1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciValueKlass.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/castnode.hpp"
  29 #include "opto/graphKit.hpp"
  30 #include "opto/rootnode.hpp"
  31 #include "opto/valuetypenode.hpp"
  32 #include "opto/phaseX.hpp"
  33 
  34 // Clones the values type to handle control flow merges involving multiple value types.
  35 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
  36 ValueTypeBaseNode* ValueTypeBaseNode::clone_with_phis(PhaseGVN* gvn, Node* region) {
  37   assert(!has_phi_inputs(region), "already cloned with phis");
  38   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
  39 
  40   // Create a PhiNode for merging the oop values
  41   const Type* phi_type = Type::get_const_type(value_klass());
  42   PhiNode* oop = PhiNode::make(region, vt->get_oop(), phi_type);
  43   gvn->set_type(oop, phi_type);
  44   vt->set_oop(oop);
  45 
  46   // Create a PhiNode each for merging the field values
  47   for (uint i = 0; i < vt->field_count(); ++i) {
  48     ciType* type = vt->field_type(i);
  49     Node*  value = vt->field_value(i);
  50     if (type->is_valuetype() && value->isa_ValueType()) {
  51       // Handle flattened value type fields recursively
  52       value = value->as_ValueType()->clone_with_phis(gvn, region);
  53     } else {
  54       phi_type = Type::get_const_type(type);
  55       value = PhiNode::make(region, value, phi_type);
  56       gvn->set_type(value, phi_type);
  57     }
  58     vt->set_field_value(i, value);
  59   }
  60   gvn->set_type(vt, vt->bottom_type());
  61   return vt;
  62 }
  63 
  64 // Checks if the inputs of the ValueBaseTypeNode were replaced by PhiNodes
  65 // for the given region (see ValueBaseTypeNode::clone_with_phis).
  66 bool ValueTypeBaseNode::has_phi_inputs(Node* region) {
  67   // Check oop input
  68   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
  69 #ifdef ASSERT
  70   if (result) {
  71     // Check all field value inputs for consistency
  72     for (uint i = Oop; i < field_count(); ++i) {
  73       Node* n = in(i);
  74       if (n->is_ValueTypeBase()) {
  75         assert(n->as_ValueTypeBase()->has_phi_inputs(region), "inconsistent phi inputs");
  76       } else {
  77         assert(n->is_Phi() && n->as_Phi()->region() == region, "inconsistent phi inputs");
  78       }
  79     }
  80   }
  81 #endif
  82   return result;
  83 }
  84 
  85 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
  86 ValueTypeBaseNode* ValueTypeBaseNode::merge_with(PhaseGVN* gvn, const ValueTypeBaseNode* other, int pnum, bool transform) {
  87   // Merge oop inputs
  88   PhiNode* phi = get_oop()->as_Phi();
  89   phi->set_req(pnum, other->get_oop());
  90   if (transform) {
  91     set_oop(gvn->transform(phi));
  92     gvn->record_for_igvn(phi);
  93   }
  94   // Merge field values
  95   for (uint i = 0; i < field_count(); ++i) {
  96     Node* val1 =        field_value(i);
  97     Node* val2 = other->field_value(i);
  98     if (val1->is_ValueType()) {
  99       val1->as_ValueType()->merge_with(gvn, val2->as_ValueType(), pnum, transform);
 100     } else {
 101       assert(val1->is_Phi(), "must be a phi node");
 102       assert(!val2->is_ValueType(), "inconsistent merge values");
 103       val1->set_req(pnum, val2);
 104     }
 105     if (transform) {
 106       set_field_value(i, gvn->transform(val1));
 107       gvn->record_for_igvn(val1);
 108     }
 109   }
 110   return this;
 111 }
 112 
 113 // Adds a new merge path to a valuetype node with phi inputs
 114 void ValueTypeBaseNode::add_new_path(Node* region) {
 115   assert(has_phi_inputs(region), "must have phi inputs");
 116 
 117   PhiNode* phi = get_oop()->as_Phi();
 118   phi->add_req(NULL);
 119   assert(phi->req() == region->req(), "must be same size as region");
 120 
 121   for (uint i = 0; i < field_count(); ++i) {
 122     Node* val = field_value(i);
 123     if (val->is_ValueType()) {
 124       val->as_ValueType()->add_new_path(region);
 125     } else {
 126       val->as_Phi()->add_req(NULL);
 127       assert(val->req() == region->req(), "must be same size as region");
 128     }
 129   }
 130 }
 131 
 132 Node* ValueTypeBaseNode::field_value(uint index) const {
 133   assert(index < field_count(), "index out of bounds");
 134   return in(Values + index);
 135 }
 136 
 137 // Get the value of the field at the given offset.
 138 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 139 Node* ValueTypeBaseNode::field_value_by_offset(int offset, bool recursive) const {
 140   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 141   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 142   int index = value_klass()->field_index_by_offset(offset);
 143   int sub_offset = offset - field_offset(index);
 144   Node* value = field_value(index);
 145   assert(value != NULL, "field value not found");
 146   if (recursive && value->is_ValueType()) {
 147     ValueTypeNode* vt = value->as_ValueType();
 148     if (field_is_flattened(index)) {
 149       // Flattened value type field
 150       sub_offset += vt->value_klass()->first_field_offset(); // Add header size
 151       return vt->field_value_by_offset(sub_offset, recursive);
 152     } else {
 153       assert(sub_offset == 0, "should not have a sub offset");
 154       return vt;
 155     }
 156   }
 157   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 158   assert(sub_offset == 0, "offset mismatch");
 159   return value;
 160 }
 161 
 162 void ValueTypeBaseNode::set_field_value(uint index, Node* value) {
 163   assert(index < field_count(), "index out of bounds");
 164   set_req(Values + index, value);
 165 }
 166 
 167 void ValueTypeBaseNode::set_field_value_by_offset(int offset, Node* value) {
 168   uint i = 0;
 169   for (; i < field_count() && field_offset(i) != offset; i++) { }
 170   assert(i < field_count(), "field not found");
 171   set_field_value(i, value);
 172 }
 173 
 174 int ValueTypeBaseNode::field_offset(uint index) const {
 175   assert(index < field_count(), "index out of bounds");
 176   return value_klass()->declared_nonstatic_field_at(index)->offset();
 177 }
 178 
 179 ciType* ValueTypeBaseNode::field_type(uint index) const {
 180   assert(index < field_count(), "index out of bounds");
 181   return value_klass()->declared_nonstatic_field_at(index)->type();
 182 }
 183 
 184 bool ValueTypeBaseNode::field_is_flattened(uint index) const {
 185   assert(index < field_count(), "index out of bounds");
 186   ciField* field = value_klass()->declared_nonstatic_field_at(index);
 187   assert(!field->is_flattened() || field->type()->is_valuetype(), "must be a value type");
 188   return field->is_flattened();
 189 }
 190 
 191 bool ValueTypeBaseNode::field_is_flattenable(uint index) const {
 192   assert(index < field_count(), "index out of bounds");
 193   ciField* field = value_klass()->declared_nonstatic_field_at(index);
 194   assert(!field->is_flattenable() || field->type()->is_valuetype(), "must be a value type");
 195   return field->is_flattenable();
 196 }
 197 
 198 int ValueTypeBaseNode::make_scalar_in_safepoint(Unique_Node_List& worklist, SafePointNode* sfpt, Node* root, PhaseGVN* gvn) {
 199   ciValueKlass* vk = value_klass();
 200   uint nfields = vk->nof_nonstatic_fields();
 201   JVMState* jvms = sfpt->jvms();
 202   int start = jvms->debug_start();
 203   int end   = jvms->debug_end();
 204   // Replace safepoint edge by SafePointScalarObjectNode and add field values
 205   assert(jvms != NULL, "missing JVMS");
 206   uint first_ind = (sfpt->req() - jvms->scloff());
 207   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(value_ptr(),
 208 #ifdef ASSERT
 209                                                                   NULL,
 210 #endif
 211                                                                   first_ind, nfields);
 212   sobj->init_req(0, root);
 213   // Iterate over the value type fields in order of increasing
 214   // offset and add the field values to the safepoint.
 215   for (uint j = 0; j < nfields; ++j) {
 216     int offset = vk->nonstatic_field_at(j)->offset();
 217     Node* value = field_value_by_offset(offset, true /* include flattened value type fields */);
 218     if (value->is_ValueType()) {
 219       if (value->as_ValueType()->is_allocated(gvn)) {
 220         value = value->as_ValueType()->get_oop();
 221       } else {
 222         // Add non-flattened value type field to the worklist to process later
 223         worklist.push(value);
 224       }
 225     }
 226     sfpt->add_req(value);
 227   }
 228   jvms->set_endoff(sfpt->req());
 229   if (gvn != NULL) {
 230     sobj = gvn->transform(sobj)->as_SafePointScalarObject();
 231     gvn->igvn_rehash_node_delayed(sfpt);
 232   }
 233   return sfpt->replace_edges_in_range(this, sobj, start, end);
 234 }
 235 
 236 void ValueTypeBaseNode::make_scalar_in_safepoints(Node* root, PhaseGVN* gvn) {
 237   // Process all safepoint uses and scalarize value type
 238   Unique_Node_List worklist;
 239   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 240     Node* u = fast_out(i);
 241     if (u->is_SafePoint() && !u->is_CallLeaf() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 242       SafePointNode* sfpt = u->as_SafePoint();
 243       Node* in_oop = get_oop();
 244       const Type* oop_type = in_oop->bottom_type();
 245       assert(Opcode() == Op_ValueTypePtr || !isa_ValueType()->is_allocated(gvn), "already heap allocated value types should be linked directly");
 246       int nb = make_scalar_in_safepoint(worklist, sfpt, root, gvn);
 247       --i; imax -= nb;
 248     }
 249   }
 250   // Now scalarize non-flattened fields
 251   for (uint i = 0; i < worklist.size(); ++i) {
 252     Node* vt = worklist.at(i);
 253     vt->as_ValueType()->make_scalar_in_safepoints(root, gvn);
 254   }
 255 }
 256 
 257 void ValueTypeBaseNode::initialize(GraphKit* kit, MultiNode* multi, ciValueKlass* vk, int base_offset, uint& base_input, bool in) {
 258   assert(base_offset >= 0, "offset in value type must be positive");
 259   assert(base_input >= TypeFunc::Parms, "invalid base input");
 260   PhaseGVN& gvn = kit->gvn();
 261   for (uint i = 0; i < field_count(); i++) {
 262     ciType* ft = field_type(i);
 263     int offset = base_offset + field_offset(i);
 264     if (field_is_flattened(i)) {
 265       // Flattened value type field
 266       ValueTypeNode* vt = ValueTypeNode::make_uninitialized(gvn, ft->as_value_klass());
 267       uint base = base_input;
 268       vt->initialize(kit, multi, vk, offset - value_klass()->first_field_offset(), base, in);
 269       set_field_value(i, gvn.transform(vt));
 270     } else {
 271       int j = 0; int extra = 0;
 272       for (; j < vk->nof_nonstatic_fields(); j++) {
 273         ciField* f = vk->nonstatic_field_at(j);
 274         if (offset == f->offset()) {
 275           assert(f->type() == ft, "inconsistent field type");
 276           break;
 277         }
 278         BasicType bt = f->type()->basic_type();
 279         if (bt == T_LONG || bt == T_DOUBLE) {
 280           extra++;
 281         }
 282       }
 283       assert(j != vk->nof_nonstatic_fields(), "must find");
 284       Node* parm = NULL;
 285       int index = base_input + j + extra;
 286 
 287       ciMethod* method = multi->is_Start()? kit->C->method() : multi->as_CallStaticJava()->method();
 288       SigEntry res_entry = method->get_Method()->get_res_entry();
 289       if (res_entry._offset != -1 && (index - TypeFunc::Parms) >= res_entry._offset) {
 290         // Skip reserved entry
 291         index += type2size[res_entry._bt];
 292       }
 293       if (multi->is_Start()) {
 294         assert(in, "return from start?");
 295         parm = gvn.transform(new ParmNode(multi->as_Start(), index));
 296       } else {
 297         if (in) {
 298           parm = multi->as_Call()->in(index);
 299         } else {
 300           parm = gvn.transform(new ProjNode(multi->as_Call(), index));
 301         }
 302       }
 303 
 304       if (field_is_flattenable(i)) {
 305         // Non-flattened but flattenable value type
 306         if (ft->as_value_klass()->is_scalarizable()) {
 307           parm = ValueTypeNode::make_from_oop(kit, parm, ft->as_value_klass());
 308         } else {
 309           parm = kit->null2default(parm, ft->as_value_klass());
 310         }
 311       }
 312 
 313       set_field_value(i, parm);
 314       // Record all these guys for later GVN.
 315       gvn.record_for_igvn(parm);
 316     }
 317   }
 318   base_input += vk->value_arg_slots();
 319 }
 320 
 321 const TypePtr* ValueTypeBaseNode::field_adr_type(Node* base, int offset, ciInstanceKlass* holder, PhaseGVN& gvn) const {
 322   const TypeAryPtr* ary_type = gvn.type(base)->isa_aryptr();
 323   const TypePtr* adr_type = NULL;
 324   bool is_array = ary_type != NULL;
 325   if (is_array) {
 326     // In the case of a flattened value type array, each field has its own slice
 327     adr_type = ary_type->with_field_offset(offset)->add_offset(Type::OffsetBot);
 328   } else {
 329     ciField* field = holder->get_field_by_offset(offset, false);
 330     assert(field != NULL, "field not found");
 331     adr_type = gvn.C->alias_type(field)->adr_type();
 332   }
 333   return adr_type;
 334 }
 335 
 336 void ValueTypeBaseNode::load(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 337   // Initialize the value type by loading its field values from
 338   // memory and adding the values as input edges to the node.
 339   for (uint i = 0; i < field_count(); ++i) {
 340     int offset = holder_offset + field_offset(i);
 341     Node* value = NULL;
 342     ciType* ft = field_type(i);
 343     if (field_is_flattened(i)) {
 344       // Recursively load the flattened value type field
 345       value = ValueTypeNode::make_from_flattened(kit, ft->as_value_klass(), base, ptr, holder, offset);
 346     } else {
 347       const TypeOopPtr* oop_ptr = kit->gvn().type(base)->isa_oopptr();
 348       bool is_array = (oop_ptr->isa_aryptr() != NULL);
 349       if (base->is_Con() && !is_array) {
 350         // If the oop to the value type is constant (static final field), we can
 351         // also treat the fields as constants because the value type is immutable.
 352         ciObject* constant_oop = oop_ptr->const_oop();
 353         ciField* field = holder->get_field_by_offset(offset, false);
 354         assert(field != NULL, "field not found");
 355         ciConstant constant = constant_oop->as_instance()->field_value(field);
 356         const Type* con_type = Type::make_from_constant(constant, /*require_const=*/ true);
 357         assert(con_type != NULL, "type not found");
 358         value = kit->gvn().transform(kit->makecon(con_type));
 359       } else {
 360         // Load field value from memory
 361         const TypePtr* adr_type = field_adr_type(base, offset, holder, kit->gvn());
 362         Node* adr = kit->basic_plus_adr(base, ptr, offset);
 363         BasicType bt = type2field[ft->basic_type()];
 364         assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 365         const Type* val_type = Type::get_const_type(ft);
 366         DecoratorSet decorators = IN_HEAP | MO_UNORDERED;
 367         if (is_array) {
 368           decorators |= IS_ARRAY;
 369         }
 370         value = kit->access_load_at(base, adr, adr_type, val_type, bt, decorators);
 371       }
 372       if (field_is_flattenable(i)) {
 373         // Loading a non-flattened but flattenable value type from memory
 374         if (ft->as_value_klass()->is_scalarizable()) {
 375           value = ValueTypeNode::make_from_oop(kit, value, ft->as_value_klass());
 376         } else {
 377           value = kit->null2default(value, ft->as_value_klass());
 378         }
 379       }
 380     }
 381     set_field_value(i, value);
 382   }
 383 }
 384 
 385 void ValueTypeBaseNode::store_flattened(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 386   // The value type is embedded into the object without an oop header. Subtract the
 387   // offset of the first field to account for the missing header when storing the values.
 388   if (holder == NULL) {
 389     holder = value_klass();
 390   }
 391   holder_offset -= value_klass()->first_field_offset();
 392   store(kit, base, ptr, holder, holder_offset);
 393 }
 394 
 395 void ValueTypeBaseNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset, bool deoptimize_on_exception) const {
 396   // Write field values to memory
 397   for (uint i = 0; i < field_count(); ++i) {
 398     int offset = holder_offset + field_offset(i);
 399     Node* value = field_value(i);
 400     ciType* ft = field_type(i);
 401     if (field_is_flattened(i)) {
 402       // Recursively store the flattened value type field
 403       if (!value->is_ValueType()) {
 404         assert(!kit->gvn().type(value)->maybe_null(), "should never be null");
 405         value = ValueTypeNode::make_from_oop(kit, value, ft->as_value_klass());
 406       }
 407       value->as_ValueType()->store_flattened(kit, base, ptr, holder, offset);
 408     } else {
 409       // Store field value to memory
 410       const TypePtr* adr_type = field_adr_type(base, offset, holder, kit->gvn());
 411       Node* adr = kit->basic_plus_adr(base, ptr, offset);
 412       BasicType bt = type2field[ft->basic_type()];
 413       assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 414       const Type* val_type = Type::get_const_type(ft);
 415       const TypeAryPtr* ary_type = kit->gvn().type(base)->isa_aryptr();
 416       DecoratorSet decorators = IN_HEAP | MO_UNORDERED;
 417       if (ary_type != NULL) {
 418         decorators |= IS_ARRAY;
 419       }
 420       kit->access_store_at(base, adr, adr_type, value, val_type, bt, decorators, deoptimize_on_exception);
 421     }
 422   }
 423 }
 424 
 425 ValueTypeBaseNode* ValueTypeBaseNode::allocate(GraphKit* kit, bool deoptimize_on_exception) {
 426   // Check if value type is already allocated
 427   Node* null_ctl = kit->top();
 428   Node* not_null_oop = kit->null_check_oop(get_oop(), &null_ctl);
 429   if (null_ctl->is_top()) {
 430     // Value type is allocated
 431     return this;
 432   }
 433   assert(!is_allocated(&kit->gvn()), "should not be allocated");
 434   RegionNode* region = new RegionNode(3);
 435 
 436   // Oop is non-NULL, use it
 437   region->init_req(1, kit->control());
 438   PhiNode* oop = PhiNode::make(region, not_null_oop, value_ptr());
 439   PhiNode* io  = PhiNode::make(region, kit->i_o(), Type::ABIO);
 440   PhiNode* mem = PhiNode::make(region, kit->merged_memory(), Type::MEMORY, TypePtr::BOTTOM);
 441 
 442   {
 443     // Oop is NULL, allocate and initialize buffer
 444     PreserveJVMState pjvms(kit);
 445     kit->set_control(null_ctl);
 446     kit->kill_dead_locals();
 447     ciValueKlass* vk = value_klass();
 448     Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 449     Node* alloc_oop  = kit->new_instance(klass_node, NULL, NULL, deoptimize_on_exception, this);
 450     store(kit, alloc_oop, alloc_oop, vk, 0, deoptimize_on_exception);
 451     region->init_req(2, kit->control());
 452     oop   ->init_req(2, alloc_oop);
 453     io    ->init_req(2, kit->i_o());
 454     mem   ->init_req(2, kit->merged_memory());
 455   }
 456 
 457   // Update GraphKit
 458   kit->set_control(kit->gvn().transform(region));
 459   kit->set_i_o(kit->gvn().transform(io));
 460   kit->set_all_memory(kit->gvn().transform(mem));
 461   kit->record_for_igvn(region);
 462   kit->record_for_igvn(oop);
 463   kit->record_for_igvn(io);
 464   kit->record_for_igvn(mem);
 465 
 466   // Use cloned ValueTypeNode to propagate oop from now on
 467   Node* res_oop = kit->gvn().transform(oop);
 468   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
 469   vt->set_oop(res_oop);
 470   vt = kit->gvn().transform(vt)->as_ValueTypeBase();
 471   kit->replace_in_map(this, vt);
 472   return vt;
 473 }
 474 
 475 bool ValueTypeBaseNode::is_allocated(PhaseGVN* phase) const {
 476   Node* oop = get_oop();
 477   const Type* oop_type = (phase != NULL) ? phase->type(oop) : oop->bottom_type();
 478   return !oop_type->maybe_null();
 479 }
 480 
 481 // When a call returns multiple values, it has several result
 482 // projections, one per field. Replacing the result of the call by a
 483 // value type node (after late inlining) requires that for each result
 484 // projection, we find the corresponding value type field.
 485 void ValueTypeBaseNode::replace_call_results(GraphKit* kit, Node* call, Compile* C) {
 486   ciValueKlass* vk = value_klass();
 487   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 488     ProjNode* pn = call->fast_out(i)->as_Proj();
 489     uint con = pn->_con;
 490     if (con >= TypeFunc::Parms+1) {
 491       uint field_nb = con - (TypeFunc::Parms+1);
 492       int extra = 0;
 493       for (uint j = 0; j < field_nb - extra; j++) {
 494         ciField* f = vk->nonstatic_field_at(j);
 495         BasicType bt = f->type()->basic_type();
 496         if (bt == T_LONG || bt == T_DOUBLE) {
 497           extra++;
 498         }
 499       }
 500       ciField* f = vk->nonstatic_field_at(field_nb - extra);
 501       Node* field = field_value_by_offset(f->offset(), true);
 502       if (field->is_ValueType()) {
 503         assert(f->is_flattened(), "should be flattened");
 504         field = field->as_ValueType()->allocate(kit)->get_oop();
 505       }
 506       C->gvn_replace_by(pn, field);
 507       C->initial_gvn()->hash_delete(pn);
 508       pn->set_req(0, C->top());
 509       --i; --imax;
 510     }
 511   }
 512 }
 513 
 514 ValueTypeNode* ValueTypeNode::make_uninitialized(PhaseGVN& gvn, ciValueKlass* vk) {
 515   // Create a new ValueTypeNode with uninitialized values and NULL oop
 516   return new ValueTypeNode(vk, gvn.zerocon(T_VALUETYPE));
 517 }
 518 
 519 Node* ValueTypeNode::default_oop(PhaseGVN& gvn, ciValueKlass* vk) {
 520   // Returns the constant oop of the default value type allocation
 521   return gvn.makecon(TypeInstPtr::make(vk->default_value_instance()));
 522 }
 523 
 524 ValueTypeNode* ValueTypeNode::make_default(PhaseGVN& gvn, ciValueKlass* vk) {
 525   // Create a new ValueTypeNode with default values
 526   ValueTypeNode* vt = new ValueTypeNode(vk, default_oop(gvn, vk));
 527   for (uint i = 0; i < vt->field_count(); ++i) {
 528     ciType* field_type = vt->field_type(i);
 529     Node* value = NULL;
 530     if (field_type->is_valuetype() && vt->field_is_flattenable(i)) {
 531       ciValueKlass* field_klass = field_type->as_value_klass();
 532       if (field_klass->is_scalarizable() || vt->field_is_flattened(i)) {
 533         value = ValueTypeNode::make_default(gvn, field_klass);
 534       } else {
 535         value = default_oop(gvn, field_klass);
 536       }
 537     } else {
 538       value = gvn.zerocon(field_type->basic_type());
 539     }
 540     vt->set_field_value(i, value);
 541   }
 542   vt = gvn.transform(vt)->as_ValueType();
 543   assert(vt->is_default(gvn), "must be the default value type");
 544   return vt;
 545 }
 546 
 547 bool ValueTypeNode::is_default(PhaseGVN& gvn) const {
 548   for (uint i = 0; i < field_count(); ++i) {
 549     Node* value = field_value(i);
 550     if (!gvn.type(value)->is_zero_type() &&
 551         !(value->is_ValueType() && value->as_ValueType()->is_default(gvn)) &&
 552         !(field_type(i)->is_valuetype() && value == default_oop(gvn, field_type(i)->as_value_klass()))) {
 553       return false;
 554     }
 555   }
 556   return true;
 557 }
 558 
 559 ValueTypeNode* ValueTypeNode::make_from_oop(GraphKit* kit, Node* oop, ciValueKlass* vk) {
 560   PhaseGVN& gvn = kit->gvn();
 561 
 562   // Create and initialize a ValueTypeNode by loading all field
 563   // values from a heap-allocated version and also save the oop.
 564   ValueTypeNode* vt = new ValueTypeNode(vk, oop);
 565 
 566   if (oop->isa_ValueTypePtr()) {
 567     // Can happen with late inlining
 568     ValueTypePtrNode* vtptr = oop->as_ValueTypePtr();
 569     vt->set_oop(vtptr->get_oop());
 570     for (uint i = Oop+1; i < vtptr->req(); ++i) {
 571       vt->init_req(i, vtptr->in(i));
 572     }
 573   } else if (gvn.type(oop)->maybe_null()) {
 574     // Add a null check because the oop may be null
 575     Node* null_ctl = kit->top();
 576     Node* not_null_oop = kit->null_check_oop(oop, &null_ctl);
 577     if (kit->stopped()) {
 578       // Constant null
 579       kit->set_control(null_ctl);
 580       return make_default(gvn, vk);
 581     }
 582     vt->set_oop(not_null_oop);
 583     vt->load(kit, not_null_oop, not_null_oop, vk, /* holder_offset */ 0);
 584 
 585     if (null_ctl != kit->top()) {
 586       // Return default value type if oop is null
 587       ValueTypeNode* def = make_default(gvn, vk);
 588       Node* region = new RegionNode(3);
 589       region->init_req(1, kit->control());
 590       region->init_req(2, null_ctl);
 591 
 592       vt = vt->clone_with_phis(&gvn, region)->as_ValueType();
 593       vt->merge_with(&gvn, def, 2, true);
 594       kit->set_control(gvn.transform(region));
 595     }
 596   } else {
 597     // Oop can never be null
 598     Node* init_ctl = kit->control();
 599     vt->load(kit, oop, oop, vk, /* holder_offset */ 0);
 600     assert(init_ctl != kit->control() || oop->is_Con() || oop->is_CheckCastPP() || oop->Opcode() == Op_ValueTypePtr ||
 601            vt->is_loaded(&gvn) == oop, "value type should be loaded");
 602   }
 603 
 604   assert(vt->is_allocated(&gvn), "value type should be allocated");
 605   return gvn.transform(vt)->as_ValueType();
 606 }
 607 
 608 // GraphKit wrapper for the 'make_from_flattened' method
 609 ValueTypeNode* ValueTypeNode::make_from_flattened(GraphKit* kit, ciValueKlass* vk, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 610   // Create and initialize a ValueTypeNode by loading all field values from
 611   // a flattened value type field at 'holder_offset' or from a value type array.
 612   ValueTypeNode* vt = make_uninitialized(kit->gvn(), vk);
 613   // The value type is flattened into the object without an oop header. Subtract the
 614   // offset of the first field to account for the missing header when loading the values.
 615   holder_offset -= vk->first_field_offset();
 616   vt->load(kit, obj, ptr, holder, holder_offset);
 617   assert(vt->is_loaded(&kit->gvn()) != obj, "holder oop should not be used as flattened value type oop");
 618   return kit->gvn().transform(vt)->as_ValueType();
 619 }
 620 
 621 ValueTypeNode* ValueTypeNode::make_from_multi(GraphKit* kit, MultiNode* multi, ciValueKlass* vk, uint& base_input, bool in) {
 622   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(kit->gvn(), vk);
 623   vt->initialize(kit, multi, vk, 0, base_input, in);
 624   return kit->gvn().transform(vt)->as_ValueType();
 625 }
 626 
 627 Node* ValueTypeNode::is_loaded(PhaseGVN* phase, ciValueKlass* vk, Node* base, int holder_offset) {
 628   if (vk == NULL) {
 629     vk = value_klass();
 630   }
 631   if (field_count() == 0) {
 632     assert(is_allocated(phase), "must be allocated");
 633     return get_oop();
 634   }
 635   for (uint i = 0; i < field_count(); ++i) {
 636     int offset = holder_offset + field_offset(i);
 637     Node* value = field_value(i);
 638     if (value->is_ValueType()) {
 639       ValueTypeNode* vt = value->as_ValueType();
 640       if (field_is_flattened(i)) {
 641         // Check value type field load recursively
 642         base = vt->is_loaded(phase, vk, base, offset - vt->value_klass()->first_field_offset());
 643         if (base == NULL) {
 644           return NULL;
 645         }
 646         continue;
 647       } else {
 648         value = vt->get_oop();
 649         if (value->Opcode() == Op_CastPP) {
 650           // Skip CastPP
 651           value = value->in(1);
 652         }
 653       }
 654     }
 655     if (value->isa_DecodeN()) {
 656       // Skip DecodeN
 657       value = value->in(1);
 658     }
 659     if (value->isa_Load()) {
 660       // Check if base and offset of field load matches value type layout
 661       intptr_t loffset = 0;
 662       Node* lbase = AddPNode::Ideal_base_and_offset(value->in(MemNode::Address), phase, loffset);
 663       if (lbase == NULL || (lbase != base && base != NULL) || loffset != offset) {
 664         return NULL;
 665       } else if (base == NULL) {
 666         // Set base and check if pointer type matches
 667         base = lbase;
 668         const TypeInstPtr* vtptr = phase->type(base)->isa_instptr();
 669         if (vtptr == NULL || !vtptr->klass()->equals(vk)) {
 670           return NULL;
 671         }
 672       }
 673     } else {
 674       return NULL;
 675     }
 676   }
 677   return base;
 678 }
 679 
 680 Node* ValueTypeNode::allocate_fields(GraphKit* kit) {
 681   ValueTypeNode* vt = clone()->as_ValueType();
 682   for (uint i = 0; i < field_count(); i++) {
 683      ValueTypeNode* value = field_value(i)->isa_ValueType();
 684      if (field_is_flattened(i)) {
 685        // Flattened value type field
 686        vt->set_field_value(i, value->allocate_fields(kit));
 687      } else if (value != NULL){
 688        // Non-flattened value type field
 689        vt->set_field_value(i, value->allocate(kit));
 690      }
 691   }
 692   vt = kit->gvn().transform(vt)->as_ValueType();
 693   kit->replace_in_map(this, vt);
 694   return vt;
 695 }
 696 
 697 Node* ValueTypeNode::tagged_klass(PhaseGVN& gvn) {
 698   ciValueKlass* vk = value_klass();
 699   const TypeKlassPtr* tk = TypeKlassPtr::make(vk);
 700   intptr_t bits = tk->get_con();
 701   set_nth_bit(bits, 0);
 702   return gvn.makecon(TypeRawPtr::make((address)bits));
 703 }
 704 
 705 uint ValueTypeNode::pass_fields(Node* n, int base_input, GraphKit& kit, bool assert_allocated, ciValueKlass* base_vk, int base_offset) {
 706   assert(base_input >= TypeFunc::Parms, "invalid base input");
 707   ciValueKlass* vk = value_klass();
 708   if (base_vk == NULL) {
 709     base_vk = vk;
 710   }
 711   uint edges = 0;
 712   for (uint i = 0; i < field_count(); i++) {
 713     int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 714     Node* arg = field_value(i);
 715     if (field_is_flattened(i)) {
 716        // Flattened value type field
 717        edges += arg->as_ValueType()->pass_fields(n, base_input, kit, assert_allocated, base_vk, offset);
 718     } else {
 719       int j = 0; int extra = 0;
 720       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 721         ciField* field = base_vk->nonstatic_field_at(j);
 722         if (offset == field->offset()) {
 723           assert(field->type() == field_type(i), "inconsistent field type");
 724           break;
 725         }
 726         BasicType bt = field->type()->basic_type();
 727         if (bt == T_LONG || bt == T_DOUBLE) {
 728           extra++;
 729         }
 730       }
 731       if (arg->is_ValueType()) {
 732         // non-flattened value type field
 733         ValueTypeNode* vt = arg->as_ValueType();
 734         assert(!assert_allocated || vt->is_allocated(&kit.gvn()), "value type field should be allocated");
 735         arg = vt->allocate(&kit)->get_oop();
 736       }
 737 
 738       int index = base_input + j + extra;
 739       n->init_req(index++, arg);
 740       edges++;
 741       BasicType bt = field_type(i)->basic_type();
 742       if (bt == T_LONG || bt == T_DOUBLE) {
 743         n->init_req(index++, kit.top());
 744         edges++;
 745       }
 746       if (n->isa_CallJava()) {
 747         Method* m = n->as_CallJava()->method()->get_Method();
 748         SigEntry res_entry = m->get_res_entry();
 749         if ((index - TypeFunc::Parms) == res_entry._offset) {
 750           // Skip reserved entry
 751           int size = type2size[res_entry._bt];
 752           n->init_req(index++, kit.top());
 753           if (size == 2) {
 754             n->init_req(index++, kit.top());
 755           }
 756           base_input += size;
 757           edges += size;
 758         }
 759       }
 760     }
 761   }
 762   return edges;
 763 }
 764 
 765 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 766   Node* oop = get_oop();
 767   if (is_default(*phase) && (!oop->is_Con() || phase->type(oop)->is_zero_type())) {
 768     // Use the pre-allocated oop for default value types
 769     set_oop(default_oop(*phase, value_klass()));
 770     return this;
 771   } else if (oop->isa_ValueTypePtr()) {
 772     // Can happen with late inlining
 773     ValueTypePtrNode* vtptr = oop->as_ValueTypePtr();
 774     set_oop(vtptr->get_oop());
 775     for (uint i = Oop+1; i < vtptr->req(); ++i) {
 776       set_req(i, vtptr->in(i));
 777     }
 778     return this;
 779   }
 780 
 781   if (!is_allocated(phase)) {
 782     // Save base oop if fields are loaded from memory and the value
 783     // type is not buffered (in this case we should not use the oop).
 784     Node* base = is_loaded(phase);
 785     if (base != NULL) {
 786       set_oop(base);
 787       assert(is_allocated(phase), "should now be allocated");
 788       return this;
 789     }
 790   }
 791 
 792   if (can_reshape) {
 793     PhaseIterGVN* igvn = phase->is_IterGVN();
 794 
 795     if (is_default(*phase)) {
 796       // Search for users of the default value type
 797       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 798         Node* user = fast_out(i);
 799         AllocateNode* alloc = user->isa_Allocate();
 800         if (alloc != NULL && alloc->result_cast() != NULL && alloc->in(AllocateNode::ValueNode) == this) {
 801           // Found an allocation of the default value type.
 802           // If the code in StoreNode::Identity() that removes useless stores was not yet
 803           // executed or ReduceFieldZeroing is disabled, there can still be initializing
 804           // stores (only zero-type or default value stores, because value types are immutable).
 805           Node* res = alloc->result_cast();
 806           for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax; j++) {
 807             AddPNode* addp = res->fast_out(j)->isa_AddP();
 808             if (addp != NULL) {
 809               for (DUIterator_Fast kmax, k = addp->fast_outs(kmax); k < kmax; k++) {
 810                 StoreNode* store = addp->fast_out(k)->isa_Store();
 811                 if (store != NULL && store->outcnt() != 0) {
 812                   // Remove the useless store
 813                   Node* mem = store->in(MemNode::Memory);
 814                   Node* val = store->in(MemNode::ValueIn);
 815                   val = val->is_EncodeP() ? val->in(1) : val;
 816                   const Type* val_type = igvn->type(val);
 817                   assert(val_type->is_zero_type() || (val->is_Con() && val_type->make_ptr()->is_valuetypeptr()),
 818                          "must be zero-type or default value store");
 819                   igvn->replace_in_uses(store, mem);
 820                 }
 821               }
 822             }
 823           }
 824           // Replace allocation by pre-allocated oop
 825           igvn->replace_node(res, default_oop(*phase, value_klass()));
 826         } else if (user->is_ValueType()) {
 827           // Add value type user to worklist to give it a chance to get optimized as well
 828           igvn->_worklist.push(user);
 829         }
 830       }
 831     }
 832 
 833     if (is_allocated(igvn)) {
 834       // Value type is heap allocated, search for safepoint uses
 835       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 836         Node* out = fast_out(i);
 837         if (out->is_SafePoint()) {
 838           // Let SafePointNode::Ideal() take care of re-wiring the
 839           // safepoint to the oop input instead of the value type node.
 840           igvn->rehash_node_delayed(out);
 841         }
 842       }
 843     }
 844   }
 845   return NULL;
 846 }
 847 
 848 // Search for multiple allocations of this value type
 849 // and try to replace them by dominating allocations.
 850 void ValueTypeNode::remove_redundant_allocations(PhaseIterGVN* igvn, PhaseIdealLoop* phase) {
 851   assert(EliminateAllocations, "allocation elimination should be enabled");
 852   // Search for allocations of this value type
 853   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 854     AllocateNode* alloc = fast_out(i)->isa_Allocate();
 855     if (alloc != NULL && alloc->result_cast() != NULL && alloc->in(AllocateNode::ValueNode) == this) {
 856       assert(!is_default(*igvn), "default value type allocation");
 857       Node* res_dom = NULL;
 858       if (is_allocated(igvn)) {
 859         // The value type is already allocated but still connected to an AllocateNode.
 860         // This can happen with late inlining when we first allocate a value type argument
 861         // but later decide to inline the call with the callee code also allocating.
 862         res_dom = get_oop();
 863       } else {
 864         // Search for a dominating allocation of the same value type
 865         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
 866           Node* out2 = fast_out(j);
 867           if (alloc != out2 && out2->is_Allocate() && out2->in(AllocateNode::ValueNode) == this &&
 868               phase->is_dominator(out2, alloc)) {
 869             AllocateNode* alloc_dom =  out2->as_Allocate();
 870             assert(alloc->in(AllocateNode::KlassNode) == alloc_dom->in(AllocateNode::KlassNode), "klasses should match");
 871             res_dom = alloc_dom->result_cast();
 872             break;
 873           }
 874         }
 875       }
 876       if (res_dom != NULL) {
 877         // Move users to dominating allocation
 878         Node* res = alloc->result_cast();
 879         igvn->replace_node(res, res_dom);
 880         // The result of the dominated allocation is now unused and will be
 881         // removed later in AllocateNode::Ideal() to not confuse loop opts.
 882         igvn->record_for_igvn(alloc);
 883 #ifdef ASSERT
 884         if (PrintEliminateAllocations) {
 885           tty->print("++++ Eliminated: %d Allocate ", alloc->_idx);
 886           dump_spec(tty);
 887           tty->cr();
 888         }
 889 #endif
 890       }
 891     }
 892   }
 893 
 894   // Process users
 895   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 896     Node* out = fast_out(i);
 897     if (out->is_ValueType()) {
 898       // Recursively process value type users
 899       out->as_ValueType()->remove_redundant_allocations(igvn, phase);
 900     } else if (out->isa_Allocate() != NULL) {
 901       // Allocate users should be linked
 902       assert(out->in(AllocateNode::ValueNode) == this, "should be linked");
 903     } else {
 904 #ifdef ASSERT
 905       // The value type should not have any other users at this time
 906       out->dump();
 907       assert(false, "unexpected user of value type");
 908 #endif
 909     }
 910   }
 911 }
 912 
 913 ValueTypePtrNode* ValueTypePtrNode::make_from_value_type(GraphKit* kit, ValueTypeNode* vt, bool deoptimize_on_exception) {
 914   Node* oop = vt->allocate(kit, deoptimize_on_exception)->get_oop();
 915   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vt->value_klass(), oop);
 916   for (uint i = Oop+1; i < vt->req(); i++) {
 917     vtptr->init_req(i, vt->in(i));
 918   }
 919   return kit->gvn().transform(vtptr)->as_ValueTypePtr();
 920 }
 921 
 922 ValueTypePtrNode* ValueTypePtrNode::make_from_oop(GraphKit* kit, Node* oop) {
 923   // Create and initialize a ValueTypePtrNode by loading all field
 924   // values from a heap-allocated version and also save the oop.
 925   ciValueKlass* vk = kit->gvn().type(oop)->value_klass();
 926   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, oop);
 927   vtptr->load(kit, oop, oop, vk);
 928   return kit->gvn().transform(vtptr)->as_ValueTypePtr();
 929 }