1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/idealGraphPrinter.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/valuetypenode.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Static array so we can figure out which bytecodes stop us from compiling
  48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  50 
  51 #ifndef PRODUCT
  52 int nodes_created              = 0;
  53 int methods_parsed             = 0;
  54 int methods_seen               = 0;
  55 int blocks_parsed              = 0;
  56 int blocks_seen                = 0;
  57 
  58 int explicit_null_checks_inserted = 0;
  59 int explicit_null_checks_elided   = 0;
  60 int all_null_checks_found         = 0;
  61 int implicit_null_checks          = 0;
  62 
  63 bool Parse::BytecodeParseHistogram::_initialized = false;
  64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  67 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  68 
  69 //------------------------------print_statistics-------------------------------
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed) {
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   }
  78   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  79 
  80   if (explicit_null_checks_inserted) {
  81     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
  82                   explicit_null_checks_inserted, explicit_null_checks_elided,
  83                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
  84                   all_null_checks_found);
  85   }
  86   if (all_null_checks_found) {
  87     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  88                   (100*implicit_null_checks)/all_null_checks_found);
  89   }
  90   if (SharedRuntime::_implicit_null_throws) {
  91     tty->print_cr("%d implicit null exceptions at runtime",
  92                   SharedRuntime::_implicit_null_throws);
  93   }
  94 
  95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  96     BytecodeParseHistogram::print();
  97   }
  98 }
  99 #endif
 100 
 101 //------------------------------ON STACK REPLACEMENT---------------------------
 102 
 103 // Construct a node which can be used to get incoming state for
 104 // on stack replacement.
 105 Node* Parse::fetch_interpreter_state(int index,
 106                                      const Type* type,
 107                                      Node* local_addrs,
 108                                      Node* local_addrs_base) {
 109   BasicType bt = type->basic_type();
 110   if (type == TypePtr::NULL_PTR) {
 111     // Ptr types are mixed together with T_ADDRESS but NULL is
 112     // really for T_OBJECT types so correct it.
 113     bt = T_OBJECT;
 114   }
 115   Node *mem = memory(Compile::AliasIdxRaw);
 116   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 117   Node *ctl = control();
 118 
 119   // Very similar to LoadNode::make, except we handle un-aligned longs and
 120   // doubles on Sparc.  Intel can handle them just fine directly.
 121   Node *l = NULL;
 122   switch (bt) {                // Signature is flattened
 123   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 124   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 125   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 126   case T_VALUETYPE:
 127   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 128   case T_LONG:
 129   case T_DOUBLE: {
 130     // Since arguments are in reverse order, the argument address 'adr'
 131     // refers to the back half of the long/double.  Recompute adr.
 132     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 133     if (Matcher::misaligned_doubles_ok) {
 134       l = (bt == T_DOUBLE)
 135         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 136         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 137     } else {
 138       l = (bt == T_DOUBLE)
 139         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 140         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 141     }
 142     break;
 143   }
 144   default: ShouldNotReachHere();
 145   }
 146   return _gvn.transform(l);
 147 }
 148 
 149 // Helper routine to prevent the interpreter from handing
 150 // unexpected typestate to an OSR method.
 151 // The Node l is a value newly dug out of the interpreter frame.
 152 // The type is the type predicted by ciTypeFlow.  Note that it is
 153 // not a general type, but can only come from Type::get_typeflow_type.
 154 // The safepoint is a map which will feed an uncommon trap.
 155 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 156                                     SafePointNode* &bad_type_exit) {
 157   const TypeOopPtr* tp = type->isa_oopptr();
 158   if (type->isa_valuetype() != NULL) {
 159     // The interpreter passes value types as oops
 160     tp = TypeOopPtr::make_from_klass(type->isa_valuetype()->value_klass());
 161   }
 162 
 163   // TypeFlow may assert null-ness if a type appears unloaded.
 164   if (type == TypePtr::NULL_PTR ||
 165       (tp != NULL && !tp->klass()->is_loaded())) {
 166     // Value must be null, not a real oop.
 167     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 168     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 169     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 170     set_control(_gvn.transform( new IfTrueNode(iff) ));
 171     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 172     bad_type_exit->control()->add_req(bad_type);
 173     l = null();
 174   }
 175 
 176   // Typeflow can also cut off paths from the CFG, based on
 177   // types which appear unloaded, or call sites which appear unlinked.
 178   // When paths are cut off, values at later merge points can rise
 179   // toward more specific classes.  Make sure these specific classes
 180   // are still in effect.
 181   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 182     // TypeFlow asserted a specific object type.  Value must have that type.
 183     Node* bad_type_ctrl = NULL;
 184     if (tp->is_valuetypeptr()) {
 185       // Check value types for null here to prevent checkcast from adding an
 186       // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
 187       l = null_check_oop(l, &bad_type_ctrl);
 188       bad_type_exit->control()->add_req(bad_type_ctrl);
 189     }
 190     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 191     bad_type_exit->control()->add_req(bad_type_ctrl);
 192   }
 193 
 194   BasicType bt_l = _gvn.type(l)->basic_type();
 195   BasicType bt_t = type->basic_type();
 196   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 197   return l;
 198 }
 199 
 200 // Helper routine which sets up elements of the initial parser map when
 201 // performing a parse for on stack replacement.  Add values into map.
 202 // The only parameter contains the address of a interpreter arguments.
 203 void Parse::load_interpreter_state(Node* osr_buf) {
 204   int index;
 205   int max_locals = jvms()->loc_size();
 206   int max_stack  = jvms()->stk_size();
 207 
 208   // Mismatch between method and jvms can occur since map briefly held
 209   // an OSR entry state (which takes up one RawPtr word).
 210   assert(max_locals == method()->max_locals(), "sanity");
 211   assert(max_stack  >= method()->max_stack(),  "sanity");
 212   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 213   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 214 
 215   // Find the start block.
 216   Block* osr_block = start_block();
 217   assert(osr_block->start() == osr_bci(), "sanity");
 218 
 219   // Set initial BCI.
 220   set_parse_bci(osr_block->start());
 221 
 222   // Set initial stack depth.
 223   set_sp(osr_block->start_sp());
 224 
 225   // Check bailouts.  We currently do not perform on stack replacement
 226   // of loops in catch blocks or loops which branch with a non-empty stack.
 227   if (sp() != 0) {
 228     C->record_method_not_compilable("OSR starts with non-empty stack");
 229     return;
 230   }
 231   // Do not OSR inside finally clauses:
 232   if (osr_block->has_trap_at(osr_block->start())) {
 233     C->record_method_not_compilable("OSR starts with an immediate trap");
 234     return;
 235   }
 236 
 237   // Commute monitors from interpreter frame to compiler frame.
 238   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 239   int mcnt = osr_block->flow()->monitor_count();
 240   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 241   for (index = 0; index < mcnt; index++) {
 242     // Make a BoxLockNode for the monitor.
 243     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 244 
 245     // Displaced headers and locked objects are interleaved in the
 246     // temp OSR buffer.  We only copy the locked objects out here.
 247     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 248     Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
 249     // Try and copy the displaced header to the BoxNode
 250     Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);
 251 
 252     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 253 
 254     // Build a bogus FastLockNode (no code will be generated) and push the
 255     // monitor into our debug info.
 256     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 257     map()->push_monitor(flock);
 258 
 259     // If the lock is our method synchronization lock, tuck it away in
 260     // _sync_lock for return and rethrow exit paths.
 261     if (index == 0 && method()->is_synchronized()) {
 262       _synch_lock = flock;
 263     }
 264   }
 265 
 266   // Use the raw liveness computation to make sure that unexpected
 267   // values don't propagate into the OSR frame.
 268   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 269   if (!live_locals.is_valid()) {
 270     // Degenerate or breakpointed method.
 271     C->record_method_not_compilable("OSR in empty or breakpointed method");
 272     return;
 273   }
 274 
 275   // Extract the needed locals from the interpreter frame.
 276   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 277 
 278   // find all the locals that the interpreter thinks contain live oops
 279   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 280   for (index = 0; index < max_locals; index++) {
 281 
 282     if (!live_locals.at(index)) {
 283       continue;
 284     }
 285 
 286     const Type *type = osr_block->local_type_at(index);
 287 
 288     if (type->isa_oopptr() != NULL) {
 289 
 290       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 291       // else we might load a stale oop if the MethodLiveness disagrees with the
 292       // result of the interpreter. If the interpreter says it is dead we agree
 293       // by making the value go to top.
 294       //
 295 
 296       if (!live_oops.at(index)) {
 297         if (C->log() != NULL) {
 298           C->log()->elem("OSR_mismatch local_index='%d'",index);
 299         }
 300         set_local(index, null());
 301         // and ignore it for the loads
 302         continue;
 303       }
 304     }
 305 
 306     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 307     if (type == Type::TOP || type == Type::HALF) {
 308       continue;
 309     }
 310     // If the type falls to bottom, then this must be a local that
 311     // is mixing ints and oops or some such.  Forcing it to top
 312     // makes it go dead.
 313     if (type == Type::BOTTOM) {
 314       continue;
 315     }
 316     // Construct code to access the appropriate local.
 317     Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);
 318     set_local(index, value);
 319   }
 320 
 321   // Extract the needed stack entries from the interpreter frame.
 322   for (index = 0; index < sp(); index++) {
 323     const Type *type = osr_block->stack_type_at(index);
 324     if (type != Type::TOP) {
 325       // Currently the compiler bails out when attempting to on stack replace
 326       // at a bci with a non-empty stack.  We should not reach here.
 327       ShouldNotReachHere();
 328     }
 329   }
 330 
 331   // End the OSR migration
 332   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 333                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 334                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 335                     osr_buf);
 336 
 337   // Now that the interpreter state is loaded, make sure it will match
 338   // at execution time what the compiler is expecting now:
 339   SafePointNode* bad_type_exit = clone_map();
 340   bad_type_exit->set_control(new RegionNode(1));
 341 
 342   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 343   for (index = 0; index < max_locals; index++) {
 344     if (stopped())  break;
 345     Node* l = local(index);
 346     if (l->is_top())  continue;  // nothing here
 347     const Type *type = osr_block->local_type_at(index);
 348     if (type->isa_oopptr() != NULL) {
 349       if (!live_oops.at(index)) {
 350         // skip type check for dead oops
 351         continue;
 352       }
 353     }
 354     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 355       // In our current system it's illegal for jsr addresses to be
 356       // live into an OSR entry point because the compiler performs
 357       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 358       // case and aborts the compile if addresses are live into an OSR
 359       // entry point.  Because of that we can assume that any address
 360       // locals at the OSR entry point are dead.  Method liveness
 361       // isn't precise enought to figure out that they are dead in all
 362       // cases so simply skip checking address locals all
 363       // together. Any type check is guaranteed to fail since the
 364       // interpreter type is the result of a load which might have any
 365       // value and the expected type is a constant.
 366       continue;
 367     }
 368     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 369   }
 370 
 371   for (index = 0; index < sp(); index++) {
 372     if (stopped())  break;
 373     Node* l = stack(index);
 374     if (l->is_top())  continue;  // nothing here
 375     const Type *type = osr_block->stack_type_at(index);
 376     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 377   }
 378 
 379   if (bad_type_exit->control()->req() > 1) {
 380     // Build an uncommon trap here, if any inputs can be unexpected.
 381     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 382     record_for_igvn(bad_type_exit->control());
 383     SafePointNode* types_are_good = map();
 384     set_map(bad_type_exit);
 385     // The unexpected type happens because a new edge is active
 386     // in the CFG, which typeflow had previously ignored.
 387     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 388     // This x will be typed as Integer if notReached is not yet linked.
 389     // It could also happen due to a problem in ciTypeFlow analysis.
 390     uncommon_trap(Deoptimization::Reason_constraint,
 391                   Deoptimization::Action_reinterpret);
 392     set_map(types_are_good);
 393   }
 394 }
 395 
 396 //------------------------------Parse------------------------------------------
 397 // Main parser constructor.
 398 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 399   : _exits(caller)
 400 {
 401   // Init some variables
 402   _caller = caller;
 403   _method = parse_method;
 404   _expected_uses = expected_uses;
 405   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 406   _wrote_final = false;
 407   _wrote_volatile = false;
 408   _wrote_stable = false;
 409   _wrote_fields = false;
 410   _alloc_with_final = NULL;
 411   _entry_bci = InvocationEntryBci;
 412   _tf = NULL;
 413   _block = NULL;
 414   _first_return = true;
 415   _replaced_nodes_for_exceptions = false;
 416   _new_idx = C->unique();
 417   debug_only(_block_count = -1);
 418   debug_only(_blocks = (Block*)-1);
 419 #ifndef PRODUCT
 420   if (PrintCompilation || PrintOpto) {
 421     // Make sure I have an inline tree, so I can print messages about it.
 422     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 423     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 424   }
 425   _max_switch_depth = 0;
 426   _est_switch_depth = 0;
 427 #endif
 428 
 429   if (parse_method->has_reserved_stack_access()) {
 430     C->set_has_reserved_stack_access(true);
 431   }
 432 
 433   _tf = TypeFunc::make(method());
 434   _iter.reset_to_method(method());
 435   _flow = method()->get_flow_analysis();
 436   if (_flow->failing()) {
 437     C->record_method_not_compilable(_flow->failure_reason());
 438   }
 439 
 440 #ifndef PRODUCT
 441   if (_flow->has_irreducible_entry()) {
 442     C->set_parsed_irreducible_loop(true);
 443   }
 444 #endif
 445 
 446   if (_expected_uses <= 0) {
 447     _prof_factor = 1;
 448   } else {
 449     float prof_total = parse_method->interpreter_invocation_count();
 450     if (prof_total <= _expected_uses) {
 451       _prof_factor = 1;
 452     } else {
 453       _prof_factor = _expected_uses / prof_total;
 454     }
 455   }
 456 
 457   CompileLog* log = C->log();
 458   if (log != NULL) {
 459     log->begin_head("parse method='%d' uses='%f'",
 460                     log->identify(parse_method), expected_uses);
 461     if (depth() == 1 && C->is_osr_compilation()) {
 462       log->print(" osr_bci='%d'", C->entry_bci());
 463     }
 464     log->stamp();
 465     log->end_head();
 466   }
 467 
 468   // Accumulate deoptimization counts.
 469   // (The range_check and store_check counts are checked elsewhere.)
 470   ciMethodData* md = method()->method_data();
 471   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 472     uint md_count = md->trap_count(reason);
 473     if (md_count != 0) {
 474       if (md_count == md->trap_count_limit())
 475         md_count += md->overflow_trap_count();
 476       uint total_count = C->trap_count(reason);
 477       uint old_count   = total_count;
 478       total_count += md_count;
 479       // Saturate the add if it overflows.
 480       if (total_count < old_count || total_count < md_count)
 481         total_count = (uint)-1;
 482       C->set_trap_count(reason, total_count);
 483       if (log != NULL)
 484         log->elem("observe trap='%s' count='%d' total='%d'",
 485                   Deoptimization::trap_reason_name(reason),
 486                   md_count, total_count);
 487     }
 488   }
 489   // Accumulate total sum of decompilations, also.
 490   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 491 
 492   _count_invocations = C->do_count_invocations();
 493   _method_data_update = C->do_method_data_update();
 494 
 495   if (log != NULL && method()->has_exception_handlers()) {
 496     log->elem("observe that='has_exception_handlers'");
 497   }
 498 
 499   assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier");
 500   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 501 
 502   // Always register dependence if JVMTI is enabled, because
 503   // either breakpoint setting or hotswapping of methods may
 504   // cause deoptimization.
 505   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 506     C->dependencies()->assert_evol_method(method());
 507   }
 508 
 509   NOT_PRODUCT(methods_seen++);
 510 
 511   // Do some special top-level things.
 512   if (depth() == 1 && C->is_osr_compilation()) {
 513     _entry_bci = C->entry_bci();
 514     _flow = method()->get_osr_flow_analysis(osr_bci());
 515     if (_flow->failing()) {
 516       C->record_method_not_compilable(_flow->failure_reason());
 517 #ifndef PRODUCT
 518       if (PrintOpto && (Verbose || WizardMode)) {
 519         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 520         if (Verbose) {
 521           method()->print();
 522           method()->print_codes();
 523           _flow->print();
 524         }
 525       }
 526 #endif
 527     }
 528     _tf = C->tf();     // the OSR entry type is different
 529   }
 530 
 531 #ifdef ASSERT
 532   if (depth() == 1) {
 533     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 534     if (C->tf() != tf()) {
 535       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 536       assert(C->env()->system_dictionary_modification_counter_changed(),
 537              "Must invalidate if TypeFuncs differ");
 538     }
 539   } else {
 540     assert(!this->is_osr_parse(), "no recursive OSR");
 541   }
 542 #endif
 543 
 544 #ifndef PRODUCT
 545   methods_parsed++;
 546   // add method size here to guarantee that inlined methods are added too
 547   if (CITime)
 548     _total_bytes_compiled += method()->code_size();
 549 
 550   show_parse_info();
 551 #endif
 552 
 553   if (failing()) {
 554     if (log)  log->done("parse");
 555     return;
 556   }
 557 
 558   gvn().set_type(root(), root()->bottom_type());
 559   gvn().transform(top());
 560 
 561   // Import the results of the ciTypeFlow.
 562   init_blocks();
 563 
 564   // Merge point for all normal exits
 565   build_exits();
 566 
 567   // Setup the initial JVM state map.
 568   SafePointNode* entry_map = create_entry_map();
 569 
 570   // Check for bailouts during map initialization
 571   if (failing() || entry_map == NULL) {
 572     if (log)  log->done("parse");
 573     return;
 574   }
 575 
 576   Node_Notes* caller_nn = C->default_node_notes();
 577   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 578   if (DebugInlinedCalls || depth() == 1) {
 579     C->set_default_node_notes(make_node_notes(caller_nn));
 580   }
 581 
 582   if (is_osr_parse()) {
 583     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 584     entry_map->set_req(TypeFunc::Parms+0, top());
 585     set_map(entry_map);
 586     load_interpreter_state(osr_buf);
 587   } else {
 588     set_map(entry_map);
 589     do_method_entry();
 590     if (depth() == 1 && C->age_code()) {
 591       decrement_age();
 592     }
 593   }
 594 
 595   if (depth() == 1 && !failing()) {
 596     // Add check to deoptimize the nmethod if RTM state was changed
 597     rtm_deopt();
 598   }
 599 
 600   // Check for bailouts during method entry or RTM state check setup.
 601   if (failing()) {
 602     if (log)  log->done("parse");
 603     C->set_default_node_notes(caller_nn);
 604     return;
 605   }
 606 
 607   // Handle value type arguments
 608   int arg_size_sig = tf()->domain_sig()->cnt();
 609   for (uint i = 0; i < (uint)arg_size_sig; i++) {
 610     Node* parm = map()->in(i);
 611     const Type* t = _gvn.type(parm);
 612     if (!ValueTypePassFieldsAsArgs) {
 613       if (t->is_valuetypeptr() && t->value_klass()->is_scalarizable() && !t->maybe_null()) {
 614         // Create ValueTypeNode from the oop and replace the parameter
 615         Node* vt = ValueTypeNode::make_from_oop(this, parm, t->value_klass());
 616         map()->replace_edge(parm, vt);
 617       }
 618     } else {
 619       assert(false, "FIXME");
 620       // TODO move the code from build_start_state and do_late_inline here
 621     }
 622   }
 623 
 624   entry_map = map();  // capture any changes performed by method setup code
 625   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 626 
 627   // We begin parsing as if we have just encountered a jump to the
 628   // method entry.
 629   Block* entry_block = start_block();
 630   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 631   set_map_clone(entry_map);
 632   merge_common(entry_block, entry_block->next_path_num());
 633 
 634 #ifndef PRODUCT
 635   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 636   set_parse_histogram( parse_histogram_obj );
 637 #endif
 638 
 639   // Parse all the basic blocks.
 640   do_all_blocks();
 641 
 642   C->set_default_node_notes(caller_nn);
 643 
 644   // Check for bailouts during conversion to graph
 645   if (failing()) {
 646     if (log)  log->done("parse");
 647     return;
 648   }
 649 
 650   // Fix up all exiting control flow.
 651   set_map(entry_map);
 652   do_exits();
 653 
 654   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 655                       C->unique(), C->live_nodes(), C->node_arena()->used());
 656 }
 657 
 658 //---------------------------do_all_blocks-------------------------------------
 659 void Parse::do_all_blocks() {
 660   bool has_irreducible = flow()->has_irreducible_entry();
 661 
 662   // Walk over all blocks in Reverse Post-Order.
 663   while (true) {
 664     bool progress = false;
 665     for (int rpo = 0; rpo < block_count(); rpo++) {
 666       Block* block = rpo_at(rpo);
 667 
 668       if (block->is_parsed()) continue;
 669 
 670       if (!block->is_merged()) {
 671         // Dead block, no state reaches this block
 672         continue;
 673       }
 674 
 675       // Prepare to parse this block.
 676       load_state_from(block);
 677 
 678       if (stopped()) {
 679         // Block is dead.
 680         continue;
 681       }
 682 
 683       NOT_PRODUCT(blocks_parsed++);
 684 
 685       progress = true;
 686       if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
 687         // Not all preds have been parsed.  We must build phis everywhere.
 688         // (Note that dead locals do not get phis built, ever.)
 689         ensure_phis_everywhere();
 690 
 691         if (block->is_SEL_head()) {
 692           // Add predicate to single entry (not irreducible) loop head.
 693           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 694           // Predicates may have been added after a dominating if
 695           if (!block->has_predicates()) {
 696             // Need correct bci for predicate.
 697             // It is fine to set it here since do_one_block() will set it anyway.
 698             set_parse_bci(block->start());
 699             add_predicate();
 700           }
 701           // Add new region for back branches.
 702           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 703           RegionNode *r = new RegionNode(edges+1);
 704           _gvn.set_type(r, Type::CONTROL);
 705           record_for_igvn(r);
 706           r->init_req(edges, control());
 707           set_control(r);
 708           // Add new phis.
 709           ensure_phis_everywhere();
 710         }
 711 
 712         // Leave behind an undisturbed copy of the map, for future merges.
 713         set_map(clone_map());
 714       }
 715 
 716       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 717         // In the absence of irreducible loops, the Region and Phis
 718         // associated with a merge that doesn't involve a backedge can
 719         // be simplified now since the RPO parsing order guarantees
 720         // that any path which was supposed to reach here has already
 721         // been parsed or must be dead.
 722         Node* c = control();
 723         Node* result = _gvn.transform_no_reclaim(control());
 724         if (c != result && TraceOptoParse) {
 725           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 726         }
 727         if (result != top()) {
 728           record_for_igvn(result);
 729         }
 730       }
 731 
 732       // Parse the block.
 733       do_one_block();
 734 
 735       // Check for bailouts.
 736       if (failing())  return;
 737     }
 738 
 739     // with irreducible loops multiple passes might be necessary to parse everything
 740     if (!has_irreducible || !progress) {
 741       break;
 742     }
 743   }
 744 
 745 #ifndef PRODUCT
 746   blocks_seen += block_count();
 747 
 748   // Make sure there are no half-processed blocks remaining.
 749   // Every remaining unprocessed block is dead and may be ignored now.
 750   for (int rpo = 0; rpo < block_count(); rpo++) {
 751     Block* block = rpo_at(rpo);
 752     if (!block->is_parsed()) {
 753       if (TraceOptoParse) {
 754         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 755       }
 756       assert(!block->is_merged(), "no half-processed blocks");
 757     }
 758   }
 759 #endif
 760 }
 761 
 762 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
 763   switch (bt) {
 764   case T_BYTE:
 765     v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
 766     v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
 767     break;
 768   case T_SHORT:
 769     v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
 770     v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
 771     break;
 772   case T_CHAR:
 773     v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
 774     break;
 775   case T_BOOLEAN:
 776     v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
 777     break;
 778   default:
 779     break;
 780   }
 781   return v;
 782 }
 783 
 784 //-------------------------------build_exits----------------------------------
 785 // Build normal and exceptional exit merge points.
 786 void Parse::build_exits() {
 787   // make a clone of caller to prevent sharing of side-effects
 788   _exits.set_map(_exits.clone_map());
 789   _exits.clean_stack(_exits.sp());
 790   _exits.sync_jvms();
 791 
 792   RegionNode* region = new RegionNode(1);
 793   record_for_igvn(region);
 794   gvn().set_type_bottom(region);
 795   _exits.set_control(region);
 796 
 797   // Note:  iophi and memphi are not transformed until do_exits.
 798   Node* iophi  = new PhiNode(region, Type::ABIO);
 799   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 800   gvn().set_type_bottom(iophi);
 801   gvn().set_type_bottom(memphi);
 802   _exits.set_i_o(iophi);
 803   _exits.set_all_memory(memphi);
 804 
 805   // Add a return value to the exit state.  (Do not push it yet.)
 806   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
 807     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
 808     if (ret_type->isa_int()) {
 809       BasicType ret_bt = method()->return_type()->basic_type();
 810       if (ret_bt == T_BOOLEAN ||
 811           ret_bt == T_CHAR ||
 812           ret_bt == T_BYTE ||
 813           ret_bt == T_SHORT) {
 814         ret_type = TypeInt::INT;
 815       }
 816     }
 817 
 818     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 819     // becomes loaded during the subsequent parsing, the loaded and unloaded
 820     // types will not join when we transform and push in do_exits().
 821     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 822     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 823       ret_type = TypeOopPtr::BOTTOM;
 824     }
 825     if ((_caller->has_method() || tf()->returns_value_type_as_fields()) &&
 826         ret_type->is_valuetypeptr() && ret_type->value_klass()->is_scalarizable() && !ret_type->maybe_null()) {
 827       // Scalarize value type return when inlining or with multiple return values
 828       ret_type = TypeValueType::make(ret_type->value_klass());
 829     }
 830     int         ret_size = type2size[ret_type->basic_type()];
 831     Node*       ret_phi  = new PhiNode(region, ret_type);
 832     gvn().set_type_bottom(ret_phi);
 833     _exits.ensure_stack(ret_size);
 834     assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 835     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 836     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 837     // Note:  ret_phi is not yet pushed, until do_exits.
 838   }
 839 }
 840 
 841 //----------------------------build_start_state-------------------------------
 842 // Construct a state which contains only the incoming arguments from an
 843 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 844 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 845   int        arg_size_sig = tf->domain_sig()->cnt();
 846   int        max_size = MAX2(arg_size_sig, (int)tf->range_cc()->cnt());
 847   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 848   SafePointNode* map  = new SafePointNode(max_size, NULL);
 849   record_for_igvn(map);
 850   assert(arg_size_sig == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 851   Node_Notes* old_nn = default_node_notes();
 852   if (old_nn != NULL && has_method()) {
 853     Node_Notes* entry_nn = old_nn->clone(this);
 854     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 855     entry_jvms->set_offsets(0);
 856     entry_jvms->set_bci(entry_bci());
 857     entry_nn->set_jvms(entry_jvms);
 858     set_default_node_notes(entry_nn);
 859   }
 860   PhaseGVN& gvn = *initial_gvn();
 861   uint j = 0;
 862   for (uint i = 0; i < (uint)arg_size_sig; i++) {
 863     assert(j >= i, "less actual arguments than in the signature?");
 864     if (ValueTypePassFieldsAsArgs) {
 865       assert(false, "FIXME");
 866       // TODO move this into Parse::Parse because we might need to deopt
 867       /*
 868       if (i < TypeFunc::Parms) {
 869         assert(i == j, "no change before the actual arguments");
 870         Node* parm = gvn.transform(new ParmNode(start, i));
 871         map->init_req(i, parm);
 872         // Record all these guys for later GVN.
 873         record_for_igvn(parm);
 874         j++;
 875       } else {
 876         // Value type arguments are not passed by reference: we get an
 877         // argument per field of the value type. Build ValueTypeNodes
 878         // from the value type arguments.
 879         const Type* t = tf->domain_sig()->field_at(i);
 880         if (t->is_valuetypeptr()) {
 881           ciValueKlass* vk = t->value_klass();
 882           GraphKit kit(jvms, &gvn);
 883           kit.set_control(map->control());
 884           ValueTypeNode* vt = ValueTypeNode::make_from_multi(&kit, start, vk, j, true);
 885           map->set_control(kit.control());
 886           map->init_req(i, vt);
 887           j += vk->value_arg_slots();
 888         } else {
 889           Node* parm = gvn.transform(new ParmNode(start, j));
 890           map->init_req(i, parm);
 891           // Record all these guys for later GVN.
 892           record_for_igvn(parm);
 893           j++;
 894         }
 895       }
 896       */
 897     } else {
 898       Node* parm = gvn.transform(new ParmNode(start, i));
 899       map->init_req(i, parm);
 900       // Record all these guys for later GVN.
 901       record_for_igvn(parm);
 902       j++;
 903     }
 904   }
 905   for (; j < map->req(); j++) {
 906     map->init_req(j, top());
 907   }
 908   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 909   set_default_node_notes(old_nn);
 910   map->set_jvms(jvms);
 911   jvms->set_map(map);
 912   return jvms;
 913 }
 914 
 915 //-----------------------------make_node_notes---------------------------------
 916 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 917   if (caller_nn == NULL)  return NULL;
 918   Node_Notes* nn = caller_nn->clone(C);
 919   JVMState* caller_jvms = nn->jvms();
 920   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 921   jvms->set_offsets(0);
 922   jvms->set_bci(_entry_bci);
 923   nn->set_jvms(jvms);
 924   return nn;
 925 }
 926 
 927 
 928 //--------------------------return_values--------------------------------------
 929 void Compile::return_values(JVMState* jvms) {
 930   GraphKit kit(jvms);
 931   Node* ret = new ReturnNode(TypeFunc::Parms,
 932                              kit.control(),
 933                              kit.i_o(),
 934                              kit.reset_memory(),
 935                              kit.frameptr(),
 936                              kit.returnadr());
 937   // Add zero or 1 return values
 938   int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
 939   if (ret_size > 0) {
 940     kit.inc_sp(-ret_size);  // pop the return value(s)
 941     kit.sync_jvms();
 942     Node* res = kit.argument(0);
 943     if (tf()->returns_value_type_as_fields()) {
 944       // Multiple return values (value type fields): add as many edges
 945       // to the Return node as returned values.
 946       assert(res->is_ValueType(), "what else supports multi value return");
 947       ValueTypeNode* vt = res->as_ValueType();
 948       ret->add_req_batch(NULL, tf()->range_cc()->cnt() - TypeFunc::Parms);
 949       vt->pass_klass(ret, TypeFunc::Parms, kit);
 950       vt->pass_fields(ret, TypeFunc::Parms+1, kit, /* assert_allocated */ true);
 951     } else {
 952       ret->add_req(res);
 953       // Note:  The second dummy edge is not needed by a ReturnNode.
 954     }
 955   }
 956   // bind it to root
 957   root()->add_req(ret);
 958   record_for_igvn(ret);
 959   initial_gvn()->transform_no_reclaim(ret);
 960 }
 961 
 962 //------------------------rethrow_exceptions-----------------------------------
 963 // Bind all exception states in the list into a single RethrowNode.
 964 void Compile::rethrow_exceptions(JVMState* jvms) {
 965   GraphKit kit(jvms);
 966   if (!kit.has_exceptions())  return;  // nothing to generate
 967   // Load my combined exception state into the kit, with all phis transformed:
 968   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 969   Node* ex_oop = kit.use_exception_state(ex_map);
 970   RethrowNode* exit = new RethrowNode(kit.control(),
 971                                       kit.i_o(), kit.reset_memory(),
 972                                       kit.frameptr(), kit.returnadr(),
 973                                       // like a return but with exception input
 974                                       ex_oop);
 975   // bind to root
 976   root()->add_req(exit);
 977   record_for_igvn(exit);
 978   initial_gvn()->transform_no_reclaim(exit);
 979 }
 980 
 981 //---------------------------do_exceptions-------------------------------------
 982 // Process exceptions arising from the current bytecode.
 983 // Send caught exceptions to the proper handler within this method.
 984 // Unhandled exceptions feed into _exit.
 985 void Parse::do_exceptions() {
 986   if (!has_exceptions())  return;
 987 
 988   if (failing()) {
 989     // Pop them all off and throw them away.
 990     while (pop_exception_state() != NULL) ;
 991     return;
 992   }
 993 
 994   PreserveJVMState pjvms(this, false);
 995 
 996   SafePointNode* ex_map;
 997   while ((ex_map = pop_exception_state()) != NULL) {
 998     if (!method()->has_exception_handlers()) {
 999       // Common case:  Transfer control outward.
1000       // Doing it this early allows the exceptions to common up
1001       // even between adjacent method calls.
1002       throw_to_exit(ex_map);
1003     } else {
1004       // Have to look at the exception first.
1005       assert(stopped(), "catch_inline_exceptions trashes the map");
1006       catch_inline_exceptions(ex_map);
1007       stop_and_kill_map();      // we used up this exception state; kill it
1008     }
1009   }
1010 
1011   // We now return to our regularly scheduled program:
1012 }
1013 
1014 //---------------------------throw_to_exit-------------------------------------
1015 // Merge the given map into an exception exit from this method.
1016 // The exception exit will handle any unlocking of receiver.
1017 // The ex_oop must be saved within the ex_map, unlike merge_exception.
1018 void Parse::throw_to_exit(SafePointNode* ex_map) {
1019   // Pop the JVMS to (a copy of) the caller.
1020   GraphKit caller;
1021   caller.set_map_clone(_caller->map());
1022   caller.set_bci(_caller->bci());
1023   caller.set_sp(_caller->sp());
1024   // Copy out the standard machine state:
1025   for (uint i = 0; i < TypeFunc::Parms; i++) {
1026     caller.map()->set_req(i, ex_map->in(i));
1027   }
1028   if (ex_map->has_replaced_nodes()) {
1029     _replaced_nodes_for_exceptions = true;
1030   }
1031   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
1032   // ...and the exception:
1033   Node*          ex_oop        = saved_ex_oop(ex_map);
1034   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
1035   // Finally, collect the new exception state in my exits:
1036   _exits.add_exception_state(caller_ex_map);
1037 }
1038 
1039 //------------------------------do_exits---------------------------------------
1040 void Parse::do_exits() {
1041   set_parse_bci(InvocationEntryBci);
1042 
1043   // Now peephole on the return bits
1044   Node* region = _exits.control();
1045   _exits.set_control(gvn().transform(region));
1046 
1047   Node* iophi = _exits.i_o();
1048   _exits.set_i_o(gvn().transform(iophi));
1049 
1050   // Figure out if we need to emit the trailing barrier. The barrier is only
1051   // needed in the constructors, and only in three cases:
1052   //
1053   // 1. The constructor wrote a final. The effects of all initializations
1054   //    must be committed to memory before any code after the constructor
1055   //    publishes the reference to the newly constructed object. Rather
1056   //    than wait for the publication, we simply block the writes here.
1057   //    Rather than put a barrier on only those writes which are required
1058   //    to complete, we force all writes to complete.
1059   //
1060   // 2. On PPC64, also add MemBarRelease for constructors which write
1061   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
1062   //    is set on PPC64, no sync instruction is issued after volatile
1063   //    stores. We want to guarantee the same behavior as on platforms
1064   //    with total store order, although this is not required by the Java
1065   //    memory model. So as with finals, we add a barrier here.
1066   //
1067   // 3. Experimental VM option is used to force the barrier if any field
1068   //    was written out in the constructor.
1069   //
1070   // "All bets are off" unless the first publication occurs after a
1071   // normal return from the constructor.  We do not attempt to detect
1072   // such unusual early publications.  But no barrier is needed on
1073   // exceptional returns, since they cannot publish normally.
1074   //
1075   if (method()->is_initializer() &&
1076         (wrote_final() ||
1077            PPC64_ONLY(wrote_volatile() ||)
1078            (AlwaysSafeConstructors && wrote_fields()))) {
1079     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1080 
1081     // If Memory barrier is created for final fields write
1082     // and allocation node does not escape the initialize method,
1083     // then barrier introduced by allocation node can be removed.
1084     if (DoEscapeAnalysis && alloc_with_final()) {
1085       AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1086       alloc->compute_MemBar_redundancy(method());
1087     }
1088     if (PrintOpto && (Verbose || WizardMode)) {
1089       method()->print_name();
1090       tty->print_cr(" writes finals and needs a memory barrier");
1091     }
1092   }
1093 
1094   // Any method can write a @Stable field; insert memory barriers
1095   // after those also. Can't bind predecessor allocation node (if any)
1096   // with barrier because allocation doesn't always dominate
1097   // MemBarRelease.
1098   if (wrote_stable()) {
1099     _exits.insert_mem_bar(Op_MemBarRelease);
1100     if (PrintOpto && (Verbose || WizardMode)) {
1101       method()->print_name();
1102       tty->print_cr(" writes @Stable and needs a memory barrier");
1103     }
1104   }
1105 
1106   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1107     // transform each slice of the original memphi:
1108     mms.set_memory(_gvn.transform(mms.memory()));
1109   }
1110 
1111   if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1112     const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1113     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1114     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1115       // In case of concurrent class loading, the type we set for the
1116       // ret_phi in build_exits() may have been too optimistic and the
1117       // ret_phi may be top now.
1118       // Otherwise, we've encountered an error and have to mark the method as
1119       // not compilable. Just using an assertion instead would be dangerous
1120       // as this could lead to an infinite compile loop in non-debug builds.
1121       {
1122         MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
1123         if (C->env()->system_dictionary_modification_counter_changed()) {
1124           C->record_failure(C2Compiler::retry_class_loading_during_parsing());
1125         } else {
1126           C->record_method_not_compilable("Can't determine return type.");
1127         }
1128       }
1129       return;
1130     }
1131     if (ret_type->isa_int()) {
1132       BasicType ret_bt = method()->return_type()->basic_type();
1133       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1134     }
1135     if (_caller->has_method() && ret_type->is_valuetypeptr()) {
1136       // Inlined methods return a ValueTypeNode
1137       _exits.push_node(T_VALUETYPE, ret_phi);
1138     } else {
1139       _exits.push_node(ret_type->basic_type(), ret_phi);
1140     }
1141   }
1142 
1143   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1144 
1145   // Unlock along the exceptional paths.
1146   // This is done late so that we can common up equivalent exceptions
1147   // (e.g., null checks) arising from multiple points within this method.
1148   // See GraphKit::add_exception_state, which performs the commoning.
1149   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1150 
1151   // record exit from a method if compiled while Dtrace is turned on.
1152   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1153     // First move the exception list out of _exits:
1154     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1155     SafePointNode* normal_map = kit.map();  // keep this guy safe
1156     // Now re-collect the exceptions into _exits:
1157     SafePointNode* ex_map;
1158     while ((ex_map = kit.pop_exception_state()) != NULL) {
1159       Node* ex_oop = kit.use_exception_state(ex_map);
1160       // Force the exiting JVM state to have this method at InvocationEntryBci.
1161       // The exiting JVM state is otherwise a copy of the calling JVMS.
1162       JVMState* caller = kit.jvms();
1163       JVMState* ex_jvms = caller->clone_shallow(C);
1164       ex_jvms->set_map(kit.clone_map());
1165       ex_jvms->map()->set_jvms(ex_jvms);
1166       ex_jvms->set_bci(   InvocationEntryBci);
1167       kit.set_jvms(ex_jvms);
1168       if (do_synch) {
1169         // Add on the synchronized-method box/object combo
1170         kit.map()->push_monitor(_synch_lock);
1171         // Unlock!
1172         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1173       }
1174       if (C->env()->dtrace_method_probes()) {
1175         kit.make_dtrace_method_exit(method());
1176       }
1177       if (_replaced_nodes_for_exceptions) {
1178         kit.map()->apply_replaced_nodes(_new_idx);
1179       }
1180       // Done with exception-path processing.
1181       ex_map = kit.make_exception_state(ex_oop);
1182       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1183       // Pop the last vestige of this method:
1184       ex_map->set_jvms(caller->clone_shallow(C));
1185       ex_map->jvms()->set_map(ex_map);
1186       _exits.push_exception_state(ex_map);
1187     }
1188     assert(_exits.map() == normal_map, "keep the same return state");
1189   }
1190 
1191   {
1192     // Capture very early exceptions (receiver null checks) from caller JVMS
1193     GraphKit caller(_caller);
1194     SafePointNode* ex_map;
1195     while ((ex_map = caller.pop_exception_state()) != NULL) {
1196       _exits.add_exception_state(ex_map);
1197     }
1198   }
1199   _exits.map()->apply_replaced_nodes(_new_idx);
1200 }
1201 
1202 //-----------------------------create_entry_map-------------------------------
1203 // Initialize our parser map to contain the types at method entry.
1204 // For OSR, the map contains a single RawPtr parameter.
1205 // Initial monitor locking for sync. methods is performed by do_method_entry.
1206 SafePointNode* Parse::create_entry_map() {
1207   // Check for really stupid bail-out cases.
1208   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1209   if (len >= 32760) {
1210     C->record_method_not_compilable("too many local variables");
1211     return NULL;
1212   }
1213 
1214   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1215   _caller->map()->delete_replaced_nodes();
1216 
1217   // If this is an inlined method, we may have to do a receiver null check.
1218   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1219     GraphKit kit(_caller);
1220     kit.null_check_receiver_before_call(method());
1221     _caller = kit.transfer_exceptions_into_jvms();
1222     if (kit.stopped()) {
1223       _exits.add_exception_states_from(_caller);
1224       _exits.set_jvms(_caller);
1225       return NULL;
1226     }
1227   }
1228 
1229   assert(method() != NULL, "parser must have a method");
1230 
1231   // Create an initial safepoint to hold JVM state during parsing
1232   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1233   set_map(new SafePointNode(len, jvms));
1234   jvms->set_map(map());
1235   record_for_igvn(map());
1236   assert(jvms->endoff() == len, "correct jvms sizing");
1237 
1238   SafePointNode* inmap = _caller->map();
1239   assert(inmap != NULL, "must have inmap");
1240   // In case of null check on receiver above
1241   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1242 
1243   uint i;
1244 
1245   // Pass thru the predefined input parameters.
1246   for (i = 0; i < TypeFunc::Parms; i++) {
1247     map()->init_req(i, inmap->in(i));
1248   }
1249 
1250   if (depth() == 1) {
1251     assert(map()->memory()->Opcode() == Op_Parm, "");
1252     // Insert the memory aliasing node
1253     set_all_memory(reset_memory());
1254   }
1255   assert(merged_memory(), "");
1256 
1257   // Now add the locals which are initially bound to arguments:
1258   uint arg_size = tf()->domain_sig()->cnt();
1259   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1260   for (i = TypeFunc::Parms; i < arg_size; i++) {
1261     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1262   }
1263 
1264   // Clear out the rest of the map (locals and stack)
1265   for (i = arg_size; i < len; i++) {
1266     map()->init_req(i, top());
1267   }
1268 
1269   SafePointNode* entry_map = stop();
1270   return entry_map;
1271 }
1272 
1273 //-----------------------------do_method_entry--------------------------------
1274 // Emit any code needed in the pseudo-block before BCI zero.
1275 // The main thing to do is lock the receiver of a synchronized method.
1276 void Parse::do_method_entry() {
1277   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1278   set_sp(0);                      // Java Stack Pointer
1279 
1280   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1281 
1282   if (C->env()->dtrace_method_probes()) {
1283     make_dtrace_method_entry(method());
1284   }
1285 
1286   // If the method is synchronized, we need to construct a lock node, attach
1287   // it to the Start node, and pin it there.
1288   if (method()->is_synchronized()) {
1289     // Insert a FastLockNode right after the Start which takes as arguments
1290     // the current thread pointer, the "this" pointer & the address of the
1291     // stack slot pair used for the lock.  The "this" pointer is a projection
1292     // off the start node, but the locking spot has to be constructed by
1293     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1294     // becomes the second argument to the FastLockNode call.  The
1295     // FastLockNode becomes the new control parent to pin it to the start.
1296 
1297     // Setup Object Pointer
1298     Node *lock_obj = NULL;
1299     if(method()->is_static()) {
1300       ciInstance* mirror = _method->holder()->java_mirror();
1301       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1302       lock_obj = makecon(t_lock);
1303     } else {                  // Else pass the "this" pointer,
1304       lock_obj = local(0);    // which is Parm0 from StartNode
1305     }
1306     // Clear out dead values from the debug info.
1307     kill_dead_locals();
1308     // Build the FastLockNode
1309     _synch_lock = shared_lock(lock_obj);
1310   }
1311 
1312   // Feed profiling data for parameters to the type system so it can
1313   // propagate it as speculative types
1314   record_profiled_parameters_for_speculation();
1315 
1316   if (depth() == 1) {
1317     increment_and_test_invocation_counter(Tier2CompileThreshold);
1318   }
1319 }
1320 
1321 //------------------------------init_blocks------------------------------------
1322 // Initialize our parser map to contain the types/monitors at method entry.
1323 void Parse::init_blocks() {
1324   // Create the blocks.
1325   _block_count = flow()->block_count();
1326   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1327 
1328   // Initialize the structs.
1329   for (int rpo = 0; rpo < block_count(); rpo++) {
1330     Block* block = rpo_at(rpo);
1331     new(block) Block(this, rpo);
1332   }
1333 
1334   // Collect predecessor and successor information.
1335   for (int rpo = 0; rpo < block_count(); rpo++) {
1336     Block* block = rpo_at(rpo);
1337     block->init_graph(this);
1338   }
1339 }
1340 
1341 //-------------------------------init_node-------------------------------------
1342 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1343   _flow = outer->flow()->rpo_at(rpo);
1344   _pred_count = 0;
1345   _preds_parsed = 0;
1346   _count = 0;
1347   _is_parsed = false;
1348   _is_handler = false;
1349   _has_merged_backedge = false;
1350   _start_map = NULL;
1351   _has_predicates = false;
1352   _num_successors = 0;
1353   _all_successors = 0;
1354   _successors = NULL;
1355   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1356   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1357   assert(_live_locals.size() == 0, "sanity");
1358 
1359   // entry point has additional predecessor
1360   if (flow()->is_start())  _pred_count++;
1361   assert(flow()->is_start() == (this == outer->start_block()), "");
1362 }
1363 
1364 //-------------------------------init_graph------------------------------------
1365 void Parse::Block::init_graph(Parse* outer) {
1366   // Create the successor list for this parser block.
1367   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1368   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1369   int ns = tfs->length();
1370   int ne = tfe->length();
1371   _num_successors = ns;
1372   _all_successors = ns+ne;
1373   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1374   int p = 0;
1375   for (int i = 0; i < ns+ne; i++) {
1376     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1377     Block* block2 = outer->rpo_at(tf2->rpo());
1378     _successors[i] = block2;
1379 
1380     // Accumulate pred info for the other block, too.
1381     if (i < ns) {
1382       block2->_pred_count++;
1383     } else {
1384       block2->_is_handler = true;
1385     }
1386 
1387     #ifdef ASSERT
1388     // A block's successors must be distinguishable by BCI.
1389     // That is, no bytecode is allowed to branch to two different
1390     // clones of the same code location.
1391     for (int j = 0; j < i; j++) {
1392       Block* block1 = _successors[j];
1393       if (block1 == block2)  continue;  // duplicates are OK
1394       assert(block1->start() != block2->start(), "successors have unique bcis");
1395     }
1396     #endif
1397   }
1398 
1399   // Note: We never call next_path_num along exception paths, so they
1400   // never get processed as "ready".  Also, the input phis of exception
1401   // handlers get specially processed, so that
1402 }
1403 
1404 //---------------------------successor_for_bci---------------------------------
1405 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1406   for (int i = 0; i < all_successors(); i++) {
1407     Block* block2 = successor_at(i);
1408     if (block2->start() == bci)  return block2;
1409   }
1410   // We can actually reach here if ciTypeFlow traps out a block
1411   // due to an unloaded class, and concurrently with compilation the
1412   // class is then loaded, so that a later phase of the parser is
1413   // able to see more of the bytecode CFG.  Or, the flow pass and
1414   // the parser can have a minor difference of opinion about executability
1415   // of bytecodes.  For example, "obj.field = null" is executable even
1416   // if the field's type is an unloaded class; the flow pass used to
1417   // make a trap for such code.
1418   return NULL;
1419 }
1420 
1421 
1422 //-----------------------------stack_type_at-----------------------------------
1423 const Type* Parse::Block::stack_type_at(int i) const {
1424   return get_type(flow()->stack_type_at(i));
1425 }
1426 
1427 
1428 //-----------------------------local_type_at-----------------------------------
1429 const Type* Parse::Block::local_type_at(int i) const {
1430   // Make dead locals fall to bottom.
1431   if (_live_locals.size() == 0) {
1432     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1433     // This bitmap can be zero length if we saw a breakpoint.
1434     // In such cases, pretend they are all live.
1435     ((Block*)this)->_live_locals = live_locals;
1436   }
1437   if (_live_locals.size() > 0 && !_live_locals.at(i))
1438     return Type::BOTTOM;
1439 
1440   return get_type(flow()->local_type_at(i));
1441 }
1442 
1443 
1444 #ifndef PRODUCT
1445 
1446 //----------------------------name_for_bc--------------------------------------
1447 // helper method for BytecodeParseHistogram
1448 static const char* name_for_bc(int i) {
1449   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1450 }
1451 
1452 //----------------------------BytecodeParseHistogram------------------------------------
1453 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1454   _parser   = p;
1455   _compiler = c;
1456   if( ! _initialized ) { _initialized = true; reset(); }
1457 }
1458 
1459 //----------------------------current_count------------------------------------
1460 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1461   switch( bph_type ) {
1462   case BPH_transforms: { return _parser->gvn().made_progress(); }
1463   case BPH_values:     { return _parser->gvn().made_new_values(); }
1464   default: { ShouldNotReachHere(); return 0; }
1465   }
1466 }
1467 
1468 //----------------------------initialized--------------------------------------
1469 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1470 
1471 //----------------------------reset--------------------------------------------
1472 void Parse::BytecodeParseHistogram::reset() {
1473   int i = Bytecodes::number_of_codes;
1474   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1475 }
1476 
1477 //----------------------------set_initial_state--------------------------------
1478 // Record info when starting to parse one bytecode
1479 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1480   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1481     _initial_bytecode    = bc;
1482     _initial_node_count  = _compiler->unique();
1483     _initial_transforms  = current_count(BPH_transforms);
1484     _initial_values      = current_count(BPH_values);
1485   }
1486 }
1487 
1488 //----------------------------record_change--------------------------------
1489 // Record results of parsing one bytecode
1490 void Parse::BytecodeParseHistogram::record_change() {
1491   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1492     ++_bytecodes_parsed[_initial_bytecode];
1493     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1494     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1495     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1496   }
1497 }
1498 
1499 
1500 //----------------------------print--------------------------------------------
1501 void Parse::BytecodeParseHistogram::print(float cutoff) {
1502   ResourceMark rm;
1503   // print profile
1504   int total  = 0;
1505   int i      = 0;
1506   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1507   int abs_sum = 0;
1508   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1509   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1510   if( total == 0 ) { return; }
1511   tty->cr();
1512   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1513   tty->print_cr("relative:  percentage contribution to compiled nodes");
1514   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1515   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1516   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1517   tty->print_cr("values  :  Average number of node values improved per bytecode");
1518   tty->print_cr("name    :  Bytecode name");
1519   tty->cr();
1520   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1521   tty->print_cr("----------------------------------------------------------------------");
1522   while (--i > 0) {
1523     int       abs = _bytecodes_parsed[i];
1524     float     rel = abs * 100.0F / total;
1525     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1526     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1527     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1528     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1529     if (cutoff <= rel) {
1530       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1531       abs_sum += abs;
1532     }
1533   }
1534   tty->print_cr("----------------------------------------------------------------------");
1535   float rel_sum = abs_sum * 100.0F / total;
1536   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1537   tty->print_cr("----------------------------------------------------------------------");
1538   tty->cr();
1539 }
1540 #endif
1541 
1542 //----------------------------load_state_from----------------------------------
1543 // Load block/map/sp.  But not do not touch iter/bci.
1544 void Parse::load_state_from(Block* block) {
1545   set_block(block);
1546   // load the block's JVM state:
1547   set_map(block->start_map());
1548   set_sp( block->start_sp());
1549 }
1550 
1551 
1552 //-----------------------------record_state------------------------------------
1553 void Parse::Block::record_state(Parse* p) {
1554   assert(!is_merged(), "can only record state once, on 1st inflow");
1555   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1556   set_start_map(p->stop());
1557 }
1558 
1559 
1560 //------------------------------do_one_block-----------------------------------
1561 void Parse::do_one_block() {
1562   if (TraceOptoParse) {
1563     Block *b = block();
1564     int ns = b->num_successors();
1565     int nt = b->all_successors();
1566 
1567     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1568                   block()->rpo(), block()->start(), block()->limit());
1569     for (int i = 0; i < nt; i++) {
1570       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1571     }
1572     if (b->is_loop_head()) tty->print("  lphd");
1573     tty->cr();
1574   }
1575 
1576   assert(block()->is_merged(), "must be merged before being parsed");
1577   block()->mark_parsed();
1578 
1579   // Set iterator to start of block.
1580   iter().reset_to_bci(block()->start());
1581 
1582   CompileLog* log = C->log();
1583 
1584   // Parse bytecodes
1585   while (!stopped() && !failing()) {
1586     iter().next();
1587 
1588     // Learn the current bci from the iterator:
1589     set_parse_bci(iter().cur_bci());
1590 
1591     if (bci() == block()->limit()) {
1592       // Do not walk into the next block until directed by do_all_blocks.
1593       merge(bci());
1594       break;
1595     }
1596     assert(bci() < block()->limit(), "bci still in block");
1597 
1598     if (log != NULL) {
1599       // Output an optional context marker, to help place actions
1600       // that occur during parsing of this BC.  If there is no log
1601       // output until the next context string, this context string
1602       // will be silently ignored.
1603       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1604     }
1605 
1606     if (block()->has_trap_at(bci())) {
1607       // We must respect the flow pass's traps, because it will refuse
1608       // to produce successors for trapping blocks.
1609       int trap_index = block()->flow()->trap_index();
1610       assert(trap_index != 0, "trap index must be valid");
1611       uncommon_trap(trap_index);
1612       break;
1613     }
1614 
1615     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1616 
1617 #ifdef ASSERT
1618     int pre_bc_sp = sp();
1619     int inputs, depth;
1620     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1621     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1622 #endif //ASSERT
1623 
1624     do_one_bytecode();
1625 
1626     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1627            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1628 
1629     do_exceptions();
1630 
1631     NOT_PRODUCT( parse_histogram()->record_change(); );
1632 
1633     if (log != NULL)
1634       log->clear_context();  // skip marker if nothing was printed
1635 
1636     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1637     // successor which is typically made ready by visiting this bytecode.
1638     // If the successor has several predecessors, then it is a merge
1639     // point, starts a new basic block, and is handled like other basic blocks.
1640   }
1641 }
1642 
1643 
1644 //------------------------------merge------------------------------------------
1645 void Parse::set_parse_bci(int bci) {
1646   set_bci(bci);
1647   Node_Notes* nn = C->default_node_notes();
1648   if (nn == NULL)  return;
1649 
1650   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1651   if (!DebugInlinedCalls && depth() > 1) {
1652     return;
1653   }
1654 
1655   // Update the JVMS annotation, if present.
1656   JVMState* jvms = nn->jvms();
1657   if (jvms != NULL && jvms->bci() != bci) {
1658     // Update the JVMS.
1659     jvms = jvms->clone_shallow(C);
1660     jvms->set_bci(bci);
1661     nn->set_jvms(jvms);
1662   }
1663 }
1664 
1665 //------------------------------merge------------------------------------------
1666 // Merge the current mapping into the basic block starting at bci
1667 void Parse::merge(int target_bci) {
1668   Block* target = successor_for_bci(target_bci);
1669   if (target == NULL) { handle_missing_successor(target_bci); return; }
1670   assert(!target->is_ready(), "our arrival must be expected");
1671   int pnum = target->next_path_num();
1672   merge_common(target, pnum);
1673 }
1674 
1675 //-------------------------merge_new_path--------------------------------------
1676 // Merge the current mapping into the basic block, using a new path
1677 void Parse::merge_new_path(int target_bci) {
1678   Block* target = successor_for_bci(target_bci);
1679   if (target == NULL) { handle_missing_successor(target_bci); return; }
1680   assert(!target->is_ready(), "new path into frozen graph");
1681   int pnum = target->add_new_path();
1682   merge_common(target, pnum);
1683 }
1684 
1685 //-------------------------merge_exception-------------------------------------
1686 // Merge the current mapping into the basic block starting at bci
1687 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1688 void Parse::merge_exception(int target_bci) {
1689   assert(sp() == 1, "must have only the throw exception on the stack");
1690   Block* target = successor_for_bci(target_bci);
1691   if (target == NULL) { handle_missing_successor(target_bci); return; }
1692   assert(target->is_handler(), "exceptions are handled by special blocks");
1693   int pnum = target->add_new_path();
1694   merge_common(target, pnum);
1695 }
1696 
1697 //--------------------handle_missing_successor---------------------------------
1698 void Parse::handle_missing_successor(int target_bci) {
1699 #ifndef PRODUCT
1700   Block* b = block();
1701   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1702   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1703 #endif
1704   ShouldNotReachHere();
1705 }
1706 
1707 //--------------------------merge_common---------------------------------------
1708 void Parse::merge_common(Parse::Block* target, int pnum) {
1709   if (TraceOptoParse) {
1710     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1711   }
1712 
1713   // Zap extra stack slots to top
1714   assert(sp() == target->start_sp(), "");
1715   clean_stack(sp());
1716 
1717   // Check for merge conflicts involving value types
1718   JVMState* old_jvms = map()->jvms();
1719   int old_bci = bci();
1720   JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1721   tmp_jvms->set_should_reexecute(true);
1722   map()->set_jvms(tmp_jvms);
1723   // Execution needs to restart a the next bytecode (entry of next
1724   // block)
1725   if (target->is_merged() ||
1726       pnum > PhiNode::Input ||
1727       target->is_handler() ||
1728       target->is_loop_head()) {
1729     set_parse_bci(target->start());
1730     for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1731       Node* n = map()->in(j);                 // Incoming change to target state.
1732       const Type* t = NULL;
1733       if (tmp_jvms->is_loc(j)) {
1734         t = target->local_type_at(j - tmp_jvms->locoff());
1735       } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1736         t = target->stack_type_at(j - tmp_jvms->stkoff());
1737       }
1738       if (t != NULL && t != Type::BOTTOM) {
1739         if (n->is_ValueType() && !t->isa_valuetype()) {
1740           // Allocate value type in src block to be able to merge it with oop in target block
1741           map()->set_req(j, ValueTypePtrNode::make_from_value_type(this, n->as_ValueType(), true));
1742         }
1743         assert(!t->isa_valuetype() || n->is_ValueType(), "inconsistent typeflow info");
1744       }
1745     }
1746   }
1747   map()->set_jvms(old_jvms);
1748   set_parse_bci(old_bci);
1749 
1750   if (!target->is_merged()) {   // No prior mapping at this bci
1751     if (TraceOptoParse) { tty->print(" with empty state");  }
1752 
1753     // If this path is dead, do not bother capturing it as a merge.
1754     // It is "as if" we had 1 fewer predecessors from the beginning.
1755     if (stopped()) {
1756       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1757       return;
1758     }
1759 
1760     // Make a region if we know there are multiple or unpredictable inputs.
1761     // (Also, if this is a plain fall-through, we might see another region,
1762     // which must not be allowed into this block's map.)
1763     if (pnum > PhiNode::Input         // Known multiple inputs.
1764         || target->is_handler()       // These have unpredictable inputs.
1765         || target->is_loop_head()     // Known multiple inputs
1766         || control()->is_Region()) {  // We must hide this guy.
1767 
1768       int current_bci = bci();
1769       set_parse_bci(target->start()); // Set target bci
1770       if (target->is_SEL_head()) {
1771         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1772         if (target->start() == 0) {
1773           // Add loop predicate for the special case when
1774           // there are backbranches to the method entry.
1775           add_predicate();
1776         }
1777       }
1778       // Add a Region to start the new basic block.  Phis will be added
1779       // later lazily.
1780       int edges = target->pred_count();
1781       if (edges < pnum)  edges = pnum;  // might be a new path!
1782       RegionNode *r = new RegionNode(edges+1);
1783       gvn().set_type(r, Type::CONTROL);
1784       record_for_igvn(r);
1785       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1786       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1787       r->init_req(pnum, control());
1788       set_control(r);
1789       set_parse_bci(current_bci); // Restore bci
1790     }
1791 
1792     // Convert the existing Parser mapping into a mapping at this bci.
1793     store_state_to(target);
1794     assert(target->is_merged(), "do not come here twice");
1795 
1796   } else {                      // Prior mapping at this bci
1797     if (TraceOptoParse) {  tty->print(" with previous state"); }
1798 #ifdef ASSERT
1799     if (target->is_SEL_head()) {
1800       target->mark_merged_backedge(block());
1801     }
1802 #endif
1803 
1804     // We must not manufacture more phis if the target is already parsed.
1805     bool nophi = target->is_parsed();
1806 
1807     SafePointNode* newin = map();// Hang on to incoming mapping
1808     Block* save_block = block(); // Hang on to incoming block;
1809     load_state_from(target);    // Get prior mapping
1810 
1811     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1812     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1813     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1814     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1815 
1816     // Iterate over my current mapping and the old mapping.
1817     // Where different, insert Phi functions.
1818     // Use any existing Phi functions.
1819     assert(control()->is_Region(), "must be merging to a region");
1820     RegionNode* r = control()->as_Region();
1821 
1822     // Compute where to merge into
1823     // Merge incoming control path
1824     r->init_req(pnum, newin->control());
1825 
1826     if (pnum == 1) {            // Last merge for this Region?
1827       if (!block()->flow()->is_irreducible_entry()) {
1828         Node* result = _gvn.transform_no_reclaim(r);
1829         if (r != result && TraceOptoParse) {
1830           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1831         }
1832       }
1833       record_for_igvn(r);
1834     }
1835 
1836     // Update all the non-control inputs to map:
1837     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1838     bool check_elide_phi = target->is_SEL_backedge(save_block);
1839     bool last_merge = (pnum == PhiNode::Input);
1840     for (uint j = 1; j < newin->req(); j++) {
1841       Node* m = map()->in(j);   // Current state of target.
1842       Node* n = newin->in(j);   // Incoming change to target state.
1843       PhiNode* phi;
1844       if (m->is_Phi() && m->as_Phi()->region() == r) {
1845         phi = m->as_Phi();
1846       } else if (m->is_ValueType() && m->as_ValueType()->has_phi_inputs(r)){
1847         phi = m->as_ValueType()->get_oop()->as_Phi();
1848       } else {
1849         phi = NULL;
1850       }
1851       if (m != n) {             // Different; must merge
1852         switch (j) {
1853         // Frame pointer and Return Address never changes
1854         case TypeFunc::FramePtr:// Drop m, use the original value
1855         case TypeFunc::ReturnAdr:
1856           break;
1857         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1858           assert(phi == NULL, "the merge contains phis, not vice versa");
1859           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1860           continue;
1861         default:                // All normal stuff
1862           if (phi == NULL) {
1863             const JVMState* jvms = map()->jvms();
1864             if (EliminateNestedLocks &&
1865                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1866               // BoxLock nodes are not commoning.
1867               // Use old BoxLock node as merged box.
1868               assert(newin->jvms()->is_monitor_box(j), "sanity");
1869               // This assert also tests that nodes are BoxLock.
1870               assert(BoxLockNode::same_slot(n, m), "sanity");
1871               C->gvn_replace_by(n, m);
1872             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1873               phi = ensure_phi(j, nophi);
1874             }
1875           }
1876           break;
1877         }
1878       }
1879       // At this point, n might be top if:
1880       //  - there is no phi (because TypeFlow detected a conflict), or
1881       //  - the corresponding control edges is top (a dead incoming path)
1882       // It is a bug if we create a phi which sees a garbage value on a live path.
1883 
1884       // Merging two value types?
1885       if (phi != NULL && n->is_ValueType()) {
1886         // Reload current state because it may have been updated by ensure_phi
1887         m = map()->in(j);
1888         ValueTypeNode* vtm = m->as_ValueType(); // Current value type
1889         ValueTypeNode* vtn = n->as_ValueType(); // Incoming value type
1890         assert(vtm->get_oop() == phi, "Value type should have Phi input");
1891         if (TraceOptoParse) {
1892 #ifdef ASSERT
1893           tty->print_cr("\nMerging value types");
1894           tty->print_cr("Current:");
1895           vtm->dump(2);
1896           tty->print_cr("Incoming:");
1897           vtn->dump(2);
1898           tty->cr();
1899 #endif
1900         }
1901         // Do the merge
1902         vtm->merge_with(&_gvn, vtn, pnum, last_merge);
1903         if (last_merge) {
1904           map()->set_req(j, _gvn.transform_no_reclaim(vtm));
1905           record_for_igvn(vtm);
1906         }
1907       } else if (phi != NULL) {
1908         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1909         assert(phi->region() == r, "");
1910         phi->set_req(pnum, n);  // Then add 'n' to the merge
1911         if (last_merge) {
1912           // Last merge for this Phi.
1913           // So far, Phis have had a reasonable type from ciTypeFlow.
1914           // Now _gvn will join that with the meet of current inputs.
1915           // BOTTOM is never permissible here, 'cause pessimistically
1916           // Phis of pointers cannot lose the basic pointer type.
1917           debug_only(const Type* bt1 = phi->bottom_type());
1918           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1919           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1920           debug_only(const Type* bt2 = phi->bottom_type());
1921           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1922           record_for_igvn(phi);
1923         }
1924       }
1925     } // End of for all values to be merged
1926 
1927     if (last_merge && !r->in(0)) {         // The occasional useless Region
1928       assert(control() == r, "");
1929       set_control(r->nonnull_req());
1930     }
1931 
1932     map()->merge_replaced_nodes_with(newin);
1933 
1934     // newin has been subsumed into the lazy merge, and is now dead.
1935     set_block(save_block);
1936 
1937     stop();                     // done with this guy, for now
1938   }
1939 
1940   if (TraceOptoParse) {
1941     tty->print_cr(" on path %d", pnum);
1942   }
1943 
1944   // Done with this parser state.
1945   assert(stopped(), "");
1946 }
1947 
1948 
1949 //--------------------------merge_memory_edges---------------------------------
1950 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1951   // (nophi means we must not create phis, because we already parsed here)
1952   assert(n != NULL, "");
1953   // Merge the inputs to the MergeMems
1954   MergeMemNode* m = merged_memory();
1955 
1956   assert(control()->is_Region(), "must be merging to a region");
1957   RegionNode* r = control()->as_Region();
1958 
1959   PhiNode* base = NULL;
1960   MergeMemNode* remerge = NULL;
1961   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1962     Node *p = mms.force_memory();
1963     Node *q = mms.memory2();
1964     if (mms.is_empty() && nophi) {
1965       // Trouble:  No new splits allowed after a loop body is parsed.
1966       // Instead, wire the new split into a MergeMem on the backedge.
1967       // The optimizer will sort it out, slicing the phi.
1968       if (remerge == NULL) {
1969         guarantee(base != NULL, "");
1970         assert(base->in(0) != NULL, "should not be xformed away");
1971         remerge = MergeMemNode::make(base->in(pnum));
1972         gvn().set_type(remerge, Type::MEMORY);
1973         base->set_req(pnum, remerge);
1974       }
1975       remerge->set_memory_at(mms.alias_idx(), q);
1976       continue;
1977     }
1978     assert(!q->is_MergeMem(), "");
1979     PhiNode* phi;
1980     if (p != q) {
1981       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1982     } else {
1983       if (p->is_Phi() && p->as_Phi()->region() == r)
1984         phi = p->as_Phi();
1985       else
1986         phi = NULL;
1987     }
1988     // Insert q into local phi
1989     if (phi != NULL) {
1990       assert(phi->region() == r, "");
1991       p = phi;
1992       phi->set_req(pnum, q);
1993       if (mms.at_base_memory()) {
1994         base = phi;  // delay transforming it
1995       } else if (pnum == 1) {
1996         record_for_igvn(phi);
1997         p = _gvn.transform_no_reclaim(phi);
1998       }
1999       mms.set_memory(p);// store back through the iterator
2000     }
2001   }
2002   // Transform base last, in case we must fiddle with remerging.
2003   if (base != NULL && pnum == 1) {
2004     record_for_igvn(base);
2005     m->set_base_memory( _gvn.transform_no_reclaim(base) );
2006   }
2007 }
2008 
2009 
2010 //------------------------ensure_phis_everywhere-------------------------------
2011 void Parse::ensure_phis_everywhere() {
2012   ensure_phi(TypeFunc::I_O);
2013 
2014   // Ensure a phi on all currently known memories.
2015   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
2016     ensure_memory_phi(mms.alias_idx());
2017     debug_only(mms.set_memory());  // keep the iterator happy
2018   }
2019 
2020   // Note:  This is our only chance to create phis for memory slices.
2021   // If we miss a slice that crops up later, it will have to be
2022   // merged into the base-memory phi that we are building here.
2023   // Later, the optimizer will comb out the knot, and build separate
2024   // phi-loops for each memory slice that matters.
2025 
2026   // Monitors must nest nicely and not get confused amongst themselves.
2027   // Phi-ify everything up to the monitors, though.
2028   uint monoff = map()->jvms()->monoff();
2029   uint nof_monitors = map()->jvms()->nof_monitors();
2030 
2031   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
2032   bool check_elide_phi = block()->is_SEL_head();
2033   for (uint i = TypeFunc::Parms; i < monoff; i++) {
2034     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
2035       ensure_phi(i);
2036     }
2037   }
2038 
2039   // Even monitors need Phis, though they are well-structured.
2040   // This is true for OSR methods, and also for the rare cases where
2041   // a monitor object is the subject of a replace_in_map operation.
2042   // See bugs 4426707 and 5043395.
2043   for (uint m = 0; m < nof_monitors; m++) {
2044     ensure_phi(map()->jvms()->monitor_obj_offset(m));
2045   }
2046 }
2047 
2048 
2049 //-----------------------------add_new_path------------------------------------
2050 // Add a previously unaccounted predecessor to this block.
2051 int Parse::Block::add_new_path() {
2052   // If there is no map, return the lowest unused path number.
2053   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
2054 
2055   SafePointNode* map = start_map();
2056   if (!map->control()->is_Region())
2057     return pred_count()+1;  // there may be a region some day
2058   RegionNode* r = map->control()->as_Region();
2059 
2060   // Add new path to the region.
2061   uint pnum = r->req();
2062   r->add_req(NULL);
2063 
2064   for (uint i = 1; i < map->req(); i++) {
2065     Node* n = map->in(i);
2066     if (i == TypeFunc::Memory) {
2067       // Ensure a phi on all currently known memories.
2068       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2069         Node* phi = mms.memory();
2070         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2071           assert(phi->req() == pnum, "must be same size as region");
2072           phi->add_req(NULL);
2073         }
2074       }
2075     } else {
2076       if (n->is_Phi() && n->as_Phi()->region() == r) {
2077         assert(n->req() == pnum, "must be same size as region");
2078         n->add_req(NULL);
2079       } else if (n->is_ValueType() && n->as_ValueType()->has_phi_inputs(r)) {
2080         n->as_ValueType()->add_new_path(r);
2081       }
2082     }
2083   }
2084 
2085   return pnum;
2086 }
2087 
2088 //------------------------------ensure_phi-------------------------------------
2089 // Turn the idx'th entry of the current map into a Phi
2090 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2091   SafePointNode* map = this->map();
2092   Node* region = map->control();
2093   assert(region->is_Region(), "");
2094 
2095   Node* o = map->in(idx);
2096   assert(o != NULL, "");
2097 
2098   if (o == top())  return NULL; // TOP always merges into TOP
2099 
2100   if (o->is_Phi() && o->as_Phi()->region() == region) {
2101     return o->as_Phi();
2102   }
2103   ValueTypeBaseNode* vt = o->isa_ValueType();
2104   if (vt != NULL && vt->has_phi_inputs(region)) {
2105     return vt->get_oop()->as_Phi();
2106   }
2107 
2108   // Now use a Phi here for merging
2109   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2110   const JVMState* jvms = map->jvms();
2111   const Type* t = NULL;
2112   if (jvms->is_loc(idx)) {
2113     t = block()->local_type_at(idx - jvms->locoff());
2114   } else if (jvms->is_stk(idx)) {
2115     t = block()->stack_type_at(idx - jvms->stkoff());
2116   } else if (jvms->is_mon(idx)) {
2117     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2118     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2119   } else if ((uint)idx < TypeFunc::Parms) {
2120     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2121   } else {
2122     assert(false, "no type information for this phi");
2123   }
2124 
2125   // If the type falls to bottom, then this must be a local that
2126   // is already dead or is mixing ints and oops or some such.
2127   // Forcing it to top makes it go dead.
2128   if (t == Type::BOTTOM) {
2129     map->set_req(idx, top());
2130     return NULL;
2131   }
2132 
2133   // Do not create phis for top either.
2134   // A top on a non-null control flow must be an unused even after the.phi.
2135   if (t == Type::TOP || t == Type::HALF) {
2136     map->set_req(idx, top());
2137     return NULL;
2138   }
2139 
2140   if (vt != NULL) {
2141     // Value types are merged by merging their field values.
2142     // Create a cloned ValueTypeNode with phi inputs that
2143     // represents the merged value type and update the map.
2144     vt = vt->clone_with_phis(&_gvn, region);
2145     map->set_req(idx, vt);
2146     return vt->get_oop()->as_Phi();
2147   } else {
2148     PhiNode* phi = PhiNode::make(region, o, t);
2149     gvn().set_type(phi, t);
2150     if (C->do_escape_analysis()) record_for_igvn(phi);
2151     map->set_req(idx, phi);
2152     return phi;
2153   }
2154 }
2155 
2156 //--------------------------ensure_memory_phi----------------------------------
2157 // Turn the idx'th slice of the current memory into a Phi
2158 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2159   MergeMemNode* mem = merged_memory();
2160   Node* region = control();
2161   assert(region->is_Region(), "");
2162 
2163   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2164   assert(o != NULL && o != top(), "");
2165 
2166   PhiNode* phi;
2167   if (o->is_Phi() && o->as_Phi()->region() == region) {
2168     phi = o->as_Phi();
2169     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2170       // clone the shared base memory phi to make a new memory split
2171       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2172       const Type* t = phi->bottom_type();
2173       const TypePtr* adr_type = C->get_adr_type(idx);
2174       phi = phi->slice_memory(adr_type);
2175       gvn().set_type(phi, t);
2176     }
2177     return phi;
2178   }
2179 
2180   // Now use a Phi here for merging
2181   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2182   const Type* t = o->bottom_type();
2183   const TypePtr* adr_type = C->get_adr_type(idx);
2184   phi = PhiNode::make(region, o, t, adr_type);
2185   gvn().set_type(phi, t);
2186   if (idx == Compile::AliasIdxBot)
2187     mem->set_base_memory(phi);
2188   else
2189     mem->set_memory_at(idx, phi);
2190   return phi;
2191 }
2192 
2193 //------------------------------call_register_finalizer-----------------------
2194 // Check the klass of the receiver and call register_finalizer if the
2195 // class need finalization.
2196 void Parse::call_register_finalizer() {
2197   Node* receiver = local(0);
2198   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
2199          "must have non-null instance type");
2200 
2201   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2202   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
2203     // The type isn't known exactly so see if CHA tells us anything.
2204     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2205     if (!Dependencies::has_finalizable_subclass(ik)) {
2206       // No finalizable subclasses so skip the dynamic check.
2207       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2208       return;
2209     }
2210   }
2211 
2212   // Insert a dynamic test for whether the instance needs
2213   // finalization.  In general this will fold up since the concrete
2214   // class is often visible so the access flags are constant.
2215   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2216   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2217 
2218   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2219   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2220 
2221   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2222   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2223   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2224 
2225   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2226 
2227   RegionNode* result_rgn = new RegionNode(3);
2228   record_for_igvn(result_rgn);
2229 
2230   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2231   result_rgn->init_req(1, skip_register);
2232 
2233   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2234   set_control(needs_register);
2235   if (stopped()) {
2236     // There is no slow path.
2237     result_rgn->init_req(2, top());
2238   } else {
2239     Node *call = make_runtime_call(RC_NO_LEAF,
2240                                    OptoRuntime::register_finalizer_Type(),
2241                                    OptoRuntime::register_finalizer_Java(),
2242                                    NULL, TypePtr::BOTTOM,
2243                                    receiver);
2244     make_slow_call_ex(call, env()->Throwable_klass(), true);
2245 
2246     Node* fast_io  = call->in(TypeFunc::I_O);
2247     Node* fast_mem = call->in(TypeFunc::Memory);
2248     // These two phis are pre-filled with copies of of the fast IO and Memory
2249     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2250     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2251 
2252     result_rgn->init_req(2, control());
2253     io_phi    ->init_req(2, i_o());
2254     mem_phi   ->init_req(2, reset_memory());
2255 
2256     set_all_memory( _gvn.transform(mem_phi) );
2257     set_i_o(        _gvn.transform(io_phi) );
2258   }
2259 
2260   set_control( _gvn.transform(result_rgn) );
2261 }
2262 
2263 // Add check to deoptimize if RTM state is not ProfileRTM
2264 void Parse::rtm_deopt() {
2265 #if INCLUDE_RTM_OPT
2266   if (C->profile_rtm()) {
2267     assert(C->method() != NULL, "only for normal compilations");
2268     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2269     assert(depth() == 1, "generate check only for main compiled method");
2270 
2271     // Set starting bci for uncommon trap.
2272     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2273 
2274     // Load the rtm_state from the MethodData.
2275     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2276     Node* mdo = makecon(adr_type);
2277     int offset = MethodData::rtm_state_offset_in_bytes();
2278     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2279     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2280 
2281     // Separate Load from Cmp by Opaque.
2282     // In expand_macro_nodes() it will be replaced either
2283     // with this load when there are locks in the code
2284     // or with ProfileRTM (cmp->in(2)) otherwise so that
2285     // the check will fold.
2286     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2287     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2288     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2289     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2290     // Branch to failure if state was changed
2291     { BuildCutout unless(this, tst, PROB_ALWAYS);
2292       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2293                     Deoptimization::Action_make_not_entrant);
2294     }
2295   }
2296 #endif
2297 }
2298 
2299 void Parse::decrement_age() {
2300   MethodCounters* mc = method()->ensure_method_counters();
2301   if (mc == NULL) {
2302     C->record_failure("Must have MCs");
2303     return;
2304   }
2305   assert(!is_osr_parse(), "Not doing this for OSRs");
2306 
2307   // Set starting bci for uncommon trap.
2308   set_parse_bci(0);
2309 
2310   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2311   Node* mc_adr = makecon(adr_type);
2312   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2313   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2314   Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2315   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2316   Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2317   Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2318   { BuildCutout unless(this, tst, PROB_ALWAYS);
2319     uncommon_trap(Deoptimization::Reason_tenured,
2320                   Deoptimization::Action_make_not_entrant);
2321   }
2322 }
2323 
2324 //------------------------------return_current---------------------------------
2325 // Append current _map to _exit_return
2326 void Parse::return_current(Node* value) {
2327   if (tf()->returns_value_type_as_fields()) {
2328     assert(false, "Fix this with the calling convention changes");
2329     // Value type is returned as fields, make sure non-flattened value type fields are allocated
2330     // value = value->as_ValueType()->allocate_fields(this);
2331   }
2332 
2333   if (RegisterFinalizersAtInit &&
2334       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2335     call_register_finalizer();
2336   }
2337 
2338   // Do not set_parse_bci, so that return goo is credited to the return insn.
2339   // vreturn can trigger an allocation so vreturn can throw. Setting
2340   // the bci here breaks exception handling. Commenting this out
2341   // doesn't seem to break anything.
2342   //  set_bci(InvocationEntryBci);
2343   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2344     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2345   }
2346   if (C->env()->dtrace_method_probes()) {
2347     make_dtrace_method_exit(method());
2348   }
2349   // frame pointer is always same, already captured
2350   if (value != NULL) {
2351     Node* phi = _exits.argument(0);
2352     const TypeOopPtr* tr = phi->bottom_type()->isa_oopptr();
2353     if (value->is_ValueType() && !_caller->has_method()) {
2354       // Value type is returned as oop from root method, make sure it's allocated
2355       value = value->as_ValueType()->allocate(this)->get_oop();
2356     } else if (tr && tr->isa_instptr() && tr->klass()->is_loaded() && tr->klass()->is_interface()) {
2357       // If returning oops to an interface-return, there is a silent free
2358       // cast from oop to interface allowed by the Verifier. Make it explicit here.
2359       const TypeInstPtr* tp = value->bottom_type()->isa_instptr();
2360       if (tp && tp->klass()->is_loaded() && !tp->klass()->is_interface()) {
2361         // sharpen the type eagerly; this eases certain assert checking
2362         if (tp->higher_equal(TypeInstPtr::NOTNULL)) {
2363           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2364         }
2365         value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2366       }
2367     } else {
2368       // Handle returns of oop-arrays to an arrays-of-interface return
2369       const TypeInstPtr* phi_tip;
2370       const TypeInstPtr* val_tip;
2371       Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
2372       if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2373           val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2374         value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type()));
2375       }
2376     }
2377     phi->add_req(value);
2378   }
2379 
2380   SafePointNode* exit_return = _exits.map();
2381   exit_return->in( TypeFunc::Control  )->add_req( control() );
2382   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2383   Node *mem = exit_return->in( TypeFunc::Memory   );
2384   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2385     if (mms.is_empty()) {
2386       // get a copy of the base memory, and patch just this one input
2387       const TypePtr* adr_type = mms.adr_type(C);
2388       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2389       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2390       gvn().set_type_bottom(phi);
2391       phi->del_req(phi->req()-1);  // prepare to re-patch
2392       mms.set_memory(phi);
2393     }
2394     mms.memory()->add_req(mms.memory2());
2395   }
2396 
2397   if (_first_return) {
2398     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2399     _first_return = false;
2400   } else {
2401     _exits.map()->merge_replaced_nodes_with(map());
2402   }
2403 
2404   stop_and_kill_map();          // This CFG path dies here
2405 }
2406 
2407 
2408 //------------------------------add_safepoint----------------------------------
2409 void Parse::add_safepoint() {
2410   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2411   // after a Call (except Leaf Call) or another SafePoint.
2412   Node *proj = control();
2413   bool add_poll_param = SafePointNode::needs_polling_address_input();
2414   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2415   if( proj->is_Proj() ) {
2416     Node *n0 = proj->in(0);
2417     if( n0->is_Catch() ) {
2418       n0 = n0->in(0)->in(0);
2419       assert( n0->is_Call(), "expect a call here" );
2420     }
2421     if( n0->is_Call() ) {
2422       if( n0->as_Call()->guaranteed_safepoint() )
2423         return;
2424     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2425       return;
2426     }
2427   }
2428 
2429   // Clear out dead values from the debug info.
2430   kill_dead_locals();
2431 
2432   // Clone the JVM State
2433   SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2434 
2435   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2436   // SafePoint we need our GC state to be safe; i.e. we need all our current
2437   // write barriers (card marks) to not float down after the SafePoint so we
2438   // must read raw memory.  Likewise we need all oop stores to match the card
2439   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2440   // state on a deopt).
2441 
2442   // We do not need to WRITE the memory state after a SafePoint.  The control
2443   // edge will keep card-marks and oop-stores from floating up from below a
2444   // SafePoint and our true dependency added here will keep them from floating
2445   // down below a SafePoint.
2446 
2447   // Clone the current memory state
2448   Node* mem = MergeMemNode::make(map()->memory());
2449 
2450   mem = _gvn.transform(mem);
2451 
2452   // Pass control through the safepoint
2453   sfpnt->init_req(TypeFunc::Control  , control());
2454   // Fix edges normally used by a call
2455   sfpnt->init_req(TypeFunc::I_O      , top() );
2456   sfpnt->init_req(TypeFunc::Memory   , mem   );
2457   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2458   sfpnt->init_req(TypeFunc::FramePtr , top() );
2459 
2460   // Create a node for the polling address
2461   if( add_poll_param ) {
2462     Node *polladr;
2463     if (SafepointMechanism::uses_thread_local_poll()) {
2464       Node *thread = _gvn.transform(new ThreadLocalNode());
2465       Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(Thread::polling_page_offset())));
2466       polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
2467     } else {
2468       polladr = ConPNode::make((address)os::get_polling_page());
2469     }
2470     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2471   }
2472 
2473   // Fix up the JVM State edges
2474   add_safepoint_edges(sfpnt);
2475   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2476   set_control(transformed_sfpnt);
2477 
2478   // Provide an edge from root to safepoint.  This makes the safepoint
2479   // appear useful until the parse has completed.
2480   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2481     assert(C->root() != NULL, "Expect parse is still valid");
2482     C->root()->add_prec(transformed_sfpnt);
2483   }
2484 }
2485 
2486 #ifndef PRODUCT
2487 //------------------------show_parse_info--------------------------------------
2488 void Parse::show_parse_info() {
2489   InlineTree* ilt = NULL;
2490   if (C->ilt() != NULL) {
2491     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2492     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2493   }
2494   if (PrintCompilation && Verbose) {
2495     if (depth() == 1) {
2496       if( ilt->count_inlines() ) {
2497         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2498                      ilt->count_inline_bcs());
2499         tty->cr();
2500       }
2501     } else {
2502       if (method()->is_synchronized())         tty->print("s");
2503       if (method()->has_exception_handlers())  tty->print("!");
2504       // Check this is not the final compiled version
2505       if (C->trap_can_recompile()) {
2506         tty->print("-");
2507       } else {
2508         tty->print(" ");
2509       }
2510       method()->print_short_name();
2511       if (is_osr_parse()) {
2512         tty->print(" @ %d", osr_bci());
2513       }
2514       tty->print(" (%d bytes)",method()->code_size());
2515       if (ilt->count_inlines()) {
2516         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2517                    ilt->count_inline_bcs());
2518       }
2519       tty->cr();
2520     }
2521   }
2522   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2523     // Print that we succeeded; suppress this message on the first osr parse.
2524 
2525     if (method()->is_synchronized())         tty->print("s");
2526     if (method()->has_exception_handlers())  tty->print("!");
2527     // Check this is not the final compiled version
2528     if (C->trap_can_recompile() && depth() == 1) {
2529       tty->print("-");
2530     } else {
2531       tty->print(" ");
2532     }
2533     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2534     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2535     method()->print_short_name();
2536     if (is_osr_parse()) {
2537       tty->print(" @ %d", osr_bci());
2538     }
2539     if (ilt->caller_bci() != -1) {
2540       tty->print(" @ %d", ilt->caller_bci());
2541     }
2542     tty->print(" (%d bytes)",method()->code_size());
2543     if (ilt->count_inlines()) {
2544       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2545                  ilt->count_inline_bcs());
2546     }
2547     tty->cr();
2548   }
2549 }
2550 
2551 
2552 //------------------------------dump-------------------------------------------
2553 // Dump information associated with the bytecodes of current _method
2554 void Parse::dump() {
2555   if( method() != NULL ) {
2556     // Iterate over bytecodes
2557     ciBytecodeStream iter(method());
2558     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2559       dump_bci( iter.cur_bci() );
2560       tty->cr();
2561     }
2562   }
2563 }
2564 
2565 // Dump information associated with a byte code index, 'bci'
2566 void Parse::dump_bci(int bci) {
2567   // Output info on merge-points, cloning, and within _jsr..._ret
2568   // NYI
2569   tty->print(" bci:%d", bci);
2570 }
2571 
2572 #endif