1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99   static bool uses_implicit_null_check(void* address);
 100 
 101   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 102 
 103   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 104   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 105   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 106 
 107   // Check klass/oops is flat value type array (oop->_klass->_layout_helper & vt_bit)
 108   void test_flat_array_klass(Register klass, Register temp_reg, Label& is_flat_array);
 109   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 110 
 111   // Required platform-specific helpers for Label::patch_instructions.
 112   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 113   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 114     unsigned char op = branch[0];
 115     assert(op == 0xE8 /* call */ ||
 116         op == 0xE9 /* jmp */ ||
 117         op == 0xEB /* short jmp */ ||
 118         (op & 0xF0) == 0x70 /* short jcc */ ||
 119         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 120         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 121         "Invalid opcode at patch point");
 122 
 123     if (op == 0xEB || (op & 0xF0) == 0x70) {
 124       // short offset operators (jmp and jcc)
 125       char* disp = (char*) &branch[1];
 126       int imm8 = target - (address) &disp[1];
 127       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", file, line);
 128       *disp = imm8;
 129     } else {
 130       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 131       int imm32 = target - (address) &disp[1];
 132       *disp = imm32;
 133     }
 134   }
 135 
 136   // The following 4 methods return the offset of the appropriate move instruction
 137 
 138   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 139   int load_unsigned_byte(Register dst, Address src);
 140   int load_unsigned_short(Register dst, Address src);
 141 
 142   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 143   int load_signed_byte(Register dst, Address src);
 144   int load_signed_short(Register dst, Address src);
 145 
 146   // Support for sign-extension (hi:lo = extend_sign(lo))
 147   void extend_sign(Register hi, Register lo);
 148 
 149   // Load and store values by size and signed-ness
 150   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 151   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 152 
 153   // Support for inc/dec with optimal instruction selection depending on value
 154 
 155   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 156   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 157 
 158   void decrementl(Address dst, int value = 1);
 159   void decrementl(Register reg, int value = 1);
 160 
 161   void decrementq(Register reg, int value = 1);
 162   void decrementq(Address dst, int value = 1);
 163 
 164   void incrementl(Address dst, int value = 1);
 165   void incrementl(Register reg, int value = 1);
 166 
 167   void incrementq(Register reg, int value = 1);
 168   void incrementq(Address dst, int value = 1);
 169 
 170 #ifdef COMPILER2
 171   // special instructions for EVEX
 172   void setvectmask(Register dst, Register src);
 173   void restorevectmask();
 174 #endif
 175 
 176   // Support optimal SSE move instructions.
 177   void movflt(XMMRegister dst, XMMRegister src) {
 178     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 179     else                       { movss (dst, src); return; }
 180   }
 181   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 182   void movflt(XMMRegister dst, AddressLiteral src);
 183   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 184 
 185   void movdbl(XMMRegister dst, XMMRegister src) {
 186     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 187     else                       { movsd (dst, src); return; }
 188   }
 189 
 190   void movdbl(XMMRegister dst, AddressLiteral src);
 191 
 192   void movdbl(XMMRegister dst, Address src) {
 193     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 194     else                         { movlpd(dst, src); return; }
 195   }
 196   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 197 
 198   void incrementl(AddressLiteral dst);
 199   void incrementl(ArrayAddress dst);
 200 
 201   void incrementq(AddressLiteral dst);
 202 
 203   // Alignment
 204   void align(int modulus);
 205   void align(int modulus, int target);
 206 
 207   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 208   void fat_nop();
 209 
 210   // Stack frame creation/removal
 211   void enter();
 212   void leave();
 213 
 214   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 215   // The pointer will be loaded into the thread register.
 216   void get_thread(Register thread);
 217 
 218 
 219   // Support for VM calls
 220   //
 221   // It is imperative that all calls into the VM are handled via the call_VM macros.
 222   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 223   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 224 
 225 
 226   void call_VM(Register oop_result,
 227                address entry_point,
 228                bool check_exceptions = true);
 229   void call_VM(Register oop_result,
 230                address entry_point,
 231                Register arg_1,
 232                bool check_exceptions = true);
 233   void call_VM(Register oop_result,
 234                address entry_point,
 235                Register arg_1, Register arg_2,
 236                bool check_exceptions = true);
 237   void call_VM(Register oop_result,
 238                address entry_point,
 239                Register arg_1, Register arg_2, Register arg_3,
 240                bool check_exceptions = true);
 241 
 242   // Overloadings with last_Java_sp
 243   void call_VM(Register oop_result,
 244                Register last_java_sp,
 245                address entry_point,
 246                int number_of_arguments = 0,
 247                bool check_exceptions = true);
 248   void call_VM(Register oop_result,
 249                Register last_java_sp,
 250                address entry_point,
 251                Register arg_1, bool
 252                check_exceptions = true);
 253   void call_VM(Register oop_result,
 254                Register last_java_sp,
 255                address entry_point,
 256                Register arg_1, Register arg_2,
 257                bool check_exceptions = true);
 258   void call_VM(Register oop_result,
 259                Register last_java_sp,
 260                address entry_point,
 261                Register arg_1, Register arg_2, Register arg_3,
 262                bool check_exceptions = true);
 263 
 264   void get_vm_result  (Register oop_result, Register thread);
 265   void get_vm_result_2(Register metadata_result, Register thread);
 266 
 267   // These always tightly bind to MacroAssembler::call_VM_base
 268   // bypassing the virtual implementation
 269   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 270   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 271   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 272   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 273   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 274 
 275   void call_VM_leaf0(address entry_point);
 276   void call_VM_leaf(address entry_point,
 277                     int number_of_arguments = 0);
 278   void call_VM_leaf(address entry_point,
 279                     Register arg_1);
 280   void call_VM_leaf(address entry_point,
 281                     Register arg_1, Register arg_2);
 282   void call_VM_leaf(address entry_point,
 283                     Register arg_1, Register arg_2, Register arg_3);
 284 
 285   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 286   // bypassing the virtual implementation
 287   void super_call_VM_leaf(address entry_point);
 288   void super_call_VM_leaf(address entry_point, Register arg_1);
 289   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 290   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 291   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 292 
 293   // last Java Frame (fills frame anchor)
 294   void set_last_Java_frame(Register thread,
 295                            Register last_java_sp,
 296                            Register last_java_fp,
 297                            address last_java_pc);
 298 
 299   // thread in the default location (r15_thread on 64bit)
 300   void set_last_Java_frame(Register last_java_sp,
 301                            Register last_java_fp,
 302                            address last_java_pc);
 303 
 304   void reset_last_Java_frame(Register thread, bool clear_fp);
 305 
 306   // thread in the default location (r15_thread on 64bit)
 307   void reset_last_Java_frame(bool clear_fp);
 308 
 309   // jobjects
 310   void clear_jweak_tag(Register possibly_jweak);
 311   void resolve_jobject(Register value, Register thread, Register tmp);
 312 
 313   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 314   void c2bool(Register x);
 315 
 316   // C++ bool manipulation
 317 
 318   void movbool(Register dst, Address src);
 319   void movbool(Address dst, bool boolconst);
 320   void movbool(Address dst, Register src);
 321   void testbool(Register dst);
 322 
 323   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 324   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 325 
 326   // oop manipulations
 327   void load_klass(Register dst, Register src);
 328   void store_klass(Register dst, Register src);
 329 
 330   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 331                       Register tmp1, Register thread_tmp);
 332   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 333                        Register tmp1, Register tmp2);
 334 
 335   // Resolves obj access. Result is placed in the same register.
 336   // All other registers are preserved.
 337   void resolve(DecoratorSet decorators, Register obj);
 338 
 339   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 340                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 341   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 342                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 343   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 344                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 345 
 346   // Used for storing NULL. All other oop constants should be
 347   // stored using routines that take a jobject.
 348   void store_heap_oop_null(Address dst);
 349 
 350   void load_prototype_header(Register dst, Register src);
 351 
 352 #ifdef _LP64
 353   void store_klass_gap(Register dst, Register src);
 354 
 355   // This dummy is to prevent a call to store_heap_oop from
 356   // converting a zero (like NULL) into a Register by giving
 357   // the compiler two choices it can't resolve
 358 
 359   void store_heap_oop(Address dst, void* dummy);
 360 
 361   void encode_heap_oop(Register r);
 362   void decode_heap_oop(Register r);
 363   void encode_heap_oop_not_null(Register r);
 364   void decode_heap_oop_not_null(Register r);
 365   void encode_heap_oop_not_null(Register dst, Register src);
 366   void decode_heap_oop_not_null(Register dst, Register src);
 367 
 368   void set_narrow_oop(Register dst, jobject obj);
 369   void set_narrow_oop(Address dst, jobject obj);
 370   void cmp_narrow_oop(Register dst, jobject obj);
 371   void cmp_narrow_oop(Address dst, jobject obj);
 372 
 373   void encode_klass_not_null(Register r);
 374   void decode_klass_not_null(Register r);
 375   void encode_klass_not_null(Register dst, Register src);
 376   void decode_klass_not_null(Register dst, Register src);
 377   void set_narrow_klass(Register dst, Klass* k);
 378   void set_narrow_klass(Address dst, Klass* k);
 379   void cmp_narrow_klass(Register dst, Klass* k);
 380   void cmp_narrow_klass(Address dst, Klass* k);
 381 
 382   // Returns the byte size of the instructions generated by decode_klass_not_null()
 383   // when compressed klass pointers are being used.
 384   static int instr_size_for_decode_klass_not_null();
 385 
 386   // if heap base register is used - reinit it with the correct value
 387   void reinit_heapbase();
 388 
 389   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 390 
 391 #endif // _LP64
 392 
 393   // Int division/remainder for Java
 394   // (as idivl, but checks for special case as described in JVM spec.)
 395   // returns idivl instruction offset for implicit exception handling
 396   int corrected_idivl(Register reg);
 397 
 398   // Long division/remainder for Java
 399   // (as idivq, but checks for special case as described in JVM spec.)
 400   // returns idivq instruction offset for implicit exception handling
 401   int corrected_idivq(Register reg);
 402 
 403   void int3();
 404 
 405   // Long operation macros for a 32bit cpu
 406   // Long negation for Java
 407   void lneg(Register hi, Register lo);
 408 
 409   // Long multiplication for Java
 410   // (destroys contents of eax, ebx, ecx and edx)
 411   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 412 
 413   // Long shifts for Java
 414   // (semantics as described in JVM spec.)
 415   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 416   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 417 
 418   // Long compare for Java
 419   // (semantics as described in JVM spec.)
 420   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 421 
 422 
 423   // misc
 424 
 425   // Sign extension
 426   void sign_extend_short(Register reg);
 427   void sign_extend_byte(Register reg);
 428 
 429   // Division by power of 2, rounding towards 0
 430   void division_with_shift(Register reg, int shift_value);
 431 
 432   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 433   //
 434   // CF (corresponds to C0) if x < y
 435   // PF (corresponds to C2) if unordered
 436   // ZF (corresponds to C3) if x = y
 437   //
 438   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 439   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 440   void fcmp(Register tmp);
 441   // Variant of the above which allows y to be further down the stack
 442   // and which only pops x and y if specified. If pop_right is
 443   // specified then pop_left must also be specified.
 444   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 445 
 446   // Floating-point comparison for Java
 447   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 448   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 449   // (semantics as described in JVM spec.)
 450   void fcmp2int(Register dst, bool unordered_is_less);
 451   // Variant of the above which allows y to be further down the stack
 452   // and which only pops x and y if specified. If pop_right is
 453   // specified then pop_left must also be specified.
 454   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 455 
 456   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 457   // tmp is a temporary register, if none is available use noreg
 458   void fremr(Register tmp);
 459 
 460   // dst = c = a * b + c
 461   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 462   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 463 
 464   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 465   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 466   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 467   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 468 
 469 
 470   // same as fcmp2int, but using SSE2
 471   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 472   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 473 
 474   // branch to L if FPU flag C2 is set/not set
 475   // tmp is a temporary register, if none is available use noreg
 476   void jC2 (Register tmp, Label& L);
 477   void jnC2(Register tmp, Label& L);
 478 
 479   // Pop ST (ffree & fincstp combined)
 480   void fpop();
 481 
 482   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 483   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 484   void load_float(Address src);
 485 
 486   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 487   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 488   void store_float(Address dst);
 489 
 490   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 491   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 492   void load_double(Address src);
 493 
 494   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 495   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 496   void store_double(Address dst);
 497 
 498   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 499   void push_fTOS();
 500 
 501   // pops double TOS element from CPU stack and pushes on FPU stack
 502   void pop_fTOS();
 503 
 504   void empty_FPU_stack();
 505 
 506   void push_IU_state();
 507   void pop_IU_state();
 508 
 509   void push_FPU_state();
 510   void pop_FPU_state();
 511 
 512   void push_CPU_state();
 513   void pop_CPU_state();
 514 
 515   // Round up to a power of two
 516   void round_to(Register reg, int modulus);
 517 
 518   // Callee saved registers handling
 519   void push_callee_saved_registers();
 520   void pop_callee_saved_registers();
 521 
 522   // allocation
 523   void eden_allocate(
 524     Register thread,                   // Current thread
 525     Register obj,                      // result: pointer to object after successful allocation
 526     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 527     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 528     Register t1,                       // temp register
 529     Label&   slow_case                 // continuation point if fast allocation fails
 530   );
 531   void tlab_allocate(
 532     Register thread,                   // Current thread
 533     Register obj,                      // result: pointer to object after successful allocation
 534     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 535     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 536     Register t1,                       // temp register
 537     Register t2,                       // temp register
 538     Label&   slow_case                 // continuation point if fast allocation fails
 539   );
 540   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 541 
 542   // interface method calling
 543   void lookup_interface_method(Register recv_klass,
 544                                Register intf_klass,
 545                                RegisterOrConstant itable_index,
 546                                Register method_result,
 547                                Register scan_temp,
 548                                Label& no_such_interface,
 549                                bool return_method = true);
 550 
 551   // virtual method calling
 552   void lookup_virtual_method(Register recv_klass,
 553                              RegisterOrConstant vtable_index,
 554                              Register method_result);
 555 
 556   // Test sub_klass against super_klass, with fast and slow paths.
 557 
 558   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 559   // One of the three labels can be NULL, meaning take the fall-through.
 560   // If super_check_offset is -1, the value is loaded up from super_klass.
 561   // No registers are killed, except temp_reg.
 562   void check_klass_subtype_fast_path(Register sub_klass,
 563                                      Register super_klass,
 564                                      Register temp_reg,
 565                                      Label* L_success,
 566                                      Label* L_failure,
 567                                      Label* L_slow_path,
 568                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 569 
 570   // The rest of the type check; must be wired to a corresponding fast path.
 571   // It does not repeat the fast path logic, so don't use it standalone.
 572   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 573   // Updates the sub's secondary super cache as necessary.
 574   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 575   void check_klass_subtype_slow_path(Register sub_klass,
 576                                      Register super_klass,
 577                                      Register temp_reg,
 578                                      Register temp2_reg,
 579                                      Label* L_success,
 580                                      Label* L_failure,
 581                                      bool set_cond_codes = false);
 582 
 583   // Simplified, combined version, good for typical uses.
 584   // Falls through on failure.
 585   void check_klass_subtype(Register sub_klass,
 586                            Register super_klass,
 587                            Register temp_reg,
 588                            Label& L_success);
 589 
 590   // method handles (JSR 292)
 591   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 592 
 593   //----
 594   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 595 
 596   // Debugging
 597 
 598   // only if +VerifyOops
 599   // TODO: Make these macros with file and line like sparc version!
 600   void verify_oop(Register reg, const char* s = "broken oop");
 601   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 602 
 603   // TODO: verify method and klass metadata (compare against vptr?)
 604   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 605   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 606 
 607 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 608 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 609 
 610   // only if +VerifyFPU
 611   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 612 
 613   // Verify or restore cpu control state after JNI call
 614   void restore_cpu_control_state_after_jni();
 615 
 616   // prints msg, dumps registers and stops execution
 617   void stop(const char* msg);
 618 
 619   // prints msg and continues
 620   void warn(const char* msg);
 621 
 622   // dumps registers and other state
 623   void print_state();
 624 
 625   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 626   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 627   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 628   static void print_state64(int64_t pc, int64_t regs[]);
 629 
 630   void os_breakpoint();
 631 
 632   void untested()                                { stop("untested"); }
 633 
 634   void unimplemented(const char* what = "");
 635 
 636   void should_not_reach_here()                   { stop("should not reach here"); }
 637 
 638   void print_CPU_state();
 639 
 640   // Stack overflow checking
 641   void bang_stack_with_offset(int offset) {
 642     // stack grows down, caller passes positive offset
 643     assert(offset > 0, "must bang with negative offset");
 644     movl(Address(rsp, (-offset)), rax);
 645   }
 646 
 647   // Writes to stack successive pages until offset reached to check for
 648   // stack overflow + shadow pages.  Also, clobbers tmp
 649   void bang_stack_size(Register size, Register tmp);
 650 
 651   // Check for reserved stack access in method being exited (for JIT)
 652   void reserved_stack_check();
 653 
 654   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 655                                                 Register tmp,
 656                                                 int offset);
 657 
 658   // If thread_reg is != noreg the code assumes the register passed contains
 659   // the thread (required on 64 bit).
 660   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 661 
 662   void verify_tlab();
 663 
 664   // Biased locking support
 665   // lock_reg and obj_reg must be loaded up with the appropriate values.
 666   // swap_reg must be rax, and is killed.
 667   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 668   // be killed; if not supplied, push/pop will be used internally to
 669   // allocate a temporary (inefficient, avoid if possible).
 670   // Optional slow case is for implementations (interpreter and C1) which branch to
 671   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 672   // Returns offset of first potentially-faulting instruction for null
 673   // check info (currently consumed only by C1). If
 674   // swap_reg_contains_mark is true then returns -1 as it is assumed
 675   // the calling code has already passed any potential faults.
 676   int biased_locking_enter(Register lock_reg, Register obj_reg,
 677                            Register swap_reg, Register tmp_reg,
 678                            bool swap_reg_contains_mark,
 679                            Label& done, Label* slow_case = NULL,
 680                            BiasedLockingCounters* counters = NULL);
 681   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 682 #ifdef COMPILER2
 683   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 684   // See full desription in macroAssembler_x86.cpp.
 685   void fast_lock(Register obj, Register box, Register tmp,
 686                  Register scr, Register cx1, Register cx2,
 687                  BiasedLockingCounters* counters,
 688                  RTMLockingCounters* rtm_counters,
 689                  RTMLockingCounters* stack_rtm_counters,
 690                  Metadata* method_data,
 691                  bool use_rtm, bool profile_rtm);
 692   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 693 #if INCLUDE_RTM_OPT
 694   void rtm_counters_update(Register abort_status, Register rtm_counters);
 695   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 696   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 697                                    RTMLockingCounters* rtm_counters,
 698                                    Metadata* method_data);
 699   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 700                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 701   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 702   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 703   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 704                          Register retry_on_abort_count,
 705                          RTMLockingCounters* stack_rtm_counters,
 706                          Metadata* method_data, bool profile_rtm,
 707                          Label& DONE_LABEL, Label& IsInflated);
 708   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 709                             Register scr, Register retry_on_busy_count,
 710                             Register retry_on_abort_count,
 711                             RTMLockingCounters* rtm_counters,
 712                             Metadata* method_data, bool profile_rtm,
 713                             Label& DONE_LABEL);
 714 #endif
 715 #endif
 716 
 717   Condition negate_condition(Condition cond);
 718 
 719   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 720   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 721   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 722   // here in MacroAssembler. The major exception to this rule is call
 723 
 724   // Arithmetics
 725 
 726 
 727   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 728   void addptr(Address dst, Register src);
 729 
 730   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 731   void addptr(Register dst, int32_t src);
 732   void addptr(Register dst, Register src);
 733   void addptr(Register dst, RegisterOrConstant src) {
 734     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 735     else                   addptr(dst,       src.as_register());
 736   }
 737 
 738   void andptr(Register dst, int32_t src);
 739   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 740 
 741   void cmp8(AddressLiteral src1, int imm);
 742 
 743   // renamed to drag out the casting of address to int32_t/intptr_t
 744   void cmp32(Register src1, int32_t imm);
 745 
 746   void cmp32(AddressLiteral src1, int32_t imm);
 747   // compare reg - mem, or reg - &mem
 748   void cmp32(Register src1, AddressLiteral src2);
 749 
 750   void cmp32(Register src1, Address src2);
 751 
 752 #ifndef _LP64
 753   void cmpklass(Address dst, Metadata* obj);
 754   void cmpklass(Register dst, Metadata* obj);
 755   void cmpoop(Address dst, jobject obj);
 756   void cmpoop_raw(Address dst, jobject obj);
 757 #endif // _LP64
 758 
 759   void cmpoop(Register src1, Register src2);
 760   void cmpoop(Register src1, Address src2);
 761   void cmpoop(Register dst, jobject obj);
 762   void cmpoop_raw(Register dst, jobject obj);
 763 
 764   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 765   void cmpptr(Address src1, AddressLiteral src2);
 766 
 767   void cmpptr(Register src1, AddressLiteral src2);
 768 
 769   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 770   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 771   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 772 
 773   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 774   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 775 
 776   // cmp64 to avoild hiding cmpq
 777   void cmp64(Register src1, AddressLiteral src);
 778 
 779   void cmpxchgptr(Register reg, Address adr);
 780 
 781   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 782 
 783 
 784   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 785   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 786 
 787 
 788   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 789 
 790   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 791 
 792   void shlptr(Register dst, int32_t shift);
 793   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 794 
 795   void shrptr(Register dst, int32_t shift);
 796   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 797 
 798   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 799   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 800 
 801   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 802 
 803   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 804   void subptr(Register dst, int32_t src);
 805   // Force generation of a 4 byte immediate value even if it fits into 8bit
 806   void subptr_imm32(Register dst, int32_t src);
 807   void subptr(Register dst, Register src);
 808   void subptr(Register dst, RegisterOrConstant src) {
 809     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 810     else                   subptr(dst,       src.as_register());
 811   }
 812 
 813   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 814   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 815 
 816   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 817   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 818 
 819   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 820 
 821 
 822 
 823   // Helper functions for statistics gathering.
 824   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 825   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 826   // Unconditional atomic increment.
 827   void atomic_incl(Address counter_addr);
 828   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 829 #ifdef _LP64
 830   void atomic_incq(Address counter_addr);
 831   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 832 #endif
 833   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 834   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 835 
 836   void lea(Register dst, AddressLiteral adr);
 837   void lea(Address dst, AddressLiteral adr);
 838   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 839 
 840   void leal32(Register dst, Address src) { leal(dst, src); }
 841 
 842   // Import other testl() methods from the parent class or else
 843   // they will be hidden by the following overriding declaration.
 844   using Assembler::testl;
 845   void testl(Register dst, AddressLiteral src);
 846 
 847   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 848   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 849   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 850   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 851 
 852   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 853   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 854   void testptr(Register src1, Register src2);
 855 
 856   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 857   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 858 
 859   // Calls
 860 
 861   void call(Label& L, relocInfo::relocType rtype);
 862   void call(Register entry);
 863 
 864   // NOTE: this call transfers to the effective address of entry NOT
 865   // the address contained by entry. This is because this is more natural
 866   // for jumps/calls.
 867   void call(AddressLiteral entry);
 868 
 869   // Emit the CompiledIC call idiom
 870   void ic_call(address entry, jint method_index = 0);
 871 
 872   // Jumps
 873 
 874   // NOTE: these jumps tranfer to the effective address of dst NOT
 875   // the address contained by dst. This is because this is more natural
 876   // for jumps/calls.
 877   void jump(AddressLiteral dst);
 878   void jump_cc(Condition cc, AddressLiteral dst);
 879 
 880   // 32bit can do a case table jump in one instruction but we no longer allow the base
 881   // to be installed in the Address class. This jump will tranfers to the address
 882   // contained in the location described by entry (not the address of entry)
 883   void jump(ArrayAddress entry);
 884 
 885   // Floating
 886 
 887   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 888   void andpd(XMMRegister dst, AddressLiteral src);
 889   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 890 
 891   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 892   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 893   void andps(XMMRegister dst, AddressLiteral src);
 894 
 895   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 896   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 897   void comiss(XMMRegister dst, AddressLiteral src);
 898 
 899   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 900   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 901   void comisd(XMMRegister dst, AddressLiteral src);
 902 
 903   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 904   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 905 
 906   void fldcw(Address src) { Assembler::fldcw(src); }
 907   void fldcw(AddressLiteral src);
 908 
 909   void fld_s(int index)   { Assembler::fld_s(index); }
 910   void fld_s(Address src) { Assembler::fld_s(src); }
 911   void fld_s(AddressLiteral src);
 912 
 913   void fld_d(Address src) { Assembler::fld_d(src); }
 914   void fld_d(AddressLiteral src);
 915 
 916   void fld_x(Address src) { Assembler::fld_x(src); }
 917   void fld_x(AddressLiteral src);
 918 
 919   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 920   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 921 
 922   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 923   void ldmxcsr(AddressLiteral src);
 924 
 925 #ifdef _LP64
 926  private:
 927   void sha256_AVX2_one_round_compute(
 928     Register  reg_old_h,
 929     Register  reg_a,
 930     Register  reg_b,
 931     Register  reg_c,
 932     Register  reg_d,
 933     Register  reg_e,
 934     Register  reg_f,
 935     Register  reg_g,
 936     Register  reg_h,
 937     int iter);
 938   void sha256_AVX2_four_rounds_compute_first(int start);
 939   void sha256_AVX2_four_rounds_compute_last(int start);
 940   void sha256_AVX2_one_round_and_sched(
 941         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 942         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 943         XMMRegister xmm_2,     /* ymm6 */
 944         XMMRegister xmm_3,     /* ymm7 */
 945         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 946         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 947         Register    reg_c,      /* edi */
 948         Register    reg_d,      /* esi */
 949         Register    reg_e,      /* r8d */
 950         Register    reg_f,      /* r9d */
 951         Register    reg_g,      /* r10d */
 952         Register    reg_h,      /* r11d */
 953         int iter);
 954 
 955   void addm(int disp, Register r1, Register r2);
 956 
 957  public:
 958   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 959                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 960                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 961                    bool multi_block, XMMRegister shuf_mask);
 962 #endif
 963 
 964 #ifdef _LP64
 965  private:
 966   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 967                                      Register e, Register f, Register g, Register h, int iteration);
 968 
 969   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 970                                           Register a, Register b, Register c, Register d, Register e, Register f,
 971                                           Register g, Register h, int iteration);
 972 
 973   void addmq(int disp, Register r1, Register r2);
 974  public:
 975   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 976                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 977                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 978                    XMMRegister shuf_mask);
 979 #endif
 980 
 981   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 982                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 983                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 984                  bool multi_block);
 985 
 986 #ifdef _LP64
 987   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 988                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 989                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 990                    bool multi_block, XMMRegister shuf_mask);
 991 #else
 992   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 993                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 994                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 995                    bool multi_block);
 996 #endif
 997 
 998   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 999                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1000                 Register rax, Register rcx, Register rdx, Register tmp);
1001 
1002 #ifdef _LP64
1003   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1004                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1005                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1006 
1007   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1008                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1009                   Register rax, Register rcx, Register rdx, Register r11);
1010 
1011   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1012                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1013                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1014 
1015   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1016                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1017                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1018                 Register tmp3, Register tmp4);
1019 
1020   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1021                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1022                 Register rax, Register rcx, Register rdx, Register tmp1,
1023                 Register tmp2, Register tmp3, Register tmp4);
1024   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1025                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1026                 Register rax, Register rcx, Register rdx, Register tmp1,
1027                 Register tmp2, Register tmp3, Register tmp4);
1028 #else
1029   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rcx, Register rdx, Register tmp1);
1032 
1033   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1034                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1035                 Register rax, Register rcx, Register rdx, Register tmp);
1036 
1037   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1038                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1039                 Register rdx, Register tmp);
1040 
1041   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rbx, Register rdx);
1044 
1045   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1046                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1047                 Register rax, Register rcx, Register rdx, Register tmp);
1048 
1049   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1050                         Register edx, Register ebx, Register esi, Register edi,
1051                         Register ebp, Register esp);
1052 
1053   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1054                          Register esi, Register edi, Register ebp, Register esp);
1055 
1056   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1057                         Register edx, Register ebx, Register esi, Register edi,
1058                         Register ebp, Register esp);
1059 
1060   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1061                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1062                 Register rax, Register rcx, Register rdx, Register tmp);
1063 #endif
1064 
1065   void increase_precision();
1066   void restore_precision();
1067 
1068 private:
1069 
1070   // these are private because users should be doing movflt/movdbl
1071 
1072   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1073   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1074   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1075   void movss(XMMRegister dst, AddressLiteral src);
1076 
1077   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1078   void movlpd(XMMRegister dst, AddressLiteral src);
1079 
1080 public:
1081 
1082   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1083   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1084   void addsd(XMMRegister dst, AddressLiteral src);
1085 
1086   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1087   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1088   void addss(XMMRegister dst, AddressLiteral src);
1089 
1090   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1091   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1092   void addpd(XMMRegister dst, AddressLiteral src);
1093 
1094   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1095   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1096   void divsd(XMMRegister dst, AddressLiteral src);
1097 
1098   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1099   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1100   void divss(XMMRegister dst, AddressLiteral src);
1101 
1102   // Move Unaligned Double Quadword
1103   void movdqu(Address     dst, XMMRegister src);
1104   void movdqu(XMMRegister dst, Address src);
1105   void movdqu(XMMRegister dst, XMMRegister src);
1106   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1107   // AVX Unaligned forms
1108   void vmovdqu(Address     dst, XMMRegister src);
1109   void vmovdqu(XMMRegister dst, Address src);
1110   void vmovdqu(XMMRegister dst, XMMRegister src);
1111   void vmovdqu(XMMRegister dst, AddressLiteral src);
1112   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1113   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1114   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1115   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1116 
1117   // Move Aligned Double Quadword
1118   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1119   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1120   void movdqa(XMMRegister dst, AddressLiteral src);
1121 
1122   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1123   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1124   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1125   void movsd(XMMRegister dst, AddressLiteral src);
1126 
1127   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1128   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1129   void mulpd(XMMRegister dst, AddressLiteral src);
1130 
1131   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1132   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1133   void mulsd(XMMRegister dst, AddressLiteral src);
1134 
1135   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1136   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1137   void mulss(XMMRegister dst, AddressLiteral src);
1138 
1139   // Carry-Less Multiplication Quadword
1140   void pclmulldq(XMMRegister dst, XMMRegister src) {
1141     // 0x00 - multiply lower 64 bits [0:63]
1142     Assembler::pclmulqdq(dst, src, 0x00);
1143   }
1144   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1145     // 0x11 - multiply upper 64 bits [64:127]
1146     Assembler::pclmulqdq(dst, src, 0x11);
1147   }
1148 
1149   void pcmpeqb(XMMRegister dst, XMMRegister src);
1150   void pcmpeqw(XMMRegister dst, XMMRegister src);
1151 
1152   void pcmpestri(XMMRegister dst, Address src, int imm8);
1153   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1154 
1155   void pmovzxbw(XMMRegister dst, XMMRegister src);
1156   void pmovzxbw(XMMRegister dst, Address src);
1157 
1158   void pmovmskb(Register dst, XMMRegister src);
1159 
1160   void ptest(XMMRegister dst, XMMRegister src);
1161 
1162   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1163   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1164   void sqrtsd(XMMRegister dst, AddressLiteral src);
1165 
1166   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1167   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1168   void sqrtss(XMMRegister dst, AddressLiteral src);
1169 
1170   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1171   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1172   void subsd(XMMRegister dst, AddressLiteral src);
1173 
1174   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1175   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1176   void subss(XMMRegister dst, AddressLiteral src);
1177 
1178   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1179   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1180   void ucomiss(XMMRegister dst, AddressLiteral src);
1181 
1182   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1183   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1184   void ucomisd(XMMRegister dst, AddressLiteral src);
1185 
1186   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1187   void xorpd(XMMRegister dst, XMMRegister src);
1188   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1189   void xorpd(XMMRegister dst, AddressLiteral src);
1190 
1191   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1192   void xorps(XMMRegister dst, XMMRegister src);
1193   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1194   void xorps(XMMRegister dst, AddressLiteral src);
1195 
1196   // Shuffle Bytes
1197   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1198   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1199   void pshufb(XMMRegister dst, AddressLiteral src);
1200   // AVX 3-operands instructions
1201 
1202   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1203   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1204   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1205 
1206   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1207   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1208   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1209 
1210   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1211   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1212 
1213   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1214   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1215 
1216   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1217   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1218 
1219   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1220   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1221   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1222 
1223   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1224   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1225 
1226   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1227 
1228   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1229 
1230   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1231   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1232 
1233   void vpmovmskb(Register dst, XMMRegister src);
1234 
1235   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1236   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1237 
1238   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1239   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1240 
1241   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1242   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1243 
1244   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1245   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1246 
1247   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1248   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1249 
1250   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1251   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1252 
1253   void vptest(XMMRegister dst, XMMRegister src);
1254 
1255   void punpcklbw(XMMRegister dst, XMMRegister src);
1256   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1257 
1258   void pshufd(XMMRegister dst, Address src, int mode);
1259   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1260 
1261   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1262   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1263 
1264   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1265   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1266   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1267 
1268   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1269   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1270   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1271 
1272   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1273   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1274   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1275 
1276   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1277   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1278   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279 
1280   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1281   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1282   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283 
1284   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1285   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1286   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1287 
1288   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1289   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1290   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1291 
1292   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1293   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1294   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1295 
1296   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1297   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1298 
1299   // AVX Vector instructions
1300 
1301   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1302   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1303   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1304 
1305   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1306   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1307   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1308 
1309   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1310     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1311       Assembler::vpxor(dst, nds, src, vector_len);
1312     else
1313       Assembler::vxorpd(dst, nds, src, vector_len);
1314   }
1315   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1316     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1317       Assembler::vpxor(dst, nds, src, vector_len);
1318     else
1319       Assembler::vxorpd(dst, nds, src, vector_len);
1320   }
1321 
1322   // Simple version for AVX2 256bit vectors
1323   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1324   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1325 
1326   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1327     if (UseAVX > 2) {
1328       Assembler::vinserti32x4(dst, dst, src, imm8);
1329     } else if (UseAVX > 1) {
1330       // vinserti128 is available only in AVX2
1331       Assembler::vinserti128(dst, nds, src, imm8);
1332     } else {
1333       Assembler::vinsertf128(dst, nds, src, imm8);
1334     }
1335   }
1336 
1337   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1338     if (UseAVX > 2) {
1339       Assembler::vinserti32x4(dst, dst, src, imm8);
1340     } else if (UseAVX > 1) {
1341       // vinserti128 is available only in AVX2
1342       Assembler::vinserti128(dst, nds, src, imm8);
1343     } else {
1344       Assembler::vinsertf128(dst, nds, src, imm8);
1345     }
1346   }
1347 
1348   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1349     if (UseAVX > 2) {
1350       Assembler::vextracti32x4(dst, src, imm8);
1351     } else if (UseAVX > 1) {
1352       // vextracti128 is available only in AVX2
1353       Assembler::vextracti128(dst, src, imm8);
1354     } else {
1355       Assembler::vextractf128(dst, src, imm8);
1356     }
1357   }
1358 
1359   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1360     if (UseAVX > 2) {
1361       Assembler::vextracti32x4(dst, src, imm8);
1362     } else if (UseAVX > 1) {
1363       // vextracti128 is available only in AVX2
1364       Assembler::vextracti128(dst, src, imm8);
1365     } else {
1366       Assembler::vextractf128(dst, src, imm8);
1367     }
1368   }
1369 
1370   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1371   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1372     vinserti128(dst, dst, src, 1);
1373   }
1374   void vinserti128_high(XMMRegister dst, Address src) {
1375     vinserti128(dst, dst, src, 1);
1376   }
1377   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1378     vextracti128(dst, src, 1);
1379   }
1380   void vextracti128_high(Address dst, XMMRegister src) {
1381     vextracti128(dst, src, 1);
1382   }
1383 
1384   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1385     if (UseAVX > 2) {
1386       Assembler::vinsertf32x4(dst, dst, src, 1);
1387     } else {
1388       Assembler::vinsertf128(dst, dst, src, 1);
1389     }
1390   }
1391 
1392   void vinsertf128_high(XMMRegister dst, Address src) {
1393     if (UseAVX > 2) {
1394       Assembler::vinsertf32x4(dst, dst, src, 1);
1395     } else {
1396       Assembler::vinsertf128(dst, dst, src, 1);
1397     }
1398   }
1399 
1400   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1401     if (UseAVX > 2) {
1402       Assembler::vextractf32x4(dst, src, 1);
1403     } else {
1404       Assembler::vextractf128(dst, src, 1);
1405     }
1406   }
1407 
1408   void vextractf128_high(Address dst, XMMRegister src) {
1409     if (UseAVX > 2) {
1410       Assembler::vextractf32x4(dst, src, 1);
1411     } else {
1412       Assembler::vextractf128(dst, src, 1);
1413     }
1414   }
1415 
1416   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1417   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1418     Assembler::vinserti64x4(dst, dst, src, 1);
1419   }
1420   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1421     Assembler::vinsertf64x4(dst, dst, src, 1);
1422   }
1423   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1424     Assembler::vextracti64x4(dst, src, 1);
1425   }
1426   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1427     Assembler::vextractf64x4(dst, src, 1);
1428   }
1429   void vextractf64x4_high(Address dst, XMMRegister src) {
1430     Assembler::vextractf64x4(dst, src, 1);
1431   }
1432   void vinsertf64x4_high(XMMRegister dst, Address src) {
1433     Assembler::vinsertf64x4(dst, dst, src, 1);
1434   }
1435 
1436   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1437   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1438     vinserti128(dst, dst, src, 0);
1439   }
1440   void vinserti128_low(XMMRegister dst, Address src) {
1441     vinserti128(dst, dst, src, 0);
1442   }
1443   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1444     vextracti128(dst, src, 0);
1445   }
1446   void vextracti128_low(Address dst, XMMRegister src) {
1447     vextracti128(dst, src, 0);
1448   }
1449 
1450   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1451     if (UseAVX > 2) {
1452       Assembler::vinsertf32x4(dst, dst, src, 0);
1453     } else {
1454       Assembler::vinsertf128(dst, dst, src, 0);
1455     }
1456   }
1457 
1458   void vinsertf128_low(XMMRegister dst, Address src) {
1459     if (UseAVX > 2) {
1460       Assembler::vinsertf32x4(dst, dst, src, 0);
1461     } else {
1462       Assembler::vinsertf128(dst, dst, src, 0);
1463     }
1464   }
1465 
1466   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1467     if (UseAVX > 2) {
1468       Assembler::vextractf32x4(dst, src, 0);
1469     } else {
1470       Assembler::vextractf128(dst, src, 0);
1471     }
1472   }
1473 
1474   void vextractf128_low(Address dst, XMMRegister src) {
1475     if (UseAVX > 2) {
1476       Assembler::vextractf32x4(dst, src, 0);
1477     } else {
1478       Assembler::vextractf128(dst, src, 0);
1479     }
1480   }
1481 
1482   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1483   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1484     Assembler::vinserti64x4(dst, dst, src, 0);
1485   }
1486   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1487     Assembler::vinsertf64x4(dst, dst, src, 0);
1488   }
1489   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1490     Assembler::vextracti64x4(dst, src, 0);
1491   }
1492   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1493     Assembler::vextractf64x4(dst, src, 0);
1494   }
1495   void vextractf64x4_low(Address dst, XMMRegister src) {
1496     Assembler::vextractf64x4(dst, src, 0);
1497   }
1498   void vinsertf64x4_low(XMMRegister dst, Address src) {
1499     Assembler::vinsertf64x4(dst, dst, src, 0);
1500   }
1501 
1502   // Carry-Less Multiplication Quadword
1503   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1504     // 0x00 - multiply lower 64 bits [0:63]
1505     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1506   }
1507   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1508     // 0x11 - multiply upper 64 bits [64:127]
1509     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1510   }
1511   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1512     // 0x00 - multiply lower 64 bits [0:63]
1513     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1514   }
1515   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1516     // 0x11 - multiply upper 64 bits [64:127]
1517     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1518   }
1519 
1520   // Data
1521 
1522   void cmov32( Condition cc, Register dst, Address  src);
1523   void cmov32( Condition cc, Register dst, Register src);
1524 
1525   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1526 
1527   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1528   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1529 
1530   void movoop(Register dst, jobject obj);
1531   void movoop(Address dst, jobject obj);
1532 
1533   void mov_metadata(Register dst, Metadata* obj);
1534   void mov_metadata(Address dst, Metadata* obj);
1535 
1536   void movptr(ArrayAddress dst, Register src);
1537   // can this do an lea?
1538   void movptr(Register dst, ArrayAddress src);
1539 
1540   void movptr(Register dst, Address src);
1541 
1542 #ifdef _LP64
1543   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1544 #else
1545   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1546 #endif
1547 
1548   void movptr(Register dst, intptr_t src);
1549   void movptr(Register dst, Register src);
1550   void movptr(Address dst, intptr_t src);
1551 
1552   void movptr(Address dst, Register src);
1553 
1554   void movptr(Register dst, RegisterOrConstant src) {
1555     if (src.is_constant()) movptr(dst, src.as_constant());
1556     else                   movptr(dst, src.as_register());
1557   }
1558 
1559 #ifdef _LP64
1560   // Generally the next two are only used for moving NULL
1561   // Although there are situations in initializing the mark word where
1562   // they could be used. They are dangerous.
1563 
1564   // They only exist on LP64 so that int32_t and intptr_t are not the same
1565   // and we have ambiguous declarations.
1566 
1567   void movptr(Address dst, int32_t imm32);
1568   void movptr(Register dst, int32_t imm32);
1569 #endif // _LP64
1570 
1571   // to avoid hiding movl
1572   void mov32(AddressLiteral dst, Register src);
1573   void mov32(Register dst, AddressLiteral src);
1574 
1575   // to avoid hiding movb
1576   void movbyte(ArrayAddress dst, int src);
1577 
1578   // Import other mov() methods from the parent class or else
1579   // they will be hidden by the following overriding declaration.
1580   using Assembler::movdl;
1581   using Assembler::movq;
1582   void movdl(XMMRegister dst, AddressLiteral src);
1583   void movq(XMMRegister dst, AddressLiteral src);
1584 
1585   // Can push value or effective address
1586   void pushptr(AddressLiteral src);
1587 
1588   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1589   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1590 
1591   void pushoop(jobject obj);
1592   void pushklass(Metadata* obj);
1593 
1594   // sign extend as need a l to ptr sized element
1595   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1596   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1597 
1598   // C2 compiled method's prolog code.
1599   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1600 
1601   // clear memory of size 'cnt' qwords, starting at 'base';
1602   // if 'is_large' is set, do not try to produce short loop
1603   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1604 
1605   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1606   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1607 
1608 #ifdef COMPILER2
1609   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1610                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1611 
1612   // IndexOf strings.
1613   // Small strings are loaded through stack if they cross page boundary.
1614   void string_indexof(Register str1, Register str2,
1615                       Register cnt1, Register cnt2,
1616                       int int_cnt2,  Register result,
1617                       XMMRegister vec, Register tmp,
1618                       int ae);
1619 
1620   // IndexOf for constant substrings with size >= 8 elements
1621   // which don't need to be loaded through stack.
1622   void string_indexofC8(Register str1, Register str2,
1623                       Register cnt1, Register cnt2,
1624                       int int_cnt2,  Register result,
1625                       XMMRegister vec, Register tmp,
1626                       int ae);
1627 
1628     // Smallest code: we don't need to load through stack,
1629     // check string tail.
1630 
1631   // helper function for string_compare
1632   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1633                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1634                           Address::ScaleFactor scale2, Register index, int ae);
1635   // Compare strings.
1636   void string_compare(Register str1, Register str2,
1637                       Register cnt1, Register cnt2, Register result,
1638                       XMMRegister vec1, int ae);
1639 
1640   // Search for Non-ASCII character (Negative byte value) in a byte array,
1641   // return true if it has any and false otherwise.
1642   void has_negatives(Register ary1, Register len,
1643                      Register result, Register tmp1,
1644                      XMMRegister vec1, XMMRegister vec2);
1645 
1646   // Compare char[] or byte[] arrays.
1647   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1648                      Register limit, Register result, Register chr,
1649                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1650 
1651 #endif
1652 
1653   // Fill primitive arrays
1654   void generate_fill(BasicType t, bool aligned,
1655                      Register to, Register value, Register count,
1656                      Register rtmp, XMMRegister xtmp);
1657 
1658   void encode_iso_array(Register src, Register dst, Register len,
1659                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1660                         XMMRegister tmp4, Register tmp5, Register result);
1661 
1662 #ifdef _LP64
1663   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1664   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1665                              Register y, Register y_idx, Register z,
1666                              Register carry, Register product,
1667                              Register idx, Register kdx);
1668   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1669                               Register yz_idx, Register idx,
1670                               Register carry, Register product, int offset);
1671   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1672                                     Register carry, Register carry2,
1673                                     Register idx, Register jdx,
1674                                     Register yz_idx1, Register yz_idx2,
1675                                     Register tmp, Register tmp3, Register tmp4);
1676   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1677                                Register yz_idx, Register idx, Register jdx,
1678                                Register carry, Register product,
1679                                Register carry2);
1680   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1681                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1682   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1683                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1684   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1685                             Register tmp2);
1686   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1687                        Register rdxReg, Register raxReg);
1688   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1689   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1690                        Register tmp3, Register tmp4);
1691   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1692                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1693 
1694   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1695                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1696                Register raxReg);
1697   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1698                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1699                Register raxReg);
1700   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1701                            Register result, Register tmp1, Register tmp2,
1702                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1703 #endif
1704 
1705   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1706   void update_byte_crc32(Register crc, Register val, Register table);
1707   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1708   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1709   // Note on a naming convention:
1710   // Prefix w = register only used on a Westmere+ architecture
1711   // Prefix n = register only used on a Nehalem architecture
1712 #ifdef _LP64
1713   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1714                        Register tmp1, Register tmp2, Register tmp3);
1715 #else
1716   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1717                        Register tmp1, Register tmp2, Register tmp3,
1718                        XMMRegister xtmp1, XMMRegister xtmp2);
1719 #endif
1720   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1721                         Register in_out,
1722                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1723                         XMMRegister w_xtmp2,
1724                         Register tmp1,
1725                         Register n_tmp2, Register n_tmp3);
1726   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1727                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1728                        Register tmp1, Register tmp2,
1729                        Register n_tmp3);
1730   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1731                          Register in_out1, Register in_out2, Register in_out3,
1732                          Register tmp1, Register tmp2, Register tmp3,
1733                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1734                          Register tmp4, Register tmp5,
1735                          Register n_tmp6);
1736   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1737                             Register tmp1, Register tmp2, Register tmp3,
1738                             Register tmp4, Register tmp5, Register tmp6,
1739                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1740                             bool is_pclmulqdq_supported);
1741   // Fold 128-bit data chunk
1742   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1743   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1744   // Fold 8-bit data
1745   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1746   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1747   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1748 
1749   // Compress char[] array to byte[].
1750   void char_array_compress(Register src, Register dst, Register len,
1751                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1752                            XMMRegister tmp4, Register tmp5, Register result);
1753 
1754   // Inflate byte[] array to char[].
1755   void byte_array_inflate(Register src, Register dst, Register len,
1756                           XMMRegister tmp1, Register tmp2);
1757 
1758 };
1759 
1760 /**
1761  * class SkipIfEqual:
1762  *
1763  * Instantiating this class will result in assembly code being output that will
1764  * jump around any code emitted between the creation of the instance and it's
1765  * automatic destruction at the end of a scope block, depending on the value of
1766  * the flag passed to the constructor, which will be checked at run-time.
1767  */
1768 class SkipIfEqual {
1769  private:
1770   MacroAssembler* _masm;
1771   Label _label;
1772 
1773  public:
1774    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1775    ~SkipIfEqual();
1776 };
1777 
1778 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP