1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/narrowptrnode.hpp"
  39 #include "opto/mulnode.hpp"
  40 #include "opto/phaseX.hpp"
  41 #include "opto/regmask.hpp"
  42 #include "opto/runtime.hpp"
  43 #include "opto/subnode.hpp"
  44 #include "opto/valuetypenode.hpp"
  45 #include "utilities/vmError.hpp"
  46 
  47 // Portions of code courtesy of Clifford Click
  48 
  49 // Optimization - Graph Style
  50 
  51 //=============================================================================
  52 //------------------------------Value------------------------------------------
  53 // Compute the type of the RegionNode.
  54 const Type* RegionNode::Value(PhaseGVN* phase) const {
  55   for( uint i=1; i<req(); ++i ) {       // For all paths in
  56     Node *n = in(i);            // Get Control source
  57     if( !n ) continue;          // Missing inputs are TOP
  58     if( phase->type(n) == Type::CONTROL )
  59       return Type::CONTROL;
  60   }
  61   return Type::TOP;             // All paths dead?  Then so are we
  62 }
  63 
  64 //------------------------------Identity---------------------------------------
  65 // Check for Region being Identity.
  66 Node* RegionNode::Identity(PhaseGVN* phase) {
  67   // Cannot have Region be an identity, even if it has only 1 input.
  68   // Phi users cannot have their Region input folded away for them,
  69   // since they need to select the proper data input
  70   return this;
  71 }
  72 
  73 //------------------------------merge_region-----------------------------------
  74 // If a Region flows into a Region, merge into one big happy merge.  This is
  75 // hard to do if there is stuff that has to happen
  76 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  77   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  78     return NULL;
  79   Node *progress = NULL;        // Progress flag
  80   PhaseIterGVN *igvn = phase->is_IterGVN();
  81 
  82   uint rreq = region->req();
  83   for( uint i = 1; i < rreq; i++ ) {
  84     Node *r = region->in(i);
  85     if( r && r->Opcode() == Op_Region && // Found a region?
  86         r->in(0) == r &&        // Not already collapsed?
  87         r != region &&          // Avoid stupid situations
  88         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  89       assert(!r->as_Region()->has_phi(), "no phi users");
  90       if( !progress ) {         // No progress
  91         if (region->has_phi()) {
  92           return NULL;        // Only flatten if no Phi users
  93           // igvn->hash_delete( phi );
  94         }
  95         igvn->hash_delete( region );
  96         progress = region;      // Making progress
  97       }
  98       igvn->hash_delete( r );
  99 
 100       // Append inputs to 'r' onto 'region'
 101       for( uint j = 1; j < r->req(); j++ ) {
 102         // Move an input from 'r' to 'region'
 103         region->add_req(r->in(j));
 104         r->set_req(j, phase->C->top());
 105         // Update phis of 'region'
 106         //for( uint k = 0; k < max; k++ ) {
 107         //  Node *phi = region->out(k);
 108         //  if( phi->is_Phi() ) {
 109         //    phi->add_req(phi->in(i));
 110         //  }
 111         //}
 112 
 113         rreq++;                 // One more input to Region
 114       } // Found a region to merge into Region
 115       igvn->_worklist.push(r);
 116       // Clobber pointer to the now dead 'r'
 117       region->set_req(i, phase->C->top());
 118     }
 119   }
 120 
 121   return progress;
 122 }
 123 
 124 
 125 
 126 //--------------------------------has_phi--------------------------------------
 127 // Helper function: Return any PhiNode that uses this region or NULL
 128 PhiNode* RegionNode::has_phi() const {
 129   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 130     Node* phi = fast_out(i);
 131     if (phi->is_Phi()) {   // Check for Phi users
 132       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 133       return phi->as_Phi();  // this one is good enough
 134     }
 135   }
 136 
 137   return NULL;
 138 }
 139 
 140 
 141 //-----------------------------has_unique_phi----------------------------------
 142 // Helper function: Return the only PhiNode that uses this region or NULL
 143 PhiNode* RegionNode::has_unique_phi() const {
 144   // Check that only one use is a Phi
 145   PhiNode* only_phi = NULL;
 146   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 147     Node* phi = fast_out(i);
 148     if (phi->is_Phi()) {   // Check for Phi users
 149       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 150       if (only_phi == NULL) {
 151         only_phi = phi->as_Phi();
 152       } else {
 153         return NULL;  // multiple phis
 154       }
 155     }
 156   }
 157 
 158   return only_phi;
 159 }
 160 
 161 
 162 //------------------------------check_phi_clipping-----------------------------
 163 // Helper function for RegionNode's identification of FP clipping
 164 // Check inputs to the Phi
 165 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 166   min     = NULL;
 167   max     = NULL;
 168   val     = NULL;
 169   min_idx = 0;
 170   max_idx = 0;
 171   val_idx = 0;
 172   uint  phi_max = phi->req();
 173   if( phi_max == 4 ) {
 174     for( uint j = 1; j < phi_max; ++j ) {
 175       Node *n = phi->in(j);
 176       int opcode = n->Opcode();
 177       switch( opcode ) {
 178       case Op_ConI:
 179         {
 180           if( min == NULL ) {
 181             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 182             min_idx = j;
 183           } else {
 184             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 185             max_idx = j;
 186             if( min->get_int() > max->get_int() ) {
 187               // Swap min and max
 188               ConNode *temp;
 189               uint     temp_idx;
 190               temp     = min;     min     = max;     max     = temp;
 191               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 192             }
 193           }
 194         }
 195         break;
 196       default:
 197         {
 198           val = n;
 199           val_idx = j;
 200         }
 201         break;
 202       }
 203     }
 204   }
 205   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 206 }
 207 
 208 
 209 //------------------------------check_if_clipping------------------------------
 210 // Helper function for RegionNode's identification of FP clipping
 211 // Check that inputs to Region come from two IfNodes,
 212 //
 213 //            If
 214 //      False    True
 215 //       If        |
 216 //  False  True    |
 217 //    |      |     |
 218 //  RegionNode_inputs
 219 //
 220 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 221   top_if = NULL;
 222   bot_if = NULL;
 223 
 224   // Check control structure above RegionNode for (if  ( if  ) )
 225   Node *in1 = region->in(1);
 226   Node *in2 = region->in(2);
 227   Node *in3 = region->in(3);
 228   // Check that all inputs are projections
 229   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 230     Node *in10 = in1->in(0);
 231     Node *in20 = in2->in(0);
 232     Node *in30 = in3->in(0);
 233     // Check that #1 and #2 are ifTrue and ifFalse from same If
 234     if( in10 != NULL && in10->is_If() &&
 235         in20 != NULL && in20->is_If() &&
 236         in30 != NULL && in30->is_If() && in10 == in20 &&
 237         (in1->Opcode() != in2->Opcode()) ) {
 238       Node  *in100 = in10->in(0);
 239       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 240       // Check that control for in10 comes from other branch of IF from in3
 241       if( in1000 != NULL && in1000->is_If() &&
 242           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 243         // Control pattern checks
 244         top_if = (IfNode*)in1000;
 245         bot_if = (IfNode*)in10;
 246       }
 247     }
 248   }
 249 
 250   return (top_if != NULL);
 251 }
 252 
 253 
 254 //------------------------------check_convf2i_clipping-------------------------
 255 // Helper function for RegionNode's identification of FP clipping
 256 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 257 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 258   convf2i = NULL;
 259 
 260   // Check for the RShiftNode
 261   Node *rshift = phi->in(idx);
 262   assert( rshift, "Previous checks ensure phi input is present");
 263   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 264 
 265   // Check for the LShiftNode
 266   Node *lshift = rshift->in(1);
 267   assert( lshift, "Previous checks ensure phi input is present");
 268   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 269 
 270   // Check for the ConvF2INode
 271   Node *conv = lshift->in(1);
 272   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 273 
 274   // Check that shift amounts are only to get sign bits set after F2I
 275   jint max_cutoff     = max->get_int();
 276   jint min_cutoff     = min->get_int();
 277   jint left_shift     = lshift->in(2)->get_int();
 278   jint right_shift    = rshift->in(2)->get_int();
 279   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 280   if( left_shift != right_shift ||
 281       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 282       max_post_shift < max_cutoff ||
 283       max_post_shift < -min_cutoff ) {
 284     // Shifts are necessary but current transformation eliminates them
 285     return false;
 286   }
 287 
 288   // OK to return the result of ConvF2I without shifting
 289   convf2i = (ConvF2INode*)conv;
 290   return true;
 291 }
 292 
 293 
 294 //------------------------------check_compare_clipping-------------------------
 295 // Helper function for RegionNode's identification of FP clipping
 296 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 297   Node *i1 = iff->in(1);
 298   if ( !i1->is_Bool() ) { return false; }
 299   BoolNode *bool1 = i1->as_Bool();
 300   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 301   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 302   const Node *cmpF = bool1->in(1);
 303   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 304   // Test that the float value being compared against
 305   // is equivalent to the int value used as a limit
 306   Node *nodef = cmpF->in(2);
 307   if( nodef->Opcode() != Op_ConF ) { return false; }
 308   jfloat conf = nodef->getf();
 309   jint   coni = limit->get_int();
 310   if( ((int)conf) != coni )        { return false; }
 311   input = cmpF->in(1);
 312   return true;
 313 }
 314 
 315 //------------------------------is_unreachable_region--------------------------
 316 // Find if the Region node is reachable from the root.
 317 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 318   assert(req() == 2, "");
 319 
 320   // First, cut the simple case of fallthrough region when NONE of
 321   // region's phis references itself directly or through a data node.
 322   uint max = outcnt();
 323   uint i;
 324   for (i = 0; i < max; i++) {
 325     Node* phi = raw_out(i);
 326     if (phi != NULL && phi->is_Phi()) {
 327       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 328       if (phi->outcnt() == 0)
 329         continue; // Safe case - no loops
 330       if (phi->outcnt() == 1) {
 331         Node* u = phi->raw_out(0);
 332         // Skip if only one use is an other Phi or Call or Uncommon trap.
 333         // It is safe to consider this case as fallthrough.
 334         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 335           continue;
 336       }
 337       // Check when phi references itself directly or through an other node.
 338       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 339         break; // Found possible unsafe data loop.
 340     }
 341   }
 342   if (i >= max)
 343     return false; // An unsafe case was NOT found - don't need graph walk.
 344 
 345   // Unsafe case - check if the Region node is reachable from root.
 346   ResourceMark rm;
 347 
 348   Arena *a = Thread::current()->resource_area();
 349   Node_List nstack(a);
 350   VectorSet visited(a);
 351 
 352   // Mark all control nodes reachable from root outputs
 353   Node *n = (Node*)phase->C->root();
 354   nstack.push(n);
 355   visited.set(n->_idx);
 356   while (nstack.size() != 0) {
 357     n = nstack.pop();
 358     uint max = n->outcnt();
 359     for (uint i = 0; i < max; i++) {
 360       Node* m = n->raw_out(i);
 361       if (m != NULL && m->is_CFG()) {
 362         if (phase->eqv(m, this)) {
 363           return false; // We reached the Region node - it is not dead.
 364         }
 365         if (!visited.test_set(m->_idx))
 366           nstack.push(m);
 367       }
 368     }
 369   }
 370 
 371   return true; // The Region node is unreachable - it is dead.
 372 }
 373 
 374 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 375   // Incremental inlining + PhaseStringOpts sometimes produce:
 376   //
 377   // cmpP with 1 top input
 378   //           |
 379   //          If
 380   //         /  \
 381   //   IfFalse  IfTrue  /- Some Node
 382   //         \  /      /    /
 383   //        Region    / /-MergeMem
 384   //             \---Phi
 385   //
 386   //
 387   // It's expected by PhaseStringOpts that the Region goes away and is
 388   // replaced by If's control input but because there's still a Phi,
 389   // the Region stays in the graph. The top input from the cmpP is
 390   // propagated forward and a subgraph that is useful goes away. The
 391   // code below replaces the Phi with the MergeMem so that the Region
 392   // is simplified.
 393 
 394   PhiNode* phi = has_unique_phi();
 395   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 396     MergeMemNode* m = NULL;
 397     assert(phi->req() == 3, "same as region");
 398     for (uint i = 1; i < 3; ++i) {
 399       Node *mem = phi->in(i);
 400       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 401         // Nothing is control-dependent on path #i except the region itself.
 402         m = mem->as_MergeMem();
 403         uint j = 3 - i;
 404         Node* other = phi->in(j);
 405         if (other && other == m->base_memory()) {
 406           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 407           // This will allow the diamond to collapse completely.
 408           phase->is_IterGVN()->replace_node(phi, m);
 409           return true;
 410         }
 411       }
 412     }
 413   }
 414   return false;
 415 }
 416 
 417 //------------------------------Ideal------------------------------------------
 418 // Return a node which is more "ideal" than the current node.  Must preserve
 419 // the CFG, but we can still strip out dead paths.
 420 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 421   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 422   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 423 
 424   // Check for RegionNode with no Phi users and both inputs come from either
 425   // arm of the same IF.  If found, then the control-flow split is useless.
 426   bool has_phis = false;
 427   if (can_reshape) {            // Need DU info to check for Phi users
 428     has_phis = (has_phi() != NULL);       // Cache result
 429     if (has_phis && try_clean_mem_phi(phase)) {
 430       has_phis = false;
 431     }
 432 
 433     if (!has_phis) {            // No Phi users?  Nothing merging?
 434       for (uint i = 1; i < req()-1; i++) {
 435         Node *if1 = in(i);
 436         if( !if1 ) continue;
 437         Node *iff = if1->in(0);
 438         if( !iff || !iff->is_If() ) continue;
 439         for( uint j=i+1; j<req(); j++ ) {
 440           if( in(j) && in(j)->in(0) == iff &&
 441               if1->Opcode() != in(j)->Opcode() ) {
 442             // Add the IF Projections to the worklist. They (and the IF itself)
 443             // will be eliminated if dead.
 444             phase->is_IterGVN()->add_users_to_worklist(iff);
 445             set_req(i, iff->in(0));// Skip around the useless IF diamond
 446             set_req(j, NULL);
 447             return this;      // Record progress
 448           }
 449         }
 450       }
 451     }
 452   }
 453 
 454   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 455   // degrades to a copy.
 456   bool add_to_worklist = false;
 457   bool modified = false;
 458   int cnt = 0;                  // Count of values merging
 459   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 460   int del_it = 0;               // The last input path we delete
 461   // For all inputs...
 462   for( uint i=1; i<req(); ++i ){// For all paths in
 463     Node *n = in(i);            // Get the input
 464     if( n != NULL ) {
 465       // Remove useless control copy inputs
 466       if( n->is_Region() && n->as_Region()->is_copy() ) {
 467         set_req(i, n->nonnull_req());
 468         modified = true;
 469         i--;
 470         continue;
 471       }
 472       if( n->is_Proj() ) {      // Remove useless rethrows
 473         Node *call = n->in(0);
 474         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 475           set_req(i, call->in(0));
 476           modified = true;
 477           i--;
 478           continue;
 479         }
 480       }
 481       if( phase->type(n) == Type::TOP ) {
 482         set_req(i, NULL);       // Ignore TOP inputs
 483         modified = true;
 484         i--;
 485         continue;
 486       }
 487       cnt++;                    // One more value merging
 488 
 489     } else if (can_reshape) {   // Else found dead path with DU info
 490       PhaseIterGVN *igvn = phase->is_IterGVN();
 491       del_req(i);               // Yank path from self
 492       del_it = i;
 493       uint max = outcnt();
 494       DUIterator j;
 495       bool progress = true;
 496       while(progress) {         // Need to establish property over all users
 497         progress = false;
 498         for (j = outs(); has_out(j); j++) {
 499           Node *n = out(j);
 500           if( n->req() != req() && n->is_Phi() ) {
 501             assert( n->in(0) == this, "" );
 502             igvn->hash_delete(n); // Yank from hash before hacking edges
 503             n->set_req_X(i,NULL,igvn);// Correct DU info
 504             n->del_req(i);        // Yank path from Phis
 505             if( max != outcnt() ) {
 506               progress = true;
 507               j = refresh_out_pos(j);
 508               max = outcnt();
 509             }
 510           }
 511         }
 512       }
 513       add_to_worklist = true;
 514       i--;
 515     }
 516   }
 517 
 518   if (can_reshape && cnt == 1) {
 519     // Is it dead loop?
 520     // If it is LoopNopde it had 2 (+1 itself) inputs and
 521     // one of them was cut. The loop is dead if it was EntryContol.
 522     // Loop node may have only one input because entry path
 523     // is removed in PhaseIdealLoop::Dominators().
 524     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 525     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
 526                              (del_it == 0 && is_unreachable_region(phase)))) ||
 527         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
 528       // Yes,  the region will be removed during the next step below.
 529       // Cut the backedge input and remove phis since no data paths left.
 530       // We don't cut outputs to other nodes here since we need to put them
 531       // on the worklist.
 532       PhaseIterGVN *igvn = phase->is_IterGVN();
 533       if (in(1)->outcnt() == 1) {
 534         igvn->_worklist.push(in(1));
 535       }
 536       del_req(1);
 537       cnt = 0;
 538       assert( req() == 1, "no more inputs expected" );
 539       uint max = outcnt();
 540       bool progress = true;
 541       Node *top = phase->C->top();
 542       DUIterator j;
 543       while(progress) {
 544         progress = false;
 545         for (j = outs(); has_out(j); j++) {
 546           Node *n = out(j);
 547           if( n->is_Phi() ) {
 548             assert( igvn->eqv(n->in(0), this), "" );
 549             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 550             // Break dead loop data path.
 551             // Eagerly replace phis with top to avoid phis copies generation.
 552             igvn->replace_node(n, top);
 553             if( max != outcnt() ) {
 554               progress = true;
 555               j = refresh_out_pos(j);
 556               max = outcnt();
 557             }
 558           }
 559         }
 560       }
 561       add_to_worklist = true;
 562     }
 563   }
 564   if (add_to_worklist) {
 565     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 566   }
 567 
 568   if( cnt <= 1 ) {              // Only 1 path in?
 569     set_req(0, NULL);           // Null control input for region copy
 570     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 571       // No inputs or all inputs are NULL.
 572       return NULL;
 573     } else if (can_reshape) {   // Optimization phase - remove the node
 574       PhaseIterGVN *igvn = phase->is_IterGVN();
 575       // Strip mined (inner) loop is going away, remove outer loop.
 576       if (is_CountedLoop() &&
 577           as_Loop()->is_strip_mined()) {
 578         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
 579         Node* outer_out = as_CountedLoop()->outer_loop_exit();
 580         if (outer_sfpt != NULL && outer_out != NULL) {
 581           Node* in = outer_sfpt->in(0);
 582           igvn->replace_node(outer_out, in);
 583           LoopNode* outer = as_CountedLoop()->outer_loop();
 584           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
 585         }
 586       }
 587       Node *parent_ctrl;
 588       if( cnt == 0 ) {
 589         assert( req() == 1, "no inputs expected" );
 590         // During IGVN phase such region will be subsumed by TOP node
 591         // so region's phis will have TOP as control node.
 592         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 593         // Also set other user's input to top.
 594         parent_ctrl = phase->C->top();
 595       } else {
 596         // The fallthrough case since we already checked dead loops above.
 597         parent_ctrl = in(1);
 598         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 599         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 600       }
 601       if (!add_to_worklist)
 602         igvn->add_users_to_worklist(this); // Check for further allowed opts
 603       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 604         Node* n = last_out(i);
 605         igvn->hash_delete(n); // Remove from worklist before modifying edges
 606         if( n->is_Phi() ) {   // Collapse all Phis
 607           // Eagerly replace phis to avoid copies generation.
 608           Node* in;
 609           if( cnt == 0 ) {
 610             assert( n->req() == 1, "No data inputs expected" );
 611             in = parent_ctrl; // replaced by top
 612           } else {
 613             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 614             in = n->in(1);               // replaced by unique input
 615             if( n->as_Phi()->is_unsafe_data_reference(in) )
 616               in = phase->C->top();      // replaced by top
 617           }
 618           igvn->replace_node(n, in);
 619         }
 620         else if( n->is_Region() ) { // Update all incoming edges
 621           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 622           uint uses_found = 0;
 623           for( uint k=1; k < n->req(); k++ ) {
 624             if( n->in(k) == this ) {
 625               n->set_req(k, parent_ctrl);
 626               uses_found++;
 627             }
 628           }
 629           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 630             i -= (uses_found - 1);
 631           }
 632         }
 633         else {
 634           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 635           n->set_req(0, parent_ctrl);
 636         }
 637 #ifdef ASSERT
 638         for( uint k=0; k < n->req(); k++ ) {
 639           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 640         }
 641 #endif
 642       }
 643       // Remove the RegionNode itself from DefUse info
 644       igvn->remove_dead_node(this);
 645       return NULL;
 646     }
 647     return this;                // Record progress
 648   }
 649 
 650 
 651   // If a Region flows into a Region, merge into one big happy merge.
 652   if (can_reshape) {
 653     Node *m = merge_region(this, phase);
 654     if (m != NULL)  return m;
 655   }
 656 
 657   // Check if this region is the root of a clipping idiom on floats
 658   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 659     // Check that only one use is a Phi and that it simplifies to two constants +
 660     PhiNode* phi = has_unique_phi();
 661     if (phi != NULL) {          // One Phi user
 662       // Check inputs to the Phi
 663       ConNode *min;
 664       ConNode *max;
 665       Node    *val;
 666       uint     min_idx;
 667       uint     max_idx;
 668       uint     val_idx;
 669       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 670         IfNode *top_if;
 671         IfNode *bot_if;
 672         if( check_if_clipping( this, bot_if, top_if ) ) {
 673           // Control pattern checks, now verify compares
 674           Node   *top_in = NULL;   // value being compared against
 675           Node   *bot_in = NULL;
 676           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 677               check_compare_clipping( false, top_if, max, top_in ) ) {
 678             if( bot_in == top_in ) {
 679               PhaseIterGVN *gvn = phase->is_IterGVN();
 680               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 681               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 682 
 683               // Check for the ConvF2INode
 684               ConvF2INode *convf2i;
 685               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 686                 convf2i->in(1) == bot_in ) {
 687                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 688                 // max test
 689                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 690                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 691                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 692                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 693                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 694                 // min test
 695                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 696                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 697                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 698                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 699                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 700                 // update input edges to region node
 701                 set_req_X( min_idx, if_min, gvn );
 702                 set_req_X( max_idx, if_max, gvn );
 703                 set_req_X( val_idx, ifF,    gvn );
 704                 // remove unnecessary 'LShiftI; RShiftI' idiom
 705                 gvn->hash_delete(phi);
 706                 phi->set_req_X( val_idx, convf2i, gvn );
 707                 gvn->hash_find_insert(phi);
 708                 // Return transformed region node
 709                 return this;
 710               }
 711             }
 712           }
 713         }
 714       }
 715     }
 716   }
 717 
 718   return modified ? this : NULL;
 719 }
 720 
 721 
 722 
 723 const RegMask &RegionNode::out_RegMask() const {
 724   return RegMask::Empty;
 725 }
 726 
 727 // Find the one non-null required input.  RegionNode only
 728 Node *Node::nonnull_req() const {
 729   assert( is_Region(), "" );
 730   for( uint i = 1; i < _cnt; i++ )
 731     if( in(i) )
 732       return in(i);
 733   ShouldNotReachHere();
 734   return NULL;
 735 }
 736 
 737 
 738 //=============================================================================
 739 // note that these functions assume that the _adr_type field is flattened
 740 uint PhiNode::hash() const {
 741   const Type* at = _adr_type;
 742   return TypeNode::hash() + (at ? at->hash() : 0);
 743 }
 744 uint PhiNode::cmp( const Node &n ) const {
 745   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 746 }
 747 static inline
 748 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 749   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 750   return Compile::current()->alias_type(at)->adr_type();
 751 }
 752 
 753 //----------------------------make---------------------------------------------
 754 // create a new phi with edges matching r and set (initially) to x
 755 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 756   uint preds = r->req();   // Number of predecessor paths
 757   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 758   PhiNode* p = new PhiNode(r, t, at);
 759   for (uint j = 1; j < preds; j++) {
 760     // Fill in all inputs, except those which the region does not yet have
 761     if (r->in(j) != NULL)
 762       p->init_req(j, x);
 763   }
 764   return p;
 765 }
 766 PhiNode* PhiNode::make(Node* r, Node* x) {
 767   const Type*    t  = x->bottom_type();
 768   const TypePtr* at = NULL;
 769   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 770   return make(r, x, t, at);
 771 }
 772 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 773   const Type*    t  = x->bottom_type();
 774   const TypePtr* at = NULL;
 775   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 776   return new PhiNode(r, t, at);
 777 }
 778 
 779 
 780 //------------------------slice_memory-----------------------------------------
 781 // create a new phi with narrowed memory type
 782 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 783   PhiNode* mem = (PhiNode*) clone();
 784   *(const TypePtr**)&mem->_adr_type = adr_type;
 785   // convert self-loops, or else we get a bad graph
 786   for (uint i = 1; i < req(); i++) {
 787     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 788   }
 789   mem->verify_adr_type();
 790   return mem;
 791 }
 792 
 793 //------------------------split_out_instance-----------------------------------
 794 // Split out an instance type from a bottom phi.
 795 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 796   const TypeOopPtr *t_oop = at->isa_oopptr();
 797   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 798   const TypePtr *t = adr_type();
 799   assert(type() == Type::MEMORY &&
 800          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 801           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 802           t->is_oopptr()->cast_to_exactness(true)
 803            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 804            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 805          "bottom or raw memory required");
 806 
 807   // Check if an appropriate node already exists.
 808   Node *region = in(0);
 809   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 810     Node* use = region->fast_out(k);
 811     if( use->is_Phi()) {
 812       PhiNode *phi2 = use->as_Phi();
 813       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 814         return phi2;
 815       }
 816     }
 817   }
 818   Compile *C = igvn->C;
 819   Arena *a = Thread::current()->resource_area();
 820   Node_Array node_map = new Node_Array(a);
 821   Node_Stack stack(a, C->live_nodes() >> 4);
 822   PhiNode *nphi = slice_memory(at);
 823   igvn->register_new_node_with_optimizer( nphi );
 824   node_map.map(_idx, nphi);
 825   stack.push((Node *)this, 1);
 826   while(!stack.is_empty()) {
 827     PhiNode *ophi = stack.node()->as_Phi();
 828     uint i = stack.index();
 829     assert(i >= 1, "not control edge");
 830     stack.pop();
 831     nphi = node_map[ophi->_idx]->as_Phi();
 832     for (; i < ophi->req(); i++) {
 833       Node *in = ophi->in(i);
 834       if (in == NULL || igvn->type(in) == Type::TOP)
 835         continue;
 836       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 837       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 838       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 839         opt = node_map[optphi->_idx];
 840         if (opt == NULL) {
 841           stack.push(ophi, i);
 842           nphi = optphi->slice_memory(at);
 843           igvn->register_new_node_with_optimizer( nphi );
 844           node_map.map(optphi->_idx, nphi);
 845           ophi = optphi;
 846           i = 0; // will get incremented at top of loop
 847           continue;
 848         }
 849       }
 850       nphi->set_req(i, opt);
 851     }
 852   }
 853   return nphi;
 854 }
 855 
 856 //------------------------verify_adr_type--------------------------------------
 857 #ifdef ASSERT
 858 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 859   if (visited.test_set(_idx))  return;  //already visited
 860 
 861   // recheck constructor invariants:
 862   verify_adr_type(false);
 863 
 864   // recheck local phi/phi consistency:
 865   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 866          "adr_type must be consistent across phi nest");
 867 
 868   // walk around
 869   for (uint i = 1; i < req(); i++) {
 870     Node* n = in(i);
 871     if (n == NULL)  continue;
 872     const Node* np = in(i);
 873     if (np->is_Phi()) {
 874       np->as_Phi()->verify_adr_type(visited, at);
 875     } else if (n->bottom_type() == Type::TOP
 876                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 877       // ignore top inputs
 878     } else {
 879       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 880       // recheck phi/non-phi consistency at leaves:
 881       assert((nat != NULL) == (at != NULL), "");
 882       assert(nat == at || nat == TypePtr::BOTTOM,
 883              "adr_type must be consistent at leaves of phi nest");
 884     }
 885   }
 886 }
 887 
 888 // Verify a whole nest of phis rooted at this one.
 889 void PhiNode::verify_adr_type(bool recursive) const {
 890   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
 891   if (Node::in_dump())               return;  // muzzle asserts when printing
 892 
 893   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 894 
 895   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 896 
 897   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 898          "Phi::adr_type must be pre-normalized");
 899 
 900   if (recursive) {
 901     VectorSet visited(Thread::current()->resource_area());
 902     verify_adr_type(visited, _adr_type);
 903   }
 904 }
 905 #endif
 906 
 907 
 908 //------------------------------Value------------------------------------------
 909 // Compute the type of the PhiNode
 910 const Type* PhiNode::Value(PhaseGVN* phase) const {
 911   Node *r = in(0);              // RegionNode
 912   if( !r )                      // Copy or dead
 913     return in(1) ? phase->type(in(1)) : Type::TOP;
 914 
 915   // Note: During parsing, phis are often transformed before their regions.
 916   // This means we have to use type_or_null to defend against untyped regions.
 917   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 918     return Type::TOP;
 919 
 920   // Check for trip-counted loop.  If so, be smarter.
 921   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 922   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
 923     // protect against init_trip() or limit() returning NULL
 924     if (l->can_be_counted_loop(phase)) {
 925       const Node *init   = l->init_trip();
 926       const Node *limit  = l->limit();
 927       const Node* stride = l->stride();
 928       if (init != NULL && limit != NULL && stride != NULL) {
 929         const TypeInt* lo = phase->type(init)->isa_int();
 930         const TypeInt* hi = phase->type(limit)->isa_int();
 931         const TypeInt* stride_t = phase->type(stride)->isa_int();
 932         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
 933           assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
 934           BoolTest::mask bt = l->loopexit()->test_trip();
 935           // If the loop exit condition is "not equal", the condition
 936           // would not trigger if init > limit (if stride > 0) or if
 937           // init < limit if (stride > 0) so we can't deduce bounds
 938           // for the iv from the exit condition.
 939           if (bt != BoolTest::ne) {
 940             if (stride_t->_hi < 0) {          // Down-counter loop
 941               swap(lo, hi);
 942               return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
 943             } else if (stride_t->_lo >= 0) {
 944               return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
 945             }
 946           }
 947         }
 948       }
 949     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
 950                in(LoopNode::EntryControl) != NULL &&
 951                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
 952       // During CCP, if we saturate the type of a counted loop's Phi
 953       // before the special code for counted loop above has a chance
 954       // to run (that is as long as the type of the backedge's control
 955       // is top), we might end up with non monotonic types
 956       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
 957     }
 958   }
 959 
 960   // Until we have harmony between classes and interfaces in the type
 961   // lattice, we must tread carefully around phis which implicitly
 962   // convert the one to the other.
 963   const TypePtr* ttp = _type->make_ptr();
 964   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 965   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 966   bool is_intf = false;
 967   if (ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
 968     is_intf = true;
 969   } else if (ttkp != NULL && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
 970     is_intf = true;
 971   }
 972 
 973   // Default case: merge all inputs
 974   const Type *t = Type::TOP;        // Merged type starting value
 975   for (uint i = 1; i < req(); ++i) {// For all paths in
 976     // Reachable control path?
 977     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 978       const Type* ti = phase->type(in(i));
 979       // We assume that each input of an interface-valued Phi is a true
 980       // subtype of that interface.  This might not be true of the meet
 981       // of all the input types.  The lattice is not distributive in
 982       // such cases.  Ward off asserts in type.cpp by refusing to do
 983       // meets between interfaces and proper classes.
 984       const TypePtr* tip = ti->make_ptr();
 985       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 986       if (tiip) {
 987         bool ti_is_intf = false;
 988         ciKlass* k = tiip->klass();
 989         if (k->is_loaded() && k->is_interface())
 990           ti_is_intf = true;
 991         if (is_intf != ti_is_intf)
 992           { t = _type; break; }
 993       }
 994       t = t->meet_speculative(ti);
 995     }
 996   }
 997 
 998   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 999   // That is, we expect that "t->higher_equal(_type)" holds true.
1000   // There are various exceptions:
1001   // - Inputs which are phis might in fact be widened unnecessarily.
1002   //   For example, an input might be a widened int while the phi is a short.
1003   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1004   //   and postCCP has removed the cast which encodes the result of the check.
1005   // - The type of this phi is an interface, and the inputs are classes.
1006   // - Value calls on inputs might produce fuzzy results.
1007   //   (Occurrences of this case suggest improvements to Value methods.)
1008   //
1009   // It is not possible to see Type::BOTTOM values as phi inputs,
1010   // because the ciTypeFlow pre-pass produces verifier-quality types.
1011   const Type* ft = t->filter_speculative(_type);  // Worst case type
1012 
1013 #ifdef ASSERT
1014   // The following logic has been moved into TypeOopPtr::filter.
1015   const Type* jt = t->join_speculative(_type);
1016   if (jt->empty()) {           // Emptied out???
1017 
1018     // Check for evil case of 't' being a class and '_type' expecting an
1019     // interface.  This can happen because the bytecodes do not contain
1020     // enough type info to distinguish a Java-level interface variable
1021     // from a Java-level object variable.  If we meet 2 classes which
1022     // both implement interface I, but their meet is at 'j/l/O' which
1023     // doesn't implement I, we have no way to tell if the result should
1024     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1025     // into a Phi which "knows" it's an Interface type we'll have to
1026     // uplift the type.
1027     if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1028       assert(ft == _type, ""); // Uplift to interface
1029     } else if (!t->empty() && ttkp != NULL && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1030       assert(ft == _type, ""); // Uplift to interface
1031     } else {
1032       // We also have to handle 'evil cases' of interface- vs. class-arrays
1033       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1034       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1035           assert(ft == _type, "");   // Uplift to array of interface
1036       } else {
1037         // Otherwise it's something stupid like non-overlapping int ranges
1038         // found on dying counted loops.
1039         assert(ft == Type::TOP, ""); // Canonical empty value
1040       }
1041     }
1042   }
1043 
1044   else {
1045 
1046     // If we have an interface-typed Phi and we narrow to a class type, the join
1047     // should report back the class.  However, if we have a J/L/Object
1048     // class-typed Phi and an interface flows in, it's possible that the meet &
1049     // join report an interface back out.  This isn't possible but happens
1050     // because the type system doesn't interact well with interfaces.
1051     const TypePtr *jtp = jt->make_ptr();
1052     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1053     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1054     if( jtip && ttip ) {
1055       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1056           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1057         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1058                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1059         jt = ft;
1060       }
1061     }
1062     if( jtkp && ttkp ) {
1063       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1064           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1065           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1066         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1067                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1068         jt = ft;
1069       }
1070     }
1071     if (jt != ft && jt->base() == ft->base()) {
1072       if (jt->isa_int() &&
1073           jt->is_int()->_lo == ft->is_int()->_lo &&
1074           jt->is_int()->_hi == ft->is_int()->_hi)
1075         jt = ft;
1076       if (jt->isa_long() &&
1077           jt->is_long()->_lo == ft->is_long()->_lo &&
1078           jt->is_long()->_hi == ft->is_long()->_hi)
1079         jt = ft;
1080     }
1081     if (jt != ft) {
1082       tty->print("merge type:  "); t->dump(); tty->cr();
1083       tty->print("kill type:   "); _type->dump(); tty->cr();
1084       tty->print("join type:   "); jt->dump(); tty->cr();
1085       tty->print("filter type: "); ft->dump(); tty->cr();
1086     }
1087     assert(jt == ft, "");
1088   }
1089 #endif //ASSERT
1090 
1091   // Deal with conversion problems found in data loops.
1092   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1093 
1094   return ft;
1095 }
1096 
1097 
1098 //------------------------------is_diamond_phi---------------------------------
1099 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1100 // index of the true path or 0 otherwise.
1101 // If check_control_only is true, do not inspect the If node at the
1102 // top, and return -1 (not an edge number) on success.
1103 int PhiNode::is_diamond_phi(bool check_control_only) const {
1104   // Check for a 2-path merge
1105   Node *region = in(0);
1106   if( !region ) return 0;
1107   if( region->req() != 3 ) return 0;
1108   if(         req() != 3 ) return 0;
1109   // Check that both paths come from the same If
1110   Node *ifp1 = region->in(1);
1111   Node *ifp2 = region->in(2);
1112   if( !ifp1 || !ifp2 ) return 0;
1113   Node *iff = ifp1->in(0);
1114   if( !iff || !iff->is_If() ) return 0;
1115   if( iff != ifp2->in(0) ) return 0;
1116   if (check_control_only)  return -1;
1117   // Check for a proper bool/cmp
1118   const Node *b = iff->in(1);
1119   if( !b->is_Bool() ) return 0;
1120   const Node *cmp = b->in(1);
1121   if( !cmp->is_Cmp() ) return 0;
1122 
1123   // Check for branching opposite expected
1124   if( ifp2->Opcode() == Op_IfTrue ) {
1125     assert( ifp1->Opcode() == Op_IfFalse, "" );
1126     return 2;
1127   } else {
1128     assert( ifp1->Opcode() == Op_IfTrue, "" );
1129     return 1;
1130   }
1131 }
1132 
1133 //----------------------------check_cmove_id-----------------------------------
1134 // Check for CMove'ing a constant after comparing against the constant.
1135 // Happens all the time now, since if we compare equality vs a constant in
1136 // the parser, we "know" the variable is constant on one path and we force
1137 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1138 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1139 // general in that we don't need constants.  Since CMove's are only inserted
1140 // in very special circumstances, we do it here on generic Phi's.
1141 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1142   assert(true_path !=0, "only diamond shape graph expected");
1143 
1144   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1145   // phi->region->if_proj->ifnode->bool->cmp
1146   Node*     region = in(0);
1147   Node*     iff    = region->in(1)->in(0);
1148   BoolNode* b      = iff->in(1)->as_Bool();
1149   Node*     cmp    = b->in(1);
1150   Node*     tval   = in(true_path);
1151   Node*     fval   = in(3-true_path);
1152   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1153   if (id == NULL)
1154     return NULL;
1155 
1156   // Either value might be a cast that depends on a branch of 'iff'.
1157   // Since the 'id' value will float free of the diamond, either
1158   // decast or return failure.
1159   Node* ctl = id->in(0);
1160   if (ctl != NULL && ctl->in(0) == iff) {
1161     if (id->is_ConstraintCast()) {
1162       return id->in(1);
1163     } else {
1164       // Don't know how to disentangle this value.
1165       return NULL;
1166     }
1167   }
1168 
1169   return id;
1170 }
1171 
1172 //------------------------------Identity---------------------------------------
1173 // Check for Region being Identity.
1174 Node* PhiNode::Identity(PhaseGVN* phase) {
1175   // Check for no merging going on
1176   // (There used to be special-case code here when this->region->is_Loop.
1177   // It would check for a tributary phi on the backedge that the main phi
1178   // trivially, perhaps with a single cast.  The unique_input method
1179   // does all this and more, by reducing such tributaries to 'this'.)
1180   Node* uin = unique_input(phase, false);
1181   if (uin != NULL) {
1182     return uin;
1183   }
1184 
1185   int true_path = is_diamond_phi();
1186   if (true_path != 0) {
1187     Node* id = is_cmove_id(phase, true_path);
1188     if (id != NULL)  return id;
1189   }
1190 
1191   return this;                     // No identity
1192 }
1193 
1194 //-----------------------------unique_input------------------------------------
1195 // Find the unique value, discounting top, self-loops, and casts.
1196 // Return top if there are no inputs, and self if there are multiple.
1197 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1198   //  1) One unique direct input,
1199   // or if uncast is true:
1200   //  2) some of the inputs have an intervening ConstraintCast
1201   //  3) an input is a self loop
1202   //
1203   //  1) input   or   2) input     or   3) input __
1204   //     /   \           /   \               \  /  \
1205   //     \   /          |    cast             phi  cast
1206   //      phi            \   /               /  \  /
1207   //                      phi               /    --
1208 
1209   Node* r = in(0);                      // RegionNode
1210   if (r == NULL)  return in(1);         // Already degraded to a Copy
1211   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1212 
1213   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1214     Node* rc = r->in(i);
1215     if (rc == NULL || phase->type(rc) == Type::TOP)
1216       continue;                 // ignore unreachable control path
1217     Node* n = in(i);
1218     if (n == NULL)
1219       continue;
1220     Node* un = n;
1221     if (uncast) {
1222 #ifdef ASSERT
1223       Node* m = un->uncast();
1224 #endif
1225       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1226         Node* next = un->in(1);
1227         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1228           // risk exposing raw ptr at safepoint
1229           break;
1230         }
1231         un = next;
1232       }
1233       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1234     }
1235     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1236       continue; // ignore if top, or in(i) and "this" are in a data cycle
1237     }
1238     // Check for a unique input (maybe uncasted)
1239     if (input == NULL) {
1240       input = un;
1241     } else if (input != un) {
1242       input = NodeSentinel; // no unique input
1243     }
1244   }
1245   if (input == NULL) {
1246     return phase->C->top();        // no inputs
1247   }
1248 
1249   if (input != NodeSentinel) {
1250     return input;           // one unique direct input
1251   }
1252 
1253   // Nothing.
1254   return NULL;
1255 }
1256 
1257 //------------------------------is_x2logic-------------------------------------
1258 // Check for simple convert-to-boolean pattern
1259 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1260 // Convert Phi to an ConvIB.
1261 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1262   assert(true_path !=0, "only diamond shape graph expected");
1263   // Convert the true/false index into an expected 0/1 return.
1264   // Map 2->0 and 1->1.
1265   int flipped = 2-true_path;
1266 
1267   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1268   // phi->region->if_proj->ifnode->bool->cmp
1269   Node *region = phi->in(0);
1270   Node *iff = region->in(1)->in(0);
1271   BoolNode *b = (BoolNode*)iff->in(1);
1272   const CmpNode *cmp = (CmpNode*)b->in(1);
1273 
1274   Node *zero = phi->in(1);
1275   Node *one  = phi->in(2);
1276   const Type *tzero = phase->type( zero );
1277   const Type *tone  = phase->type( one  );
1278 
1279   // Check for compare vs 0
1280   const Type *tcmp = phase->type(cmp->in(2));
1281   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1282     // Allow cmp-vs-1 if the other input is bounded by 0-1
1283     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1284       return NULL;
1285     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1286   }
1287 
1288   // Check for setting zero/one opposite expected
1289   if( tzero == TypeInt::ZERO ) {
1290     if( tone == TypeInt::ONE ) {
1291     } else return NULL;
1292   } else if( tzero == TypeInt::ONE ) {
1293     if( tone == TypeInt::ZERO ) {
1294       flipped = 1-flipped;
1295     } else return NULL;
1296   } else return NULL;
1297 
1298   // Check for boolean test backwards
1299   if( b->_test._test == BoolTest::ne ) {
1300   } else if( b->_test._test == BoolTest::eq ) {
1301     flipped = 1-flipped;
1302   } else return NULL;
1303 
1304   // Build int->bool conversion
1305   Node *n = new Conv2BNode( cmp->in(1) );
1306   if( flipped )
1307     n = new XorINode( phase->transform(n), phase->intcon(1) );
1308 
1309   return n;
1310 }
1311 
1312 //------------------------------is_cond_add------------------------------------
1313 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1314 // To be profitable the control flow has to disappear; there can be no other
1315 // values merging here.  We replace the test-and-branch with:
1316 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1317 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1318 // Then convert Y to 0-or-Y and finally add.
1319 // This is a key transform for SpecJava _201_compress.
1320 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1321   assert(true_path !=0, "only diamond shape graph expected");
1322 
1323   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1324   // phi->region->if_proj->ifnode->bool->cmp
1325   RegionNode *region = (RegionNode*)phi->in(0);
1326   Node *iff = region->in(1)->in(0);
1327   BoolNode* b = iff->in(1)->as_Bool();
1328   const CmpNode *cmp = (CmpNode*)b->in(1);
1329 
1330   // Make sure only merging this one phi here
1331   if (region->has_unique_phi() != phi)  return NULL;
1332 
1333   // Make sure each arm of the diamond has exactly one output, which we assume
1334   // is the region.  Otherwise, the control flow won't disappear.
1335   if (region->in(1)->outcnt() != 1) return NULL;
1336   if (region->in(2)->outcnt() != 1) return NULL;
1337 
1338   // Check for "(P < Q)" of type signed int
1339   if (b->_test._test != BoolTest::lt)  return NULL;
1340   if (cmp->Opcode() != Op_CmpI)        return NULL;
1341 
1342   Node *p = cmp->in(1);
1343   Node *q = cmp->in(2);
1344   Node *n1 = phi->in(  true_path);
1345   Node *n2 = phi->in(3-true_path);
1346 
1347   int op = n1->Opcode();
1348   if( op != Op_AddI           // Need zero as additive identity
1349       /*&&op != Op_SubI &&
1350       op != Op_AddP &&
1351       op != Op_XorI &&
1352       op != Op_OrI*/ )
1353     return NULL;
1354 
1355   Node *x = n2;
1356   Node *y = NULL;
1357   if( x == n1->in(1) ) {
1358     y = n1->in(2);
1359   } else if( x == n1->in(2) ) {
1360     y = n1->in(1);
1361   } else return NULL;
1362 
1363   // Not so profitable if compare and add are constants
1364   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1365     return NULL;
1366 
1367   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1368   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1369   return new AddINode(j_and,x);
1370 }
1371 
1372 //------------------------------is_absolute------------------------------------
1373 // Check for absolute value.
1374 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1375   assert(true_path !=0, "only diamond shape graph expected");
1376 
1377   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1378   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1379 
1380   // ABS ends with the merge of 2 control flow paths.
1381   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1382   int false_path = 3 - true_path;
1383 
1384   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1385   // phi->region->if_proj->ifnode->bool->cmp
1386   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1387 
1388   // Check bool sense
1389   switch( bol->_test._test ) {
1390   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1391   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1392   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1393   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1394   default:           return NULL;                              break;
1395   }
1396 
1397   // Test is next
1398   Node *cmp = bol->in(1);
1399   const Type *tzero = NULL;
1400   switch( cmp->Opcode() ) {
1401   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1402   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1403   default: return NULL;
1404   }
1405 
1406   // Find zero input of compare; the other input is being abs'd
1407   Node *x = NULL;
1408   bool flip = false;
1409   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1410     x = cmp->in(3 - cmp_zero_idx);
1411   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1412     // The test is inverted, we should invert the result...
1413     x = cmp->in(cmp_zero_idx);
1414     flip = true;
1415   } else {
1416     return NULL;
1417   }
1418 
1419   // Next get the 2 pieces being selected, one is the original value
1420   // and the other is the negated value.
1421   if( phi_root->in(phi_x_idx) != x ) return NULL;
1422 
1423   // Check other phi input for subtract node
1424   Node *sub = phi_root->in(3 - phi_x_idx);
1425 
1426   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1427   if( tzero == TypeF::ZERO ) {
1428     if( sub->Opcode() != Op_SubF ||
1429         sub->in(2) != x ||
1430         phase->type(sub->in(1)) != tzero ) return NULL;
1431     x = new AbsFNode(x);
1432     if (flip) {
1433       x = new SubFNode(sub->in(1), phase->transform(x));
1434     }
1435   } else {
1436     if( sub->Opcode() != Op_SubD ||
1437         sub->in(2) != x ||
1438         phase->type(sub->in(1)) != tzero ) return NULL;
1439     x = new AbsDNode(x);
1440     if (flip) {
1441       x = new SubDNode(sub->in(1), phase->transform(x));
1442     }
1443   }
1444 
1445   return x;
1446 }
1447 
1448 //------------------------------split_once-------------------------------------
1449 // Helper for split_flow_path
1450 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1451   igvn->hash_delete(n);         // Remove from hash before hacking edges
1452 
1453   uint j = 1;
1454   for (uint i = phi->req()-1; i > 0; i--) {
1455     if (phi->in(i) == val) {   // Found a path with val?
1456       // Add to NEW Region/Phi, no DU info
1457       newn->set_req( j++, n->in(i) );
1458       // Remove from OLD Region/Phi
1459       n->del_req(i);
1460     }
1461   }
1462 
1463   // Register the new node but do not transform it.  Cannot transform until the
1464   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1465   igvn->register_new_node_with_optimizer( newn );
1466 
1467   // Now I can point to the new node.
1468   n->add_req(newn);
1469   igvn->_worklist.push(n);
1470 }
1471 
1472 //------------------------------split_flow_path--------------------------------
1473 // Check for merging identical values and split flow paths
1474 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1475   BasicType bt = phi->type()->basic_type();
1476   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1477     return NULL;                // Bail out on funny non-value stuff
1478   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1479     return NULL;                // third unequal input to be worth doing
1480 
1481   // Scan for a constant
1482   uint i;
1483   for( i = 1; i < phi->req()-1; i++ ) {
1484     Node *n = phi->in(i);
1485     if( !n ) return NULL;
1486     if( phase->type(n) == Type::TOP ) return NULL;
1487     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1488       break;
1489   }
1490   if( i >= phi->req() )         // Only split for constants
1491     return NULL;
1492 
1493   Node *val = phi->in(i);       // Constant to split for
1494   uint hit = 0;                 // Number of times it occurs
1495   Node *r = phi->region();
1496 
1497   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1498     Node *n = phi->in(i);
1499     if( !n ) return NULL;
1500     if( phase->type(n) == Type::TOP ) return NULL;
1501     if( phi->in(i) == val ) {
1502       hit++;
1503       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1504         return NULL;            // don't split loop entry path
1505       }
1506     }
1507   }
1508 
1509   if( hit <= 1 ||               // Make sure we find 2 or more
1510       hit == phi->req()-1 )     // and not ALL the same value
1511     return NULL;
1512 
1513   // Now start splitting out the flow paths that merge the same value.
1514   // Split first the RegionNode.
1515   PhaseIterGVN *igvn = phase->is_IterGVN();
1516   RegionNode *newr = new RegionNode(hit+1);
1517   split_once(igvn, phi, val, r, newr);
1518 
1519   // Now split all other Phis than this one
1520   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1521     Node* phi2 = r->fast_out(k);
1522     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1523       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1524       split_once(igvn, phi, val, phi2, newphi);
1525     }
1526   }
1527 
1528   // Clean up this guy
1529   igvn->hash_delete(phi);
1530   for( i = phi->req()-1; i > 0; i-- ) {
1531     if( phi->in(i) == val ) {
1532       phi->del_req(i);
1533     }
1534   }
1535   phi->add_req(val);
1536 
1537   return phi;
1538 }
1539 
1540 //=============================================================================
1541 //------------------------------simple_data_loop_check-------------------------
1542 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1543 //  Returns:
1544 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1545 // Safe       - safe case when the phi and it's inputs reference only safe data
1546 //              nodes;
1547 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1548 //              is no reference back to the phi - need a graph walk
1549 //              to determine if it is in a loop;
1550 // UnsafeLoop - unsafe case when the phi references itself directly or through
1551 //              unsafe data node.
1552 //  Note: a safe data node is a node which could/never reference itself during
1553 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1554 //  I mark Phi nodes as safe node not only because they can reference itself
1555 //  but also to prevent mistaking the fallthrough case inside an outer loop
1556 //  as dead loop when the phi references itselfs through an other phi.
1557 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1558   // It is unsafe loop if the phi node references itself directly.
1559   if (in == (Node*)this)
1560     return UnsafeLoop; // Unsafe loop
1561   // Unsafe loop if the phi node references itself through an unsafe data node.
1562   // Exclude cases with null inputs or data nodes which could reference
1563   // itself (safe for dead loops).
1564   if (in != NULL && !in->is_dead_loop_safe()) {
1565     // Check inputs of phi's inputs also.
1566     // It is much less expensive then full graph walk.
1567     uint cnt = in->req();
1568     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1569     for (; i < cnt; ++i) {
1570       Node* m = in->in(i);
1571       if (m == (Node*)this)
1572         return UnsafeLoop; // Unsafe loop
1573       if (m != NULL && !m->is_dead_loop_safe()) {
1574         // Check the most common case (about 30% of all cases):
1575         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1576         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1577         if (m1 == (Node*)this)
1578           return UnsafeLoop; // Unsafe loop
1579         if (m1 != NULL && m1 == m->in(2) &&
1580             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1581           continue; // Safe case
1582         }
1583         // The phi references an unsafe node - need full analysis.
1584         return Unsafe;
1585       }
1586     }
1587   }
1588   return Safe; // Safe case - we can optimize the phi node.
1589 }
1590 
1591 //------------------------------is_unsafe_data_reference-----------------------
1592 // If phi can be reached through the data input - it is data loop.
1593 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1594   assert(req() > 1, "");
1595   // First, check simple cases when phi references itself directly or
1596   // through an other node.
1597   LoopSafety safety = simple_data_loop_check(in);
1598   if (safety == UnsafeLoop)
1599     return true;  // phi references itself - unsafe loop
1600   else if (safety == Safe)
1601     return false; // Safe case - phi could be replaced with the unique input.
1602 
1603   // Unsafe case when we should go through data graph to determine
1604   // if the phi references itself.
1605 
1606   ResourceMark rm;
1607 
1608   Arena *a = Thread::current()->resource_area();
1609   Node_List nstack(a);
1610   VectorSet visited(a);
1611 
1612   nstack.push(in); // Start with unique input.
1613   visited.set(in->_idx);
1614   while (nstack.size() != 0) {
1615     Node* n = nstack.pop();
1616     uint cnt = n->req();
1617     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1618     for (; i < cnt; i++) {
1619       Node* m = n->in(i);
1620       if (m == (Node*)this) {
1621         return true;    // Data loop
1622       }
1623       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1624         if (!visited.test_set(m->_idx))
1625           nstack.push(m);
1626       }
1627     }
1628   }
1629   return false; // The phi is not reachable from its inputs
1630 }
1631 
1632 
1633 //------------------------------Ideal------------------------------------------
1634 // Return a node which is more "ideal" than the current node.  Must preserve
1635 // the CFG, but we can still strip out dead paths.
1636 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1637   // The next should never happen after 6297035 fix.
1638   if( is_copy() )               // Already degraded to a Copy ?
1639     return NULL;                // No change
1640 
1641   Node *r = in(0);              // RegionNode
1642   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1643 
1644   // Note: During parsing, phis are often transformed before their regions.
1645   // This means we have to use type_or_null to defend against untyped regions.
1646   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1647     return NULL;                // No change
1648 
1649   // If all inputs are value types, push the value type node down through the
1650   // phi because value type nodes should be merged through their input values.
1651   if (req() > 2 && in(1) != NULL && in(1)->is_ValueTypeBase() && (can_reshape || in(1)->is_ValueType())) {
1652     int opcode = in(1)->Opcode();
1653     uint i = 2;
1654     for (; i < req() && in(i) && in(i)->is_ValueTypeBase(); i++) {
1655       assert(in(i)->Opcode() == opcode, "mixing pointers and values?");
1656     }
1657     if (i == req()) {
1658       ValueTypeBaseNode* vt = in(1)->as_ValueTypeBase()->clone_with_phis(phase, in(0));
1659       for (uint i = 2; i < req(); ++i) {
1660         vt->merge_with(phase, in(i)->as_ValueTypeBase(), i, i == (req()-1));
1661       }
1662       return vt;
1663     }
1664   }
1665 
1666   if (type()->is_valuetypeptr() && can_reshape) {
1667     // If the Phi merges the result from a mix of constant and non
1668     // constant method handles, only some of its inputs are
1669     // ValueTypePtr nodes and we can't push the ValueTypePtr node down
1670     // to remove the need for allocations. This if fixed by transforming:
1671     //
1672     // (Phi ValueTypePtr#1 Node#2) to (Phi ValueTypePtr#1 CheckCastPP#2)
1673     //
1674     // Then pushing the CheckCastPP up through Phis until it reaches
1675     // the non constant method handle call. The type of the return
1676     // value is then known from the type of the CheckCastPP. A
1677     // ValueTypePtr can be created by adding projections to the call
1678     // for all values being returned. See
1679     // CheckCastPPNode::Ideal(). That ValueTypePtr node can then be
1680     // pushed down through Phis.
1681     const TypeInstPtr* ti = NULL;
1682     for (uint i = 1; i < req(); i++) {
1683       if (in(i) != NULL && in(i)->is_ValueTypePtr()) {
1684         const TypeInstPtr* t = phase->type(in(i))->is_instptr();
1685         t = t->cast_to_ptr_type(TypePtr::BotPTR)->is_instptr();
1686         if (ti == NULL) {
1687           ti = t;
1688         } else {
1689           assert(ti == t, "Phi should merge identical value types");
1690         }
1691       } else {
1692         assert(in(i) == NULL || ti == NULL || phase->type(in(i))->higher_equal(ti) || phase->type(in(i)) == Type::TOP, "bad type");
1693       }
1694     }
1695     if (ti != NULL) {
1696       // One input is a value type. All inputs must have the same type.
1697       bool progress = false;
1698       PhaseIterGVN* igvn = phase->is_IterGVN();
1699       for (uint i = 1; i < req(); i++) {
1700         if (in(i) != NULL && !in(i)->is_Con() && !phase->type(in(i))->higher_equal(ti)) {
1701           // Can't transform because CheckCastPPNode::Identity can
1702           // push the cast up through another Phi and cause this same
1703           // transformation to run again, indefinitely
1704           Node* cast = igvn->register_new_node_with_optimizer(new CheckCastPPNode(NULL, in(i), ti));
1705           set_req(i, cast);
1706           progress = true;
1707         }
1708       }
1709       if (progress) {
1710         return this;
1711       }
1712     }
1713   }
1714 
1715   Node *top = phase->C->top();
1716   bool new_phi = (outcnt() == 0); // transforming new Phi
1717   // No change for igvn if new phi is not hooked
1718   if (new_phi && can_reshape)
1719     return NULL;
1720 
1721   // The are 2 situations when only one valid phi's input is left
1722   // (in addition to Region input).
1723   // One: region is not loop - replace phi with this input.
1724   // Two: region is loop - replace phi with top since this data path is dead
1725   //                       and we need to break the dead data loop.
1726   Node* progress = NULL;        // Record if any progress made
1727   for( uint j = 1; j < req(); ++j ){ // For all paths in
1728     // Check unreachable control paths
1729     Node* rc = r->in(j);
1730     Node* n = in(j);            // Get the input
1731     if (rc == NULL || phase->type(rc) == Type::TOP) {
1732       if (n != top) {           // Not already top?
1733         PhaseIterGVN *igvn = phase->is_IterGVN();
1734         if (can_reshape && igvn != NULL) {
1735           igvn->_worklist.push(r);
1736         }
1737         set_req(j, top);        // Nuke it down
1738         progress = this;        // Record progress
1739       }
1740     }
1741   }
1742 
1743   if (can_reshape && outcnt() == 0) {
1744     // set_req() above may kill outputs if Phi is referenced
1745     // only by itself on the dead (top) control path.
1746     return top;
1747   }
1748 
1749   bool uncasted = false;
1750   Node* uin = unique_input(phase, false);
1751   if (uin == NULL && can_reshape) {
1752     uncasted = true;
1753     uin = unique_input(phase, true);
1754   }
1755   if (uin == top) {             // Simplest case: no alive inputs.
1756     if (can_reshape)            // IGVN transformation
1757       return top;
1758     else
1759       return NULL;              // Identity will return TOP
1760   } else if (uin != NULL) {
1761     // Only one not-NULL unique input path is left.
1762     // Determine if this input is backedge of a loop.
1763     // (Skip new phis which have no uses and dead regions).
1764     if (outcnt() > 0 && r->in(0) != NULL) {
1765       // First, take the short cut when we know it is a loop and
1766       // the EntryControl data path is dead.
1767       // Loop node may have only one input because entry path
1768       // is removed in PhaseIdealLoop::Dominators().
1769       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1770       bool is_loop = (r->is_Loop() && r->req() == 3);
1771       // Then, check if there is a data loop when phi references itself directly
1772       // or through other data nodes.
1773       if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1774           (!is_loop && is_unsafe_data_reference(uin))) {
1775         // Break this data loop to avoid creation of a dead loop.
1776         if (can_reshape) {
1777           return top;
1778         } else {
1779           // We can't return top if we are in Parse phase - cut inputs only
1780           // let Identity to handle the case.
1781           replace_edge(uin, top);
1782           return NULL;
1783         }
1784       }
1785     }
1786 
1787     if (uncasted) {
1788       // Add cast nodes between the phi to be removed and its unique input.
1789       // Wait until after parsing for the type information to propagate from the casts.
1790       assert(can_reshape, "Invalid during parsing");
1791       const Type* phi_type = bottom_type();
1792       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1793       // Add casts to carry the control dependency of the Phi that is
1794       // going away
1795       Node* cast = NULL;
1796       if (phi_type->isa_int()) {
1797         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1798       } else {
1799         const Type* uin_type = phase->type(uin);
1800         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1801           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1802         } else {
1803           // Use a CastPP for a cast to not null and a CheckCastPP for
1804           // a cast to a new klass (and both if both null-ness and
1805           // klass change).
1806 
1807           // If the type of phi is not null but the type of uin may be
1808           // null, uin's type must be casted to not null
1809           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1810               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1811             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1812           }
1813 
1814           // If the type of phi and uin, both casted to not null,
1815           // differ the klass of uin must be (check)cast'ed to match
1816           // that of phi
1817           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1818             Node* n = uin;
1819             if (cast != NULL) {
1820               cast = phase->transform(cast);
1821               n = cast;
1822             }
1823             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1824           }
1825           if (cast == NULL) {
1826             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1827           }
1828         }
1829       }
1830       assert(cast != NULL, "cast should be set");
1831       cast = phase->transform(cast);
1832       // set all inputs to the new cast(s) so the Phi is removed by Identity
1833       PhaseIterGVN* igvn = phase->is_IterGVN();
1834       for (uint i = 1; i < req(); i++) {
1835         set_req_X(i, cast, igvn);
1836       }
1837       uin = cast;
1838     }
1839 
1840     // One unique input.
1841     debug_only(Node* ident = Identity(phase));
1842     // The unique input must eventually be detected by the Identity call.
1843 #ifdef ASSERT
1844     if (ident != uin && !ident->is_top()) {
1845       // print this output before failing assert
1846       r->dump(3);
1847       this->dump(3);
1848       ident->dump();
1849       uin->dump();
1850     }
1851 #endif
1852     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1853     return NULL;
1854   }
1855 
1856   Node* opt = NULL;
1857   int true_path = is_diamond_phi();
1858   if( true_path != 0 ) {
1859     // Check for CMove'ing identity. If it would be unsafe,
1860     // handle it here. In the safe case, let Identity handle it.
1861     Node* unsafe_id = is_cmove_id(phase, true_path);
1862     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1863       opt = unsafe_id;
1864 
1865     // Check for simple convert-to-boolean pattern
1866     if( opt == NULL )
1867       opt = is_x2logic(phase, this, true_path);
1868 
1869     // Check for absolute value
1870     if( opt == NULL )
1871       opt = is_absolute(phase, this, true_path);
1872 
1873     // Check for conditional add
1874     if( opt == NULL && can_reshape )
1875       opt = is_cond_add(phase, this, true_path);
1876 
1877     // These 4 optimizations could subsume the phi:
1878     // have to check for a dead data loop creation.
1879     if( opt != NULL ) {
1880       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1881         // Found dead loop.
1882         if( can_reshape )
1883           return top;
1884         // We can't return top if we are in Parse phase - cut inputs only
1885         // to stop further optimizations for this phi. Identity will return TOP.
1886         assert(req() == 3, "only diamond merge phi here");
1887         set_req(1, top);
1888         set_req(2, top);
1889         return NULL;
1890       } else {
1891         return opt;
1892       }
1893     }
1894   }
1895 
1896   // Check for merging identical values and split flow paths
1897   if (can_reshape) {
1898     opt = split_flow_path(phase, this);
1899     // This optimization only modifies phi - don't need to check for dead loop.
1900     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1901     if (opt != NULL)  return opt;
1902   }
1903 
1904   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1905     // Try to undo Phi of AddP:
1906     // (Phi (AddP base base y) (AddP base2 base2 y))
1907     // becomes:
1908     // newbase := (Phi base base2)
1909     // (AddP newbase newbase y)
1910     //
1911     // This occurs as a result of unsuccessful split_thru_phi and
1912     // interferes with taking advantage of addressing modes. See the
1913     // clone_shift_expressions code in matcher.cpp
1914     Node* addp = in(1);
1915     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1916     Node* y = addp->in(AddPNode::Offset);
1917     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1918       // make sure that all the inputs are similar to the first one,
1919       // i.e. AddP with base == address and same offset as first AddP
1920       bool doit = true;
1921       for (uint i = 2; i < req(); i++) {
1922         if (in(i) == NULL ||
1923             in(i)->Opcode() != Op_AddP ||
1924             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1925             in(i)->in(AddPNode::Offset) != y) {
1926           doit = false;
1927           break;
1928         }
1929         // Accumulate type for resulting Phi
1930         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1931       }
1932       Node* base = NULL;
1933       if (doit) {
1934         // Check for neighboring AddP nodes in a tree.
1935         // If they have a base, use that it.
1936         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1937           Node* u = this->fast_out(k);
1938           if (u->is_AddP()) {
1939             Node* base2 = u->in(AddPNode::Base);
1940             if (base2 != NULL && !base2->is_top()) {
1941               if (base == NULL)
1942                 base = base2;
1943               else if (base != base2)
1944                 { doit = false; break; }
1945             }
1946           }
1947         }
1948       }
1949       if (doit) {
1950         if (base == NULL) {
1951           base = new PhiNode(in(0), type, NULL);
1952           for (uint i = 1; i < req(); i++) {
1953             base->init_req(i, in(i)->in(AddPNode::Base));
1954           }
1955           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1956         }
1957         return new AddPNode(base, base, y);
1958       }
1959     }
1960   }
1961 
1962   // Split phis through memory merges, so that the memory merges will go away.
1963   // Piggy-back this transformation on the search for a unique input....
1964   // It will be as if the merged memory is the unique value of the phi.
1965   // (Do not attempt this optimization unless parsing is complete.
1966   // It would make the parser's memory-merge logic sick.)
1967   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1968   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1969     // see if this phi should be sliced
1970     uint merge_width = 0;
1971     bool saw_self = false;
1972     for( uint i=1; i<req(); ++i ) {// For all paths in
1973       Node *ii = in(i);
1974       // TOP inputs should not be counted as safe inputs because if the
1975       // Phi references itself through all other inputs then splitting the
1976       // Phi through memory merges would create dead loop at later stage.
1977       if (ii == top) {
1978         return NULL; // Delay optimization until graph is cleaned.
1979       }
1980       if (ii->is_MergeMem()) {
1981         MergeMemNode* n = ii->as_MergeMem();
1982         merge_width = MAX2(merge_width, n->req());
1983         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1984       }
1985     }
1986 
1987     // This restriction is temporarily necessary to ensure termination:
1988     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1989 
1990     if (merge_width > Compile::AliasIdxRaw) {
1991       // found at least one non-empty MergeMem
1992       const TypePtr* at = adr_type();
1993       if (at != TypePtr::BOTTOM) {
1994         // Patch the existing phi to select an input from the merge:
1995         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1996         //     Phi:AT1(...m1...)
1997         int alias_idx = phase->C->get_alias_index(at);
1998         for (uint i=1; i<req(); ++i) {
1999           Node *ii = in(i);
2000           if (ii->is_MergeMem()) {
2001             MergeMemNode* n = ii->as_MergeMem();
2002             // compress paths and change unreachable cycles to TOP
2003             // If not, we can update the input infinitely along a MergeMem cycle
2004             // Equivalent code is in MemNode::Ideal_common
2005             Node *m  = phase->transform(n);
2006             if (outcnt() == 0) {  // Above transform() may kill us!
2007               return top;
2008             }
2009             // If transformed to a MergeMem, get the desired slice
2010             // Otherwise the returned node represents memory for every slice
2011             Node *new_mem = (m->is_MergeMem()) ?
2012                              m->as_MergeMem()->memory_at(alias_idx) : m;
2013             // Update input if it is progress over what we have now
2014             if (new_mem != ii) {
2015               set_req(i, new_mem);
2016               progress = this;
2017             }
2018           }
2019         }
2020       } else {
2021         // We know that at least one MergeMem->base_memory() == this
2022         // (saw_self == true). If all other inputs also references this phi
2023         // (directly or through data nodes) - it is dead loop.
2024         bool saw_safe_input = false;
2025         for (uint j = 1; j < req(); ++j) {
2026           Node *n = in(j);
2027           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
2028             continue;              // skip known cases
2029           if (!is_unsafe_data_reference(n)) {
2030             saw_safe_input = true; // found safe input
2031             break;
2032           }
2033         }
2034         if (!saw_safe_input)
2035           return top; // all inputs reference back to this phi - dead loop
2036 
2037         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2038         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2039         PhaseIterGVN *igvn = phase->is_IterGVN();
2040         Node* hook = new Node(1);
2041         PhiNode* new_base = (PhiNode*) clone();
2042         // Must eagerly register phis, since they participate in loops.
2043         if (igvn) {
2044           igvn->register_new_node_with_optimizer(new_base);
2045           hook->add_req(new_base);
2046         }
2047         MergeMemNode* result = MergeMemNode::make(new_base);
2048         for (uint i = 1; i < req(); ++i) {
2049           Node *ii = in(i);
2050           if (ii->is_MergeMem()) {
2051             MergeMemNode* n = ii->as_MergeMem();
2052             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2053               // If we have not seen this slice yet, make a phi for it.
2054               bool made_new_phi = false;
2055               if (mms.is_empty()) {
2056                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2057                 made_new_phi = true;
2058                 if (igvn) {
2059                   igvn->register_new_node_with_optimizer(new_phi);
2060                   hook->add_req(new_phi);
2061                 }
2062                 mms.set_memory(new_phi);
2063               }
2064               Node* phi = mms.memory();
2065               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2066               phi->set_req(i, mms.memory2());
2067             }
2068           }
2069         }
2070         // Distribute all self-loops.
2071         { // (Extra braces to hide mms.)
2072           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2073             Node* phi = mms.memory();
2074             for (uint i = 1; i < req(); ++i) {
2075               if (phi->in(i) == this)  phi->set_req(i, phi);
2076             }
2077           }
2078         }
2079         // now transform the new nodes, and return the mergemem
2080         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2081           Node* phi = mms.memory();
2082           mms.set_memory(phase->transform(phi));
2083         }
2084         if (igvn) { // Unhook.
2085           igvn->hash_delete(hook);
2086           for (uint i = 1; i < hook->req(); i++) {
2087             hook->set_req(i, NULL);
2088           }
2089         }
2090         // Replace self with the result.
2091         return result;
2092       }
2093     }
2094     //
2095     // Other optimizations on the memory chain
2096     //
2097     const TypePtr* at = adr_type();
2098     for( uint i=1; i<req(); ++i ) {// For all paths in
2099       Node *ii = in(i);
2100       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2101       if (ii != new_in ) {
2102         set_req(i, new_in);
2103         progress = this;
2104       }
2105     }
2106   }
2107 
2108 #ifdef _LP64
2109   // Push DecodeN/DecodeNKlass down through phi.
2110   // The rest of phi graph will transform by split EncodeP node though phis up.
2111   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2112     bool may_push = true;
2113     bool has_decodeN = false;
2114     bool is_decodeN = false;
2115     for (uint i=1; i<req(); ++i) {// For all paths in
2116       Node *ii = in(i);
2117       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2118         // Do optimization if a non dead path exist.
2119         if (ii->in(1)->bottom_type() != Type::TOP) {
2120           has_decodeN = true;
2121           is_decodeN = ii->is_DecodeN();
2122         }
2123       } else if (!ii->is_Phi()) {
2124         may_push = false;
2125       }
2126     }
2127 
2128     if (has_decodeN && may_push) {
2129       PhaseIterGVN *igvn = phase->is_IterGVN();
2130       // Make narrow type for new phi.
2131       const Type* narrow_t;
2132       if (is_decodeN) {
2133         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2134       } else {
2135         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2136       }
2137       PhiNode* new_phi = new PhiNode(r, narrow_t);
2138       uint orig_cnt = req();
2139       for (uint i=1; i<req(); ++i) {// For all paths in
2140         Node *ii = in(i);
2141         Node* new_ii = NULL;
2142         if (ii->is_DecodeNarrowPtr()) {
2143           assert(ii->bottom_type() == bottom_type(), "sanity");
2144           new_ii = ii->in(1);
2145         } else {
2146           assert(ii->is_Phi(), "sanity");
2147           if (ii->as_Phi() == this) {
2148             new_ii = new_phi;
2149           } else {
2150             if (is_decodeN) {
2151               new_ii = new EncodePNode(ii, narrow_t);
2152             } else {
2153               new_ii = new EncodePKlassNode(ii, narrow_t);
2154             }
2155             igvn->register_new_node_with_optimizer(new_ii);
2156           }
2157         }
2158         new_phi->set_req(i, new_ii);
2159       }
2160       igvn->register_new_node_with_optimizer(new_phi, this);
2161       if (is_decodeN) {
2162         progress = new DecodeNNode(new_phi, bottom_type());
2163       } else {
2164         progress = new DecodeNKlassNode(new_phi, bottom_type());
2165       }
2166     }
2167   }
2168 #endif
2169 
2170   return progress;              // Return any progress
2171 }
2172 
2173 //------------------------------is_tripcount-----------------------------------
2174 bool PhiNode::is_tripcount() const {
2175   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2176           in(0)->as_CountedLoop()->phi() == this);
2177 }
2178 
2179 //------------------------------out_RegMask------------------------------------
2180 const RegMask &PhiNode::in_RegMask(uint i) const {
2181   return i ? out_RegMask() : RegMask::Empty;
2182 }
2183 
2184 const RegMask &PhiNode::out_RegMask() const {
2185   uint ideal_reg = _type->ideal_reg();
2186   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2187   if( ideal_reg == 0 ) return RegMask::Empty;
2188   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2189   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2190 }
2191 
2192 #ifndef PRODUCT
2193 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2194   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2195   // and all outputs till level 1. In compact mode, inputs till level 1 are
2196   // collected.
2197   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2198   this->collect_nodes(out_rel, -1, false, false);
2199 }
2200 
2201 void PhiNode::dump_spec(outputStream *st) const {
2202   TypeNode::dump_spec(st);
2203   if (is_tripcount()) {
2204     st->print(" #tripcount");
2205   }
2206 }
2207 #endif
2208 
2209 
2210 //=============================================================================
2211 const Type* GotoNode::Value(PhaseGVN* phase) const {
2212   // If the input is reachable, then we are executed.
2213   // If the input is not reachable, then we are not executed.
2214   return phase->type(in(0));
2215 }
2216 
2217 Node* GotoNode::Identity(PhaseGVN* phase) {
2218   return in(0);                // Simple copy of incoming control
2219 }
2220 
2221 const RegMask &GotoNode::out_RegMask() const {
2222   return RegMask::Empty;
2223 }
2224 
2225 #ifndef PRODUCT
2226 //-----------------------------related-----------------------------------------
2227 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2228 // outputs at level 1. This is regardless of compact mode.
2229 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2230   this->collect_nodes(in_rel, 1, false, false);
2231   this->collect_nodes(out_rel, -1, false, false);
2232 }
2233 #endif
2234 
2235 
2236 //=============================================================================
2237 const RegMask &JumpNode::out_RegMask() const {
2238   return RegMask::Empty;
2239 }
2240 
2241 #ifndef PRODUCT
2242 //-----------------------------related-----------------------------------------
2243 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2244 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2245 // This is regardless of compact mode.
2246 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2247   this->collect_nodes(in_rel, 1, false, false);
2248   this->collect_nodes(out_rel, -2, false, false);
2249 }
2250 #endif
2251 
2252 //=============================================================================
2253 const RegMask &JProjNode::out_RegMask() const {
2254   return RegMask::Empty;
2255 }
2256 
2257 //=============================================================================
2258 const RegMask &CProjNode::out_RegMask() const {
2259   return RegMask::Empty;
2260 }
2261 
2262 
2263 
2264 //=============================================================================
2265 
2266 uint PCTableNode::hash() const { return Node::hash() + _size; }
2267 uint PCTableNode::cmp( const Node &n ) const
2268 { return _size == ((PCTableNode&)n)._size; }
2269 
2270 const Type *PCTableNode::bottom_type() const {
2271   const Type** f = TypeTuple::fields(_size);
2272   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2273   return TypeTuple::make(_size, f);
2274 }
2275 
2276 //------------------------------Value------------------------------------------
2277 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2278 // Control, otherwise the table targets are not reachable
2279 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2280   if( phase->type(in(0)) == Type::CONTROL )
2281     return bottom_type();
2282   return Type::TOP;             // All paths dead?  Then so are we
2283 }
2284 
2285 //------------------------------Ideal------------------------------------------
2286 // Return a node which is more "ideal" than the current node.  Strip out
2287 // control copies
2288 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2289   return remove_dead_region(phase, can_reshape) ? this : NULL;
2290 }
2291 
2292 //=============================================================================
2293 uint JumpProjNode::hash() const {
2294   return Node::hash() + _dest_bci;
2295 }
2296 
2297 uint JumpProjNode::cmp( const Node &n ) const {
2298   return ProjNode::cmp(n) &&
2299     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2300 }
2301 
2302 #ifndef PRODUCT
2303 void JumpProjNode::dump_spec(outputStream *st) const {
2304   ProjNode::dump_spec(st);
2305   st->print("@bci %d ",_dest_bci);
2306 }
2307 
2308 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2309   ProjNode::dump_compact_spec(st);
2310   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2311 }
2312 
2313 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2314   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2315   this->collect_nodes(in_rel, 1, false, false);
2316   this->collect_nodes(out_rel, -1, false, false);
2317 }
2318 #endif
2319 
2320 //=============================================================================
2321 //------------------------------Value------------------------------------------
2322 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2323 // have the default "fall_through_index" path.
2324 const Type* CatchNode::Value(PhaseGVN* phase) const {
2325   // Unreachable?  Then so are all paths from here.
2326   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2327   // First assume all paths are reachable
2328   const Type** f = TypeTuple::fields(_size);
2329   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2330   // Identify cases that will always throw an exception
2331   // () rethrow call
2332   // () virtual or interface call with NULL receiver
2333   // () call is a check cast with incompatible arguments
2334   if( in(1)->is_Proj() ) {
2335     Node *i10 = in(1)->in(0);
2336     if( i10->is_Call() ) {
2337       CallNode *call = i10->as_Call();
2338       // Rethrows always throw exceptions, never return
2339       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2340         f[CatchProjNode::fall_through_index] = Type::TOP;
2341       } else if( call->req() > TypeFunc::Parms ) {
2342         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2343         // Check for null receiver to virtual or interface calls
2344         if( call->is_CallDynamicJava() &&
2345             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2346           f[CatchProjNode::fall_through_index] = Type::TOP;
2347         }
2348       } // End of if not a runtime stub
2349     } // End of if have call above me
2350   } // End of slot 1 is not a projection
2351   return TypeTuple::make(_size, f);
2352 }
2353 
2354 //=============================================================================
2355 uint CatchProjNode::hash() const {
2356   return Node::hash() + _handler_bci;
2357 }
2358 
2359 
2360 uint CatchProjNode::cmp( const Node &n ) const {
2361   return ProjNode::cmp(n) &&
2362     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2363 }
2364 
2365 
2366 //------------------------------Identity---------------------------------------
2367 // If only 1 target is possible, choose it if it is the main control
2368 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2369   // If my value is control and no other value is, then treat as ID
2370   const TypeTuple *t = phase->type(in(0))->is_tuple();
2371   if (t->field_at(_con) != Type::CONTROL)  return this;
2372   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2373   // also remove any exception table entry.  Thus we must know the call
2374   // feeding the Catch will not really throw an exception.  This is ok for
2375   // the main fall-thru control (happens when we know a call can never throw
2376   // an exception) or for "rethrow", because a further optimization will
2377   // yank the rethrow (happens when we inline a function that can throw an
2378   // exception and the caller has no handler).  Not legal, e.g., for passing
2379   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2380   // These cases MUST throw an exception via the runtime system, so the VM
2381   // will be looking for a table entry.
2382   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2383   CallNode *call;
2384   if (_con != TypeFunc::Control && // Bail out if not the main control.
2385       !(proj->is_Proj() &&      // AND NOT a rethrow
2386         proj->in(0)->is_Call() &&
2387         (call = proj->in(0)->as_Call()) &&
2388         call->entry_point() == OptoRuntime::rethrow_stub()))
2389     return this;
2390 
2391   // Search for any other path being control
2392   for (uint i = 0; i < t->cnt(); i++) {
2393     if (i != _con && t->field_at(i) == Type::CONTROL)
2394       return this;
2395   }
2396   // Only my path is possible; I am identity on control to the jump
2397   return in(0)->in(0);
2398 }
2399 
2400 
2401 #ifndef PRODUCT
2402 void CatchProjNode::dump_spec(outputStream *st) const {
2403   ProjNode::dump_spec(st);
2404   st->print("@bci %d ",_handler_bci);
2405 }
2406 #endif
2407 
2408 //=============================================================================
2409 //------------------------------Identity---------------------------------------
2410 // Check for CreateEx being Identity.
2411 Node* CreateExNode::Identity(PhaseGVN* phase) {
2412   if( phase->type(in(1)) == Type::TOP ) return in(1);
2413   if( phase->type(in(0)) == Type::TOP ) return in(0);
2414   // We only come from CatchProj, unless the CatchProj goes away.
2415   // If the CatchProj is optimized away, then we just carry the
2416   // exception oop through.
2417 
2418   // CheckCastPPNode::Ideal() for value types reuses the exception
2419   // paths of a call to perform an allocation: we can see a Phi here.
2420   if (in(1)->is_Phi()) {
2421     return this;
2422   }
2423   CallNode *call = in(1)->in(0)->as_Call();
2424 
2425   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2426     ? this
2427     : call->in(TypeFunc::Parms);
2428 }
2429 
2430 //=============================================================================
2431 //------------------------------Value------------------------------------------
2432 // Check for being unreachable.
2433 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2434   if (!in(0) || in(0)->is_top()) return Type::TOP;
2435   return bottom_type();
2436 }
2437 
2438 //------------------------------Ideal------------------------------------------
2439 // Check for no longer being part of a loop
2440 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2441   if (can_reshape && !in(0)->is_Loop()) {
2442     // Dead code elimination can sometimes delete this projection so
2443     // if it's not there, there's nothing to do.
2444     Node* fallthru = proj_out_or_null(0);
2445     if (fallthru != NULL) {
2446       phase->is_IterGVN()->replace_node(fallthru, in(0));
2447     }
2448     return phase->C->top();
2449   }
2450   return NULL;
2451 }
2452 
2453 #ifndef PRODUCT
2454 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2455   st->print("%s", Name());
2456 }
2457 #endif