1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/valuetypenode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 
  56 // Portions of code courtesy of Clifford Click
  57 
  58 // Optimization - Graph Style
  59 
  60 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  61 
  62 //=============================================================================
  63 uint MemNode::size_of() const { return sizeof(*this); }
  64 
  65 const TypePtr *MemNode::adr_type() const {
  66   Node* adr = in(Address);
  67   if (adr == NULL)  return NULL; // node is dead
  68   const TypePtr* cross_check = NULL;
  69   DEBUG_ONLY(cross_check = _adr_type);
  70   return calculate_adr_type(adr->bottom_type(), cross_check);
  71 }
  72 
  73 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  74   if (adr != NULL) {
  75     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  76       return true;
  77     }
  78   }
  79   return false;
  80 }
  81 
  82 #ifndef PRODUCT
  83 void MemNode::dump_spec(outputStream *st) const {
  84   if (in(Address) == NULL)  return; // node is dead
  85 #ifndef ASSERT
  86   // fake the missing field
  87   const TypePtr* _adr_type = NULL;
  88   if (in(Address) != NULL)
  89     _adr_type = in(Address)->bottom_type()->isa_ptr();
  90 #endif
  91   dump_adr_type(this, _adr_type, st);
  92 
  93   Compile* C = Compile::current();
  94   if (C->alias_type(_adr_type)->is_volatile()) {
  95     st->print(" Volatile!");
  96   }
  97   if (_unaligned_access) {
  98     st->print(" unaligned");
  99   }
 100   if (_mismatched_access) {
 101     st->print(" mismatched");
 102   }
 103 }
 104 
 105 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 106   st->print(" @");
 107   if (adr_type == NULL) {
 108     st->print("NULL");
 109   } else {
 110     adr_type->dump_on(st);
 111     Compile* C = Compile::current();
 112     Compile::AliasType* atp = NULL;
 113     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 114     if (atp == NULL)
 115       st->print(", idx=?\?;");
 116     else if (atp->index() == Compile::AliasIdxBot)
 117       st->print(", idx=Bot;");
 118     else if (atp->index() == Compile::AliasIdxTop)
 119       st->print(", idx=Top;");
 120     else if (atp->index() == Compile::AliasIdxRaw)
 121       st->print(", idx=Raw;");
 122     else {
 123       ciField* field = atp->field();
 124       if (field) {
 125         st->print(", name=");
 126         field->print_name_on(st);
 127       }
 128       st->print(", idx=%d;", atp->index());
 129     }
 130   }
 131 }
 132 
 133 extern void print_alias_types();
 134 
 135 #endif
 136 
 137 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 138   assert((t_oop != NULL), "sanity");
 139   bool is_instance = t_oop->is_known_instance_field();
 140   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 141                              (load != NULL) && load->is_Load() &&
 142                              (phase->is_IterGVN() != NULL);
 143   if (!(is_instance || is_boxed_value_load))
 144     return mchain;  // don't try to optimize non-instance types
 145   uint instance_id = t_oop->instance_id();
 146   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 147   Node *prev = NULL;
 148   Node *result = mchain;
 149   while (prev != result) {
 150     prev = result;
 151     if (result == start_mem)
 152       break;  // hit one of our sentinels
 153     // skip over a call which does not affect this memory slice
 154     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 155       Node *proj_in = result->in(0);
 156       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 157         break;  // hit one of our sentinels
 158       } else if (proj_in->is_Call()) {
 159         // ArrayCopyNodes processed here as well
 160         CallNode *call = proj_in->as_Call();
 161         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 162           result = call->in(TypeFunc::Memory);
 163         }
 164       } else if (proj_in->is_Initialize()) {
 165         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 166         // Stop if this is the initialization for the object instance which
 167         // contains this memory slice, otherwise skip over it.
 168         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 169           break;
 170         }
 171         if (is_instance) {
 172           result = proj_in->in(TypeFunc::Memory);
 173         } else if (is_boxed_value_load) {
 174           Node* klass = alloc->in(AllocateNode::KlassNode);
 175           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 176           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 177             result = proj_in->in(TypeFunc::Memory); // not related allocation
 178           }
 179         }
 180       } else if (proj_in->is_MemBar()) {
 181         ArrayCopyNode* ac = NULL;
 182         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 183           break;
 184         }
 185         result = proj_in->in(TypeFunc::Memory);
 186       } else {
 187         assert(false, "unexpected projection");
 188       }
 189     } else if (result->is_ClearArray()) {
 190       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 191         // Can not bypass initialization of the instance
 192         // we are looking for.
 193         break;
 194       }
 195       // Otherwise skip it (the call updated 'result' value).
 196     } else if (result->is_MergeMem()) {
 197       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 198     }
 199   }
 200   return result;
 201 }
 202 
 203 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 204   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 205   if (t_oop == NULL)
 206     return mchain;  // don't try to optimize non-oop types
 207   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 208   bool is_instance = t_oop->is_known_instance_field();
 209   PhaseIterGVN *igvn = phase->is_IterGVN();
 210   if (is_instance && igvn != NULL  && result->is_Phi()) {
 211     PhiNode *mphi = result->as_Phi();
 212     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 213     const TypePtr *t = mphi->adr_type();
 214     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 215         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 216          t->is_oopptr()->cast_to_exactness(true)
 217            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 218             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 219       // clone the Phi with our address type
 220       result = mphi->split_out_instance(t_adr, igvn);
 221     } else {
 222       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 223     }
 224   }
 225   return result;
 226 }
 227 
 228 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 229   uint alias_idx = phase->C->get_alias_index(tp);
 230   Node *mem = mmem;
 231 #ifdef ASSERT
 232   {
 233     // Check that current type is consistent with the alias index used during graph construction
 234     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 235     bool consistent =  adr_check == NULL || adr_check->empty() ||
 236                        phase->C->must_alias(adr_check, alias_idx );
 237     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 238     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 239         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 240         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 241         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 242           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 243           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 244       // don't assert if it is dead code.
 245       consistent = true;
 246     }
 247     if( !consistent ) {
 248       st->print("alias_idx==%d, adr_check==", alias_idx);
 249       if( adr_check == NULL ) {
 250         st->print("NULL");
 251       } else {
 252         adr_check->dump();
 253       }
 254       st->cr();
 255       print_alias_types();
 256       assert(consistent, "adr_check must match alias idx");
 257     }
 258   }
 259 #endif
 260   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 261   // means an array I have not precisely typed yet.  Do not do any
 262   // alias stuff with it any time soon.
 263   const TypeOopPtr *toop = tp->isa_oopptr();
 264   if( tp->base() != Type::AnyPtr &&
 265       !(toop &&
 266         toop->klass() != NULL &&
 267         toop->klass()->is_java_lang_Object() &&
 268         toop->offset() == Type::OffsetBot) ) {
 269     // compress paths and change unreachable cycles to TOP
 270     // If not, we can update the input infinitely along a MergeMem cycle
 271     // Equivalent code in PhiNode::Ideal
 272     Node* m  = phase->transform(mmem);
 273     // If transformed to a MergeMem, get the desired slice
 274     // Otherwise the returned node represents memory for every slice
 275     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 276     // Update input if it is progress over what we have now
 277   }
 278   return mem;
 279 }
 280 
 281 //--------------------------Ideal_common---------------------------------------
 282 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 283 // Unhook non-raw memories from complete (macro-expanded) initializations.
 284 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 285   // If our control input is a dead region, kill all below the region
 286   Node *ctl = in(MemNode::Control);
 287   if (ctl && remove_dead_region(phase, can_reshape))
 288     return this;
 289   ctl = in(MemNode::Control);
 290   // Don't bother trying to transform a dead node
 291   if (ctl && ctl->is_top())  return NodeSentinel;
 292 
 293   PhaseIterGVN *igvn = phase->is_IterGVN();
 294   // Wait if control on the worklist.
 295   if (ctl && can_reshape && igvn != NULL) {
 296     Node* bol = NULL;
 297     Node* cmp = NULL;
 298     if (ctl->in(0)->is_If()) {
 299       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 300       bol = ctl->in(0)->in(1);
 301       if (bol->is_Bool())
 302         cmp = ctl->in(0)->in(1)->in(1);
 303     }
 304     if (igvn->_worklist.member(ctl) ||
 305         (bol != NULL && igvn->_worklist.member(bol)) ||
 306         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 307       // This control path may be dead.
 308       // Delay this memory node transformation until the control is processed.
 309       phase->is_IterGVN()->_worklist.push(this);
 310       return NodeSentinel; // caller will return NULL
 311     }
 312   }
 313   // Ignore if memory is dead, or self-loop
 314   Node *mem = in(MemNode::Memory);
 315   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 316   assert(mem != this, "dead loop in MemNode::Ideal");
 317 
 318   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 319     // This memory slice may be dead.
 320     // Delay this mem node transformation until the memory is processed.
 321     phase->is_IterGVN()->_worklist.push(this);
 322     return NodeSentinel; // caller will return NULL
 323   }
 324 
 325   Node *address = in(MemNode::Address);
 326   const Type *t_adr = phase->type(address);
 327   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 328 
 329   if (can_reshape && igvn != NULL &&
 330       (igvn->_worklist.member(address) ||
 331        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 332     // The address's base and type may change when the address is processed.
 333     // Delay this mem node transformation until the address is processed.
 334     phase->is_IterGVN()->_worklist.push(this);
 335     return NodeSentinel; // caller will return NULL
 336   }
 337 
 338   // Do NOT remove or optimize the next lines: ensure a new alias index
 339   // is allocated for an oop pointer type before Escape Analysis.
 340   // Note: C++ will not remove it since the call has side effect.
 341   if (t_adr->isa_oopptr()) {
 342     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 343   }
 344 
 345   Node* base = NULL;
 346   if (address->is_AddP()) {
 347     base = address->in(AddPNode::Base);
 348   }
 349   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 350       !t_adr->isa_rawptr()) {
 351     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 352     // Skip this node optimization if its address has TOP base.
 353     return NodeSentinel; // caller will return NULL
 354   }
 355 
 356   // Avoid independent memory operations
 357   Node* old_mem = mem;
 358 
 359   // The code which unhooks non-raw memories from complete (macro-expanded)
 360   // initializations was removed. After macro-expansion all stores catched
 361   // by Initialize node became raw stores and there is no information
 362   // which memory slices they modify. So it is unsafe to move any memory
 363   // operation above these stores. Also in most cases hooked non-raw memories
 364   // were already unhooked by using information from detect_ptr_independence()
 365   // and find_previous_store().
 366 
 367   if (mem->is_MergeMem()) {
 368     MergeMemNode* mmem = mem->as_MergeMem();
 369     const TypePtr *tp = t_adr->is_ptr();
 370 
 371     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 372   }
 373 
 374   if (mem != old_mem) {
 375     set_req(MemNode::Memory, mem);
 376     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 377       igvn->_worklist.push(old_mem);
 378     }
 379     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 380     return this;
 381   }
 382 
 383   // let the subclass continue analyzing...
 384   return NULL;
 385 }
 386 
 387 // Helper function for proving some simple control dominations.
 388 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 389 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 390 // is not a constant (dominated by the method's StartNode).
 391 // Used by MemNode::find_previous_store to prove that the
 392 // control input of a memory operation predates (dominates)
 393 // an allocation it wants to look past.
 394 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 395   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 396     return false; // Conservative answer for dead code
 397 
 398   // Check 'dom'. Skip Proj and CatchProj nodes.
 399   dom = dom->find_exact_control(dom);
 400   if (dom == NULL || dom->is_top())
 401     return false; // Conservative answer for dead code
 402 
 403   if (dom == sub) {
 404     // For the case when, for example, 'sub' is Initialize and the original
 405     // 'dom' is Proj node of the 'sub'.
 406     return false;
 407   }
 408 
 409   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 410     return true;
 411 
 412   // 'dom' dominates 'sub' if its control edge and control edges
 413   // of all its inputs dominate or equal to sub's control edge.
 414 
 415   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 416   // Or Region for the check in LoadNode::Ideal();
 417   // 'sub' should have sub->in(0) != NULL.
 418   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 419          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 420 
 421   // Get control edge of 'sub'.
 422   Node* orig_sub = sub;
 423   sub = sub->find_exact_control(sub->in(0));
 424   if (sub == NULL || sub->is_top())
 425     return false; // Conservative answer for dead code
 426 
 427   assert(sub->is_CFG(), "expecting control");
 428 
 429   if (sub == dom)
 430     return true;
 431 
 432   if (sub->is_Start() || sub->is_Root())
 433     return false;
 434 
 435   {
 436     // Check all control edges of 'dom'.
 437 
 438     ResourceMark rm;
 439     Arena* arena = Thread::current()->resource_area();
 440     Node_List nlist(arena);
 441     Unique_Node_List dom_list(arena);
 442 
 443     dom_list.push(dom);
 444     bool only_dominating_controls = false;
 445 
 446     for (uint next = 0; next < dom_list.size(); next++) {
 447       Node* n = dom_list.at(next);
 448       if (n == orig_sub)
 449         return false; // One of dom's inputs dominated by sub.
 450       if (!n->is_CFG() && n->pinned()) {
 451         // Check only own control edge for pinned non-control nodes.
 452         n = n->find_exact_control(n->in(0));
 453         if (n == NULL || n->is_top())
 454           return false; // Conservative answer for dead code
 455         assert(n->is_CFG(), "expecting control");
 456         dom_list.push(n);
 457       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 458         only_dominating_controls = true;
 459       } else if (n->is_CFG()) {
 460         if (n->dominates(sub, nlist))
 461           only_dominating_controls = true;
 462         else
 463           return false;
 464       } else {
 465         // First, own control edge.
 466         Node* m = n->find_exact_control(n->in(0));
 467         if (m != NULL) {
 468           if (m->is_top())
 469             return false; // Conservative answer for dead code
 470           dom_list.push(m);
 471         }
 472         // Now, the rest of edges.
 473         uint cnt = n->req();
 474         for (uint i = 1; i < cnt; i++) {
 475           m = n->find_exact_control(n->in(i));
 476           if (m == NULL || m->is_top())
 477             continue;
 478           dom_list.push(m);
 479         }
 480       }
 481     }
 482     return only_dominating_controls;
 483   }
 484 }
 485 
 486 //---------------------detect_ptr_independence---------------------------------
 487 // Used by MemNode::find_previous_store to prove that two base
 488 // pointers are never equal.
 489 // The pointers are accompanied by their associated allocations,
 490 // if any, which have been previously discovered by the caller.
 491 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 492                                       Node* p2, AllocateNode* a2,
 493                                       PhaseTransform* phase) {
 494   // Attempt to prove that these two pointers cannot be aliased.
 495   // They may both manifestly be allocations, and they should differ.
 496   // Or, if they are not both allocations, they can be distinct constants.
 497   // Otherwise, one is an allocation and the other a pre-existing value.
 498   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 499     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 500   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 501     return (a1 != a2);
 502   } else if (a1 != NULL) {                  // one allocation a1
 503     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 504     return all_controls_dominate(p2, a1);
 505   } else { //(a2 != NULL)                   // one allocation a2
 506     return all_controls_dominate(p1, a2);
 507   }
 508   return false;
 509 }
 510 
 511 
 512 // Find an arraycopy that must have set (can_see_stored_value=true) or
 513 // could have set (can_see_stored_value=false) the value for this load
 514 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 515   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 516                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 517     Node* mb = mem->in(0);
 518     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 519         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 520       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 521       if (ac->is_clonebasic()) {
 522         intptr_t offset;
 523         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 524         if (alloc != NULL && alloc == ld_alloc) {
 525           return ac;
 526         }
 527       }
 528     }
 529   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 530     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 531 
 532     if (ac->is_arraycopy_validated() ||
 533         ac->is_copyof_validated() ||
 534         ac->is_copyofrange_validated()) {
 535       Node* ld_addp = in(MemNode::Address);
 536       if (ld_addp->is_AddP()) {
 537         Node* ld_base = ld_addp->in(AddPNode::Address);
 538         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 539 
 540         Node* dest = ac->in(ArrayCopyNode::Dest);
 541 
 542         if (dest == ld_base) {
 543           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 544           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 545             return ac;
 546           }
 547           if (!can_see_stored_value) {
 548             mem = ac->in(TypeFunc::Memory);
 549           }
 550         }
 551       }
 552     }
 553   }
 554   return NULL;
 555 }
 556 
 557 // The logic for reordering loads and stores uses four steps:
 558 // (a) Walk carefully past stores and initializations which we
 559 //     can prove are independent of this load.
 560 // (b) Observe that the next memory state makes an exact match
 561 //     with self (load or store), and locate the relevant store.
 562 // (c) Ensure that, if we were to wire self directly to the store,
 563 //     the optimizer would fold it up somehow.
 564 // (d) Do the rewiring, and return, depending on some other part of
 565 //     the optimizer to fold up the load.
 566 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 567 // specific to loads and stores, so they are handled by the callers.
 568 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 569 //
 570 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 571   Node*         ctrl   = in(MemNode::Control);
 572   Node*         adr    = in(MemNode::Address);
 573   intptr_t      offset = 0;
 574   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 575   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 576 
 577   if (offset == Type::OffsetBot)
 578     return NULL;            // cannot unalias unless there are precise offsets
 579 
 580   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 581   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 582 
 583   intptr_t size_in_bytes = memory_size();
 584 
 585   Node* mem = in(MemNode::Memory);   // start searching here...
 586 
 587   int cnt = 50;             // Cycle limiter
 588   for (;;) {                // While we can dance past unrelated stores...
 589     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 590 
 591     Node* prev = mem;
 592     if (mem->is_Store()) {
 593       Node* st_adr = mem->in(MemNode::Address);
 594       intptr_t st_offset = 0;
 595       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 596       if (st_base == NULL)
 597         break;              // inscrutable pointer
 598 
 599       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 600       // We need the bases to be the equal in order for the offset check to make sense.
 601       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 602         break;
 603       }
 604 
 605       if (st_offset != offset && st_offset != Type::OffsetBot) {
 606         const int MAX_STORE = BytesPerLong;
 607         if (st_offset >= offset + size_in_bytes ||
 608             st_offset <= offset - MAX_STORE ||
 609             st_offset <= offset - mem->as_Store()->memory_size()) {
 610           // Success:  The offsets are provably independent.
 611           // (You may ask, why not just test st_offset != offset and be done?
 612           // The answer is that stores of different sizes can co-exist
 613           // in the same sequence of RawMem effects.  We sometimes initialize
 614           // a whole 'tile' of array elements with a single jint or jlong.)
 615           mem = mem->in(MemNode::Memory);
 616           continue;           // (a) advance through independent store memory
 617         }
 618       }
 619       if (st_base != base &&
 620           detect_ptr_independence(base, alloc,
 621                                   st_base,
 622                                   AllocateNode::Ideal_allocation(st_base, phase),
 623                                   phase)) {
 624         // Success:  The bases are provably independent.
 625         mem = mem->in(MemNode::Memory);
 626         continue;           // (a) advance through independent store memory
 627       }
 628 
 629       // (b) At this point, if the bases or offsets do not agree, we lose,
 630       // since we have not managed to prove 'this' and 'mem' independent.
 631       if (st_base == base && st_offset == offset) {
 632         return mem;         // let caller handle steps (c), (d)
 633       }
 634 
 635     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 636       InitializeNode* st_init = mem->in(0)->as_Initialize();
 637       AllocateNode*  st_alloc = st_init->allocation();
 638       if (st_alloc == NULL)
 639         break;              // something degenerated
 640       bool known_identical = false;
 641       bool known_independent = false;
 642       if (alloc == st_alloc)
 643         known_identical = true;
 644       else if (alloc != NULL)
 645         known_independent = true;
 646       else if (all_controls_dominate(this, st_alloc))
 647         known_independent = true;
 648 
 649       if (known_independent) {
 650         // The bases are provably independent: Either they are
 651         // manifestly distinct allocations, or else the control
 652         // of this load dominates the store's allocation.
 653         int alias_idx = phase->C->get_alias_index(adr_type());
 654         if (alias_idx == Compile::AliasIdxRaw) {
 655           mem = st_alloc->in(TypeFunc::Memory);
 656         } else {
 657           mem = st_init->memory(alias_idx);
 658         }
 659         continue;           // (a) advance through independent store memory
 660       }
 661 
 662       // (b) at this point, if we are not looking at a store initializing
 663       // the same allocation we are loading from, we lose.
 664       if (known_identical) {
 665         // From caller, can_see_stored_value will consult find_captured_store.
 666         return mem;         // let caller handle steps (c), (d)
 667       }
 668 
 669     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 670       if (prev != mem) {
 671         // Found an arraycopy but it doesn't affect that load
 672         continue;
 673       }
 674       // Found an arraycopy that may affect that load
 675       return mem;
 676     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 677       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 678       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 679         // ArrayCopyNodes processed here as well.
 680         CallNode *call = mem->in(0)->as_Call();
 681         if (!call->may_modify(addr_t, phase)) {
 682           mem = call->in(TypeFunc::Memory);
 683           continue;         // (a) advance through independent call memory
 684         }
 685       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 686         ArrayCopyNode* ac = NULL;
 687         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 688           break;
 689         }
 690         mem = mem->in(0)->in(TypeFunc::Memory);
 691         continue;           // (a) advance through independent MemBar memory
 692       } else if (mem->is_ClearArray()) {
 693         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 694           // (the call updated 'mem' value)
 695           continue;         // (a) advance through independent allocation memory
 696         } else {
 697           // Can not bypass initialization of the instance
 698           // we are looking for.
 699           return mem;
 700         }
 701       } else if (mem->is_MergeMem()) {
 702         int alias_idx = phase->C->get_alias_index(adr_type());
 703         mem = mem->as_MergeMem()->memory_at(alias_idx);
 704         continue;           // (a) advance through independent MergeMem memory
 705       }
 706     }
 707 
 708     // Unless there is an explicit 'continue', we must bail out here,
 709     // because 'mem' is an inscrutable memory state (e.g., a call).
 710     break;
 711   }
 712 
 713   return NULL;              // bail out
 714 }
 715 
 716 //----------------------calculate_adr_type-------------------------------------
 717 // Helper function.  Notices when the given type of address hits top or bottom.
 718 // Also, asserts a cross-check of the type against the expected address type.
 719 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 720   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 721   #ifdef PRODUCT
 722   cross_check = NULL;
 723   #else
 724   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 725   #endif
 726   const TypePtr* tp = t->isa_ptr();
 727   if (tp == NULL) {
 728     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 729     return TypePtr::BOTTOM;           // touches lots of memory
 730   } else {
 731     #ifdef ASSERT
 732     // %%%% [phh] We don't check the alias index if cross_check is
 733     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 734     if (cross_check != NULL &&
 735         cross_check != TypePtr::BOTTOM &&
 736         cross_check != TypeRawPtr::BOTTOM) {
 737       // Recheck the alias index, to see if it has changed (due to a bug).
 738       Compile* C = Compile::current();
 739       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 740              "must stay in the original alias category");
 741       // The type of the address must be contained in the adr_type,
 742       // disregarding "null"-ness.
 743       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 744       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 745       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 746              "real address must not escape from expected memory type");
 747     }
 748     #endif
 749     return tp;
 750   }
 751 }
 752 
 753 //=============================================================================
 754 // Should LoadNode::Ideal() attempt to remove control edges?
 755 bool LoadNode::can_remove_control() const {
 756   return true;
 757 }
 758 uint LoadNode::size_of() const { return sizeof(*this); }
 759 uint LoadNode::cmp( const Node &n ) const
 760 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 761 const Type *LoadNode::bottom_type() const { return _type; }
 762 uint LoadNode::ideal_reg() const {
 763   return _type->ideal_reg();
 764 }
 765 
 766 #ifndef PRODUCT
 767 void LoadNode::dump_spec(outputStream *st) const {
 768   MemNode::dump_spec(st);
 769   if( !Verbose && !WizardMode ) {
 770     // standard dump does this in Verbose and WizardMode
 771     st->print(" #"); _type->dump_on(st);
 772   }
 773   if (!depends_only_on_test()) {
 774     st->print(" (does not depend only on test)");
 775   }
 776 }
 777 #endif
 778 
 779 #ifdef ASSERT
 780 //----------------------------is_immutable_value-------------------------------
 781 // Helper function to allow a raw load without control edge for some cases
 782 bool LoadNode::is_immutable_value(Node* adr) {
 783   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 784           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 785           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 786            in_bytes(JavaThread::osthread_offset())));
 787 }
 788 #endif
 789 
 790 //----------------------------LoadNode::make-----------------------------------
 791 // Polymorphic factory method:
 792 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 793                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 794   Compile* C = gvn.C;
 795 
 796   // sanity check the alias category against the created node type
 797   assert(!(adr_type->isa_oopptr() &&
 798            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 799          "use LoadKlassNode instead");
 800   assert(!(adr_type->isa_aryptr() &&
 801            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 802          "use LoadRangeNode instead");
 803   // Check control edge of raw loads
 804   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 805           // oop will be recorded in oop map if load crosses safepoint
 806           rt->isa_oopptr() || is_immutable_value(adr),
 807           "raw memory operations should have control edge");
 808   LoadNode* load = NULL;
 809   switch (bt) {
 810   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 811   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 812   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 813   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 814   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 815   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 816   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 817   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 818   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 819   case T_VALUETYPE:
 820   case T_VALUETYPEPTR:
 821   case T_OBJECT:
 822 #ifdef _LP64
 823     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 824       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 825     } else
 826 #endif
 827     {
 828       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 829       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 830     }
 831     break;
 832   default:
 833     ShouldNotReachHere();
 834     break;
 835   }
 836   assert(load != NULL, "LoadNode should have been created");
 837   if (unaligned) {
 838     load->set_unaligned_access();
 839   }
 840   if (mismatched) {
 841     load->set_mismatched_access();
 842   }
 843   if (load->Opcode() == Op_LoadN) {
 844     Node* ld = gvn.transform(load);
 845     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 846   }
 847 
 848   return load;
 849 }
 850 
 851 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 852                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 853   bool require_atomic = true;
 854   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 855   if (unaligned) {
 856     load->set_unaligned_access();
 857   }
 858   if (mismatched) {
 859     load->set_mismatched_access();
 860   }
 861   return load;
 862 }
 863 
 864 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 865                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 866   bool require_atomic = true;
 867   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 868   if (unaligned) {
 869     load->set_unaligned_access();
 870   }
 871   if (mismatched) {
 872     load->set_mismatched_access();
 873   }
 874   return load;
 875 }
 876 
 877 
 878 
 879 //------------------------------hash-------------------------------------------
 880 uint LoadNode::hash() const {
 881   // unroll addition of interesting fields
 882   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 883 }
 884 
 885 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 886   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 887     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 888     bool is_stable_ary = FoldStableValues &&
 889                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 890                          tp->isa_aryptr()->is_stable();
 891 
 892     return (eliminate_boxing && non_volatile) || is_stable_ary;
 893   }
 894 
 895   return false;
 896 }
 897 
 898 // Is the value loaded previously stored by an arraycopy? If so return
 899 // a load node that reads from the source array so we may be able to
 900 // optimize out the ArrayCopy node later.
 901 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 902 #if INCLUDE_ZGC
 903   if (UseZGC) {
 904     if (bottom_type()->make_oopptr() != NULL) {
 905       return NULL;
 906     }
 907   }
 908 #endif
 909 
 910   Node* ld_adr = in(MemNode::Address);
 911   intptr_t ld_off = 0;
 912   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 913   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 914   if (ac != NULL) {
 915     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 916 
 917     Node* mem = ac->in(TypeFunc::Memory);
 918     Node* ctl = ac->in(0);
 919     Node* src = ac->in(ArrayCopyNode::Src);
 920 
 921     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 922       return NULL;
 923     }
 924 
 925     LoadNode* ld = clone()->as_Load();
 926     Node* addp = in(MemNode::Address)->clone();
 927     if (ac->as_ArrayCopy()->is_clonebasic()) {
 928       assert(ld_alloc != NULL, "need an alloc");
 929       assert(addp->is_AddP(), "address must be addp");
 930       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 931       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 932       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 933       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 934       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 935       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 936     } else {
 937       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 938              ac->as_ArrayCopy()->is_copyof_validated() ||
 939              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 940       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 941       addp->set_req(AddPNode::Base, src);
 942       addp->set_req(AddPNode::Address, src);
 943 
 944       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 945       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 946       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 947       uint shift  = exact_log2(type2aelembytes(ary_elem));
 948 
 949       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 950 #ifdef _LP64
 951       diff = phase->transform(new ConvI2LNode(diff));
 952 #endif
 953       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 954 
 955       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 956       addp->set_req(AddPNode::Offset, offset);
 957     }
 958     addp = phase->transform(addp);
 959 #ifdef ASSERT
 960     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 961     ld->_adr_type = adr_type;
 962 #endif
 963     ld->set_req(MemNode::Address, addp);
 964     ld->set_req(0, ctl);
 965     ld->set_req(MemNode::Memory, mem);
 966     // load depends on the tests that validate the arraycopy
 967     ld->_control_dependency = Pinned;
 968     return ld;
 969   }
 970   return NULL;
 971 }
 972 
 973 
 974 //---------------------------can_see_stored_value------------------------------
 975 // This routine exists to make sure this set of tests is done the same
 976 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 977 // will change the graph shape in a way which makes memory alive twice at the
 978 // same time (uses the Oracle model of aliasing), then some
 979 // LoadXNode::Identity will fold things back to the equivalence-class model
 980 // of aliasing.
 981 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 982   Node* ld_adr = in(MemNode::Address);
 983   intptr_t ld_off = 0;
 984   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 985   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 986   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 987   // This is more general than load from boxing objects.
 988   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 989     uint alias_idx = atp->index();
 990     bool final = !atp->is_rewritable();
 991     Node* result = NULL;
 992     Node* current = st;
 993     // Skip through chains of MemBarNodes checking the MergeMems for
 994     // new states for the slice of this load.  Stop once any other
 995     // kind of node is encountered.  Loads from final memory can skip
 996     // through any kind of MemBar but normal loads shouldn't skip
 997     // through MemBarAcquire since the could allow them to move out of
 998     // a synchronized region.
 999     while (current->is_Proj()) {
1000       int opc = current->in(0)->Opcode();
1001       if ((final && (opc == Op_MemBarAcquire ||
1002                      opc == Op_MemBarAcquireLock ||
1003                      opc == Op_LoadFence)) ||
1004           opc == Op_MemBarRelease ||
1005           opc == Op_StoreFence ||
1006           opc == Op_MemBarReleaseLock ||
1007           opc == Op_MemBarStoreStore ||
1008           opc == Op_MemBarCPUOrder) {
1009         Node* mem = current->in(0)->in(TypeFunc::Memory);
1010         if (mem->is_MergeMem()) {
1011           MergeMemNode* merge = mem->as_MergeMem();
1012           Node* new_st = merge->memory_at(alias_idx);
1013           if (new_st == merge->base_memory()) {
1014             // Keep searching
1015             current = new_st;
1016             continue;
1017           }
1018           // Save the new memory state for the slice and fall through
1019           // to exit.
1020           result = new_st;
1021         }
1022       }
1023       break;
1024     }
1025     if (result != NULL) {
1026       st = result;
1027     }
1028   }
1029 
1030   // Loop around twice in the case Load -> Initialize -> Store.
1031   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1032   for (int trip = 0; trip <= 1; trip++) {
1033 
1034     if (st->is_Store()) {
1035       Node* st_adr = st->in(MemNode::Address);
1036       if (!phase->eqv(st_adr, ld_adr)) {
1037         // Try harder before giving up...  Match raw and non-raw pointers.
1038         intptr_t st_off = 0;
1039         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1040         if (alloc == NULL)       return NULL;
1041         if (alloc != ld_alloc)   return NULL;
1042         if (ld_off != st_off)    return NULL;
1043         // At this point we have proven something like this setup:
1044         //  A = Allocate(...)
1045         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1046         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1047         // (Actually, we haven't yet proven the Q's are the same.)
1048         // In other words, we are loading from a casted version of
1049         // the same pointer-and-offset that we stored to.
1050         // Thus, we are able to replace L by V.
1051       }
1052       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1053       if (store_Opcode() != st->Opcode())
1054         return NULL;
1055       return st->in(MemNode::ValueIn);
1056     }
1057 
1058     // A load from a freshly-created object always returns zero.
1059     // (This can happen after LoadNode::Ideal resets the load's memory input
1060     // to find_captured_store, which returned InitializeNode::zero_memory.)
1061     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1062         (st->in(0) == ld_alloc) &&
1063         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1064       // return a zero value for the load's basic type
1065       // (This is one of the few places where a generic PhaseTransform
1066       // can create new nodes.  Think of it as lazily manifesting
1067       // virtually pre-existing constants.)
1068       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1069       Node* default_value = ld_alloc->in(AllocateNode::DefaultValue);
1070       if (default_value != NULL) {
1071         return default_value;
1072       }
1073       assert(ld_alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null");
1074       return phase->zerocon(memory_type());
1075     }
1076 
1077     // A load from an initialization barrier can match a captured store.
1078     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1079       InitializeNode* init = st->in(0)->as_Initialize();
1080       AllocateNode* alloc = init->allocation();
1081       if ((alloc != NULL) && (alloc == ld_alloc)) {
1082         // examine a captured store value
1083         st = init->find_captured_store(ld_off, memory_size(), phase);
1084         if (st != NULL) {
1085           continue;             // take one more trip around
1086         }
1087       }
1088     }
1089 
1090     // Load boxed value from result of valueOf() call is input parameter.
1091     if (this->is_Load() && ld_adr->is_AddP() &&
1092         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1093       intptr_t ignore = 0;
1094       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1095       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1096       base = bs->step_over_gc_barrier(base);
1097       if (base != NULL && base->is_Proj() &&
1098           base->as_Proj()->_con == TypeFunc::Parms &&
1099           base->in(0)->is_CallStaticJava() &&
1100           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1101         return base->in(0)->in(TypeFunc::Parms);
1102       }
1103     }
1104 
1105     break;
1106   }
1107 
1108   return NULL;
1109 }
1110 
1111 //----------------------is_instance_field_load_with_local_phi------------------
1112 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1113   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1114       in(Address)->is_AddP() ) {
1115     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1116     // Only instances and boxed values.
1117     if( t_oop != NULL &&
1118         (t_oop->is_ptr_to_boxed_value() ||
1119          t_oop->is_known_instance_field()) &&
1120         t_oop->offset() != Type::OffsetBot &&
1121         t_oop->offset() != Type::OffsetTop) {
1122       return true;
1123     }
1124   }
1125   return false;
1126 }
1127 
1128 //------------------------------Identity---------------------------------------
1129 // Loads are identity if previous store is to same address
1130 Node* LoadNode::Identity(PhaseGVN* phase) {
1131   // Loading from a ValueTypePtr? The ValueTypePtr has the values of
1132   // all fields as input. Look for the field with matching offset.
1133   Node* addr = in(Address);
1134   intptr_t offset;
1135   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
1136   if (base != NULL && base->is_ValueTypePtr() && offset > oopDesc::klass_offset_in_bytes()) {
1137     Node* value = base->as_ValueTypePtr()->field_value_by_offset((int)offset, true);
1138     if (value->is_ValueType()) {
1139       // Non-flattened value type field
1140       ValueTypeNode* vt = value->as_ValueType();
1141       if (vt->is_allocated(phase)) {
1142         value = vt->get_oop();
1143       } else {
1144         // Not yet allocated, bail out
1145         value = NULL;
1146       }
1147     }
1148     if (value != NULL) {
1149       if (Opcode() == Op_LoadN) {
1150         // Encode oop value if we are loading a narrow oop
1151         assert(!phase->type(value)->isa_narrowoop(), "should already be decoded");
1152         value = phase->transform(new EncodePNode(value, bottom_type()));
1153       }
1154       return value;
1155     }
1156   }
1157 
1158   // If the previous store-maker is the right kind of Store, and the store is
1159   // to the same address, then we are equal to the value stored.
1160   Node* mem = in(Memory);
1161   Node* value = can_see_stored_value(mem, phase);
1162   if( value ) {
1163     // byte, short & char stores truncate naturally.
1164     // A load has to load the truncated value which requires
1165     // some sort of masking operation and that requires an
1166     // Ideal call instead of an Identity call.
1167     if (memory_size() < BytesPerInt) {
1168       // If the input to the store does not fit with the load's result type,
1169       // it must be truncated via an Ideal call.
1170       if (!phase->type(value)->higher_equal(phase->type(this)))
1171         return this;
1172     }
1173     // (This works even when value is a Con, but LoadNode::Value
1174     // usually runs first, producing the singleton type of the Con.)
1175     return value;
1176   }
1177 
1178   // Search for an existing data phi which was generated before for the same
1179   // instance's field to avoid infinite generation of phis in a loop.
1180   Node *region = mem->in(0);
1181   if (is_instance_field_load_with_local_phi(region)) {
1182     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1183     int this_index  = phase->C->get_alias_index(addr_t);
1184     int this_offset = addr_t->offset();
1185     int this_iid    = addr_t->instance_id();
1186     if (!addr_t->is_known_instance() &&
1187          addr_t->is_ptr_to_boxed_value()) {
1188       // Use _idx of address base (could be Phi node) for boxed values.
1189       intptr_t   ignore = 0;
1190       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1191       if (base == NULL) {
1192         return this;
1193       }
1194       this_iid = base->_idx;
1195     }
1196     const Type* this_type = bottom_type();
1197     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1198       Node* phi = region->fast_out(i);
1199       if (phi->is_Phi() && phi != mem &&
1200           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1201         return phi;
1202       }
1203     }
1204   }
1205 
1206   return this;
1207 }
1208 
1209 // Construct an equivalent unsigned load.
1210 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1211   BasicType bt = T_ILLEGAL;
1212   const Type* rt = NULL;
1213   switch (Opcode()) {
1214     case Op_LoadUB: return this;
1215     case Op_LoadUS: return this;
1216     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1217     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1218     default:
1219       assert(false, "no unsigned variant: %s", Name());
1220       return NULL;
1221   }
1222   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1223                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1224                         is_unaligned_access(), is_mismatched_access());
1225 }
1226 
1227 // Construct an equivalent signed load.
1228 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1229   BasicType bt = T_ILLEGAL;
1230   const Type* rt = NULL;
1231   switch (Opcode()) {
1232     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1233     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1234     case Op_LoadB: // fall through
1235     case Op_LoadS: // fall through
1236     case Op_LoadI: // fall through
1237     case Op_LoadL: return this;
1238     default:
1239       assert(false, "no signed variant: %s", Name());
1240       return NULL;
1241   }
1242   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1243                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1244                         is_unaligned_access(), is_mismatched_access());
1245 }
1246 
1247 // We're loading from an object which has autobox behaviour.
1248 // If this object is result of a valueOf call we'll have a phi
1249 // merging a newly allocated object and a load from the cache.
1250 // We want to replace this load with the original incoming
1251 // argument to the valueOf call.
1252 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1253   assert(phase->C->eliminate_boxing(), "sanity");
1254   intptr_t ignore = 0;
1255   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1256   if ((base == NULL) || base->is_Phi()) {
1257     // Push the loads from the phi that comes from valueOf up
1258     // through it to allow elimination of the loads and the recovery
1259     // of the original value. It is done in split_through_phi().
1260     return NULL;
1261   } else if (base->is_Load() ||
1262              (base->is_DecodeN() && base->in(1)->is_Load())) {
1263     // Eliminate the load of boxed value for integer types from the cache
1264     // array by deriving the value from the index into the array.
1265     // Capture the offset of the load and then reverse the computation.
1266 
1267     // Get LoadN node which loads a boxing object from 'cache' array.
1268     if (base->is_DecodeN()) {
1269       base = base->in(1);
1270     }
1271     if (!base->in(Address)->is_AddP()) {
1272       return NULL; // Complex address
1273     }
1274     AddPNode* address = base->in(Address)->as_AddP();
1275     Node* cache_base = address->in(AddPNode::Base);
1276     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1277       // Get ConP node which is static 'cache' field.
1278       cache_base = cache_base->in(1);
1279     }
1280     if ((cache_base != NULL) && cache_base->is_Con()) {
1281       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1282       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1283         Node* elements[4];
1284         int shift = exact_log2(type2aelembytes(T_OBJECT));
1285         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1286         if (count > 0 && elements[0]->is_Con() &&
1287             (count == 1 ||
1288              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1289                             elements[1]->in(2) == phase->intcon(shift)))) {
1290           ciObjArray* array = base_type->const_oop()->as_obj_array();
1291           // Fetch the box object cache[0] at the base of the array and get its value
1292           ciInstance* box = array->obj_at(0)->as_instance();
1293           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1294           assert(ik->is_box_klass(), "sanity");
1295           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1296           if (ik->nof_nonstatic_fields() == 1) {
1297             // This should be true nonstatic_field_at requires calling
1298             // nof_nonstatic_fields so check it anyway
1299             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1300             BasicType bt = c.basic_type();
1301             // Only integer types have boxing cache.
1302             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1303                    bt == T_BYTE    || bt == T_SHORT ||
1304                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1305             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1306             if (cache_low != (int)cache_low) {
1307               return NULL; // should not happen since cache is array indexed by value
1308             }
1309             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1310             if (offset != (int)offset) {
1311               return NULL; // should not happen since cache is array indexed by value
1312             }
1313            // Add up all the offsets making of the address of the load
1314             Node* result = elements[0];
1315             for (int i = 1; i < count; i++) {
1316               result = phase->transform(new AddXNode(result, elements[i]));
1317             }
1318             // Remove the constant offset from the address and then
1319             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1320             // remove the scaling of the offset to recover the original index.
1321             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1322               // Peel the shift off directly but wrap it in a dummy node
1323               // since Ideal can't return existing nodes
1324               result = new RShiftXNode(result->in(1), phase->intcon(0));
1325             } else if (result->is_Add() && result->in(2)->is_Con() &&
1326                        result->in(1)->Opcode() == Op_LShiftX &&
1327                        result->in(1)->in(2) == phase->intcon(shift)) {
1328               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1329               // but for boxing cache access we know that X<<Z will not overflow
1330               // (there is range check) so we do this optimizatrion by hand here.
1331               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1332               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1333             } else {
1334               result = new RShiftXNode(result, phase->intcon(shift));
1335             }
1336 #ifdef _LP64
1337             if (bt != T_LONG) {
1338               result = new ConvL2INode(phase->transform(result));
1339             }
1340 #else
1341             if (bt == T_LONG) {
1342               result = new ConvI2LNode(phase->transform(result));
1343             }
1344 #endif
1345             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1346             // Need to preserve unboxing load type if it is unsigned.
1347             switch(this->Opcode()) {
1348               case Op_LoadUB:
1349                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1350                 break;
1351               case Op_LoadUS:
1352                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1353                 break;
1354             }
1355             return result;
1356           }
1357         }
1358       }
1359     }
1360   }
1361   return NULL;
1362 }
1363 
1364 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1365   Node* region = phi->in(0);
1366   if (region == NULL) {
1367     return false; // Wait stable graph
1368   }
1369   uint cnt = phi->req();
1370   for (uint i = 1; i < cnt; i++) {
1371     Node* rc = region->in(i);
1372     if (rc == NULL || phase->type(rc) == Type::TOP)
1373       return false; // Wait stable graph
1374     Node* in = phi->in(i);
1375     if (in == NULL || phase->type(in) == Type::TOP)
1376       return false; // Wait stable graph
1377   }
1378   return true;
1379 }
1380 //------------------------------split_through_phi------------------------------
1381 // Split instance or boxed field load through Phi.
1382 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1383   Node* mem     = in(Memory);
1384   Node* address = in(Address);
1385   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1386 
1387   assert((t_oop != NULL) &&
1388          (t_oop->is_known_instance_field() ||
1389           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1390 
1391   Compile* C = phase->C;
1392   intptr_t ignore = 0;
1393   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1394   bool base_is_phi = (base != NULL) && base->is_Phi();
1395   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1396                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1397                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1398 
1399   if (!((mem->is_Phi() || base_is_phi) &&
1400         (load_boxed_values || t_oop->is_known_instance_field()))) {
1401     return NULL; // memory is not Phi
1402   }
1403 
1404   if (mem->is_Phi()) {
1405     if (!stable_phi(mem->as_Phi(), phase)) {
1406       return NULL; // Wait stable graph
1407     }
1408     uint cnt = mem->req();
1409     // Check for loop invariant memory.
1410     if (cnt == 3) {
1411       for (uint i = 1; i < cnt; i++) {
1412         Node* in = mem->in(i);
1413         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1414         if (m == mem) {
1415           set_req(Memory, mem->in(cnt - i));
1416           return this; // made change
1417         }
1418       }
1419     }
1420   }
1421   if (base_is_phi) {
1422     if (!stable_phi(base->as_Phi(), phase)) {
1423       return NULL; // Wait stable graph
1424     }
1425     uint cnt = base->req();
1426     // Check for loop invariant memory.
1427     if (cnt == 3) {
1428       for (uint i = 1; i < cnt; i++) {
1429         if (base->in(i) == base) {
1430           return NULL; // Wait stable graph
1431         }
1432       }
1433     }
1434   }
1435 
1436   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1437 
1438   // Split through Phi (see original code in loopopts.cpp).
1439   assert(C->have_alias_type(t_oop), "instance should have alias type");
1440 
1441   // Do nothing here if Identity will find a value
1442   // (to avoid infinite chain of value phis generation).
1443   if (!phase->eqv(this, phase->apply_identity(this)))
1444     return NULL;
1445 
1446   // Select Region to split through.
1447   Node* region;
1448   if (!base_is_phi) {
1449     assert(mem->is_Phi(), "sanity");
1450     region = mem->in(0);
1451     // Skip if the region dominates some control edge of the address.
1452     if (!MemNode::all_controls_dominate(address, region))
1453       return NULL;
1454   } else if (!mem->is_Phi()) {
1455     assert(base_is_phi, "sanity");
1456     region = base->in(0);
1457     // Skip if the region dominates some control edge of the memory.
1458     if (!MemNode::all_controls_dominate(mem, region))
1459       return NULL;
1460   } else if (base->in(0) != mem->in(0)) {
1461     assert(base_is_phi && mem->is_Phi(), "sanity");
1462     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1463       region = base->in(0);
1464     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1465       region = mem->in(0);
1466     } else {
1467       return NULL; // complex graph
1468     }
1469   } else {
1470     assert(base->in(0) == mem->in(0), "sanity");
1471     region = mem->in(0);
1472   }
1473 
1474   const Type* this_type = this->bottom_type();
1475   int this_index  = C->get_alias_index(t_oop);
1476   int this_offset = t_oop->offset();
1477   int this_iid    = t_oop->instance_id();
1478   if (!t_oop->is_known_instance() && load_boxed_values) {
1479     // Use _idx of address base for boxed values.
1480     this_iid = base->_idx;
1481   }
1482   PhaseIterGVN* igvn = phase->is_IterGVN();
1483   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1484   for (uint i = 1; i < region->req(); i++) {
1485     Node* x;
1486     Node* the_clone = NULL;
1487     if (region->in(i) == C->top()) {
1488       x = C->top();      // Dead path?  Use a dead data op
1489     } else {
1490       x = this->clone();        // Else clone up the data op
1491       the_clone = x;            // Remember for possible deletion.
1492       // Alter data node to use pre-phi inputs
1493       if (this->in(0) == region) {
1494         x->set_req(0, region->in(i));
1495       } else {
1496         x->set_req(0, NULL);
1497       }
1498       if (mem->is_Phi() && (mem->in(0) == region)) {
1499         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1500       }
1501       if (address->is_Phi() && address->in(0) == region) {
1502         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1503       }
1504       if (base_is_phi && (base->in(0) == region)) {
1505         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1506         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1507         x->set_req(Address, adr_x);
1508       }
1509     }
1510     // Check for a 'win' on some paths
1511     const Type *t = x->Value(igvn);
1512 
1513     bool singleton = t->singleton();
1514 
1515     // See comments in PhaseIdealLoop::split_thru_phi().
1516     if (singleton && t == Type::TOP) {
1517       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1518     }
1519 
1520     if (singleton) {
1521       x = igvn->makecon(t);
1522     } else {
1523       // We now call Identity to try to simplify the cloned node.
1524       // Note that some Identity methods call phase->type(this).
1525       // Make sure that the type array is big enough for
1526       // our new node, even though we may throw the node away.
1527       // (This tweaking with igvn only works because x is a new node.)
1528       igvn->set_type(x, t);
1529       // If x is a TypeNode, capture any more-precise type permanently into Node
1530       // otherwise it will be not updated during igvn->transform since
1531       // igvn->type(x) is set to x->Value() already.
1532       x->raise_bottom_type(t);
1533       Node *y = igvn->apply_identity(x);
1534       if (y != x) {
1535         x = y;
1536       } else {
1537         y = igvn->hash_find_insert(x);
1538         if (y) {
1539           x = y;
1540         } else {
1541           // Else x is a new node we are keeping
1542           // We do not need register_new_node_with_optimizer
1543           // because set_type has already been called.
1544           igvn->_worklist.push(x);
1545         }
1546       }
1547     }
1548     if (x != the_clone && the_clone != NULL) {
1549       igvn->remove_dead_node(the_clone);
1550     }
1551     phi->set_req(i, x);
1552   }
1553   // Record Phi
1554   igvn->register_new_node_with_optimizer(phi);
1555   return phi;
1556 }
1557 
1558 //------------------------------Ideal------------------------------------------
1559 // If the load is from Field memory and the pointer is non-null, it might be possible to
1560 // zero out the control input.
1561 // If the offset is constant and the base is an object allocation,
1562 // try to hook me up to the exact initializing store.
1563 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1564   Node* p = MemNode::Ideal_common(phase, can_reshape);
1565   if (p)  return (p == NodeSentinel) ? NULL : p;
1566 
1567   Node* ctrl    = in(MemNode::Control);
1568   Node* address = in(MemNode::Address);
1569   bool progress = false;
1570 
1571   // Skip up past a SafePoint control.  Cannot do this for Stores because
1572   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1573   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1574       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1575     ctrl = ctrl->in(0);
1576     set_req(MemNode::Control,ctrl);
1577     progress = true;
1578   }
1579 
1580   intptr_t ignore = 0;
1581   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1582   if (base != NULL
1583       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1584     // Check for useless control edge in some common special cases
1585     if (in(MemNode::Control) != NULL
1586         && can_remove_control()
1587         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1588         && all_controls_dominate(base, phase->C->start())) {
1589       // A method-invariant, non-null address (constant or 'this' argument).
1590       set_req(MemNode::Control, NULL);
1591       progress = true;
1592     }
1593   }
1594 
1595   Node* mem = in(MemNode::Memory);
1596   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1597 
1598   if (can_reshape && (addr_t != NULL)) {
1599     // try to optimize our memory input
1600     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1601     if (opt_mem != mem) {
1602       set_req(MemNode::Memory, opt_mem);
1603       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1604       return this;
1605     }
1606     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1607     if ((t_oop != NULL) &&
1608         (t_oop->is_known_instance_field() ||
1609          t_oop->is_ptr_to_boxed_value())) {
1610       PhaseIterGVN *igvn = phase->is_IterGVN();
1611       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1612         // Delay this transformation until memory Phi is processed.
1613         phase->is_IterGVN()->_worklist.push(this);
1614         return NULL;
1615       }
1616       // Split instance field load through Phi.
1617       Node* result = split_through_phi(phase);
1618       if (result != NULL) return result;
1619 
1620       if (t_oop->is_ptr_to_boxed_value()) {
1621         Node* result = eliminate_autobox(phase);
1622         if (result != NULL) return result;
1623       }
1624     }
1625   }
1626 
1627   // Is there a dominating load that loads the same value?  Leave
1628   // anything that is not a load of a field/array element (like
1629   // barriers etc.) alone
1630   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1631     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1632       Node *use = mem->fast_out(i);
1633       if (use != this &&
1634           use->Opcode() == Opcode() &&
1635           use->in(0) != NULL &&
1636           use->in(0) != in(0) &&
1637           use->in(Address) == in(Address)) {
1638         Node* ctl = in(0);
1639         for (int i = 0; i < 10 && ctl != NULL; i++) {
1640           ctl = IfNode::up_one_dom(ctl);
1641           if (ctl == use->in(0)) {
1642             set_req(0, use->in(0));
1643             return this;
1644           }
1645         }
1646       }
1647     }
1648   }
1649 
1650   // Check for prior store with a different base or offset; make Load
1651   // independent.  Skip through any number of them.  Bail out if the stores
1652   // are in an endless dead cycle and report no progress.  This is a key
1653   // transform for Reflection.  However, if after skipping through the Stores
1654   // we can't then fold up against a prior store do NOT do the transform as
1655   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1656   // array memory alive twice: once for the hoisted Load and again after the
1657   // bypassed Store.  This situation only works if EVERYBODY who does
1658   // anti-dependence work knows how to bypass.  I.e. we need all
1659   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1660   // the alias index stuff.  So instead, peek through Stores and IFF we can
1661   // fold up, do so.
1662   Node* prev_mem = find_previous_store(phase);
1663   if (prev_mem != NULL) {
1664     Node* value = can_see_arraycopy_value(prev_mem, phase);
1665     if (value != NULL) {
1666       return value;
1667     }
1668   }
1669   // Steps (a), (b):  Walk past independent stores to find an exact match.
1670   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1671     // (c) See if we can fold up on the spot, but don't fold up here.
1672     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1673     // just return a prior value, which is done by Identity calls.
1674     if (can_see_stored_value(prev_mem, phase)) {
1675       // Make ready for step (d):
1676       set_req(MemNode::Memory, prev_mem);
1677       return this;
1678     }
1679   }
1680 
1681   return progress ? this : NULL;
1682 }
1683 
1684 // Helper to recognize certain Klass fields which are invariant across
1685 // some group of array types (e.g., int[] or all T[] where T < Object).
1686 const Type*
1687 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1688                                  ciKlass* klass) const {
1689   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1690     // The field is Klass::_modifier_flags.  Return its (constant) value.
1691     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1692     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1693     return TypeInt::make(klass->modifier_flags());
1694   }
1695   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1696     // The field is Klass::_access_flags.  Return its (constant) value.
1697     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1698     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1699     return TypeInt::make(klass->access_flags());
1700   }
1701   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1702     // The field is Klass::_layout_helper.  Return its constant value if known.
1703     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1704     return TypeInt::make(klass->layout_helper());
1705   }
1706 
1707   // No match.
1708   return NULL;
1709 }
1710 
1711 //------------------------------Value-----------------------------------------
1712 const Type* LoadNode::Value(PhaseGVN* phase) const {
1713   // Either input is TOP ==> the result is TOP
1714   Node* mem = in(MemNode::Memory);
1715   const Type *t1 = phase->type(mem);
1716   if (t1 == Type::TOP)  return Type::TOP;
1717   Node* adr = in(MemNode::Address);
1718   const TypePtr* tp = phase->type(adr)->isa_ptr();
1719   if (tp == NULL || tp->empty())  return Type::TOP;
1720   int off = tp->offset();
1721   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1722   Compile* C = phase->C;
1723 
1724   // Try to guess loaded type from pointer type
1725   if (tp->isa_aryptr()) {
1726     const TypeAryPtr* ary = tp->is_aryptr();
1727     const Type* t = ary->elem();
1728 
1729     // Determine whether the reference is beyond the header or not, by comparing
1730     // the offset against the offset of the start of the array's data.
1731     // Different array types begin at slightly different offsets (12 vs. 16).
1732     // We choose T_BYTE as an example base type that is least restrictive
1733     // as to alignment, which will therefore produce the smallest
1734     // possible base offset.
1735     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1736     const bool off_beyond_header = (off >= min_base_off);
1737 
1738     // Try to constant-fold a stable array element.
1739     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1740       // Make sure the reference is not into the header and the offset is constant
1741       ciObject* aobj = ary->const_oop();
1742       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1743         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1744         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1745                                                                       stable_dimension,
1746                                                                       memory_type(), is_unsigned());
1747         if (con_type != NULL) {
1748           return con_type;
1749         }
1750       }
1751     }
1752 
1753     // Don't do this for integer types. There is only potential profit if
1754     // the element type t is lower than _type; that is, for int types, if _type is
1755     // more restrictive than t.  This only happens here if one is short and the other
1756     // char (both 16 bits), and in those cases we've made an intentional decision
1757     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1758     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1759     //
1760     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1761     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1762     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1763     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1764     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1765     // In fact, that could have been the original type of p1, and p1 could have
1766     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1767     // expression (LShiftL quux 3) independently optimized to the constant 8.
1768     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1769         && (_type->isa_vect() == NULL)
1770         && t->isa_valuetype() == NULL
1771         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1772       // t might actually be lower than _type, if _type is a unique
1773       // concrete subclass of abstract class t.
1774       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1775         const Type* jt = t->join_speculative(_type);
1776         // In any case, do not allow the join, per se, to empty out the type.
1777         if (jt->empty() && !t->empty()) {
1778           // This can happen if a interface-typed array narrows to a class type.
1779           jt = _type;
1780         }
1781 #ifdef ASSERT
1782         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1783           // The pointers in the autobox arrays are always non-null
1784           Node* base = adr->in(AddPNode::Base);
1785           if ((base != NULL) && base->is_DecodeN()) {
1786             // Get LoadN node which loads IntegerCache.cache field
1787             base = base->in(1);
1788           }
1789           if ((base != NULL) && base->is_Con()) {
1790             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1791             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1792               // It could be narrow oop
1793               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1794             }
1795           }
1796         }
1797 #endif
1798         return jt;
1799       }
1800     }
1801   } else if (tp->base() == Type::InstPtr) {
1802     assert( off != Type::OffsetBot ||
1803             // arrays can be cast to Objects
1804             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1805             tp->is_oopptr()->klass() == ciEnv::current()->Class_klass() ||
1806             // unsafe field access may not have a constant offset
1807             C->has_unsafe_access(),
1808             "Field accesses must be precise" );
1809     // For oop loads, we expect the _type to be precise.
1810 
1811     // Optimize loads from constant fields.
1812     const TypeInstPtr* tinst = tp->is_instptr();
1813     ciObject* const_oop = tinst->const_oop();
1814     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1815       BasicType bt = memory_type();
1816       ciType* mirror_type = const_oop->as_instance()->java_mirror_type();
1817       if (mirror_type != NULL && mirror_type->is_valuetype()) {
1818         ciValueKlass* vk = mirror_type->as_value_klass();
1819         if (off == vk->default_value_offset()) {
1820           // Loading a special hidden field that contains the oop of the default value type
1821           const Type* const_oop = TypeInstPtr::make(vk->default_value_instance());
1822           return (bt == T_NARROWOOP) ? const_oop->make_narrowoop() : const_oop;
1823         }
1824       }
1825       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
1826       if (con_type != NULL) {
1827         return con_type;
1828       }
1829     }
1830   } else if (tp->base() == Type::KlassPtr) {
1831     assert( off != Type::OffsetBot ||
1832             // arrays can be cast to Objects
1833             tp->is_klassptr()->klass() == NULL ||
1834             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1835             // also allow array-loading from the primary supertype
1836             // array during subtype checks
1837             Opcode() == Op_LoadKlass,
1838             "Field accesses must be precise" );
1839     // For klass/static loads, we expect the _type to be precise
1840   } else if (tp->base() == Type::RawPtr && !StressReflectiveCode) {
1841     if (adr->is_Load() && off == 0) {
1842       /* With mirrors being an indirect in the Klass*
1843        * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1844        * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1845        *
1846        * So check the type and klass of the node before the LoadP.
1847        */
1848       Node* adr2 = adr->in(MemNode::Address);
1849       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1850       if (tkls != NULL) {
1851         ciKlass* klass = tkls->klass();
1852         if (klass != NULL && klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1853           assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1854           assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1855           return TypeInstPtr::make(klass->java_mirror());
1856         }
1857       }
1858     } else {
1859       // Check for a load of the default value offset from the ValueKlassFixedBlock:
1860       // LoadI(LoadP(value_klass, adr_valueklass_fixed_block_offset), default_value_offset_offset)
1861       intptr_t offset = 0;
1862       Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1863       if (base != NULL && base->is_Load() && offset == in_bytes(ValueKlass::default_value_offset_offset())) {
1864         const TypeKlassPtr* tkls = phase->type(base->in(MemNode::Address))->isa_klassptr();
1865         if (tkls != NULL && tkls->is_loaded() && tkls->klass_is_exact() && tkls->isa_valuetype() &&
1866             tkls->offset() == in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset())) {
1867           assert(base->Opcode() == Op_LoadP, "must load an oop from klass");
1868           assert(Opcode() == Op_LoadI, "must load an int from fixed block");
1869           return TypeInt::make(tkls->klass()->as_value_klass()->default_value_offset());
1870         }
1871       }
1872     }
1873   }
1874 
1875   const TypeKlassPtr *tkls = tp->isa_klassptr();
1876   if (tkls != NULL && !StressReflectiveCode) {
1877     ciKlass* klass = tkls->klass();
1878     if (tkls->is_loaded() && tkls->klass_is_exact()) {
1879       // We are loading a field from a Klass metaobject whose identity
1880       // is known at compile time (the type is "exact" or "precise").
1881       // Check for fields we know are maintained as constants by the VM.
1882       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1883         // The field is Klass::_super_check_offset.  Return its (constant) value.
1884         // (Folds up type checking code.)
1885         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1886         return TypeInt::make(klass->super_check_offset());
1887       }
1888       // Compute index into primary_supers array
1889       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1890       // Check for overflowing; use unsigned compare to handle the negative case.
1891       if( depth < ciKlass::primary_super_limit() ) {
1892         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1893         // (Folds up type checking code.)
1894         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1895         ciKlass *ss = klass->super_of_depth(depth);
1896         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1897       }
1898       const Type* aift = load_array_final_field(tkls, klass);
1899       if (aift != NULL)  return aift;
1900     }
1901 
1902     // We can still check if we are loading from the primary_supers array at a
1903     // shallow enough depth.  Even though the klass is not exact, entries less
1904     // than or equal to its super depth are correct.
1905     if (tkls->is_loaded()) {
1906       ciType *inner = klass;
1907       while( inner->is_obj_array_klass() )
1908         inner = inner->as_obj_array_klass()->base_element_type();
1909       if( inner->is_instance_klass() &&
1910           !inner->as_instance_klass()->flags().is_interface() ) {
1911         // Compute index into primary_supers array
1912         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1913         // Check for overflowing; use unsigned compare to handle the negative case.
1914         if( depth < ciKlass::primary_super_limit() &&
1915             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1916           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1917           // (Folds up type checking code.)
1918           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1919           ciKlass *ss = klass->super_of_depth(depth);
1920           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1921         }
1922       }
1923     }
1924 
1925     // If the type is enough to determine that the thing is not an array,
1926     // we can give the layout_helper a positive interval type.
1927     // This will help short-circuit some reflective code.
1928     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1929         && !klass->is_array_klass() // not directly typed as an array
1930         && !klass->is_interface()  // specifically not Serializable & Cloneable
1931         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1932         ) {
1933       // Note:  When interfaces are reliable, we can narrow the interface
1934       // test to (klass != Serializable && klass != Cloneable).
1935       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1936       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1937       // The key property of this type is that it folds up tests
1938       // for array-ness, since it proves that the layout_helper is positive.
1939       // Thus, a generic value like the basic object layout helper works fine.
1940       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1941     }
1942   }
1943 
1944   // If we are loading from a freshly-allocated object, produce a zero,
1945   // if the load is provably beyond the header of the object.
1946   // (Also allow a variable load from a fresh array to produce zero.)
1947   const TypeOopPtr *tinst = tp->isa_oopptr();
1948   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1949   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1950   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1951     Node* value = can_see_stored_value(mem,phase);
1952     if (value != NULL && value->is_Con()) {
1953       assert(value->bottom_type()->higher_equal(_type),"sanity");
1954       return value->bottom_type();
1955     }
1956   }
1957 
1958   if (is_instance) {
1959     // If we have an instance type and our memory input is the
1960     // programs's initial memory state, there is no matching store,
1961     // so just return a zero of the appropriate type
1962     Node *mem = in(MemNode::Memory);
1963     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1964       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1965       return Type::get_zero_type(_type->basic_type());
1966     }
1967   }
1968   return _type;
1969 }
1970 
1971 //------------------------------match_edge-------------------------------------
1972 // Do we Match on this edge index or not?  Match only the address.
1973 uint LoadNode::match_edge(uint idx) const {
1974   return idx == MemNode::Address;
1975 }
1976 
1977 //--------------------------LoadBNode::Ideal--------------------------------------
1978 //
1979 //  If the previous store is to the same address as this load,
1980 //  and the value stored was larger than a byte, replace this load
1981 //  with the value stored truncated to a byte.  If no truncation is
1982 //  needed, the replacement is done in LoadNode::Identity().
1983 //
1984 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1985   Node* mem = in(MemNode::Memory);
1986   Node* value = can_see_stored_value(mem,phase);
1987   if( value && !phase->type(value)->higher_equal( _type ) ) {
1988     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1989     return new RShiftINode(result, phase->intcon(24));
1990   }
1991   // Identity call will handle the case where truncation is not needed.
1992   return LoadNode::Ideal(phase, can_reshape);
1993 }
1994 
1995 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1996   Node* mem = in(MemNode::Memory);
1997   Node* value = can_see_stored_value(mem,phase);
1998   if (value != NULL && value->is_Con() &&
1999       !value->bottom_type()->higher_equal(_type)) {
2000     // If the input to the store does not fit with the load's result type,
2001     // it must be truncated. We can't delay until Ideal call since
2002     // a singleton Value is needed for split_thru_phi optimization.
2003     int con = value->get_int();
2004     return TypeInt::make((con << 24) >> 24);
2005   }
2006   return LoadNode::Value(phase);
2007 }
2008 
2009 //--------------------------LoadUBNode::Ideal-------------------------------------
2010 //
2011 //  If the previous store is to the same address as this load,
2012 //  and the value stored was larger than a byte, replace this load
2013 //  with the value stored truncated to a byte.  If no truncation is
2014 //  needed, the replacement is done in LoadNode::Identity().
2015 //
2016 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2017   Node* mem = in(MemNode::Memory);
2018   Node* value = can_see_stored_value(mem, phase);
2019   if (value && !phase->type(value)->higher_equal(_type))
2020     return new AndINode(value, phase->intcon(0xFF));
2021   // Identity call will handle the case where truncation is not needed.
2022   return LoadNode::Ideal(phase, can_reshape);
2023 }
2024 
2025 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2026   Node* mem = in(MemNode::Memory);
2027   Node* value = can_see_stored_value(mem,phase);
2028   if (value != NULL && value->is_Con() &&
2029       !value->bottom_type()->higher_equal(_type)) {
2030     // If the input to the store does not fit with the load's result type,
2031     // it must be truncated. We can't delay until Ideal call since
2032     // a singleton Value is needed for split_thru_phi optimization.
2033     int con = value->get_int();
2034     return TypeInt::make(con & 0xFF);
2035   }
2036   return LoadNode::Value(phase);
2037 }
2038 
2039 //--------------------------LoadUSNode::Ideal-------------------------------------
2040 //
2041 //  If the previous store is to the same address as this load,
2042 //  and the value stored was larger than a char, replace this load
2043 //  with the value stored truncated to a char.  If no truncation is
2044 //  needed, the replacement is done in LoadNode::Identity().
2045 //
2046 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2047   Node* mem = in(MemNode::Memory);
2048   Node* value = can_see_stored_value(mem,phase);
2049   if( value && !phase->type(value)->higher_equal( _type ) )
2050     return new AndINode(value,phase->intcon(0xFFFF));
2051   // Identity call will handle the case where truncation is not needed.
2052   return LoadNode::Ideal(phase, can_reshape);
2053 }
2054 
2055 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2056   Node* mem = in(MemNode::Memory);
2057   Node* value = can_see_stored_value(mem,phase);
2058   if (value != NULL && value->is_Con() &&
2059       !value->bottom_type()->higher_equal(_type)) {
2060     // If the input to the store does not fit with the load's result type,
2061     // it must be truncated. We can't delay until Ideal call since
2062     // a singleton Value is needed for split_thru_phi optimization.
2063     int con = value->get_int();
2064     return TypeInt::make(con & 0xFFFF);
2065   }
2066   return LoadNode::Value(phase);
2067 }
2068 
2069 //--------------------------LoadSNode::Ideal--------------------------------------
2070 //
2071 //  If the previous store is to the same address as this load,
2072 //  and the value stored was larger than a short, replace this load
2073 //  with the value stored truncated to a short.  If no truncation is
2074 //  needed, the replacement is done in LoadNode::Identity().
2075 //
2076 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2077   Node* mem = in(MemNode::Memory);
2078   Node* value = can_see_stored_value(mem,phase);
2079   if( value && !phase->type(value)->higher_equal( _type ) ) {
2080     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2081     return new RShiftINode(result, phase->intcon(16));
2082   }
2083   // Identity call will handle the case where truncation is not needed.
2084   return LoadNode::Ideal(phase, can_reshape);
2085 }
2086 
2087 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2088   Node* mem = in(MemNode::Memory);
2089   Node* value = can_see_stored_value(mem,phase);
2090   if (value != NULL && value->is_Con() &&
2091       !value->bottom_type()->higher_equal(_type)) {
2092     // If the input to the store does not fit with the load's result type,
2093     // it must be truncated. We can't delay until Ideal call since
2094     // a singleton Value is needed for split_thru_phi optimization.
2095     int con = value->get_int();
2096     return TypeInt::make((con << 16) >> 16);
2097   }
2098   return LoadNode::Value(phase);
2099 }
2100 
2101 //=============================================================================
2102 //----------------------------LoadKlassNode::make------------------------------
2103 // Polymorphic factory method:
2104 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2105   // sanity check the alias category against the created node type
2106   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2107   assert(adr_type != NULL, "expecting TypeKlassPtr");
2108 #ifdef _LP64
2109   if (adr_type->is_ptr_to_narrowklass()) {
2110     assert(UseCompressedClassPointers, "no compressed klasses");
2111     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2112     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2113   }
2114 #endif
2115   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2116   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2117 }
2118 
2119 //------------------------------Value------------------------------------------
2120 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2121   return klass_value_common(phase);
2122 }
2123 
2124 // In most cases, LoadKlassNode does not have the control input set. If the control
2125 // input is set, it must not be removed (by LoadNode::Ideal()).
2126 bool LoadKlassNode::can_remove_control() const {
2127   return false;
2128 }
2129 
2130 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2131   // Either input is TOP ==> the result is TOP
2132   const Type *t1 = phase->type( in(MemNode::Memory) );
2133   if (t1 == Type::TOP)  return Type::TOP;
2134   Node *adr = in(MemNode::Address);
2135   const Type *t2 = phase->type( adr );
2136   if (t2 == Type::TOP)  return Type::TOP;
2137   const TypePtr *tp = t2->is_ptr();
2138   if (TypePtr::above_centerline(tp->ptr()) ||
2139       tp->ptr() == TypePtr::Null)  return Type::TOP;
2140 
2141   // Return a more precise klass, if possible
2142   const TypeInstPtr *tinst = tp->isa_instptr();
2143   if (tinst != NULL) {
2144     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2145     int offset = tinst->offset();
2146     if (ik == phase->C->env()->Class_klass()
2147         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2148             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2149       // We are loading a special hidden field from a Class mirror object,
2150       // the field which points to the VM's Klass metaobject.
2151       ciType* t = tinst->java_mirror_type();
2152       // java_mirror_type returns non-null for compile-time Class constants.
2153       if (t != NULL) {
2154         // constant oop => constant klass
2155         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2156           if (t->is_void()) {
2157             // We cannot create a void array.  Since void is a primitive type return null
2158             // klass.  Users of this result need to do a null check on the returned klass.
2159             return TypePtr::NULL_PTR;
2160           }
2161           return TypeKlassPtr::make(ciArrayKlass::make(t));
2162         }
2163         if (!t->is_klass()) {
2164           // a primitive Class (e.g., int.class) has NULL for a klass field
2165           return TypePtr::NULL_PTR;
2166         }
2167         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2168         return TypeKlassPtr::make(t->as_klass());
2169       }
2170       // non-constant mirror, so we can't tell what's going on
2171     }
2172     if( !ik->is_loaded() )
2173       return _type;             // Bail out if not loaded
2174     if (offset == oopDesc::klass_offset_in_bytes()) {
2175       if (tinst->klass_is_exact()) {
2176         return TypeKlassPtr::make(ik);
2177       }
2178       // See if we can become precise: no subklasses and no interface
2179       // (Note:  We need to support verified interfaces.)
2180       if (!ik->is_interface() && !ik->has_subklass()) {
2181         //assert(!UseExactTypes, "this code should be useless with exact types");
2182         // Add a dependence; if any subclass added we need to recompile
2183         if (!ik->is_final()) {
2184           // %%% should use stronger assert_unique_concrete_subtype instead
2185           phase->C->dependencies()->assert_leaf_type(ik);
2186         }
2187         // Return precise klass
2188         return TypeKlassPtr::make(ik);
2189       }
2190 
2191       // Return root of possible klass
2192       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0));
2193     }
2194   }
2195 
2196   // Check for loading klass from an array
2197   const TypeAryPtr *tary = tp->isa_aryptr();
2198   if( tary != NULL ) {
2199     ciKlass *tary_klass = tary->klass();
2200     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2201         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2202       if (tary->klass_is_exact()) {
2203         return TypeKlassPtr::make(tary_klass);
2204       }
2205       ciArrayKlass *ak = tary->klass()->as_array_klass();
2206       // If the klass is an object array, we defer the question to the
2207       // array component klass.
2208       if( ak->is_obj_array_klass() ) {
2209         assert( ak->is_loaded(), "" );
2210         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2211         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2212           ciInstanceKlass* ik = base_k->as_instance_klass();
2213           // See if we can become precise: no subklasses and no interface
2214           if (!ik->is_interface() && !ik->has_subklass()) {
2215             //assert(!UseExactTypes, "this code should be useless with exact types");
2216             // Add a dependence; if any subclass added we need to recompile
2217             if (!ik->is_final()) {
2218               phase->C->dependencies()->assert_leaf_type(ik);
2219             }
2220             // Return precise array klass
2221             return TypeKlassPtr::make(ak);
2222           }
2223         }
2224         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
2225       } else {                  // Found a type-array?
2226         //assert(!UseExactTypes, "this code should be useless with exact types");
2227         assert( ak->is_type_array_klass(), "" );
2228         return TypeKlassPtr::make(ak); // These are always precise
2229       }
2230     }
2231   }
2232 
2233   // Check for loading klass from an array klass
2234   const TypeKlassPtr *tkls = tp->isa_klassptr();
2235   if (tkls != NULL && !StressReflectiveCode) {
2236     if (!tkls->is_loaded()) {
2237       return _type;             // Bail out if not loaded
2238     }
2239     ciKlass* klass = tkls->klass();
2240     if( klass->is_obj_array_klass() &&
2241         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2242       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2243       // // Always returning precise element type is incorrect,
2244       // // e.g., element type could be object and array may contain strings
2245       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2246 
2247       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2248       // according to the element type's subclassing.
2249       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0));
2250     }
2251     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2252         tkls->offset() == in_bytes(Klass::super_offset())) {
2253       ciKlass* sup = klass->as_instance_klass()->super();
2254       // The field is Klass::_super.  Return its (constant) value.
2255       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2256       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2257     }
2258   }
2259 
2260   // Bailout case
2261   return LoadNode::Value(phase);
2262 }
2263 
2264 //------------------------------Identity---------------------------------------
2265 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2266 // Also feed through the klass in Allocate(...klass...)._klass.
2267 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2268   return klass_identity_common(phase);
2269 }
2270 
2271 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2272   Node* x = LoadNode::Identity(phase);
2273   if (x != this)  return x;
2274 
2275   // Take apart the address into an oop and and offset.
2276   // Return 'this' if we cannot.
2277   Node*    adr    = in(MemNode::Address);
2278   intptr_t offset = 0;
2279   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2280   if (base == NULL)     return this;
2281   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2282   if (toop == NULL)     return this;
2283 
2284   // Step over potential GC barrier for OopHandle resolve
2285   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2286   if (bs->is_gc_barrier_node(base)) {
2287     base = bs->step_over_gc_barrier(base);
2288   }
2289 
2290   // We can fetch the klass directly through an AllocateNode.
2291   // This works even if the klass is not constant (clone or newArray).
2292   if (offset == oopDesc::klass_offset_in_bytes()) {
2293     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2294     if (allocated_klass != NULL) {
2295       return allocated_klass;
2296     }
2297   }
2298 
2299   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2300   // See inline_native_Class_query for occurrences of these patterns.
2301   // Java Example:  x.getClass().isAssignableFrom(y)
2302   //
2303   // This improves reflective code, often making the Class
2304   // mirror go completely dead.  (Current exception:  Class
2305   // mirrors may appear in debug info, but we could clean them out by
2306   // introducing a new debug info operator for Klass.java_mirror).
2307 
2308   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2309       && offset == java_lang_Class::klass_offset_in_bytes()) {
2310     if (base->is_Load()) {
2311       Node* base2 = base->in(MemNode::Address);
2312       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2313         Node* adr2 = base2->in(MemNode::Address);
2314         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2315         if (tkls != NULL && !tkls->empty()
2316             && (tkls->klass()->is_instance_klass() ||
2317               tkls->klass()->is_array_klass())
2318             && adr2->is_AddP()
2319            ) {
2320           int mirror_field = in_bytes(Klass::java_mirror_offset());
2321           if (tkls->offset() == mirror_field) {
2322             return adr2->in(AddPNode::Base);
2323           }
2324         }
2325       }
2326     }
2327   }
2328 
2329   return this;
2330 }
2331 
2332 
2333 //------------------------------Value------------------------------------------
2334 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2335   const Type *t = klass_value_common(phase);
2336   if (t == Type::TOP)
2337     return t;
2338 
2339   return t->make_narrowklass();
2340 }
2341 
2342 //------------------------------Identity---------------------------------------
2343 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2344 // Also feed through the klass in Allocate(...klass...)._klass.
2345 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2346   Node *x = klass_identity_common(phase);
2347 
2348   const Type *t = phase->type( x );
2349   if( t == Type::TOP ) return x;
2350   if( t->isa_narrowklass()) return x;
2351   assert (!t->isa_narrowoop(), "no narrow oop here");
2352 
2353   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2354 }
2355 
2356 //------------------------------Value-----------------------------------------
2357 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2358   // Either input is TOP ==> the result is TOP
2359   const Type *t1 = phase->type( in(MemNode::Memory) );
2360   if( t1 == Type::TOP ) return Type::TOP;
2361   Node *adr = in(MemNode::Address);
2362   const Type *t2 = phase->type( adr );
2363   if( t2 == Type::TOP ) return Type::TOP;
2364   const TypePtr *tp = t2->is_ptr();
2365   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2366   const TypeAryPtr *tap = tp->isa_aryptr();
2367   if( !tap ) return _type;
2368   return tap->size();
2369 }
2370 
2371 //-------------------------------Ideal---------------------------------------
2372 // Feed through the length in AllocateArray(...length...)._length.
2373 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2374   Node* p = MemNode::Ideal_common(phase, can_reshape);
2375   if (p)  return (p == NodeSentinel) ? NULL : p;
2376 
2377   // Take apart the address into an oop and and offset.
2378   // Return 'this' if we cannot.
2379   Node*    adr    = in(MemNode::Address);
2380   intptr_t offset = 0;
2381   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2382   if (base == NULL)     return NULL;
2383   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2384   if (tary == NULL)     return NULL;
2385 
2386   // We can fetch the length directly through an AllocateArrayNode.
2387   // This works even if the length is not constant (clone or newArray).
2388   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2389     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2390     if (alloc != NULL) {
2391       Node* allocated_length = alloc->Ideal_length();
2392       Node* len = alloc->make_ideal_length(tary, phase);
2393       if (allocated_length != len) {
2394         // New CastII improves on this.
2395         return len;
2396       }
2397     }
2398   }
2399 
2400   return NULL;
2401 }
2402 
2403 //------------------------------Identity---------------------------------------
2404 // Feed through the length in AllocateArray(...length...)._length.
2405 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2406   Node* x = LoadINode::Identity(phase);
2407   if (x != this)  return x;
2408 
2409   // Take apart the address into an oop and and offset.
2410   // Return 'this' if we cannot.
2411   Node*    adr    = in(MemNode::Address);
2412   intptr_t offset = 0;
2413   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2414   if (base == NULL)     return this;
2415   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2416   if (tary == NULL)     return this;
2417 
2418   // We can fetch the length directly through an AllocateArrayNode.
2419   // This works even if the length is not constant (clone or newArray).
2420   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2421     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2422     if (alloc != NULL) {
2423       Node* allocated_length = alloc->Ideal_length();
2424       // Do not allow make_ideal_length to allocate a CastII node.
2425       Node* len = alloc->make_ideal_length(tary, phase, false);
2426       if (allocated_length == len) {
2427         // Return allocated_length only if it would not be improved by a CastII.
2428         return allocated_length;
2429       }
2430     }
2431   }
2432 
2433   return this;
2434 
2435 }
2436 
2437 //=============================================================================
2438 //---------------------------StoreNode::make-----------------------------------
2439 // Polymorphic factory method:
2440 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2441   assert((mo == unordered || mo == release), "unexpected");
2442   Compile* C = gvn.C;
2443   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2444          ctl != NULL, "raw memory operations should have control edge");
2445 
2446   switch (bt) {
2447   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2448   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2449   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2450   case T_CHAR:
2451   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2452   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2453   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2454   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2455   case T_METADATA:
2456   case T_ADDRESS:
2457   case T_VALUETYPE:
2458   case T_OBJECT:
2459 #ifdef _LP64
2460     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2461       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2462       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2463     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2464                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2465                 adr->bottom_type()->isa_rawptr())) {
2466       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2467       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2468     }
2469 #endif
2470     {
2471       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2472     }
2473   default:
2474     ShouldNotReachHere();
2475     return (StoreNode*)NULL;
2476   }
2477 }
2478 
2479 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2480   bool require_atomic = true;
2481   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2482 }
2483 
2484 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2485   bool require_atomic = true;
2486   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2487 }
2488 
2489 
2490 //--------------------------bottom_type----------------------------------------
2491 const Type *StoreNode::bottom_type() const {
2492   return Type::MEMORY;
2493 }
2494 
2495 //------------------------------hash-------------------------------------------
2496 uint StoreNode::hash() const {
2497   // unroll addition of interesting fields
2498   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2499 
2500   // Since they are not commoned, do not hash them:
2501   return NO_HASH;
2502 }
2503 
2504 //------------------------------Ideal------------------------------------------
2505 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2506 // When a store immediately follows a relevant allocation/initialization,
2507 // try to capture it into the initialization, or hoist it above.
2508 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2509   Node* p = MemNode::Ideal_common(phase, can_reshape);
2510   if (p)  return (p == NodeSentinel) ? NULL : p;
2511 
2512   Node* mem     = in(MemNode::Memory);
2513   Node* address = in(MemNode::Address);
2514   // Back-to-back stores to same address?  Fold em up.  Generally
2515   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2516   // since they must follow each StoreP operation.  Redundant StoreCMs
2517   // are eliminated just before matching in final_graph_reshape.
2518   {
2519     Node* st = mem;
2520     // If Store 'st' has more than one use, we cannot fold 'st' away.
2521     // For example, 'st' might be the final state at a conditional
2522     // return.  Or, 'st' might be used by some node which is live at
2523     // the same time 'st' is live, which might be unschedulable.  So,
2524     // require exactly ONE user until such time as we clone 'mem' for
2525     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2526     // true).
2527     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2528       // Looking at a dead closed cycle of memory?
2529       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2530       assert(Opcode() == st->Opcode() ||
2531              st->Opcode() == Op_StoreVector ||
2532              Opcode() == Op_StoreVector ||
2533              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2534              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2535              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2536              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
2537              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2538              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2539 
2540       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2541           st->as_Store()->memory_size() <= this->memory_size()) {
2542         Node* use = st->raw_out(0);
2543         phase->igvn_rehash_node_delayed(use);
2544         if (can_reshape) {
2545           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2546         } else {
2547           // It's OK to do this in the parser, since DU info is always accurate,
2548           // and the parser always refers to nodes via SafePointNode maps.
2549           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2550         }
2551         return this;
2552       }
2553       st = st->in(MemNode::Memory);
2554     }
2555   }
2556 
2557 
2558   // Capture an unaliased, unconditional, simple store into an initializer.
2559   // Or, if it is independent of the allocation, hoist it above the allocation.
2560   if (ReduceFieldZeroing && /*can_reshape &&*/
2561       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2562     InitializeNode* init = mem->in(0)->as_Initialize();
2563     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2564     if (offset > 0) {
2565       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2566       // If the InitializeNode captured me, it made a raw copy of me,
2567       // and I need to disappear.
2568       if (moved != NULL) {
2569         // %%% hack to ensure that Ideal returns a new node:
2570         mem = MergeMemNode::make(mem);
2571         return mem;             // fold me away
2572       }
2573     }
2574   }
2575 
2576   return NULL;                  // No further progress
2577 }
2578 
2579 //------------------------------Value-----------------------------------------
2580 const Type* StoreNode::Value(PhaseGVN* phase) const {
2581   // Either input is TOP ==> the result is TOP
2582   const Type *t1 = phase->type( in(MemNode::Memory) );
2583   if( t1 == Type::TOP ) return Type::TOP;
2584   const Type *t2 = phase->type( in(MemNode::Address) );
2585   if( t2 == Type::TOP ) return Type::TOP;
2586   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2587   if( t3 == Type::TOP ) return Type::TOP;
2588   return Type::MEMORY;
2589 }
2590 
2591 //------------------------------Identity---------------------------------------
2592 // Remove redundant stores:
2593 //   Store(m, p, Load(m, p)) changes to m.
2594 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2595 Node* StoreNode::Identity(PhaseGVN* phase) {
2596   Node* mem = in(MemNode::Memory);
2597   Node* adr = in(MemNode::Address);
2598   Node* val = in(MemNode::ValueIn);
2599 
2600   Node* result = this;
2601 
2602   // Load then Store?  Then the Store is useless
2603   if (val->is_Load() &&
2604       val->in(MemNode::Address)->eqv_uncast(adr) &&
2605       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2606       val->as_Load()->store_Opcode() == Opcode()) {
2607     result = mem;
2608   }
2609 
2610   // Two stores in a row of the same value?
2611   if (result == this &&
2612       mem->is_Store() &&
2613       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2614       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2615       mem->Opcode() == Opcode()) {
2616     result = mem;
2617   }
2618 
2619   // Store of zero anywhere into a freshly-allocated object?
2620   // Then the store is useless.
2621   // (It must already have been captured by the InitializeNode.)
2622   if (result == this && ReduceFieldZeroing) {
2623     // a newly allocated object is already all-zeroes everywhere
2624     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
2625         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == val)) {
2626       assert(!phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == NULL, "storing null to value array is forbidden");
2627       result = mem;
2628     }
2629 
2630     if (result == this) {
2631       // the store may also apply to zero-bits in an earlier object
2632       Node* prev_mem = find_previous_store(phase);
2633       // Steps (a), (b):  Walk past independent stores to find an exact match.
2634       if (prev_mem != NULL) {
2635         Node* prev_val = can_see_stored_value(prev_mem, phase);
2636         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2637           // prev_val and val might differ by a cast; it would be good
2638           // to keep the more informative of the two.
2639           if (phase->type(val)->is_zero_type()) {
2640             result = mem;
2641           } else if (prev_mem->is_Proj() && prev_mem->in(0)->is_Initialize()) {
2642             InitializeNode* init = prev_mem->in(0)->as_Initialize();
2643             AllocateNode* alloc = init->allocation();
2644             if (alloc != NULL && alloc->in(AllocateNode::DefaultValue) == val) {
2645               result = mem;
2646             }
2647           }
2648         }
2649       }
2650     }
2651   }
2652 
2653   if (result != this && phase->is_IterGVN() != NULL) {
2654     MemBarNode* trailing = trailing_membar();
2655     if (trailing != NULL) {
2656 #ifdef ASSERT
2657       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2658       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2659 #endif
2660       PhaseIterGVN* igvn = phase->is_IterGVN();
2661       trailing->remove(igvn);
2662     }
2663   }
2664 
2665   return result;
2666 }
2667 
2668 //------------------------------match_edge-------------------------------------
2669 // Do we Match on this edge index or not?  Match only memory & value
2670 uint StoreNode::match_edge(uint idx) const {
2671   return idx == MemNode::Address || idx == MemNode::ValueIn;
2672 }
2673 
2674 //------------------------------cmp--------------------------------------------
2675 // Do not common stores up together.  They generally have to be split
2676 // back up anyways, so do not bother.
2677 uint StoreNode::cmp( const Node &n ) const {
2678   return (&n == this);          // Always fail except on self
2679 }
2680 
2681 //------------------------------Ideal_masked_input-----------------------------
2682 // Check for a useless mask before a partial-word store
2683 // (StoreB ... (AndI valIn conIa) )
2684 // If (conIa & mask == mask) this simplifies to
2685 // (StoreB ... (valIn) )
2686 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2687   Node *val = in(MemNode::ValueIn);
2688   if( val->Opcode() == Op_AndI ) {
2689     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2690     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2691       set_req(MemNode::ValueIn, val->in(1));
2692       return this;
2693     }
2694   }
2695   return NULL;
2696 }
2697 
2698 
2699 //------------------------------Ideal_sign_extended_input----------------------
2700 // Check for useless sign-extension before a partial-word store
2701 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2702 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2703 // (StoreB ... (valIn) )
2704 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2705   Node *val = in(MemNode::ValueIn);
2706   if( val->Opcode() == Op_RShiftI ) {
2707     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2708     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2709       Node *shl = val->in(1);
2710       if( shl->Opcode() == Op_LShiftI ) {
2711         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2712         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2713           set_req(MemNode::ValueIn, shl->in(1));
2714           return this;
2715         }
2716       }
2717     }
2718   }
2719   return NULL;
2720 }
2721 
2722 //------------------------------value_never_loaded-----------------------------------
2723 // Determine whether there are any possible loads of the value stored.
2724 // For simplicity, we actually check if there are any loads from the
2725 // address stored to, not just for loads of the value stored by this node.
2726 //
2727 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2728   Node *adr = in(Address);
2729   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2730   if (adr_oop == NULL)
2731     return false;
2732   if (!adr_oop->is_known_instance_field())
2733     return false; // if not a distinct instance, there may be aliases of the address
2734   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2735     Node *use = adr->fast_out(i);
2736     if (use->is_Load() || use->is_LoadStore()) {
2737       return false;
2738     }
2739   }
2740   return true;
2741 }
2742 
2743 MemBarNode* StoreNode::trailing_membar() const {
2744   if (is_release()) {
2745     MemBarNode* trailing_mb = NULL;
2746     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2747       Node* u = fast_out(i);
2748       if (u->is_MemBar()) {
2749         if (u->as_MemBar()->trailing_store()) {
2750           assert(u->Opcode() == Op_MemBarVolatile, "");
2751           assert(trailing_mb == NULL, "only one");
2752           trailing_mb = u->as_MemBar();
2753 #ifdef ASSERT
2754           Node* leading = u->as_MemBar()->leading_membar();
2755           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2756           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2757           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2758 #endif
2759         } else {
2760           assert(u->as_MemBar()->standalone(), "");
2761         }
2762       }
2763     }
2764     return trailing_mb;
2765   }
2766   return NULL;
2767 }
2768 
2769 
2770 //=============================================================================
2771 //------------------------------Ideal------------------------------------------
2772 // If the store is from an AND mask that leaves the low bits untouched, then
2773 // we can skip the AND operation.  If the store is from a sign-extension
2774 // (a left shift, then right shift) we can skip both.
2775 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2776   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2777   if( progress != NULL ) return progress;
2778 
2779   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2780   if( progress != NULL ) return progress;
2781 
2782   // Finally check the default case
2783   return StoreNode::Ideal(phase, can_reshape);
2784 }
2785 
2786 //=============================================================================
2787 //------------------------------Ideal------------------------------------------
2788 // If the store is from an AND mask that leaves the low bits untouched, then
2789 // we can skip the AND operation
2790 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2791   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2792   if( progress != NULL ) return progress;
2793 
2794   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2795   if( progress != NULL ) return progress;
2796 
2797   // Finally check the default case
2798   return StoreNode::Ideal(phase, can_reshape);
2799 }
2800 
2801 //=============================================================================
2802 //------------------------------Identity---------------------------------------
2803 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2804   // No need to card mark when storing a null ptr
2805   Node* my_store = in(MemNode::OopStore);
2806   if (my_store->is_Store()) {
2807     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2808     if( t1 == TypePtr::NULL_PTR ) {
2809       return in(MemNode::Memory);
2810     }
2811   }
2812   return this;
2813 }
2814 
2815 //=============================================================================
2816 //------------------------------Ideal---------------------------------------
2817 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2818   Node* progress = StoreNode::Ideal(phase, can_reshape);
2819   if (progress != NULL) return progress;
2820 
2821   Node* my_store = in(MemNode::OopStore);
2822   if (my_store->is_MergeMem()) {
2823     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2824     set_req(MemNode::OopStore, mem);
2825     return this;
2826   }
2827 
2828   return NULL;
2829 }
2830 
2831 //------------------------------Value-----------------------------------------
2832 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2833   // Either input is TOP ==> the result is TOP
2834   const Type *t = phase->type( in(MemNode::Memory) );
2835   if( t == Type::TOP ) return Type::TOP;
2836   t = phase->type( in(MemNode::Address) );
2837   if( t == Type::TOP ) return Type::TOP;
2838   t = phase->type( in(MemNode::ValueIn) );
2839   if( t == Type::TOP ) return Type::TOP;
2840   // If extra input is TOP ==> the result is TOP
2841   t = phase->type( in(MemNode::OopStore) );
2842   if( t == Type::TOP ) return Type::TOP;
2843 
2844   return StoreNode::Value( phase );
2845 }
2846 
2847 
2848 //=============================================================================
2849 //----------------------------------SCMemProjNode------------------------------
2850 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2851 {
2852   return bottom_type();
2853 }
2854 
2855 //=============================================================================
2856 //----------------------------------LoadStoreNode------------------------------
2857 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2858   : Node(required),
2859     _type(rt),
2860     _adr_type(at)
2861 {
2862   init_req(MemNode::Control, c  );
2863   init_req(MemNode::Memory , mem);
2864   init_req(MemNode::Address, adr);
2865   init_req(MemNode::ValueIn, val);
2866   init_class_id(Class_LoadStore);
2867 }
2868 
2869 uint LoadStoreNode::ideal_reg() const {
2870   return _type->ideal_reg();
2871 }
2872 
2873 bool LoadStoreNode::result_not_used() const {
2874   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2875     Node *x = fast_out(i);
2876     if (x->Opcode() == Op_SCMemProj) continue;
2877     return false;
2878   }
2879   return true;
2880 }
2881 
2882 MemBarNode* LoadStoreNode::trailing_membar() const {
2883   MemBarNode* trailing = NULL;
2884   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2885     Node* u = fast_out(i);
2886     if (u->is_MemBar()) {
2887       if (u->as_MemBar()->trailing_load_store()) {
2888         assert(u->Opcode() == Op_MemBarAcquire, "");
2889         assert(trailing == NULL, "only one");
2890         trailing = u->as_MemBar();
2891 #ifdef ASSERT
2892         Node* leading = trailing->leading_membar();
2893         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2894         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2895         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2896 #endif
2897       } else {
2898         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2899       }
2900     }
2901   }
2902 
2903   return trailing;
2904 }
2905 
2906 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2907 
2908 //=============================================================================
2909 //----------------------------------LoadStoreConditionalNode--------------------
2910 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2911   init_req(ExpectedIn, ex );
2912 }
2913 
2914 //=============================================================================
2915 //-------------------------------adr_type--------------------------------------
2916 const TypePtr* ClearArrayNode::adr_type() const {
2917   Node *adr = in(3);
2918   if (adr == NULL)  return NULL; // node is dead
2919   return MemNode::calculate_adr_type(adr->bottom_type());
2920 }
2921 
2922 //------------------------------match_edge-------------------------------------
2923 // Do we Match on this edge index or not?  Do not match memory
2924 uint ClearArrayNode::match_edge(uint idx) const {
2925   return idx > 1;
2926 }
2927 
2928 //------------------------------Identity---------------------------------------
2929 // Clearing a zero length array does nothing
2930 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2931   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2932 }
2933 
2934 //------------------------------Idealize---------------------------------------
2935 // Clearing a short array is faster with stores
2936 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2937   // Already know this is a large node, do not try to ideal it
2938   if (!IdealizeClearArrayNode || _is_large) return NULL;
2939 
2940   const int unit = BytesPerLong;
2941   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2942   if (!t)  return NULL;
2943   if (!t->is_con())  return NULL;
2944   intptr_t raw_count = t->get_con();
2945   intptr_t size = raw_count;
2946   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2947   // Clearing nothing uses the Identity call.
2948   // Negative clears are possible on dead ClearArrays
2949   // (see jck test stmt114.stmt11402.val).
2950   if (size <= 0 || size % unit != 0)  return NULL;
2951   intptr_t count = size / unit;
2952   // Length too long; communicate this to matchers and assemblers.
2953   // Assemblers are responsible to produce fast hardware clears for it.
2954   if (size > InitArrayShortSize) {
2955     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
2956   }
2957   Node *mem = in(1);
2958   if( phase->type(mem)==Type::TOP ) return NULL;
2959   Node *adr = in(3);
2960   const Type* at = phase->type(adr);
2961   if( at==Type::TOP ) return NULL;
2962   const TypePtr* atp = at->isa_ptr();
2963   // adjust atp to be the correct array element address type
2964   if (atp == NULL)  atp = TypePtr::BOTTOM;
2965   else              atp = atp->add_offset(Type::OffsetBot);
2966   // Get base for derived pointer purposes
2967   if( adr->Opcode() != Op_AddP ) Unimplemented();
2968   Node *base = adr->in(1);
2969 
2970   Node *val = in(4);
2971   Node *off  = phase->MakeConX(BytesPerLong);
2972   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2973   count--;
2974   while( count-- ) {
2975     mem = phase->transform(mem);
2976     adr = phase->transform(new AddPNode(base,adr,off));
2977     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2978   }
2979   return mem;
2980 }
2981 
2982 //----------------------------step_through----------------------------------
2983 // Return allocation input memory edge if it is different instance
2984 // or itself if it is the one we are looking for.
2985 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2986   Node* n = *np;
2987   assert(n->is_ClearArray(), "sanity");
2988   intptr_t offset;
2989   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2990   // This method is called only before Allocate nodes are expanded
2991   // during macro nodes expansion. Before that ClearArray nodes are
2992   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2993   // Allocate nodes are expanded) which follows allocations.
2994   assert(alloc != NULL, "should have allocation");
2995   if (alloc->_idx == instance_id) {
2996     // Can not bypass initialization of the instance we are looking for.
2997     return false;
2998   }
2999   // Otherwise skip it.
3000   InitializeNode* init = alloc->initialization();
3001   if (init != NULL)
3002     *np = init->in(TypeFunc::Memory);
3003   else
3004     *np = alloc->in(TypeFunc::Memory);
3005   return true;
3006 }
3007 
3008 //----------------------------clear_memory-------------------------------------
3009 // Generate code to initialize object storage to zero.
3010 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3011                                    Node* val,
3012                                    Node* raw_val,
3013                                    intptr_t start_offset,
3014                                    Node* end_offset,
3015                                    PhaseGVN* phase) {
3016   intptr_t offset = start_offset;
3017 
3018   int unit = BytesPerLong;
3019   if ((offset % unit) != 0) {
3020     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3021     adr = phase->transform(adr);
3022     const TypePtr* atp = TypeRawPtr::BOTTOM;
3023     if (val != NULL) {
3024       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3025       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3026     } else {
3027       assert(raw_val == NULL, "val may not be null");
3028       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3029     }
3030     mem = phase->transform(mem);
3031     offset += BytesPerInt;
3032   }
3033   assert((offset % unit) == 0, "");
3034 
3035   // Initialize the remaining stuff, if any, with a ClearArray.
3036   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
3037 }
3038 
3039 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3040                                    Node* raw_val,
3041                                    Node* start_offset,
3042                                    Node* end_offset,
3043                                    PhaseGVN* phase) {
3044   if (start_offset == end_offset) {
3045     // nothing to do
3046     return mem;
3047   }
3048 
3049   int unit = BytesPerLong;
3050   Node* zbase = start_offset;
3051   Node* zend  = end_offset;
3052 
3053   // Scale to the unit required by the CPU:
3054   if (!Matcher::init_array_count_is_in_bytes) {
3055     Node* shift = phase->intcon(exact_log2(unit));
3056     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3057     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3058   }
3059 
3060   // Bulk clear double-words
3061   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3062   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3063   if (raw_val == NULL) {
3064     raw_val = phase->MakeConX(0);
3065   }
3066   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
3067   return phase->transform(mem);
3068 }
3069 
3070 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3071                                    Node* val,
3072                                    Node* raw_val,
3073                                    intptr_t start_offset,
3074                                    intptr_t end_offset,
3075                                    PhaseGVN* phase) {
3076   if (start_offset == end_offset) {
3077     // nothing to do
3078     return mem;
3079   }
3080 
3081   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3082   intptr_t done_offset = end_offset;
3083   if ((done_offset % BytesPerLong) != 0) {
3084     done_offset -= BytesPerInt;
3085   }
3086   if (done_offset > start_offset) {
3087     mem = clear_memory(ctl, mem, dest, val, raw_val,
3088                        start_offset, phase->MakeConX(done_offset), phase);
3089   }
3090   if (done_offset < end_offset) { // emit the final 32-bit store
3091     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3092     adr = phase->transform(adr);
3093     const TypePtr* atp = TypeRawPtr::BOTTOM;
3094     if (val != NULL) {
3095       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3096       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3097     } else {
3098       assert(raw_val == NULL, "val may not be null");
3099       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3100     }
3101     mem = phase->transform(mem);
3102     done_offset += BytesPerInt;
3103   }
3104   assert(done_offset == end_offset, "");
3105   return mem;
3106 }
3107 
3108 //=============================================================================
3109 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3110   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3111     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3112 #ifdef ASSERT
3113   , _pair_idx(0)
3114 #endif
3115 {
3116   init_class_id(Class_MemBar);
3117   Node* top = C->top();
3118   init_req(TypeFunc::I_O,top);
3119   init_req(TypeFunc::FramePtr,top);
3120   init_req(TypeFunc::ReturnAdr,top);
3121   if (precedent != NULL)
3122     init_req(TypeFunc::Parms, precedent);
3123 }
3124 
3125 //------------------------------cmp--------------------------------------------
3126 uint MemBarNode::hash() const { return NO_HASH; }
3127 uint MemBarNode::cmp( const Node &n ) const {
3128   return (&n == this);          // Always fail except on self
3129 }
3130 
3131 //------------------------------make-------------------------------------------
3132 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3133   switch (opcode) {
3134   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3135   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3136   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3137   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3138   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3139   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3140   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3141   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3142   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3143   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3144   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3145   default: ShouldNotReachHere(); return NULL;
3146   }
3147 }
3148 
3149 void MemBarNode::remove(PhaseIterGVN *igvn) {
3150   if (outcnt() != 2) {
3151     return;
3152   }
3153   if (trailing_store() || trailing_load_store()) {
3154     MemBarNode* leading = leading_membar();
3155     if (leading != NULL) {
3156       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3157       leading->remove(igvn);
3158     }
3159   }
3160   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3161   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3162 }
3163 
3164 //------------------------------Ideal------------------------------------------
3165 // Return a node which is more "ideal" than the current node.  Strip out
3166 // control copies
3167 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3168   if (remove_dead_region(phase, can_reshape)) return this;
3169   // Don't bother trying to transform a dead node
3170   if (in(0) && in(0)->is_top()) {
3171     return NULL;
3172   }
3173 
3174 #if INCLUDE_ZGC
3175   if (UseZGC) {
3176     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3177       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3178       set_req(MemBarNode::Precedent, load_node);
3179       return this;
3180     }
3181   }
3182 #endif
3183 
3184   bool progress = false;
3185   // Eliminate volatile MemBars for scalar replaced objects.
3186   if (can_reshape && req() == (Precedent+1)) {
3187     bool eliminate = false;
3188     int opc = Opcode();
3189     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3190       // Volatile field loads and stores.
3191       Node* my_mem = in(MemBarNode::Precedent);
3192       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3193       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3194         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3195         // replace this Precedent (decodeN) with the Load instead.
3196         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3197           Node* load_node = my_mem->in(1);
3198           set_req(MemBarNode::Precedent, load_node);
3199           phase->is_IterGVN()->_worklist.push(my_mem);
3200           my_mem = load_node;
3201         } else {
3202           assert(my_mem->unique_out() == this, "sanity");
3203           del_req(Precedent);
3204           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3205           my_mem = NULL;
3206         }
3207         progress = true;
3208       }
3209       if (my_mem != NULL && my_mem->is_Mem()) {
3210         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3211         // Check for scalar replaced object reference.
3212         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3213             t_oop->offset() != Type::OffsetBot &&
3214             t_oop->offset() != Type::OffsetTop) {
3215           eliminate = true;
3216         }
3217       }
3218     } else if (opc == Op_MemBarRelease) {
3219       // Final field stores.
3220       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3221       if ((alloc != NULL) && alloc->is_Allocate() &&
3222           alloc->as_Allocate()->does_not_escape_thread()) {
3223         // The allocated object does not escape.
3224         eliminate = true;
3225       }
3226     }
3227     if (eliminate) {
3228       // Replace MemBar projections by its inputs.
3229       PhaseIterGVN* igvn = phase->is_IterGVN();
3230       remove(igvn);
3231       // Must return either the original node (now dead) or a new node
3232       // (Do not return a top here, since that would break the uniqueness of top.)
3233       return new ConINode(TypeInt::ZERO);
3234     }
3235   }
3236   return progress ? this : NULL;
3237 }
3238 
3239 //------------------------------Value------------------------------------------
3240 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3241   if( !in(0) ) return Type::TOP;
3242   if( phase->type(in(0)) == Type::TOP )
3243     return Type::TOP;
3244   return TypeTuple::MEMBAR;
3245 }
3246 
3247 //------------------------------match------------------------------------------
3248 // Construct projections for memory.
3249 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3250   switch (proj->_con) {
3251   case TypeFunc::Control:
3252   case TypeFunc::Memory:
3253     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3254   }
3255   ShouldNotReachHere();
3256   return NULL;
3257 }
3258 
3259 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3260   trailing->_kind = TrailingStore;
3261   leading->_kind = LeadingStore;
3262 #ifdef ASSERT
3263   trailing->_pair_idx = leading->_idx;
3264   leading->_pair_idx = leading->_idx;
3265 #endif
3266 }
3267 
3268 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3269   trailing->_kind = TrailingLoadStore;
3270   leading->_kind = LeadingLoadStore;
3271 #ifdef ASSERT
3272   trailing->_pair_idx = leading->_idx;
3273   leading->_pair_idx = leading->_idx;
3274 #endif
3275 }
3276 
3277 MemBarNode* MemBarNode::trailing_membar() const {
3278   ResourceMark rm;
3279   Node* trailing = (Node*)this;
3280   VectorSet seen(Thread::current()->resource_area());
3281   Node_Stack multis(0);
3282   do {
3283     Node* c = trailing;
3284     uint i = 0;
3285     do {
3286       trailing = NULL;
3287       for (; i < c->outcnt(); i++) {
3288         Node* next = c->raw_out(i);
3289         if (next != c && next->is_CFG()) {
3290           if (c->is_MultiBranch()) {
3291             if (multis.node() == c) {
3292               multis.set_index(i+1);
3293             } else {
3294               multis.push(c, i+1);
3295             }
3296           }
3297           trailing = next;
3298           break;
3299         }
3300       }
3301       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3302         break;
3303       }
3304       while (multis.size() > 0) {
3305         c = multis.node();
3306         i = multis.index();
3307         if (i < c->req()) {
3308           break;
3309         }
3310         multis.pop();
3311       }
3312     } while (multis.size() > 0);
3313   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3314 
3315   MemBarNode* mb = trailing->as_MemBar();
3316   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3317          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3318   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3319   return mb;
3320 }
3321 
3322 MemBarNode* MemBarNode::leading_membar() const {
3323   ResourceMark rm;
3324   VectorSet seen(Thread::current()->resource_area());
3325   Node_Stack regions(0);
3326   Node* leading = in(0);
3327   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3328     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3329       leading = NULL;
3330       while (regions.size() > 0) {
3331         Node* r = regions.node();
3332         uint i = regions.index();
3333         if (i < r->req()) {
3334           leading = r->in(i);
3335           regions.set_index(i+1);
3336         } else {
3337           regions.pop();
3338         }
3339       }
3340       if (leading == NULL) {
3341         assert(regions.size() == 0, "all paths should have been tried");
3342         return NULL;
3343       }
3344     }
3345     if (leading->is_Region()) {
3346       regions.push(leading, 2);
3347       leading = leading->in(1);
3348     } else {
3349       leading = leading->in(0);
3350     }
3351   }
3352 #ifdef ASSERT
3353   Unique_Node_List wq;
3354   wq.push((Node*)this);
3355   uint found = 0;
3356   for (uint i = 0; i < wq.size(); i++) {
3357     Node* n = wq.at(i);
3358     if (n->is_Region()) {
3359       for (uint j = 1; j < n->req(); j++) {
3360         Node* in = n->in(j);
3361         if (in != NULL && !in->is_top()) {
3362           wq.push(in);
3363         }
3364       }
3365     } else {
3366       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3367         assert(n == leading, "consistency check failed");
3368         found++;
3369       } else {
3370         Node* in = n->in(0);
3371         if (in != NULL && !in->is_top()) {
3372           wq.push(in);
3373         }
3374       }
3375     }
3376   }
3377   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3378 #endif
3379   if (leading == NULL) {
3380     return NULL;
3381   }
3382   MemBarNode* mb = leading->as_MemBar();
3383   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3384          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3385   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3386   return mb;
3387 }
3388 
3389 //===========================InitializeNode====================================
3390 // SUMMARY:
3391 // This node acts as a memory barrier on raw memory, after some raw stores.
3392 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3393 // The Initialize can 'capture' suitably constrained stores as raw inits.
3394 // It can coalesce related raw stores into larger units (called 'tiles').
3395 // It can avoid zeroing new storage for memory units which have raw inits.
3396 // At macro-expansion, it is marked 'complete', and does not optimize further.
3397 //
3398 // EXAMPLE:
3399 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3400 //   ctl = incoming control; mem* = incoming memory
3401 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3402 // First allocate uninitialized memory and fill in the header:
3403 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3404 //   ctl := alloc.Control; mem* := alloc.Memory*
3405 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3406 // Then initialize to zero the non-header parts of the raw memory block:
3407 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3408 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3409 // After the initialize node executes, the object is ready for service:
3410 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3411 // Suppose its body is immediately initialized as {1,2}:
3412 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3413 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3414 //   mem.SLICE(#short[*]) := store2
3415 //
3416 // DETAILS:
3417 // An InitializeNode collects and isolates object initialization after
3418 // an AllocateNode and before the next possible safepoint.  As a
3419 // memory barrier (MemBarNode), it keeps critical stores from drifting
3420 // down past any safepoint or any publication of the allocation.
3421 // Before this barrier, a newly-allocated object may have uninitialized bits.
3422 // After this barrier, it may be treated as a real oop, and GC is allowed.
3423 //
3424 // The semantics of the InitializeNode include an implicit zeroing of
3425 // the new object from object header to the end of the object.
3426 // (The object header and end are determined by the AllocateNode.)
3427 //
3428 // Certain stores may be added as direct inputs to the InitializeNode.
3429 // These stores must update raw memory, and they must be to addresses
3430 // derived from the raw address produced by AllocateNode, and with
3431 // a constant offset.  They must be ordered by increasing offset.
3432 // The first one is at in(RawStores), the last at in(req()-1).
3433 // Unlike most memory operations, they are not linked in a chain,
3434 // but are displayed in parallel as users of the rawmem output of
3435 // the allocation.
3436 //
3437 // (See comments in InitializeNode::capture_store, which continue
3438 // the example given above.)
3439 //
3440 // When the associated Allocate is macro-expanded, the InitializeNode
3441 // may be rewritten to optimize collected stores.  A ClearArrayNode
3442 // may also be created at that point to represent any required zeroing.
3443 // The InitializeNode is then marked 'complete', prohibiting further
3444 // capturing of nearby memory operations.
3445 //
3446 // During macro-expansion, all captured initializations which store
3447 // constant values of 32 bits or smaller are coalesced (if advantageous)
3448 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3449 // initialized in fewer memory operations.  Memory words which are
3450 // covered by neither tiles nor non-constant stores are pre-zeroed
3451 // by explicit stores of zero.  (The code shape happens to do all
3452 // zeroing first, then all other stores, with both sequences occurring
3453 // in order of ascending offsets.)
3454 //
3455 // Alternatively, code may be inserted between an AllocateNode and its
3456 // InitializeNode, to perform arbitrary initialization of the new object.
3457 // E.g., the object copying intrinsics insert complex data transfers here.
3458 // The initialization must then be marked as 'complete' disable the
3459 // built-in zeroing semantics and the collection of initializing stores.
3460 //
3461 // While an InitializeNode is incomplete, reads from the memory state
3462 // produced by it are optimizable if they match the control edge and
3463 // new oop address associated with the allocation/initialization.
3464 // They return a stored value (if the offset matches) or else zero.
3465 // A write to the memory state, if it matches control and address,
3466 // and if it is to a constant offset, may be 'captured' by the
3467 // InitializeNode.  It is cloned as a raw memory operation and rewired
3468 // inside the initialization, to the raw oop produced by the allocation.
3469 // Operations on addresses which are provably distinct (e.g., to
3470 // other AllocateNodes) are allowed to bypass the initialization.
3471 //
3472 // The effect of all this is to consolidate object initialization
3473 // (both arrays and non-arrays, both piecewise and bulk) into a
3474 // single location, where it can be optimized as a unit.
3475 //
3476 // Only stores with an offset less than TrackedInitializationLimit words
3477 // will be considered for capture by an InitializeNode.  This puts a
3478 // reasonable limit on the complexity of optimized initializations.
3479 
3480 //---------------------------InitializeNode------------------------------------
3481 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3482   : MemBarNode(C, adr_type, rawoop),
3483     _is_complete(Incomplete), _does_not_escape(false)
3484 {
3485   init_class_id(Class_Initialize);
3486 
3487   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3488   assert(in(RawAddress) == rawoop, "proper init");
3489   // Note:  allocation() can be NULL, for secondary initialization barriers
3490 }
3491 
3492 // Since this node is not matched, it will be processed by the
3493 // register allocator.  Declare that there are no constraints
3494 // on the allocation of the RawAddress edge.
3495 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3496   // This edge should be set to top, by the set_complete.  But be conservative.
3497   if (idx == InitializeNode::RawAddress)
3498     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3499   return RegMask::Empty;
3500 }
3501 
3502 Node* InitializeNode::memory(uint alias_idx) {
3503   Node* mem = in(Memory);
3504   if (mem->is_MergeMem()) {
3505     return mem->as_MergeMem()->memory_at(alias_idx);
3506   } else {
3507     // incoming raw memory is not split
3508     return mem;
3509   }
3510 }
3511 
3512 bool InitializeNode::is_non_zero() {
3513   if (is_complete())  return false;
3514   remove_extra_zeroes();
3515   return (req() > RawStores);
3516 }
3517 
3518 void InitializeNode::set_complete(PhaseGVN* phase) {
3519   assert(!is_complete(), "caller responsibility");
3520   _is_complete = Complete;
3521 
3522   // After this node is complete, it contains a bunch of
3523   // raw-memory initializations.  There is no need for
3524   // it to have anything to do with non-raw memory effects.
3525   // Therefore, tell all non-raw users to re-optimize themselves,
3526   // after skipping the memory effects of this initialization.
3527   PhaseIterGVN* igvn = phase->is_IterGVN();
3528   if (igvn)  igvn->add_users_to_worklist(this);
3529 }
3530 
3531 // convenience function
3532 // return false if the init contains any stores already
3533 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3534   InitializeNode* init = initialization();
3535   if (init == NULL || init->is_complete()) {
3536     return false;
3537   }
3538   init->remove_extra_zeroes();
3539   // for now, if this allocation has already collected any inits, bail:
3540   if (init->is_non_zero())  return false;
3541   init->set_complete(phase);
3542   return true;
3543 }
3544 
3545 void InitializeNode::remove_extra_zeroes() {
3546   if (req() == RawStores)  return;
3547   Node* zmem = zero_memory();
3548   uint fill = RawStores;
3549   for (uint i = fill; i < req(); i++) {
3550     Node* n = in(i);
3551     if (n->is_top() || n == zmem)  continue;  // skip
3552     if (fill < i)  set_req(fill, n);          // compact
3553     ++fill;
3554   }
3555   // delete any empty spaces created:
3556   while (fill < req()) {
3557     del_req(fill);
3558   }
3559 }
3560 
3561 // Helper for remembering which stores go with which offsets.
3562 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3563   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3564   intptr_t offset = -1;
3565   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3566                                                phase, offset);
3567   if (base == NULL)     return -1;  // something is dead,
3568   if (offset < 0)       return -1;  //        dead, dead
3569   return offset;
3570 }
3571 
3572 // Helper for proving that an initialization expression is
3573 // "simple enough" to be folded into an object initialization.
3574 // Attempts to prove that a store's initial value 'n' can be captured
3575 // within the initialization without creating a vicious cycle, such as:
3576 //     { Foo p = new Foo(); p.next = p; }
3577 // True for constants and parameters and small combinations thereof.
3578 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3579   if (n == NULL)      return true;   // (can this really happen?)
3580   if (n->is_Proj())   n = n->in(0);
3581   if (n == this)      return false;  // found a cycle
3582   if (n->is_Con())    return true;
3583   if (n->is_Start())  return true;   // params, etc., are OK
3584   if (n->is_Root())   return true;   // even better
3585 
3586   Node* ctl = n->in(0);
3587   if (ctl != NULL && !ctl->is_top()) {
3588     if (ctl->is_Proj())  ctl = ctl->in(0);
3589     if (ctl == this)  return false;
3590 
3591     // If we already know that the enclosing memory op is pinned right after
3592     // the init, then any control flow that the store has picked up
3593     // must have preceded the init, or else be equal to the init.
3594     // Even after loop optimizations (which might change control edges)
3595     // a store is never pinned *before* the availability of its inputs.
3596     if (!MemNode::all_controls_dominate(n, this))
3597       return false;                  // failed to prove a good control
3598   }
3599 
3600   // Check data edges for possible dependencies on 'this'.
3601   if ((count += 1) > 20)  return false;  // complexity limit
3602   for (uint i = 1; i < n->req(); i++) {
3603     Node* m = n->in(i);
3604     if (m == NULL || m == n || m->is_top())  continue;
3605     uint first_i = n->find_edge(m);
3606     if (i != first_i)  continue;  // process duplicate edge just once
3607     if (!detect_init_independence(m, count)) {
3608       return false;
3609     }
3610   }
3611 
3612   return true;
3613 }
3614 
3615 // Here are all the checks a Store must pass before it can be moved into
3616 // an initialization.  Returns zero if a check fails.
3617 // On success, returns the (constant) offset to which the store applies,
3618 // within the initialized memory.
3619 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3620   const int FAIL = 0;
3621   if (st->is_unaligned_access()) {
3622     return FAIL;
3623   }
3624   if (st->req() != MemNode::ValueIn + 1)
3625     return FAIL;                // an inscrutable StoreNode (card mark?)
3626   Node* ctl = st->in(MemNode::Control);
3627   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3628     return FAIL;                // must be unconditional after the initialization
3629   Node* mem = st->in(MemNode::Memory);
3630   if (!(mem->is_Proj() && mem->in(0) == this))
3631     return FAIL;                // must not be preceded by other stores
3632   Node* adr = st->in(MemNode::Address);
3633   intptr_t offset;
3634   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3635   if (alloc == NULL)
3636     return FAIL;                // inscrutable address
3637   if (alloc != allocation())
3638     return FAIL;                // wrong allocation!  (store needs to float up)
3639   Node* val = st->in(MemNode::ValueIn);
3640   int complexity_count = 0;
3641   if (!detect_init_independence(val, complexity_count))
3642     return FAIL;                // stored value must be 'simple enough'
3643 
3644   // The Store can be captured only if nothing after the allocation
3645   // and before the Store is using the memory location that the store
3646   // overwrites.
3647   bool failed = false;
3648   // If is_complete_with_arraycopy() is true the shape of the graph is
3649   // well defined and is safe so no need for extra checks.
3650   if (!is_complete_with_arraycopy()) {
3651     // We are going to look at each use of the memory state following
3652     // the allocation to make sure nothing reads the memory that the
3653     // Store writes.
3654     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3655     int alias_idx = phase->C->get_alias_index(t_adr);
3656     ResourceMark rm;
3657     Unique_Node_List mems;
3658     mems.push(mem);
3659     Node* unique_merge = NULL;
3660     for (uint next = 0; next < mems.size(); ++next) {
3661       Node *m  = mems.at(next);
3662       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3663         Node *n = m->fast_out(j);
3664         if (n->outcnt() == 0) {
3665           continue;
3666         }
3667         if (n == st) {
3668           continue;
3669         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3670           // If the control of this use is different from the control
3671           // of the Store which is right after the InitializeNode then
3672           // this node cannot be between the InitializeNode and the
3673           // Store.
3674           continue;
3675         } else if (n->is_MergeMem()) {
3676           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3677             // We can hit a MergeMemNode (that will likely go away
3678             // later) that is a direct use of the memory state
3679             // following the InitializeNode on the same slice as the
3680             // store node that we'd like to capture. We need to check
3681             // the uses of the MergeMemNode.
3682             mems.push(n);
3683           }
3684         } else if (n->is_Mem()) {
3685           Node* other_adr = n->in(MemNode::Address);
3686           if (other_adr == adr) {
3687             failed = true;
3688             break;
3689           } else {
3690             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3691             if (other_t_adr != NULL) {
3692               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3693               if (other_alias_idx == alias_idx) {
3694                 // A load from the same memory slice as the store right
3695                 // after the InitializeNode. We check the control of the
3696                 // object/array that is loaded from. If it's the same as
3697                 // the store control then we cannot capture the store.
3698                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3699                 Node* base = other_adr;
3700                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3701                 base = base->in(AddPNode::Base);
3702                 if (base != NULL) {
3703                   base = base->uncast();
3704                   if (base->is_Proj() && base->in(0) == alloc) {
3705                     failed = true;
3706                     break;
3707                   }
3708                 }
3709               }
3710             }
3711           }
3712         } else {
3713           failed = true;
3714           break;
3715         }
3716       }
3717     }
3718   }
3719   if (failed) {
3720     if (!can_reshape) {
3721       // We decided we couldn't capture the store during parsing. We
3722       // should try again during the next IGVN once the graph is
3723       // cleaner.
3724       phase->C->record_for_igvn(st);
3725     }
3726     return FAIL;
3727   }
3728 
3729   return offset;                // success
3730 }
3731 
3732 // Find the captured store in(i) which corresponds to the range
3733 // [start..start+size) in the initialized object.
3734 // If there is one, return its index i.  If there isn't, return the
3735 // negative of the index where it should be inserted.
3736 // Return 0 if the queried range overlaps an initialization boundary
3737 // or if dead code is encountered.
3738 // If size_in_bytes is zero, do not bother with overlap checks.
3739 int InitializeNode::captured_store_insertion_point(intptr_t start,
3740                                                    int size_in_bytes,
3741                                                    PhaseTransform* phase) {
3742   const int FAIL = 0, MAX_STORE = BytesPerLong;
3743 
3744   if (is_complete())
3745     return FAIL;                // arraycopy got here first; punt
3746 
3747   assert(allocation() != NULL, "must be present");
3748 
3749   // no negatives, no header fields:
3750   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3751 
3752   // after a certain size, we bail out on tracking all the stores:
3753   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3754   if (start >= ti_limit)  return FAIL;
3755 
3756   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3757     if (i >= limit)  return -(int)i; // not found; here is where to put it
3758 
3759     Node*    st     = in(i);
3760     intptr_t st_off = get_store_offset(st, phase);
3761     if (st_off < 0) {
3762       if (st != zero_memory()) {
3763         return FAIL;            // bail out if there is dead garbage
3764       }
3765     } else if (st_off > start) {
3766       // ...we are done, since stores are ordered
3767       if (st_off < start + size_in_bytes) {
3768         return FAIL;            // the next store overlaps
3769       }
3770       return -(int)i;           // not found; here is where to put it
3771     } else if (st_off < start) {
3772       if (size_in_bytes != 0 &&
3773           start < st_off + MAX_STORE &&
3774           start < st_off + st->as_Store()->memory_size()) {
3775         return FAIL;            // the previous store overlaps
3776       }
3777     } else {
3778       if (size_in_bytes != 0 &&
3779           st->as_Store()->memory_size() != size_in_bytes) {
3780         return FAIL;            // mismatched store size
3781       }
3782       return i;
3783     }
3784 
3785     ++i;
3786   }
3787 }
3788 
3789 // Look for a captured store which initializes at the offset 'start'
3790 // with the given size.  If there is no such store, and no other
3791 // initialization interferes, then return zero_memory (the memory
3792 // projection of the AllocateNode).
3793 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3794                                           PhaseTransform* phase) {
3795   assert(stores_are_sane(phase), "");
3796   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3797   if (i == 0) {
3798     return NULL;                // something is dead
3799   } else if (i < 0) {
3800     return zero_memory();       // just primordial zero bits here
3801   } else {
3802     Node* st = in(i);           // here is the store at this position
3803     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3804     return st;
3805   }
3806 }
3807 
3808 // Create, as a raw pointer, an address within my new object at 'offset'.
3809 Node* InitializeNode::make_raw_address(intptr_t offset,
3810                                        PhaseTransform* phase) {
3811   Node* addr = in(RawAddress);
3812   if (offset != 0) {
3813     Compile* C = phase->C;
3814     addr = phase->transform( new AddPNode(C->top(), addr,
3815                                                  phase->MakeConX(offset)) );
3816   }
3817   return addr;
3818 }
3819 
3820 // Clone the given store, converting it into a raw store
3821 // initializing a field or element of my new object.
3822 // Caller is responsible for retiring the original store,
3823 // with subsume_node or the like.
3824 //
3825 // From the example above InitializeNode::InitializeNode,
3826 // here are the old stores to be captured:
3827 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3828 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3829 //
3830 // Here is the changed code; note the extra edges on init:
3831 //   alloc = (Allocate ...)
3832 //   rawoop = alloc.RawAddress
3833 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3834 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3835 //   init = (Initialize alloc.Control alloc.Memory rawoop
3836 //                      rawstore1 rawstore2)
3837 //
3838 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3839                                     PhaseTransform* phase, bool can_reshape) {
3840   assert(stores_are_sane(phase), "");
3841 
3842   if (start < 0)  return NULL;
3843   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3844 
3845   Compile* C = phase->C;
3846   int size_in_bytes = st->memory_size();
3847   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3848   if (i == 0)  return NULL;     // bail out
3849   Node* prev_mem = NULL;        // raw memory for the captured store
3850   if (i > 0) {
3851     prev_mem = in(i);           // there is a pre-existing store under this one
3852     set_req(i, C->top());       // temporarily disconnect it
3853     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3854   } else {
3855     i = -i;                     // no pre-existing store
3856     prev_mem = zero_memory();   // a slice of the newly allocated object
3857     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3858       set_req(--i, C->top());   // reuse this edge; it has been folded away
3859     else
3860       ins_req(i, C->top());     // build a new edge
3861   }
3862   Node* new_st = st->clone();
3863   new_st->set_req(MemNode::Control, in(Control));
3864   new_st->set_req(MemNode::Memory,  prev_mem);
3865   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3866   new_st = phase->transform(new_st);
3867 
3868   // At this point, new_st might have swallowed a pre-existing store
3869   // at the same offset, or perhaps new_st might have disappeared,
3870   // if it redundantly stored the same value (or zero to fresh memory).
3871 
3872   // In any case, wire it in:
3873   phase->igvn_rehash_node_delayed(this);
3874   set_req(i, new_st);
3875 
3876   // The caller may now kill the old guy.
3877   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3878   assert(check_st == new_st || check_st == NULL, "must be findable");
3879   assert(!is_complete(), "");
3880   return new_st;
3881 }
3882 
3883 static bool store_constant(jlong* tiles, int num_tiles,
3884                            intptr_t st_off, int st_size,
3885                            jlong con) {
3886   if ((st_off & (st_size-1)) != 0)
3887     return false;               // strange store offset (assume size==2**N)
3888   address addr = (address)tiles + st_off;
3889   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3890   switch (st_size) {
3891   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3892   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3893   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3894   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3895   default: return false;        // strange store size (detect size!=2**N here)
3896   }
3897   return true;                  // return success to caller
3898 }
3899 
3900 // Coalesce subword constants into int constants and possibly
3901 // into long constants.  The goal, if the CPU permits,
3902 // is to initialize the object with a small number of 64-bit tiles.
3903 // Also, convert floating-point constants to bit patterns.
3904 // Non-constants are not relevant to this pass.
3905 //
3906 // In terms of the running example on InitializeNode::InitializeNode
3907 // and InitializeNode::capture_store, here is the transformation
3908 // of rawstore1 and rawstore2 into rawstore12:
3909 //   alloc = (Allocate ...)
3910 //   rawoop = alloc.RawAddress
3911 //   tile12 = 0x00010002
3912 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3913 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3914 //
3915 void
3916 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3917                                         Node* size_in_bytes,
3918                                         PhaseGVN* phase) {
3919   Compile* C = phase->C;
3920 
3921   assert(stores_are_sane(phase), "");
3922   // Note:  After this pass, they are not completely sane,
3923   // since there may be some overlaps.
3924 
3925   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3926 
3927   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3928   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3929   size_limit = MIN2(size_limit, ti_limit);
3930   size_limit = align_up(size_limit, BytesPerLong);
3931   int num_tiles = size_limit / BytesPerLong;
3932 
3933   // allocate space for the tile map:
3934   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3935   jlong  tiles_buf[small_len];
3936   Node*  nodes_buf[small_len];
3937   jlong  inits_buf[small_len];
3938   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3939                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3940   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3941                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3942   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3943                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3944   // tiles: exact bitwise model of all primitive constants
3945   // nodes: last constant-storing node subsumed into the tiles model
3946   // inits: which bytes (in each tile) are touched by any initializations
3947 
3948   //// Pass A: Fill in the tile model with any relevant stores.
3949 
3950   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3951   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3952   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3953   Node* zmem = zero_memory(); // initially zero memory state
3954   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3955     Node* st = in(i);
3956     intptr_t st_off = get_store_offset(st, phase);
3957 
3958     // Figure out the store's offset and constant value:
3959     if (st_off < header_size)             continue; //skip (ignore header)
3960     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3961     int st_size = st->as_Store()->memory_size();
3962     if (st_off + st_size > size_limit)    break;
3963 
3964     // Record which bytes are touched, whether by constant or not.
3965     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3966       continue;                 // skip (strange store size)
3967 
3968     const Type* val = phase->type(st->in(MemNode::ValueIn));
3969     if (!val->singleton())                continue; //skip (non-con store)
3970     BasicType type = val->basic_type();
3971 
3972     jlong con = 0;
3973     switch (type) {
3974     case T_INT:    con = val->is_int()->get_con();  break;
3975     case T_LONG:   con = val->is_long()->get_con(); break;
3976     case T_FLOAT:  con = jint_cast(val->getf());    break;
3977     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3978     default:                              continue; //skip (odd store type)
3979     }
3980 
3981     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3982         st->Opcode() == Op_StoreL) {
3983       continue;                 // This StoreL is already optimal.
3984     }
3985 
3986     // Store down the constant.
3987     store_constant(tiles, num_tiles, st_off, st_size, con);
3988 
3989     intptr_t j = st_off >> LogBytesPerLong;
3990 
3991     if (type == T_INT && st_size == BytesPerInt
3992         && (st_off & BytesPerInt) == BytesPerInt) {
3993       jlong lcon = tiles[j];
3994       if (!Matcher::isSimpleConstant64(lcon) &&
3995           st->Opcode() == Op_StoreI) {
3996         // This StoreI is already optimal by itself.
3997         jint* intcon = (jint*) &tiles[j];
3998         intcon[1] = 0;  // undo the store_constant()
3999 
4000         // If the previous store is also optimal by itself, back up and
4001         // undo the action of the previous loop iteration... if we can.
4002         // But if we can't, just let the previous half take care of itself.
4003         st = nodes[j];
4004         st_off -= BytesPerInt;
4005         con = intcon[0];
4006         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
4007           assert(st_off >= header_size, "still ignoring header");
4008           assert(get_store_offset(st, phase) == st_off, "must be");
4009           assert(in(i-1) == zmem, "must be");
4010           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
4011           assert(con == tcon->is_int()->get_con(), "must be");
4012           // Undo the effects of the previous loop trip, which swallowed st:
4013           intcon[0] = 0;        // undo store_constant()
4014           set_req(i-1, st);     // undo set_req(i, zmem)
4015           nodes[j] = NULL;      // undo nodes[j] = st
4016           --old_subword;        // undo ++old_subword
4017         }
4018         continue;               // This StoreI is already optimal.
4019       }
4020     }
4021 
4022     // This store is not needed.
4023     set_req(i, zmem);
4024     nodes[j] = st;              // record for the moment
4025     if (st_size < BytesPerLong) // something has changed
4026           ++old_subword;        // includes int/float, but who's counting...
4027     else  ++old_long;
4028   }
4029 
4030   if ((old_subword + old_long) == 0)
4031     return;                     // nothing more to do
4032 
4033   //// Pass B: Convert any non-zero tiles into optimal constant stores.
4034   // Be sure to insert them before overlapping non-constant stores.
4035   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
4036   for (int j = 0; j < num_tiles; j++) {
4037     jlong con  = tiles[j];
4038     jlong init = inits[j];
4039     if (con == 0)  continue;
4040     jint con0,  con1;           // split the constant, address-wise
4041     jint init0, init1;          // split the init map, address-wise
4042     { union { jlong con; jint intcon[2]; } u;
4043       u.con = con;
4044       con0  = u.intcon[0];
4045       con1  = u.intcon[1];
4046       u.con = init;
4047       init0 = u.intcon[0];
4048       init1 = u.intcon[1];
4049     }
4050 
4051     Node* old = nodes[j];
4052     assert(old != NULL, "need the prior store");
4053     intptr_t offset = (j * BytesPerLong);
4054 
4055     bool split = !Matcher::isSimpleConstant64(con);
4056 
4057     if (offset < header_size) {
4058       assert(offset + BytesPerInt >= header_size, "second int counts");
4059       assert(*(jint*)&tiles[j] == 0, "junk in header");
4060       split = true;             // only the second word counts
4061       // Example:  int a[] = { 42 ... }
4062     } else if (con0 == 0 && init0 == -1) {
4063       split = true;             // first word is covered by full inits
4064       // Example:  int a[] = { ... foo(), 42 ... }
4065     } else if (con1 == 0 && init1 == -1) {
4066       split = true;             // second word is covered by full inits
4067       // Example:  int a[] = { ... 42, foo() ... }
4068     }
4069 
4070     // Here's a case where init0 is neither 0 nor -1:
4071     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4072     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4073     // In this case the tile is not split; it is (jlong)42.
4074     // The big tile is stored down, and then the foo() value is inserted.
4075     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4076 
4077     Node* ctl = old->in(MemNode::Control);
4078     Node* adr = make_raw_address(offset, phase);
4079     const TypePtr* atp = TypeRawPtr::BOTTOM;
4080 
4081     // One or two coalesced stores to plop down.
4082     Node*    st[2];
4083     intptr_t off[2];
4084     int  nst = 0;
4085     if (!split) {
4086       ++new_long;
4087       off[nst] = offset;
4088       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4089                                   phase->longcon(con), T_LONG, MemNode::unordered);
4090     } else {
4091       // Omit either if it is a zero.
4092       if (con0 != 0) {
4093         ++new_int;
4094         off[nst]  = offset;
4095         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4096                                     phase->intcon(con0), T_INT, MemNode::unordered);
4097       }
4098       if (con1 != 0) {
4099         ++new_int;
4100         offset += BytesPerInt;
4101         adr = make_raw_address(offset, phase);
4102         off[nst]  = offset;
4103         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4104                                     phase->intcon(con1), T_INT, MemNode::unordered);
4105       }
4106     }
4107 
4108     // Insert second store first, then the first before the second.
4109     // Insert each one just before any overlapping non-constant stores.
4110     while (nst > 0) {
4111       Node* st1 = st[--nst];
4112       C->copy_node_notes_to(st1, old);
4113       st1 = phase->transform(st1);
4114       offset = off[nst];
4115       assert(offset >= header_size, "do not smash header");
4116       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4117       guarantee(ins_idx != 0, "must re-insert constant store");
4118       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4119       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4120         set_req(--ins_idx, st1);
4121       else
4122         ins_req(ins_idx, st1);
4123     }
4124   }
4125 
4126   if (PrintCompilation && WizardMode)
4127     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4128                   old_subword, old_long, new_int, new_long);
4129   if (C->log() != NULL)
4130     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4131                    old_subword, old_long, new_int, new_long);
4132 
4133   // Clean up any remaining occurrences of zmem:
4134   remove_extra_zeroes();
4135 }
4136 
4137 // Explore forward from in(start) to find the first fully initialized
4138 // word, and return its offset.  Skip groups of subword stores which
4139 // together initialize full words.  If in(start) is itself part of a
4140 // fully initialized word, return the offset of in(start).  If there
4141 // are no following full-word stores, or if something is fishy, return
4142 // a negative value.
4143 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4144   int       int_map = 0;
4145   intptr_t  int_map_off = 0;
4146   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4147 
4148   for (uint i = start, limit = req(); i < limit; i++) {
4149     Node* st = in(i);
4150 
4151     intptr_t st_off = get_store_offset(st, phase);
4152     if (st_off < 0)  break;  // return conservative answer
4153 
4154     int st_size = st->as_Store()->memory_size();
4155     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4156       return st_off;            // we found a complete word init
4157     }
4158 
4159     // update the map:
4160 
4161     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4162     if (this_int_off != int_map_off) {
4163       // reset the map:
4164       int_map = 0;
4165       int_map_off = this_int_off;
4166     }
4167 
4168     int subword_off = st_off - this_int_off;
4169     int_map |= right_n_bits(st_size) << subword_off;
4170     if ((int_map & FULL_MAP) == FULL_MAP) {
4171       return this_int_off;      // we found a complete word init
4172     }
4173 
4174     // Did this store hit or cross the word boundary?
4175     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4176     if (next_int_off == this_int_off + BytesPerInt) {
4177       // We passed the current int, without fully initializing it.
4178       int_map_off = next_int_off;
4179       int_map >>= BytesPerInt;
4180     } else if (next_int_off > this_int_off + BytesPerInt) {
4181       // We passed the current and next int.
4182       return this_int_off + BytesPerInt;
4183     }
4184   }
4185 
4186   return -1;
4187 }
4188 
4189 
4190 // Called when the associated AllocateNode is expanded into CFG.
4191 // At this point, we may perform additional optimizations.
4192 // Linearize the stores by ascending offset, to make memory
4193 // activity as coherent as possible.
4194 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4195                                       intptr_t header_size,
4196                                       Node* size_in_bytes,
4197                                       PhaseGVN* phase) {
4198   assert(!is_complete(), "not already complete");
4199   assert(stores_are_sane(phase), "");
4200   assert(allocation() != NULL, "must be present");
4201 
4202   remove_extra_zeroes();
4203 
4204   if (ReduceFieldZeroing || ReduceBulkZeroing)
4205     // reduce instruction count for common initialization patterns
4206     coalesce_subword_stores(header_size, size_in_bytes, phase);
4207 
4208   Node* zmem = zero_memory();   // initially zero memory state
4209   Node* inits = zmem;           // accumulating a linearized chain of inits
4210   #ifdef ASSERT
4211   intptr_t first_offset = allocation()->minimum_header_size();
4212   intptr_t last_init_off = first_offset;  // previous init offset
4213   intptr_t last_init_end = first_offset;  // previous init offset+size
4214   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4215   #endif
4216   intptr_t zeroes_done = header_size;
4217 
4218   bool do_zeroing = true;       // we might give up if inits are very sparse
4219   int  big_init_gaps = 0;       // how many large gaps have we seen?
4220 
4221   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4222   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4223 
4224   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4225     Node* st = in(i);
4226     intptr_t st_off = get_store_offset(st, phase);
4227     if (st_off < 0)
4228       break;                    // unknown junk in the inits
4229     if (st->in(MemNode::Memory) != zmem)
4230       break;                    // complicated store chains somehow in list
4231 
4232     int st_size = st->as_Store()->memory_size();
4233     intptr_t next_init_off = st_off + st_size;
4234 
4235     if (do_zeroing && zeroes_done < next_init_off) {
4236       // See if this store needs a zero before it or under it.
4237       intptr_t zeroes_needed = st_off;
4238 
4239       if (st_size < BytesPerInt) {
4240         // Look for subword stores which only partially initialize words.
4241         // If we find some, we must lay down some word-level zeroes first,
4242         // underneath the subword stores.
4243         //
4244         // Examples:
4245         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4246         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4247         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4248         //
4249         // Note:  coalesce_subword_stores may have already done this,
4250         // if it was prompted by constant non-zero subword initializers.
4251         // But this case can still arise with non-constant stores.
4252 
4253         intptr_t next_full_store = find_next_fullword_store(i, phase);
4254 
4255         // In the examples above:
4256         //   in(i)          p   q   r   s     x   y     z
4257         //   st_off        12  13  14  15    12  13    14
4258         //   st_size        1   1   1   1     1   1     1
4259         //   next_full_s.  12  16  16  16    16  16    16
4260         //   z's_done      12  16  16  16    12  16    12
4261         //   z's_needed    12  16  16  16    16  16    16
4262         //   zsize          0   0   0   0     4   0     4
4263         if (next_full_store < 0) {
4264           // Conservative tack:  Zero to end of current word.
4265           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4266         } else {
4267           // Zero to beginning of next fully initialized word.
4268           // Or, don't zero at all, if we are already in that word.
4269           assert(next_full_store >= zeroes_needed, "must go forward");
4270           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4271           zeroes_needed = next_full_store;
4272         }
4273       }
4274 
4275       if (zeroes_needed > zeroes_done) {
4276         intptr_t zsize = zeroes_needed - zeroes_done;
4277         // Do some incremental zeroing on rawmem, in parallel with inits.
4278         zeroes_done = align_down(zeroes_done, BytesPerInt);
4279         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4280                                               allocation()->in(AllocateNode::DefaultValue),
4281                                               allocation()->in(AllocateNode::RawDefaultValue),
4282                                               zeroes_done, zeroes_needed,
4283                                               phase);
4284         zeroes_done = zeroes_needed;
4285         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4286           do_zeroing = false;   // leave the hole, next time
4287       }
4288     }
4289 
4290     // Collect the store and move on:
4291     st->set_req(MemNode::Memory, inits);
4292     inits = st;                 // put it on the linearized chain
4293     set_req(i, zmem);           // unhook from previous position
4294 
4295     if (zeroes_done == st_off)
4296       zeroes_done = next_init_off;
4297 
4298     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4299 
4300     #ifdef ASSERT
4301     // Various order invariants.  Weaker than stores_are_sane because
4302     // a large constant tile can be filled in by smaller non-constant stores.
4303     assert(st_off >= last_init_off, "inits do not reverse");
4304     last_init_off = st_off;
4305     const Type* val = NULL;
4306     if (st_size >= BytesPerInt &&
4307         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4308         (int)val->basic_type() < (int)T_OBJECT) {
4309       assert(st_off >= last_tile_end, "tiles do not overlap");
4310       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4311       last_tile_end = MAX2(last_tile_end, next_init_off);
4312     } else {
4313       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4314       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4315       assert(st_off      >= last_init_end, "inits do not overlap");
4316       last_init_end = next_init_off;  // it's a non-tile
4317     }
4318     #endif //ASSERT
4319   }
4320 
4321   remove_extra_zeroes();        // clear out all the zmems left over
4322   add_req(inits);
4323 
4324   if (!(UseTLAB && ZeroTLAB)) {
4325     // If anything remains to be zeroed, zero it all now.
4326     zeroes_done = align_down(zeroes_done, BytesPerInt);
4327     // if it is the last unused 4 bytes of an instance, forget about it
4328     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4329     if (zeroes_done + BytesPerLong >= size_limit) {
4330       AllocateNode* alloc = allocation();
4331       assert(alloc != NULL, "must be present");
4332       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4333         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4334         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4335         if (zeroes_done == k->layout_helper())
4336           zeroes_done = size_limit;
4337       }
4338     }
4339     if (zeroes_done < size_limit) {
4340       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4341                                             allocation()->in(AllocateNode::DefaultValue),
4342                                             allocation()->in(AllocateNode::RawDefaultValue),
4343                                             zeroes_done, size_in_bytes, phase);
4344     }
4345   }
4346 
4347   set_complete(phase);
4348   return rawmem;
4349 }
4350 
4351 
4352 #ifdef ASSERT
4353 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4354   if (is_complete())
4355     return true;                // stores could be anything at this point
4356   assert(allocation() != NULL, "must be present");
4357   intptr_t last_off = allocation()->minimum_header_size();
4358   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4359     Node* st = in(i);
4360     intptr_t st_off = get_store_offset(st, phase);
4361     if (st_off < 0)  continue;  // ignore dead garbage
4362     if (last_off > st_off) {
4363       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4364       this->dump(2);
4365       assert(false, "ascending store offsets");
4366       return false;
4367     }
4368     last_off = st_off + st->as_Store()->memory_size();
4369   }
4370   return true;
4371 }
4372 #endif //ASSERT
4373 
4374 
4375 
4376 
4377 //============================MergeMemNode=====================================
4378 //
4379 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4380 // contributing store or call operations.  Each contributor provides the memory
4381 // state for a particular "alias type" (see Compile::alias_type).  For example,
4382 // if a MergeMem has an input X for alias category #6, then any memory reference
4383 // to alias category #6 may use X as its memory state input, as an exact equivalent
4384 // to using the MergeMem as a whole.
4385 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4386 //
4387 // (Here, the <N> notation gives the index of the relevant adr_type.)
4388 //
4389 // In one special case (and more cases in the future), alias categories overlap.
4390 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4391 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4392 // it is exactly equivalent to that state W:
4393 //   MergeMem(<Bot>: W) <==> W
4394 //
4395 // Usually, the merge has more than one input.  In that case, where inputs
4396 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4397 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4398 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4399 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4400 //
4401 // A merge can take a "wide" memory state as one of its narrow inputs.
4402 // This simply means that the merge observes out only the relevant parts of
4403 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4404 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4405 //
4406 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4407 // and that memory slices "leak through":
4408 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4409 //
4410 // But, in such a cascade, repeated memory slices can "block the leak":
4411 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4412 //
4413 // In the last example, Y is not part of the combined memory state of the
4414 // outermost MergeMem.  The system must, of course, prevent unschedulable
4415 // memory states from arising, so you can be sure that the state Y is somehow
4416 // a precursor to state Y'.
4417 //
4418 //
4419 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4420 // of each MergeMemNode array are exactly the numerical alias indexes, including
4421 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4422 // Compile::alias_type (and kin) produce and manage these indexes.
4423 //
4424 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4425 // (Note that this provides quick access to the top node inside MergeMem methods,
4426 // without the need to reach out via TLS to Compile::current.)
4427 //
4428 // As a consequence of what was just described, a MergeMem that represents a full
4429 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4430 // containing all alias categories.
4431 //
4432 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4433 //
4434 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4435 // a memory state for the alias type <N>, or else the top node, meaning that
4436 // there is no particular input for that alias type.  Note that the length of
4437 // a MergeMem is variable, and may be extended at any time to accommodate new
4438 // memory states at larger alias indexes.  When merges grow, they are of course
4439 // filled with "top" in the unused in() positions.
4440 //
4441 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4442 // (Top was chosen because it works smoothly with passes like GCM.)
4443 //
4444 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4445 // the type of random VM bits like TLS references.)  Since it is always the
4446 // first non-Bot memory slice, some low-level loops use it to initialize an
4447 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4448 //
4449 //
4450 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4451 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4452 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4453 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4454 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4455 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4456 //
4457 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4458 // really that different from the other memory inputs.  An abbreviation called
4459 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4460 //
4461 //
4462 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4463 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4464 // that "emerges though" the base memory will be marked as excluding the alias types
4465 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4466 //
4467 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4468 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4469 //
4470 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4471 // (It is currently unimplemented.)  As you can see, the resulting merge is
4472 // actually a disjoint union of memory states, rather than an overlay.
4473 //
4474 
4475 //------------------------------MergeMemNode-----------------------------------
4476 Node* MergeMemNode::make_empty_memory() {
4477   Node* empty_memory = (Node*) Compile::current()->top();
4478   assert(empty_memory->is_top(), "correct sentinel identity");
4479   return empty_memory;
4480 }
4481 
4482 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4483   init_class_id(Class_MergeMem);
4484   // all inputs are nullified in Node::Node(int)
4485   // set_input(0, NULL);  // no control input
4486 
4487   // Initialize the edges uniformly to top, for starters.
4488   Node* empty_mem = make_empty_memory();
4489   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4490     init_req(i,empty_mem);
4491   }
4492   assert(empty_memory() == empty_mem, "");
4493 
4494   if( new_base != NULL && new_base->is_MergeMem() ) {
4495     MergeMemNode* mdef = new_base->as_MergeMem();
4496     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4497     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4498       mms.set_memory(mms.memory2());
4499     }
4500     assert(base_memory() == mdef->base_memory(), "");
4501   } else {
4502     set_base_memory(new_base);
4503   }
4504 }
4505 
4506 // Make a new, untransformed MergeMem with the same base as 'mem'.
4507 // If mem is itself a MergeMem, populate the result with the same edges.
4508 MergeMemNode* MergeMemNode::make(Node* mem) {
4509   return new MergeMemNode(mem);
4510 }
4511 
4512 //------------------------------cmp--------------------------------------------
4513 uint MergeMemNode::hash() const { return NO_HASH; }
4514 uint MergeMemNode::cmp( const Node &n ) const {
4515   return (&n == this);          // Always fail except on self
4516 }
4517 
4518 //------------------------------Identity---------------------------------------
4519 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4520   // Identity if this merge point does not record any interesting memory
4521   // disambiguations.
4522   Node* base_mem = base_memory();
4523   Node* empty_mem = empty_memory();
4524   if (base_mem != empty_mem) {  // Memory path is not dead?
4525     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4526       Node* mem = in(i);
4527       if (mem != empty_mem && mem != base_mem) {
4528         return this;            // Many memory splits; no change
4529       }
4530     }
4531   }
4532   return base_mem;              // No memory splits; ID on the one true input
4533 }
4534 
4535 //------------------------------Ideal------------------------------------------
4536 // This method is invoked recursively on chains of MergeMem nodes
4537 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4538   // Remove chain'd MergeMems
4539   //
4540   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4541   // relative to the "in(Bot)".  Since we are patching both at the same time,
4542   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4543   // but rewrite each "in(i)" relative to the new "in(Bot)".
4544   Node *progress = NULL;
4545 
4546 
4547   Node* old_base = base_memory();
4548   Node* empty_mem = empty_memory();
4549   if (old_base == empty_mem)
4550     return NULL; // Dead memory path.
4551 
4552   MergeMemNode* old_mbase;
4553   if (old_base != NULL && old_base->is_MergeMem())
4554     old_mbase = old_base->as_MergeMem();
4555   else
4556     old_mbase = NULL;
4557   Node* new_base = old_base;
4558 
4559   // simplify stacked MergeMems in base memory
4560   if (old_mbase)  new_base = old_mbase->base_memory();
4561 
4562   // the base memory might contribute new slices beyond my req()
4563   if (old_mbase)  grow_to_match(old_mbase);
4564 
4565   // Look carefully at the base node if it is a phi.
4566   PhiNode* phi_base;
4567   if (new_base != NULL && new_base->is_Phi())
4568     phi_base = new_base->as_Phi();
4569   else
4570     phi_base = NULL;
4571 
4572   Node*    phi_reg = NULL;
4573   uint     phi_len = (uint)-1;
4574   if (phi_base != NULL && !phi_base->is_copy()) {
4575     // do not examine phi if degraded to a copy
4576     phi_reg = phi_base->region();
4577     phi_len = phi_base->req();
4578     // see if the phi is unfinished
4579     for (uint i = 1; i < phi_len; i++) {
4580       if (phi_base->in(i) == NULL) {
4581         // incomplete phi; do not look at it yet!
4582         phi_reg = NULL;
4583         phi_len = (uint)-1;
4584         break;
4585       }
4586     }
4587   }
4588 
4589   // Note:  We do not call verify_sparse on entry, because inputs
4590   // can normalize to the base_memory via subsume_node or similar
4591   // mechanisms.  This method repairs that damage.
4592 
4593   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4594 
4595   // Look at each slice.
4596   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4597     Node* old_in = in(i);
4598     // calculate the old memory value
4599     Node* old_mem = old_in;
4600     if (old_mem == empty_mem)  old_mem = old_base;
4601     assert(old_mem == memory_at(i), "");
4602 
4603     // maybe update (reslice) the old memory value
4604 
4605     // simplify stacked MergeMems
4606     Node* new_mem = old_mem;
4607     MergeMemNode* old_mmem;
4608     if (old_mem != NULL && old_mem->is_MergeMem())
4609       old_mmem = old_mem->as_MergeMem();
4610     else
4611       old_mmem = NULL;
4612     if (old_mmem == this) {
4613       // This can happen if loops break up and safepoints disappear.
4614       // A merge of BotPtr (default) with a RawPtr memory derived from a
4615       // safepoint can be rewritten to a merge of the same BotPtr with
4616       // the BotPtr phi coming into the loop.  If that phi disappears
4617       // also, we can end up with a self-loop of the mergemem.
4618       // In general, if loops degenerate and memory effects disappear,
4619       // a mergemem can be left looking at itself.  This simply means
4620       // that the mergemem's default should be used, since there is
4621       // no longer any apparent effect on this slice.
4622       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4623       //       from start.  Update the input to TOP.
4624       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4625     }
4626     else if (old_mmem != NULL) {
4627       new_mem = old_mmem->memory_at(i);
4628     }
4629     // else preceding memory was not a MergeMem
4630 
4631     // replace equivalent phis (unfortunately, they do not GVN together)
4632     if (new_mem != NULL && new_mem != new_base &&
4633         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4634       if (new_mem->is_Phi()) {
4635         PhiNode* phi_mem = new_mem->as_Phi();
4636         for (uint i = 1; i < phi_len; i++) {
4637           if (phi_base->in(i) != phi_mem->in(i)) {
4638             phi_mem = NULL;
4639             break;
4640           }
4641         }
4642         if (phi_mem != NULL) {
4643           // equivalent phi nodes; revert to the def
4644           new_mem = new_base;
4645         }
4646       }
4647     }
4648 
4649     // maybe store down a new value
4650     Node* new_in = new_mem;
4651     if (new_in == new_base)  new_in = empty_mem;
4652 
4653     if (new_in != old_in) {
4654       // Warning:  Do not combine this "if" with the previous "if"
4655       // A memory slice might have be be rewritten even if it is semantically
4656       // unchanged, if the base_memory value has changed.
4657       set_req(i, new_in);
4658       progress = this;          // Report progress
4659     }
4660   }
4661 
4662   if (new_base != old_base) {
4663     set_req(Compile::AliasIdxBot, new_base);
4664     // Don't use set_base_memory(new_base), because we need to update du.
4665     assert(base_memory() == new_base, "");
4666     progress = this;
4667   }
4668 
4669   if( base_memory() == this ) {
4670     // a self cycle indicates this memory path is dead
4671     set_req(Compile::AliasIdxBot, empty_mem);
4672   }
4673 
4674   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4675   // Recursion must occur after the self cycle check above
4676   if( base_memory()->is_MergeMem() ) {
4677     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4678     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4679     if( m != NULL &&
4680         (m->is_top() ||
4681          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4682       // propagate rollup of dead cycle to self
4683       set_req(Compile::AliasIdxBot, empty_mem);
4684     }
4685   }
4686 
4687   if( base_memory() == empty_mem ) {
4688     progress = this;
4689     // Cut inputs during Parse phase only.
4690     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4691     if( !can_reshape ) {
4692       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4693         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4694       }
4695     }
4696   }
4697 
4698   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4699     // Check if PhiNode::Ideal's "Split phis through memory merges"
4700     // transform should be attempted. Look for this->phi->this cycle.
4701     uint merge_width = req();
4702     if (merge_width > Compile::AliasIdxRaw) {
4703       PhiNode* phi = base_memory()->as_Phi();
4704       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4705         if (phi->in(i) == this) {
4706           phase->is_IterGVN()->_worklist.push(phi);
4707           break;
4708         }
4709       }
4710     }
4711   }
4712 
4713   assert(progress || verify_sparse(), "please, no dups of base");
4714   return progress;
4715 }
4716 
4717 //-------------------------set_base_memory-------------------------------------
4718 void MergeMemNode::set_base_memory(Node *new_base) {
4719   Node* empty_mem = empty_memory();
4720   set_req(Compile::AliasIdxBot, new_base);
4721   assert(memory_at(req()) == new_base, "must set default memory");
4722   // Clear out other occurrences of new_base:
4723   if (new_base != empty_mem) {
4724     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4725       if (in(i) == new_base)  set_req(i, empty_mem);
4726     }
4727   }
4728 }
4729 
4730 //------------------------------out_RegMask------------------------------------
4731 const RegMask &MergeMemNode::out_RegMask() const {
4732   return RegMask::Empty;
4733 }
4734 
4735 //------------------------------dump_spec--------------------------------------
4736 #ifndef PRODUCT
4737 void MergeMemNode::dump_spec(outputStream *st) const {
4738   st->print(" {");
4739   Node* base_mem = base_memory();
4740   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4741     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4742     if (mem == base_mem) { st->print(" -"); continue; }
4743     st->print( " N%d:", mem->_idx );
4744     Compile::current()->get_adr_type(i)->dump_on(st);
4745   }
4746   st->print(" }");
4747 }
4748 #endif // !PRODUCT
4749 
4750 
4751 #ifdef ASSERT
4752 static bool might_be_same(Node* a, Node* b) {
4753   if (a == b)  return true;
4754   if (!(a->is_Phi() || b->is_Phi()))  return false;
4755   // phis shift around during optimization
4756   return true;  // pretty stupid...
4757 }
4758 
4759 // verify a narrow slice (either incoming or outgoing)
4760 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4761   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4762   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4763   if (Node::in_dump())               return;  // muzzle asserts when printing
4764   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4765   assert(n != NULL, "");
4766   // Elide intervening MergeMem's
4767   while (n->is_MergeMem()) {
4768     n = n->as_MergeMem()->memory_at(alias_idx);
4769   }
4770   Compile* C = Compile::current();
4771   const TypePtr* n_adr_type = n->adr_type();
4772   if (n == m->empty_memory()) {
4773     // Implicit copy of base_memory()
4774   } else if (n_adr_type != TypePtr::BOTTOM) {
4775     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4776     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4777   } else {
4778     // A few places like make_runtime_call "know" that VM calls are narrow,
4779     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4780     bool expected_wide_mem = false;
4781     if (n == m->base_memory()) {
4782       expected_wide_mem = true;
4783     } else if (alias_idx == Compile::AliasIdxRaw ||
4784                n == m->memory_at(Compile::AliasIdxRaw)) {
4785       expected_wide_mem = true;
4786     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4787       // memory can "leak through" calls on channels that
4788       // are write-once.  Allow this also.
4789       expected_wide_mem = true;
4790     }
4791     assert(expected_wide_mem, "expected narrow slice replacement");
4792   }
4793 }
4794 #else // !ASSERT
4795 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4796 #endif
4797 
4798 
4799 //-----------------------------memory_at---------------------------------------
4800 Node* MergeMemNode::memory_at(uint alias_idx) const {
4801   assert(alias_idx >= Compile::AliasIdxRaw ||
4802          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4803          "must avoid base_memory and AliasIdxTop");
4804 
4805   // Otherwise, it is a narrow slice.
4806   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4807   Compile *C = Compile::current();
4808   if (is_empty_memory(n)) {
4809     // the array is sparse; empty slots are the "top" node
4810     n = base_memory();
4811     assert(Node::in_dump()
4812            || n == NULL || n->bottom_type() == Type::TOP
4813            || n->adr_type() == NULL // address is TOP
4814            || n->adr_type() == TypePtr::BOTTOM
4815            || n->adr_type() == TypeRawPtr::BOTTOM
4816            || Compile::current()->AliasLevel() == 0,
4817            "must be a wide memory");
4818     // AliasLevel == 0 if we are organizing the memory states manually.
4819     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4820   } else {
4821     // make sure the stored slice is sane
4822     #ifdef ASSERT
4823     if (VMError::is_error_reported() || Node::in_dump()) {
4824     } else if (might_be_same(n, base_memory())) {
4825       // Give it a pass:  It is a mostly harmless repetition of the base.
4826       // This can arise normally from node subsumption during optimization.
4827     } else {
4828       verify_memory_slice(this, alias_idx, n);
4829     }
4830     #endif
4831   }
4832   return n;
4833 }
4834 
4835 //---------------------------set_memory_at-------------------------------------
4836 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4837   verify_memory_slice(this, alias_idx, n);
4838   Node* empty_mem = empty_memory();
4839   if (n == base_memory())  n = empty_mem;  // collapse default
4840   uint need_req = alias_idx+1;
4841   if (req() < need_req) {
4842     if (n == empty_mem)  return;  // already the default, so do not grow me
4843     // grow the sparse array
4844     do {
4845       add_req(empty_mem);
4846     } while (req() < need_req);
4847   }
4848   set_req( alias_idx, n );
4849 }
4850 
4851 
4852 
4853 //--------------------------iteration_setup------------------------------------
4854 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4855   if (other != NULL) {
4856     grow_to_match(other);
4857     // invariant:  the finite support of mm2 is within mm->req()
4858     #ifdef ASSERT
4859     for (uint i = req(); i < other->req(); i++) {
4860       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4861     }
4862     #endif
4863   }
4864   // Replace spurious copies of base_memory by top.
4865   Node* base_mem = base_memory();
4866   if (base_mem != NULL && !base_mem->is_top()) {
4867     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4868       if (in(i) == base_mem)
4869         set_req(i, empty_memory());
4870     }
4871   }
4872 }
4873 
4874 //---------------------------grow_to_match-------------------------------------
4875 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4876   Node* empty_mem = empty_memory();
4877   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4878   // look for the finite support of the other memory
4879   for (uint i = other->req(); --i >= req(); ) {
4880     if (other->in(i) != empty_mem) {
4881       uint new_len = i+1;
4882       while (req() < new_len)  add_req(empty_mem);
4883       break;
4884     }
4885   }
4886 }
4887 
4888 //---------------------------verify_sparse-------------------------------------
4889 #ifndef PRODUCT
4890 bool MergeMemNode::verify_sparse() const {
4891   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4892   Node* base_mem = base_memory();
4893   // The following can happen in degenerate cases, since empty==top.
4894   if (is_empty_memory(base_mem))  return true;
4895   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4896     assert(in(i) != NULL, "sane slice");
4897     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4898   }
4899   return true;
4900 }
4901 
4902 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4903   Node* n;
4904   n = mm->in(idx);
4905   if (mem == n)  return true;  // might be empty_memory()
4906   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4907   if (mem == n)  return true;
4908   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4909     if (mem == n)  return true;
4910     if (n == NULL)  break;
4911   }
4912   return false;
4913 }
4914 #endif // !PRODUCT