1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/gcLocker.hpp"
  37 #include "gc/shared/strongRootsScope.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "jfr/jfrEvents.hpp"
  41 #include "logging/log.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/symbol.hpp"
  47 #include "oops/valueKlass.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/compilationPolicy.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/interfaceSupport.inline.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/safepoint.hpp"
  57 #include "runtime/safepointMechanism.inline.hpp"
  58 #include "runtime/signature.hpp"
  59 #include "runtime/stubCodeGenerator.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/sweeper.hpp"
  62 #include "runtime/synchronizer.hpp"
  63 #include "runtime/thread.inline.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/timerTrace.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/macros.hpp"
  69 #ifdef COMPILER1
  70 #include "c1/c1_globals.hpp"
  71 #endif
  72 
  73 template <typename E>
  74 static void set_current_safepoint_id(E* event, int adjustment = 0) {
  75   assert(event != NULL, "invariant");
  76   event->set_safepointId(SafepointSynchronize::safepoint_counter() + adjustment);
  77 }
  78 
  79 static void post_safepoint_begin_event(EventSafepointBegin* event,
  80                                        int thread_count,
  81                                        int critical_thread_count) {
  82   assert(event != NULL, "invariant");
  83   assert(event->should_commit(), "invariant");
  84   set_current_safepoint_id(event);
  85   event->set_totalThreadCount(thread_count);
  86   event->set_jniCriticalThreadCount(critical_thread_count);
  87   event->commit();
  88 }
  89 
  90 static void post_safepoint_cleanup_event(EventSafepointCleanup* event) {
  91   assert(event != NULL, "invariant");
  92   assert(event->should_commit(), "invariant");
  93   set_current_safepoint_id(event);
  94   event->commit();
  95 }
  96 
  97 static void post_safepoint_synchronize_event(EventSafepointStateSynchronization* event,
  98                                              int initial_number_of_threads,
  99                                              int threads_waiting_to_block,
 100                                              unsigned int iterations) {
 101   assert(event != NULL, "invariant");
 102   if (event->should_commit()) {
 103     // Group this event together with the ones committed after the counter is increased
 104     set_current_safepoint_id(event, 1);
 105     event->set_initialThreadCount(initial_number_of_threads);
 106     event->set_runningThreadCount(threads_waiting_to_block);
 107     event->set_iterations(iterations);
 108     event->commit();
 109   }
 110 }
 111 
 112 static void post_safepoint_wait_blocked_event(EventSafepointWaitBlocked* event,
 113                                               int initial_threads_waiting_to_block) {
 114   assert(event != NULL, "invariant");
 115   assert(event->should_commit(), "invariant");
 116   set_current_safepoint_id(event);
 117   event->set_runningThreadCount(initial_threads_waiting_to_block);
 118   event->commit();
 119 }
 120 
 121 static void post_safepoint_cleanup_task_event(EventSafepointCleanupTask* event,
 122                                               const char* name) {
 123   assert(event != NULL, "invariant");
 124   if (event->should_commit()) {
 125     set_current_safepoint_id(event);
 126     event->set_name(name);
 127     event->commit();
 128   }
 129 }
 130 
 131 static void post_safepoint_end_event(EventSafepointEnd* event) {
 132   assert(event != NULL, "invariant");
 133   if (event->should_commit()) {
 134     // Group this event together with the ones committed before the counter increased
 135     set_current_safepoint_id(event, -1);
 136     event->commit();
 137   }
 138 }
 139 
 140 // --------------------------------------------------------------------------------------------------
 141 // Implementation of Safepoint begin/end
 142 
 143 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
 144 volatile int  SafepointSynchronize::_waiting_to_block = 0;
 145 volatile uint64_t SafepointSynchronize::_safepoint_counter = 0;
 146 int SafepointSynchronize::_current_jni_active_count = 0;
 147 long  SafepointSynchronize::_end_of_last_safepoint = 0;
 148 int SafepointSynchronize::_defer_thr_suspend_loop_count = 4000;
 149 static const int safepoint_spin_before_yield = 2000;
 150 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
 151 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
 152 static bool timeout_error_printed = false;
 153 
 154 
 155 // Statistic related statics
 156 julong SafepointSynchronize::_coalesced_vmop_count = 0;
 157 static jlong _safepoint_begin_time = 0;
 158 static float _ts_of_current_safepoint = 0.0f;
 159 static volatile int _nof_threads_hit_polling_page = 0;
 160 
 161 // Roll all threads forward to a safepoint and suspend them all
 162 void SafepointSynchronize::begin() {
 163   EventSafepointBegin begin_event;
 164   Thread* myThread = Thread::current();
 165   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 166 
 167   if (log_is_enabled(Debug, safepoint, stats)) {
 168     _safepoint_begin_time = os::javaTimeNanos();
 169     _ts_of_current_safepoint = tty->time_stamp().seconds();
 170     _nof_threads_hit_polling_page = 0;
 171   }
 172 
 173   Universe::heap()->safepoint_synchronize_begin();
 174 
 175   // By getting the Threads_lock, we assure that no threads are about to start or
 176   // exit. It is released again in SafepointSynchronize::end().
 177   Threads_lock->lock();
 178 
 179   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 180 
 181   int nof_threads = Threads::number_of_threads();
 182 
 183   log_debug(safepoint)("Safepoint synchronization initiated. (%d threads)", nof_threads);
 184 
 185   RuntimeService::record_safepoint_begin();
 186 
 187   MutexLocker mu(Safepoint_lock);
 188 
 189   // Reset the count of active JNI critical threads
 190   _current_jni_active_count = 0;
 191 
 192   // Set number of threads to wait for, before we initiate the callbacks
 193   _waiting_to_block = nof_threads;
 194   TryingToBlock     = 0 ;
 195   int still_running = nof_threads;
 196 
 197   // Save the starting time, so that it can be compared to see if this has taken
 198   // too long to complete.
 199   jlong safepoint_limit_time = 0;
 200   timeout_error_printed = false;
 201 
 202   // Begin the process of bringing the system to a safepoint.
 203   // Java threads can be in several different states and are
 204   // stopped by different mechanisms:
 205   //
 206   //  1. Running interpreted
 207   //     The interpreter dispatch table is changed to force it to
 208   //     check for a safepoint condition between bytecodes.
 209   //  2. Running in native code
 210   //     When returning from the native code, a Java thread must check
 211   //     the safepoint _state to see if we must block.  If the
 212   //     VM thread sees a Java thread in native, it does
 213   //     not wait for this thread to block.  The order of the memory
 214   //     writes and reads of both the safepoint state and the Java
 215   //     threads state is critical.  In order to guarantee that the
 216   //     memory writes are serialized with respect to each other,
 217   //     the VM thread issues a memory barrier instruction.
 218   //  3. Running compiled Code
 219   //     Compiled code reads a global (Safepoint Polling) page that
 220   //     is set to fault if we are trying to get to a safepoint.
 221   //  4. Blocked
 222   //     A thread which is blocked will not be allowed to return from the
 223   //     block condition until the safepoint operation is complete.
 224   //  5. In VM or Transitioning between states
 225   //     If a Java thread is currently running in the VM or transitioning
 226   //     between states, the safepointing code will wait for the thread to
 227   //     block itself when it attempts transitions to a new state.
 228   //
 229   {
 230     EventSafepointStateSynchronization sync_event;
 231     int initial_running = 0;
 232 
 233     _state            = _synchronizing;
 234 
 235     if (SafepointMechanism::uses_thread_local_poll()) {
 236       // Arming the per thread poll while having _state != _not_synchronized means safepointing
 237       log_trace(safepoint)("Setting thread local yield flag for threads");
 238       OrderAccess::storestore(); // storestore, global state -> local state
 239       for (JavaThreadIteratorWithHandle jtiwh; JavaThread *cur = jtiwh.next(); ) {
 240         // Make sure the threads start polling, it is time to yield.
 241         SafepointMechanism::arm_local_poll(cur);
 242       }
 243     }
 244     OrderAccess::fence(); // storestore|storeload, global state -> local state
 245 
 246     if (SafepointMechanism::uses_global_page_poll()) {
 247       // Make interpreter safepoint aware
 248       Interpreter::notice_safepoints();
 249 
 250       // Make polling safepoint aware
 251       guarantee (PageArmed == 0, "invariant") ;
 252       PageArmed = 1 ;
 253       os::make_polling_page_unreadable();
 254     }
 255 
 256     // Consider using active_processor_count() ... but that call is expensive.
 257     int ncpus = os::processor_count() ;
 258     unsigned int iterations = 0;
 259 
 260     {
 261       JavaThreadIteratorWithHandle jtiwh;
 262 #ifdef ASSERT
 263       for (; JavaThread *cur = jtiwh.next(); ) {
 264         assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 265         // Clear the visited flag to ensure that the critical counts are collected properly.
 266         cur->set_visited_for_critical_count(false);
 267       }
 268 #endif // ASSERT
 269 
 270       if (SafepointTimeout)
 271         safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 272 
 273       // Iterate through all threads until it have been determined how to stop them all at a safepoint
 274       int steps = 0 ;
 275       while(still_running > 0) {
 276         jtiwh.rewind();
 277         for (; JavaThread *cur = jtiwh.next(); ) {
 278           assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 279           ThreadSafepointState *cur_state = cur->safepoint_state();
 280           if (cur_state->is_running()) {
 281             cur_state->examine_state_of_thread();
 282             if (!cur_state->is_running()) {
 283               still_running--;
 284               // consider adjusting steps downward:
 285               //   steps = 0
 286               //   steps -= NNN
 287               //   steps >>= 1
 288               //   steps = MIN(steps, 2000-100)
 289               //   if (iterations != 0) steps -= NNN
 290             }
 291             LogTarget(Trace, safepoint) lt;
 292             if (lt.is_enabled()) {
 293               ResourceMark rm;
 294               LogStream ls(lt);
 295               cur_state->print_on(&ls);
 296             }
 297           }
 298         }
 299 
 300         if (iterations == 0) {
 301           initial_running = still_running;
 302           if (log_is_enabled(Debug, safepoint, stats)) {
 303             begin_statistics(nof_threads, still_running);
 304           }
 305         }
 306 
 307         if (still_running > 0) {
 308           // Check for if it takes to long
 309           if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 310             print_safepoint_timeout(_spinning_timeout);
 311           }
 312 
 313           // Spin to avoid context switching.
 314           // There's a tension between allowing the mutators to run (and rendezvous)
 315           // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 316           // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 317           // spinning by the VM thread on a saturated system can increase rendezvous latency.
 318           // Blocking or yielding incur their own penalties in the form of context switching
 319           // and the resultant loss of $ residency.
 320           //
 321           // Further complicating matters is that yield() does not work as naively expected
 322           // on many platforms -- yield() does not guarantee that any other ready threads
 323           // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 324           // nakes_short_sleep() is implemented as a short unconditional sleep.
 325           // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 326           // can actually increase the time it takes the VM thread to detect that a system-wide
 327           // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 328           // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 329           // In that case the mutators will be stalled waiting for the safepoint to complete and the
 330           // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 331           // will eventually wake up and detect that all mutators are safe, at which point
 332           // we'll again make progress.
 333           //
 334           // Beware too that that the VMThread typically runs at elevated priority.
 335           // Its default priority is higher than the default mutator priority.
 336           // Obviously, this complicates spinning.
 337           //
 338           // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 339           // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 340           //
 341           // See the comments in synchronizer.cpp for additional remarks on spinning.
 342           //
 343           // In the future we might:
 344           // -- Modify the safepoint scheme to avoid potentially unbounded spinning.
 345           //    This is tricky as the path used by a thread exiting the JVM (say on
 346           //    on JNI call-out) simply stores into its state field.  The burden
 347           //    is placed on the VM thread, which must poll (spin).
 348           // -- Find something useful to do while spinning.  If the safepoint is GC-related
 349           //    we might aggressively scan the stacks of threads that are already safe.
 350           // -- YieldTo() any still-running mutators that are ready but OFFPROC.
 351           // -- Check system saturation.  If the system is not fully saturated then
 352           //    simply spin and avoid sleep/yield.
 353           // -- As still-running mutators rendezvous they could unpark the sleeping
 354           //    VMthread.  This works well for still-running mutators that become
 355           //    safe.  The VMthread must still poll for mutators that call-out.
 356           // -- Drive the policy on time-since-begin instead of iterations.
 357           // -- Consider making the spin duration a function of the # of CPUs:
 358           //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 359           //    Alternately, instead of counting iterations of the outer loop
 360           //    we could count the # of threads visited in the inner loop, above.
 361           // -- On windows consider using the return value from SwitchThreadTo()
 362           //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 363 
 364           if (int(iterations) == -1) { // overflow - something is wrong.
 365             // We can only overflow here when we are using global
 366             // polling pages. We keep this guarantee in its original
 367             // form so that searches of the bug database for this
 368             // failure mode find the right bugs.
 369             guarantee (PageArmed == 0, "invariant");
 370           }
 371 
 372           // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 373           // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 374           ++steps ;
 375           if (ncpus > 1 && steps < safepoint_spin_before_yield) {
 376             SpinPause() ;     // MP-Polite spin
 377           } else
 378             if (steps < _defer_thr_suspend_loop_count) {
 379               os::naked_yield() ;
 380             } else {
 381               os::naked_short_sleep(1);
 382             }
 383 
 384           iterations ++ ;
 385         }
 386         assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 387       }
 388     } // ThreadsListHandle destroyed here.
 389     assert(still_running == 0, "sanity check");
 390 
 391     if (log_is_enabled(Debug, safepoint, stats)) {
 392       update_statistics_on_spin_end();
 393     }
 394     if (sync_event.should_commit()) {
 395       post_safepoint_synchronize_event(&sync_event, initial_running, _waiting_to_block, iterations);
 396     }
 397   }
 398 
 399   // wait until all threads are stopped
 400   {
 401     EventSafepointWaitBlocked wait_blocked_event;
 402     int initial_waiting_to_block = _waiting_to_block;
 403 
 404     while (_waiting_to_block > 0) {
 405       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 406       if (!SafepointTimeout || timeout_error_printed) {
 407         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 408       } else {
 409         // Compute remaining time
 410         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 411 
 412         // If there is no remaining time, then there is an error
 413         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 414           print_safepoint_timeout(_blocking_timeout);
 415         }
 416       }
 417     }
 418     assert(_waiting_to_block == 0, "sanity check");
 419 
 420 #ifndef PRODUCT
 421     if (SafepointTimeout) {
 422       jlong current_time = os::javaTimeNanos();
 423       if (safepoint_limit_time < current_time) {
 424         log_warning(safepoint)("# SafepointSynchronize: Finished after "
 425                       INT64_FORMAT_W(6) " ms",
 426                       (int64_t)((current_time - safepoint_limit_time) / MICROUNITS +
 427                                 (jlong)SafepointTimeoutDelay));
 428       }
 429     }
 430 #endif
 431 
 432     assert((_safepoint_counter & 0x1) == 0, "must be even");
 433     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 434     _safepoint_counter ++;
 435 
 436     // Record state
 437     _state = _synchronized;
 438 
 439     OrderAccess::fence();
 440     if (wait_blocked_event.should_commit()) {
 441       post_safepoint_wait_blocked_event(&wait_blocked_event, initial_waiting_to_block);
 442     }
 443   }
 444 
 445 #ifdef ASSERT
 446   // Make sure all the threads were visited.
 447   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *cur = jtiwh.next(); ) {
 448     assert(cur->was_visited_for_critical_count(), "missed a thread");
 449   }
 450 #endif // ASSERT
 451 
 452   // Update the count of active JNI critical regions
 453   GCLocker::set_jni_lock_count(_current_jni_active_count);
 454 
 455   log_info(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 456 
 457   RuntimeService::record_safepoint_synchronized();
 458   if (log_is_enabled(Debug, safepoint, stats)) {
 459     update_statistics_on_sync_end(os::javaTimeNanos());
 460   }
 461 
 462   // Call stuff that needs to be run when a safepoint is just about to be completed
 463   {
 464     EventSafepointCleanup cleanup_event;
 465     do_cleanup_tasks();
 466     if (cleanup_event.should_commit()) {
 467       post_safepoint_cleanup_event(&cleanup_event);
 468     }
 469   }
 470 
 471   if (log_is_enabled(Debug, safepoint, stats)) {
 472     // Record how much time spend on the above cleanup tasks
 473     update_statistics_on_cleanup_end(os::javaTimeNanos());
 474   }
 475 
 476   if (begin_event.should_commit()) {
 477     post_safepoint_begin_event(&begin_event, nof_threads, _current_jni_active_count);
 478   }
 479 }
 480 
 481 // Wake up all threads, so they are ready to resume execution after the safepoint
 482 // operation has been carried out
 483 void SafepointSynchronize::end() {
 484   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 485   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 486   EventSafepointEnd event;
 487   _safepoint_counter ++;
 488   // memory fence isn't required here since an odd _safepoint_counter
 489   // value can do no harm and a fence is issued below anyway.
 490 
 491   DEBUG_ONLY(Thread* myThread = Thread::current();)
 492   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 493 
 494   if (log_is_enabled(Debug, safepoint, stats)) {
 495     end_statistics(os::javaTimeNanos());
 496   }
 497 
 498   {
 499     JavaThreadIteratorWithHandle jtiwh;
 500 #ifdef ASSERT
 501     // A pending_exception cannot be installed during a safepoint.  The threads
 502     // may install an async exception after they come back from a safepoint into
 503     // pending_exception after they unblock.  But that should happen later.
 504     for (; JavaThread *cur = jtiwh.next(); ) {
 505       assert (!(cur->has_pending_exception() &&
 506                 cur->safepoint_state()->is_at_poll_safepoint()),
 507               "safepoint installed a pending exception");
 508     }
 509 #endif // ASSERT
 510 
 511     if (PageArmed) {
 512       assert(SafepointMechanism::uses_global_page_poll(), "sanity");
 513       // Make polling safepoint aware
 514       os::make_polling_page_readable();
 515       PageArmed = 0 ;
 516     }
 517 
 518     if (SafepointMechanism::uses_global_page_poll()) {
 519       // Remove safepoint check from interpreter
 520       Interpreter::ignore_safepoints();
 521     }
 522 
 523     {
 524       MutexLocker mu(Safepoint_lock);
 525 
 526       assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 527 
 528       if (SafepointMechanism::uses_thread_local_poll()) {
 529         _state = _not_synchronized;
 530         OrderAccess::storestore(); // global state -> local state
 531         jtiwh.rewind();
 532         for (; JavaThread *current = jtiwh.next(); ) {
 533           ThreadSafepointState* cur_state = current->safepoint_state();
 534           cur_state->restart(); // TSS _running
 535           SafepointMechanism::disarm_local_poll(current);
 536         }
 537         log_info(safepoint)("Leaving safepoint region");
 538       } else {
 539         // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 540         // when they get restarted.
 541         _state = _not_synchronized;
 542         OrderAccess::fence();
 543 
 544         log_info(safepoint)("Leaving safepoint region");
 545 
 546         // Start suspended threads
 547         jtiwh.rewind();
 548         for (; JavaThread *current = jtiwh.next(); ) {
 549           ThreadSafepointState* cur_state = current->safepoint_state();
 550           assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 551           cur_state->restart();
 552           assert(cur_state->is_running(), "safepoint state has not been reset");
 553         }
 554       }
 555 
 556       RuntimeService::record_safepoint_end();
 557 
 558       // Release threads lock, so threads can be created/destroyed again.
 559       // It will also release all threads blocked in signal_thread_blocked.
 560       Threads_lock->unlock();
 561     }
 562   } // ThreadsListHandle destroyed here.
 563 
 564   Universe::heap()->safepoint_synchronize_end();
 565   // record this time so VMThread can keep track how much time has elapsed
 566   // since last safepoint.
 567   _end_of_last_safepoint = os::javaTimeMillis();
 568   if (event.should_commit()) {
 569     post_safepoint_end_event(&event);
 570   }
 571 }
 572 
 573 bool SafepointSynchronize::is_cleanup_needed() {
 574   // Need a safepoint if there are many monitors to deflate.
 575   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 576   // Need a safepoint if some inline cache buffers is non-empty
 577   if (!InlineCacheBuffer::is_empty()) return true;
 578   return false;
 579 }
 580 
 581 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 582 private:
 583   CodeBlobClosure* _nmethod_cl;
 584   DeflateMonitorCounters* _counters;
 585 
 586 public:
 587   ParallelSPCleanupThreadClosure(DeflateMonitorCounters* counters) :
 588     _nmethod_cl(UseCodeAging ? NMethodSweeper::prepare_reset_hotness_counters() : NULL),
 589     _counters(counters) {}
 590 
 591   void do_thread(Thread* thread) {
 592     ObjectSynchronizer::deflate_thread_local_monitors(thread, _counters);
 593     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 594         ! thread->is_Code_cache_sweeper_thread()) {
 595       JavaThread* jt = (JavaThread*) thread;
 596       jt->nmethods_do(_nmethod_cl);
 597     }
 598   }
 599 };
 600 
 601 class ParallelSPCleanupTask : public AbstractGangTask {
 602 private:
 603   SubTasksDone _subtasks;
 604   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 605   uint _num_workers;
 606   DeflateMonitorCounters* _counters;
 607 public:
 608   ParallelSPCleanupTask(uint num_workers, DeflateMonitorCounters* counters) :
 609     AbstractGangTask("Parallel Safepoint Cleanup"),
 610     _subtasks(SubTasksDone(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS)),
 611     _cleanup_threads_cl(ParallelSPCleanupThreadClosure(counters)),
 612     _num_workers(num_workers),
 613     _counters(counters) {}
 614 
 615   void work(uint worker_id) {
 616     // All threads deflate monitors and mark nmethods (if necessary).
 617     Threads::possibly_parallel_threads_do(true, &_cleanup_threads_cl);
 618 
 619     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 620       const char* name = "deflating global idle monitors";
 621       EventSafepointCleanupTask event;
 622       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 623       ObjectSynchronizer::deflate_idle_monitors(_counters);
 624       if (event.should_commit()) {
 625         post_safepoint_cleanup_task_event(&event, name);
 626       }
 627     }
 628 
 629     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 630       const char* name = "updating inline caches";
 631       EventSafepointCleanupTask event;
 632       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 633       InlineCacheBuffer::update_inline_caches();
 634       if (event.should_commit()) {
 635         post_safepoint_cleanup_task_event(&event, name);
 636       }
 637     }
 638 
 639     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 640       const char* name = "compilation policy safepoint handler";
 641       EventSafepointCleanupTask event;
 642       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 643       CompilationPolicy::policy()->do_safepoint_work();
 644       if (event.should_commit()) {
 645         post_safepoint_cleanup_task_event(&event, name);
 646       }
 647     }
 648 
 649     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 650       if (SymbolTable::needs_rehashing()) {
 651         const char* name = "rehashing symbol table";
 652         EventSafepointCleanupTask event;
 653         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 654         SymbolTable::rehash_table();
 655         if (event.should_commit()) {
 656           post_safepoint_cleanup_task_event(&event, name);
 657         }
 658       }
 659     }
 660 
 661     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 662       if (StringTable::needs_rehashing()) {
 663         const char* name = "rehashing string table";
 664         EventSafepointCleanupTask event;
 665         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 666         StringTable::rehash_table();
 667         if (event.should_commit()) {
 668           post_safepoint_cleanup_task_event(&event, name);
 669         }
 670       }
 671     }
 672 
 673     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 674       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 675       // make sure concurrent sweep is done
 676       const char* name = "purging class loader data graph";
 677       EventSafepointCleanupTask event;
 678       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 679       ClassLoaderDataGraph::purge_if_needed();
 680       if (event.should_commit()) {
 681         post_safepoint_cleanup_task_event(&event, name);
 682       }
 683     }
 684 
 685     if (_subtasks.try_claim_task(SafepointSynchronize::SAFEPOINT_CLEANUP_SYSTEM_DICTIONARY_RESIZE)) {
 686       const char* name = "resizing system dictionaries";
 687       EventSafepointCleanupTask event;
 688       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 689       ClassLoaderDataGraph::resize_if_needed();
 690       if (event.should_commit()) {
 691         post_safepoint_cleanup_task_event(&event, name);
 692       }
 693     }
 694 
 695     _subtasks.all_tasks_completed(_num_workers);
 696   }
 697 };
 698 
 699 // Various cleaning tasks that should be done periodically at safepoints.
 700 void SafepointSynchronize::do_cleanup_tasks() {
 701 
 702   TraceTime timer("safepoint cleanup tasks", TRACETIME_LOG(Info, safepoint, cleanup));
 703 
 704   // Prepare for monitor deflation.
 705   DeflateMonitorCounters deflate_counters;
 706   ObjectSynchronizer::prepare_deflate_idle_monitors(&deflate_counters);
 707 
 708   CollectedHeap* heap = Universe::heap();
 709   assert(heap != NULL, "heap not initialized yet?");
 710   WorkGang* cleanup_workers = heap->get_safepoint_workers();
 711   if (cleanup_workers != NULL) {
 712     // Parallel cleanup using GC provided thread pool.
 713     uint num_cleanup_workers = cleanup_workers->active_workers();
 714     ParallelSPCleanupTask cleanup(num_cleanup_workers, &deflate_counters);
 715     StrongRootsScope srs(num_cleanup_workers);
 716     cleanup_workers->run_task(&cleanup);
 717   } else {
 718     // Serial cleanup using VMThread.
 719     ParallelSPCleanupTask cleanup(1, &deflate_counters);
 720     StrongRootsScope srs(1);
 721     cleanup.work(0);
 722   }
 723 
 724   // Needs to be done single threaded by the VMThread.  This walks
 725   // the thread stacks looking for references to metadata before
 726   // deciding to remove it from the metaspaces.
 727   if (ClassLoaderDataGraph::should_clean_metaspaces_and_reset()) {
 728     const char* name = "cleanup live ClassLoaderData metaspaces";
 729     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 730     ClassLoaderDataGraph::walk_metadata_and_clean_metaspaces();
 731   }
 732 
 733   // Finish monitor deflation.
 734   ObjectSynchronizer::finish_deflate_idle_monitors(&deflate_counters);
 735 
 736 }
 737 
 738 
 739 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 740   switch(state) {
 741   case _thread_in_native:
 742     // native threads are safe if they have no java stack or have walkable stack
 743     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 744 
 745    // blocked threads should have already have walkable stack
 746   case _thread_blocked:
 747     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 748     return true;
 749 
 750   default:
 751     return false;
 752   }
 753 }
 754 
 755 
 756 // See if the thread is running inside a lazy critical native and
 757 // update the thread critical count if so.  Also set a suspend flag to
 758 // cause the native wrapper to return into the JVM to do the unlock
 759 // once the native finishes.
 760 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 761   if (state == _thread_in_native &&
 762       thread->has_last_Java_frame() &&
 763       thread->frame_anchor()->walkable()) {
 764     // This thread might be in a critical native nmethod so look at
 765     // the top of the stack and increment the critical count if it
 766     // is.
 767     frame wrapper_frame = thread->last_frame();
 768     CodeBlob* stub_cb = wrapper_frame.cb();
 769     if (stub_cb != NULL &&
 770         stub_cb->is_nmethod() &&
 771         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 772       // A thread could potentially be in a critical native across
 773       // more than one safepoint, so only update the critical state on
 774       // the first one.  When it returns it will perform the unlock.
 775       if (!thread->do_critical_native_unlock()) {
 776 #ifdef ASSERT
 777         if (!thread->in_critical()) {
 778           GCLocker::increment_debug_jni_lock_count();
 779         }
 780 #endif
 781         thread->enter_critical();
 782         // Make sure the native wrapper calls back on return to
 783         // perform the needed critical unlock.
 784         thread->set_critical_native_unlock();
 785       }
 786     }
 787   }
 788 }
 789 
 790 
 791 
 792 // -------------------------------------------------------------------------------------------------------
 793 // Implementation of Safepoint callback point
 794 
 795 void SafepointSynchronize::block(JavaThread *thread) {
 796   assert(thread != NULL, "thread must be set");
 797   assert(thread->is_Java_thread(), "not a Java thread");
 798 
 799   // Threads shouldn't block if they are in the middle of printing, but...
 800   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 801 
 802   // Only bail from the block() call if the thread is gone from the
 803   // thread list; starting to exit should still block.
 804   if (thread->is_terminated()) {
 805      // block current thread if we come here from native code when VM is gone
 806      thread->block_if_vm_exited();
 807 
 808      // otherwise do nothing
 809      return;
 810   }
 811 
 812   JavaThreadState state = thread->thread_state();
 813   thread->frame_anchor()->make_walkable(thread);
 814 
 815   // Check that we have a valid thread_state at this point
 816   switch(state) {
 817     case _thread_in_vm_trans:
 818     case _thread_in_Java:        // From compiled code
 819 
 820       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 821       // we pretend we are still in the VM.
 822       thread->set_thread_state(_thread_in_vm);
 823 
 824       if (is_synchronizing()) {
 825          Atomic::inc (&TryingToBlock) ;
 826       }
 827 
 828       // We will always be holding the Safepoint_lock when we are examine the state
 829       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 830       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 831       Safepoint_lock->lock_without_safepoint_check();
 832       if (is_synchronizing()) {
 833         // Decrement the number of threads to wait for and signal vm thread
 834         assert(_waiting_to_block > 0, "sanity check");
 835         _waiting_to_block--;
 836         thread->safepoint_state()->set_has_called_back(true);
 837 
 838         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 839         if (thread->in_critical()) {
 840           // Notice that this thread is in a critical section
 841           increment_jni_active_count();
 842         }
 843 
 844         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 845         if (_waiting_to_block == 0) {
 846           Safepoint_lock->notify_all();
 847         }
 848       }
 849 
 850       // We transition the thread to state _thread_blocked here, but
 851       // we can't do our usual check for external suspension and then
 852       // self-suspend after the lock_without_safepoint_check() call
 853       // below because we are often called during transitions while
 854       // we hold different locks. That would leave us suspended while
 855       // holding a resource which results in deadlocks.
 856       thread->set_thread_state(_thread_blocked);
 857       Safepoint_lock->unlock();
 858 
 859       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 860       // the entire safepoint, the threads will all line up here during the safepoint.
 861       Threads_lock->lock_without_safepoint_check();
 862       // restore original state. This is important if the thread comes from compiled code, so it
 863       // will continue to execute with the _thread_in_Java state.
 864       thread->set_thread_state(state);
 865       Threads_lock->unlock();
 866       break;
 867 
 868     case _thread_in_native_trans:
 869     case _thread_blocked_trans:
 870     case _thread_new_trans:
 871       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 872         thread->print_thread_state();
 873         fatal("Deadlock in safepoint code.  "
 874               "Should have called back to the VM before blocking.");
 875       }
 876 
 877       // We transition the thread to state _thread_blocked here, but
 878       // we can't do our usual check for external suspension and then
 879       // self-suspend after the lock_without_safepoint_check() call
 880       // below because we are often called during transitions while
 881       // we hold different locks. That would leave us suspended while
 882       // holding a resource which results in deadlocks.
 883       thread->set_thread_state(_thread_blocked);
 884 
 885       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 886       // the safepoint code might still be waiting for it to block. We need to change the state here,
 887       // so it can see that it is at a safepoint.
 888 
 889       // Block until the safepoint operation is completed.
 890       Threads_lock->lock_without_safepoint_check();
 891 
 892       // Restore state
 893       thread->set_thread_state(state);
 894 
 895       Threads_lock->unlock();
 896       break;
 897 
 898     default:
 899      fatal("Illegal threadstate encountered: %d", state);
 900   }
 901 
 902   // Check for pending. async. exceptions or suspends - except if the
 903   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 904   // is called last since it grabs a lock and we only want to do that when
 905   // we must.
 906   //
 907   // Note: we never deliver an async exception at a polling point as the
 908   // compiler may not have an exception handler for it. The polling
 909   // code will notice the async and deoptimize and the exception will
 910   // be delivered. (Polling at a return point is ok though). Sure is
 911   // a lot of bother for a deprecated feature...
 912   //
 913   // We don't deliver an async exception if the thread state is
 914   // _thread_in_native_trans so JNI functions won't be called with
 915   // a surprising pending exception. If the thread state is going back to java,
 916   // async exception is checked in check_special_condition_for_native_trans().
 917 
 918   if (state != _thread_blocked_trans &&
 919       state != _thread_in_vm_trans &&
 920       thread->has_special_runtime_exit_condition()) {
 921     thread->handle_special_runtime_exit_condition(
 922       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 923   }
 924 }
 925 
 926 // ------------------------------------------------------------------------------------------------------
 927 // Exception handlers
 928 
 929 
 930 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 931   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 932   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 933   if (!ThreadLocalHandshakes) {
 934     assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 935   }
 936 
 937   if (log_is_enabled(Debug, safepoint, stats)) {
 938     Atomic::inc(&_nof_threads_hit_polling_page);
 939   }
 940 
 941   ThreadSafepointState* state = thread->safepoint_state();
 942 
 943   state->handle_polling_page_exception();
 944 }
 945 
 946 
 947 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 948   if (!timeout_error_printed) {
 949     timeout_error_printed = true;
 950     // Print out the thread info which didn't reach the safepoint for debugging
 951     // purposes (useful when there are lots of threads in the debugger).
 952     LogTarget(Warning, safepoint) lt;
 953     if (lt.is_enabled()) {
 954       ResourceMark rm;
 955       LogStream ls(lt);
 956 
 957       ls.cr();
 958       ls.print_cr("# SafepointSynchronize::begin: Timeout detected:");
 959       if (reason ==  _spinning_timeout) {
 960         ls.print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 961       } else if (reason == _blocking_timeout) {
 962         ls.print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 963       }
 964 
 965       ls.print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 966       ThreadSafepointState *cur_state;
 967       for (JavaThreadIteratorWithHandle jtiwh; JavaThread *cur_thread = jtiwh.next(); ) {
 968         cur_state = cur_thread->safepoint_state();
 969 
 970         if (cur_thread->thread_state() != _thread_blocked &&
 971           ((reason == _spinning_timeout && cur_state->is_running()) ||
 972              (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 973           ls.print("# ");
 974           cur_thread->print_on(&ls);
 975           ls.cr();
 976         }
 977       }
 978       ls.print_cr("# SafepointSynchronize::begin: (End of list)");
 979     }
 980   }
 981 
 982   // To debug the long safepoint, specify both AbortVMOnSafepointTimeout &
 983   // ShowMessageBoxOnError.
 984   if (AbortVMOnSafepointTimeout) {
 985     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 986           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 987   }
 988 }
 989 
 990 
 991 // -------------------------------------------------------------------------------------------------------
 992 // Implementation of ThreadSafepointState
 993 
 994 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 995   _thread = thread;
 996   _type   = _running;
 997   _has_called_back = false;
 998   _at_poll_safepoint = false;
 999 }
1000 
1001 void ThreadSafepointState::create(JavaThread *thread) {
1002   ThreadSafepointState *state = new ThreadSafepointState(thread);
1003   thread->set_safepoint_state(state);
1004 }
1005 
1006 void ThreadSafepointState::destroy(JavaThread *thread) {
1007   if (thread->safepoint_state()) {
1008     delete(thread->safepoint_state());
1009     thread->set_safepoint_state(NULL);
1010   }
1011 }
1012 
1013 void ThreadSafepointState::examine_state_of_thread() {
1014   assert(is_running(), "better be running or just have hit safepoint poll");
1015 
1016   JavaThreadState state = _thread->thread_state();
1017 
1018   // Save the state at the start of safepoint processing.
1019   _orig_thread_state = state;
1020 
1021   // Check for a thread that is suspended. Note that thread resume tries
1022   // to grab the Threads_lock which we own here, so a thread cannot be
1023   // resumed during safepoint synchronization.
1024 
1025   // We check to see if this thread is suspended without locking to
1026   // avoid deadlocking with a third thread that is waiting for this
1027   // thread to be suspended. The third thread can notice the safepoint
1028   // that we're trying to start at the beginning of its SR_lock->wait()
1029   // call. If that happens, then the third thread will block on the
1030   // safepoint while still holding the underlying SR_lock. We won't be
1031   // able to get the SR_lock and we'll deadlock.
1032   //
1033   // We don't need to grab the SR_lock here for two reasons:
1034   // 1) The suspend flags are both volatile and are set with an
1035   //    Atomic::cmpxchg() call so we should see the suspended
1036   //    state right away.
1037   // 2) We're being called from the safepoint polling loop; if
1038   //    we don't see the suspended state on this iteration, then
1039   //    we'll come around again.
1040   //
1041   bool is_suspended = _thread->is_ext_suspended();
1042   if (is_suspended) {
1043     roll_forward(_at_safepoint);
1044     return;
1045   }
1046 
1047   // Some JavaThread states have an initial safepoint state of
1048   // running, but are actually at a safepoint. We will happily
1049   // agree and update the safepoint state here.
1050   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
1051     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
1052     roll_forward(_at_safepoint);
1053     return;
1054   }
1055 
1056   if (state == _thread_in_vm) {
1057     roll_forward(_call_back);
1058     return;
1059   }
1060 
1061   // All other thread states will continue to run until they
1062   // transition and self-block in state _blocked
1063   // Safepoint polling in compiled code causes the Java threads to do the same.
1064   // Note: new threads may require a malloc so they must be allowed to finish
1065 
1066   assert(is_running(), "examine_state_of_thread on non-running thread");
1067   return;
1068 }
1069 
1070 // Returns true is thread could not be rolled forward at present position.
1071 void ThreadSafepointState::roll_forward(suspend_type type) {
1072   _type = type;
1073 
1074   switch(_type) {
1075     case _at_safepoint:
1076       SafepointSynchronize::signal_thread_at_safepoint();
1077       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1078       if (_thread->in_critical()) {
1079         // Notice that this thread is in a critical section
1080         SafepointSynchronize::increment_jni_active_count();
1081       }
1082       break;
1083 
1084     case _call_back:
1085       set_has_called_back(false);
1086       break;
1087 
1088     case _running:
1089     default:
1090       ShouldNotReachHere();
1091   }
1092 }
1093 
1094 void ThreadSafepointState::restart() {
1095   switch(type()) {
1096     case _at_safepoint:
1097     case _call_back:
1098       break;
1099 
1100     case _running:
1101     default:
1102        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1103                      p2i(_thread), _type);
1104        _thread->print();
1105       ShouldNotReachHere();
1106   }
1107   _type = _running;
1108   set_has_called_back(false);
1109 }
1110 
1111 
1112 void ThreadSafepointState::print_on(outputStream *st) const {
1113   const char *s = NULL;
1114 
1115   switch(_type) {
1116     case _running                : s = "_running";              break;
1117     case _at_safepoint           : s = "_at_safepoint";         break;
1118     case _call_back              : s = "_call_back";            break;
1119     default:
1120       ShouldNotReachHere();
1121   }
1122 
1123   st->print_cr("Thread: " INTPTR_FORMAT
1124               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1125                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1126                _at_poll_safepoint);
1127 
1128   _thread->print_thread_state_on(st);
1129 }
1130 
1131 // ---------------------------------------------------------------------------------------------------------------------
1132 
1133 // Block the thread at poll or poll return for safepoint/handshake.
1134 void ThreadSafepointState::handle_polling_page_exception() {
1135 
1136   // Check state.  block() will set thread state to thread_in_vm which will
1137   // cause the safepoint state _type to become _call_back.
1138   suspend_type t = type();
1139   assert(!SafepointMechanism::uses_global_page_poll() || t == ThreadSafepointState::_running,
1140          "polling page exception on thread not running state: %u", uint(t));
1141 
1142   // Step 1: Find the nmethod from the return address
1143   address real_return_addr = thread()->saved_exception_pc();
1144 
1145   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1146   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1147   CompiledMethod* nm = (CompiledMethod*)cb;
1148 
1149   // Find frame of caller
1150   frame stub_fr = thread()->last_frame();
1151   CodeBlob* stub_cb = stub_fr.cb();
1152   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1153   RegisterMap map(thread(), true);
1154   frame caller_fr = stub_fr.sender(&map);
1155 
1156   // Should only be poll_return or poll
1157   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1158 
1159   // This is a poll immediately before a return. The exception handling code
1160   // has already had the effect of causing the return to occur, so the execution
1161   // will continue immediately after the call. In addition, the oopmap at the
1162   // return point does not mark the return value as an oop (if it is), so
1163   // it needs a handle here to be updated.
1164   if( nm->is_at_poll_return(real_return_addr) ) {
1165     ResourceMark rm;
1166     // See if return type is an oop.
1167     Method* method = nm->method();
1168     bool return_oop = method->may_return_oop();
1169 
1170     GrowableArray<Handle> return_values;
1171     ValueKlass* vk = NULL;
1172     if (method->is_returning_vt() && ValueTypeReturnedAsFields) {
1173       // Check if value type is returned as fields
1174       vk = ValueKlass::returned_value_klass(map);
1175       if (vk != NULL) {
1176         // We're at a safepoint at the return of a method that returns
1177         // multiple values. We must make sure we preserve the oop values
1178         // across the safepoint.
1179         assert(vk == method->returned_value_type(thread()), "bad value klass");
1180         vk->save_oop_fields(map, return_values);
1181         return_oop = false;
1182       }
1183     }
1184 
1185     if (return_oop) {
1186       // The oop result has been saved on the stack together with all
1187       // the other registers. In order to preserve it over GCs we need
1188       // to keep it in a handle.
1189       oop result = caller_fr.saved_oop_result(&map);
1190       assert(oopDesc::is_oop_or_null(result), "must be oop");
1191       return_values.push(Handle(thread(), result));
1192       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1193     }
1194 
1195     // Block the thread
1196     SafepointMechanism::block_if_requested(thread());
1197 
1198     // restore oop result, if any
1199     if (return_oop) {
1200       assert(return_values.length() == 1, "only one return value");
1201       caller_fr.set_saved_oop_result(&map, return_values.pop()());
1202     } else if (vk != NULL) {
1203       vk->restore_oop_results(map, return_values);
1204     }
1205   }
1206 
1207   // This is a safepoint poll. Verify the return address and block.
1208   else {
1209     set_at_poll_safepoint(true);
1210 
1211     // verify the blob built the "return address" correctly
1212     assert(real_return_addr == caller_fr.pc(), "must match");
1213 
1214     // Block the thread
1215     SafepointMechanism::block_if_requested(thread());
1216     set_at_poll_safepoint(false);
1217 
1218     // If we have a pending async exception deoptimize the frame
1219     // as otherwise we may never deliver it.
1220     if (thread()->has_async_condition()) {
1221       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1222       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1223     }
1224 
1225     // If an exception has been installed we must check for a pending deoptimization
1226     // Deoptimize frame if exception has been thrown.
1227 
1228     if (thread()->has_pending_exception() ) {
1229       RegisterMap map(thread(), true);
1230       frame caller_fr = stub_fr.sender(&map);
1231       if (caller_fr.is_deoptimized_frame()) {
1232         // The exception patch will destroy registers that are still
1233         // live and will be needed during deoptimization. Defer the
1234         // Async exception should have deferred the exception until the
1235         // next safepoint which will be detected when we get into
1236         // the interpreter so if we have an exception now things
1237         // are messed up.
1238 
1239         fatal("Exception installed and deoptimization is pending");
1240       }
1241     }
1242   }
1243 }
1244 
1245 
1246 //
1247 //                     Statistics & Instrumentations
1248 //
1249 struct SafepointStats {
1250     float  _time_stamp;                        // record when the current safepoint occurs in seconds
1251     int    _vmop_type;                         // tyep of VM operation triggers the safepoint
1252     int    _nof_total_threads;                 // total number of Java threads
1253     int    _nof_initial_running_threads;       // total number of initially seen running threads
1254     int    _nof_threads_wait_to_block;         // total number of threads waiting for to block
1255     bool   _page_armed;                        // true if polling page is armed, false otherwise
1256     int _nof_threads_hit_page_trap;            // total number of threads hitting the page trap
1257     jlong  _time_to_spin;                      // total time in millis spent in spinning
1258     jlong  _time_to_wait_to_block;             // total time in millis spent in waiting for to block
1259     jlong  _time_to_do_cleanups;               // total time in millis spent in performing cleanups
1260     jlong  _time_to_sync;                      // total time in millis spent in getting to _synchronized
1261     jlong  _time_to_exec_vmop;                 // total time in millis spent in vm operation itself
1262 };
1263 
1264 static const int _statistics_header_count = 30;
1265 static int _cur_stat_index = 0;
1266 static SafepointStats safepoint_stats = {0};  // zero initialize
1267 static SafepointStats* spstat = &safepoint_stats;
1268 
1269 static julong _safepoint_reasons[VM_Operation::VMOp_Terminating];
1270 static jlong  _max_sync_time = 0;
1271 static jlong  _max_vmop_time = 0;
1272 
1273 static jlong  cleanup_end_time = 0;
1274 
1275 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1276 
1277   spstat->_time_stamp = _ts_of_current_safepoint;
1278 
1279   VM_Operation *op = VMThread::vm_operation();
1280   spstat->_vmop_type = op != NULL ? op->type() : VM_Operation::VMOp_None;
1281   _safepoint_reasons[spstat->_vmop_type]++;
1282 
1283   spstat->_nof_total_threads = nof_threads;
1284   spstat->_nof_initial_running_threads = nof_running;
1285 
1286   // Records the start time of spinning. The real time spent on spinning
1287   // will be adjusted when spin is done. Same trick is applied for time
1288   // spent on waiting for threads to block.
1289   if (nof_running != 0) {
1290     spstat->_time_to_spin = os::javaTimeNanos();
1291   }  else {
1292     spstat->_time_to_spin = 0;
1293   }
1294 }
1295 
1296 void SafepointSynchronize::update_statistics_on_spin_end() {
1297   jlong cur_time = os::javaTimeNanos();
1298 
1299   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1300   if (spstat->_nof_initial_running_threads != 0) {
1301     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1302   }
1303 
1304   // Records the start time of waiting for to block. Updated when block is done.
1305   if (_waiting_to_block != 0) {
1306     spstat->_time_to_wait_to_block = cur_time;
1307   } else {
1308     spstat->_time_to_wait_to_block = 0;
1309   }
1310 }
1311 
1312 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1313 
1314   if (spstat->_nof_threads_wait_to_block != 0) {
1315     spstat->_time_to_wait_to_block = end_time -
1316       spstat->_time_to_wait_to_block;
1317   }
1318 
1319   // Records the end time of sync which will be used to calculate the total
1320   // vm operation time. Again, the real time spending in syncing will be deducted
1321   // from the start of the sync time later when end_statistics is called.
1322   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1323   if (spstat->_time_to_sync > _max_sync_time) {
1324     _max_sync_time = spstat->_time_to_sync;
1325   }
1326 
1327   spstat->_time_to_do_cleanups = end_time;
1328 }
1329 
1330 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1331 
1332   // Record how long spent in cleanup tasks.
1333   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1334   cleanup_end_time = end_time;
1335 }
1336 
1337 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1338 
1339   // Update the vm operation time.
1340   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1341   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1342     _max_vmop_time = spstat->_time_to_exec_vmop;
1343   }
1344 
1345   spstat->_nof_threads_hit_page_trap = _nof_threads_hit_polling_page;
1346 
1347   print_statistics();
1348 }
1349 
1350 // Helper method to print the header.
1351 static void print_header(outputStream* st) {
1352   // The number of spaces is significant here, and should match the format
1353   // specifiers in print_statistics().
1354 
1355   st->print("          vmop                            "
1356             "[ threads:    total initially_running wait_to_block ]"
1357             "[ time:    spin   block    sync cleanup    vmop ] ");
1358 
1359   st->print_cr("page_trap_count");
1360 }
1361 
1362 // This prints a nice table.  To get the statistics to not shift due to the logging uptime
1363 // decorator, use the option as: -Xlog:safepoint+stats=debug:[outputfile]:none
1364 void SafepointSynchronize::print_statistics() {
1365   LogTarget(Debug, safepoint, stats) lt;
1366   assert (lt.is_enabled(), "should only be called when printing statistics is enabled");
1367   LogStream ls(lt);
1368 
1369   // Print header every 30 entries
1370   if ((_cur_stat_index % _statistics_header_count) == 0) {
1371     print_header(&ls);
1372     _cur_stat_index = 1;  // wrap
1373   } else {
1374     _cur_stat_index++;
1375   }
1376 
1377   ls.print("%8.3f: ", spstat->_time_stamp);
1378   ls.print("%-28s  [          "
1379            INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1380            "]",
1381            VM_Operation::name(spstat->_vmop_type),
1382            spstat->_nof_total_threads,
1383            spstat->_nof_initial_running_threads,
1384            spstat->_nof_threads_wait_to_block);
1385   // "/ MICROUNITS " is to convert the unit from nanos to millis.
1386   ls.print("[       "
1387            INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1388            INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1389            INT64_FORMAT_W(7) " ] ",
1390            (int64_t)(spstat->_time_to_spin / MICROUNITS),
1391            (int64_t)(spstat->_time_to_wait_to_block / MICROUNITS),
1392            (int64_t)(spstat->_time_to_sync / MICROUNITS),
1393            (int64_t)(spstat->_time_to_do_cleanups / MICROUNITS),
1394            (int64_t)(spstat->_time_to_exec_vmop / MICROUNITS));
1395 
1396   ls.print_cr(INT32_FORMAT_W(15) " ", spstat->_nof_threads_hit_page_trap);
1397 }
1398 
1399 // This method will be called when VM exits. This tries to summarize the sampling.
1400 // Current thread may already be deleted, so don't use ResourceMark.
1401 void SafepointSynchronize::print_stat_on_exit() {
1402 
1403   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1404     if (_safepoint_reasons[index] != 0) {
1405       log_debug(safepoint, stats)("%-28s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1406                 _safepoint_reasons[index]);
1407     }
1408   }
1409 
1410   log_debug(safepoint, stats)("VM operations coalesced during safepoint " INT64_FORMAT,
1411                               _coalesced_vmop_count);
1412   log_debug(safepoint, stats)("Maximum sync time  " INT64_FORMAT" ms",
1413                               (int64_t)(_max_sync_time / MICROUNITS));
1414   log_debug(safepoint, stats)("Maximum vm operation time (except for Exit VM operation)  "
1415                               INT64_FORMAT " ms",
1416                               (int64_t)(_max_vmop_time / MICROUNITS));
1417 }