1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // This file holds all globally used constants & types, class (forward)
  47 // declarations and a few frequently used utility functions.
  48 
  49 //----------------------------------------------------------------------------------------------------
  50 // Printf-style formatters for fixed- and variable-width types as pointers and
  51 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  52 // doesn't provide appropriate definitions, they should be provided in
  53 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  54 
  55 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  56 
  57 // Format 32-bit quantities.
  58 #define INT32_FORMAT           "%" PRId32
  59 #define UINT32_FORMAT          "%" PRIu32
  60 #define INT32_FORMAT_W(width)  "%" #width PRId32
  61 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  62 
  63 #define PTR32_FORMAT           "0x%08" PRIx32
  64 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  65 
  66 // Format 64-bit quantities.
  67 #define INT64_FORMAT           "%" PRId64
  68 #define UINT64_FORMAT          "%" PRIu64
  69 #define UINT64_FORMAT_X        "%" PRIx64
  70 #define INT64_FORMAT_W(width)  "%" #width PRId64
  71 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  72 
  73 #define PTR64_FORMAT           "0x%016" PRIx64
  74 
  75 // Format jlong, if necessary
  76 #ifndef JLONG_FORMAT
  77 #define JLONG_FORMAT           INT64_FORMAT
  78 #endif
  79 #ifndef JULONG_FORMAT
  80 #define JULONG_FORMAT          UINT64_FORMAT
  81 #endif
  82 #ifndef JULONG_FORMAT_X
  83 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  84 #endif
  85 
  86 // Format pointers which change size between 32- and 64-bit.
  87 #ifdef  _LP64
  88 #define INTPTR_FORMAT "0x%016" PRIxPTR
  89 #define PTR_FORMAT    "0x%016" PRIxPTR
  90 #else   // !_LP64
  91 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  92 #define PTR_FORMAT    "0x%08"  PRIxPTR
  93 #endif  // _LP64
  94 
  95 // Format pointers without leading zeros
  96 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  97 
  98 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  99 
 100 #define SSIZE_FORMAT             "%"   PRIdPTR
 101 #define SIZE_FORMAT              "%"   PRIuPTR
 102 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 103 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 104 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 105 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 106 
 107 #define INTX_FORMAT           "%" PRIdPTR
 108 #define UINTX_FORMAT          "%" PRIuPTR
 109 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 110 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 111 
 112 //----------------------------------------------------------------------------------------------------
 113 // Constants
 114 
 115 const int LogBytesPerShort   = 1;
 116 const int LogBytesPerInt     = 2;
 117 #ifdef _LP64
 118 const int LogBytesPerWord    = 3;
 119 #else
 120 const int LogBytesPerWord    = 2;
 121 #endif
 122 const int LogBytesPerLong    = 3;
 123 
 124 const int BytesPerShort      = 1 << LogBytesPerShort;
 125 const int BytesPerInt        = 1 << LogBytesPerInt;
 126 const int BytesPerWord       = 1 << LogBytesPerWord;
 127 const int BytesPerLong       = 1 << LogBytesPerLong;
 128 
 129 const int LogBitsPerByte     = 3;
 130 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 131 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 132 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 133 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 134 
 135 const int BitsPerByte        = 1 << LogBitsPerByte;
 136 const int BitsPerShort       = 1 << LogBitsPerShort;
 137 const int BitsPerInt         = 1 << LogBitsPerInt;
 138 const int BitsPerWord        = 1 << LogBitsPerWord;
 139 const int BitsPerLong        = 1 << LogBitsPerLong;
 140 
 141 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 142 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 143 
 144 const int WordsPerLong       = 2;       // Number of stack entries for longs
 145 
 146 const int oopSize            = sizeof(char*); // Full-width oop
 147 extern int heapOopSize;                       // Oop within a java object
 148 const int wordSize           = sizeof(char*);
 149 const int longSize           = sizeof(jlong);
 150 const int jintSize           = sizeof(jint);
 151 const int size_tSize         = sizeof(size_t);
 152 
 153 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 154 
 155 extern int LogBytesPerHeapOop;                // Oop within a java object
 156 extern int LogBitsPerHeapOop;
 157 extern int BytesPerHeapOop;
 158 extern int BitsPerHeapOop;
 159 
 160 const int BitsPerJavaInteger = 32;
 161 const int BitsPerJavaLong    = 64;
 162 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 163 
 164 // Size of a char[] needed to represent a jint as a string in decimal.
 165 const int jintAsStringSize = 12;
 166 
 167 // In fact this should be
 168 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 169 // see os::set_memory_serialize_page()
 170 #ifdef _LP64
 171 const int SerializePageShiftCount = 4;
 172 #else
 173 const int SerializePageShiftCount = 3;
 174 #endif
 175 
 176 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 177 // pointer into the heap.  We require that object sizes be measured in
 178 // units of heap words, so that that
 179 //   HeapWord* hw;
 180 //   hw += oop(hw)->foo();
 181 // works, where foo is a method (like size or scavenge) that returns the
 182 // object size.
 183 class HeapWord {
 184   friend class VMStructs;
 185  private:
 186   char* i;
 187 #ifndef PRODUCT
 188  public:
 189   char* value() { return i; }
 190 #endif
 191 };
 192 
 193 // Analogous opaque struct for metadata allocated from
 194 // metaspaces.
 195 class MetaWord {
 196  private:
 197   char* i;
 198 };
 199 
 200 // HeapWordSize must be 2^LogHeapWordSize.
 201 const int HeapWordSize        = sizeof(HeapWord);
 202 #ifdef _LP64
 203 const int LogHeapWordSize     = 3;
 204 #else
 205 const int LogHeapWordSize     = 2;
 206 #endif
 207 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 208 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 209 
 210 // The minimum number of native machine words necessary to contain "byte_size"
 211 // bytes.
 212 inline size_t heap_word_size(size_t byte_size) {
 213   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 214 }
 215 
 216 //-------------------------------------------
 217 // Constant for jlong (standardized by C++11)
 218 
 219 // Build a 64bit integer constant
 220 #define CONST64(x)  (x ## LL)
 221 #define UCONST64(x) (x ## ULL)
 222 
 223 const jlong min_jlong = CONST64(0x8000000000000000);
 224 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 225 
 226 const size_t K                  = 1024;
 227 const size_t M                  = K*K;
 228 const size_t G                  = M*K;
 229 const size_t HWperKB            = K / sizeof(HeapWord);
 230 
 231 // Constants for converting from a base unit to milli-base units.  For
 232 // example from seconds to milliseconds and microseconds
 233 
 234 const int MILLIUNITS    = 1000;         // milli units per base unit
 235 const int MICROUNITS    = 1000000;      // micro units per base unit
 236 const int NANOUNITS     = 1000000000;   // nano units per base unit
 237 
 238 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 239 const jint  NANOSECS_PER_MILLISEC = 1000000;
 240 
 241 inline const char* proper_unit_for_byte_size(size_t s) {
 242 #ifdef _LP64
 243   if (s >= 10*G) {
 244     return "G";
 245   }
 246 #endif
 247   if (s >= 10*M) {
 248     return "M";
 249   } else if (s >= 10*K) {
 250     return "K";
 251   } else {
 252     return "B";
 253   }
 254 }
 255 
 256 template <class T>
 257 inline T byte_size_in_proper_unit(T s) {
 258 #ifdef _LP64
 259   if (s >= 10*G) {
 260     return (T)(s/G);
 261   }
 262 #endif
 263   if (s >= 10*M) {
 264     return (T)(s/M);
 265   } else if (s >= 10*K) {
 266     return (T)(s/K);
 267   } else {
 268     return s;
 269   }
 270 }
 271 
 272 inline const char* exact_unit_for_byte_size(size_t s) {
 273 #ifdef _LP64
 274   if (s >= G && (s % G) == 0) {
 275     return "G";
 276   }
 277 #endif
 278   if (s >= M && (s % M) == 0) {
 279     return "M";
 280   }
 281   if (s >= K && (s % K) == 0) {
 282     return "K";
 283   }
 284   return "B";
 285 }
 286 
 287 inline size_t byte_size_in_exact_unit(size_t s) {
 288 #ifdef _LP64
 289   if (s >= G && (s % G) == 0) {
 290     return s / G;
 291   }
 292 #endif
 293   if (s >= M && (s % M) == 0) {
 294     return s / M;
 295   }
 296   if (s >= K && (s % K) == 0) {
 297     return s / K;
 298   }
 299   return s;
 300 }
 301 
 302 //----------------------------------------------------------------------------------------------------
 303 // VM type definitions
 304 
 305 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 306 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 307 
 308 typedef intptr_t  intx;
 309 typedef uintptr_t uintx;
 310 
 311 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 312 const intx  max_intx  = (uintx)min_intx - 1;
 313 const uintx max_uintx = (uintx)-1;
 314 
 315 // Table of values:
 316 //      sizeof intx         4               8
 317 // min_intx             0x80000000      0x8000000000000000
 318 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 319 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 320 
 321 typedef unsigned int uint;   NEEDS_CLEANUP
 322 
 323 
 324 //----------------------------------------------------------------------------------------------------
 325 // Java type definitions
 326 
 327 // All kinds of 'plain' byte addresses
 328 typedef   signed char s_char;
 329 typedef unsigned char u_char;
 330 typedef u_char*       address;
 331 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 332                                     // except for some implementations of a C++
 333                                     // linkage pointer to function. Should never
 334                                     // need one of those to be placed in this
 335                                     // type anyway.
 336 
 337 //  Utility functions to "portably" (?) bit twiddle pointers
 338 //  Where portable means keep ANSI C++ compilers quiet
 339 
 340 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 341 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 342 
 343 //  Utility functions to "portably" make cast to/from function pointers.
 344 
 345 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 346 inline address_word  castable_address(address x)              { return address_word(x) ; }
 347 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 348 
 349 // Pointer subtraction.
 350 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 351 // the range we might need to find differences from one end of the heap
 352 // to the other.
 353 // A typical use might be:
 354 //     if (pointer_delta(end(), top()) >= size) {
 355 //       // enough room for an object of size
 356 //       ...
 357 // and then additions like
 358 //       ... top() + size ...
 359 // are safe because we know that top() is at least size below end().
 360 inline size_t pointer_delta(const volatile void* left,
 361                             const volatile void* right,
 362                             size_t element_size) {
 363   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 364 }
 365 
 366 // A version specialized for HeapWord*'s.
 367 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 368   return pointer_delta(left, right, sizeof(HeapWord));
 369 }
 370 // A version specialized for MetaWord*'s.
 371 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 372   return pointer_delta(left, right, sizeof(MetaWord));
 373 }
 374 
 375 //
 376 // ANSI C++ does not allow casting from one pointer type to a function pointer
 377 // directly without at best a warning. This macro accomplishes it silently
 378 // In every case that is present at this point the value be cast is a pointer
 379 // to a C linkage function. In some case the type used for the cast reflects
 380 // that linkage and a picky compiler would not complain. In other cases because
 381 // there is no convenient place to place a typedef with extern C linkage (i.e
 382 // a platform dependent header file) it doesn't. At this point no compiler seems
 383 // picky enough to catch these instances (which are few). It is possible that
 384 // using templates could fix these for all cases. This use of templates is likely
 385 // so far from the middle of the road that it is likely to be problematic in
 386 // many C++ compilers.
 387 //
 388 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 389 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 390 
 391 // Unsigned byte types for os and stream.hpp
 392 
 393 // Unsigned one, two, four and eigth byte quantities used for describing
 394 // the .class file format. See JVM book chapter 4.
 395 
 396 typedef jubyte  u1;
 397 typedef jushort u2;
 398 typedef juint   u4;
 399 typedef julong  u8;
 400 
 401 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 402 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 403 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 404 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 405 
 406 typedef jbyte  s1;
 407 typedef jshort s2;
 408 typedef jint   s4;
 409 typedef jlong  s8;
 410 
 411 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 412 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 413 const jshort min_jshort = -(1 << 15);    // smallest jshort
 414 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 415 
 416 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 417 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 418 
 419 //----------------------------------------------------------------------------------------------------
 420 // JVM spec restrictions
 421 
 422 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 423 
 424 //----------------------------------------------------------------------------------------------------
 425 // Default and minimum StringTable and SymbolTable size values
 426 // Must be a power of 2
 427 
 428 const size_t defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536);
 429 const size_t minimumStringTableSize = 128;
 430 
 431 const size_t defaultSymbolTableSize = 32768; // 2^15
 432 const size_t minimumSymbolTableSize = 1024;
 433 
 434 
 435 //----------------------------------------------------------------------------------------------------
 436 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 437 //
 438 // Determines whether on-the-fly class replacement and frame popping are enabled.
 439 
 440 #define HOTSWAP
 441 
 442 //----------------------------------------------------------------------------------------------------
 443 // Object alignment, in units of HeapWords.
 444 //
 445 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 446 // reference fields can be naturally aligned.
 447 
 448 extern int MinObjAlignment;
 449 extern int MinObjAlignmentInBytes;
 450 extern int MinObjAlignmentInBytesMask;
 451 
 452 extern int LogMinObjAlignment;
 453 extern int LogMinObjAlignmentInBytes;
 454 
 455 const int LogKlassAlignmentInBytes = 3;
 456 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 457 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 458 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 459 
 460 // Maximal size of heap where unscaled compression can be used. Also upper bound
 461 // for heap placement: 4GB.
 462 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 463 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 464 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 465 extern uint64_t OopEncodingHeapMax;
 466 
 467 // Maximal size of compressed class space. Above this limit compression is not possible.
 468 // Also upper bound for placement of zero based class space. (Class space is further limited
 469 // to be < 3G, see arguments.cpp.)
 470 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 471 
 472 // Machine dependent stuff
 473 
 474 // The maximum size of the code cache.  Can be overridden by targets.
 475 #define CODE_CACHE_SIZE_LIMIT (2*G)
 476 // Allow targets to reduce the default size of the code cache.
 477 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 478 
 479 #include CPU_HEADER(globalDefinitions)
 480 
 481 // To assure the IRIW property on processors that are not multiple copy
 482 // atomic, sync instructions must be issued between volatile reads to
 483 // assure their ordering, instead of after volatile stores.
 484 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 485 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 486 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 487 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 488 #else
 489 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 490 #endif
 491 
 492 // The expected size in bytes of a cache line, used to pad data structures.
 493 #ifndef DEFAULT_CACHE_LINE_SIZE
 494   #define DEFAULT_CACHE_LINE_SIZE 64
 495 #endif
 496 
 497 
 498 //----------------------------------------------------------------------------------------------------
 499 // Utility macros for compilers
 500 // used to silence compiler warnings
 501 
 502 #define Unused_Variable(var) var
 503 
 504 
 505 //----------------------------------------------------------------------------------------------------
 506 // Prototyping
 507 // "Code Missing Here" macro, un-define when integrating back from prototyping stage and break
 508 // compilation on purpose (i.e. "forget me not")
 509 #define PROTOTYPE
 510 #ifdef PROTOTYPE
 511 #define CMH(m)
 512 #endif
 513 
 514 //----------------------------------------------------------------------------------------------------
 515 // Miscellaneous
 516 
 517 // 6302670 Eliminate Hotspot __fabsf dependency
 518 // All fabs() callers should call this function instead, which will implicitly
 519 // convert the operand to double, avoiding a dependency on __fabsf which
 520 // doesn't exist in early versions of Solaris 8.
 521 inline double fabsd(double value) {
 522   return fabs(value);
 523 }
 524 
 525 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 526 // is zero, return 0.0.
 527 template<typename T>
 528 inline double percent_of(T numerator, T denominator) {
 529   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 530 }
 531 
 532 //----------------------------------------------------------------------------------------------------
 533 // Special casts
 534 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 535 typedef union {
 536   jfloat f;
 537   jint i;
 538 } FloatIntConv;
 539 
 540 typedef union {
 541   jdouble d;
 542   jlong l;
 543   julong ul;
 544 } DoubleLongConv;
 545 
 546 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 547 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 548 
 549 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 550 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 551 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 552 
 553 inline jint low (jlong value)                    { return jint(value); }
 554 inline jint high(jlong value)                    { return jint(value >> 32); }
 555 
 556 // the fancy casts are a hopefully portable way
 557 // to do unsigned 32 to 64 bit type conversion
 558 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 559                                                    *value |= (jlong)(julong)(juint)low; }
 560 
 561 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 562                                                    *value |= (jlong)high       << 32; }
 563 
 564 inline jlong jlong_from(jint h, jint l) {
 565   jlong result = 0; // initialization to avoid warning
 566   set_high(&result, h);
 567   set_low(&result,  l);
 568   return result;
 569 }
 570 
 571 union jlong_accessor {
 572   jint  words[2];
 573   jlong long_value;
 574 };
 575 
 576 void basic_types_init(); // cannot define here; uses assert
 577 
 578 
 579 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 580 enum BasicType {
 581   T_BOOLEAN     =  4,
 582   T_CHAR        =  5,
 583   T_FLOAT       =  6,
 584   T_DOUBLE      =  7,
 585   T_BYTE        =  8,
 586   T_SHORT       =  9,
 587   T_INT         = 10,
 588   T_LONG        = 11,
 589   T_OBJECT      = 12,
 590   T_ARRAY       = 13,
 591   T_VALUETYPE   = 14,
 592   T_VOID        = 15,
 593   T_ADDRESS     = 16,
 594   T_NARROWOOP   = 17,
 595   T_METADATA    = 18,
 596   T_NARROWKLASS = 19,
 597   T_CONFLICT    = 20, // for stack value type with conflicting contents
 598   T_ILLEGAL     = 99
 599 };
 600 
 601 inline bool is_java_primitive(BasicType t) {
 602   return T_BOOLEAN <= t && t <= T_LONG;
 603 }
 604 
 605 inline bool is_subword_type(BasicType t) {
 606   // these guys are processed exactly like T_INT in calling sequences:
 607   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 608 }
 609 
 610 inline bool is_signed_subword_type(BasicType t) {
 611   return (t == T_BYTE || t == T_SHORT);
 612 }
 613 
 614 inline bool is_reference_type(BasicType t) {
 615   return (t == T_OBJECT || t == T_ARRAY);
 616 }
 617 
 618 // Convert a char from a classfile signature to a BasicType
 619 inline BasicType char2type(char c) {
 620   switch( c ) {
 621   case 'B': return T_BYTE;
 622   case 'C': return T_CHAR;
 623   case 'D': return T_DOUBLE;
 624   case 'F': return T_FLOAT;
 625   case 'I': return T_INT;
 626   case 'J': return T_LONG;
 627   case 'S': return T_SHORT;
 628   case 'Z': return T_BOOLEAN;
 629   case 'V': return T_VOID;
 630   case 'L': return T_OBJECT;
 631   case '[': return T_ARRAY;
 632   case 'Q': return T_VALUETYPE;
 633   }
 634   return T_ILLEGAL;
 635 }
 636 
 637 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 638 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 639 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 640 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 641 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 642 extern BasicType name2type(const char* name);
 643 
 644 // Auxiliary math routines
 645 // least common multiple
 646 extern size_t lcm(size_t a, size_t b);
 647 
 648 
 649 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 650 enum BasicTypeSize {
 651   T_BOOLEAN_size     = 1,
 652   T_CHAR_size        = 1,
 653   T_FLOAT_size       = 1,
 654   T_DOUBLE_size      = 2,
 655   T_BYTE_size        = 1,
 656   T_SHORT_size       = 1,
 657   T_INT_size         = 1,
 658   T_LONG_size        = 2,
 659   T_OBJECT_size      = 1,
 660   T_ARRAY_size       = 1,
 661   T_NARROWOOP_size   = 1,
 662   T_NARROWKLASS_size = 1,
 663   T_VOID_size        = 0,
 664   T_VALUETYPE_size   = 1
 665 };
 666 
 667 
 668 // maps a BasicType to its instance field storage type:
 669 // all sub-word integral types are widened to T_INT
 670 extern BasicType type2field[T_CONFLICT+1];
 671 extern BasicType type2wfield[T_CONFLICT+1];
 672 
 673 
 674 // size in bytes
 675 enum ArrayElementSize {
 676   T_BOOLEAN_aelem_bytes     = 1,
 677   T_CHAR_aelem_bytes        = 2,
 678   T_FLOAT_aelem_bytes       = 4,
 679   T_DOUBLE_aelem_bytes      = 8,
 680   T_BYTE_aelem_bytes        = 1,
 681   T_SHORT_aelem_bytes       = 2,
 682   T_INT_aelem_bytes         = 4,
 683   T_LONG_aelem_bytes        = 8,
 684 #ifdef _LP64
 685   T_OBJECT_aelem_bytes      = 8,
 686   T_ARRAY_aelem_bytes       = 8,
 687   T_VALUETYPE_aelem_bytes   = 8,
 688 #else
 689   T_OBJECT_aelem_bytes      = 4,
 690   T_ARRAY_aelem_bytes       = 4,
 691   T_VALUETYPE_aelem_bytes   = 4,
 692 #endif
 693   T_NARROWOOP_aelem_bytes   = 4,
 694   T_NARROWKLASS_aelem_bytes = 4,
 695   T_VOID_aelem_bytes        = 0
 696 };
 697 
 698 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 699 #ifdef ASSERT
 700 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 701 #else
 702 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 703 #endif
 704 
 705 
 706 // JavaValue serves as a container for arbitrary Java values.
 707 
 708 class JavaValue {
 709 
 710  public:
 711   typedef union JavaCallValue {
 712     jfloat   f;
 713     jdouble  d;
 714     jint     i;
 715     jlong    l;
 716     jobject  h;
 717     jvaluetype q;
 718   } JavaCallValue;
 719 
 720  private:
 721   BasicType _type;
 722   JavaCallValue _value;
 723 
 724  public:
 725   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 726 
 727   JavaValue(jfloat value) {
 728     _type    = T_FLOAT;
 729     _value.f = value;
 730   }
 731 
 732   JavaValue(jdouble value) {
 733     _type    = T_DOUBLE;
 734     _value.d = value;
 735   }
 736 
 737  jfloat get_jfloat() const { return _value.f; }
 738  jdouble get_jdouble() const { return _value.d; }
 739  jint get_jint() const { return _value.i; }
 740  jlong get_jlong() const { return _value.l; }
 741  jobject get_jobject() const { return _value.h; }
 742  JavaCallValue* get_value_addr() { return &_value; }
 743  BasicType get_type() const { return _type; }
 744 
 745  void set_jfloat(jfloat f) { _value.f = f;}
 746  void set_jdouble(jdouble d) { _value.d = d;}
 747  void set_jint(jint i) { _value.i = i;}
 748  void set_jlong(jlong l) { _value.l = l;}
 749  void set_jobject(jobject h) { _value.h = h;}
 750  void set_type(BasicType t) { _type = t; }
 751 
 752  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 753  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 754  jchar get_jchar() const { return (jchar) (_value.i);}
 755  jshort get_jshort() const { return (jshort) (_value.i);}
 756 
 757 };
 758 
 759 
 760 #define STACK_BIAS      0
 761 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 762 // in order to extend the reach of the stack pointer.
 763 #if defined(SPARC) && defined(_LP64)
 764 #undef STACK_BIAS
 765 #define STACK_BIAS      0x7ff
 766 #endif
 767 
 768 
 769 // TosState describes the top-of-stack state before and after the execution of
 770 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 771 // registers. The TosState corresponds to the 'machine representation' of this cached
 772 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 773 // as well as a 5th state in case the top-of-stack value is actually on the top
 774 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 775 // state when it comes to machine representation but is used separately for (oop)
 776 // type specific operations (e.g. verification code).
 777 
 778 enum TosState {         // describes the tos cache contents
 779   btos = 0,             // byte, bool tos cached
 780   ztos = 1,             // byte, bool tos cached
 781   ctos = 2,             // char tos cached
 782   stos = 3,             // short tos cached
 783   itos = 4,             // int tos cached
 784   ltos = 5,             // long tos cached
 785   ftos = 6,             // float tos cached
 786   dtos = 7,             // double tos cached
 787   atos = 8,             // object cached
 788   vtos = 9,             // tos not cached,
 789   number_of_states,
 790   ilgl                  // illegal state: should not occur
 791 };
 792 
 793 
 794 inline TosState as_TosState(BasicType type) {
 795   switch (type) {
 796     case T_BYTE   : return btos;
 797     case T_BOOLEAN: return ztos;
 798     case T_CHAR   : return ctos;
 799     case T_SHORT  : return stos;
 800     case T_INT    : return itos;
 801     case T_LONG   : return ltos;
 802     case T_FLOAT  : return ftos;
 803     case T_DOUBLE : return dtos;
 804     case T_VOID   : return vtos;
 805     case T_VALUETYPE: // fall through
 806     case T_ARRAY  :   // fall through
 807     case T_OBJECT : return atos;
 808     default       : return ilgl;
 809   }
 810 }
 811 
 812 inline BasicType as_BasicType(TosState state) {
 813   switch (state) {
 814     case btos : return T_BYTE;
 815     case ztos : return T_BOOLEAN;
 816     case ctos : return T_CHAR;
 817     case stos : return T_SHORT;
 818     case itos : return T_INT;
 819     case ltos : return T_LONG;
 820     case ftos : return T_FLOAT;
 821     case dtos : return T_DOUBLE;
 822     case atos : return T_OBJECT;
 823     case vtos : return T_VOID;
 824     default   : return T_ILLEGAL;
 825   }
 826 }
 827 
 828 
 829 // Helper function to convert BasicType info into TosState
 830 // Note: Cannot define here as it uses global constant at the time being.
 831 TosState as_TosState(BasicType type);
 832 
 833 
 834 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 835 // information is needed by the safepoint code.
 836 //
 837 // There are 4 essential states:
 838 //
 839 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 840 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 841 //  _thread_in_vm       : Executing in the vm
 842 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 843 //
 844 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 845 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 846 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 847 //
 848 // Given a state, the xxxx_trans state can always be found by adding 1.
 849 //
 850 enum JavaThreadState {
 851   _thread_uninitialized     =  0, // should never happen (missing initialization)
 852   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 853   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 854   _thread_in_native         =  4, // running in native code
 855   _thread_in_native_trans   =  5, // corresponding transition state
 856   _thread_in_vm             =  6, // running in VM
 857   _thread_in_vm_trans       =  7, // corresponding transition state
 858   _thread_in_Java           =  8, // running in Java or in stub code
 859   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 860   _thread_blocked           = 10, // blocked in vm
 861   _thread_blocked_trans     = 11, // corresponding transition state
 862   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 863 };
 864 
 865 
 866 
 867 //----------------------------------------------------------------------------------------------------
 868 // 'Forward' declarations of frequently used classes
 869 // (in order to reduce interface dependencies & reduce
 870 // number of unnecessary compilations after changes)
 871 
 872 class ClassFileStream;
 873 
 874 class Event;
 875 
 876 class Thread;
 877 class  VMThread;
 878 class  JavaThread;
 879 class Threads;
 880 
 881 class VM_Operation;
 882 class VMOperationQueue;
 883 
 884 class CodeBlob;
 885 class  CompiledMethod;
 886 class   nmethod;
 887 class RuntimeBlob;
 888 class  OSRAdapter;
 889 class  I2CAdapter;
 890 class  C2IAdapter;
 891 class CompiledIC;
 892 class relocInfo;
 893 class ScopeDesc;
 894 class PcDesc;
 895 
 896 class Recompiler;
 897 class Recompilee;
 898 class RecompilationPolicy;
 899 class RFrame;
 900 class  CompiledRFrame;
 901 class  InterpretedRFrame;
 902 
 903 class vframe;
 904 class   javaVFrame;
 905 class     interpretedVFrame;
 906 class     compiledVFrame;
 907 class     deoptimizedVFrame;
 908 class   externalVFrame;
 909 class     entryVFrame;
 910 
 911 class RegisterMap;
 912 
 913 class Mutex;
 914 class Monitor;
 915 class BasicLock;
 916 class BasicObjectLock;
 917 
 918 class PeriodicTask;
 919 
 920 class JavaCallWrapper;
 921 
 922 class   oopDesc;
 923 class   metaDataOopDesc;
 924 
 925 class NativeCall;
 926 
 927 class zone;
 928 
 929 class StubQueue;
 930 
 931 class outputStream;
 932 
 933 class ResourceArea;
 934 
 935 class DebugInformationRecorder;
 936 class ScopeValue;
 937 class CompressedStream;
 938 class   DebugInfoReadStream;
 939 class   DebugInfoWriteStream;
 940 class LocationValue;
 941 class ConstantValue;
 942 class IllegalValue;
 943 
 944 class PrivilegedElement;
 945 class MonitorArray;
 946 
 947 class MonitorInfo;
 948 
 949 class OffsetClosure;
 950 class OopMapCache;
 951 class InterpreterOopMap;
 952 class OopMapCacheEntry;
 953 class OSThread;
 954 
 955 typedef int (*OSThreadStartFunc)(void*);
 956 
 957 class Space;
 958 
 959 class JavaValue;
 960 class methodHandle;
 961 class JavaCallArguments;
 962 
 963 //----------------------------------------------------------------------------------------------------
 964 // Special constants for debugging
 965 
 966 const jint     badInt           = -3;                       // generic "bad int" value
 967 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 968 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 969 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 970 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 971 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 972 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 973 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 974 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 975 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 976 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 977 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 978 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 979 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 980 
 981 
 982 // (These must be implemented as #defines because C++ compilers are
 983 // not obligated to inline non-integral constants!)
 984 #define       badAddress        ((address)::badAddressVal)
 985 #define       badOop            (cast_to_oop(::badOopVal))
 986 #define       badHeapWord       (::badHeapWordVal)
 987 
 988 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 989 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 990 
 991 //----------------------------------------------------------------------------------------------------
 992 // Utility functions for bitfield manipulations
 993 
 994 const intptr_t AllBits    = ~0; // all bits set in a word
 995 const intptr_t NoBits     =  0; // no bits set in a word
 996 const jlong    NoLongBits =  0; // no bits set in a long
 997 const intptr_t OneBit     =  1; // only right_most bit set in a word
 998 
 999 // get a word with the n.th or the right-most or left-most n bits set
1000 // (note: #define used only so that they can be used in enum constant definitions)
1001 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1002 #define right_n_bits(n)   (nth_bit(n) - 1)
1003 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1004 
1005 // bit-operations using a mask m
1006 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1007 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1008 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1009 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1010 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1011 
1012 // bit-operations using the n.th bit
1013 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1014 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1015 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1016 
1017 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1018 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1019   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1020 }
1021 
1022 
1023 //----------------------------------------------------------------------------------------------------
1024 // Utility functions for integers
1025 
1026 // Avoid use of global min/max macros which may cause unwanted double
1027 // evaluation of arguments.
1028 #ifdef max
1029 #undef max
1030 #endif
1031 
1032 #ifdef min
1033 #undef min
1034 #endif
1035 
1036 // It is necessary to use templates here. Having normal overloaded
1037 // functions does not work because it is necessary to provide both 32-
1038 // and 64-bit overloaded functions, which does not work, and having
1039 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1040 // will be even more error-prone than macros.
1041 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1042 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1043 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1044 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1045 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1046 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1047 
1048 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1049 
1050 // true if x is a power of 2, false otherwise
1051 inline bool is_power_of_2(intptr_t x) {
1052   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1053 }
1054 
1055 // long version of is_power_of_2
1056 inline bool is_power_of_2_long(jlong x) {
1057   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1058 }
1059 
1060 // Returns largest i such that 2^i <= x.
1061 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1062 // If x == 0, the function returns -1.
1063 inline int log2_intptr(intptr_t x) {
1064   int i = -1;
1065   uintptr_t p = 1;
1066   while (p != 0 && p <= (uintptr_t)x) {
1067     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1068     i++; p *= 2;
1069   }
1070   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1071   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1072   return i;
1073 }
1074 
1075 //* largest i such that 2^i <= x
1076 //  A negative value of 'x' will return '63'
1077 inline int log2_long(jlong x) {
1078   int i = -1;
1079   julong p =  1;
1080   while (p != 0 && p <= (julong)x) {
1081     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1082     i++; p *= 2;
1083   }
1084   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1085   // (if p = 0 then overflow occurred and i = 63)
1086   return i;
1087 }
1088 
1089 //* the argument must be exactly a power of 2
1090 inline int exact_log2(intptr_t x) {
1091   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1092   return log2_intptr(x);
1093 }
1094 
1095 // the argument doesn't need to be a power of two
1096 inline int upper_log2(intptr_t x) {
1097   int shift = log2_intptr(x);
1098   intptr_t y = 1ULL << shift;
1099   if (y < x) {
1100     shift++;
1101   }
1102   return shift;
1103 }
1104 
1105 //* the argument must be exactly a power of 2
1106 inline int exact_log2_long(jlong x) {
1107   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1108   return log2_long(x);
1109 }
1110 
1111 inline bool is_odd (intx x) { return x & 1;      }
1112 inline bool is_even(intx x) { return !is_odd(x); }
1113 
1114 // "to" should be greater than "from."
1115 inline intx byte_size(void* from, void* to) {
1116   return (address)to - (address)from;
1117 }
1118 
1119 //----------------------------------------------------------------------------------------------------
1120 // Avoid non-portable casts with these routines (DEPRECATED)
1121 
1122 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1123 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1124 
1125 // Given sequence of four bytes, build into a 32-bit word
1126 // following the conventions used in class files.
1127 // On the 386, this could be realized with a simple address cast.
1128 //
1129 
1130 // This routine takes eight bytes:
1131 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1132   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1133        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1134        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1135        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1136        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1137        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1138        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1139        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1140 }
1141 
1142 // This routine takes four bytes:
1143 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1144   return  (( u4(c1) << 24 )  &  0xff000000)
1145        |  (( u4(c2) << 16 )  &  0x00ff0000)
1146        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1147        |  (( u4(c4) <<  0 )  &  0x000000ff);
1148 }
1149 
1150 // And this one works if the four bytes are contiguous in memory:
1151 inline u4 build_u4_from( u1* p ) {
1152   return  build_u4_from( p[0], p[1], p[2], p[3] );
1153 }
1154 
1155 // Ditto for two-byte ints:
1156 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1157   return  u2((( u2(c1) <<  8 )  &  0xff00)
1158           |  (( u2(c2) <<  0 )  &  0x00ff));
1159 }
1160 
1161 // And this one works if the two bytes are contiguous in memory:
1162 inline u2 build_u2_from( u1* p ) {
1163   return  build_u2_from( p[0], p[1] );
1164 }
1165 
1166 // Ditto for floats:
1167 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1168   u4 u = build_u4_from( c1, c2, c3, c4 );
1169   return  *(jfloat*)&u;
1170 }
1171 
1172 inline jfloat build_float_from( u1* p ) {
1173   u4 u = build_u4_from( p );
1174   return  *(jfloat*)&u;
1175 }
1176 
1177 
1178 // now (64-bit) longs
1179 
1180 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1181   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1182        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1183        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1184        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1185        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1186        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1187        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1188        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1189 }
1190 
1191 inline jlong build_long_from( u1* p ) {
1192   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1193 }
1194 
1195 
1196 // Doubles, too!
1197 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1198   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1199   return  *(jdouble*)&u;
1200 }
1201 
1202 inline jdouble build_double_from( u1* p ) {
1203   jlong u = build_long_from( p );
1204   return  *(jdouble*)&u;
1205 }
1206 
1207 
1208 // Portable routines to go the other way:
1209 
1210 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1211   c1 = u1(x >> 8);
1212   c2 = u1(x);
1213 }
1214 
1215 inline void explode_short_to( u2 x, u1* p ) {
1216   explode_short_to( x, p[0], p[1]);
1217 }
1218 
1219 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1220   c1 = u1(x >> 24);
1221   c2 = u1(x >> 16);
1222   c3 = u1(x >>  8);
1223   c4 = u1(x);
1224 }
1225 
1226 inline void explode_int_to( u4 x, u1* p ) {
1227   explode_int_to( x, p[0], p[1], p[2], p[3]);
1228 }
1229 
1230 
1231 // Pack and extract shorts to/from ints:
1232 
1233 inline int extract_low_short_from_int(jint x) {
1234   return x & 0xffff;
1235 }
1236 
1237 inline int extract_high_short_from_int(jint x) {
1238   return (x >> 16) & 0xffff;
1239 }
1240 
1241 inline int build_int_from_shorts( jushort low, jushort high ) {
1242   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1243 }
1244 
1245 // Convert pointer to intptr_t, for use in printing pointers.
1246 inline intptr_t p2i(const void * p) {
1247   return (intptr_t) p;
1248 }
1249 
1250 // swap a & b
1251 template<class T> static void swap(T& a, T& b) {
1252   T tmp = a;
1253   a = b;
1254   b = tmp;
1255 }
1256 
1257 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1258 
1259 //----------------------------------------------------------------------------------------------------
1260 // Sum and product which can never overflow: they wrap, just like the
1261 // Java operations.  Note that we don't intend these to be used for
1262 // general-purpose arithmetic: their purpose is to emulate Java
1263 // operations.
1264 
1265 // The goal of this code to avoid undefined or implementation-defined
1266 // behavior.  The use of an lvalue to reference cast is explicitly
1267 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1268 // 15 in C++03]
1269 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1270 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1271   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1272   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1273   return reinterpret_cast<TYPE&>(ures);                 \
1274 }
1275 
1276 JAVA_INTEGER_OP(+, java_add, jint, juint)
1277 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1278 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1279 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1280 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1281 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1282 
1283 #undef JAVA_INTEGER_OP
1284 
1285 // Dereference vptr
1286 // All C++ compilers that we know of have the vtbl pointer in the first
1287 // word.  If there are exceptions, this function needs to be made compiler
1288 // specific.
1289 static inline void* dereference_vptr(const void* addr) {
1290   return *(void**)addr;
1291 }
1292 
1293 //----------------------------------------------------------------------------------------------------
1294 // String type aliases used by command line flag declarations and
1295 // processing utilities.
1296 
1297 typedef const char* ccstr;
1298 typedef const char* ccstrlist;   // represents string arguments which accumulate
1299 
1300 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP