // Found a OopPtr type vs self-AryPtr type
4515     const TypeOopPtr *tp = t->is_oopptr();
4516     Offset offset = meet_offset(tp->offset());
4517     PTR ptr = meet_ptr(tp->ptr());
4518     int depth = meet_inline_depth(tp->inline_depth());
4519     const TypePtr* speculative = xmeet_speculative(tp);
4520     switch (tp->ptr()) {
4521     case TopPTR:
4522     case AnyNull: {
4523       int instance_id = meet_instance_id(InstanceTop);
4524       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4525                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4526     }
4527     case BotPTR:
4528     case NotNull: {
4529       int instance_id = meet_instance_id(tp->instance_id());
4530       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4531     }
4532     default: ShouldNotReachHere();
4533     }
4534   }
4535 
4536   case AnyPtr: {                // Meeting two AnyPtrs
4537     // Found an AnyPtr type vs self-AryPtr type
4538     const TypePtr *tp = t->is_ptr();
4539     Offset offset = meet_offset(tp->offset());
4540     PTR ptr = meet_ptr(tp->ptr());
4541     const TypePtr* speculative = xmeet_speculative(tp);
4542     int depth = meet_inline_depth(tp->inline_depth());
4543     switch (tp->ptr()) {
4544     case TopPTR:
4545       return this;
4546     case BotPTR:
4547     case NotNull:
4548       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4549     case Null:
4550       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4551       // else fall through to AnyNull
4552     case AnyNull: {
4553       int instance_id = meet_instance_id(InstanceTop);
4554       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4555                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4556     }
4557     default: ShouldNotReachHere();
4558     }
4559   }
4560 
4561   case MetadataPtr:
4562   case KlassPtr:
4563   case RawPtr: return TypePtr::BOTTOM;
4564 
4565   case AryPtr: {                // Meeting 2 references?
4566     const TypeAryPtr *tap = t->is_aryptr();
4567     Offset off = meet_offset(tap->offset());
4568     Offset field_off = meet_field_offset(tap->field_offset());
4569     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4570     PTR ptr = meet_ptr(tap->ptr());
4571     int instance_id = meet_instance_id(tap->instance_id());
4572     const TypePtr* speculative = xmeet_speculative(tap);
4573     int depth = meet_inline_depth(tap->inline_depth());
4574     ciKlass* lazy_klass = NULL;
4575     if (tary->_elem->isa_int()) {
4576       // Integral array element types have irrelevant lattice relations.
4577       // It is the klass that determines array layout, not the element type.
4578       if (_klass == NULL)
4579         lazy_klass = tap->_klass;
4580       else if (tap->_klass == NULL || tap->_klass == _klass) {
4581         lazy_klass = _klass;
4582       } else {
4583         // Something like byte[int+] meets char[int+].
4584         // This must fall to bottom, not (int[-128..65535])[int+].
4585         instance_id = InstanceBot;
4586         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4587       }
4588     } else // Non integral arrays.
4589       // Must fall to bottom if exact klasses in upper lattice
4590       // are not equal or super klass is exact.
4591       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4592           // meet with top[] and bottom[] are processed further down:
4593           tap->_klass != NULL  && this->_klass != NULL   &&
4594           // both are exact and not equal:
4595           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4596            // 'tap'  is exact and super or unrelated:
4597            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4598            // 'this' is exact and super or unrelated:
4599            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4600       if (above_centerline(ptr)) {
4601         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4602       }
4603       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4604     }
4605 
4606     bool xk = false;
4607     switch (tap->ptr()) {
4608     case AnyNull:
4609     case TopPTR:
4610       // Compute new klass on demand, do not use tap->_klass
4611       if (below_centerline(this->_ptr)) {
4612         xk = this->_klass_is_exact;
4613       } else {
4614         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4615       }
4616       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4617     case Constant: {
4618       ciObject* o = const_oop();
4619       if( _ptr == Constant ) {
4620         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4621           xk = (klass() == tap->klass());
4622           ptr = NotNull;
4623           o = NULL;
4624           instance_id = InstanceBot;
4625         } else {
4626           xk = true;
4627         }
4628       } else if(above_centerline(_ptr)) {
4629         o = tap->const_oop();
4630         xk = true;
4631       } else {
4632         // Only precise for identical arrays
4633         xk = this->_klass_is_exact && (klass() == tap->klass());
4634       }
4635       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4636     }
4637     case NotNull:
4638     case BotPTR:
4639       // Compute new klass on demand, do not use tap->_klass
4640       if (above_centerline(this->_ptr))
4641             xk = tap->_klass_is_exact;
4642       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4643               (klass() == tap->klass()); // Only precise for identical arrays
4644       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4645     default: ShouldNotReachHere();
4646     }
4647   }
4648 
4649   // All arrays inherit from Object class
4650   case InstPtr: {
4651     const TypeInstPtr *tp = t->is_instptr();
4652     Offset offset = meet_offset(tp->offset());
4653     PTR ptr = meet_ptr(tp->ptr());
4654     int instance_id = meet_instance_id(tp->instance_id());
4655     const TypePtr* speculative = xmeet_speculative(tp);
4656     int depth = meet_inline_depth(tp->inline_depth());
4657     switch (ptr) {
4658     case TopPTR:
4659     case AnyNull:                // Fall 'down' to dual of object klass
4660       // For instances when a subclass meets a superclass we fall
4661       // below the centerline when the superclass is exact. We need to
4662       // do the same here.
4663       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4664         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4665       } else {
4666         // cannot subclass, so the meet has to fall badly below the centerline
4667         ptr = NotNull;
4668         instance_id = InstanceBot;
4669         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4670       }
4671     case Constant:
4672     case NotNull:
4673     case BotPTR:                // Fall down to object klass
4674       // LCA is object_klass, but if we subclass from the top we can do better
4675       if (above_centerline(tp->ptr())) {
4676         // If 'tp'  is above the centerline and it is Object class
4677         // then we can subclass in the Java class hierarchy.
4678         // For instances when a subclass meets a superclass we fall
4679         // below the centerline when the superclass is exact. We need
4680         // to do the same here.
4681         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4682           // that is, my array type is a subtype of 'tp' klass
4683           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4684                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4685         }
4686       }
4687       // The other case cannot happen, since t cannot be a subtype of an array.
4688       // The meet falls down to Object class below centerline.
4689       if( ptr == Constant )
4690          ptr = NotNull;
4691       instance_id = InstanceBot;
4692       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4693     default: typerr(t);
4694     }
4695   }
4696 
4697   case ValueType: {
4698     // All value types inherit from Object
4699     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4700   }
4701 
4702   }
4703   return this;                  // Lint noise
4704 }
4705 
4706 //------------------------------xdual------------------------------------------
4707 // Dual: compute field-by-field dual
4708 const Type *TypeAryPtr::xdual() const {
4709   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4710 }
4711 
4712 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4713   return _field_offset.meet(offset);
4714 }
4715 
4716 //------------------------------dual_offset------------------------------------
4717 Type::Offset TypeAryPtr::dual_field_offset() const {
4718   return _field_offset.dual();
4719 }
4720 
4721 //----------------------interface_vs_oop---------------------------------------
4722 #ifdef ASSERT
4723 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4724   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4725   if (t_aryptr) {
4726     return _ary->interface_vs_oop(t_aryptr->_ary);
4727   }
4728   return false;
4729 }
4730 #endif
4731 
4732 //------------------------------dump2------------------------------------------
4733 #ifndef PRODUCT
4734 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4735   _ary->dump2(d,depth,st);
4736   switch( _ptr ) {
4737   case Constant:
4738     const_oop()->print(st);
4739     break;
4740   case BotPTR:
4741     if (!WizardMode && !Verbose) {
4742       if( _klass_is_exact ) st->print(":exact");
4743       break;
4744     }
4745   case TopPTR:
4746   case AnyNull:
4747   case NotNull:
4748     st->print(":%s", ptr_msg[_ptr]);
4749     if( _klass_is_exact ) st->print(":exact");
4750     break;
4751   default:
4752     break;
4753   }
4754 
4755   if (elem()->isa_valuetype()) {
4756     st->print("(");
4757     _field_offset.dump2(st);
4758     st->print(")");
4759   }
4760   if (offset() != 0) {
4761     int header_size = objArrayOopDesc::header_size() * wordSize;
4762     if( _offset == Offset::top )       st->print("+undefined");
4763     else if( _offset == Offset::bottom )  st->print("+any");
4764     else if( offset() < header_size ) st->print("+%d", offset());
4765     else {
4766       BasicType basic_elem_type = elem()->basic_type();
4767       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4768       int elem_size = type2aelembytes(basic_elem_type);
4769       st->print("[%d]", (offset() - array_base)/elem_size);
4770     }
4771   }
4772   st->print(" *");
4773   if (_instance_id == InstanceTop)
4774     st->print(",iid=top");
4775   else if (_instance_id != InstanceBot)
4776     st->print(",iid=%d",_instance_id);
4777 
4778   dump_inline_depth(st);
4779   dump_speculative(st);
4780 }
4781 #endif
4782 
4783 bool TypeAryPtr::empty(void) const {
4784   if (_ary->empty())       return true;
4785   return TypeOopPtr::empty();
4786 }
4787 
4788 //------------------------------add_offset-------------------------------------
4789 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4790   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4791 }
4792 
4793 const Type *TypeAryPtr::remove_speculative() const {
4794   if (_speculative == NULL) {
4795     return this;
4796   }
4797   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4798   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4799 }
4800 
4801 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4802   if (!UseInlineDepthForSpeculativeTypes) {
4803     return this;
4804   }
4805   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4806 }
4807 
4808 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4809   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4810 }
4811 
4812 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4813   int adj = 0;
4814   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4815     const Type* elemtype = elem();
4816     if (elemtype->isa_valuetype()) {
4817       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4818         adj = _offset.get();
4819         offset += _offset.get();
4820       }
4821       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4822       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4823         offset += _field_offset.get();
4824         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4825           offset += header;
4826         }
4827       }
4828       if (offset >= (intptr_t)header || offset < 0) {
4829         // Try to get the field of the value type array element we are pointing to
4830         ciKlass* arytype_klass = klass();
4831         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4832         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4833         int shift = vak->log2_element_size();
4834         int mask = (1 << shift) - 1;
4835         intptr_t field_offset = ((offset - header) & mask);
4836         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4837         if (field == NULL) {
4838           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4839           return add_offset(offset);
4840         } else {
4841           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4842         }
4843       }
4844     }
4845   }
4846   return add_offset(offset - adj);
4847 }
4848 
4849 // Return offset incremented by field_offset for flattened value type arrays
4850 const int TypeAryPtr::flattened_offset() const {
4851   int offset = _offset.get();
4852   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4853       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4854     offset += _field_offset.get();
4855   }
4856   return offset;
4857 }
4858 
4859 //=============================================================================
4860 
4861 
4862 //------------------------------hash-------------------------------------------
4863 // Type-specific hashing function.
4864 int TypeNarrowPtr::hash(void) const {
4865   return _ptrtype->hash() + 7;
4866 }
4867 
4868 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4869   return _ptrtype->singleton();
4870 }
4871 
4872 bool TypeNarrowPtr::empty(void) const {
4873   return _ptrtype->empty();
4874 }
4875 
4876 intptr_t TypeNarrowPtr::get_con() const {
4877   return _ptrtype->get_con();
4878 }
4879 
4880 bool TypeNarrowPtr::eq( const Type *t ) const {
4881   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4882   if (tc != NULL) {
4883     if (_ptrtype->base() != tc->_ptrtype->base()) {
4884       return false;
4885     }
4886     return tc->_ptrtype->eq(_ptrtype);
4887   }
4888   return false;
4889 }
4890 
4891 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4892   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4893   return make_same_narrowptr(odual);
4894 }
4895 
4896 
4897 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4898   if (isa_same_narrowptr(kills)) {
4899     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4900     if (ft->empty())
4901       return Type::TOP;           // Canonical empty value
4902     if (ft->isa_ptr()) {
4903       return make_hash_same_narrowptr(ft->isa_ptr());
4904     }
4905     return ft;
4906   } else if (kills->isa_ptr()) {
4907     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4908     if (ft->empty())
4909       return Type::TOP;           // Canonical empty value
4910     return ft;
4911   } else {
4912     return Type::TOP;
4913   }
4914 }
4915 
4916 //------------------------------xmeet------------------------------------------
4917 // Compute the MEET of two types.  It returns a new Type object.
4918 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4919   // Perform a fast test for common case; meeting the same types together.
4920   if( this == t ) return this;  // Meeting same type-rep?
4921 
4922   if (t->base() == base()) {
4923     const Type* result = _ptrtype->xmeet(t->make_ptr());
4924     if (result->isa_ptr()) {
4925       return make_hash_same_narrowptr(result->is_ptr());
4926     }
4927     return result;
4928   }
4929 
4930   // Current "this->_base" is NarrowKlass or NarrowOop
4931   switch (t->base()) {          // switch on original type
4932 
4933   case Int:                     // Mixing ints & oops happens when javac
4934   case Long:                    // reuses local variables
4935   case FloatTop:
4936   case FloatCon:
4937   case FloatBot:
4938   case DoubleTop:
4939   case DoubleCon:
4940   case DoubleBot:
4941   case AnyPtr:
4942   case RawPtr:
4943   case OopPtr:
4944   case InstPtr:
4945   case AryPtr:
4946   case MetadataPtr:
4947   case KlassPtr:
4948   case NarrowOop:
4949   case NarrowKlass:
4950   case Bottom:                  // Ye Olde Default
4951     return Type::BOTTOM;
4952   case Top:
4953     return this;
4954 
4955   case ValueType:
4956     return t->xmeet(this);
4957 
4958   default:                      // All else is a mistake
4959     typerr(t);
4960 
4961   } // End of switch
4962 
4963   return this;
4964 }
4965 
4966 #ifndef PRODUCT
4967 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4968   _ptrtype->dump2(d, depth, st);
4969 }
4970 #endif
4971 
4972 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4973 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4974 
4975 
4976 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4977   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4978 }
4979 
4980 const Type* TypeNarrowOop::remove_speculative() const {
4981   return make(_ptrtype->remove_speculative()->is_ptr());
4982 }
4983 
4984 const Type* TypeNarrowOop::cleanup_speculative() const {
4985   return make(_ptrtype->cleanup_speculative()->is_ptr());
4986 }
4987 
4988 #ifndef PRODUCT
4989 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4990   st->print("narrowoop: ");
4991   TypeNarrowPtr::dump2(d, depth, st);
4992 }
4993 #endif
4994 
4995 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4996 
4997 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4998   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4999 }
5000 
5001 #ifndef PRODUCT
5002 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5003   st->print("narrowklass: ");
5004   TypeNarrowPtr::dump2(d, depth, st);
5005 }
5006 #endif
5007 
5008 
5009 //------------------------------eq---------------------------------------------
5010 // Structural equality check for Type representations
5011 bool TypeMetadataPtr::eq( const Type *t ) const {
5012   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5013   ciMetadata* one = metadata();
5014   ciMetadata* two = a->metadata();
5015   if (one == NULL || two == NULL) {
5016     return (one == two) && TypePtr::eq(t);
5017   } else {
5018     return one->equals(two) && TypePtr::eq(t);
5019   }
5020 }
5021 
5022 //------------------------------hash-------------------------------------------
5023 // Type-specific hashing function.
5024 int TypeMetadataPtr::hash(void) const {
5025   return
5026     (metadata() ? metadata()->hash() : 0) +
5027     TypePtr::hash();
5028 }
5029 
5030 //------------------------------singleton--------------------------------------
5031 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5032 // constants
5033 bool TypeMetadataPtr::singleton(void) const {
5034   // detune optimizer to not generate constant metadata + constant offset as a constant!
5035   // TopPTR, Null, AnyNull, Constant are all singletons
5036   return (offset() == 0) && !below_centerline(_ptr);
5037 }
5038 
5039 //------------------------------add_offset-------------------------------------
5040 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5041   return make( _ptr, _metadata, xadd_offset(offset));
5042 }
5043 
5044 //-----------------------------filter------------------------------------------
5045 // Do not allow interface-vs.-noninterface joins to collapse to top.
5046 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5047   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5048   if (ft == NULL || ft->empty())
5049     return Type::TOP;           // Canonical empty value
5050   return ft;
5051 }
5052 
5053  //------------------------------get_con----------------------------------------
5054 intptr_t TypeMetadataPtr::get_con() const {
5055   assert( _ptr == Null || _ptr == Constant, "" );
5056   assert(offset() >= 0, "");
5057 
5058   if (offset() != 0) {
5059     // After being ported to the compiler interface, the compiler no longer
5060     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5061     // to a handle at compile time.  This handle is embedded in the generated
5062     // code and dereferenced at the time the nmethod is made.  Until that time,
5063     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5064     // have access to the addresses!).  This does not seem to currently happen,
5065     // but this assertion here is to help prevent its occurence.
5066     tty->print_cr("Found oop constant with non-zero offset");
5067     ShouldNotReachHere();
5068   }
5069 
5070   return (intptr_t)metadata()->constant_encoding();
5071 }
5072 
5073 //------------------------------cast_to_ptr_type-------------------------------
5074 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5075   if( ptr == _ptr ) return this;
5076   return make(ptr, metadata(), _offset);
5077 }
5078 
5079 //------------------------------meet-------------------------------------------
5080 // Compute the MEET of two types.  It returns a new Type object.
5081 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5082   // Perform a fast test for common case; meeting the same types together.
5083   if( this == t ) return this;  // Meeting same type-rep?
5084 
5085   // Current "this->_base" is OopPtr
5086   switch (t->base()) {          // switch on original type
5087 
5088   case Int:                     // Mixing ints & oops happens when javac
5089   case Long:                    // reuses local variables
5090   case FloatTop:
5091   case FloatCon:
5092   case FloatBot:
5093   case DoubleTop:
5094   case DoubleCon:
5095   case DoubleBot:
5096   case NarrowOop:
5097   case NarrowKlass:
5098   case Bottom:                  // Ye Olde Default
5099     return Type::BOTTOM;
5100   case Top:
5101     return this;
5102 
5103   default:                      // All else is a mistake
5104     typerr(t);
5105 
5106   case AnyPtr: {
5107     // Found an AnyPtr type vs self-OopPtr type
5108     const TypePtr *tp = t->is_ptr();
5109     Offset offset = meet_offset(tp->offset());
5110     PTR ptr = meet_ptr(tp->ptr());
5111     switch (tp->ptr()) {
5112     case Null:
5113       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5114       // else fall through:
5115     case TopPTR:
5116     case AnyNull: {
5117       return make(ptr, _metadata, offset);
5118     }
5119     case BotPTR:
5120     case NotNull:
5121       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5122     default: typerr(t);
5123     }
5124   }
5125 
5126   case RawPtr:
5127   case KlassPtr:
5128   case OopPtr:
5129   case InstPtr:
5130   case AryPtr:
5131     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5132 
5133   case MetadataPtr: {
5134     const TypeMetadataPtr *tp = t->is_metadataptr();
5135     Offset offset = meet_offset(tp->offset());
5136     PTR tptr = tp->ptr();
5137     PTR ptr = meet_ptr(tptr);
5138     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5139     if (tptr == TopPTR || _ptr == TopPTR ||
5140         metadata()->equals(tp->metadata())) {
5141       return make(ptr, md, offset);
5142     }
5143     // metadata is different
5144     if( ptr == Constant ) {  // Cannot be equal constants, so...
5145       if( tptr == Constant && _ptr != Constant)  return t;
5146       if( _ptr == Constant && tptr != Constant)  return this;
5147       ptr = NotNull;            // Fall down in lattice
5148     }
5149     return make(ptr, NULL, offset);
5150     break;
5151   }
5152   } // End of switch
5153   return this;                  // Return the double constant
5154 }
5155 
5156 
5157 //------------------------------xdual------------------------------------------
5158 // Dual of a pure metadata pointer.
5159 const Type *TypeMetadataPtr::xdual() const {
5160   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5161 }
5162 
5163 //------------------------------dump2------------------------------------------
5164 #ifndef PRODUCT
5165 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5166   st->print("metadataptr:%s", ptr_msg[_ptr]);
5167   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5168   switch (offset()) {
5169   case OffsetTop: st->print("+top"); break;
5170   case OffsetBot: st->print("+any"); break;
5171   case         0: break;
5172   default:        st->print("+%d",offset()); break;
5173   }
5174 }
5175 #endif
5176 
5177 
5178 //=============================================================================
5179 // Convenience common pre-built type.
5180 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5181 
5182 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5183   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5184 }
5185 
5186 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5187   return make(Constant, m, Offset(0));
5188 }
5189 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5190   return make(Constant, m, Offset(0));
5191 }
5192 
5193 //------------------------------make-------------------------------------------
5194 // Create a meta data constant
5195 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5196   assert(m == NULL || !m->is_klass(), "wrong type");
5197   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5198 }
5199 
5200 
5201 //=============================================================================
5202 // Convenience common pre-built types.
5203 
5204 // Not-null object klass or below
5205 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5206 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5207 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5208 
5209 //------------------------------TypeKlassPtr-----------------------------------
5210 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5211   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5212 }
5213 
5214 //------------------------------make-------------------------------------------
5215 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5216 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5217   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5218   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5219 }
5220 
5221 //------------------------------eq---------------------------------------------
5222 // Structural equality check for Type representations
5223 bool TypeKlassPtr::eq( const Type *t ) const {
5224   const TypeKlassPtr *p = t->is_klassptr();
5225   return klass() == p->klass() && TypePtr::eq(p);
5226 }
5227 
5228 //------------------------------hash-------------------------------------------
5229 // Type-specific hashing function.
5230 int TypeKlassPtr::hash(void) const {
5231   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5232 }
5233 
5234 //------------------------------singleton--------------------------------------
5235 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5236 // constants
5237 bool TypeKlassPtr::singleton(void) const {
5238   // detune optimizer to not generate constant klass + constant offset as a constant!
5239   // TopPTR, Null, AnyNull, Constant are all singletons
5240   return (offset() == 0) && !below_centerline(_ptr);
5241 }
5242 
5243 // Do not allow interface-vs.-noninterface joins to collapse to top.
5244 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5245   // logic here mirrors the one from TypeOopPtr::filter. See comments
5246   // there.
5247   const Type* ft = join_helper(kills, include_speculative);
5248   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5249   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5250 
5251   if (ft->empty()) {
5252     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5253       return kills;             // Uplift to interface
5254 
5255     return Type::TOP;           // Canonical empty value
5256   }
5257 
5258   // Interface klass type could be exact in opposite to interface type,
5259   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5260   if (ftkp != NULL && ktkp != NULL &&
5261       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5262       !ftkp->klass_is_exact() && // Keep exact interface klass
5263       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5264     return ktkp->cast_to_ptr_type(ftkp->ptr());
5265   }
5266 
5267   return ft;
5268 }
5269 
5270 //----------------------compute_klass------------------------------------------
5271 // Compute the defining klass for this class
5272 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5273   // Compute _klass based on element type.
5274   ciKlass* k_ary = NULL;
5275   const TypeAryPtr *tary;
5276   const Type* el = elem();
5277   if (el->isa_narrowoop()) {
5278     el = el->make_ptr();
5279   }
5280 
5281   // Get element klass
5282   if (el->isa_instptr()) {
5283     // Compute object array klass from element klass
5284     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5285   } else if (el->isa_valuetype()) {
5286     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5287   } else if ((tary = el->isa_aryptr()) != NULL) {
5288     // Compute array klass from element klass
5289     ciKlass* k_elem = tary->klass();
5290     // If element type is something like bottom[], k_elem will be null.
5291     if (k_elem != NULL)
5292       k_ary = ciObjArrayKlass::make(k_elem);
5293   } else if ((el->base() == Type::Top) ||
5294              (el->base() == Type::Bottom)) {
5295     // element type of Bottom occurs from meet of basic type
5296     // and object; Top occurs when doing join on Bottom.
5297     // Leave k_ary at NULL.
5298   } else {
5299     // Cannot compute array klass directly from basic type,
5300     // since subtypes of TypeInt all have basic type T_INT.
5301 #ifdef ASSERT
5302     if (verify && el->isa_int()) {
5303       // Check simple cases when verifying klass.
5304       BasicType bt = T_ILLEGAL;
5305       if (el == TypeInt::BYTE) {
5306         bt = T_BYTE;
5307       } else if (el == TypeInt::SHORT) {
5308         bt = T_SHORT;
5309       } else if (el == TypeInt::CHAR) {
5310         bt = T_CHAR;
5311       } else if (el == TypeInt::INT) {
5312         bt = T_INT;
5313       } else {
5314         return _klass; // just return specified klass
5315       }
5316       return ciTypeArrayKlass::make(bt);
5317     }
5318 #endif
5319     assert(!el->isa_int(),
5320            "integral arrays must be pre-equipped with a class");
5321     // Compute array klass directly from basic type
5322     k_ary = ciTypeArrayKlass::make(el->basic_type());
5323   }
5324   return k_ary;
5325 }
5326 
5327 //------------------------------klass------------------------------------------
5328 // Return the defining klass for this class
5329 ciKlass* TypeAryPtr::klass() const {
5330   if( _klass ) return _klass;   // Return cached value, if possible
5331 
5332   // Oops, need to compute _klass and cache it
5333   ciKlass* k_ary = compute_klass();
5334 
5335   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5336     // The _klass field acts as a cache of the underlying
5337     // ciKlass for this array type.  In order to set the field,
5338     // we need to cast away const-ness.
5339     //
5340     // IMPORTANT NOTE: we *never* set the _klass field for the
5341     // type TypeAryPtr::OOPS.  This Type is shared between all
5342     // active compilations.  However, the ciKlass which represents
5343     // this Type is *not* shared between compilations, so caching
5344     // this value would result in fetching a dangling pointer.
5345     //
5346     // Recomputing the underlying ciKlass for each request is
5347     // a bit less efficient than caching, but calls to
5348     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5349     ((TypeAryPtr*)this)->_klass = k_ary;
5350     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5351         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5352       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5353     }
5354   }
5355   return k_ary;
5356 }
5357 
5358 
5359 //------------------------------add_offset-------------------------------------
5360 // Access internals of klass object
5361 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5362   return make( _ptr, klass(), xadd_offset(offset) );
5363 }
5364 
5365 //------------------------------cast_to_ptr_type-------------------------------
5366 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5367   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5368   if( ptr == _ptr ) return this;
5369   return make(ptr, _klass, _offset);
5370 }
5371 
5372 
5373 //-----------------------------cast_to_exactness-------------------------------
5374 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5375   if( klass_is_exact == _klass_is_exact ) return this;
5376   if (!UseExactTypes)  return this;
5377   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5378 }
5379 
5380 
5381 //-----------------------------as_instance_type--------------------------------
5382 // Corresponding type for an instance of the given class.
5383 // It will be NotNull, and exact if and only if the klass type is exact.
5384 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5385   ciKlass* k = klass();
5386   assert(k != NULL, "klass should not be NULL");
5387   bool    xk = klass_is_exact();
5388   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5389   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5390   guarantee(toop != NULL, "need type for given klass");
5391   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5392   return toop->cast_to_exactness(xk)->is_oopptr();
5393 }
5394 
5395 
5396 //------------------------------xmeet------------------------------------------
5397 // Compute the MEET of two types, return a new Type object.
5398 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5399   // Perform a fast test for common case; meeting the same types together.
5400   if( this == t ) return this;  // Meeting same type-rep?
5401 
5402   // Current "this->_base" is Pointer
5403   switch (t->base()) {          // switch on original type
5404 
5405   case Int:                     // Mixing ints & oops happens when javac
5406   case Long:                    // reuses local variables
5407   case FloatTop:
5408   case FloatCon:
5409   case FloatBot:
5410   case DoubleTop:
5411   case DoubleCon:
5412   case DoubleBot:
5413   case NarrowOop:
5414   case NarrowKlass:
5415   case Bottom:                  // Ye Olde Default
5416     return Type::BOTTOM;
5417   case Top:
5418     return this;
5419 
5420   default:                      // All else is a mistake
5421     typerr(t);
5422 
5423   case AnyPtr: {                // Meeting to AnyPtrs
5424     // Found an AnyPtr type vs self-KlassPtr type
5425     const TypePtr *tp = t->is_ptr();
5426     Offset offset = meet_offset(tp->offset());
5427     PTR ptr = meet_ptr(tp->ptr());
5428     switch (tp->ptr()) {
5429     case TopPTR:
5430       return this;
5431     case Null:
5432       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5433     case AnyNull:
5434       return make( ptr, klass(), offset );
5435     case BotPTR:
5436     case NotNull:
5437       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5438     default: typerr(t);
5439     }
5440   }
5441 
5442   case RawPtr:
5443   case MetadataPtr:
5444   case OopPtr:
5445   case AryPtr:                  // Meet with AryPtr
5446   case InstPtr:                 // Meet with InstPtr
5447     return TypePtr::BOTTOM;
5448 
5449   //
5450   //             A-top         }
5451   //           /   |   \       }  Tops
5452   //       B-top A-any C-top   }
5453   //          | /  |  \ |      }  Any-nulls
5454   //       B-any   |   C-any   }
5455   //          |    |    |
5456   //       B-con A-con C-con   } constants; not comparable across classes
5457   //          |    |    |
5458   //       B-not   |   C-not   }
5459   //          | \  |  / |      }  not-nulls
5460   //       B-bot A-not C-bot   }
5461   //           \   |   /       }  Bottoms
5462   //             A-bot         }
5463   //
5464 
5465   case KlassPtr: {  // Meet two KlassPtr types
5466     const TypeKlassPtr *tkls = t->is_klassptr();
5467     Offset  off  = meet_offset(tkls->offset());
5468     PTR  ptr     = meet_ptr(tkls->ptr());
5469 
5470     if (klass() == NULL || tkls->klass() == NULL) {
5471       ciKlass* k = NULL;
5472       if (ptr == Constant) {
5473         k = (klass() == NULL) ? tkls->klass() : klass();
5474       }
5475       return make(ptr, k, off);
5476     }
5477 
5478     // Check for easy case; klasses are equal (and perhaps not loaded!)
5479     // If we have constants, then we created oops so classes are loaded
5480     // and we can handle the constants further down.  This case handles
5481     // not-loaded classes
5482     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5483       return make( ptr, klass(), off );
5484     }
5485 
5486     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5487     ciKlass* tkls_klass = tkls->klass();
5488     ciKlass* this_klass = this->klass();
5489     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5490     assert( this_klass->is_loaded(), "This class should have been loaded.");
5491 
5492     // If 'this' type is above the centerline and is a superclass of the
5493     // other, we can treat 'this' as having the same type as the other.
5494     if ((above_centerline(this->ptr())) &&
5495         tkls_klass->is_subtype_of(this_klass)) {
5496       this_klass = tkls_klass;
5497     }
5498     // If 'tinst' type is above the centerline and is a superclass of the
5499     // other, we can treat 'tinst' as having the same type as the other.
5500     if ((above_centerline(tkls->ptr())) &&
5501         this_klass->is_subtype_of(tkls_klass)) {
5502       tkls_klass = this_klass;
5503     }
5504 
5505     // Check for classes now being equal
5506     if (tkls_klass->equals(this_klass)) {
5507       // If the klasses are equal, the constants may still differ.  Fall to
5508       // NotNull if they do (neither constant is NULL; that is a special case
5509       // handled elsewhere).
5510       if( ptr == Constant ) {
5511         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5512             this->klass()->equals(tkls->klass()));
5513         else if (above_centerline(this->ptr()));
5514         else if (above_centerline(tkls->ptr()));
5515         else
5516           ptr = NotNull;
5517       }
5518       return make( ptr, this_klass, off );
5519     } // Else classes are not equal
5520 
5521     // Since klasses are different, we require the LCA in the Java
5522     // class hierarchy - which means we have to fall to at least NotNull.
5523     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5524       ptr = NotNull;
5525     // Now we find the LCA of Java classes
5526     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5527     return   make( ptr, k, off );
5528   } // End of case KlassPtr
5529 
5530   } // End of switch
5531   return this;                  // Return the double constant
5532 }
5533 
5534 //------------------------------xdual------------------------------------------
5535 // Dual: compute field-by-field dual
5536 const Type    *TypeKlassPtr::xdual() const {
5537   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5538 }
5539 
5540 //------------------------------get_con----------------------------------------
5541 intptr_t TypeKlassPtr::get_con() const {
5542   assert( _ptr == Null || _ptr == Constant, "" );
5543   assert(offset() >= 0, "");
5544 
5545   if (offset() != 0) {
5546     // After being ported to the compiler interface, the compiler no longer
5547     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5548     // to a handle at compile time.  This handle is embedded in the generated
5549     // code and dereferenced at the time the nmethod is made.  Until that time,
5550     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5551     // have access to the addresses!).  This does not seem to currently happen,
5552     // but this assertion here is to help prevent its occurence.
5553     tty->print_cr("Found oop constant with non-zero offset");
5554     ShouldNotReachHere();
5555   }
5556 
5557   return (intptr_t)klass()->constant_encoding();
5558 }
5559 //------------------------------dump2------------------------------------------
5560 // Dump Klass Type
5561 #ifndef PRODUCT
5562 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5563   switch( _ptr ) {
5564   case Constant:
5565     st->print("precise ");
5566   case NotNull:
5567     {
5568       if (klass() != NULL) {
5569         const char* name = klass()->name()->as_utf8();
5570         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5571       } else {
5572         st->print("klass BOTTOM");
5573       }
5574     }
5575   case BotPTR:
5576     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5577   case TopPTR:
5578   case AnyNull:
5579     st->print(":%s", ptr_msg[_ptr]);
5580     if( _klass_is_exact ) st->print(":exact");
5581     break;
5582   default:
5583     break;
5584   }
5585 
5586   _offset.dump2(st);
5587 
5588   st->print(" *");
5589 }
5590 #endif
5591 
5592 
5593 
5594 //=============================================================================
5595 // Convenience common pre-built types.
5596 
5597 //------------------------------make-------------------------------------------
5598 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5599                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5600   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5601 }
5602 
5603 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5604   return make(domain, domain, range, range);
5605 }
5606 
5607 //------------------------------make-------------------------------------------
5608 const TypeFunc *TypeFunc::make(ciMethod* method) {
5609   Compile* C = Compile::current();
5610   const TypeFunc* tf = C->last_tf(method); // check cache
5611   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5612   const TypeTuple *domain_sig, *domain_cc;
5613   // Value type arguments are not passed by reference, instead each
5614   // field of the value type is passed as an argument. We maintain 2
5615   // views of the argument list here: one based on the signature (with
5616   // a value type argument as a single slot), one based on the actual
5617   // calling convention (with a value type argument as a list of its
5618   // fields).
5619   if (method->is_static()) {
5620     domain_sig = TypeTuple::make_domain(method, false);
5621     domain_cc = TypeTuple::make_domain(method, method->get_Method()->has_scalarized_args());
5622   } else {
5623     domain_sig = TypeTuple::make_domain(method, false);
5624     domain_cc = TypeTuple::make_domain(method, method->get_Method()->has_scalarized_args());
5625   }
5626   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5627   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5628   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5629   C->set_last_tf(method, tf);  // fill cache
5630   return tf;
5631 }
5632 
5633 //------------------------------meet-------------------------------------------
5634 // Compute the MEET of two types.  It returns a new Type object.
5635 const Type *TypeFunc::xmeet( const Type *t ) const {
5636   // Perform a fast test for common case; meeting the same types together.
5637   if( this == t ) return this;  // Meeting same type-rep?
5638 
5639   // Current "this->_base" is Func
5640   switch (t->base()) {          // switch on original type
5641 
5642   case Bottom:                  // Ye Olde Default
5643     return t;
5644 
5645   default:                      // All else is a mistake
5646     typerr(t);
5647 
5648   case Top:
5649     break;
5650   }
5651   return this;                  // Return the double constant
5652 }
5653 
5654 //------------------------------xdual------------------------------------------
5655 // Dual: compute field-by-field dual
5656 const Type *TypeFunc::xdual() const {
5657   return this;
5658 }
5659 
5660 //------------------------------eq---------------------------------------------
5661 // Structural equality check for Type representations
5662 bool TypeFunc::eq( const Type *t ) const {
5663   const TypeFunc *a = (const TypeFunc*)t;
5664   return _domain_sig == a->_domain_sig &&
5665     _domain_cc == a->_domain_cc &&
5666     _range_sig == a->_range_sig &&
5667     _range_cc == a->_range_cc;
5668 }
5669 
5670 //------------------------------hash-------------------------------------------
5671 // Type-specific hashing function.
5672 int TypeFunc::hash(void) const {
5673   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5674 }
5675 
5676 //------------------------------dump2------------------------------------------
5677 // Dump Function Type
5678 #ifndef PRODUCT
5679 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5680   if( _range_sig->cnt() <= Parms )
5681     st->print("void");
5682   else {
5683     uint i;
5684     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5685       _range_sig->field_at(i)->dump2(d,depth,st);
5686       st->print("/");
5687     }
5688     _range_sig->field_at(i)->dump2(d,depth,st);
5689   }
5690   st->print(" ");
5691   st->print("( ");
5692   if( !depth || d[this] ) {     // Check for recursive dump
5693     st->print("...)");
5694     return;
5695   }
5696   d.Insert((void*)this,(void*)this);    // Stop recursion
5697   if (Parms < _domain_sig->cnt())
5698     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5699   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5700     st->print(", ");
5701     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5702   }
5703   st->print(" )");
5704 }
5705 #endif
5706 
5707 //------------------------------singleton--------------------------------------
5708 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5709 // constants (Ldi nodes).  Singletons are integer, float or double constants
5710 // or a single symbol.
5711 bool TypeFunc::singleton(void) const {
5712   return false;                 // Never a singleton
5713 }
5714 
5715 bool TypeFunc::empty(void) const {
5716   return false;                 // Never empty
5717 }
5718 
5719 
5720 BasicType TypeFunc::return_type() const{
5721   if (range_sig()->cnt() == TypeFunc::Parms) {
5722     return T_VOID;
5723   }
5724   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5725 }