1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 142   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 143   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 144   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 145   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 146   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 147   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 148   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 149   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 150   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 151   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 152   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 153   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 154   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 155   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 156 };
 157 
 158 // Map ideal registers (machine types) to ideal types
 159 const Type *Type::mreg2type[_last_machine_leaf];
 160 
 161 // Map basic types to canonical Type* pointers.
 162 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 163 
 164 // Map basic types to constant-zero Types.
 165 const Type* Type::            _zero_type[T_CONFLICT+1];
 166 
 167 // Map basic types to array-body alias types.
 168 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 169 
 170 //=============================================================================
 171 // Convenience common pre-built types.
 172 const Type *Type::ABIO;         // State-of-machine only
 173 const Type *Type::BOTTOM;       // All values
 174 const Type *Type::CONTROL;      // Control only
 175 const Type *Type::DOUBLE;       // All doubles
 176 const Type *Type::FLOAT;        // All floats
 177 const Type *Type::HALF;         // Placeholder half of doublewide type
 178 const Type *Type::MEMORY;       // Abstract store only
 179 const Type *Type::RETURN_ADDRESS;
 180 const Type *Type::TOP;          // No values in set
 181 
 182 //------------------------------get_const_type---------------------------
 183 const Type* Type::get_const_type(ciType* type) {
 184   if (type == NULL) {
 185     return NULL;
 186   } else if (type->is_primitive_type()) {
 187     return get_const_basic_type(type->basic_type());
 188   } else {
 189     return TypeOopPtr::make_from_klass(type->as_klass());
 190   }
 191 }
 192 
 193 //---------------------------array_element_basic_type---------------------------------
 194 // Mapping to the array element's basic type.
 195 BasicType Type::array_element_basic_type() const {
 196   BasicType bt = basic_type();
 197   if (bt == T_INT) {
 198     if (this == TypeInt::INT)   return T_INT;
 199     if (this == TypeInt::CHAR)  return T_CHAR;
 200     if (this == TypeInt::BYTE)  return T_BYTE;
 201     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 202     if (this == TypeInt::SHORT) return T_SHORT;
 203     return T_VOID;
 204   }
 205   return bt;
 206 }
 207 
 208 // For two instance arrays of same dimension, return the base element types.
 209 // Otherwise or if the arrays have different dimensions, return NULL.
 210 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 211                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 212 
 213   if (e1) *e1 = NULL;
 214   if (e2) *e2 = NULL;
 215   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 216   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 217 
 218   if (a1tap != NULL && a2tap != NULL) {
 219     // Handle multidimensional arrays
 220     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 221     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 222     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 223       a1tap = a1tp->is_aryptr();
 224       a2tap = a2tp->is_aryptr();
 225       a1tp = a1tap->elem()->make_ptr();
 226       a2tp = a2tap->elem()->make_ptr();
 227     }
 228     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 229       if (e1) *e1 = a1tp->is_instptr();
 230       if (e2) *e2 = a2tp->is_instptr();
 231     }
 232   }
 233 }
 234 
 235 //---------------------------get_typeflow_type---------------------------------
 236 // Import a type produced by ciTypeFlow.
 237 const Type* Type::get_typeflow_type(ciType* type) {
 238   switch (type->basic_type()) {
 239 
 240   case ciTypeFlow::StateVector::T_BOTTOM:
 241     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 242     return Type::BOTTOM;
 243 
 244   case ciTypeFlow::StateVector::T_TOP:
 245     assert(type == ciTypeFlow::StateVector::top_type(), "");
 246     return Type::TOP;
 247 
 248   case ciTypeFlow::StateVector::T_NULL:
 249     assert(type == ciTypeFlow::StateVector::null_type(), "");
 250     return TypePtr::NULL_PTR;
 251 
 252   case ciTypeFlow::StateVector::T_LONG2:
 253     // The ciTypeFlow pass pushes a long, then the half.
 254     // We do the same.
 255     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 256     return TypeInt::TOP;
 257 
 258   case ciTypeFlow::StateVector::T_DOUBLE2:
 259     // The ciTypeFlow pass pushes double, then the half.
 260     // Our convention is the same.
 261     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 262     return Type::TOP;
 263 
 264   case T_ADDRESS:
 265     assert(type->is_return_address(), "");
 266     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 267 
 268   case T_VALUETYPE:
 269     return TypeValueType::make(type->as_value_klass());
 270 
 271   default:
 272     // make sure we did not mix up the cases:
 273     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 274     assert(type != ciTypeFlow::StateVector::top_type(), "");
 275     assert(type != ciTypeFlow::StateVector::null_type(), "");
 276     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 277     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 278     assert(!type->is_return_address(), "");
 279 
 280     return Type::get_const_type(type);
 281   }
 282 }
 283 
 284 
 285 //-----------------------make_from_constant------------------------------------
 286 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 287                                      int stable_dimension, bool is_narrow_oop,
 288                                      bool is_autobox_cache) {
 289   switch (constant.basic_type()) {
 290     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 291     case T_CHAR:     return TypeInt::make(constant.as_char());
 292     case T_BYTE:     return TypeInt::make(constant.as_byte());
 293     case T_SHORT:    return TypeInt::make(constant.as_short());
 294     case T_INT:      return TypeInt::make(constant.as_int());
 295     case T_LONG:     return TypeLong::make(constant.as_long());
 296     case T_FLOAT:    return TypeF::make(constant.as_float());
 297     case T_DOUBLE:   return TypeD::make(constant.as_double());
 298     case T_ARRAY:
 299     case T_VALUETYPE:
 300     case T_OBJECT: {
 301         // cases:
 302         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 303         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 304         // An oop is not scavengable if it is in the perm gen.
 305         const Type* con_type = NULL;
 306         ciObject* oop_constant = constant.as_object();
 307         if (oop_constant->is_null_object()) {
 308           con_type = Type::get_zero_type(T_OBJECT);
 309         } else {
 310           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 311           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 312           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 313             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 314           }
 315           if (stable_dimension > 0) {
 316             assert(FoldStableValues, "sanity");
 317             assert(!con_type->is_zero_type(), "default value for stable field");
 318             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 319           }
 320         }
 321         if (is_narrow_oop) {
 322           con_type = con_type->make_narrowoop();
 323         }
 324         return con_type;
 325       }
 326     case T_ILLEGAL:
 327       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 328       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 329       return NULL;
 330     default:
 331       // Fall through to failure
 332       return NULL;
 333   }
 334 }
 335 
 336 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 337   BasicType conbt = con.basic_type();
 338   switch (conbt) {
 339     case T_BOOLEAN: conbt = T_BYTE;   break;
 340     case T_ARRAY:   conbt = T_OBJECT; break;
 341     case T_VALUETYPE: conbt = T_OBJECT; break;
 342     default:                          break;
 343   }
 344   switch (loadbt) {
 345     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 346     case T_NARROWOOP: loadbt = T_OBJECT; break;
 347     case T_ARRAY:     loadbt = T_OBJECT; break;
 348     case T_VALUETYPE: loadbt = T_OBJECT; break;
 349     case T_ADDRESS:   loadbt = T_OBJECT; break;
 350     default:                             break;
 351   }
 352   if (conbt == loadbt) {
 353     if (is_unsigned && conbt == T_BYTE) {
 354       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 355       return ciConstant(T_INT, con.as_int() & 0xFF);
 356     } else {
 357       return con;
 358     }
 359   }
 360   if (conbt == T_SHORT && loadbt == T_CHAR) {
 361     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 362     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 363   }
 364   return ciConstant(); // T_ILLEGAL
 365 }
 366 
 367 // Try to constant-fold a stable array element.
 368 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 369                                                    BasicType loadbt, bool is_unsigned_load) {
 370   // Decode the results of GraphKit::array_element_address.
 371   ciConstant element_value = array->element_value_by_offset(off);
 372   if (element_value.basic_type() == T_ILLEGAL) {
 373     return NULL; // wrong offset
 374   }
 375   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 376 
 377   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 378          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 379 
 380   if (con.is_valid() &&          // not a mismatched access
 381       !con.is_null_or_zero()) {  // not a default value
 382     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 383     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 384   }
 385   return NULL;
 386 }
 387 
 388 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 389   ciField* field;
 390   ciType* type = holder->java_mirror_type();
 391   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 392     // Static field
 393     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 394   } else {
 395     // Instance field
 396     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 397   }
 398   if (field == NULL) {
 399     return NULL; // Wrong offset
 400   }
 401   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 402 }
 403 
 404 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 405                                            BasicType loadbt, bool is_unsigned_load) {
 406   if (!field->is_constant()) {
 407     return NULL; // Non-constant field
 408   }
 409   ciConstant field_value;
 410   if (field->is_static()) {
 411     // final static field
 412     field_value = field->constant_value();
 413   } else if (holder != NULL) {
 414     // final or stable non-static field
 415     // Treat final non-static fields of trusted classes (classes in
 416     // java.lang.invoke and sun.invoke packages and subpackages) as
 417     // compile time constants.
 418     field_value = field->constant_value_of(holder);
 419   }
 420   if (!field_value.is_valid()) {
 421     return NULL; // Not a constant
 422   }
 423 
 424   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 425 
 426   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 427          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 428 
 429   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 430   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 431   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 432 
 433   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 434                                             stable_dimension, is_narrow_oop,
 435                                             field->is_autobox_cache());
 436   if (con_type != NULL && field->is_call_site_target()) {
 437     ciCallSite* call_site = holder->as_call_site();
 438     if (!call_site->is_constant_call_site()) {
 439       ciMethodHandle* target = con.as_object()->as_method_handle();
 440       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 441     }
 442   }
 443   return con_type;
 444 }
 445 
 446 //------------------------------make-------------------------------------------
 447 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 448 // and look for an existing copy in the type dictionary.
 449 const Type *Type::make( enum TYPES t ) {
 450   return (new Type(t))->hashcons();
 451 }
 452 
 453 //------------------------------cmp--------------------------------------------
 454 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 455   if( t1->_base != t2->_base )
 456     return 1;                   // Missed badly
 457   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 458   return !t1->eq(t2);           // Return ZERO if equal
 459 }
 460 
 461 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 462   if (!include_speculative) {
 463     return remove_speculative();
 464   }
 465   return this;
 466 }
 467 
 468 //------------------------------hash-------------------------------------------
 469 int Type::uhash( const Type *const t ) {
 470   return t->hash();
 471 }
 472 
 473 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 474 
 475 //--------------------------Initialize_shared----------------------------------
 476 void Type::Initialize_shared(Compile* current) {
 477   // This method does not need to be locked because the first system
 478   // compilations (stub compilations) occur serially.  If they are
 479   // changed to proceed in parallel, then this section will need
 480   // locking.
 481 
 482   Arena* save = current->type_arena();
 483   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 484 
 485   current->set_type_arena(shared_type_arena);
 486   _shared_type_dict =
 487     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 488                                   shared_type_arena, 128 );
 489   current->set_type_dict(_shared_type_dict);
 490 
 491   // Make shared pre-built types.
 492   CONTROL = make(Control);      // Control only
 493   TOP     = make(Top);          // No values in set
 494   MEMORY  = make(Memory);       // Abstract store only
 495   ABIO    = make(Abio);         // State-of-machine only
 496   RETURN_ADDRESS=make(Return_Address);
 497   FLOAT   = make(FloatBot);     // All floats
 498   DOUBLE  = make(DoubleBot);    // All doubles
 499   BOTTOM  = make(Bottom);       // Everything
 500   HALF    = make(Half);         // Placeholder half of doublewide type
 501 
 502   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 503   TypeF::ONE  = TypeF::make(1.0); // Float 1
 504 
 505   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 506   TypeD::ONE  = TypeD::make(1.0); // Double 1
 507 
 508   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 509   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 510   TypeInt::ONE     = TypeInt::make( 1);  //  1
 511   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 512   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 513   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 514   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 515   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 516   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 517   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 518   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 519   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 520   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 521   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 522   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 523   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 524   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 525   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 526   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 527   // CmpL is overloaded both as the bytecode computation returning
 528   // a trinary (-1,0,+1) integer result AND as an efficient long
 529   // compare returning optimizer ideal-type flags.
 530   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 531   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 532   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 533   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 534   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 535 
 536   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 537   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 538   TypeLong::ONE     = TypeLong::make( 1);        //  1
 539   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 540   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 541   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 542   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 543   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 544 
 545   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 546   fboth[0] = Type::CONTROL;
 547   fboth[1] = Type::CONTROL;
 548   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 549 
 550   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 551   ffalse[0] = Type::CONTROL;
 552   ffalse[1] = Type::TOP;
 553   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 554 
 555   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 556   fneither[0] = Type::TOP;
 557   fneither[1] = Type::TOP;
 558   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 559 
 560   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 561   ftrue[0] = Type::TOP;
 562   ftrue[1] = Type::CONTROL;
 563   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 564 
 565   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 566   floop[0] = Type::CONTROL;
 567   floop[1] = TypeInt::INT;
 568   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 569 
 570   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 571   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 572   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 573 
 574   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 575   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 576 
 577   const Type **fmembar = TypeTuple::fields(0);
 578   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 579 
 580   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 581   fsc[0] = TypeInt::CC;
 582   fsc[1] = Type::MEMORY;
 583   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 584 
 585   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 586   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 587   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 588   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 589                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 590   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 591                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 592   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 593 
 594   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 595 
 596   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 597   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 598 
 599   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 600 
 601   mreg2type[Op_Node] = Type::BOTTOM;
 602   mreg2type[Op_Set ] = 0;
 603   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 604   mreg2type[Op_RegI] = TypeInt::INT;
 605   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 606   mreg2type[Op_RegF] = Type::FLOAT;
 607   mreg2type[Op_RegD] = Type::DOUBLE;
 608   mreg2type[Op_RegL] = TypeLong::LONG;
 609   mreg2type[Op_RegFlags] = TypeInt::CC;
 610 
 611   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 612 
 613   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 614 
 615 #ifdef _LP64
 616   if (UseCompressedOops) {
 617     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 618     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 619   } else
 620 #endif
 621   {
 622     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 623     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 624   }
 625   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 626   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 627   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 628   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 629   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 630   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 631   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 632 
 633   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 634   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 635   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 636   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 637   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 638   TypeAryPtr::_array_body_type[T_VALUETYPEPTR] = NULL;
 639   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 640   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 641   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 642   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 643   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 644   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 645   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 646   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 647 
 648   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 649   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 650   TypeKlassPtr::BOTTOM = EnableValhalla ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 651 
 652   const Type **fi2c = TypeTuple::fields(2);
 653   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 654   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 655   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 656 
 657   const Type **intpair = TypeTuple::fields(2);
 658   intpair[0] = TypeInt::INT;
 659   intpair[1] = TypeInt::INT;
 660   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 661 
 662   const Type **longpair = TypeTuple::fields(2);
 663   longpair[0] = TypeLong::LONG;
 664   longpair[1] = TypeLong::LONG;
 665   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 666 
 667   const Type **intccpair = TypeTuple::fields(2);
 668   intccpair[0] = TypeInt::INT;
 669   intccpair[1] = TypeInt::CC;
 670   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 671 
 672   const Type **longccpair = TypeTuple::fields(2);
 673   longccpair[0] = TypeLong::LONG;
 674   longccpair[1] = TypeInt::CC;
 675   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 676 
 677   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 678   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 679   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 680   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 681   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 682   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 683   _const_basic_type[T_INT]         = TypeInt::INT;
 684   _const_basic_type[T_LONG]        = TypeLong::LONG;
 685   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 686   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 687   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 688   _const_basic_type[T_VALUETYPEPTR]= TypeInstPtr::BOTTOM;
 689   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 690   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 691   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 692   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 693   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 694 
 695   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 696   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 697   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 698   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 699   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 700   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 701   _zero_type[T_INT]         = TypeInt::ZERO;
 702   _zero_type[T_LONG]        = TypeLong::ZERO;
 703   _zero_type[T_FLOAT]       = TypeF::ZERO;
 704   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 705   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 706   _zero_type[T_VALUETYPEPTR]= TypePtr::NULL_PTR;
 707   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 708   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 709   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 710   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 711 
 712   // get_zero_type() should not happen for T_CONFLICT
 713   _zero_type[T_CONFLICT]= NULL;
 714 
 715   // Vector predefined types, it needs initialized _const_basic_type[].
 716   if (Matcher::vector_size_supported(T_BYTE,4)) {
 717     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 718   }
 719   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 720     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 721   }
 722   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 723     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 724   }
 725   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 726     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 727   }
 728   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 729     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 730   }
 731   mreg2type[Op_VecS] = TypeVect::VECTS;
 732   mreg2type[Op_VecD] = TypeVect::VECTD;
 733   mreg2type[Op_VecX] = TypeVect::VECTX;
 734   mreg2type[Op_VecY] = TypeVect::VECTY;
 735   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 736 
 737   // Restore working type arena.
 738   current->set_type_arena(save);
 739   current->set_type_dict(NULL);
 740 }
 741 
 742 //------------------------------Initialize-------------------------------------
 743 void Type::Initialize(Compile* current) {
 744   assert(current->type_arena() != NULL, "must have created type arena");
 745 
 746   if (_shared_type_dict == NULL) {
 747     Initialize_shared(current);
 748   }
 749 
 750   Arena* type_arena = current->type_arena();
 751 
 752   // Create the hash-cons'ing dictionary with top-level storage allocation
 753   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 754   current->set_type_dict(tdic);
 755 
 756   // Transfer the shared types.
 757   DictI i(_shared_type_dict);
 758   for( ; i.test(); ++i ) {
 759     Type* t = (Type*)i._value;
 760     tdic->Insert(t,t);  // New Type, insert into Type table
 761   }
 762 }
 763 
 764 //------------------------------hashcons---------------------------------------
 765 // Do the hash-cons trick.  If the Type already exists in the type table,
 766 // delete the current Type and return the existing Type.  Otherwise stick the
 767 // current Type in the Type table.
 768 const Type *Type::hashcons(void) {
 769   debug_only(base());           // Check the assertion in Type::base().
 770   // Look up the Type in the Type dictionary
 771   Dict *tdic = type_dict();
 772   Type* old = (Type*)(tdic->Insert(this, this, false));
 773   if( old ) {                   // Pre-existing Type?
 774     if( old != this )           // Yes, this guy is not the pre-existing?
 775       delete this;              // Yes, Nuke this guy
 776     assert( old->_dual, "" );
 777     return old;                 // Return pre-existing
 778   }
 779 
 780   // Every type has a dual (to make my lattice symmetric).
 781   // Since we just discovered a new Type, compute its dual right now.
 782   assert( !_dual, "" );         // No dual yet
 783   _dual = xdual();              // Compute the dual
 784   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 785     _dual = this;
 786     return this;
 787   }
 788   assert( !_dual->_dual, "" );  // No reverse dual yet
 789   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 790   // New Type, insert into Type table
 791   tdic->Insert((void*)_dual,(void*)_dual);
 792   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 793 #ifdef ASSERT
 794   Type *dual_dual = (Type*)_dual->xdual();
 795   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 796   delete dual_dual;
 797 #endif
 798   return this;                  // Return new Type
 799 }
 800 
 801 //------------------------------eq---------------------------------------------
 802 // Structural equality check for Type representations
 803 bool Type::eq( const Type * ) const {
 804   return true;                  // Nothing else can go wrong
 805 }
 806 
 807 //------------------------------hash-------------------------------------------
 808 // Type-specific hashing function.
 809 int Type::hash(void) const {
 810   return _base;
 811 }
 812 
 813 //------------------------------is_finite--------------------------------------
 814 // Has a finite value
 815 bool Type::is_finite() const {
 816   return false;
 817 }
 818 
 819 //------------------------------is_nan-----------------------------------------
 820 // Is not a number (NaN)
 821 bool Type::is_nan()    const {
 822   return false;
 823 }
 824 
 825 //----------------------interface_vs_oop---------------------------------------
 826 #ifdef ASSERT
 827 bool Type::interface_vs_oop_helper(const Type *t) const {
 828   bool result = false;
 829 
 830   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 831   const TypePtr*    t_ptr =    t->make_ptr();
 832   if( this_ptr == NULL || t_ptr == NULL )
 833     return result;
 834 
 835   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 836   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 837   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 838     bool this_interface = this_inst->klass()->is_interface();
 839     bool    t_interface =    t_inst->klass()->is_interface();
 840     result = this_interface ^ t_interface;
 841   }
 842 
 843   return result;
 844 }
 845 
 846 bool Type::interface_vs_oop(const Type *t) const {
 847   if (interface_vs_oop_helper(t)) {
 848     return true;
 849   }
 850   // Now check the speculative parts as well
 851   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 852   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 853   if (this_spec != NULL && t_spec != NULL) {
 854     if (this_spec->interface_vs_oop_helper(t_spec)) {
 855       return true;
 856     }
 857     return false;
 858   }
 859   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 860     return true;
 861   }
 862   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 863     return true;
 864   }
 865   return false;
 866 }
 867 
 868 #endif
 869 
 870 //------------------------------meet-------------------------------------------
 871 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 872 // commutative and the lattice is symmetric.
 873 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 874   if (isa_narrowoop() && t->isa_narrowoop()) {
 875     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 876     return result->make_narrowoop();
 877   }
 878   if (isa_narrowklass() && t->isa_narrowklass()) {
 879     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 880     return result->make_narrowklass();
 881   }
 882 
 883   const Type *this_t = maybe_remove_speculative(include_speculative);
 884   t = t->maybe_remove_speculative(include_speculative);
 885 
 886   const Type *mt = this_t->xmeet(t);
 887   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 888   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 889 #ifdef ASSERT
 890   assert(mt == t->xmeet(this_t), "meet not commutative");
 891   const Type* dual_join = mt->_dual;
 892   const Type *t2t    = dual_join->xmeet(t->_dual);
 893   const Type *t2this = dual_join->xmeet(this_t->_dual);
 894 
 895   // Interface meet Oop is Not Symmetric:
 896   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 897   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 898 
 899   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 900     tty->print_cr("=== Meet Not Symmetric ===");
 901     tty->print("t   =                   ");              t->dump(); tty->cr();
 902     tty->print("this=                   ");         this_t->dump(); tty->cr();
 903     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 904 
 905     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 906     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 907     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 908 
 909     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 910     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 911 
 912     fatal("meet not symmetric" );
 913   }
 914 #endif
 915   return mt;
 916 }
 917 
 918 //------------------------------xmeet------------------------------------------
 919 // Compute the MEET of two types.  It returns a new Type object.
 920 const Type *Type::xmeet( const Type *t ) const {
 921   // Perform a fast test for common case; meeting the same types together.
 922   if( this == t ) return this;  // Meeting same type-rep?
 923 
 924   // Meeting TOP with anything?
 925   if( _base == Top ) return t;
 926 
 927   // Meeting BOTTOM with anything?
 928   if( _base == Bottom ) return BOTTOM;
 929 
 930   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 931   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 932   switch (t->base()) {  // Switch on original type
 933 
 934   // Cut in half the number of cases I must handle.  Only need cases for when
 935   // the given enum "t->type" is less than or equal to the local enum "type".
 936   case FloatCon:
 937   case DoubleCon:
 938   case Int:
 939   case Long:
 940     return t->xmeet(this);
 941 
 942   case OopPtr:
 943     return t->xmeet(this);
 944 
 945   case InstPtr:
 946     return t->xmeet(this);
 947 
 948   case MetadataPtr:
 949   case KlassPtr:
 950     return t->xmeet(this);
 951 
 952   case AryPtr:
 953     return t->xmeet(this);
 954 
 955   case NarrowOop:
 956     return t->xmeet(this);
 957 
 958   case NarrowKlass:
 959     return t->xmeet(this);
 960 
 961   case ValueType:
 962     return t->xmeet(this);
 963 
 964   case Bad:                     // Type check
 965   default:                      // Bogus type not in lattice
 966     typerr(t);
 967     return Type::BOTTOM;
 968 
 969   case Bottom:                  // Ye Olde Default
 970     return t;
 971 
 972   case FloatTop:
 973     if( _base == FloatTop ) return this;
 974   case FloatBot:                // Float
 975     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 976     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 977     typerr(t);
 978     return Type::BOTTOM;
 979 
 980   case DoubleTop:
 981     if( _base == DoubleTop ) return this;
 982   case DoubleBot:               // Double
 983     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 984     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 985     typerr(t);
 986     return Type::BOTTOM;
 987 
 988   // These next few cases must match exactly or it is a compile-time error.
 989   case Control:                 // Control of code
 990   case Abio:                    // State of world outside of program
 991   case Memory:
 992     if( _base == t->_base )  return this;
 993     typerr(t);
 994     return Type::BOTTOM;
 995 
 996   case Top:                     // Top of the lattice
 997     return this;
 998   }
 999 
1000   // The type is unchanged
1001   return this;
1002 }
1003 
1004 //-----------------------------filter------------------------------------------
1005 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1006   const Type* ft = join_helper(kills, include_speculative);
1007   if (ft->empty())
1008     return Type::TOP;           // Canonical empty value
1009   return ft;
1010 }
1011 
1012 //------------------------------xdual------------------------------------------
1013 // Compute dual right now.
1014 const Type::TYPES Type::dual_type[Type::lastype] = {
1015   Bad,          // Bad
1016   Control,      // Control
1017   Bottom,       // Top
1018   Bad,          // Int - handled in v-call
1019   Bad,          // Long - handled in v-call
1020   Half,         // Half
1021   Bad,          // NarrowOop - handled in v-call
1022   Bad,          // NarrowKlass - handled in v-call
1023 
1024   Bad,          // Tuple - handled in v-call
1025   Bad,          // Array - handled in v-call
1026   Bad,          // VectorS - handled in v-call
1027   Bad,          // VectorD - handled in v-call
1028   Bad,          // VectorX - handled in v-call
1029   Bad,          // VectorY - handled in v-call
1030   Bad,          // VectorZ - handled in v-call
1031   Bad,          // ValueType - handled in v-call
1032 
1033   Bad,          // AnyPtr - handled in v-call
1034   Bad,          // RawPtr - handled in v-call
1035   Bad,          // OopPtr - handled in v-call
1036   Bad,          // InstPtr - handled in v-call
1037   Bad,          // ValueTypePtr - handled in v-call
1038   Bad,          // AryPtr - handled in v-call
1039 
1040   Bad,          //  MetadataPtr - handled in v-call
1041   Bad,          // KlassPtr - handled in v-call
1042 
1043   Bad,          // Function - handled in v-call
1044   Abio,         // Abio
1045   Return_Address,// Return_Address
1046   Memory,       // Memory
1047   FloatBot,     // FloatTop
1048   FloatCon,     // FloatCon
1049   FloatTop,     // FloatBot
1050   DoubleBot,    // DoubleTop
1051   DoubleCon,    // DoubleCon
1052   DoubleTop,    // DoubleBot
1053   Top           // Bottom
1054 };
1055 
1056 const Type *Type::xdual() const {
1057   // Note: the base() accessor asserts the sanity of _base.
1058   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1059   return new Type(_type_info[_base].dual_type);
1060 }
1061 
1062 //------------------------------has_memory-------------------------------------
1063 bool Type::has_memory() const {
1064   Type::TYPES tx = base();
1065   if (tx == Memory) return true;
1066   if (tx == Tuple) {
1067     const TypeTuple *t = is_tuple();
1068     for (uint i=0; i < t->cnt(); i++) {
1069       tx = t->field_at(i)->base();
1070       if (tx == Memory)  return true;
1071     }
1072   }
1073   return false;
1074 }
1075 
1076 #ifndef PRODUCT
1077 //------------------------------dump2------------------------------------------
1078 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1079   st->print("%s", _type_info[_base].msg);
1080 }
1081 
1082 //------------------------------dump-------------------------------------------
1083 void Type::dump_on(outputStream *st) const {
1084   ResourceMark rm;
1085   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1086   dump2(d,1, st);
1087   if (is_ptr_to_narrowoop()) {
1088     st->print(" [narrow]");
1089   } else if (is_ptr_to_narrowklass()) {
1090     st->print(" [narrowklass]");
1091   }
1092 }
1093 
1094 //-----------------------------------------------------------------------------
1095 const char* Type::str(const Type* t) {
1096   stringStream ss;
1097   t->dump_on(&ss);
1098   return ss.as_string();
1099 }
1100 #endif
1101 
1102 //------------------------------singleton--------------------------------------
1103 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1104 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1105 bool Type::singleton(void) const {
1106   return _base == Top || _base == Half;
1107 }
1108 
1109 //------------------------------empty------------------------------------------
1110 // TRUE if Type is a type with no values, FALSE otherwise.
1111 bool Type::empty(void) const {
1112   switch (_base) {
1113   case DoubleTop:
1114   case FloatTop:
1115   case Top:
1116     return true;
1117 
1118   case Half:
1119   case Abio:
1120   case Return_Address:
1121   case Memory:
1122   case Bottom:
1123   case FloatBot:
1124   case DoubleBot:
1125     return false;  // never a singleton, therefore never empty
1126 
1127   default:
1128     ShouldNotReachHere();
1129     return false;
1130   }
1131 }
1132 
1133 //------------------------------dump_stats-------------------------------------
1134 // Dump collected statistics to stderr
1135 #ifndef PRODUCT
1136 void Type::dump_stats() {
1137   tty->print("Types made: %d\n", type_dict()->Size());
1138 }
1139 #endif
1140 
1141 //------------------------------typerr-----------------------------------------
1142 void Type::typerr( const Type *t ) const {
1143 #ifndef PRODUCT
1144   tty->print("\nError mixing types: ");
1145   dump();
1146   tty->print(" and ");
1147   t->dump();
1148   tty->print("\n");
1149 #endif
1150   ShouldNotReachHere();
1151 }
1152 
1153 
1154 //=============================================================================
1155 // Convenience common pre-built types.
1156 const TypeF *TypeF::ZERO;       // Floating point zero
1157 const TypeF *TypeF::ONE;        // Floating point one
1158 
1159 //------------------------------make-------------------------------------------
1160 // Create a float constant
1161 const TypeF *TypeF::make(float f) {
1162   return (TypeF*)(new TypeF(f))->hashcons();
1163 }
1164 
1165 //------------------------------meet-------------------------------------------
1166 // Compute the MEET of two types.  It returns a new Type object.
1167 const Type *TypeF::xmeet( const Type *t ) const {
1168   // Perform a fast test for common case; meeting the same types together.
1169   if( this == t ) return this;  // Meeting same type-rep?
1170 
1171   // Current "this->_base" is FloatCon
1172   switch (t->base()) {          // Switch on original type
1173   case AnyPtr:                  // Mixing with oops happens when javac
1174   case RawPtr:                  // reuses local variables
1175   case OopPtr:
1176   case InstPtr:
1177   case AryPtr:
1178   case MetadataPtr:
1179   case KlassPtr:
1180   case NarrowOop:
1181   case NarrowKlass:
1182   case Int:
1183   case Long:
1184   case DoubleTop:
1185   case DoubleCon:
1186   case DoubleBot:
1187   case Bottom:                  // Ye Olde Default
1188     return Type::BOTTOM;
1189 
1190   case FloatBot:
1191     return t;
1192 
1193   default:                      // All else is a mistake
1194     typerr(t);
1195 
1196   case FloatCon:                // Float-constant vs Float-constant?
1197     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1198                                 // must compare bitwise as positive zero, negative zero and NaN have
1199                                 // all the same representation in C++
1200       return FLOAT;             // Return generic float
1201                                 // Equal constants
1202   case Top:
1203   case FloatTop:
1204     break;                      // Return the float constant
1205   }
1206   return this;                  // Return the float constant
1207 }
1208 
1209 //------------------------------xdual------------------------------------------
1210 // Dual: symmetric
1211 const Type *TypeF::xdual() const {
1212   return this;
1213 }
1214 
1215 //------------------------------eq---------------------------------------------
1216 // Structural equality check for Type representations
1217 bool TypeF::eq(const Type *t) const {
1218   // Bitwise comparison to distinguish between +/-0. These values must be treated
1219   // as different to be consistent with C1 and the interpreter.
1220   return (jint_cast(_f) == jint_cast(t->getf()));
1221 }
1222 
1223 //------------------------------hash-------------------------------------------
1224 // Type-specific hashing function.
1225 int TypeF::hash(void) const {
1226   return *(int*)(&_f);
1227 }
1228 
1229 //------------------------------is_finite--------------------------------------
1230 // Has a finite value
1231 bool TypeF::is_finite() const {
1232   return g_isfinite(getf()) != 0;
1233 }
1234 
1235 //------------------------------is_nan-----------------------------------------
1236 // Is not a number (NaN)
1237 bool TypeF::is_nan()    const {
1238   return g_isnan(getf()) != 0;
1239 }
1240 
1241 //------------------------------dump2------------------------------------------
1242 // Dump float constant Type
1243 #ifndef PRODUCT
1244 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1245   Type::dump2(d,depth, st);
1246   st->print("%f", _f);
1247 }
1248 #endif
1249 
1250 //------------------------------singleton--------------------------------------
1251 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1252 // constants (Ldi nodes).  Singletons are integer, float or double constants
1253 // or a single symbol.
1254 bool TypeF::singleton(void) const {
1255   return true;                  // Always a singleton
1256 }
1257 
1258 bool TypeF::empty(void) const {
1259   return false;                 // always exactly a singleton
1260 }
1261 
1262 //=============================================================================
1263 // Convenience common pre-built types.
1264 const TypeD *TypeD::ZERO;       // Floating point zero
1265 const TypeD *TypeD::ONE;        // Floating point one
1266 
1267 //------------------------------make-------------------------------------------
1268 const TypeD *TypeD::make(double d) {
1269   return (TypeD*)(new TypeD(d))->hashcons();
1270 }
1271 
1272 //------------------------------meet-------------------------------------------
1273 // Compute the MEET of two types.  It returns a new Type object.
1274 const Type *TypeD::xmeet( const Type *t ) const {
1275   // Perform a fast test for common case; meeting the same types together.
1276   if( this == t ) return this;  // Meeting same type-rep?
1277 
1278   // Current "this->_base" is DoubleCon
1279   switch (t->base()) {          // Switch on original type
1280   case AnyPtr:                  // Mixing with oops happens when javac
1281   case RawPtr:                  // reuses local variables
1282   case OopPtr:
1283   case InstPtr:
1284   case AryPtr:
1285   case MetadataPtr:
1286   case KlassPtr:
1287   case NarrowOop:
1288   case NarrowKlass:
1289   case Int:
1290   case Long:
1291   case FloatTop:
1292   case FloatCon:
1293   case FloatBot:
1294   case Bottom:                  // Ye Olde Default
1295     return Type::BOTTOM;
1296 
1297   case DoubleBot:
1298     return t;
1299 
1300   default:                      // All else is a mistake
1301     typerr(t);
1302 
1303   case DoubleCon:               // Double-constant vs Double-constant?
1304     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1305       return DOUBLE;            // Return generic double
1306   case Top:
1307   case DoubleTop:
1308     break;
1309   }
1310   return this;                  // Return the double constant
1311 }
1312 
1313 //------------------------------xdual------------------------------------------
1314 // Dual: symmetric
1315 const Type *TypeD::xdual() const {
1316   return this;
1317 }
1318 
1319 //------------------------------eq---------------------------------------------
1320 // Structural equality check for Type representations
1321 bool TypeD::eq(const Type *t) const {
1322   // Bitwise comparison to distinguish between +/-0. These values must be treated
1323   // as different to be consistent with C1 and the interpreter.
1324   return (jlong_cast(_d) == jlong_cast(t->getd()));
1325 }
1326 
1327 //------------------------------hash-------------------------------------------
1328 // Type-specific hashing function.
1329 int TypeD::hash(void) const {
1330   return *(int*)(&_d);
1331 }
1332 
1333 //------------------------------is_finite--------------------------------------
1334 // Has a finite value
1335 bool TypeD::is_finite() const {
1336   return g_isfinite(getd()) != 0;
1337 }
1338 
1339 //------------------------------is_nan-----------------------------------------
1340 // Is not a number (NaN)
1341 bool TypeD::is_nan()    const {
1342   return g_isnan(getd()) != 0;
1343 }
1344 
1345 //------------------------------dump2------------------------------------------
1346 // Dump double constant Type
1347 #ifndef PRODUCT
1348 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1349   Type::dump2(d,depth,st);
1350   st->print("%f", _d);
1351 }
1352 #endif
1353 
1354 //------------------------------singleton--------------------------------------
1355 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1356 // constants (Ldi nodes).  Singletons are integer, float or double constants
1357 // or a single symbol.
1358 bool TypeD::singleton(void) const {
1359   return true;                  // Always a singleton
1360 }
1361 
1362 bool TypeD::empty(void) const {
1363   return false;                 // always exactly a singleton
1364 }
1365 
1366 //=============================================================================
1367 // Convience common pre-built types.
1368 const TypeInt *TypeInt::MINUS_1;// -1
1369 const TypeInt *TypeInt::ZERO;   // 0
1370 const TypeInt *TypeInt::ONE;    // 1
1371 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1372 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1373 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1374 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1375 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1376 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1377 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1378 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1379 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1380 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1381 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1382 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1383 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1384 const TypeInt *TypeInt::INT;    // 32-bit integers
1385 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1386 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1387 
1388 //------------------------------TypeInt----------------------------------------
1389 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1390 }
1391 
1392 //------------------------------make-------------------------------------------
1393 const TypeInt *TypeInt::make( jint lo ) {
1394   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1395 }
1396 
1397 static int normalize_int_widen( jint lo, jint hi, int w ) {
1398   // Certain normalizations keep us sane when comparing types.
1399   // The 'SMALLINT' covers constants and also CC and its relatives.
1400   if (lo <= hi) {
1401     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1402     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1403   } else {
1404     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1405     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1406   }
1407   return w;
1408 }
1409 
1410 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1411   w = normalize_int_widen(lo, hi, w);
1412   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1413 }
1414 
1415 //------------------------------meet-------------------------------------------
1416 // Compute the MEET of two types.  It returns a new Type representation object
1417 // with reference count equal to the number of Types pointing at it.
1418 // Caller should wrap a Types around it.
1419 const Type *TypeInt::xmeet( const Type *t ) const {
1420   // Perform a fast test for common case; meeting the same types together.
1421   if( this == t ) return this;  // Meeting same type?
1422 
1423   // Currently "this->_base" is a TypeInt
1424   switch (t->base()) {          // Switch on original type
1425   case AnyPtr:                  // Mixing with oops happens when javac
1426   case RawPtr:                  // reuses local variables
1427   case OopPtr:
1428   case InstPtr:
1429   case AryPtr:
1430   case MetadataPtr:
1431   case KlassPtr:
1432   case NarrowOop:
1433   case NarrowKlass:
1434   case Long:
1435   case FloatTop:
1436   case FloatCon:
1437   case FloatBot:
1438   case DoubleTop:
1439   case DoubleCon:
1440   case DoubleBot:
1441   case Bottom:                  // Ye Olde Default
1442     return Type::BOTTOM;
1443   default:                      // All else is a mistake
1444     typerr(t);
1445   case Top:                     // No change
1446     return this;
1447   case Int:                     // Int vs Int?
1448     break;
1449   }
1450 
1451   // Expand covered set
1452   const TypeInt *r = t->is_int();
1453   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1454 }
1455 
1456 //------------------------------xdual------------------------------------------
1457 // Dual: reverse hi & lo; flip widen
1458 const Type *TypeInt::xdual() const {
1459   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1460   return new TypeInt(_hi,_lo,w);
1461 }
1462 
1463 //------------------------------widen------------------------------------------
1464 // Only happens for optimistic top-down optimizations.
1465 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1466   // Coming from TOP or such; no widening
1467   if( old->base() != Int ) return this;
1468   const TypeInt *ot = old->is_int();
1469 
1470   // If new guy is equal to old guy, no widening
1471   if( _lo == ot->_lo && _hi == ot->_hi )
1472     return old;
1473 
1474   // If new guy contains old, then we widened
1475   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1476     // New contains old
1477     // If new guy is already wider than old, no widening
1478     if( _widen > ot->_widen ) return this;
1479     // If old guy was a constant, do not bother
1480     if (ot->_lo == ot->_hi)  return this;
1481     // Now widen new guy.
1482     // Check for widening too far
1483     if (_widen == WidenMax) {
1484       int max = max_jint;
1485       int min = min_jint;
1486       if (limit->isa_int()) {
1487         max = limit->is_int()->_hi;
1488         min = limit->is_int()->_lo;
1489       }
1490       if (min < _lo && _hi < max) {
1491         // If neither endpoint is extremal yet, push out the endpoint
1492         // which is closer to its respective limit.
1493         if (_lo >= 0 ||                 // easy common case
1494             (juint)(_lo - min) >= (juint)(max - _hi)) {
1495           // Try to widen to an unsigned range type of 31 bits:
1496           return make(_lo, max, WidenMax);
1497         } else {
1498           return make(min, _hi, WidenMax);
1499         }
1500       }
1501       return TypeInt::INT;
1502     }
1503     // Returned widened new guy
1504     return make(_lo,_hi,_widen+1);
1505   }
1506 
1507   // If old guy contains new, then we probably widened too far & dropped to
1508   // bottom.  Return the wider fellow.
1509   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1510     return old;
1511 
1512   //fatal("Integer value range is not subset");
1513   //return this;
1514   return TypeInt::INT;
1515 }
1516 
1517 //------------------------------narrow---------------------------------------
1518 // Only happens for pessimistic optimizations.
1519 const Type *TypeInt::narrow( const Type *old ) const {
1520   if (_lo >= _hi)  return this;   // already narrow enough
1521   if (old == NULL)  return this;
1522   const TypeInt* ot = old->isa_int();
1523   if (ot == NULL)  return this;
1524   jint olo = ot->_lo;
1525   jint ohi = ot->_hi;
1526 
1527   // If new guy is equal to old guy, no narrowing
1528   if (_lo == olo && _hi == ohi)  return old;
1529 
1530   // If old guy was maximum range, allow the narrowing
1531   if (olo == min_jint && ohi == max_jint)  return this;
1532 
1533   if (_lo < olo || _hi > ohi)
1534     return this;                // doesn't narrow; pretty wierd
1535 
1536   // The new type narrows the old type, so look for a "death march".
1537   // See comments on PhaseTransform::saturate.
1538   juint nrange = (juint)_hi - _lo;
1539   juint orange = (juint)ohi - olo;
1540   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1541     // Use the new type only if the range shrinks a lot.
1542     // We do not want the optimizer computing 2^31 point by point.
1543     return old;
1544   }
1545 
1546   return this;
1547 }
1548 
1549 //-----------------------------filter------------------------------------------
1550 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1551   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1552   if (ft == NULL || ft->empty())
1553     return Type::TOP;           // Canonical empty value
1554   if (ft->_widen < this->_widen) {
1555     // Do not allow the value of kill->_widen to affect the outcome.
1556     // The widen bits must be allowed to run freely through the graph.
1557     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1558   }
1559   return ft;
1560 }
1561 
1562 //------------------------------eq---------------------------------------------
1563 // Structural equality check for Type representations
1564 bool TypeInt::eq( const Type *t ) const {
1565   const TypeInt *r = t->is_int(); // Handy access
1566   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1567 }
1568 
1569 //------------------------------hash-------------------------------------------
1570 // Type-specific hashing function.
1571 int TypeInt::hash(void) const {
1572   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1573 }
1574 
1575 //------------------------------is_finite--------------------------------------
1576 // Has a finite value
1577 bool TypeInt::is_finite() const {
1578   return true;
1579 }
1580 
1581 //------------------------------dump2------------------------------------------
1582 // Dump TypeInt
1583 #ifndef PRODUCT
1584 static const char* intname(char* buf, jint n) {
1585   if (n == min_jint)
1586     return "min";
1587   else if (n < min_jint + 10000)
1588     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1589   else if (n == max_jint)
1590     return "max";
1591   else if (n > max_jint - 10000)
1592     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1593   else
1594     sprintf(buf, INT32_FORMAT, n);
1595   return buf;
1596 }
1597 
1598 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1599   char buf[40], buf2[40];
1600   if (_lo == min_jint && _hi == max_jint)
1601     st->print("int");
1602   else if (is_con())
1603     st->print("int:%s", intname(buf, get_con()));
1604   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1605     st->print("bool");
1606   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1607     st->print("byte");
1608   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1609     st->print("char");
1610   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1611     st->print("short");
1612   else if (_hi == max_jint)
1613     st->print("int:>=%s", intname(buf, _lo));
1614   else if (_lo == min_jint)
1615     st->print("int:<=%s", intname(buf, _hi));
1616   else
1617     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1618 
1619   if (_widen != 0 && this != TypeInt::INT)
1620     st->print(":%.*s", _widen, "wwww");
1621 }
1622 #endif
1623 
1624 //------------------------------singleton--------------------------------------
1625 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1626 // constants.
1627 bool TypeInt::singleton(void) const {
1628   return _lo >= _hi;
1629 }
1630 
1631 bool TypeInt::empty(void) const {
1632   return _lo > _hi;
1633 }
1634 
1635 //=============================================================================
1636 // Convenience common pre-built types.
1637 const TypeLong *TypeLong::MINUS_1;// -1
1638 const TypeLong *TypeLong::ZERO; // 0
1639 const TypeLong *TypeLong::ONE;  // 1
1640 const TypeLong *TypeLong::POS;  // >=0
1641 const TypeLong *TypeLong::LONG; // 64-bit integers
1642 const TypeLong *TypeLong::INT;  // 32-bit subrange
1643 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1644 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1645 
1646 //------------------------------TypeLong---------------------------------------
1647 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1648 }
1649 
1650 //------------------------------make-------------------------------------------
1651 const TypeLong *TypeLong::make( jlong lo ) {
1652   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1653 }
1654 
1655 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1656   // Certain normalizations keep us sane when comparing types.
1657   // The 'SMALLINT' covers constants.
1658   if (lo <= hi) {
1659     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1660     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1661   } else {
1662     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1663     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1664   }
1665   return w;
1666 }
1667 
1668 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1669   w = normalize_long_widen(lo, hi, w);
1670   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1671 }
1672 
1673 
1674 //------------------------------meet-------------------------------------------
1675 // Compute the MEET of two types.  It returns a new Type representation object
1676 // with reference count equal to the number of Types pointing at it.
1677 // Caller should wrap a Types around it.
1678 const Type *TypeLong::xmeet( const Type *t ) const {
1679   // Perform a fast test for common case; meeting the same types together.
1680   if( this == t ) return this;  // Meeting same type?
1681 
1682   // Currently "this->_base" is a TypeLong
1683   switch (t->base()) {          // Switch on original type
1684   case AnyPtr:                  // Mixing with oops happens when javac
1685   case RawPtr:                  // reuses local variables
1686   case OopPtr:
1687   case InstPtr:
1688   case AryPtr:
1689   case MetadataPtr:
1690   case KlassPtr:
1691   case NarrowOop:
1692   case NarrowKlass:
1693   case Int:
1694   case FloatTop:
1695   case FloatCon:
1696   case FloatBot:
1697   case DoubleTop:
1698   case DoubleCon:
1699   case DoubleBot:
1700   case Bottom:                  // Ye Olde Default
1701     return Type::BOTTOM;
1702   default:                      // All else is a mistake
1703     typerr(t);
1704   case Top:                     // No change
1705     return this;
1706   case Long:                    // Long vs Long?
1707     break;
1708   }
1709 
1710   // Expand covered set
1711   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1712   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1713 }
1714 
1715 //------------------------------xdual------------------------------------------
1716 // Dual: reverse hi & lo; flip widen
1717 const Type *TypeLong::xdual() const {
1718   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1719   return new TypeLong(_hi,_lo,w);
1720 }
1721 
1722 //------------------------------widen------------------------------------------
1723 // Only happens for optimistic top-down optimizations.
1724 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1725   // Coming from TOP or such; no widening
1726   if( old->base() != Long ) return this;
1727   const TypeLong *ot = old->is_long();
1728 
1729   // If new guy is equal to old guy, no widening
1730   if( _lo == ot->_lo && _hi == ot->_hi )
1731     return old;
1732 
1733   // If new guy contains old, then we widened
1734   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1735     // New contains old
1736     // If new guy is already wider than old, no widening
1737     if( _widen > ot->_widen ) return this;
1738     // If old guy was a constant, do not bother
1739     if (ot->_lo == ot->_hi)  return this;
1740     // Now widen new guy.
1741     // Check for widening too far
1742     if (_widen == WidenMax) {
1743       jlong max = max_jlong;
1744       jlong min = min_jlong;
1745       if (limit->isa_long()) {
1746         max = limit->is_long()->_hi;
1747         min = limit->is_long()->_lo;
1748       }
1749       if (min < _lo && _hi < max) {
1750         // If neither endpoint is extremal yet, push out the endpoint
1751         // which is closer to its respective limit.
1752         if (_lo >= 0 ||                 // easy common case
1753             ((julong)_lo - min) >= ((julong)max - _hi)) {
1754           // Try to widen to an unsigned range type of 32/63 bits:
1755           if (max >= max_juint && _hi < max_juint)
1756             return make(_lo, max_juint, WidenMax);
1757           else
1758             return make(_lo, max, WidenMax);
1759         } else {
1760           return make(min, _hi, WidenMax);
1761         }
1762       }
1763       return TypeLong::LONG;
1764     }
1765     // Returned widened new guy
1766     return make(_lo,_hi,_widen+1);
1767   }
1768 
1769   // If old guy contains new, then we probably widened too far & dropped to
1770   // bottom.  Return the wider fellow.
1771   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1772     return old;
1773 
1774   //  fatal("Long value range is not subset");
1775   // return this;
1776   return TypeLong::LONG;
1777 }
1778 
1779 //------------------------------narrow----------------------------------------
1780 // Only happens for pessimistic optimizations.
1781 const Type *TypeLong::narrow( const Type *old ) const {
1782   if (_lo >= _hi)  return this;   // already narrow enough
1783   if (old == NULL)  return this;
1784   const TypeLong* ot = old->isa_long();
1785   if (ot == NULL)  return this;
1786   jlong olo = ot->_lo;
1787   jlong ohi = ot->_hi;
1788 
1789   // If new guy is equal to old guy, no narrowing
1790   if (_lo == olo && _hi == ohi)  return old;
1791 
1792   // If old guy was maximum range, allow the narrowing
1793   if (olo == min_jlong && ohi == max_jlong)  return this;
1794 
1795   if (_lo < olo || _hi > ohi)
1796     return this;                // doesn't narrow; pretty wierd
1797 
1798   // The new type narrows the old type, so look for a "death march".
1799   // See comments on PhaseTransform::saturate.
1800   julong nrange = _hi - _lo;
1801   julong orange = ohi - olo;
1802   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1803     // Use the new type only if the range shrinks a lot.
1804     // We do not want the optimizer computing 2^31 point by point.
1805     return old;
1806   }
1807 
1808   return this;
1809 }
1810 
1811 //-----------------------------filter------------------------------------------
1812 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1813   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1814   if (ft == NULL || ft->empty())
1815     return Type::TOP;           // Canonical empty value
1816   if (ft->_widen < this->_widen) {
1817     // Do not allow the value of kill->_widen to affect the outcome.
1818     // The widen bits must be allowed to run freely through the graph.
1819     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1820   }
1821   return ft;
1822 }
1823 
1824 //------------------------------eq---------------------------------------------
1825 // Structural equality check for Type representations
1826 bool TypeLong::eq( const Type *t ) const {
1827   const TypeLong *r = t->is_long(); // Handy access
1828   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1829 }
1830 
1831 //------------------------------hash-------------------------------------------
1832 // Type-specific hashing function.
1833 int TypeLong::hash(void) const {
1834   return (int)(_lo+_hi+_widen+(int)Type::Long);
1835 }
1836 
1837 //------------------------------is_finite--------------------------------------
1838 // Has a finite value
1839 bool TypeLong::is_finite() const {
1840   return true;
1841 }
1842 
1843 //------------------------------dump2------------------------------------------
1844 // Dump TypeLong
1845 #ifndef PRODUCT
1846 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1847   if (n > x) {
1848     if (n >= x + 10000)  return NULL;
1849     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1850   } else if (n < x) {
1851     if (n <= x - 10000)  return NULL;
1852     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1853   } else {
1854     return xname;
1855   }
1856   return buf;
1857 }
1858 
1859 static const char* longname(char* buf, jlong n) {
1860   const char* str;
1861   if (n == min_jlong)
1862     return "min";
1863   else if (n < min_jlong + 10000)
1864     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1865   else if (n == max_jlong)
1866     return "max";
1867   else if (n > max_jlong - 10000)
1868     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1869   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1870     return str;
1871   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1872     return str;
1873   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1874     return str;
1875   else
1876     sprintf(buf, JLONG_FORMAT, n);
1877   return buf;
1878 }
1879 
1880 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1881   char buf[80], buf2[80];
1882   if (_lo == min_jlong && _hi == max_jlong)
1883     st->print("long");
1884   else if (is_con())
1885     st->print("long:%s", longname(buf, get_con()));
1886   else if (_hi == max_jlong)
1887     st->print("long:>=%s", longname(buf, _lo));
1888   else if (_lo == min_jlong)
1889     st->print("long:<=%s", longname(buf, _hi));
1890   else
1891     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1892 
1893   if (_widen != 0 && this != TypeLong::LONG)
1894     st->print(":%.*s", _widen, "wwww");
1895 }
1896 #endif
1897 
1898 //------------------------------singleton--------------------------------------
1899 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1900 // constants
1901 bool TypeLong::singleton(void) const {
1902   return _lo >= _hi;
1903 }
1904 
1905 bool TypeLong::empty(void) const {
1906   return _lo > _hi;
1907 }
1908 
1909 //=============================================================================
1910 // Convenience common pre-built types.
1911 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1912 const TypeTuple *TypeTuple::IFFALSE;
1913 const TypeTuple *TypeTuple::IFTRUE;
1914 const TypeTuple *TypeTuple::IFNEITHER;
1915 const TypeTuple *TypeTuple::LOOPBODY;
1916 const TypeTuple *TypeTuple::MEMBAR;
1917 const TypeTuple *TypeTuple::STORECONDITIONAL;
1918 const TypeTuple *TypeTuple::START_I2C;
1919 const TypeTuple *TypeTuple::INT_PAIR;
1920 const TypeTuple *TypeTuple::LONG_PAIR;
1921 const TypeTuple *TypeTuple::INT_CC_PAIR;
1922 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1923 
1924 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1925   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1926     ciField* field = vk->nonstatic_field_at(j);
1927     BasicType bt = field->type()->basic_type();
1928     const Type* ft = Type::get_const_type(field->type());
1929     field_array[pos++] = ft;
1930     if (bt == T_LONG || bt == T_DOUBLE) {
1931       field_array[pos++] = Type::HALF;
1932     }
1933   }
1934 }
1935 
1936 //------------------------------make-------------------------------------------
1937 // Make a TypeTuple from the range of a method signature
1938 const TypeTuple *TypeTuple::make_range(ciMethod* method, bool ret_vt_fields) {
1939   ciSignature* sig = method->signature();
1940   ciType* return_type = sig->return_type();
1941   return make_range(method, return_type, ret_vt_fields);
1942 }
1943 
1944 const TypeTuple *TypeTuple::make_range(ciMethod* method, ciType* return_type, bool ret_vt_fields) {
1945   uint arg_cnt = 0;
1946   if (ret_vt_fields) {
1947     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1948   }
1949   if (ret_vt_fields) {
1950     ciValueKlass* vk = (ciValueKlass*)return_type;
1951     arg_cnt = vk->value_arg_slots()+1;
1952   } else {
1953     arg_cnt = return_type->size();
1954   }
1955 
1956   const Type **field_array = fields(arg_cnt);
1957   switch (return_type->basic_type()) {
1958   case T_LONG:
1959     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1960     field_array[TypeFunc::Parms+1] = Type::HALF;
1961     break;
1962   case T_DOUBLE:
1963     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1964     field_array[TypeFunc::Parms+1] = Type::HALF;
1965     break;
1966   case T_OBJECT:
1967   case T_ARRAY:
1968   case T_BOOLEAN:
1969   case T_CHAR:
1970   case T_FLOAT:
1971   case T_BYTE:
1972   case T_SHORT:
1973   case T_INT:
1974     field_array[TypeFunc::Parms] = get_const_type(return_type);
1975     break;
1976   case T_VALUETYPE:
1977     if (ret_vt_fields) {
1978       ciValueKlass* vk = (ciValueKlass*)return_type;
1979       uint pos = TypeFunc::Parms;
1980       field_array[pos] = TypePtr::BOTTOM;
1981       pos++;
1982       collect_value_fields(vk, field_array, pos);
1983     } else {
1984       if (method->get_Method()->is_returning_vt()) {
1985         // A NULL ValueType cannot be returned to compiled code. The 'areturn' bytecode
1986         // handler will deoptimize its caller if it is about to return a NULL ValueType.
1987         field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(TypePtr::NOTNULL);
1988       } else {
1989         // We're calling a legacy class's method that is returning a VT but doesn't know about it, so
1990         // it won't do the deoptimization at 'areturn'.
1991         field_array[TypeFunc::Parms] = get_const_type(return_type);
1992       }
1993     }
1994     break;
1995   case T_VOID:
1996     break;
1997   default:
1998     ShouldNotReachHere();
1999   }
2000   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2001 }
2002 
2003 // Make a TypeTuple from the domain of a method signature
2004 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2005   uint arg_cnt = sig->size();
2006 
2007   int vt_extra = 0;
2008   if (vt_fields_as_args) {
2009     for (int i = 0; i < sig->count(); i++) {
2010       ciType* type = sig->type_at(i);
2011       if (type->basic_type() == T_VALUETYPE) {
2012         assert(type->is_valuetype(), "inconsistent type");
2013         ciValueKlass* vk = (ciValueKlass*)type;
2014         vt_extra += vk->value_arg_slots()-1;
2015       }
2016     }
2017     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2018   }
2019 
2020   uint pos = TypeFunc::Parms;
2021   const Type **field_array;
2022   if (recv != NULL) {
2023     arg_cnt++;
2024     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype();
2025     if (vt_fields_for_recv) {
2026       ciValueKlass* vk = (ciValueKlass*)recv;
2027       vt_extra += vk->value_arg_slots()-1;
2028     }
2029     field_array = fields(arg_cnt + vt_extra);
2030     // Use get_const_type here because it respects UseUniqueSubclasses:
2031     if (vt_fields_for_recv) {
2032       ciValueKlass* vk = (ciValueKlass*)recv;
2033       collect_value_fields(vk, field_array, pos);
2034     } else {
2035       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2036     }
2037   } else {
2038     field_array = fields(arg_cnt + vt_extra);
2039   }
2040 
2041   int i = 0;
2042   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2043     ciType* type = sig->type_at(i);
2044 
2045     switch (type->basic_type()) {
2046     case T_LONG:
2047       field_array[pos++] = TypeLong::LONG;
2048       field_array[pos++] = Type::HALF;
2049       break;
2050     case T_DOUBLE:
2051       field_array[pos++] = Type::DOUBLE;
2052       field_array[pos++] = Type::HALF;
2053       break;
2054     case T_OBJECT:
2055     case T_ARRAY:
2056     case T_FLOAT:
2057     case T_INT:
2058       field_array[pos++] = get_const_type(type);
2059       break;
2060     case T_BOOLEAN:
2061     case T_CHAR:
2062     case T_BYTE:
2063     case T_SHORT:
2064       field_array[pos++] = TypeInt::INT;
2065       break;
2066     case T_VALUETYPE: {
2067       assert(type->is_valuetype(), "inconsistent type");
2068       if (vt_fields_as_args) {
2069         ciValueKlass* vk = (ciValueKlass*)type;
2070         collect_value_fields(vk, field_array, pos);
2071       } else {
2072         // Value type arguments cannot be NULL
2073         field_array[pos++] = get_const_type(type)->join_speculative(TypePtr::NOTNULL);
2074       }
2075       break;
2076     }
2077     default:
2078       ShouldNotReachHere();
2079     }
2080     i++;
2081   }
2082   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2083 
2084   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2085 }
2086 
2087 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2088   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2089 }
2090 
2091 //------------------------------fields-----------------------------------------
2092 // Subroutine call type with space allocated for argument types
2093 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2094 const Type **TypeTuple::fields( uint arg_cnt ) {
2095   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2096   flds[TypeFunc::Control  ] = Type::CONTROL;
2097   flds[TypeFunc::I_O      ] = Type::ABIO;
2098   flds[TypeFunc::Memory   ] = Type::MEMORY;
2099   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2100   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2101 
2102   return flds;
2103 }
2104 
2105 //------------------------------meet-------------------------------------------
2106 // Compute the MEET of two types.  It returns a new Type object.
2107 const Type *TypeTuple::xmeet( const Type *t ) const {
2108   // Perform a fast test for common case; meeting the same types together.
2109   if( this == t ) return this;  // Meeting same type-rep?
2110 
2111   // Current "this->_base" is Tuple
2112   switch (t->base()) {          // switch on original type
2113 
2114   case Bottom:                  // Ye Olde Default
2115     return t;
2116 
2117   default:                      // All else is a mistake
2118     typerr(t);
2119 
2120   case Tuple: {                 // Meeting 2 signatures?
2121     const TypeTuple *x = t->is_tuple();
2122     assert( _cnt == x->_cnt, "" );
2123     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2124     for( uint i=0; i<_cnt; i++ )
2125       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2126     return TypeTuple::make(_cnt,fields);
2127   }
2128   case Top:
2129     break;
2130   }
2131   return this;                  // Return the double constant
2132 }
2133 
2134 //------------------------------xdual------------------------------------------
2135 // Dual: compute field-by-field dual
2136 const Type *TypeTuple::xdual() const {
2137   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2138   for( uint i=0; i<_cnt; i++ )
2139     fields[i] = _fields[i]->dual();
2140   return new TypeTuple(_cnt,fields);
2141 }
2142 
2143 //------------------------------eq---------------------------------------------
2144 // Structural equality check for Type representations
2145 bool TypeTuple::eq( const Type *t ) const {
2146   const TypeTuple *s = (const TypeTuple *)t;
2147   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2148   for (uint i = 0; i < _cnt; i++)
2149     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2150       return false;             // Missed
2151   return true;
2152 }
2153 
2154 //------------------------------hash-------------------------------------------
2155 // Type-specific hashing function.
2156 int TypeTuple::hash(void) const {
2157   intptr_t sum = _cnt;
2158   for( uint i=0; i<_cnt; i++ )
2159     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2160   return sum;
2161 }
2162 
2163 //------------------------------dump2------------------------------------------
2164 // Dump signature Type
2165 #ifndef PRODUCT
2166 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2167   st->print("{");
2168   if( !depth || d[this] ) {     // Check for recursive print
2169     st->print("...}");
2170     return;
2171   }
2172   d.Insert((void*)this, (void*)this);   // Stop recursion
2173   if( _cnt ) {
2174     uint i;
2175     for( i=0; i<_cnt-1; i++ ) {
2176       st->print("%d:", i);
2177       _fields[i]->dump2(d, depth-1, st);
2178       st->print(", ");
2179     }
2180     st->print("%d:", i);
2181     _fields[i]->dump2(d, depth-1, st);
2182   }
2183   st->print("}");
2184 }
2185 #endif
2186 
2187 //------------------------------singleton--------------------------------------
2188 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2189 // constants (Ldi nodes).  Singletons are integer, float or double constants
2190 // or a single symbol.
2191 bool TypeTuple::singleton(void) const {
2192   return false;                 // Never a singleton
2193 }
2194 
2195 bool TypeTuple::empty(void) const {
2196   for( uint i=0; i<_cnt; i++ ) {
2197     if (_fields[i]->empty())  return true;
2198   }
2199   return false;
2200 }
2201 
2202 //=============================================================================
2203 // Convenience common pre-built types.
2204 
2205 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2206   // Certain normalizations keep us sane when comparing types.
2207   // We do not want arrayOop variables to differ only by the wideness
2208   // of their index types.  Pick minimum wideness, since that is the
2209   // forced wideness of small ranges anyway.
2210   if (size->_widen != Type::WidenMin)
2211     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2212   else
2213     return size;
2214 }
2215 
2216 //------------------------------make-------------------------------------------
2217 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2218   if (elem->is_valuetypeptr()) {
2219     // Value type array elements cannot be NULL
2220     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2221   }
2222   if (UseCompressedOops && elem->isa_oopptr()) {
2223     elem = elem->make_narrowoop();
2224   }
2225   size = normalize_array_size(size);
2226   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2227 }
2228 
2229 //------------------------------meet-------------------------------------------
2230 // Compute the MEET of two types.  It returns a new Type object.
2231 const Type *TypeAry::xmeet( const Type *t ) const {
2232   // Perform a fast test for common case; meeting the same types together.
2233   if( this == t ) return this;  // Meeting same type-rep?
2234 
2235   // Current "this->_base" is Ary
2236   switch (t->base()) {          // switch on original type
2237 
2238   case Bottom:                  // Ye Olde Default
2239     return t;
2240 
2241   default:                      // All else is a mistake
2242     typerr(t);
2243 
2244   case Array: {                 // Meeting 2 arrays?
2245     const TypeAry *a = t->is_ary();
2246     return TypeAry::make(_elem->meet_speculative(a->_elem),
2247                          _size->xmeet(a->_size)->is_int(),
2248                          _stable & a->_stable);
2249   }
2250   case Top:
2251     break;
2252   }
2253   return this;                  // Return the double constant
2254 }
2255 
2256 //------------------------------xdual------------------------------------------
2257 // Dual: compute field-by-field dual
2258 const Type *TypeAry::xdual() const {
2259   const TypeInt* size_dual = _size->dual()->is_int();
2260   size_dual = normalize_array_size(size_dual);
2261   return new TypeAry(_elem->dual(), size_dual, !_stable);
2262 }
2263 
2264 //------------------------------eq---------------------------------------------
2265 // Structural equality check for Type representations
2266 bool TypeAry::eq( const Type *t ) const {
2267   const TypeAry *a = (const TypeAry*)t;
2268   return _elem == a->_elem &&
2269     _stable == a->_stable &&
2270     _size == a->_size;
2271 }
2272 
2273 //------------------------------hash-------------------------------------------
2274 // Type-specific hashing function.
2275 int TypeAry::hash(void) const {
2276   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2277 }
2278 
2279 /**
2280  * Return same type without a speculative part in the element
2281  */
2282 const Type* TypeAry::remove_speculative() const {
2283   return make(_elem->remove_speculative(), _size, _stable);
2284 }
2285 
2286 /**
2287  * Return same type with cleaned up speculative part of element
2288  */
2289 const Type* TypeAry::cleanup_speculative() const {
2290   return make(_elem->cleanup_speculative(), _size, _stable);
2291 }
2292 
2293 /**
2294  * Return same type but with a different inline depth (used for speculation)
2295  *
2296  * @param depth  depth to meet with
2297  */
2298 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2299   if (!UseInlineDepthForSpeculativeTypes) {
2300     return this;
2301   }
2302   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2303 }
2304 
2305 //----------------------interface_vs_oop---------------------------------------
2306 #ifdef ASSERT
2307 bool TypeAry::interface_vs_oop(const Type *t) const {
2308   const TypeAry* t_ary = t->is_ary();
2309   if (t_ary) {
2310     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2311     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2312     if(this_ptr != NULL && t_ptr != NULL) {
2313       return this_ptr->interface_vs_oop(t_ptr);
2314     }
2315   }
2316   return false;
2317 }
2318 #endif
2319 
2320 //------------------------------dump2------------------------------------------
2321 #ifndef PRODUCT
2322 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2323   if (_stable)  st->print("stable:");
2324   _elem->dump2(d, depth, st);
2325   st->print("[");
2326   _size->dump2(d, depth, st);
2327   st->print("]");
2328 }
2329 #endif
2330 
2331 //------------------------------singleton--------------------------------------
2332 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2333 // constants (Ldi nodes).  Singletons are integer, float or double constants
2334 // or a single symbol.
2335 bool TypeAry::singleton(void) const {
2336   return false;                 // Never a singleton
2337 }
2338 
2339 bool TypeAry::empty(void) const {
2340   return _elem->empty() || _size->empty();
2341 }
2342 
2343 //--------------------------ary_must_be_exact----------------------------------
2344 bool TypeAry::ary_must_be_exact() const {
2345   if (!UseExactTypes)       return false;
2346   // This logic looks at the element type of an array, and returns true
2347   // if the element type is either a primitive or a final instance class.
2348   // In such cases, an array built on this ary must have no subclasses.
2349   if (_elem == BOTTOM)      return false;  // general array not exact
2350   if (_elem == TOP   )      return false;  // inverted general array not exact
2351   const TypeOopPtr*  toop = NULL;
2352   if (UseCompressedOops && _elem->isa_narrowoop()) {
2353     toop = _elem->make_ptr()->isa_oopptr();
2354   } else {
2355     toop = _elem->isa_oopptr();
2356   }
2357   if (!toop)                return true;   // a primitive type, like int
2358   ciKlass* tklass = toop->klass();
2359   if (tklass == NULL)       return false;  // unloaded class
2360   if (!tklass->is_loaded()) return false;  // unloaded class
2361   const TypeInstPtr* tinst;
2362   if (_elem->isa_narrowoop())
2363     tinst = _elem->make_ptr()->isa_instptr();
2364   else
2365     tinst = _elem->isa_instptr();
2366   if (tinst)
2367     return tklass->as_instance_klass()->is_final();
2368   const TypeAryPtr*  tap;
2369   if (_elem->isa_narrowoop())
2370     tap = _elem->make_ptr()->isa_aryptr();
2371   else
2372     tap = _elem->isa_aryptr();
2373   if (tap)
2374     return tap->ary()->ary_must_be_exact();
2375   return false;
2376 }
2377 
2378 //==============================TypeValueType=======================================
2379 
2380 //------------------------------make-------------------------------------------
2381 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2382   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2383 }
2384 
2385 //------------------------------meet-------------------------------------------
2386 // Compute the MEET of two types.  It returns a new Type object.
2387 const Type* TypeValueType::xmeet(const Type* t) const {
2388   // Perform a fast test for common case; meeting the same types together.
2389   if(this == t) return this;  // Meeting same type-rep?
2390 
2391   // Current "this->_base" is ValueType
2392   switch (t->base()) {          // switch on original type
2393 
2394   case Int:
2395   case Long:
2396   case FloatTop:
2397   case FloatCon:
2398   case FloatBot:
2399   case DoubleTop:
2400   case DoubleCon:
2401   case DoubleBot:
2402   case NarrowKlass:
2403   case Bottom:
2404     return Type::BOTTOM;
2405 
2406   case OopPtr:
2407   case MetadataPtr:
2408   case KlassPtr:
2409   case RawPtr:
2410     return TypePtr::BOTTOM;
2411 
2412   case Top:
2413     return this;
2414 
2415   case NarrowOop: {
2416     const Type* res = t->make_ptr()->xmeet(this);
2417     if (res->isa_ptr()) {
2418       return res->make_narrowoop();
2419     }
2420     return res;
2421   }
2422 
2423   case AryPtr:
2424   case InstPtr: {
2425     return t->xmeet(this);
2426   }
2427 
2428   case ValueType: {
2429     // All value types inherit from Object
2430     return TypeInstPtr::NOTNULL;
2431   }
2432 
2433   default:                      // All else is a mistake
2434     typerr(t);
2435 
2436   }
2437   return this;
2438 }
2439 
2440 //------------------------------xdual------------------------------------------
2441 const Type* TypeValueType::xdual() const {
2442   return this;
2443 }
2444 
2445 //------------------------------eq---------------------------------------------
2446 // Structural equality check for Type representations
2447 bool TypeValueType::eq(const Type* t) const {
2448   const TypeValueType* vt = t->is_valuetype();
2449   return (_vk == vt->value_klass());
2450 }
2451 
2452 //------------------------------hash-------------------------------------------
2453 // Type-specific hashing function.
2454 int TypeValueType::hash(void) const {
2455   return (intptr_t)_vk;
2456 }
2457 
2458 //------------------------------singleton--------------------------------------
2459 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2460 bool TypeValueType::singleton(void) const {
2461   return false;
2462 }
2463 
2464 //------------------------------empty------------------------------------------
2465 // TRUE if Type is a type with no values, FALSE otherwise.
2466 bool TypeValueType::empty(void) const {
2467   return false;
2468 }
2469 
2470 //------------------------------dump2------------------------------------------
2471 #ifndef PRODUCT
2472 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2473   int count = _vk->nof_declared_nonstatic_fields();
2474   st->print("valuetype[%d]:{", count);
2475   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2476   for (int i = 1; i < count; ++i) {
2477     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2478   }
2479   st->print("}");
2480 }
2481 #endif
2482 
2483 //==============================TypeVect=======================================
2484 // Convenience common pre-built types.
2485 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2486 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2487 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2488 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2489 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2490 
2491 //------------------------------make-------------------------------------------
2492 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2493   BasicType elem_bt = elem->array_element_basic_type();
2494   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2495   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2496   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2497   int size = length * type2aelembytes(elem_bt);
2498   switch (Matcher::vector_ideal_reg(size)) {
2499   case Op_VecS:
2500     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2501   case Op_RegL:
2502   case Op_VecD:
2503   case Op_RegD:
2504     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2505   case Op_VecX:
2506     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2507   case Op_VecY:
2508     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2509   case Op_VecZ:
2510     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2511   }
2512  ShouldNotReachHere();
2513   return NULL;
2514 }
2515 
2516 //------------------------------meet-------------------------------------------
2517 // Compute the MEET of two types.  It returns a new Type object.
2518 const Type *TypeVect::xmeet( const Type *t ) const {
2519   // Perform a fast test for common case; meeting the same types together.
2520   if( this == t ) return this;  // Meeting same type-rep?
2521 
2522   // Current "this->_base" is Vector
2523   switch (t->base()) {          // switch on original type
2524 
2525   case Bottom:                  // Ye Olde Default
2526     return t;
2527 
2528   default:                      // All else is a mistake
2529     typerr(t);
2530 
2531   case VectorS:
2532   case VectorD:
2533   case VectorX:
2534   case VectorY:
2535   case VectorZ: {                // Meeting 2 vectors?
2536     const TypeVect* v = t->is_vect();
2537     assert(  base() == v->base(), "");
2538     assert(length() == v->length(), "");
2539     assert(element_basic_type() == v->element_basic_type(), "");
2540     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2541   }
2542   case Top:
2543     break;
2544   }
2545   return this;
2546 }
2547 
2548 //------------------------------xdual------------------------------------------
2549 // Dual: compute field-by-field dual
2550 const Type *TypeVect::xdual() const {
2551   return new TypeVect(base(), _elem->dual(), _length);
2552 }
2553 
2554 //------------------------------eq---------------------------------------------
2555 // Structural equality check for Type representations
2556 bool TypeVect::eq(const Type *t) const {
2557   const TypeVect *v = t->is_vect();
2558   return (_elem == v->_elem) && (_length == v->_length);
2559 }
2560 
2561 //------------------------------hash-------------------------------------------
2562 // Type-specific hashing function.
2563 int TypeVect::hash(void) const {
2564   return (intptr_t)_elem + (intptr_t)_length;
2565 }
2566 
2567 //------------------------------singleton--------------------------------------
2568 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2569 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2570 // constant value (when vector is created with Replicate code).
2571 bool TypeVect::singleton(void) const {
2572 // There is no Con node for vectors yet.
2573 //  return _elem->singleton();
2574   return false;
2575 }
2576 
2577 bool TypeVect::empty(void) const {
2578   return _elem->empty();
2579 }
2580 
2581 //------------------------------dump2------------------------------------------
2582 #ifndef PRODUCT
2583 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2584   switch (base()) {
2585   case VectorS:
2586     st->print("vectors["); break;
2587   case VectorD:
2588     st->print("vectord["); break;
2589   case VectorX:
2590     st->print("vectorx["); break;
2591   case VectorY:
2592     st->print("vectory["); break;
2593   case VectorZ:
2594     st->print("vectorz["); break;
2595   default:
2596     ShouldNotReachHere();
2597   }
2598   st->print("%d]:{", _length);
2599   _elem->dump2(d, depth, st);
2600   st->print("}");
2601 }
2602 #endif
2603 
2604 
2605 //=============================================================================
2606 // Convenience common pre-built types.
2607 const TypePtr *TypePtr::NULL_PTR;
2608 const TypePtr *TypePtr::NOTNULL;
2609 const TypePtr *TypePtr::BOTTOM;
2610 
2611 //------------------------------meet-------------------------------------------
2612 // Meet over the PTR enum
2613 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2614   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2615   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2616   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2617   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2618   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2619   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2620   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2621 };
2622 
2623 //------------------------------make-------------------------------------------
2624 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2625   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2626 }
2627 
2628 //------------------------------cast_to_ptr_type-------------------------------
2629 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2630   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2631   if( ptr == _ptr ) return this;
2632   return make(_base, ptr, _offset, _speculative, _inline_depth);
2633 }
2634 
2635 //------------------------------get_con----------------------------------------
2636 intptr_t TypePtr::get_con() const {
2637   assert( _ptr == Null, "" );
2638   return offset();
2639 }
2640 
2641 //------------------------------meet-------------------------------------------
2642 // Compute the MEET of two types.  It returns a new Type object.
2643 const Type *TypePtr::xmeet(const Type *t) const {
2644   const Type* res = xmeet_helper(t);
2645   if (res->isa_ptr() == NULL) {
2646     return res;
2647   }
2648 
2649   const TypePtr* res_ptr = res->is_ptr();
2650   if (res_ptr->speculative() != NULL) {
2651     // type->speculative() == NULL means that speculation is no better
2652     // than type, i.e. type->speculative() == type. So there are 2
2653     // ways to represent the fact that we have no useful speculative
2654     // data and we should use a single one to be able to test for
2655     // equality between types. Check whether type->speculative() ==
2656     // type and set speculative to NULL if it is the case.
2657     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2658       return res_ptr->remove_speculative();
2659     }
2660   }
2661 
2662   return res;
2663 }
2664 
2665 const Type *TypePtr::xmeet_helper(const Type *t) const {
2666   // Perform a fast test for common case; meeting the same types together.
2667   if( this == t ) return this;  // Meeting same type-rep?
2668 
2669   // Current "this->_base" is AnyPtr
2670   switch (t->base()) {          // switch on original type
2671   case Int:                     // Mixing ints & oops happens when javac
2672   case Long:                    // reuses local variables
2673   case FloatTop:
2674   case FloatCon:
2675   case FloatBot:
2676   case DoubleTop:
2677   case DoubleCon:
2678   case DoubleBot:
2679   case NarrowOop:
2680   case NarrowKlass:
2681   case Bottom:                  // Ye Olde Default
2682     return Type::BOTTOM;
2683   case Top:
2684     return this;
2685 
2686   case AnyPtr: {                // Meeting to AnyPtrs
2687     const TypePtr *tp = t->is_ptr();
2688     const TypePtr* speculative = xmeet_speculative(tp);
2689     int depth = meet_inline_depth(tp->inline_depth());
2690     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2691   }
2692   case RawPtr:                  // For these, flip the call around to cut down
2693   case OopPtr:
2694   case InstPtr:                 // on the cases I have to handle.
2695   case AryPtr:
2696   case MetadataPtr:
2697   case KlassPtr:
2698     return t->xmeet(this);      // Call in reverse direction
2699   default:                      // All else is a mistake
2700     typerr(t);
2701 
2702   }
2703   return this;
2704 }
2705 
2706 //------------------------------meet_offset------------------------------------
2707 Type::Offset TypePtr::meet_offset(int offset) const {
2708   return _offset.meet(Offset(offset));
2709 }
2710 
2711 //------------------------------dual_offset------------------------------------
2712 Type::Offset TypePtr::dual_offset() const {
2713   return _offset.dual();
2714 }
2715 
2716 //------------------------------xdual------------------------------------------
2717 // Dual: compute field-by-field dual
2718 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2719   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2720 };
2721 const Type *TypePtr::xdual() const {
2722   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2723 }
2724 
2725 //------------------------------xadd_offset------------------------------------
2726 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2727   return _offset.add(offset);
2728 }
2729 
2730 //------------------------------add_offset-------------------------------------
2731 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2732   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2733 }
2734 
2735 //------------------------------eq---------------------------------------------
2736 // Structural equality check for Type representations
2737 bool TypePtr::eq( const Type *t ) const {
2738   const TypePtr *a = (const TypePtr*)t;
2739   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2740 }
2741 
2742 //------------------------------hash-------------------------------------------
2743 // Type-specific hashing function.
2744 int TypePtr::hash(void) const {
2745   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2746 ;
2747 }
2748 
2749 /**
2750  * Return same type without a speculative part
2751  */
2752 const Type* TypePtr::remove_speculative() const {
2753   if (_speculative == NULL) {
2754     return this;
2755   }
2756   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2757   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2758 }
2759 
2760 /**
2761  * Return same type but drop speculative part if we know we won't use
2762  * it
2763  */
2764 const Type* TypePtr::cleanup_speculative() const {
2765   if (speculative() == NULL) {
2766     return this;
2767   }
2768   const Type* no_spec = remove_speculative();
2769   // If this is NULL_PTR then we don't need the speculative type
2770   // (with_inline_depth in case the current type inline depth is
2771   // InlineDepthTop)
2772   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2773     return no_spec;
2774   }
2775   if (above_centerline(speculative()->ptr())) {
2776     return no_spec;
2777   }
2778   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2779   // If the speculative may be null and is an inexact klass then it
2780   // doesn't help
2781   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2782       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2783     return no_spec;
2784   }
2785   return this;
2786 }
2787 
2788 /**
2789  * dual of the speculative part of the type
2790  */
2791 const TypePtr* TypePtr::dual_speculative() const {
2792   if (_speculative == NULL) {
2793     return NULL;
2794   }
2795   return _speculative->dual()->is_ptr();
2796 }
2797 
2798 /**
2799  * meet of the speculative parts of 2 types
2800  *
2801  * @param other  type to meet with
2802  */
2803 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2804   bool this_has_spec = (_speculative != NULL);
2805   bool other_has_spec = (other->speculative() != NULL);
2806 
2807   if (!this_has_spec && !other_has_spec) {
2808     return NULL;
2809   }
2810 
2811   // If we are at a point where control flow meets and one branch has
2812   // a speculative type and the other has not, we meet the speculative
2813   // type of one branch with the actual type of the other. If the
2814   // actual type is exact and the speculative is as well, then the
2815   // result is a speculative type which is exact and we can continue
2816   // speculation further.
2817   const TypePtr* this_spec = _speculative;
2818   const TypePtr* other_spec = other->speculative();
2819 
2820   if (!this_has_spec) {
2821     this_spec = this;
2822   }
2823 
2824   if (!other_has_spec) {
2825     other_spec = other;
2826   }
2827 
2828   return this_spec->meet(other_spec)->is_ptr();
2829 }
2830 
2831 /**
2832  * dual of the inline depth for this type (used for speculation)
2833  */
2834 int TypePtr::dual_inline_depth() const {
2835   return -inline_depth();
2836 }
2837 
2838 /**
2839  * meet of 2 inline depths (used for speculation)
2840  *
2841  * @param depth  depth to meet with
2842  */
2843 int TypePtr::meet_inline_depth(int depth) const {
2844   return MAX2(inline_depth(), depth);
2845 }
2846 
2847 /**
2848  * Are the speculative parts of 2 types equal?
2849  *
2850  * @param other  type to compare this one to
2851  */
2852 bool TypePtr::eq_speculative(const TypePtr* other) const {
2853   if (_speculative == NULL || other->speculative() == NULL) {
2854     return _speculative == other->speculative();
2855   }
2856 
2857   if (_speculative->base() != other->speculative()->base()) {
2858     return false;
2859   }
2860 
2861   return _speculative->eq(other->speculative());
2862 }
2863 
2864 /**
2865  * Hash of the speculative part of the type
2866  */
2867 int TypePtr::hash_speculative() const {
2868   if (_speculative == NULL) {
2869     return 0;
2870   }
2871 
2872   return _speculative->hash();
2873 }
2874 
2875 /**
2876  * add offset to the speculative part of the type
2877  *
2878  * @param offset  offset to add
2879  */
2880 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2881   if (_speculative == NULL) {
2882     return NULL;
2883   }
2884   return _speculative->add_offset(offset)->is_ptr();
2885 }
2886 
2887 /**
2888  * return exact klass from the speculative type if there's one
2889  */
2890 ciKlass* TypePtr::speculative_type() const {
2891   if (_speculative != NULL && _speculative->isa_oopptr()) {
2892     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2893     if (speculative->klass_is_exact()) {
2894       return speculative->klass();
2895     }
2896   }
2897   return NULL;
2898 }
2899 
2900 /**
2901  * return true if speculative type may be null
2902  */
2903 bool TypePtr::speculative_maybe_null() const {
2904   if (_speculative != NULL) {
2905     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2906     return speculative->maybe_null();
2907   }
2908   return true;
2909 }
2910 
2911 bool TypePtr::speculative_always_null() const {
2912   if (_speculative != NULL) {
2913     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2914     return speculative == TypePtr::NULL_PTR;
2915   }
2916   return false;
2917 }
2918 
2919 /**
2920  * Same as TypePtr::speculative_type() but return the klass only if
2921  * the speculative tells us is not null
2922  */
2923 ciKlass* TypePtr::speculative_type_not_null() const {
2924   if (speculative_maybe_null()) {
2925     return NULL;
2926   }
2927   return speculative_type();
2928 }
2929 
2930 /**
2931  * Check whether new profiling would improve speculative type
2932  *
2933  * @param   exact_kls    class from profiling
2934  * @param   inline_depth inlining depth of profile point
2935  *
2936  * @return  true if type profile is valuable
2937  */
2938 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2939   // no profiling?
2940   if (exact_kls == NULL) {
2941     return false;
2942   }
2943   if (speculative() == TypePtr::NULL_PTR) {
2944     return false;
2945   }
2946   // no speculative type or non exact speculative type?
2947   if (speculative_type() == NULL) {
2948     return true;
2949   }
2950   // If the node already has an exact speculative type keep it,
2951   // unless it was provided by profiling that is at a deeper
2952   // inlining level. Profiling at a higher inlining depth is
2953   // expected to be less accurate.
2954   if (_speculative->inline_depth() == InlineDepthBottom) {
2955     return false;
2956   }
2957   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2958   return inline_depth < _speculative->inline_depth();
2959 }
2960 
2961 /**
2962  * Check whether new profiling would improve ptr (= tells us it is non
2963  * null)
2964  *
2965  * @param   ptr_kind always null or not null?
2966  *
2967  * @return  true if ptr profile is valuable
2968  */
2969 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2970   // profiling doesn't tell us anything useful
2971   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2972     return false;
2973   }
2974   // We already know this is not null
2975   if (!this->maybe_null()) {
2976     return false;
2977   }
2978   // We already know the speculative type cannot be null
2979   if (!speculative_maybe_null()) {
2980     return false;
2981   }
2982   // We already know this is always null
2983   if (this == TypePtr::NULL_PTR) {
2984     return false;
2985   }
2986   // We already know the speculative type is always null
2987   if (speculative_always_null()) {
2988     return false;
2989   }
2990   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2991     return false;
2992   }
2993   return true;
2994 }
2995 
2996 //------------------------------dump2------------------------------------------
2997 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2998   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2999 };
3000 
3001 #ifndef PRODUCT
3002 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3003   if( _ptr == Null ) st->print("NULL");
3004   else st->print("%s *", ptr_msg[_ptr]);
3005   _offset.dump2(st);
3006   dump_inline_depth(st);
3007   dump_speculative(st);
3008 }
3009 
3010 /**
3011  *dump the speculative part of the type
3012  */
3013 void TypePtr::dump_speculative(outputStream *st) const {
3014   if (_speculative != NULL) {
3015     st->print(" (speculative=");
3016     _speculative->dump_on(st);
3017     st->print(")");
3018   }
3019 }
3020 
3021 /**
3022  *dump the inline depth of the type
3023  */
3024 void TypePtr::dump_inline_depth(outputStream *st) const {
3025   if (_inline_depth != InlineDepthBottom) {
3026     if (_inline_depth == InlineDepthTop) {
3027       st->print(" (inline_depth=InlineDepthTop)");
3028     } else {
3029       st->print(" (inline_depth=%d)", _inline_depth);
3030     }
3031   }
3032 }
3033 #endif
3034 
3035 //------------------------------singleton--------------------------------------
3036 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3037 // constants
3038 bool TypePtr::singleton(void) const {
3039   // TopPTR, Null, AnyNull, Constant are all singletons
3040   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3041 }
3042 
3043 bool TypePtr::empty(void) const {
3044   return (_offset == Offset::top) || above_centerline(_ptr);
3045 }
3046 
3047 //=============================================================================
3048 // Convenience common pre-built types.
3049 const TypeRawPtr *TypeRawPtr::BOTTOM;
3050 const TypeRawPtr *TypeRawPtr::NOTNULL;
3051 
3052 //------------------------------make-------------------------------------------
3053 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3054   assert( ptr != Constant, "what is the constant?" );
3055   assert( ptr != Null, "Use TypePtr for NULL" );
3056   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3057 }
3058 
3059 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3060   assert( bits, "Use TypePtr for NULL" );
3061   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3062 }
3063 
3064 //------------------------------cast_to_ptr_type-------------------------------
3065 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3066   assert( ptr != Constant, "what is the constant?" );
3067   assert( ptr != Null, "Use TypePtr for NULL" );
3068   assert( _bits==0, "Why cast a constant address?");
3069   if( ptr == _ptr ) return this;
3070   return make(ptr);
3071 }
3072 
3073 //------------------------------get_con----------------------------------------
3074 intptr_t TypeRawPtr::get_con() const {
3075   assert( _ptr == Null || _ptr == Constant, "" );
3076   return (intptr_t)_bits;
3077 }
3078 
3079 //------------------------------meet-------------------------------------------
3080 // Compute the MEET of two types.  It returns a new Type object.
3081 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3082   // Perform a fast test for common case; meeting the same types together.
3083   if( this == t ) return this;  // Meeting same type-rep?
3084 
3085   // Current "this->_base" is RawPtr
3086   switch( t->base() ) {         // switch on original type
3087   case Bottom:                  // Ye Olde Default
3088     return t;
3089   case Top:
3090     return this;
3091   case AnyPtr:                  // Meeting to AnyPtrs
3092     break;
3093   case RawPtr: {                // might be top, bot, any/not or constant
3094     enum PTR tptr = t->is_ptr()->ptr();
3095     enum PTR ptr = meet_ptr( tptr );
3096     if( ptr == Constant ) {     // Cannot be equal constants, so...
3097       if( tptr == Constant && _ptr != Constant)  return t;
3098       if( _ptr == Constant && tptr != Constant)  return this;
3099       ptr = NotNull;            // Fall down in lattice
3100     }
3101     return make( ptr );
3102   }
3103 
3104   case OopPtr:
3105   case InstPtr:
3106   case AryPtr:
3107   case MetadataPtr:
3108   case KlassPtr:
3109     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3110   default:                      // All else is a mistake
3111     typerr(t);
3112   }
3113 
3114   // Found an AnyPtr type vs self-RawPtr type
3115   const TypePtr *tp = t->is_ptr();
3116   switch (tp->ptr()) {
3117   case TypePtr::TopPTR:  return this;
3118   case TypePtr::BotPTR:  return t;
3119   case TypePtr::Null:
3120     if( _ptr == TypePtr::TopPTR ) return t;
3121     return TypeRawPtr::BOTTOM;
3122   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3123   case TypePtr::AnyNull:
3124     if( _ptr == TypePtr::Constant) return this;
3125     return make( meet_ptr(TypePtr::AnyNull) );
3126   default: ShouldNotReachHere();
3127   }
3128   return this;
3129 }
3130 
3131 //------------------------------xdual------------------------------------------
3132 // Dual: compute field-by-field dual
3133 const Type *TypeRawPtr::xdual() const {
3134   return new TypeRawPtr( dual_ptr(), _bits );
3135 }
3136 
3137 //------------------------------add_offset-------------------------------------
3138 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3139   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3140   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3141   if( offset == 0 ) return this; // No change
3142   switch (_ptr) {
3143   case TypePtr::TopPTR:
3144   case TypePtr::BotPTR:
3145   case TypePtr::NotNull:
3146     return this;
3147   case TypePtr::Null:
3148   case TypePtr::Constant: {
3149     address bits = _bits+offset;
3150     if ( bits == 0 ) return TypePtr::NULL_PTR;
3151     return make( bits );
3152   }
3153   default:  ShouldNotReachHere();
3154   }
3155   return NULL;                  // Lint noise
3156 }
3157 
3158 //------------------------------eq---------------------------------------------
3159 // Structural equality check for Type representations
3160 bool TypeRawPtr::eq( const Type *t ) const {
3161   const TypeRawPtr *a = (const TypeRawPtr*)t;
3162   return _bits == a->_bits && TypePtr::eq(t);
3163 }
3164 
3165 //------------------------------hash-------------------------------------------
3166 // Type-specific hashing function.
3167 int TypeRawPtr::hash(void) const {
3168   return (intptr_t)_bits + TypePtr::hash();
3169 }
3170 
3171 //------------------------------dump2------------------------------------------
3172 #ifndef PRODUCT
3173 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3174   if( _ptr == Constant )
3175     st->print(INTPTR_FORMAT, p2i(_bits));
3176   else
3177     st->print("rawptr:%s", ptr_msg[_ptr]);
3178 }
3179 #endif
3180 
3181 //=============================================================================
3182 // Convenience common pre-built type.
3183 const TypeOopPtr *TypeOopPtr::BOTTOM;
3184 
3185 //------------------------------TypeOopPtr-------------------------------------
3186 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3187                        int instance_id, const TypePtr* speculative, int inline_depth)
3188   : TypePtr(t, ptr, offset, speculative, inline_depth),
3189     _const_oop(o), _klass(k),
3190     _klass_is_exact(xk),
3191     _is_ptr_to_narrowoop(false),
3192     _is_ptr_to_narrowklass(false),
3193     _is_ptr_to_boxed_value(false),
3194     _instance_id(instance_id) {
3195   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3196       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3197     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3198   }
3199 #ifdef _LP64
3200   if (this->offset() != 0) {
3201     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3202       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3203     } else if (klass() == NULL) {
3204       // Array with unknown body type
3205       assert(this->isa_aryptr(), "only arrays without klass");
3206       _is_ptr_to_narrowoop = UseCompressedOops;
3207     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3208       if (klass()->is_obj_array_klass()) {
3209         _is_ptr_to_narrowoop = true;
3210       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3211         // Check if the field of the value type array element contains oops
3212         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3213         int foffset = field_offset.get() + vk->first_field_offset();
3214         ciField* field = vk->get_field_by_offset(foffset, false);
3215         assert(field != NULL, "missing field");
3216         BasicType bt = field->layout_type();
3217         assert(bt != T_VALUETYPEPTR, "unexpected type");
3218         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3219       }
3220     } else if (klass()->is_instance_klass()) {
3221       if (this->isa_klassptr()) {
3222         // Perm objects don't use compressed references
3223       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3224         // unsafe access
3225         _is_ptr_to_narrowoop = UseCompressedOops;
3226       } else { // exclude unsafe ops
3227         assert(this->isa_instptr(), "must be an instance ptr.");
3228         if (klass() == ciEnv::current()->Class_klass() &&
3229             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3230              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3231           // Special hidden fields from the Class.
3232           assert(this->isa_instptr(), "must be an instance ptr.");
3233           _is_ptr_to_narrowoop = false;
3234         } else if (klass() == ciEnv::current()->Class_klass() &&
3235                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3236           // Static fields
3237           assert(o != NULL, "must be constant");
3238           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3239           BasicType basic_elem_type;
3240           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3241             // Special hidden field that contains the oop of the default value type
3242             basic_elem_type = T_VALUETYPE;
3243           } else {
3244             ciField* field = ik->get_field_by_offset(this->offset(), true);
3245             assert(field != NULL, "missing field");
3246             basic_elem_type = field->layout_type();
3247           }
3248           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3249                                                        basic_elem_type == T_VALUETYPE ||
3250                                                        basic_elem_type == T_ARRAY);
3251         } else {
3252           // Instance fields which contains a compressed oop references.
3253           ciInstanceKlass* ik = klass()->as_instance_klass();
3254           ciField* field = ik->get_field_by_offset(this->offset(), false);
3255           if (field != NULL) {
3256             BasicType basic_elem_type = field->layout_type();
3257             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3258                                                          basic_elem_type == T_VALUETYPE ||
3259                                                          basic_elem_type == T_ARRAY);
3260             assert(basic_elem_type != T_VALUETYPEPTR, "unexpected type");
3261           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3262             // Compile::find_alias_type() cast exactness on all types to verify
3263             // that it does not affect alias type.
3264             _is_ptr_to_narrowoop = UseCompressedOops;
3265           } else {
3266             // Type for the copy start in LibraryCallKit::inline_native_clone().
3267             _is_ptr_to_narrowoop = UseCompressedOops;
3268           }
3269         }
3270       }
3271     }
3272   }
3273 #endif
3274 }
3275 
3276 //------------------------------make-------------------------------------------
3277 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3278                                    const TypePtr* speculative, int inline_depth) {
3279   assert(ptr != Constant, "no constant generic pointers");
3280   ciKlass*  k = Compile::current()->env()->Object_klass();
3281   bool      xk = false;
3282   ciObject* o = NULL;
3283   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3284 }
3285 
3286 
3287 //------------------------------cast_to_ptr_type-------------------------------
3288 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3289   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3290   if( ptr == _ptr ) return this;
3291   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3292 }
3293 
3294 //-----------------------------cast_to_instance_id----------------------------
3295 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3296   // There are no instances of a general oop.
3297   // Return self unchanged.
3298   return this;
3299 }
3300 
3301 //-----------------------------cast_to_exactness-------------------------------
3302 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3303   // There is no such thing as an exact general oop.
3304   // Return self unchanged.
3305   return this;
3306 }
3307 
3308 
3309 //------------------------------as_klass_type----------------------------------
3310 // Return the klass type corresponding to this instance or array type.
3311 // It is the type that is loaded from an object of this type.
3312 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3313   ciKlass* k = klass();
3314   bool    xk = klass_is_exact();
3315   if (k == NULL)
3316     return TypeKlassPtr::OBJECT;
3317   else
3318     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3319 }
3320 
3321 //------------------------------meet-------------------------------------------
3322 // Compute the MEET of two types.  It returns a new Type object.
3323 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3324   // Perform a fast test for common case; meeting the same types together.
3325   if( this == t ) return this;  // Meeting same type-rep?
3326 
3327   // Current "this->_base" is OopPtr
3328   switch (t->base()) {          // switch on original type
3329 
3330   case Int:                     // Mixing ints & oops happens when javac
3331   case Long:                    // reuses local variables
3332   case FloatTop:
3333   case FloatCon:
3334   case FloatBot:
3335   case DoubleTop:
3336   case DoubleCon:
3337   case DoubleBot:
3338   case NarrowOop:
3339   case NarrowKlass:
3340   case Bottom:                  // Ye Olde Default
3341     return Type::BOTTOM;
3342   case Top:
3343     return this;
3344 
3345   default:                      // All else is a mistake
3346     typerr(t);
3347 
3348   case RawPtr:
3349   case MetadataPtr:
3350   case KlassPtr:
3351     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3352 
3353   case AnyPtr: {
3354     // Found an AnyPtr type vs self-OopPtr type
3355     const TypePtr *tp = t->is_ptr();
3356     Offset offset = meet_offset(tp->offset());
3357     PTR ptr = meet_ptr(tp->ptr());
3358     const TypePtr* speculative = xmeet_speculative(tp);
3359     int depth = meet_inline_depth(tp->inline_depth());
3360     switch (tp->ptr()) {
3361     case Null:
3362       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3363       // else fall through:
3364     case TopPTR:
3365     case AnyNull: {
3366       int instance_id = meet_instance_id(InstanceTop);
3367       return make(ptr, offset, instance_id, speculative, depth);
3368     }
3369     case BotPTR:
3370     case NotNull:
3371       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3372     default: typerr(t);
3373     }
3374   }
3375 
3376   case OopPtr: {                 // Meeting to other OopPtrs
3377     const TypeOopPtr *tp = t->is_oopptr();
3378     int instance_id = meet_instance_id(tp->instance_id());
3379     const TypePtr* speculative = xmeet_speculative(tp);
3380     int depth = meet_inline_depth(tp->inline_depth());
3381     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3382   }
3383 
3384   case InstPtr:                  // For these, flip the call around to cut down
3385   case AryPtr:
3386     return t->xmeet(this);      // Call in reverse direction
3387 
3388   } // End of switch
3389   return this;                  // Return the double constant
3390 }
3391 
3392 
3393 //------------------------------xdual------------------------------------------
3394 // Dual of a pure heap pointer.  No relevant klass or oop information.
3395 const Type *TypeOopPtr::xdual() const {
3396   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3397   assert(const_oop() == NULL,             "no constants here");
3398   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3399 }
3400 
3401 //--------------------------make_from_klass_common-----------------------------
3402 // Computes the element-type given a klass.
3403 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3404   if (klass->is_instance_klass() || klass->is_valuetype()) {
3405     Compile* C = Compile::current();
3406     Dependencies* deps = C->dependencies();
3407     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3408     // Element is an instance
3409     bool klass_is_exact = false;
3410     if (klass->is_loaded()) {
3411       // Try to set klass_is_exact.
3412       ciInstanceKlass* ik = klass->as_instance_klass();
3413       klass_is_exact = ik->is_final();
3414       if (!klass_is_exact && klass_change
3415           && deps != NULL && UseUniqueSubclasses) {
3416         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3417         if (sub != NULL) {
3418           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3419           klass = ik = sub;
3420           klass_is_exact = sub->is_final();
3421         }
3422       }
3423       if (!klass_is_exact && try_for_exact
3424           && deps != NULL && UseExactTypes) {
3425         if (!ik->is_interface() && !ik->has_subklass()) {
3426           // Add a dependence; if concrete subclass added we need to recompile
3427           deps->assert_leaf_type(ik);
3428           klass_is_exact = true;
3429         }
3430       }
3431     }
3432     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3433   } else if (klass->is_obj_array_klass()) {
3434     // Element is an object or value array. Recursively call ourself.
3435     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3436     bool xk = etype->klass_is_exact();
3437     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3438     // We used to pass NotNull in here, asserting that the sub-arrays
3439     // are all not-null.  This is not true in generally, as code can
3440     // slam NULLs down in the subarrays.
3441     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3442     return arr;
3443   } else if (klass->is_type_array_klass()) {
3444     // Element is an typeArray
3445     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3446     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3447     // We used to pass NotNull in here, asserting that the array pointer
3448     // is not-null. That was not true in general.
3449     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3450     return arr;
3451   } else if (klass->is_value_array_klass()) {
3452     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3453     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3454     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3455     return arr;
3456   } else {
3457     ShouldNotReachHere();
3458     return NULL;
3459   }
3460 }
3461 
3462 //------------------------------make_from_constant-----------------------------
3463 // Make a java pointer from an oop constant
3464 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3465   assert(!o->is_null_object(), "null object not yet handled here.");
3466   ciKlass* klass = o->klass();
3467   if (klass->is_instance_klass() || klass->is_valuetype()) {
3468     // Element is an instance or value type
3469     if (require_constant) {
3470       if (!o->can_be_constant())  return NULL;
3471     } else if (!o->should_be_constant()) {
3472       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3473     }
3474     return TypeInstPtr::make(o);
3475   } else if (klass->is_obj_array_klass()) {
3476     // Element is an object array. Recursively call ourself.
3477     const TypeOopPtr *etype =
3478       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3479     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3480     // We used to pass NotNull in here, asserting that the sub-arrays
3481     // are all not-null.  This is not true in generally, as code can
3482     // slam NULLs down in the subarrays.
3483     if (require_constant) {
3484       if (!o->can_be_constant())  return NULL;
3485     } else if (!o->should_be_constant()) {
3486       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3487     }
3488     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3489     return arr;
3490   } else if (klass->is_type_array_klass()) {
3491     // Element is an typeArray
3492     const Type* etype =
3493       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3494     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3495     // We used to pass NotNull in here, asserting that the array pointer
3496     // is not-null. That was not true in general.
3497     if (require_constant) {
3498       if (!o->can_be_constant())  return NULL;
3499     } else if (!o->should_be_constant()) {
3500       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3501     }
3502     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3503     return arr;
3504   } else if (klass->is_value_array_klass()) {
3505     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3506     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3507     // We used to pass NotNull in here, asserting that the sub-arrays
3508     // are all not-null.  This is not true in generally, as code can
3509     // slam NULLs down in the subarrays.
3510     if (require_constant) {
3511       if (!o->can_be_constant())  return NULL;
3512     } else if (!o->should_be_constant()) {
3513       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3514     }
3515     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3516     return arr;
3517   }
3518 
3519   fatal("unhandled object type");
3520   return NULL;
3521 }
3522 
3523 //------------------------------get_con----------------------------------------
3524 intptr_t TypeOopPtr::get_con() const {
3525   assert( _ptr == Null || _ptr == Constant, "" );
3526   assert(offset() >= 0, "");
3527 
3528   if (offset() != 0) {
3529     // After being ported to the compiler interface, the compiler no longer
3530     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3531     // to a handle at compile time.  This handle is embedded in the generated
3532     // code and dereferenced at the time the nmethod is made.  Until that time,
3533     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3534     // have access to the addresses!).  This does not seem to currently happen,
3535     // but this assertion here is to help prevent its occurence.
3536     tty->print_cr("Found oop constant with non-zero offset");
3537     ShouldNotReachHere();
3538   }
3539 
3540   return (intptr_t)const_oop()->constant_encoding();
3541 }
3542 
3543 
3544 //-----------------------------filter------------------------------------------
3545 // Do not allow interface-vs.-noninterface joins to collapse to top.
3546 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3547 
3548   const Type* ft = join_helper(kills, include_speculative);
3549   const TypeInstPtr* ftip = ft->isa_instptr();
3550   const TypeInstPtr* ktip = kills->isa_instptr();
3551 
3552   if (ft->empty()) {
3553     // Check for evil case of 'this' being a class and 'kills' expecting an
3554     // interface.  This can happen because the bytecodes do not contain
3555     // enough type info to distinguish a Java-level interface variable
3556     // from a Java-level object variable.  If we meet 2 classes which
3557     // both implement interface I, but their meet is at 'j/l/O' which
3558     // doesn't implement I, we have no way to tell if the result should
3559     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3560     // into a Phi which "knows" it's an Interface type we'll have to
3561     // uplift the type.
3562     if (!empty()) {
3563       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3564         return kills;           // Uplift to interface
3565       }
3566       // Also check for evil cases of 'this' being a class array
3567       // and 'kills' expecting an array of interfaces.
3568       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3569       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3570         return kills;           // Uplift to array of interface
3571       }
3572     }
3573 
3574     return Type::TOP;           // Canonical empty value
3575   }
3576 
3577   // If we have an interface-typed Phi or cast and we narrow to a class type,
3578   // the join should report back the class.  However, if we have a J/L/Object
3579   // class-typed Phi and an interface flows in, it's possible that the meet &
3580   // join report an interface back out.  This isn't possible but happens
3581   // because the type system doesn't interact well with interfaces.
3582   if (ftip != NULL && ktip != NULL &&
3583       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3584       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3585     assert(!ftip->klass_is_exact(), "interface could not be exact");
3586     return ktip->cast_to_ptr_type(ftip->ptr());
3587   }
3588 
3589   return ft;
3590 }
3591 
3592 //------------------------------eq---------------------------------------------
3593 // Structural equality check for Type representations
3594 bool TypeOopPtr::eq( const Type *t ) const {
3595   const TypeOopPtr *a = (const TypeOopPtr*)t;
3596   if (_klass_is_exact != a->_klass_is_exact ||
3597       _instance_id != a->_instance_id)  return false;
3598   ciObject* one = const_oop();
3599   ciObject* two = a->const_oop();
3600   if (one == NULL || two == NULL) {
3601     return (one == two) && TypePtr::eq(t);
3602   } else {
3603     return one->equals(two) && TypePtr::eq(t);
3604   }
3605 }
3606 
3607 //------------------------------hash-------------------------------------------
3608 // Type-specific hashing function.
3609 int TypeOopPtr::hash(void) const {
3610   return
3611     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3612              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3613 }
3614 
3615 //------------------------------dump2------------------------------------------
3616 #ifndef PRODUCT
3617 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3618   st->print("oopptr:%s", ptr_msg[_ptr]);
3619   if( _klass_is_exact ) st->print(":exact");
3620   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3621   _offset.dump2(st);
3622   if (_instance_id == InstanceTop)
3623     st->print(",iid=top");
3624   else if (_instance_id != InstanceBot)
3625     st->print(",iid=%d",_instance_id);
3626 
3627   dump_inline_depth(st);
3628   dump_speculative(st);
3629 }
3630 #endif
3631 
3632 //------------------------------singleton--------------------------------------
3633 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3634 // constants
3635 bool TypeOopPtr::singleton(void) const {
3636   // detune optimizer to not generate constant oop + constant offset as a constant!
3637   // TopPTR, Null, AnyNull, Constant are all singletons
3638   return (offset() == 0) && !below_centerline(_ptr);
3639 }
3640 
3641 //------------------------------add_offset-------------------------------------
3642 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3643   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3644 }
3645 
3646 /**
3647  * Return same type without a speculative part
3648  */
3649 const Type* TypeOopPtr::remove_speculative() const {
3650   if (_speculative == NULL) {
3651     return this;
3652   }
3653   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3654   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3655 }
3656 
3657 /**
3658  * Return same type but drop speculative part if we know we won't use
3659  * it
3660  */
3661 const Type* TypeOopPtr::cleanup_speculative() const {
3662   // If the klass is exact and the ptr is not null then there's
3663   // nothing that the speculative type can help us with
3664   if (klass_is_exact() && !maybe_null()) {
3665     return remove_speculative();
3666   }
3667   return TypePtr::cleanup_speculative();
3668 }
3669 
3670 /**
3671  * Return same type but with a different inline depth (used for speculation)
3672  *
3673  * @param depth  depth to meet with
3674  */
3675 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3676   if (!UseInlineDepthForSpeculativeTypes) {
3677     return this;
3678   }
3679   return make(_ptr, _offset, _instance_id, _speculative, depth);
3680 }
3681 
3682 //------------------------------meet_instance_id--------------------------------
3683 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3684   // Either is 'TOP' instance?  Return the other instance!
3685   if( _instance_id == InstanceTop ) return  instance_id;
3686   if(  instance_id == InstanceTop ) return _instance_id;
3687   // If either is different, return 'BOTTOM' instance
3688   if( _instance_id != instance_id ) return InstanceBot;
3689   return _instance_id;
3690 }
3691 
3692 //------------------------------dual_instance_id--------------------------------
3693 int TypeOopPtr::dual_instance_id( ) const {
3694   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3695   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3696   return _instance_id;              // Map everything else into self
3697 }
3698 
3699 /**
3700  * Check whether new profiling would improve speculative type
3701  *
3702  * @param   exact_kls    class from profiling
3703  * @param   inline_depth inlining depth of profile point
3704  *
3705  * @return  true if type profile is valuable
3706  */
3707 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3708   // no way to improve an already exact type
3709   if (klass_is_exact()) {
3710     return false;
3711   }
3712   return TypePtr::would_improve_type(exact_kls, inline_depth);
3713 }
3714 
3715 //=============================================================================
3716 // Convenience common pre-built types.
3717 const TypeInstPtr *TypeInstPtr::NOTNULL;
3718 const TypeInstPtr *TypeInstPtr::BOTTOM;
3719 const TypeInstPtr *TypeInstPtr::MIRROR;
3720 const TypeInstPtr *TypeInstPtr::MARK;
3721 const TypeInstPtr *TypeInstPtr::KLASS;
3722 
3723 //------------------------------TypeInstPtr-------------------------------------
3724 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3725                          int instance_id, const TypePtr* speculative, int inline_depth)
3726   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3727     _name(k->name()) {
3728    assert(k != NULL &&
3729           (k->is_loaded() || o == NULL),
3730           "cannot have constants with non-loaded klass");
3731 };
3732 
3733 //------------------------------make-------------------------------------------
3734 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3735                                      ciKlass* k,
3736                                      bool xk,
3737                                      ciObject* o,
3738                                      Offset offset,
3739                                      int instance_id,
3740                                      const TypePtr* speculative,
3741                                      int inline_depth) {
3742   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3743   // Either const_oop() is NULL or else ptr is Constant
3744   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3745           "constant pointers must have a value supplied" );
3746   // Ptr is never Null
3747   assert( ptr != Null, "NULL pointers are not typed" );
3748 
3749   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3750   if (!UseExactTypes)  xk = false;
3751   if (ptr == Constant) {
3752     // Note:  This case includes meta-object constants, such as methods.
3753     xk = true;
3754   } else if (k->is_loaded()) {
3755     ciInstanceKlass* ik = k->as_instance_klass();
3756     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3757     if (xk && ik->is_interface())  xk = false;  // no exact interface
3758   }
3759 
3760   // Now hash this baby
3761   TypeInstPtr *result =
3762     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3763 
3764   return result;
3765 }
3766 
3767 /**
3768  *  Create constant type for a constant boxed value
3769  */
3770 const Type* TypeInstPtr::get_const_boxed_value() const {
3771   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3772   assert((const_oop() != NULL), "should be called only for constant object");
3773   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3774   BasicType bt = constant.basic_type();
3775   switch (bt) {
3776     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3777     case T_INT:      return TypeInt::make(constant.as_int());
3778     case T_CHAR:     return TypeInt::make(constant.as_char());
3779     case T_BYTE:     return TypeInt::make(constant.as_byte());
3780     case T_SHORT:    return TypeInt::make(constant.as_short());
3781     case T_FLOAT:    return TypeF::make(constant.as_float());
3782     case T_DOUBLE:   return TypeD::make(constant.as_double());
3783     case T_LONG:     return TypeLong::make(constant.as_long());
3784     default:         break;
3785   }
3786   fatal("Invalid boxed value type '%s'", type2name(bt));
3787   return NULL;
3788 }
3789 
3790 //------------------------------cast_to_ptr_type-------------------------------
3791 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3792   if( ptr == _ptr ) return this;
3793   // Reconstruct _sig info here since not a problem with later lazy
3794   // construction, _sig will show up on demand.
3795   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3796 }
3797 
3798 
3799 //-----------------------------cast_to_exactness-------------------------------
3800 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3801   if( klass_is_exact == _klass_is_exact ) return this;
3802   if (!UseExactTypes)  return this;
3803   if (!_klass->is_loaded())  return this;
3804   ciInstanceKlass* ik = _klass->as_instance_klass();
3805   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3806   if( ik->is_interface() )              return this;  // cannot set xk
3807   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3808 }
3809 
3810 //-----------------------------cast_to_instance_id----------------------------
3811 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3812   if( instance_id == _instance_id ) return this;
3813   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3814 }
3815 
3816 //------------------------------xmeet_unloaded---------------------------------
3817 // Compute the MEET of two InstPtrs when at least one is unloaded.
3818 // Assume classes are different since called after check for same name/class-loader
3819 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3820     Offset off = meet_offset(tinst->offset());
3821     PTR ptr = meet_ptr(tinst->ptr());
3822     int instance_id = meet_instance_id(tinst->instance_id());
3823     const TypePtr* speculative = xmeet_speculative(tinst);
3824     int depth = meet_inline_depth(tinst->inline_depth());
3825 
3826     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3827     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3828     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3829       //
3830       // Meet unloaded class with java/lang/Object
3831       //
3832       // Meet
3833       //          |                     Unloaded Class
3834       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3835       //  ===================================================================
3836       //   TOP    | ..........................Unloaded......................|
3837       //  AnyNull |  U-AN    |................Unloaded......................|
3838       // Constant | ... O-NN .................................. |   O-BOT   |
3839       //  NotNull | ... O-NN .................................. |   O-BOT   |
3840       //  BOTTOM  | ........................Object-BOTTOM ..................|
3841       //
3842       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3843       //
3844       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3845       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3846       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3847       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3848         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3849         else                                      { return TypeInstPtr::NOTNULL; }
3850       }
3851       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3852 
3853       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3854     }
3855 
3856     // Both are unloaded, not the same class, not Object
3857     // Or meet unloaded with a different loaded class, not java/lang/Object
3858     if( ptr != TypePtr::BotPTR ) {
3859       return TypeInstPtr::NOTNULL;
3860     }
3861     return TypeInstPtr::BOTTOM;
3862 }
3863 
3864 
3865 //------------------------------meet-------------------------------------------
3866 // Compute the MEET of two types.  It returns a new Type object.
3867 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3868   // Perform a fast test for common case; meeting the same types together.
3869   if( this == t ) return this;  // Meeting same type-rep?
3870 
3871   // Current "this->_base" is Pointer
3872   switch (t->base()) {          // switch on original type
3873 
3874   case Int:                     // Mixing ints & oops happens when javac
3875   case Long:                    // reuses local variables
3876   case FloatTop:
3877   case FloatCon:
3878   case FloatBot:
3879   case DoubleTop:
3880   case DoubleCon:
3881   case DoubleBot:
3882   case NarrowOop:
3883   case NarrowKlass:
3884   case Bottom:                  // Ye Olde Default
3885     return Type::BOTTOM;
3886   case Top:
3887     return this;
3888 
3889   default:                      // All else is a mistake
3890     typerr(t);
3891 
3892   case MetadataPtr:
3893   case KlassPtr:
3894   case RawPtr: return TypePtr::BOTTOM;
3895 
3896   case AryPtr: {                // All arrays inherit from Object class
3897     const TypeAryPtr *tp = t->is_aryptr();
3898     Offset offset = meet_offset(tp->offset());
3899     PTR ptr = meet_ptr(tp->ptr());
3900     int instance_id = meet_instance_id(tp->instance_id());
3901     const TypePtr* speculative = xmeet_speculative(tp);
3902     int depth = meet_inline_depth(tp->inline_depth());
3903     switch (ptr) {
3904     case TopPTR:
3905     case AnyNull:                // Fall 'down' to dual of object klass
3906       // For instances when a subclass meets a superclass we fall
3907       // below the centerline when the superclass is exact. We need to
3908       // do the same here.
3909       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3910         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3911       } else {
3912         // cannot subclass, so the meet has to fall badly below the centerline
3913         ptr = NotNull;
3914         instance_id = InstanceBot;
3915         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3916       }
3917     case Constant:
3918     case NotNull:
3919     case BotPTR:                // Fall down to object klass
3920       // LCA is object_klass, but if we subclass from the top we can do better
3921       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3922         // If 'this' (InstPtr) is above the centerline and it is Object class
3923         // then we can subclass in the Java class hierarchy.
3924         // For instances when a subclass meets a superclass we fall
3925         // below the centerline when the superclass is exact. We need
3926         // to do the same here.
3927         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3928           // that is, tp's array type is a subtype of my klass
3929           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3930                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3931         }
3932       }
3933       // The other case cannot happen, since I cannot be a subtype of an array.
3934       // The meet falls down to Object class below centerline.
3935       if( ptr == Constant )
3936          ptr = NotNull;
3937       instance_id = InstanceBot;
3938       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3939     default: typerr(t);
3940     }
3941   }
3942 
3943   case OopPtr: {                // Meeting to OopPtrs
3944     // Found a OopPtr type vs self-InstPtr type
3945     const TypeOopPtr *tp = t->is_oopptr();
3946     Offset offset = meet_offset(tp->offset());
3947     PTR ptr = meet_ptr(tp->ptr());
3948     switch (tp->ptr()) {
3949     case TopPTR:
3950     case AnyNull: {
3951       int instance_id = meet_instance_id(InstanceTop);
3952       const TypePtr* speculative = xmeet_speculative(tp);
3953       int depth = meet_inline_depth(tp->inline_depth());
3954       return make(ptr, klass(), klass_is_exact(),
3955                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3956     }
3957     case NotNull:
3958     case BotPTR: {
3959       int instance_id = meet_instance_id(tp->instance_id());
3960       const TypePtr* speculative = xmeet_speculative(tp);
3961       int depth = meet_inline_depth(tp->inline_depth());
3962       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3963     }
3964     default: typerr(t);
3965     }
3966   }
3967 
3968   case AnyPtr: {                // Meeting to AnyPtrs
3969     // Found an AnyPtr type vs self-InstPtr type
3970     const TypePtr *tp = t->is_ptr();
3971     Offset offset = meet_offset(tp->offset());
3972     PTR ptr = meet_ptr(tp->ptr());
3973     int instance_id = meet_instance_id(InstanceTop);
3974     const TypePtr* speculative = xmeet_speculative(tp);
3975     int depth = meet_inline_depth(tp->inline_depth());
3976     switch (tp->ptr()) {
3977     case Null:
3978       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3979       // else fall through to AnyNull
3980     case TopPTR:
3981     case AnyNull: {
3982       return make(ptr, klass(), klass_is_exact(),
3983                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3984     }
3985     case NotNull:
3986     case BotPTR:
3987       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3988     default: typerr(t);
3989     }
3990   }
3991 
3992   /*
3993                  A-top         }
3994                /   |   \       }  Tops
3995            B-top A-any C-top   }
3996               | /  |  \ |      }  Any-nulls
3997            B-any   |   C-any   }
3998               |    |    |
3999            B-con A-con C-con   } constants; not comparable across classes
4000               |    |    |
4001            B-not   |   C-not   }
4002               | \  |  / |      }  not-nulls
4003            B-bot A-not C-bot   }
4004                \   |   /       }  Bottoms
4005                  A-bot         }
4006   */
4007 
4008   case InstPtr: {                // Meeting 2 Oops?
4009     // Found an InstPtr sub-type vs self-InstPtr type
4010     const TypeInstPtr *tinst = t->is_instptr();
4011     Offset off = meet_offset( tinst->offset() );
4012     PTR ptr = meet_ptr( tinst->ptr() );
4013     int instance_id = meet_instance_id(tinst->instance_id());
4014     const TypePtr* speculative = xmeet_speculative(tinst);
4015     int depth = meet_inline_depth(tinst->inline_depth());
4016 
4017     // Check for easy case; klasses are equal (and perhaps not loaded!)
4018     // If we have constants, then we created oops so classes are loaded
4019     // and we can handle the constants further down.  This case handles
4020     // both-not-loaded or both-loaded classes
4021     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4022       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4023     }
4024 
4025     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4026     ciKlass* tinst_klass = tinst->klass();
4027     ciKlass* this_klass  = this->klass();
4028     bool tinst_xk = tinst->klass_is_exact();
4029     bool this_xk  = this->klass_is_exact();
4030     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4031       // One of these classes has not been loaded
4032       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4033 #ifndef PRODUCT
4034       if( PrintOpto && Verbose ) {
4035         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4036         tty->print("  this == "); this->dump(); tty->cr();
4037         tty->print(" tinst == "); tinst->dump(); tty->cr();
4038       }
4039 #endif
4040       return unloaded_meet;
4041     }
4042 
4043     // Handle mixing oops and interfaces first.
4044     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4045                                         tinst_klass == ciEnv::current()->Object_klass())) {
4046       ciKlass *tmp = tinst_klass; // Swap interface around
4047       tinst_klass = this_klass;
4048       this_klass = tmp;
4049       bool tmp2 = tinst_xk;
4050       tinst_xk = this_xk;
4051       this_xk = tmp2;
4052     }
4053     if (tinst_klass->is_interface() &&
4054         !(this_klass->is_interface() ||
4055           // Treat java/lang/Object as an honorary interface,
4056           // because we need a bottom for the interface hierarchy.
4057           this_klass == ciEnv::current()->Object_klass())) {
4058       // Oop meets interface!
4059 
4060       // See if the oop subtypes (implements) interface.
4061       ciKlass *k;
4062       bool xk;
4063       if( this_klass->is_subtype_of( tinst_klass ) ) {
4064         // Oop indeed subtypes.  Now keep oop or interface depending
4065         // on whether we are both above the centerline or either is
4066         // below the centerline.  If we are on the centerline
4067         // (e.g., Constant vs. AnyNull interface), use the constant.
4068         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4069         // If we are keeping this_klass, keep its exactness too.
4070         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4071       } else {                  // Does not implement, fall to Object
4072         // Oop does not implement interface, so mixing falls to Object
4073         // just like the verifier does (if both are above the
4074         // centerline fall to interface)
4075         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4076         xk = above_centerline(ptr) ? tinst_xk : false;
4077         // Watch out for Constant vs. AnyNull interface.
4078         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4079         instance_id = InstanceBot;
4080       }
4081       ciObject* o = NULL;  // the Constant value, if any
4082       if (ptr == Constant) {
4083         // Find out which constant.
4084         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4085       }
4086       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4087     }
4088 
4089     // Either oop vs oop or interface vs interface or interface vs Object
4090 
4091     // !!! Here's how the symmetry requirement breaks down into invariants:
4092     // If we split one up & one down AND they subtype, take the down man.
4093     // If we split one up & one down AND they do NOT subtype, "fall hard".
4094     // If both are up and they subtype, take the subtype class.
4095     // If both are up and they do NOT subtype, "fall hard".
4096     // If both are down and they subtype, take the supertype class.
4097     // If both are down and they do NOT subtype, "fall hard".
4098     // Constants treated as down.
4099 
4100     // Now, reorder the above list; observe that both-down+subtype is also
4101     // "fall hard"; "fall hard" becomes the default case:
4102     // If we split one up & one down AND they subtype, take the down man.
4103     // If both are up and they subtype, take the subtype class.
4104 
4105     // If both are down and they subtype, "fall hard".
4106     // If both are down and they do NOT subtype, "fall hard".
4107     // If both are up and they do NOT subtype, "fall hard".
4108     // If we split one up & one down AND they do NOT subtype, "fall hard".
4109 
4110     // If a proper subtype is exact, and we return it, we return it exactly.
4111     // If a proper supertype is exact, there can be no subtyping relationship!
4112     // If both types are equal to the subtype, exactness is and-ed below the
4113     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4114 
4115     // Check for subtyping:
4116     ciKlass *subtype = NULL;
4117     bool subtype_exact = false;
4118     if( tinst_klass->equals(this_klass) ) {
4119       subtype = this_klass;
4120       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4121     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4122       subtype = this_klass;     // Pick subtyping class
4123       subtype_exact = this_xk;
4124     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4125       subtype = tinst_klass;    // Pick subtyping class
4126       subtype_exact = tinst_xk;
4127     }
4128 
4129     if( subtype ) {
4130       if( above_centerline(ptr) ) { // both are up?
4131         this_klass = tinst_klass = subtype;
4132         this_xk = tinst_xk = subtype_exact;
4133       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4134         this_klass = tinst_klass; // tinst is down; keep down man
4135         this_xk = tinst_xk;
4136       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4137         tinst_klass = this_klass; // this is down; keep down man
4138         tinst_xk = this_xk;
4139       } else {
4140         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4141       }
4142     }
4143 
4144     // Check for classes now being equal
4145     if (tinst_klass->equals(this_klass)) {
4146       // If the klasses are equal, the constants may still differ.  Fall to
4147       // NotNull if they do (neither constant is NULL; that is a special case
4148       // handled elsewhere).
4149       ciObject* o = NULL;             // Assume not constant when done
4150       ciObject* this_oop  = const_oop();
4151       ciObject* tinst_oop = tinst->const_oop();
4152       if( ptr == Constant ) {
4153         if (this_oop != NULL && tinst_oop != NULL &&
4154             this_oop->equals(tinst_oop) )
4155           o = this_oop;
4156         else if (above_centerline(this ->_ptr))
4157           o = tinst_oop;
4158         else if (above_centerline(tinst ->_ptr))
4159           o = this_oop;
4160         else
4161           ptr = NotNull;
4162       }
4163       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4164     } // Else classes are not equal
4165 
4166     // Since klasses are different, we require a LCA in the Java
4167     // class hierarchy - which means we have to fall to at least NotNull.
4168     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4169       ptr = NotNull;
4170 
4171     instance_id = InstanceBot;
4172 
4173     // Now we find the LCA of Java classes
4174     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4175     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4176   } // End of case InstPtr
4177 
4178   case ValueType: {
4179     const TypeValueType *tv = t->is_valuetype();
4180 
4181     if (above_centerline(ptr())) {
4182       if (tv->value_klass()->is_subtype_of(_klass)) {
4183         return t;
4184       } else {
4185         return TypeInstPtr::make(NotNull, _klass);
4186       }
4187     } else {
4188       if (tv->value_klass()->is_subtype_of(_klass)) {
4189         return TypeInstPtr::make(ptr(), _klass);
4190       } else {
4191         return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4192       }
4193     }
4194   }
4195 
4196   } // End of switch
4197   return this;                  // Return the double constant
4198 }
4199 
4200 
4201 //------------------------java_mirror_type--------------------------------------
4202 ciType* TypeInstPtr::java_mirror_type() const {
4203   // must be a singleton type
4204   if( const_oop() == NULL )  return NULL;
4205 
4206   // must be of type java.lang.Class
4207   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4208 
4209   return const_oop()->as_instance()->java_mirror_type();
4210 }
4211 
4212 
4213 //------------------------------xdual------------------------------------------
4214 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4215 // inheritance mechanism.
4216 const Type *TypeInstPtr::xdual() const {
4217   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4218 }
4219 
4220 //------------------------------eq---------------------------------------------
4221 // Structural equality check for Type representations
4222 bool TypeInstPtr::eq( const Type *t ) const {
4223   const TypeInstPtr *p = t->is_instptr();
4224   return
4225     klass()->equals(p->klass()) &&
4226     TypeOopPtr::eq(p);          // Check sub-type stuff
4227 }
4228 
4229 //------------------------------hash-------------------------------------------
4230 // Type-specific hashing function.
4231 int TypeInstPtr::hash(void) const {
4232   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4233   return hash;
4234 }
4235 
4236 //------------------------------dump2------------------------------------------
4237 // Dump oop Type
4238 #ifndef PRODUCT
4239 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4240   // Print the name of the klass.
4241   klass()->print_name_on(st);
4242 
4243   switch( _ptr ) {
4244   case Constant:
4245     // TO DO: Make CI print the hex address of the underlying oop.
4246     if (WizardMode || Verbose) {
4247       const_oop()->print_oop(st);
4248     }
4249   case BotPTR:
4250     if (!WizardMode && !Verbose) {
4251       if( _klass_is_exact ) st->print(":exact");
4252       break;
4253     }
4254   case TopPTR:
4255   case AnyNull:
4256   case NotNull:
4257     st->print(":%s", ptr_msg[_ptr]);
4258     if( _klass_is_exact ) st->print(":exact");
4259     break;
4260   default:
4261     break;
4262   }
4263 
4264   _offset.dump2(st);
4265 
4266   st->print(" *");
4267   if (_instance_id == InstanceTop)
4268     st->print(",iid=top");
4269   else if (_instance_id != InstanceBot)
4270     st->print(",iid=%d",_instance_id);
4271 
4272   dump_inline_depth(st);
4273   dump_speculative(st);
4274 }
4275 #endif
4276 
4277 //------------------------------add_offset-------------------------------------
4278 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4279   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4280               _instance_id, add_offset_speculative(offset), _inline_depth);
4281 }
4282 
4283 const Type *TypeInstPtr::remove_speculative() const {
4284   if (_speculative == NULL) {
4285     return this;
4286   }
4287   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4288   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4289               _instance_id, NULL, _inline_depth);
4290 }
4291 
4292 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4293   if (!UseInlineDepthForSpeculativeTypes) {
4294     return this;
4295   }
4296   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4297 }
4298 
4299 //=============================================================================
4300 // Convenience common pre-built types.
4301 const TypeAryPtr *TypeAryPtr::RANGE;
4302 const TypeAryPtr *TypeAryPtr::OOPS;
4303 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4304 const TypeAryPtr *TypeAryPtr::BYTES;
4305 const TypeAryPtr *TypeAryPtr::SHORTS;
4306 const TypeAryPtr *TypeAryPtr::CHARS;
4307 const TypeAryPtr *TypeAryPtr::INTS;
4308 const TypeAryPtr *TypeAryPtr::LONGS;
4309 const TypeAryPtr *TypeAryPtr::FLOATS;
4310 const TypeAryPtr *TypeAryPtr::DOUBLES;
4311 
4312 //------------------------------make-------------------------------------------
4313 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4314                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4315   assert(!(k == NULL && ary->_elem->isa_int()),
4316          "integral arrays must be pre-equipped with a class");
4317   if (!xk)  xk = ary->ary_must_be_exact();
4318   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4319   if (!UseExactTypes)  xk = (ptr == Constant);
4320   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4321 }
4322 
4323 //------------------------------make-------------------------------------------
4324 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4325                                    int instance_id, const TypePtr* speculative, int inline_depth,
4326                                    bool is_autobox_cache) {
4327   assert(!(k == NULL && ary->_elem->isa_int()),
4328          "integral arrays must be pre-equipped with a class");
4329   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4330   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4331   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4332   if (!UseExactTypes)  xk = (ptr == Constant);
4333   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4334 }
4335 
4336 //------------------------------cast_to_ptr_type-------------------------------
4337 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4338   if( ptr == _ptr ) return this;
4339   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4340 }
4341 
4342 
4343 //-----------------------------cast_to_exactness-------------------------------
4344 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4345   if( klass_is_exact == _klass_is_exact ) return this;
4346   if (!UseExactTypes)  return this;
4347   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4348   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4349 }
4350 
4351 //-----------------------------cast_to_instance_id----------------------------
4352 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4353   if( instance_id == _instance_id ) return this;
4354   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4355 }
4356 
4357 //-----------------------------narrow_size_type-------------------------------
4358 // Local cache for arrayOopDesc::max_array_length(etype),
4359 // which is kind of slow (and cached elsewhere by other users).
4360 static jint max_array_length_cache[T_CONFLICT+1];
4361 static jint max_array_length(BasicType etype) {
4362   jint& cache = max_array_length_cache[etype];
4363   jint res = cache;
4364   if (res == 0) {
4365     switch (etype) {
4366     case T_NARROWOOP:
4367       etype = T_OBJECT;
4368       break;
4369     case T_NARROWKLASS:
4370     case T_CONFLICT:
4371     case T_ILLEGAL:
4372     case T_VOID:
4373       etype = T_BYTE;           // will produce conservatively high value
4374       break;
4375     default:
4376       break;
4377     }
4378     cache = res = arrayOopDesc::max_array_length(etype);
4379   }
4380   return res;
4381 }
4382 
4383 // Narrow the given size type to the index range for the given array base type.
4384 // Return NULL if the resulting int type becomes empty.
4385 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4386   jint hi = size->_hi;
4387   jint lo = size->_lo;
4388   jint min_lo = 0;
4389   jint max_hi = max_array_length(elem()->basic_type());
4390   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4391   bool chg = false;
4392   if (lo < min_lo) {
4393     lo = min_lo;
4394     if (size->is_con()) {
4395       hi = lo;
4396     }
4397     chg = true;
4398   }
4399   if (hi > max_hi) {
4400     hi = max_hi;
4401     if (size->is_con()) {
4402       lo = hi;
4403     }
4404     chg = true;
4405   }
4406   // Negative length arrays will produce weird intermediate dead fast-path code
4407   if (lo > hi)
4408     return TypeInt::ZERO;
4409   if (!chg)
4410     return size;
4411   return TypeInt::make(lo, hi, Type::WidenMin);
4412 }
4413 
4414 //-------------------------------cast_to_size----------------------------------
4415 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4416   assert(new_size != NULL, "");
4417   new_size = narrow_size_type(new_size);
4418   if (new_size == size())  return this;
4419   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4420   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4421 }
4422 
4423 //------------------------------cast_to_stable---------------------------------
4424 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4425   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4426     return this;
4427 
4428   const Type* elem = this->elem();
4429   const TypePtr* elem_ptr = elem->make_ptr();
4430 
4431   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4432     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4433     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4434   }
4435 
4436   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4437 
4438   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4439 }
4440 
4441 //-----------------------------stable_dimension--------------------------------
4442 int TypeAryPtr::stable_dimension() const {
4443   if (!is_stable())  return 0;
4444   int dim = 1;
4445   const TypePtr* elem_ptr = elem()->make_ptr();
4446   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4447     dim += elem_ptr->is_aryptr()->stable_dimension();
4448   return dim;
4449 }
4450 
4451 //----------------------cast_to_autobox_cache-----------------------------------
4452 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4453   if (is_autobox_cache() == cache)  return this;
4454   const TypeOopPtr* etype = elem()->make_oopptr();
4455   if (etype == NULL)  return this;
4456   // The pointers in the autobox arrays are always non-null.
4457   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4458   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4459   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4460   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4461 }
4462 
4463 //------------------------------eq---------------------------------------------
4464 // Structural equality check for Type representations
4465 bool TypeAryPtr::eq( const Type *t ) const {
4466   const TypeAryPtr *p = t->is_aryptr();
4467   return
4468     _ary == p->_ary &&  // Check array
4469     TypeOopPtr::eq(p) &&// Check sub-parts
4470     _field_offset == p->_field_offset;
4471 }
4472 
4473 //------------------------------hash-------------------------------------------
4474 // Type-specific hashing function.
4475 int TypeAryPtr::hash(void) const {
4476   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4477 }
4478 
4479 //------------------------------meet-------------------------------------------
4480 // Compute the MEET of two types.  It returns a new Type object.
4481 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4482   // Perform a fast test for common case; meeting the same types together.
4483   if( this == t ) return this;  // Meeting same type-rep?
4484   // Current "this->_base" is Pointer
4485   switch (t->base()) {          // switch on original type
4486 
4487   // Mixing ints & oops happens when javac reuses local variables
4488   case Int:
4489   case Long:
4490   case FloatTop:
4491   case FloatCon:
4492   case FloatBot:
4493   case DoubleTop:
4494   case DoubleCon:
4495   case DoubleBot:
4496   case NarrowOop:
4497   case NarrowKlass:
4498   case Bottom:                  // Ye Olde Default
4499     return Type::BOTTOM;
4500   case Top:
4501     return this;
4502 
4503   default:                      // All else is a mistake
4504     typerr(t);
4505 
4506   case OopPtr: {                // Meeting to OopPtrs
4507     // Found a OopPtr type vs self-AryPtr type
4508     const TypeOopPtr *tp = t->is_oopptr();
4509     Offset offset = meet_offset(tp->offset());
4510     PTR ptr = meet_ptr(tp->ptr());
4511     int depth = meet_inline_depth(tp->inline_depth());
4512     const TypePtr* speculative = xmeet_speculative(tp);
4513     switch (tp->ptr()) {
4514     case TopPTR:
4515     case AnyNull: {
4516       int instance_id = meet_instance_id(InstanceTop);
4517       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4518                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4519     }
4520     case BotPTR:
4521     case NotNull: {
4522       int instance_id = meet_instance_id(tp->instance_id());
4523       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4524     }
4525     default: ShouldNotReachHere();
4526     }
4527   }
4528 
4529   case AnyPtr: {                // Meeting two AnyPtrs
4530     // Found an AnyPtr type vs self-AryPtr type
4531     const TypePtr *tp = t->is_ptr();
4532     Offset offset = meet_offset(tp->offset());
4533     PTR ptr = meet_ptr(tp->ptr());
4534     const TypePtr* speculative = xmeet_speculative(tp);
4535     int depth = meet_inline_depth(tp->inline_depth());
4536     switch (tp->ptr()) {
4537     case TopPTR:
4538       return this;
4539     case BotPTR:
4540     case NotNull:
4541       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4542     case Null:
4543       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4544       // else fall through to AnyNull
4545     case AnyNull: {
4546       int instance_id = meet_instance_id(InstanceTop);
4547       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4548                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4549     }
4550     default: ShouldNotReachHere();
4551     }
4552   }
4553 
4554   case MetadataPtr:
4555   case KlassPtr:
4556   case RawPtr: return TypePtr::BOTTOM;
4557 
4558   case AryPtr: {                // Meeting 2 references?
4559     const TypeAryPtr *tap = t->is_aryptr();
4560     Offset off = meet_offset(tap->offset());
4561     Offset field_off = meet_field_offset(tap->field_offset());
4562     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4563     PTR ptr = meet_ptr(tap->ptr());
4564     int instance_id = meet_instance_id(tap->instance_id());
4565     const TypePtr* speculative = xmeet_speculative(tap);
4566     int depth = meet_inline_depth(tap->inline_depth());
4567     ciKlass* lazy_klass = NULL;
4568     if (tary->_elem->isa_int()) {
4569       // Integral array element types have irrelevant lattice relations.
4570       // It is the klass that determines array layout, not the element type.
4571       if (_klass == NULL)
4572         lazy_klass = tap->_klass;
4573       else if (tap->_klass == NULL || tap->_klass == _klass) {
4574         lazy_klass = _klass;
4575       } else {
4576         // Something like byte[int+] meets char[int+].
4577         // This must fall to bottom, not (int[-128..65535])[int+].
4578         instance_id = InstanceBot;
4579         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4580       }
4581     } else // Non integral arrays.
4582       // Must fall to bottom if exact klasses in upper lattice
4583       // are not equal or super klass is exact.
4584       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4585           // meet with top[] and bottom[] are processed further down:
4586           tap->_klass != NULL  && this->_klass != NULL   &&
4587           // both are exact and not equal:
4588           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4589            // 'tap'  is exact and super or unrelated:
4590            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4591            // 'this' is exact and super or unrelated:
4592            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4593       if (above_centerline(ptr)) {
4594         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4595       }
4596       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4597     }
4598 
4599     bool xk = false;
4600     switch (tap->ptr()) {
4601     case AnyNull:
4602     case TopPTR:
4603       // Compute new klass on demand, do not use tap->_klass
4604       if (below_centerline(this->_ptr)) {
4605         xk = this->_klass_is_exact;
4606       } else {
4607         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4608       }
4609       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4610     case Constant: {
4611       ciObject* o = const_oop();
4612       if( _ptr == Constant ) {
4613         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4614           xk = (klass() == tap->klass());
4615           ptr = NotNull;
4616           o = NULL;
4617           instance_id = InstanceBot;
4618         } else {
4619           xk = true;
4620         }
4621       } else if(above_centerline(_ptr)) {
4622         o = tap->const_oop();
4623         xk = true;
4624       } else {
4625         // Only precise for identical arrays
4626         xk = this->_klass_is_exact && (klass() == tap->klass());
4627       }
4628       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4629     }
4630     case NotNull:
4631     case BotPTR:
4632       // Compute new klass on demand, do not use tap->_klass
4633       if (above_centerline(this->_ptr))
4634             xk = tap->_klass_is_exact;
4635       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4636               (klass() == tap->klass()); // Only precise for identical arrays
4637       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4638     default: ShouldNotReachHere();
4639     }
4640   }
4641 
4642   // All arrays inherit from Object class
4643   case InstPtr: {
4644     const TypeInstPtr *tp = t->is_instptr();
4645     Offset offset = meet_offset(tp->offset());
4646     PTR ptr = meet_ptr(tp->ptr());
4647     int instance_id = meet_instance_id(tp->instance_id());
4648     const TypePtr* speculative = xmeet_speculative(tp);
4649     int depth = meet_inline_depth(tp->inline_depth());
4650     switch (ptr) {
4651     case TopPTR:
4652     case AnyNull:                // Fall 'down' to dual of object klass
4653       // For instances when a subclass meets a superclass we fall
4654       // below the centerline when the superclass is exact. We need to
4655       // do the same here.
4656       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4657         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4658       } else {
4659         // cannot subclass, so the meet has to fall badly below the centerline
4660         ptr = NotNull;
4661         instance_id = InstanceBot;
4662         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4663       }
4664     case Constant:
4665     case NotNull:
4666     case BotPTR:                // Fall down to object klass
4667       // LCA is object_klass, but if we subclass from the top we can do better
4668       if (above_centerline(tp->ptr())) {
4669         // If 'tp'  is above the centerline and it is Object class
4670         // then we can subclass in the Java class hierarchy.
4671         // For instances when a subclass meets a superclass we fall
4672         // below the centerline when the superclass is exact. We need
4673         // to do the same here.
4674         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4675           // that is, my array type is a subtype of 'tp' klass
4676           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4677                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4678         }
4679       }
4680       // The other case cannot happen, since t cannot be a subtype of an array.
4681       // The meet falls down to Object class below centerline.
4682       if( ptr == Constant )
4683          ptr = NotNull;
4684       instance_id = InstanceBot;
4685       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4686     default: typerr(t);
4687     }
4688   }
4689 
4690   case ValueType: {
4691     // All value types inherit from Object
4692     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4693   }
4694 
4695   }
4696   return this;                  // Lint noise
4697 }
4698 
4699 //------------------------------xdual------------------------------------------
4700 // Dual: compute field-by-field dual
4701 const Type *TypeAryPtr::xdual() const {
4702   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4703 }
4704 
4705 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4706   return _field_offset.meet(offset);
4707 }
4708 
4709 //------------------------------dual_offset------------------------------------
4710 Type::Offset TypeAryPtr::dual_field_offset() const {
4711   return _field_offset.dual();
4712 }
4713 
4714 //----------------------interface_vs_oop---------------------------------------
4715 #ifdef ASSERT
4716 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4717   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4718   if (t_aryptr) {
4719     return _ary->interface_vs_oop(t_aryptr->_ary);
4720   }
4721   return false;
4722 }
4723 #endif
4724 
4725 //------------------------------dump2------------------------------------------
4726 #ifndef PRODUCT
4727 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4728   _ary->dump2(d,depth,st);
4729   switch( _ptr ) {
4730   case Constant:
4731     const_oop()->print(st);
4732     break;
4733   case BotPTR:
4734     if (!WizardMode && !Verbose) {
4735       if( _klass_is_exact ) st->print(":exact");
4736       break;
4737     }
4738   case TopPTR:
4739   case AnyNull:
4740   case NotNull:
4741     st->print(":%s", ptr_msg[_ptr]);
4742     if( _klass_is_exact ) st->print(":exact");
4743     break;
4744   default:
4745     break;
4746   }
4747 
4748   if (elem()->isa_valuetype()) {
4749     st->print("(");
4750     _field_offset.dump2(st);
4751     st->print(")");
4752   }
4753   if (offset() != 0) {
4754     int header_size = objArrayOopDesc::header_size() * wordSize;
4755     if( _offset == Offset::top )       st->print("+undefined");
4756     else if( _offset == Offset::bottom )  st->print("+any");
4757     else if( offset() < header_size ) st->print("+%d", offset());
4758     else {
4759       BasicType basic_elem_type = elem()->basic_type();
4760       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4761       int elem_size = type2aelembytes(basic_elem_type);
4762       st->print("[%d]", (offset() - array_base)/elem_size);
4763     }
4764   }
4765   st->print(" *");
4766   if (_instance_id == InstanceTop)
4767     st->print(",iid=top");
4768   else if (_instance_id != InstanceBot)
4769     st->print(",iid=%d",_instance_id);
4770 
4771   dump_inline_depth(st);
4772   dump_speculative(st);
4773 }
4774 #endif
4775 
4776 bool TypeAryPtr::empty(void) const {
4777   if (_ary->empty())       return true;
4778   return TypeOopPtr::empty();
4779 }
4780 
4781 //------------------------------add_offset-------------------------------------
4782 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4783   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4784 }
4785 
4786 const Type *TypeAryPtr::remove_speculative() const {
4787   if (_speculative == NULL) {
4788     return this;
4789   }
4790   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4791   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4792 }
4793 
4794 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4795   if (!UseInlineDepthForSpeculativeTypes) {
4796     return this;
4797   }
4798   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4799 }
4800 
4801 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4802   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4803 }
4804 
4805 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4806   int adj = 0;
4807   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4808     const Type* elemtype = elem();
4809     if (elemtype->isa_valuetype()) {
4810       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4811         adj = _offset.get();
4812         offset += _offset.get();
4813       }
4814       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4815       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4816         offset += _field_offset.get();
4817         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4818           offset += header;
4819         }
4820       }
4821       if (offset >= (intptr_t)header || offset < 0) {
4822         // Try to get the field of the value type array element we are pointing to
4823         ciKlass* arytype_klass = klass();
4824         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4825         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4826         int shift = vak->log2_element_size();
4827         int mask = (1 << shift) - 1;
4828         intptr_t field_offset = ((offset - header) & mask);
4829         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4830         if (field == NULL) {
4831           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4832           return add_offset(offset);
4833         } else {
4834           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4835         }
4836       }
4837     }
4838   }
4839   return add_offset(offset - adj);
4840 }
4841 
4842 // Return offset incremented by field_offset for flattened value type arrays
4843 const int TypeAryPtr::flattened_offset() const {
4844   int offset = _offset.get();
4845   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4846       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4847     offset += _field_offset.get();
4848   }
4849   return offset;
4850 }
4851 
4852 //=============================================================================
4853 
4854 
4855 //------------------------------hash-------------------------------------------
4856 // Type-specific hashing function.
4857 int TypeNarrowPtr::hash(void) const {
4858   return _ptrtype->hash() + 7;
4859 }
4860 
4861 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4862   return _ptrtype->singleton();
4863 }
4864 
4865 bool TypeNarrowPtr::empty(void) const {
4866   return _ptrtype->empty();
4867 }
4868 
4869 intptr_t TypeNarrowPtr::get_con() const {
4870   return _ptrtype->get_con();
4871 }
4872 
4873 bool TypeNarrowPtr::eq( const Type *t ) const {
4874   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4875   if (tc != NULL) {
4876     if (_ptrtype->base() != tc->_ptrtype->base()) {
4877       return false;
4878     }
4879     return tc->_ptrtype->eq(_ptrtype);
4880   }
4881   return false;
4882 }
4883 
4884 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4885   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4886   return make_same_narrowptr(odual);
4887 }
4888 
4889 
4890 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4891   if (isa_same_narrowptr(kills)) {
4892     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4893     if (ft->empty())
4894       return Type::TOP;           // Canonical empty value
4895     if (ft->isa_ptr()) {
4896       return make_hash_same_narrowptr(ft->isa_ptr());
4897     }
4898     return ft;
4899   } else if (kills->isa_ptr()) {
4900     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4901     if (ft->empty())
4902       return Type::TOP;           // Canonical empty value
4903     return ft;
4904   } else {
4905     return Type::TOP;
4906   }
4907 }
4908 
4909 //------------------------------xmeet------------------------------------------
4910 // Compute the MEET of two types.  It returns a new Type object.
4911 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4912   // Perform a fast test for common case; meeting the same types together.
4913   if( this == t ) return this;  // Meeting same type-rep?
4914 
4915   if (t->base() == base()) {
4916     const Type* result = _ptrtype->xmeet(t->make_ptr());
4917     if (result->isa_ptr()) {
4918       return make_hash_same_narrowptr(result->is_ptr());
4919     }
4920     return result;
4921   }
4922 
4923   // Current "this->_base" is NarrowKlass or NarrowOop
4924   switch (t->base()) {          // switch on original type
4925 
4926   case Int:                     // Mixing ints & oops happens when javac
4927   case Long:                    // reuses local variables
4928   case FloatTop:
4929   case FloatCon:
4930   case FloatBot:
4931   case DoubleTop:
4932   case DoubleCon:
4933   case DoubleBot:
4934   case AnyPtr:
4935   case RawPtr:
4936   case OopPtr:
4937   case InstPtr:
4938   case AryPtr:
4939   case MetadataPtr:
4940   case KlassPtr:
4941   case NarrowOop:
4942   case NarrowKlass:
4943   case Bottom:                  // Ye Olde Default
4944     return Type::BOTTOM;
4945   case Top:
4946     return this;
4947 
4948   case ValueType:
4949     return t->xmeet(this);
4950 
4951   default:                      // All else is a mistake
4952     typerr(t);
4953 
4954   } // End of switch
4955 
4956   return this;
4957 }
4958 
4959 #ifndef PRODUCT
4960 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4961   _ptrtype->dump2(d, depth, st);
4962 }
4963 #endif
4964 
4965 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4966 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4967 
4968 
4969 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4970   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4971 }
4972 
4973 const Type* TypeNarrowOop::remove_speculative() const {
4974   return make(_ptrtype->remove_speculative()->is_ptr());
4975 }
4976 
4977 const Type* TypeNarrowOop::cleanup_speculative() const {
4978   return make(_ptrtype->cleanup_speculative()->is_ptr());
4979 }
4980 
4981 #ifndef PRODUCT
4982 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4983   st->print("narrowoop: ");
4984   TypeNarrowPtr::dump2(d, depth, st);
4985 }
4986 #endif
4987 
4988 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4989 
4990 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4991   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4992 }
4993 
4994 #ifndef PRODUCT
4995 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4996   st->print("narrowklass: ");
4997   TypeNarrowPtr::dump2(d, depth, st);
4998 }
4999 #endif
5000 
5001 
5002 //------------------------------eq---------------------------------------------
5003 // Structural equality check for Type representations
5004 bool TypeMetadataPtr::eq( const Type *t ) const {
5005   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5006   ciMetadata* one = metadata();
5007   ciMetadata* two = a->metadata();
5008   if (one == NULL || two == NULL) {
5009     return (one == two) && TypePtr::eq(t);
5010   } else {
5011     return one->equals(two) && TypePtr::eq(t);
5012   }
5013 }
5014 
5015 //------------------------------hash-------------------------------------------
5016 // Type-specific hashing function.
5017 int TypeMetadataPtr::hash(void) const {
5018   return
5019     (metadata() ? metadata()->hash() : 0) +
5020     TypePtr::hash();
5021 }
5022 
5023 //------------------------------singleton--------------------------------------
5024 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5025 // constants
5026 bool TypeMetadataPtr::singleton(void) const {
5027   // detune optimizer to not generate constant metadata + constant offset as a constant!
5028   // TopPTR, Null, AnyNull, Constant are all singletons
5029   return (offset() == 0) && !below_centerline(_ptr);
5030 }
5031 
5032 //------------------------------add_offset-------------------------------------
5033 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5034   return make( _ptr, _metadata, xadd_offset(offset));
5035 }
5036 
5037 //-----------------------------filter------------------------------------------
5038 // Do not allow interface-vs.-noninterface joins to collapse to top.
5039 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5040   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5041   if (ft == NULL || ft->empty())
5042     return Type::TOP;           // Canonical empty value
5043   return ft;
5044 }
5045 
5046  //------------------------------get_con----------------------------------------
5047 intptr_t TypeMetadataPtr::get_con() const {
5048   assert( _ptr == Null || _ptr == Constant, "" );
5049   assert(offset() >= 0, "");
5050 
5051   if (offset() != 0) {
5052     // After being ported to the compiler interface, the compiler no longer
5053     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5054     // to a handle at compile time.  This handle is embedded in the generated
5055     // code and dereferenced at the time the nmethod is made.  Until that time,
5056     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5057     // have access to the addresses!).  This does not seem to currently happen,
5058     // but this assertion here is to help prevent its occurence.
5059     tty->print_cr("Found oop constant with non-zero offset");
5060     ShouldNotReachHere();
5061   }
5062 
5063   return (intptr_t)metadata()->constant_encoding();
5064 }
5065 
5066 //------------------------------cast_to_ptr_type-------------------------------
5067 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5068   if( ptr == _ptr ) return this;
5069   return make(ptr, metadata(), _offset);
5070 }
5071 
5072 //------------------------------meet-------------------------------------------
5073 // Compute the MEET of two types.  It returns a new Type object.
5074 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5075   // Perform a fast test for common case; meeting the same types together.
5076   if( this == t ) return this;  // Meeting same type-rep?
5077 
5078   // Current "this->_base" is OopPtr
5079   switch (t->base()) {          // switch on original type
5080 
5081   case Int:                     // Mixing ints & oops happens when javac
5082   case Long:                    // reuses local variables
5083   case FloatTop:
5084   case FloatCon:
5085   case FloatBot:
5086   case DoubleTop:
5087   case DoubleCon:
5088   case DoubleBot:
5089   case NarrowOop:
5090   case NarrowKlass:
5091   case Bottom:                  // Ye Olde Default
5092     return Type::BOTTOM;
5093   case Top:
5094     return this;
5095 
5096   default:                      // All else is a mistake
5097     typerr(t);
5098 
5099   case AnyPtr: {
5100     // Found an AnyPtr type vs self-OopPtr type
5101     const TypePtr *tp = t->is_ptr();
5102     Offset offset = meet_offset(tp->offset());
5103     PTR ptr = meet_ptr(tp->ptr());
5104     switch (tp->ptr()) {
5105     case Null:
5106       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5107       // else fall through:
5108     case TopPTR:
5109     case AnyNull: {
5110       return make(ptr, _metadata, offset);
5111     }
5112     case BotPTR:
5113     case NotNull:
5114       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5115     default: typerr(t);
5116     }
5117   }
5118 
5119   case RawPtr:
5120   case KlassPtr:
5121   case OopPtr:
5122   case InstPtr:
5123   case AryPtr:
5124     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5125 
5126   case MetadataPtr: {
5127     const TypeMetadataPtr *tp = t->is_metadataptr();
5128     Offset offset = meet_offset(tp->offset());
5129     PTR tptr = tp->ptr();
5130     PTR ptr = meet_ptr(tptr);
5131     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5132     if (tptr == TopPTR || _ptr == TopPTR ||
5133         metadata()->equals(tp->metadata())) {
5134       return make(ptr, md, offset);
5135     }
5136     // metadata is different
5137     if( ptr == Constant ) {  // Cannot be equal constants, so...
5138       if( tptr == Constant && _ptr != Constant)  return t;
5139       if( _ptr == Constant && tptr != Constant)  return this;
5140       ptr = NotNull;            // Fall down in lattice
5141     }
5142     return make(ptr, NULL, offset);
5143     break;
5144   }
5145   } // End of switch
5146   return this;                  // Return the double constant
5147 }
5148 
5149 
5150 //------------------------------xdual------------------------------------------
5151 // Dual of a pure metadata pointer.
5152 const Type *TypeMetadataPtr::xdual() const {
5153   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5154 }
5155 
5156 //------------------------------dump2------------------------------------------
5157 #ifndef PRODUCT
5158 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5159   st->print("metadataptr:%s", ptr_msg[_ptr]);
5160   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5161   switch (offset()) {
5162   case OffsetTop: st->print("+top"); break;
5163   case OffsetBot: st->print("+any"); break;
5164   case         0: break;
5165   default:        st->print("+%d",offset()); break;
5166   }
5167 }
5168 #endif
5169 
5170 
5171 //=============================================================================
5172 // Convenience common pre-built type.
5173 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5174 
5175 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5176   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5177 }
5178 
5179 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5180   return make(Constant, m, Offset(0));
5181 }
5182 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5183   return make(Constant, m, Offset(0));
5184 }
5185 
5186 //------------------------------make-------------------------------------------
5187 // Create a meta data constant
5188 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5189   assert(m == NULL || !m->is_klass(), "wrong type");
5190   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5191 }
5192 
5193 
5194 //=============================================================================
5195 // Convenience common pre-built types.
5196 
5197 // Not-null object klass or below
5198 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5199 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5200 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5201 
5202 //------------------------------TypeKlassPtr-----------------------------------
5203 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5204   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5205 }
5206 
5207 //------------------------------make-------------------------------------------
5208 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5209 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5210   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5211   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5212 }
5213 
5214 //------------------------------eq---------------------------------------------
5215 // Structural equality check for Type representations
5216 bool TypeKlassPtr::eq( const Type *t ) const {
5217   const TypeKlassPtr *p = t->is_klassptr();
5218   return klass() == p->klass() && TypePtr::eq(p);
5219 }
5220 
5221 //------------------------------hash-------------------------------------------
5222 // Type-specific hashing function.
5223 int TypeKlassPtr::hash(void) const {
5224   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5225 }
5226 
5227 //------------------------------singleton--------------------------------------
5228 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5229 // constants
5230 bool TypeKlassPtr::singleton(void) const {
5231   // detune optimizer to not generate constant klass + constant offset as a constant!
5232   // TopPTR, Null, AnyNull, Constant are all singletons
5233   return (offset() == 0) && !below_centerline(_ptr);
5234 }
5235 
5236 // Do not allow interface-vs.-noninterface joins to collapse to top.
5237 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5238   // logic here mirrors the one from TypeOopPtr::filter. See comments
5239   // there.
5240   const Type* ft = join_helper(kills, include_speculative);
5241   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5242   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5243 
5244   if (ft->empty()) {
5245     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5246       return kills;             // Uplift to interface
5247 
5248     return Type::TOP;           // Canonical empty value
5249   }
5250 
5251   // Interface klass type could be exact in opposite to interface type,
5252   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5253   if (ftkp != NULL && ktkp != NULL &&
5254       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5255       !ftkp->klass_is_exact() && // Keep exact interface klass
5256       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5257     return ktkp->cast_to_ptr_type(ftkp->ptr());
5258   }
5259 
5260   return ft;
5261 }
5262 
5263 //----------------------compute_klass------------------------------------------
5264 // Compute the defining klass for this class
5265 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5266   // Compute _klass based on element type.
5267   ciKlass* k_ary = NULL;
5268   const TypeAryPtr *tary;
5269   const Type* el = elem();
5270   if (el->isa_narrowoop()) {
5271     el = el->make_ptr();
5272   }
5273 
5274   // Get element klass
5275   if (el->isa_instptr()) {
5276     // Compute object array klass from element klass
5277     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5278   } else if (el->isa_valuetype()) {
5279     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5280   } else if ((tary = el->isa_aryptr()) != NULL) {
5281     // Compute array klass from element klass
5282     ciKlass* k_elem = tary->klass();
5283     // If element type is something like bottom[], k_elem will be null.
5284     if (k_elem != NULL)
5285       k_ary = ciObjArrayKlass::make(k_elem);
5286   } else if ((el->base() == Type::Top) ||
5287              (el->base() == Type::Bottom)) {
5288     // element type of Bottom occurs from meet of basic type
5289     // and object; Top occurs when doing join on Bottom.
5290     // Leave k_ary at NULL.
5291   } else {
5292     // Cannot compute array klass directly from basic type,
5293     // since subtypes of TypeInt all have basic type T_INT.
5294 #ifdef ASSERT
5295     if (verify && el->isa_int()) {
5296       // Check simple cases when verifying klass.
5297       BasicType bt = T_ILLEGAL;
5298       if (el == TypeInt::BYTE) {
5299         bt = T_BYTE;
5300       } else if (el == TypeInt::SHORT) {
5301         bt = T_SHORT;
5302       } else if (el == TypeInt::CHAR) {
5303         bt = T_CHAR;
5304       } else if (el == TypeInt::INT) {
5305         bt = T_INT;
5306       } else {
5307         return _klass; // just return specified klass
5308       }
5309       return ciTypeArrayKlass::make(bt);
5310     }
5311 #endif
5312     assert(!el->isa_int(),
5313            "integral arrays must be pre-equipped with a class");
5314     // Compute array klass directly from basic type
5315     k_ary = ciTypeArrayKlass::make(el->basic_type());
5316   }
5317   return k_ary;
5318 }
5319 
5320 //------------------------------klass------------------------------------------
5321 // Return the defining klass for this class
5322 ciKlass* TypeAryPtr::klass() const {
5323   if( _klass ) return _klass;   // Return cached value, if possible
5324 
5325   // Oops, need to compute _klass and cache it
5326   ciKlass* k_ary = compute_klass();
5327 
5328   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5329     // The _klass field acts as a cache of the underlying
5330     // ciKlass for this array type.  In order to set the field,
5331     // we need to cast away const-ness.
5332     //
5333     // IMPORTANT NOTE: we *never* set the _klass field for the
5334     // type TypeAryPtr::OOPS.  This Type is shared between all
5335     // active compilations.  However, the ciKlass which represents
5336     // this Type is *not* shared between compilations, so caching
5337     // this value would result in fetching a dangling pointer.
5338     //
5339     // Recomputing the underlying ciKlass for each request is
5340     // a bit less efficient than caching, but calls to
5341     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5342     ((TypeAryPtr*)this)->_klass = k_ary;
5343     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5344         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5345       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5346     }
5347   }
5348   return k_ary;
5349 }
5350 
5351 
5352 //------------------------------add_offset-------------------------------------
5353 // Access internals of klass object
5354 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5355   return make( _ptr, klass(), xadd_offset(offset) );
5356 }
5357 
5358 //------------------------------cast_to_ptr_type-------------------------------
5359 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5360   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5361   if( ptr == _ptr ) return this;
5362   return make(ptr, _klass, _offset);
5363 }
5364 
5365 
5366 //-----------------------------cast_to_exactness-------------------------------
5367 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5368   if( klass_is_exact == _klass_is_exact ) return this;
5369   if (!UseExactTypes)  return this;
5370   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5371 }
5372 
5373 
5374 //-----------------------------as_instance_type--------------------------------
5375 // Corresponding type for an instance of the given class.
5376 // It will be NotNull, and exact if and only if the klass type is exact.
5377 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5378   ciKlass* k = klass();
5379   assert(k != NULL, "klass should not be NULL");
5380   bool    xk = klass_is_exact();
5381   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5382   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5383   guarantee(toop != NULL, "need type for given klass");
5384   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5385   return toop->cast_to_exactness(xk)->is_oopptr();
5386 }
5387 
5388 
5389 //------------------------------xmeet------------------------------------------
5390 // Compute the MEET of two types, return a new Type object.
5391 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5392   // Perform a fast test for common case; meeting the same types together.
5393   if( this == t ) return this;  // Meeting same type-rep?
5394 
5395   // Current "this->_base" is Pointer
5396   switch (t->base()) {          // switch on original type
5397 
5398   case Int:                     // Mixing ints & oops happens when javac
5399   case Long:                    // reuses local variables
5400   case FloatTop:
5401   case FloatCon:
5402   case FloatBot:
5403   case DoubleTop:
5404   case DoubleCon:
5405   case DoubleBot:
5406   case NarrowOop:
5407   case NarrowKlass:
5408   case Bottom:                  // Ye Olde Default
5409     return Type::BOTTOM;
5410   case Top:
5411     return this;
5412 
5413   default:                      // All else is a mistake
5414     typerr(t);
5415 
5416   case AnyPtr: {                // Meeting to AnyPtrs
5417     // Found an AnyPtr type vs self-KlassPtr type
5418     const TypePtr *tp = t->is_ptr();
5419     Offset offset = meet_offset(tp->offset());
5420     PTR ptr = meet_ptr(tp->ptr());
5421     switch (tp->ptr()) {
5422     case TopPTR:
5423       return this;
5424     case Null:
5425       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5426     case AnyNull:
5427       return make( ptr, klass(), offset );
5428     case BotPTR:
5429     case NotNull:
5430       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5431     default: typerr(t);
5432     }
5433   }
5434 
5435   case RawPtr:
5436   case MetadataPtr:
5437   case OopPtr:
5438   case AryPtr:                  // Meet with AryPtr
5439   case InstPtr:                 // Meet with InstPtr
5440     return TypePtr::BOTTOM;
5441 
5442   //
5443   //             A-top         }
5444   //           /   |   \       }  Tops
5445   //       B-top A-any C-top   }
5446   //          | /  |  \ |      }  Any-nulls
5447   //       B-any   |   C-any   }
5448   //          |    |    |
5449   //       B-con A-con C-con   } constants; not comparable across classes
5450   //          |    |    |
5451   //       B-not   |   C-not   }
5452   //          | \  |  / |      }  not-nulls
5453   //       B-bot A-not C-bot   }
5454   //           \   |   /       }  Bottoms
5455   //             A-bot         }
5456   //
5457 
5458   case KlassPtr: {  // Meet two KlassPtr types
5459     const TypeKlassPtr *tkls = t->is_klassptr();
5460     Offset  off  = meet_offset(tkls->offset());
5461     PTR  ptr     = meet_ptr(tkls->ptr());
5462 
5463     if (klass() == NULL || tkls->klass() == NULL) {
5464       ciKlass* k = NULL;
5465       if (ptr == Constant) {
5466         k = (klass() == NULL) ? tkls->klass() : klass();
5467       }
5468       return make(ptr, k, off);
5469     }
5470 
5471     // Check for easy case; klasses are equal (and perhaps not loaded!)
5472     // If we have constants, then we created oops so classes are loaded
5473     // and we can handle the constants further down.  This case handles
5474     // not-loaded classes
5475     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5476       return make( ptr, klass(), off );
5477     }
5478 
5479     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5480     ciKlass* tkls_klass = tkls->klass();
5481     ciKlass* this_klass = this->klass();
5482     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5483     assert( this_klass->is_loaded(), "This class should have been loaded.");
5484 
5485     // If 'this' type is above the centerline and is a superclass of the
5486     // other, we can treat 'this' as having the same type as the other.
5487     if ((above_centerline(this->ptr())) &&
5488         tkls_klass->is_subtype_of(this_klass)) {
5489       this_klass = tkls_klass;
5490     }
5491     // If 'tinst' type is above the centerline and is a superclass of the
5492     // other, we can treat 'tinst' as having the same type as the other.
5493     if ((above_centerline(tkls->ptr())) &&
5494         this_klass->is_subtype_of(tkls_klass)) {
5495       tkls_klass = this_klass;
5496     }
5497 
5498     // Check for classes now being equal
5499     if (tkls_klass->equals(this_klass)) {
5500       // If the klasses are equal, the constants may still differ.  Fall to
5501       // NotNull if they do (neither constant is NULL; that is a special case
5502       // handled elsewhere).
5503       if( ptr == Constant ) {
5504         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5505             this->klass()->equals(tkls->klass()));
5506         else if (above_centerline(this->ptr()));
5507         else if (above_centerline(tkls->ptr()));
5508         else
5509           ptr = NotNull;
5510       }
5511       return make( ptr, this_klass, off );
5512     } // Else classes are not equal
5513 
5514     // Since klasses are different, we require the LCA in the Java
5515     // class hierarchy - which means we have to fall to at least NotNull.
5516     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5517       ptr = NotNull;
5518     // Now we find the LCA of Java classes
5519     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5520     return   make( ptr, k, off );
5521   } // End of case KlassPtr
5522 
5523   } // End of switch
5524   return this;                  // Return the double constant
5525 }
5526 
5527 //------------------------------xdual------------------------------------------
5528 // Dual: compute field-by-field dual
5529 const Type    *TypeKlassPtr::xdual() const {
5530   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5531 }
5532 
5533 //------------------------------get_con----------------------------------------
5534 intptr_t TypeKlassPtr::get_con() const {
5535   assert( _ptr == Null || _ptr == Constant, "" );
5536   assert(offset() >= 0, "");
5537 
5538   if (offset() != 0) {
5539     // After being ported to the compiler interface, the compiler no longer
5540     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5541     // to a handle at compile time.  This handle is embedded in the generated
5542     // code and dereferenced at the time the nmethod is made.  Until that time,
5543     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5544     // have access to the addresses!).  This does not seem to currently happen,
5545     // but this assertion here is to help prevent its occurence.
5546     tty->print_cr("Found oop constant with non-zero offset");
5547     ShouldNotReachHere();
5548   }
5549 
5550   return (intptr_t)klass()->constant_encoding();
5551 }
5552 //------------------------------dump2------------------------------------------
5553 // Dump Klass Type
5554 #ifndef PRODUCT
5555 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5556   switch( _ptr ) {
5557   case Constant:
5558     st->print("precise ");
5559   case NotNull:
5560     {
5561       if (klass() != NULL) {
5562         const char* name = klass()->name()->as_utf8();
5563         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5564       } else {
5565         st->print("klass BOTTOM");
5566       }
5567     }
5568   case BotPTR:
5569     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5570   case TopPTR:
5571   case AnyNull:
5572     st->print(":%s", ptr_msg[_ptr]);
5573     if( _klass_is_exact ) st->print(":exact");
5574     break;
5575   default:
5576     break;
5577   }
5578 
5579   _offset.dump2(st);
5580 
5581   st->print(" *");
5582 }
5583 #endif
5584 
5585 
5586 
5587 //=============================================================================
5588 // Convenience common pre-built types.
5589 
5590 //------------------------------make-------------------------------------------
5591 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5592                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5593   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5594 }
5595 
5596 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5597   return make(domain, domain, range, range);
5598 }
5599 
5600 //------------------------------make-------------------------------------------
5601 const TypeFunc *TypeFunc::make(ciMethod* method) {
5602   Compile* C = Compile::current();
5603   const TypeFunc* tf = C->last_tf(method); // check cache
5604   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5605   const TypeTuple *domain_sig, *domain_cc;
5606   // Value type arguments are not passed by reference, instead each
5607   // field of the value type is passed as an argument. We maintain 2
5608   // views of the argument list here: one based on the signature (with
5609   // a value type argument as a single slot), one based on the actual
5610   // calling convention (with a value type argument as a list of its
5611   // fields).
5612   if (method->is_static()) {
5613     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5614     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5615   } else {
5616     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5617     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5618   }
5619   const TypeTuple *range_sig = TypeTuple::make_range(method, false);
5620   const TypeTuple *range_cc = TypeTuple::make_range(method, ValueTypeReturnedAsFields);
5621   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5622   C->set_last_tf(method, tf);  // fill cache
5623   return tf;
5624 }
5625 
5626 //------------------------------meet-------------------------------------------
5627 // Compute the MEET of two types.  It returns a new Type object.
5628 const Type *TypeFunc::xmeet( const Type *t ) const {
5629   // Perform a fast test for common case; meeting the same types together.
5630   if( this == t ) return this;  // Meeting same type-rep?
5631 
5632   // Current "this->_base" is Func
5633   switch (t->base()) {          // switch on original type
5634 
5635   case Bottom:                  // Ye Olde Default
5636     return t;
5637 
5638   default:                      // All else is a mistake
5639     typerr(t);
5640 
5641   case Top:
5642     break;
5643   }
5644   return this;                  // Return the double constant
5645 }
5646 
5647 //------------------------------xdual------------------------------------------
5648 // Dual: compute field-by-field dual
5649 const Type *TypeFunc::xdual() const {
5650   return this;
5651 }
5652 
5653 //------------------------------eq---------------------------------------------
5654 // Structural equality check for Type representations
5655 bool TypeFunc::eq( const Type *t ) const {
5656   const TypeFunc *a = (const TypeFunc*)t;
5657   return _domain_sig == a->_domain_sig &&
5658     _domain_cc == a->_domain_cc &&
5659     _range_sig == a->_range_sig &&
5660     _range_cc == a->_range_cc;
5661 }
5662 
5663 //------------------------------hash-------------------------------------------
5664 // Type-specific hashing function.
5665 int TypeFunc::hash(void) const {
5666   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5667 }
5668 
5669 //------------------------------dump2------------------------------------------
5670 // Dump Function Type
5671 #ifndef PRODUCT
5672 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5673   if( _range_sig->cnt() <= Parms )
5674     st->print("void");
5675   else {
5676     uint i;
5677     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5678       _range_sig->field_at(i)->dump2(d,depth,st);
5679       st->print("/");
5680     }
5681     _range_sig->field_at(i)->dump2(d,depth,st);
5682   }
5683   st->print(" ");
5684   st->print("( ");
5685   if( !depth || d[this] ) {     // Check for recursive dump
5686     st->print("...)");
5687     return;
5688   }
5689   d.Insert((void*)this,(void*)this);    // Stop recursion
5690   if (Parms < _domain_sig->cnt())
5691     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5692   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5693     st->print(", ");
5694     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5695   }
5696   st->print(" )");
5697 }
5698 #endif
5699 
5700 //------------------------------singleton--------------------------------------
5701 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5702 // constants (Ldi nodes).  Singletons are integer, float or double constants
5703 // or a single symbol.
5704 bool TypeFunc::singleton(void) const {
5705   return false;                 // Never a singleton
5706 }
5707 
5708 bool TypeFunc::empty(void) const {
5709   return false;                 // Never empty
5710 }
5711 
5712 
5713 BasicType TypeFunc::return_type() const{
5714   if (range_sig()->cnt() == TypeFunc::Parms) {
5715     return T_VOID;
5716   }
5717   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5718 }