1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 142   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 143   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 144   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 145   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 146   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 147   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 148   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 149   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 150   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 151   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 152   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 153   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 154   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 155 };
 156 
 157 // Map ideal registers (machine types) to ideal types
 158 const Type *Type::mreg2type[_last_machine_leaf];
 159 
 160 // Map basic types to canonical Type* pointers.
 161 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 162 
 163 // Map basic types to constant-zero Types.
 164 const Type* Type::            _zero_type[T_CONFLICT+1];
 165 
 166 // Map basic types to array-body alias types.
 167 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 168 
 169 //=============================================================================
 170 // Convenience common pre-built types.
 171 const Type *Type::ABIO;         // State-of-machine only
 172 const Type *Type::BOTTOM;       // All values
 173 const Type *Type::CONTROL;      // Control only
 174 const Type *Type::DOUBLE;       // All doubles
 175 const Type *Type::FLOAT;        // All floats
 176 const Type *Type::HALF;         // Placeholder half of doublewide type
 177 const Type *Type::MEMORY;       // Abstract store only
 178 const Type *Type::RETURN_ADDRESS;
 179 const Type *Type::TOP;          // No values in set
 180 
 181 //------------------------------get_const_type---------------------------
 182 const Type* Type::get_const_type(ciType* type) {
 183   if (type == NULL) {
 184     return NULL;
 185   } else if (type->is_primitive_type()) {
 186     return get_const_basic_type(type->basic_type());
 187   } else {
 188     return TypeOopPtr::make_from_klass(type->as_klass());
 189   }
 190 }
 191 
 192 //---------------------------array_element_basic_type---------------------------------
 193 // Mapping to the array element's basic type.
 194 BasicType Type::array_element_basic_type() const {
 195   BasicType bt = basic_type();
 196   if (bt == T_INT) {
 197     if (this == TypeInt::INT)   return T_INT;
 198     if (this == TypeInt::CHAR)  return T_CHAR;
 199     if (this == TypeInt::BYTE)  return T_BYTE;
 200     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 201     if (this == TypeInt::SHORT) return T_SHORT;
 202     return T_VOID;
 203   }
 204   return bt;
 205 }
 206 
 207 // For two instance arrays of same dimension, return the base element types.
 208 // Otherwise or if the arrays have different dimensions, return NULL.
 209 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 210                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 211 
 212   if (e1) *e1 = NULL;
 213   if (e2) *e2 = NULL;
 214   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 215   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 216 
 217   if (a1tap != NULL && a2tap != NULL) {
 218     // Handle multidimensional arrays
 219     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 220     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 221     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 222       a1tap = a1tp->is_aryptr();
 223       a2tap = a2tp->is_aryptr();
 224       a1tp = a1tap->elem()->make_ptr();
 225       a2tp = a2tap->elem()->make_ptr();
 226     }
 227     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 228       if (e1) *e1 = a1tp->is_instptr();
 229       if (e2) *e2 = a2tp->is_instptr();
 230     }
 231   }
 232 }
 233 
 234 //---------------------------get_typeflow_type---------------------------------
 235 // Import a type produced by ciTypeFlow.
 236 const Type* Type::get_typeflow_type(ciType* type) {
 237   switch (type->basic_type()) {
 238 
 239   case ciTypeFlow::StateVector::T_BOTTOM:
 240     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 241     return Type::BOTTOM;
 242 
 243   case ciTypeFlow::StateVector::T_TOP:
 244     assert(type == ciTypeFlow::StateVector::top_type(), "");
 245     return Type::TOP;
 246 
 247   case ciTypeFlow::StateVector::T_NULL:
 248     assert(type == ciTypeFlow::StateVector::null_type(), "");
 249     return TypePtr::NULL_PTR;
 250 
 251   case ciTypeFlow::StateVector::T_LONG2:
 252     // The ciTypeFlow pass pushes a long, then the half.
 253     // We do the same.
 254     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 255     return TypeInt::TOP;
 256 
 257   case ciTypeFlow::StateVector::T_DOUBLE2:
 258     // The ciTypeFlow pass pushes double, then the half.
 259     // Our convention is the same.
 260     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 261     return Type::TOP;
 262 
 263   case T_ADDRESS:
 264     assert(type->is_return_address(), "");
 265     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 266 
 267   case T_VALUETYPE: {
 268     bool is_never_null = type->is_never_null();
 269     ciValueKlass* vk = type->unwrap()->as_value_klass();
 270     if (vk->is_scalarizable() && is_never_null) {
 271       return TypeValueType::make(vk);
 272     } else {
 273       return TypeOopPtr::make_from_klass(vk)->join_speculative(is_never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 274     }
 275   }
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 297     case T_CHAR:     return TypeInt::make(constant.as_char());
 298     case T_BYTE:     return TypeInt::make(constant.as_byte());
 299     case T_SHORT:    return TypeInt::make(constant.as_short());
 300     case T_INT:      return TypeInt::make(constant.as_int());
 301     case T_LONG:     return TypeLong::make(constant.as_long());
 302     case T_FLOAT:    return TypeF::make(constant.as_float());
 303     case T_DOUBLE:   return TypeD::make(constant.as_double());
 304     case T_ARRAY:
 305     case T_VALUETYPE:
 306     case T_OBJECT: {
 307         const Type* con_type = NULL;
 308         ciObject* oop_constant = constant.as_object();
 309         if (oop_constant->is_null_object()) {
 310           con_type = Type::get_zero_type(T_OBJECT);
 311         } else {
 312           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 313           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 314           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 315             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 316           }
 317           if (stable_dimension > 0) {
 318             assert(FoldStableValues, "sanity");
 319             assert(!con_type->is_zero_type(), "default value for stable field");
 320             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 321           }
 322         }
 323         if (is_narrow_oop) {
 324           con_type = con_type->make_narrowoop();
 325         }
 326         return con_type;
 327       }
 328     case T_ILLEGAL:
 329       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 330       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 331       return NULL;
 332     default:
 333       // Fall through to failure
 334       return NULL;
 335   }
 336 }
 337 
 338 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 339   BasicType conbt = con.basic_type();
 340   switch (conbt) {
 341     case T_BOOLEAN: conbt = T_BYTE;   break;
 342     case T_ARRAY:   conbt = T_OBJECT; break;
 343     case T_VALUETYPE: conbt = T_OBJECT; break;
 344     default:                          break;
 345   }
 346   switch (loadbt) {
 347     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 348     case T_NARROWOOP: loadbt = T_OBJECT; break;
 349     case T_ARRAY:     loadbt = T_OBJECT; break;
 350     case T_VALUETYPE: loadbt = T_OBJECT; break;
 351     case T_ADDRESS:   loadbt = T_OBJECT; break;
 352     default:                             break;
 353   }
 354   if (conbt == loadbt) {
 355     if (is_unsigned && conbt == T_BYTE) {
 356       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 357       return ciConstant(T_INT, con.as_int() & 0xFF);
 358     } else {
 359       return con;
 360     }
 361   }
 362   if (conbt == T_SHORT && loadbt == T_CHAR) {
 363     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 364     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 365   }
 366   return ciConstant(); // T_ILLEGAL
 367 }
 368 
 369 // Try to constant-fold a stable array element.
 370 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 371                                                    BasicType loadbt, bool is_unsigned_load) {
 372   // Decode the results of GraphKit::array_element_address.
 373   ciConstant element_value = array->element_value_by_offset(off);
 374   if (element_value.basic_type() == T_ILLEGAL) {
 375     return NULL; // wrong offset
 376   }
 377   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 378 
 379   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 380          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 381 
 382   if (con.is_valid() &&          // not a mismatched access
 383       !con.is_null_or_zero()) {  // not a default value
 384     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 385     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 386   }
 387   return NULL;
 388 }
 389 
 390 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 391   ciField* field;
 392   ciType* type = holder->java_mirror_type();
 393   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 394     // Static field
 395     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 396   } else {
 397     // Instance field
 398     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 399   }
 400   if (field == NULL) {
 401     return NULL; // Wrong offset
 402   }
 403   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 404 }
 405 
 406 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 407                                            BasicType loadbt, bool is_unsigned_load) {
 408   if (!field->is_constant()) {
 409     return NULL; // Non-constant field
 410   }
 411   ciConstant field_value;
 412   if (field->is_static()) {
 413     // final static field
 414     field_value = field->constant_value();
 415   } else if (holder != NULL) {
 416     // final or stable non-static field
 417     // Treat final non-static fields of trusted classes (classes in
 418     // java.lang.invoke and sun.invoke packages and subpackages) as
 419     // compile time constants.
 420     field_value = field->constant_value_of(holder);
 421   }
 422   if (!field_value.is_valid()) {
 423     return NULL; // Not a constant
 424   }
 425 
 426   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 427 
 428   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 429          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 430 
 431   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 432   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 433   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 434 
 435   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 436                                             stable_dimension, is_narrow_oop,
 437                                             field->is_autobox_cache());
 438   if (con_type != NULL && field->is_call_site_target()) {
 439     ciCallSite* call_site = holder->as_call_site();
 440     if (!call_site->is_constant_call_site()) {
 441       ciMethodHandle* target = con.as_object()->as_method_handle();
 442       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 443     }
 444   }
 445   return con_type;
 446 }
 447 
 448 //------------------------------make-------------------------------------------
 449 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 450 // and look for an existing copy in the type dictionary.
 451 const Type *Type::make( enum TYPES t ) {
 452   return (new Type(t))->hashcons();
 453 }
 454 
 455 //------------------------------cmp--------------------------------------------
 456 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 457   if( t1->_base != t2->_base )
 458     return 1;                   // Missed badly
 459   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 460   return !t1->eq(t2);           // Return ZERO if equal
 461 }
 462 
 463 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 464   if (!include_speculative) {
 465     return remove_speculative();
 466   }
 467   return this;
 468 }
 469 
 470 //------------------------------hash-------------------------------------------
 471 int Type::uhash( const Type *const t ) {
 472   return t->hash();
 473 }
 474 
 475 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 476 
 477 static double pos_dinf() {
 478   union { int64_t i; double d; } v;
 479   v.i = CONST64(0x7ff0000000000000);
 480   return v.d;
 481 }
 482 
 483 static float pos_finf() {
 484   union { int32_t i; float f; } v;
 485   v.i = 0x7f800000;
 486   return v.f;
 487 }
 488 
 489 //--------------------------Initialize_shared----------------------------------
 490 void Type::Initialize_shared(Compile* current) {
 491   // This method does not need to be locked because the first system
 492   // compilations (stub compilations) occur serially.  If they are
 493   // changed to proceed in parallel, then this section will need
 494   // locking.
 495 
 496   Arena* save = current->type_arena();
 497   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 498 
 499   current->set_type_arena(shared_type_arena);
 500   _shared_type_dict =
 501     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 502                                   shared_type_arena, 128 );
 503   current->set_type_dict(_shared_type_dict);
 504 
 505   // Make shared pre-built types.
 506   CONTROL = make(Control);      // Control only
 507   TOP     = make(Top);          // No values in set
 508   MEMORY  = make(Memory);       // Abstract store only
 509   ABIO    = make(Abio);         // State-of-machine only
 510   RETURN_ADDRESS=make(Return_Address);
 511   FLOAT   = make(FloatBot);     // All floats
 512   DOUBLE  = make(DoubleBot);    // All doubles
 513   BOTTOM  = make(Bottom);       // Everything
 514   HALF    = make(Half);         // Placeholder half of doublewide type
 515 
 516   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 517   TypeF::ONE  = TypeF::make(1.0); // Float 1
 518   TypeF::POS_INF = TypeF::make(pos_finf());
 519   TypeF::NEG_INF = TypeF::make(-pos_finf());
 520 
 521   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 522   TypeD::ONE  = TypeD::make(1.0); // Double 1
 523   TypeD::POS_INF = TypeD::make(pos_dinf());
 524   TypeD::NEG_INF = TypeD::make(-pos_dinf());
 525 
 526   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 527   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 528   TypeInt::ONE     = TypeInt::make( 1);  //  1
 529   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 530   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 531   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 532   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 533   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 534   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 535   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 536   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 537   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 538   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 539   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 540   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 541   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 542   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 543   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 544   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 545   // CmpL is overloaded both as the bytecode computation returning
 546   // a trinary (-1,0,+1) integer result AND as an efficient long
 547   // compare returning optimizer ideal-type flags.
 548   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 549   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 550   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 551   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 552   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 553 
 554   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 555   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 556   TypeLong::ONE     = TypeLong::make( 1);        //  1
 557   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 558   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 559   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 560   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 561   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 562 
 563   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 564   fboth[0] = Type::CONTROL;
 565   fboth[1] = Type::CONTROL;
 566   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 567 
 568   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 569   ffalse[0] = Type::CONTROL;
 570   ffalse[1] = Type::TOP;
 571   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 572 
 573   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 574   fneither[0] = Type::TOP;
 575   fneither[1] = Type::TOP;
 576   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 577 
 578   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 579   ftrue[0] = Type::TOP;
 580   ftrue[1] = Type::CONTROL;
 581   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 582 
 583   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 584   floop[0] = Type::CONTROL;
 585   floop[1] = TypeInt::INT;
 586   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 587 
 588   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 589   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 590   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 591 
 592   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 593   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 594 
 595   const Type **fmembar = TypeTuple::fields(0);
 596   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 597 
 598   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 599   fsc[0] = TypeInt::CC;
 600   fsc[1] = Type::MEMORY;
 601   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 602 
 603   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 604   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 605   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 606   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 607                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 608   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 609                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 610   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 611 
 612   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 613 
 614   TypeValueType::BOTTOM = TypeValueType::make(NULL);
 615 
 616   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 617   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 618 
 619   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 620 
 621   mreg2type[Op_Node] = Type::BOTTOM;
 622   mreg2type[Op_Set ] = 0;
 623   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 624   mreg2type[Op_RegI] = TypeInt::INT;
 625   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 626   mreg2type[Op_RegF] = Type::FLOAT;
 627   mreg2type[Op_RegD] = Type::DOUBLE;
 628   mreg2type[Op_RegL] = TypeLong::LONG;
 629   mreg2type[Op_RegFlags] = TypeInt::CC;
 630 
 631   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 632 
 633   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 634 
 635 #ifdef _LP64
 636   if (UseCompressedOops) {
 637     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 638     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 639   } else
 640 #endif
 641   {
 642     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 643     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 644   }
 645   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 646   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 647   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 648   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 649   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 650   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 651   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 652   TypeAryPtr::VALUES  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeValueType::BOTTOM,TypeInt::POS), NULL, false,  Offset::bottom);
 653 
 654   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 655   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 656   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 657   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 658   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 659   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 660   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 661   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 662   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 663   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 664   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 665   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 666   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 667 
 668   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 669   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 670 
 671   const Type **fi2c = TypeTuple::fields(2);
 672   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 673   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 674   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 675 
 676   const Type **intpair = TypeTuple::fields(2);
 677   intpair[0] = TypeInt::INT;
 678   intpair[1] = TypeInt::INT;
 679   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 680 
 681   const Type **longpair = TypeTuple::fields(2);
 682   longpair[0] = TypeLong::LONG;
 683   longpair[1] = TypeLong::LONG;
 684   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 685 
 686   const Type **intccpair = TypeTuple::fields(2);
 687   intccpair[0] = TypeInt::INT;
 688   intccpair[1] = TypeInt::CC;
 689   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 690 
 691   const Type **longccpair = TypeTuple::fields(2);
 692   longccpair[0] = TypeLong::LONG;
 693   longccpair[1] = TypeInt::CC;
 694   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 695 
 696   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 697   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 698   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 699   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 700   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 701   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 702   _const_basic_type[T_INT]         = TypeInt::INT;
 703   _const_basic_type[T_LONG]        = TypeLong::LONG;
 704   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 705   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 706   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 707   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 708   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 709   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 710   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 711   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 712 
 713   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 714   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 715   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 716   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 717   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 718   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 719   _zero_type[T_INT]         = TypeInt::ZERO;
 720   _zero_type[T_LONG]        = TypeLong::ZERO;
 721   _zero_type[T_FLOAT]       = TypeF::ZERO;
 722   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 723   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 724   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 725   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 726   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 727   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 728 
 729   // get_zero_type() should not happen for T_CONFLICT
 730   _zero_type[T_CONFLICT]= NULL;
 731 
 732   // Vector predefined types, it needs initialized _const_basic_type[].
 733   if (Matcher::vector_size_supported(T_BYTE,4)) {
 734     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 735   }
 736   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 737     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 738   }
 739   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 740     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 741   }
 742   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 743     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 744   }
 745   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 746     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 747   }
 748   mreg2type[Op_VecS] = TypeVect::VECTS;
 749   mreg2type[Op_VecD] = TypeVect::VECTD;
 750   mreg2type[Op_VecX] = TypeVect::VECTX;
 751   mreg2type[Op_VecY] = TypeVect::VECTY;
 752   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 753 
 754   // Restore working type arena.
 755   current->set_type_arena(save);
 756   current->set_type_dict(NULL);
 757 }
 758 
 759 //------------------------------Initialize-------------------------------------
 760 void Type::Initialize(Compile* current) {
 761   assert(current->type_arena() != NULL, "must have created type arena");
 762 
 763   if (_shared_type_dict == NULL) {
 764     Initialize_shared(current);
 765   }
 766 
 767   Arena* type_arena = current->type_arena();
 768 
 769   // Create the hash-cons'ing dictionary with top-level storage allocation
 770   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 771   current->set_type_dict(tdic);
 772 
 773   // Transfer the shared types.
 774   DictI i(_shared_type_dict);
 775   for( ; i.test(); ++i ) {
 776     Type* t = (Type*)i._value;
 777     tdic->Insert(t,t);  // New Type, insert into Type table
 778   }
 779 }
 780 
 781 //------------------------------hashcons---------------------------------------
 782 // Do the hash-cons trick.  If the Type already exists in the type table,
 783 // delete the current Type and return the existing Type.  Otherwise stick the
 784 // current Type in the Type table.
 785 const Type *Type::hashcons(void) {
 786   debug_only(base());           // Check the assertion in Type::base().
 787   // Look up the Type in the Type dictionary
 788   Dict *tdic = type_dict();
 789   Type* old = (Type*)(tdic->Insert(this, this, false));
 790   if( old ) {                   // Pre-existing Type?
 791     if( old != this )           // Yes, this guy is not the pre-existing?
 792       delete this;              // Yes, Nuke this guy
 793     assert( old->_dual, "" );
 794     return old;                 // Return pre-existing
 795   }
 796 
 797   // Every type has a dual (to make my lattice symmetric).
 798   // Since we just discovered a new Type, compute its dual right now.
 799   assert( !_dual, "" );         // No dual yet
 800   _dual = xdual();              // Compute the dual
 801   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 802     _dual = this;
 803     return this;
 804   }
 805   assert( !_dual->_dual, "" );  // No reverse dual yet
 806   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 807   // New Type, insert into Type table
 808   tdic->Insert((void*)_dual,(void*)_dual);
 809   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 810 #ifdef ASSERT
 811   Type *dual_dual = (Type*)_dual->xdual();
 812   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 813   delete dual_dual;
 814 #endif
 815   return this;                  // Return new Type
 816 }
 817 
 818 //------------------------------eq---------------------------------------------
 819 // Structural equality check for Type representations
 820 bool Type::eq( const Type * ) const {
 821   return true;                  // Nothing else can go wrong
 822 }
 823 
 824 //------------------------------hash-------------------------------------------
 825 // Type-specific hashing function.
 826 int Type::hash(void) const {
 827   return _base;
 828 }
 829 
 830 //------------------------------is_finite--------------------------------------
 831 // Has a finite value
 832 bool Type::is_finite() const {
 833   return false;
 834 }
 835 
 836 //------------------------------is_nan-----------------------------------------
 837 // Is not a number (NaN)
 838 bool Type::is_nan()    const {
 839   return false;
 840 }
 841 
 842 //----------------------interface_vs_oop---------------------------------------
 843 #ifdef ASSERT
 844 bool Type::interface_vs_oop_helper(const Type *t) const {
 845   bool result = false;
 846 
 847   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 848   const TypePtr*    t_ptr =    t->make_ptr();
 849   if( this_ptr == NULL || t_ptr == NULL )
 850     return result;
 851 
 852   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 853   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 854   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 855     bool this_interface = this_inst->klass()->is_interface();
 856     bool    t_interface =    t_inst->klass()->is_interface();
 857     result = this_interface ^ t_interface;
 858   }
 859 
 860   return result;
 861 }
 862 
 863 bool Type::interface_vs_oop(const Type *t) const {
 864   if (interface_vs_oop_helper(t)) {
 865     return true;
 866   }
 867   // Now check the speculative parts as well
 868   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 869   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 870   if (this_spec != NULL && t_spec != NULL) {
 871     if (this_spec->interface_vs_oop_helper(t_spec)) {
 872       return true;
 873     }
 874     return false;
 875   }
 876   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 877     return true;
 878   }
 879   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 880     return true;
 881   }
 882   return false;
 883 }
 884 
 885 #endif
 886 
 887 //------------------------------meet-------------------------------------------
 888 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 889 // commutative and the lattice is symmetric.
 890 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 891   if (isa_narrowoop() && t->isa_narrowoop()) {
 892     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 893     return result->make_narrowoop();
 894   }
 895   if (isa_narrowklass() && t->isa_narrowklass()) {
 896     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 897     return result->make_narrowklass();
 898   }
 899 
 900   const Type *this_t = maybe_remove_speculative(include_speculative);
 901   t = t->maybe_remove_speculative(include_speculative);
 902 
 903   const Type *mt = this_t->xmeet(t);
 904   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 905   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 906 #ifdef ASSERT
 907   assert(mt == t->xmeet(this_t), "meet not commutative");
 908   const Type* dual_join = mt->_dual;
 909   const Type *t2t    = dual_join->xmeet(t->_dual);
 910   const Type *t2this = dual_join->xmeet(this_t->_dual);
 911 
 912   // Interface meet Oop is Not Symmetric:
 913   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 914   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 915 
 916   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 917     tty->print_cr("=== Meet Not Symmetric ===");
 918     tty->print("t   =                   ");              t->dump(); tty->cr();
 919     tty->print("this=                   ");         this_t->dump(); tty->cr();
 920     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 921 
 922     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 923     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 924     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 925 
 926     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 927     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 928 
 929     fatal("meet not symmetric" );
 930   }
 931 #endif
 932   return mt;
 933 }
 934 
 935 //------------------------------xmeet------------------------------------------
 936 // Compute the MEET of two types.  It returns a new Type object.
 937 const Type *Type::xmeet( const Type *t ) const {
 938   // Perform a fast test for common case; meeting the same types together.
 939   if( this == t ) return this;  // Meeting same type-rep?
 940 
 941   // Meeting TOP with anything?
 942   if( _base == Top ) return t;
 943 
 944   // Meeting BOTTOM with anything?
 945   if( _base == Bottom ) return BOTTOM;
 946 
 947   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 948   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 949   switch (t->base()) {  // Switch on original type
 950 
 951   // Cut in half the number of cases I must handle.  Only need cases for when
 952   // the given enum "t->type" is less than or equal to the local enum "type".
 953   case FloatCon:
 954   case DoubleCon:
 955   case Int:
 956   case Long:
 957     return t->xmeet(this);
 958 
 959   case OopPtr:
 960     return t->xmeet(this);
 961 
 962   case InstPtr:
 963     return t->xmeet(this);
 964 
 965   case MetadataPtr:
 966   case KlassPtr:
 967     return t->xmeet(this);
 968 
 969   case AryPtr:
 970     return t->xmeet(this);
 971 
 972   case NarrowOop:
 973     return t->xmeet(this);
 974 
 975   case NarrowKlass:
 976     return t->xmeet(this);
 977 
 978   case ValueType:
 979     return t->xmeet(this);
 980 
 981   case Bad:                     // Type check
 982   default:                      // Bogus type not in lattice
 983     typerr(t);
 984     return Type::BOTTOM;
 985 
 986   case Bottom:                  // Ye Olde Default
 987     return t;
 988 
 989   case FloatTop:
 990     if( _base == FloatTop ) return this;
 991   case FloatBot:                // Float
 992     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 993     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 994     typerr(t);
 995     return Type::BOTTOM;
 996 
 997   case DoubleTop:
 998     if( _base == DoubleTop ) return this;
 999   case DoubleBot:               // Double
1000     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
1001     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
1002     typerr(t);
1003     return Type::BOTTOM;
1004 
1005   // These next few cases must match exactly or it is a compile-time error.
1006   case Control:                 // Control of code
1007   case Abio:                    // State of world outside of program
1008   case Memory:
1009     if( _base == t->_base )  return this;
1010     typerr(t);
1011     return Type::BOTTOM;
1012 
1013   case Top:                     // Top of the lattice
1014     return this;
1015   }
1016 
1017   // The type is unchanged
1018   return this;
1019 }
1020 
1021 //-----------------------------filter------------------------------------------
1022 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1023   const Type* ft = join_helper(kills, include_speculative);
1024   if (ft->empty())
1025     return Type::TOP;           // Canonical empty value
1026   return ft;
1027 }
1028 
1029 //------------------------------xdual------------------------------------------
1030 // Compute dual right now.
1031 const Type::TYPES Type::dual_type[Type::lastype] = {
1032   Bad,          // Bad
1033   Control,      // Control
1034   Bottom,       // Top
1035   Bad,          // Int - handled in v-call
1036   Bad,          // Long - handled in v-call
1037   Half,         // Half
1038   Bad,          // NarrowOop - handled in v-call
1039   Bad,          // NarrowKlass - handled in v-call
1040 
1041   Bad,          // Tuple - handled in v-call
1042   Bad,          // Array - handled in v-call
1043   Bad,          // VectorS - handled in v-call
1044   Bad,          // VectorD - handled in v-call
1045   Bad,          // VectorX - handled in v-call
1046   Bad,          // VectorY - handled in v-call
1047   Bad,          // VectorZ - handled in v-call
1048   Bad,          // ValueType - handled in v-call
1049 
1050   Bad,          // AnyPtr - handled in v-call
1051   Bad,          // RawPtr - handled in v-call
1052   Bad,          // OopPtr - handled in v-call
1053   Bad,          // InstPtr - handled in v-call
1054   Bad,          // AryPtr - handled in v-call
1055 
1056   Bad,          //  MetadataPtr - handled in v-call
1057   Bad,          // KlassPtr - handled in v-call
1058 
1059   Bad,          // Function - handled in v-call
1060   Abio,         // Abio
1061   Return_Address,// Return_Address
1062   Memory,       // Memory
1063   FloatBot,     // FloatTop
1064   FloatCon,     // FloatCon
1065   FloatTop,     // FloatBot
1066   DoubleBot,    // DoubleTop
1067   DoubleCon,    // DoubleCon
1068   DoubleTop,    // DoubleBot
1069   Top           // Bottom
1070 };
1071 
1072 const Type *Type::xdual() const {
1073   // Note: the base() accessor asserts the sanity of _base.
1074   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1075   return new Type(_type_info[_base].dual_type);
1076 }
1077 
1078 //------------------------------has_memory-------------------------------------
1079 bool Type::has_memory() const {
1080   Type::TYPES tx = base();
1081   if (tx == Memory) return true;
1082   if (tx == Tuple) {
1083     const TypeTuple *t = is_tuple();
1084     for (uint i=0; i < t->cnt(); i++) {
1085       tx = t->field_at(i)->base();
1086       if (tx == Memory)  return true;
1087     }
1088   }
1089   return false;
1090 }
1091 
1092 #ifndef PRODUCT
1093 //------------------------------dump2------------------------------------------
1094 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1095   st->print("%s", _type_info[_base].msg);
1096 }
1097 
1098 //------------------------------dump-------------------------------------------
1099 void Type::dump_on(outputStream *st) const {
1100   ResourceMark rm;
1101   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1102   dump2(d,1, st);
1103   if (is_ptr_to_narrowoop()) {
1104     st->print(" [narrow]");
1105   } else if (is_ptr_to_narrowklass()) {
1106     st->print(" [narrowklass]");
1107   }
1108 }
1109 
1110 //-----------------------------------------------------------------------------
1111 const char* Type::str(const Type* t) {
1112   stringStream ss;
1113   t->dump_on(&ss);
1114   return ss.as_string();
1115 }
1116 #endif
1117 
1118 //------------------------------singleton--------------------------------------
1119 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1120 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1121 bool Type::singleton(void) const {
1122   return _base == Top || _base == Half;
1123 }
1124 
1125 //------------------------------empty------------------------------------------
1126 // TRUE if Type is a type with no values, FALSE otherwise.
1127 bool Type::empty(void) const {
1128   switch (_base) {
1129   case DoubleTop:
1130   case FloatTop:
1131   case Top:
1132     return true;
1133 
1134   case Half:
1135   case Abio:
1136   case Return_Address:
1137   case Memory:
1138   case Bottom:
1139   case FloatBot:
1140   case DoubleBot:
1141     return false;  // never a singleton, therefore never empty
1142 
1143   default:
1144     ShouldNotReachHere();
1145     return false;
1146   }
1147 }
1148 
1149 //------------------------------dump_stats-------------------------------------
1150 // Dump collected statistics to stderr
1151 #ifndef PRODUCT
1152 void Type::dump_stats() {
1153   tty->print("Types made: %d\n", type_dict()->Size());
1154 }
1155 #endif
1156 
1157 //------------------------------typerr-----------------------------------------
1158 void Type::typerr( const Type *t ) const {
1159 #ifndef PRODUCT
1160   tty->print("\nError mixing types: ");
1161   dump();
1162   tty->print(" and ");
1163   t->dump();
1164   tty->print("\n");
1165 #endif
1166   ShouldNotReachHere();
1167 }
1168 
1169 
1170 //=============================================================================
1171 // Convenience common pre-built types.
1172 const TypeF *TypeF::ZERO;       // Floating point zero
1173 const TypeF *TypeF::ONE;        // Floating point one
1174 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1175 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1176 
1177 //------------------------------make-------------------------------------------
1178 // Create a float constant
1179 const TypeF *TypeF::make(float f) {
1180   return (TypeF*)(new TypeF(f))->hashcons();
1181 }
1182 
1183 //------------------------------meet-------------------------------------------
1184 // Compute the MEET of two types.  It returns a new Type object.
1185 const Type *TypeF::xmeet( const Type *t ) const {
1186   // Perform a fast test for common case; meeting the same types together.
1187   if( this == t ) return this;  // Meeting same type-rep?
1188 
1189   // Current "this->_base" is FloatCon
1190   switch (t->base()) {          // Switch on original type
1191   case AnyPtr:                  // Mixing with oops happens when javac
1192   case RawPtr:                  // reuses local variables
1193   case OopPtr:
1194   case InstPtr:
1195   case AryPtr:
1196   case MetadataPtr:
1197   case KlassPtr:
1198   case NarrowOop:
1199   case NarrowKlass:
1200   case Int:
1201   case Long:
1202   case DoubleTop:
1203   case DoubleCon:
1204   case DoubleBot:
1205   case Bottom:                  // Ye Olde Default
1206     return Type::BOTTOM;
1207 
1208   case FloatBot:
1209     return t;
1210 
1211   default:                      // All else is a mistake
1212     typerr(t);
1213 
1214   case FloatCon:                // Float-constant vs Float-constant?
1215     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1216                                 // must compare bitwise as positive zero, negative zero and NaN have
1217                                 // all the same representation in C++
1218       return FLOAT;             // Return generic float
1219                                 // Equal constants
1220   case Top:
1221   case FloatTop:
1222     break;                      // Return the float constant
1223   }
1224   return this;                  // Return the float constant
1225 }
1226 
1227 //------------------------------xdual------------------------------------------
1228 // Dual: symmetric
1229 const Type *TypeF::xdual() const {
1230   return this;
1231 }
1232 
1233 //------------------------------eq---------------------------------------------
1234 // Structural equality check for Type representations
1235 bool TypeF::eq(const Type *t) const {
1236   // Bitwise comparison to distinguish between +/-0. These values must be treated
1237   // as different to be consistent with C1 and the interpreter.
1238   return (jint_cast(_f) == jint_cast(t->getf()));
1239 }
1240 
1241 //------------------------------hash-------------------------------------------
1242 // Type-specific hashing function.
1243 int TypeF::hash(void) const {
1244   return *(int*)(&_f);
1245 }
1246 
1247 //------------------------------is_finite--------------------------------------
1248 // Has a finite value
1249 bool TypeF::is_finite() const {
1250   return g_isfinite(getf()) != 0;
1251 }
1252 
1253 //------------------------------is_nan-----------------------------------------
1254 // Is not a number (NaN)
1255 bool TypeF::is_nan()    const {
1256   return g_isnan(getf()) != 0;
1257 }
1258 
1259 //------------------------------dump2------------------------------------------
1260 // Dump float constant Type
1261 #ifndef PRODUCT
1262 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1263   Type::dump2(d,depth, st);
1264   st->print("%f", _f);
1265 }
1266 #endif
1267 
1268 //------------------------------singleton--------------------------------------
1269 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1270 // constants (Ldi nodes).  Singletons are integer, float or double constants
1271 // or a single symbol.
1272 bool TypeF::singleton(void) const {
1273   return true;                  // Always a singleton
1274 }
1275 
1276 bool TypeF::empty(void) const {
1277   return false;                 // always exactly a singleton
1278 }
1279 
1280 //=============================================================================
1281 // Convenience common pre-built types.
1282 const TypeD *TypeD::ZERO;       // Floating point zero
1283 const TypeD *TypeD::ONE;        // Floating point one
1284 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1285 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1286 
1287 //------------------------------make-------------------------------------------
1288 const TypeD *TypeD::make(double d) {
1289   return (TypeD*)(new TypeD(d))->hashcons();
1290 }
1291 
1292 //------------------------------meet-------------------------------------------
1293 // Compute the MEET of two types.  It returns a new Type object.
1294 const Type *TypeD::xmeet( const Type *t ) const {
1295   // Perform a fast test for common case; meeting the same types together.
1296   if( this == t ) return this;  // Meeting same type-rep?
1297 
1298   // Current "this->_base" is DoubleCon
1299   switch (t->base()) {          // Switch on original type
1300   case AnyPtr:                  // Mixing with oops happens when javac
1301   case RawPtr:                  // reuses local variables
1302   case OopPtr:
1303   case InstPtr:
1304   case AryPtr:
1305   case MetadataPtr:
1306   case KlassPtr:
1307   case NarrowOop:
1308   case NarrowKlass:
1309   case Int:
1310   case Long:
1311   case FloatTop:
1312   case FloatCon:
1313   case FloatBot:
1314   case Bottom:                  // Ye Olde Default
1315     return Type::BOTTOM;
1316 
1317   case DoubleBot:
1318     return t;
1319 
1320   default:                      // All else is a mistake
1321     typerr(t);
1322 
1323   case DoubleCon:               // Double-constant vs Double-constant?
1324     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1325       return DOUBLE;            // Return generic double
1326   case Top:
1327   case DoubleTop:
1328     break;
1329   }
1330   return this;                  // Return the double constant
1331 }
1332 
1333 //------------------------------xdual------------------------------------------
1334 // Dual: symmetric
1335 const Type *TypeD::xdual() const {
1336   return this;
1337 }
1338 
1339 //------------------------------eq---------------------------------------------
1340 // Structural equality check for Type representations
1341 bool TypeD::eq(const Type *t) const {
1342   // Bitwise comparison to distinguish between +/-0. These values must be treated
1343   // as different to be consistent with C1 and the interpreter.
1344   return (jlong_cast(_d) == jlong_cast(t->getd()));
1345 }
1346 
1347 //------------------------------hash-------------------------------------------
1348 // Type-specific hashing function.
1349 int TypeD::hash(void) const {
1350   return *(int*)(&_d);
1351 }
1352 
1353 //------------------------------is_finite--------------------------------------
1354 // Has a finite value
1355 bool TypeD::is_finite() const {
1356   return g_isfinite(getd()) != 0;
1357 }
1358 
1359 //------------------------------is_nan-----------------------------------------
1360 // Is not a number (NaN)
1361 bool TypeD::is_nan()    const {
1362   return g_isnan(getd()) != 0;
1363 }
1364 
1365 //------------------------------dump2------------------------------------------
1366 // Dump double constant Type
1367 #ifndef PRODUCT
1368 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1369   Type::dump2(d,depth,st);
1370   st->print("%f", _d);
1371 }
1372 #endif
1373 
1374 //------------------------------singleton--------------------------------------
1375 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1376 // constants (Ldi nodes).  Singletons are integer, float or double constants
1377 // or a single symbol.
1378 bool TypeD::singleton(void) const {
1379   return true;                  // Always a singleton
1380 }
1381 
1382 bool TypeD::empty(void) const {
1383   return false;                 // always exactly a singleton
1384 }
1385 
1386 //=============================================================================
1387 // Convience common pre-built types.
1388 const TypeInt *TypeInt::MINUS_1;// -1
1389 const TypeInt *TypeInt::ZERO;   // 0
1390 const TypeInt *TypeInt::ONE;    // 1
1391 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1392 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1393 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1394 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1395 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1396 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1397 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1398 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1399 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1400 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1401 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1402 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1403 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1404 const TypeInt *TypeInt::INT;    // 32-bit integers
1405 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1406 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1407 
1408 //------------------------------TypeInt----------------------------------------
1409 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1410 }
1411 
1412 //------------------------------make-------------------------------------------
1413 const TypeInt *TypeInt::make( jint lo ) {
1414   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1415 }
1416 
1417 static int normalize_int_widen( jint lo, jint hi, int w ) {
1418   // Certain normalizations keep us sane when comparing types.
1419   // The 'SMALLINT' covers constants and also CC and its relatives.
1420   if (lo <= hi) {
1421     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1422     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1423   } else {
1424     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1425     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1426   }
1427   return w;
1428 }
1429 
1430 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1431   w = normalize_int_widen(lo, hi, w);
1432   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1433 }
1434 
1435 //------------------------------meet-------------------------------------------
1436 // Compute the MEET of two types.  It returns a new Type representation object
1437 // with reference count equal to the number of Types pointing at it.
1438 // Caller should wrap a Types around it.
1439 const Type *TypeInt::xmeet( const Type *t ) const {
1440   // Perform a fast test for common case; meeting the same types together.
1441   if( this == t ) return this;  // Meeting same type?
1442 
1443   // Currently "this->_base" is a TypeInt
1444   switch (t->base()) {          // Switch on original type
1445   case AnyPtr:                  // Mixing with oops happens when javac
1446   case RawPtr:                  // reuses local variables
1447   case OopPtr:
1448   case InstPtr:
1449   case AryPtr:
1450   case MetadataPtr:
1451   case KlassPtr:
1452   case NarrowOop:
1453   case NarrowKlass:
1454   case Long:
1455   case FloatTop:
1456   case FloatCon:
1457   case FloatBot:
1458   case DoubleTop:
1459   case DoubleCon:
1460   case DoubleBot:
1461   case Bottom:                  // Ye Olde Default
1462     return Type::BOTTOM;
1463   default:                      // All else is a mistake
1464     typerr(t);
1465   case Top:                     // No change
1466     return this;
1467   case Int:                     // Int vs Int?
1468     break;
1469   }
1470 
1471   // Expand covered set
1472   const TypeInt *r = t->is_int();
1473   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1474 }
1475 
1476 //------------------------------xdual------------------------------------------
1477 // Dual: reverse hi & lo; flip widen
1478 const Type *TypeInt::xdual() const {
1479   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1480   return new TypeInt(_hi,_lo,w);
1481 }
1482 
1483 //------------------------------widen------------------------------------------
1484 // Only happens for optimistic top-down optimizations.
1485 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1486   // Coming from TOP or such; no widening
1487   if( old->base() != Int ) return this;
1488   const TypeInt *ot = old->is_int();
1489 
1490   // If new guy is equal to old guy, no widening
1491   if( _lo == ot->_lo && _hi == ot->_hi )
1492     return old;
1493 
1494   // If new guy contains old, then we widened
1495   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1496     // New contains old
1497     // If new guy is already wider than old, no widening
1498     if( _widen > ot->_widen ) return this;
1499     // If old guy was a constant, do not bother
1500     if (ot->_lo == ot->_hi)  return this;
1501     // Now widen new guy.
1502     // Check for widening too far
1503     if (_widen == WidenMax) {
1504       int max = max_jint;
1505       int min = min_jint;
1506       if (limit->isa_int()) {
1507         max = limit->is_int()->_hi;
1508         min = limit->is_int()->_lo;
1509       }
1510       if (min < _lo && _hi < max) {
1511         // If neither endpoint is extremal yet, push out the endpoint
1512         // which is closer to its respective limit.
1513         if (_lo >= 0 ||                 // easy common case
1514             (juint)(_lo - min) >= (juint)(max - _hi)) {
1515           // Try to widen to an unsigned range type of 31 bits:
1516           return make(_lo, max, WidenMax);
1517         } else {
1518           return make(min, _hi, WidenMax);
1519         }
1520       }
1521       return TypeInt::INT;
1522     }
1523     // Returned widened new guy
1524     return make(_lo,_hi,_widen+1);
1525   }
1526 
1527   // If old guy contains new, then we probably widened too far & dropped to
1528   // bottom.  Return the wider fellow.
1529   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1530     return old;
1531 
1532   //fatal("Integer value range is not subset");
1533   //return this;
1534   return TypeInt::INT;
1535 }
1536 
1537 //------------------------------narrow---------------------------------------
1538 // Only happens for pessimistic optimizations.
1539 const Type *TypeInt::narrow( const Type *old ) const {
1540   if (_lo >= _hi)  return this;   // already narrow enough
1541   if (old == NULL)  return this;
1542   const TypeInt* ot = old->isa_int();
1543   if (ot == NULL)  return this;
1544   jint olo = ot->_lo;
1545   jint ohi = ot->_hi;
1546 
1547   // If new guy is equal to old guy, no narrowing
1548   if (_lo == olo && _hi == ohi)  return old;
1549 
1550   // If old guy was maximum range, allow the narrowing
1551   if (olo == min_jint && ohi == max_jint)  return this;
1552 
1553   if (_lo < olo || _hi > ohi)
1554     return this;                // doesn't narrow; pretty wierd
1555 
1556   // The new type narrows the old type, so look for a "death march".
1557   // See comments on PhaseTransform::saturate.
1558   juint nrange = (juint)_hi - _lo;
1559   juint orange = (juint)ohi - olo;
1560   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1561     // Use the new type only if the range shrinks a lot.
1562     // We do not want the optimizer computing 2^31 point by point.
1563     return old;
1564   }
1565 
1566   return this;
1567 }
1568 
1569 //-----------------------------filter------------------------------------------
1570 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1571   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1572   if (ft == NULL || ft->empty())
1573     return Type::TOP;           // Canonical empty value
1574   if (ft->_widen < this->_widen) {
1575     // Do not allow the value of kill->_widen to affect the outcome.
1576     // The widen bits must be allowed to run freely through the graph.
1577     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1578   }
1579   return ft;
1580 }
1581 
1582 //------------------------------eq---------------------------------------------
1583 // Structural equality check for Type representations
1584 bool TypeInt::eq( const Type *t ) const {
1585   const TypeInt *r = t->is_int(); // Handy access
1586   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1587 }
1588 
1589 //------------------------------hash-------------------------------------------
1590 // Type-specific hashing function.
1591 int TypeInt::hash(void) const {
1592   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1593 }
1594 
1595 //------------------------------is_finite--------------------------------------
1596 // Has a finite value
1597 bool TypeInt::is_finite() const {
1598   return true;
1599 }
1600 
1601 //------------------------------dump2------------------------------------------
1602 // Dump TypeInt
1603 #ifndef PRODUCT
1604 static const char* intname(char* buf, jint n) {
1605   if (n == min_jint)
1606     return "min";
1607   else if (n < min_jint + 10000)
1608     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1609   else if (n == max_jint)
1610     return "max";
1611   else if (n > max_jint - 10000)
1612     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1613   else
1614     sprintf(buf, INT32_FORMAT, n);
1615   return buf;
1616 }
1617 
1618 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1619   char buf[40], buf2[40];
1620   if (_lo == min_jint && _hi == max_jint)
1621     st->print("int");
1622   else if (is_con())
1623     st->print("int:%s", intname(buf, get_con()));
1624   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1625     st->print("bool");
1626   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1627     st->print("byte");
1628   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1629     st->print("char");
1630   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1631     st->print("short");
1632   else if (_hi == max_jint)
1633     st->print("int:>=%s", intname(buf, _lo));
1634   else if (_lo == min_jint)
1635     st->print("int:<=%s", intname(buf, _hi));
1636   else
1637     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1638 
1639   if (_widen != 0 && this != TypeInt::INT)
1640     st->print(":%.*s", _widen, "wwww");
1641 }
1642 #endif
1643 
1644 //------------------------------singleton--------------------------------------
1645 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1646 // constants.
1647 bool TypeInt::singleton(void) const {
1648   return _lo >= _hi;
1649 }
1650 
1651 bool TypeInt::empty(void) const {
1652   return _lo > _hi;
1653 }
1654 
1655 //=============================================================================
1656 // Convenience common pre-built types.
1657 const TypeLong *TypeLong::MINUS_1;// -1
1658 const TypeLong *TypeLong::ZERO; // 0
1659 const TypeLong *TypeLong::ONE;  // 1
1660 const TypeLong *TypeLong::POS;  // >=0
1661 const TypeLong *TypeLong::LONG; // 64-bit integers
1662 const TypeLong *TypeLong::INT;  // 32-bit subrange
1663 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1664 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1665 
1666 //------------------------------TypeLong---------------------------------------
1667 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1668 }
1669 
1670 //------------------------------make-------------------------------------------
1671 const TypeLong *TypeLong::make( jlong lo ) {
1672   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1673 }
1674 
1675 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1676   // Certain normalizations keep us sane when comparing types.
1677   // The 'SMALLINT' covers constants.
1678   if (lo <= hi) {
1679     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1680     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1681   } else {
1682     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1683     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1684   }
1685   return w;
1686 }
1687 
1688 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1689   w = normalize_long_widen(lo, hi, w);
1690   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1691 }
1692 
1693 
1694 //------------------------------meet-------------------------------------------
1695 // Compute the MEET of two types.  It returns a new Type representation object
1696 // with reference count equal to the number of Types pointing at it.
1697 // Caller should wrap a Types around it.
1698 const Type *TypeLong::xmeet( const Type *t ) const {
1699   // Perform a fast test for common case; meeting the same types together.
1700   if( this == t ) return this;  // Meeting same type?
1701 
1702   // Currently "this->_base" is a TypeLong
1703   switch (t->base()) {          // Switch on original type
1704   case AnyPtr:                  // Mixing with oops happens when javac
1705   case RawPtr:                  // reuses local variables
1706   case OopPtr:
1707   case InstPtr:
1708   case AryPtr:
1709   case MetadataPtr:
1710   case KlassPtr:
1711   case NarrowOop:
1712   case NarrowKlass:
1713   case Int:
1714   case FloatTop:
1715   case FloatCon:
1716   case FloatBot:
1717   case DoubleTop:
1718   case DoubleCon:
1719   case DoubleBot:
1720   case Bottom:                  // Ye Olde Default
1721     return Type::BOTTOM;
1722   default:                      // All else is a mistake
1723     typerr(t);
1724   case Top:                     // No change
1725     return this;
1726   case Long:                    // Long vs Long?
1727     break;
1728   }
1729 
1730   // Expand covered set
1731   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1732   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1733 }
1734 
1735 //------------------------------xdual------------------------------------------
1736 // Dual: reverse hi & lo; flip widen
1737 const Type *TypeLong::xdual() const {
1738   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1739   return new TypeLong(_hi,_lo,w);
1740 }
1741 
1742 //------------------------------widen------------------------------------------
1743 // Only happens for optimistic top-down optimizations.
1744 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1745   // Coming from TOP or such; no widening
1746   if( old->base() != Long ) return this;
1747   const TypeLong *ot = old->is_long();
1748 
1749   // If new guy is equal to old guy, no widening
1750   if( _lo == ot->_lo && _hi == ot->_hi )
1751     return old;
1752 
1753   // If new guy contains old, then we widened
1754   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1755     // New contains old
1756     // If new guy is already wider than old, no widening
1757     if( _widen > ot->_widen ) return this;
1758     // If old guy was a constant, do not bother
1759     if (ot->_lo == ot->_hi)  return this;
1760     // Now widen new guy.
1761     // Check for widening too far
1762     if (_widen == WidenMax) {
1763       jlong max = max_jlong;
1764       jlong min = min_jlong;
1765       if (limit->isa_long()) {
1766         max = limit->is_long()->_hi;
1767         min = limit->is_long()->_lo;
1768       }
1769       if (min < _lo && _hi < max) {
1770         // If neither endpoint is extremal yet, push out the endpoint
1771         // which is closer to its respective limit.
1772         if (_lo >= 0 ||                 // easy common case
1773             ((julong)_lo - min) >= ((julong)max - _hi)) {
1774           // Try to widen to an unsigned range type of 32/63 bits:
1775           if (max >= max_juint && _hi < max_juint)
1776             return make(_lo, max_juint, WidenMax);
1777           else
1778             return make(_lo, max, WidenMax);
1779         } else {
1780           return make(min, _hi, WidenMax);
1781         }
1782       }
1783       return TypeLong::LONG;
1784     }
1785     // Returned widened new guy
1786     return make(_lo,_hi,_widen+1);
1787   }
1788 
1789   // If old guy contains new, then we probably widened too far & dropped to
1790   // bottom.  Return the wider fellow.
1791   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1792     return old;
1793 
1794   //  fatal("Long value range is not subset");
1795   // return this;
1796   return TypeLong::LONG;
1797 }
1798 
1799 //------------------------------narrow----------------------------------------
1800 // Only happens for pessimistic optimizations.
1801 const Type *TypeLong::narrow( const Type *old ) const {
1802   if (_lo >= _hi)  return this;   // already narrow enough
1803   if (old == NULL)  return this;
1804   const TypeLong* ot = old->isa_long();
1805   if (ot == NULL)  return this;
1806   jlong olo = ot->_lo;
1807   jlong ohi = ot->_hi;
1808 
1809   // If new guy is equal to old guy, no narrowing
1810   if (_lo == olo && _hi == ohi)  return old;
1811 
1812   // If old guy was maximum range, allow the narrowing
1813   if (olo == min_jlong && ohi == max_jlong)  return this;
1814 
1815   if (_lo < olo || _hi > ohi)
1816     return this;                // doesn't narrow; pretty wierd
1817 
1818   // The new type narrows the old type, so look for a "death march".
1819   // See comments on PhaseTransform::saturate.
1820   julong nrange = _hi - _lo;
1821   julong orange = ohi - olo;
1822   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1823     // Use the new type only if the range shrinks a lot.
1824     // We do not want the optimizer computing 2^31 point by point.
1825     return old;
1826   }
1827 
1828   return this;
1829 }
1830 
1831 //-----------------------------filter------------------------------------------
1832 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1833   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1834   if (ft == NULL || ft->empty())
1835     return Type::TOP;           // Canonical empty value
1836   if (ft->_widen < this->_widen) {
1837     // Do not allow the value of kill->_widen to affect the outcome.
1838     // The widen bits must be allowed to run freely through the graph.
1839     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1840   }
1841   return ft;
1842 }
1843 
1844 //------------------------------eq---------------------------------------------
1845 // Structural equality check for Type representations
1846 bool TypeLong::eq( const Type *t ) const {
1847   const TypeLong *r = t->is_long(); // Handy access
1848   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1849 }
1850 
1851 //------------------------------hash-------------------------------------------
1852 // Type-specific hashing function.
1853 int TypeLong::hash(void) const {
1854   return (int)(_lo+_hi+_widen+(int)Type::Long);
1855 }
1856 
1857 //------------------------------is_finite--------------------------------------
1858 // Has a finite value
1859 bool TypeLong::is_finite() const {
1860   return true;
1861 }
1862 
1863 //------------------------------dump2------------------------------------------
1864 // Dump TypeLong
1865 #ifndef PRODUCT
1866 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1867   if (n > x) {
1868     if (n >= x + 10000)  return NULL;
1869     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1870   } else if (n < x) {
1871     if (n <= x - 10000)  return NULL;
1872     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1873   } else {
1874     return xname;
1875   }
1876   return buf;
1877 }
1878 
1879 static const char* longname(char* buf, jlong n) {
1880   const char* str;
1881   if (n == min_jlong)
1882     return "min";
1883   else if (n < min_jlong + 10000)
1884     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1885   else if (n == max_jlong)
1886     return "max";
1887   else if (n > max_jlong - 10000)
1888     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1889   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1890     return str;
1891   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1892     return str;
1893   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1894     return str;
1895   else
1896     sprintf(buf, JLONG_FORMAT, n);
1897   return buf;
1898 }
1899 
1900 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1901   char buf[80], buf2[80];
1902   if (_lo == min_jlong && _hi == max_jlong)
1903     st->print("long");
1904   else if (is_con())
1905     st->print("long:%s", longname(buf, get_con()));
1906   else if (_hi == max_jlong)
1907     st->print("long:>=%s", longname(buf, _lo));
1908   else if (_lo == min_jlong)
1909     st->print("long:<=%s", longname(buf, _hi));
1910   else
1911     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1912 
1913   if (_widen != 0 && this != TypeLong::LONG)
1914     st->print(":%.*s", _widen, "wwww");
1915 }
1916 #endif
1917 
1918 //------------------------------singleton--------------------------------------
1919 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1920 // constants
1921 bool TypeLong::singleton(void) const {
1922   return _lo >= _hi;
1923 }
1924 
1925 bool TypeLong::empty(void) const {
1926   return _lo > _hi;
1927 }
1928 
1929 //=============================================================================
1930 // Convenience common pre-built types.
1931 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1932 const TypeTuple *TypeTuple::IFFALSE;
1933 const TypeTuple *TypeTuple::IFTRUE;
1934 const TypeTuple *TypeTuple::IFNEITHER;
1935 const TypeTuple *TypeTuple::LOOPBODY;
1936 const TypeTuple *TypeTuple::MEMBAR;
1937 const TypeTuple *TypeTuple::STORECONDITIONAL;
1938 const TypeTuple *TypeTuple::START_I2C;
1939 const TypeTuple *TypeTuple::INT_PAIR;
1940 const TypeTuple *TypeTuple::LONG_PAIR;
1941 const TypeTuple *TypeTuple::INT_CC_PAIR;
1942 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1943 
1944 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos, ExtendedSignature& sig_cc) {
1945   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1946     ciField* field = vk->nonstatic_field_at(j);
1947     BasicType bt = field->type()->basic_type();
1948     const Type* ft = Type::get_const_type(field->type());
1949     field_array[pos++] = ft;
1950     if (type2size[bt] == 2) {
1951       field_array[pos++] = Type::HALF;
1952     }
1953     // Skip reserved arguments
1954     while (SigEntry::next_is_reserved(sig_cc, bt)) {
1955       field_array[pos++] = Type::get_const_basic_type(bt);
1956       if (type2size[bt] == 2) {
1957         field_array[pos++] = Type::HALF;
1958       }
1959     }
1960   }
1961 }
1962 
1963 //------------------------------make-------------------------------------------
1964 // Make a TypeTuple from the range of a method signature
1965 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1966   ciType* return_type = sig->return_type();
1967   uint arg_cnt = return_type->size();
1968   if (ret_vt_fields) {
1969     arg_cnt = return_type->as_value_klass()->value_arg_slots() + 1;
1970   }
1971 
1972   const Type **field_array = fields(arg_cnt);
1973   switch (return_type->basic_type()) {
1974   case T_LONG:
1975     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1976     field_array[TypeFunc::Parms+1] = Type::HALF;
1977     break;
1978   case T_DOUBLE:
1979     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1980     field_array[TypeFunc::Parms+1] = Type::HALF;
1981     break;
1982   case T_OBJECT:
1983   case T_ARRAY:
1984   case T_BOOLEAN:
1985   case T_CHAR:
1986   case T_FLOAT:
1987   case T_BYTE:
1988   case T_SHORT:
1989   case T_INT:
1990     field_array[TypeFunc::Parms] = get_const_type(return_type);
1991     break;
1992   case T_VALUETYPE:
1993     if (ret_vt_fields) {
1994       uint pos = TypeFunc::Parms;
1995       field_array[pos] = TypePtr::BOTTOM;
1996       pos++;
1997       ExtendedSignature sig = ExtendedSignature(NULL, SigEntryFilter());
1998       collect_value_fields(return_type->as_value_klass(), field_array, pos, sig);
1999     } else {
2000       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(sig->returns_never_null() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2001     }
2002     break;
2003   case T_VOID:
2004     break;
2005   default:
2006     ShouldNotReachHere();
2007   }
2008   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2009 }
2010 
2011 // Make a TypeTuple from the domain of a method signature
2012 const TypeTuple *TypeTuple::make_domain(ciMethod* method, bool vt_fields_as_args) {
2013   ciSignature* sig = method->signature();
2014   ExtendedSignature sig_cc = ExtendedSignature(vt_fields_as_args ? method->get_sig_cc() : NULL, SigEntryFilter());
2015 
2016   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2017   if (vt_fields_as_args) {
2018     for (arg_cnt = 0; !sig_cc.at_end(); ++sig_cc) {
2019       arg_cnt += type2size[(*sig_cc)._bt];
2020     }
2021     sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter());
2022   }
2023 
2024   uint pos = TypeFunc::Parms;
2025   const Type** field_array = fields(arg_cnt);
2026   if (!method->is_static()) {
2027     ciInstanceKlass* recv = method->holder();
2028     if (vt_fields_as_args && recv->is_valuetype()) {
2029       collect_value_fields(recv->as_value_klass(), field_array, pos, sig_cc);
2030     } else {
2031       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2032       if (vt_fields_as_args) {
2033         ++sig_cc;
2034       }
2035     }
2036   }
2037 
2038   int i = 0;
2039   while (pos < TypeFunc::Parms + arg_cnt) {
2040     ciType* type = sig->type_at(i);
2041     BasicType bt = type->basic_type();
2042     bool is_flattened = false;
2043 
2044     switch (bt) {
2045     case T_LONG:
2046       field_array[pos++] = TypeLong::LONG;
2047       field_array[pos++] = Type::HALF;
2048       break;
2049     case T_DOUBLE:
2050       field_array[pos++] = Type::DOUBLE;
2051       field_array[pos++] = Type::HALF;
2052       break;
2053     case T_OBJECT:
2054     case T_ARRAY:
2055     case T_FLOAT:
2056     case T_INT:
2057       field_array[pos++] = get_const_type(type);
2058       break;
2059     case T_BOOLEAN:
2060     case T_CHAR:
2061     case T_BYTE:
2062     case T_SHORT:
2063       field_array[pos++] = TypeInt::INT;
2064       break;
2065     case T_VALUETYPE: {
2066       bool never_null = sig->is_never_null_at(i);
2067       if (vt_fields_as_args && never_null) {
2068         is_flattened = true;
2069         collect_value_fields(type->as_value_klass(), field_array, pos, sig_cc);
2070       } else {
2071         field_array[pos++] = get_const_type(type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2072       }
2073       break;
2074     }
2075     default:
2076       ShouldNotReachHere();
2077     }
2078     // Skip reserved arguments
2079     while (!is_flattened && SigEntry::next_is_reserved(sig_cc, bt)) {
2080       field_array[pos++] = Type::get_const_basic_type(bt);
2081       if (type2size[bt] == 2) {
2082         field_array[pos++] = Type::HALF;
2083       }
2084     }
2085     i++;
2086   }
2087   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2088 
2089   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2090 }
2091 
2092 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2093   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2094 }
2095 
2096 //------------------------------fields-----------------------------------------
2097 // Subroutine call type with space allocated for argument types
2098 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2099 const Type **TypeTuple::fields( uint arg_cnt ) {
2100   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2101   flds[TypeFunc::Control  ] = Type::CONTROL;
2102   flds[TypeFunc::I_O      ] = Type::ABIO;
2103   flds[TypeFunc::Memory   ] = Type::MEMORY;
2104   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2105   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2106 
2107   return flds;
2108 }
2109 
2110 //------------------------------meet-------------------------------------------
2111 // Compute the MEET of two types.  It returns a new Type object.
2112 const Type *TypeTuple::xmeet( const Type *t ) const {
2113   // Perform a fast test for common case; meeting the same types together.
2114   if( this == t ) return this;  // Meeting same type-rep?
2115 
2116   // Current "this->_base" is Tuple
2117   switch (t->base()) {          // switch on original type
2118 
2119   case Bottom:                  // Ye Olde Default
2120     return t;
2121 
2122   default:                      // All else is a mistake
2123     typerr(t);
2124 
2125   case Tuple: {                 // Meeting 2 signatures?
2126     const TypeTuple *x = t->is_tuple();
2127     assert( _cnt == x->_cnt, "" );
2128     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2129     for( uint i=0; i<_cnt; i++ )
2130       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2131     return TypeTuple::make(_cnt,fields);
2132   }
2133   case Top:
2134     break;
2135   }
2136   return this;                  // Return the double constant
2137 }
2138 
2139 //------------------------------xdual------------------------------------------
2140 // Dual: compute field-by-field dual
2141 const Type *TypeTuple::xdual() const {
2142   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2143   for( uint i=0; i<_cnt; i++ )
2144     fields[i] = _fields[i]->dual();
2145   return new TypeTuple(_cnt,fields);
2146 }
2147 
2148 //------------------------------eq---------------------------------------------
2149 // Structural equality check for Type representations
2150 bool TypeTuple::eq( const Type *t ) const {
2151   const TypeTuple *s = (const TypeTuple *)t;
2152   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2153   for (uint i = 0; i < _cnt; i++)
2154     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2155       return false;             // Missed
2156   return true;
2157 }
2158 
2159 //------------------------------hash-------------------------------------------
2160 // Type-specific hashing function.
2161 int TypeTuple::hash(void) const {
2162   intptr_t sum = _cnt;
2163   for( uint i=0; i<_cnt; i++ )
2164     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2165   return sum;
2166 }
2167 
2168 //------------------------------dump2------------------------------------------
2169 // Dump signature Type
2170 #ifndef PRODUCT
2171 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2172   st->print("{");
2173   if( !depth || d[this] ) {     // Check for recursive print
2174     st->print("...}");
2175     return;
2176   }
2177   d.Insert((void*)this, (void*)this);   // Stop recursion
2178   if( _cnt ) {
2179     uint i;
2180     for( i=0; i<_cnt-1; i++ ) {
2181       st->print("%d:", i);
2182       _fields[i]->dump2(d, depth-1, st);
2183       st->print(", ");
2184     }
2185     st->print("%d:", i);
2186     _fields[i]->dump2(d, depth-1, st);
2187   }
2188   st->print("}");
2189 }
2190 #endif
2191 
2192 //------------------------------singleton--------------------------------------
2193 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2194 // constants (Ldi nodes).  Singletons are integer, float or double constants
2195 // or a single symbol.
2196 bool TypeTuple::singleton(void) const {
2197   return false;                 // Never a singleton
2198 }
2199 
2200 bool TypeTuple::empty(void) const {
2201   for( uint i=0; i<_cnt; i++ ) {
2202     if (_fields[i]->empty())  return true;
2203   }
2204   return false;
2205 }
2206 
2207 //=============================================================================
2208 // Convenience common pre-built types.
2209 
2210 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2211   // Certain normalizations keep us sane when comparing types.
2212   // We do not want arrayOop variables to differ only by the wideness
2213   // of their index types.  Pick minimum wideness, since that is the
2214   // forced wideness of small ranges anyway.
2215   if (size->_widen != Type::WidenMin)
2216     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2217   else
2218     return size;
2219 }
2220 
2221 //------------------------------make-------------------------------------------
2222 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2223                              bool not_flat, bool not_null_free) {
2224   if (UseCompressedOops && elem->isa_oopptr()) {
2225     elem = elem->make_narrowoop();
2226   }
2227   size = normalize_array_size(size);
2228   return (TypeAry*)(new TypeAry(elem, size, stable, not_flat, not_null_free))->hashcons();
2229 }
2230 
2231 //------------------------------meet-------------------------------------------
2232 // Compute the MEET of two types.  It returns a new Type object.
2233 const Type *TypeAry::xmeet( const Type *t ) const {
2234   // Perform a fast test for common case; meeting the same types together.
2235   if( this == t ) return this;  // Meeting same type-rep?
2236 
2237   // Current "this->_base" is Ary
2238   switch (t->base()) {          // switch on original type
2239 
2240   case Bottom:                  // Ye Olde Default
2241     return t;
2242 
2243   default:                      // All else is a mistake
2244     typerr(t);
2245 
2246   case Array: {                 // Meeting 2 arrays?
2247     const TypeAry *a = t->is_ary();
2248     return TypeAry::make(_elem->meet_speculative(a->_elem),
2249                          _size->xmeet(a->_size)->is_int(),
2250                          _stable && a->_stable,
2251                          _not_flat && a->_not_flat,
2252                          _not_null_free && a->_not_null_free);
2253   }
2254   case Top:
2255     break;
2256   }
2257   return this;                  // Return the double constant
2258 }
2259 
2260 //------------------------------xdual------------------------------------------
2261 // Dual: compute field-by-field dual
2262 const Type *TypeAry::xdual() const {
2263   const TypeInt* size_dual = _size->dual()->is_int();
2264   size_dual = normalize_array_size(size_dual);
2265   return new TypeAry(_elem->dual(), size_dual, !_stable, !_not_flat, !_not_null_free);
2266 }
2267 
2268 //------------------------------eq---------------------------------------------
2269 // Structural equality check for Type representations
2270 bool TypeAry::eq( const Type *t ) const {
2271   const TypeAry *a = (const TypeAry*)t;
2272   return _elem == a->_elem &&
2273     _stable == a->_stable &&
2274     _size == a->_size &&
2275     _not_flat == a->_not_flat &&
2276     _not_null_free == a->_not_null_free;
2277 
2278 }
2279 
2280 //------------------------------hash-------------------------------------------
2281 // Type-specific hashing function.
2282 int TypeAry::hash(void) const {
2283   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2284 }
2285 
2286 /**
2287  * Return same type without a speculative part in the element
2288  */
2289 const Type* TypeAry::remove_speculative() const {
2290   return make(_elem->remove_speculative(), _size, _stable, _not_flat, _not_null_free);
2291 }
2292 
2293 /**
2294  * Return same type with cleaned up speculative part of element
2295  */
2296 const Type* TypeAry::cleanup_speculative() const {
2297   return make(_elem->cleanup_speculative(), _size, _stable, _not_flat, _not_null_free);
2298 }
2299 
2300 /**
2301  * Return same type but with a different inline depth (used for speculation)
2302  *
2303  * @param depth  depth to meet with
2304  */
2305 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2306   if (!UseInlineDepthForSpeculativeTypes) {
2307     return this;
2308   }
2309   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2310 }
2311 
2312 //----------------------interface_vs_oop---------------------------------------
2313 #ifdef ASSERT
2314 bool TypeAry::interface_vs_oop(const Type *t) const {
2315   const TypeAry* t_ary = t->is_ary();
2316   if (t_ary) {
2317     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2318     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2319     if(this_ptr != NULL && t_ptr != NULL) {
2320       return this_ptr->interface_vs_oop(t_ptr);
2321     }
2322   }
2323   return false;
2324 }
2325 #endif
2326 
2327 //------------------------------dump2------------------------------------------
2328 #ifndef PRODUCT
2329 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2330   if (_stable)  st->print("stable:");
2331   if (Verbose) {
2332     if (_not_flat) st->print("not flat:");
2333     if (_not_null_free) st->print("not null free:");
2334   }
2335   _elem->dump2(d, depth, st);
2336   st->print("[");
2337   _size->dump2(d, depth, st);
2338   st->print("]");
2339 }
2340 #endif
2341 
2342 //------------------------------singleton--------------------------------------
2343 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2344 // constants (Ldi nodes).  Singletons are integer, float or double constants
2345 // or a single symbol.
2346 bool TypeAry::singleton(void) const {
2347   return false;                 // Never a singleton
2348 }
2349 
2350 bool TypeAry::empty(void) const {
2351   return _elem->empty() || _size->empty();
2352 }
2353 
2354 //--------------------------ary_must_be_exact----------------------------------
2355 bool TypeAry::ary_must_be_exact() const {
2356   if (!UseExactTypes)       return false;
2357   // This logic looks at the element type of an array, and returns true
2358   // if the element type is either a primitive or a final instance class.
2359   // In such cases, an array built on this ary must have no subclasses.
2360   if (_elem == BOTTOM)      return false;  // general array not exact
2361   if (_elem == TOP   )      return false;  // inverted general array not exact
2362   const TypeOopPtr*  toop = NULL;
2363   if (UseCompressedOops && _elem->isa_narrowoop()) {
2364     toop = _elem->make_ptr()->isa_oopptr();
2365   } else {
2366     toop = _elem->isa_oopptr();
2367   }
2368   if (!toop)                return true;   // a primitive type, like int
2369   ciKlass* tklass = toop->klass();
2370   if (tklass == NULL)       return false;  // unloaded class
2371   if (!tklass->is_loaded()) return false;  // unloaded class
2372   const TypeInstPtr* tinst;
2373   if (_elem->isa_narrowoop())
2374     tinst = _elem->make_ptr()->isa_instptr();
2375   else
2376     tinst = _elem->isa_instptr();
2377   if (tinst) {
2378     // [V? has a subtype: [V. So even though V is final, [V? is not exact.
2379     if (tklass->as_instance_klass()->is_final()) {
2380       if (tinst->is_valuetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) {
2381         return false;
2382       }
2383       return true;
2384     }
2385     return false;
2386   }
2387   const TypeAryPtr*  tap;
2388   if (_elem->isa_narrowoop())
2389     tap = _elem->make_ptr()->isa_aryptr();
2390   else
2391     tap = _elem->isa_aryptr();
2392   if (tap)
2393     return tap->ary()->ary_must_be_exact();
2394   return false;
2395 }
2396 
2397 //==============================TypeValueType=======================================
2398 
2399 const TypeValueType *TypeValueType::BOTTOM;
2400 
2401 //------------------------------make-------------------------------------------
2402 const TypeValueType* TypeValueType::make(ciValueKlass* vk, bool larval) {
2403   return (TypeValueType*)(new TypeValueType(vk, larval))->hashcons();
2404 }
2405 
2406 //------------------------------meet-------------------------------------------
2407 // Compute the MEET of two types.  It returns a new Type object.
2408 const Type* TypeValueType::xmeet(const Type* t) const {
2409   // Perform a fast test for common case; meeting the same types together.
2410   if(this == t) return this;  // Meeting same type-rep?
2411 
2412   // Current "this->_base" is ValueType
2413   switch (t->base()) {          // switch on original type
2414 
2415   case Int:
2416   case Long:
2417   case FloatTop:
2418   case FloatCon:
2419   case FloatBot:
2420   case DoubleTop:
2421   case DoubleCon:
2422   case DoubleBot:
2423   case NarrowKlass:
2424   case Bottom:
2425     return Type::BOTTOM;
2426 
2427   case OopPtr:
2428   case MetadataPtr:
2429   case KlassPtr:
2430   case RawPtr:
2431     return TypePtr::BOTTOM;
2432 
2433   case Top:
2434     return this;
2435 
2436   case NarrowOop: {
2437     const Type* res = t->make_ptr()->xmeet(this);
2438     if (res->isa_ptr()) {
2439       return res->make_narrowoop();
2440     }
2441     return res;
2442   }
2443 
2444   case AryPtr:
2445   case InstPtr: {
2446     return t->xmeet(this);
2447   }
2448 
2449   case ValueType: {
2450     // All value types inherit from Object
2451     const TypeValueType* other = t->is_valuetype();
2452     if (_vk == NULL) {
2453       return this;
2454     } else if (other->_vk == NULL) {
2455       return other;
2456     } else if (_vk == other->_vk) {
2457       if (_larval == other->_larval ||
2458           !_larval) {
2459         return this;
2460       } else {
2461         return t;
2462       }
2463     }
2464     return TypeInstPtr::NOTNULL;
2465   }
2466 
2467   default:                      // All else is a mistake
2468     typerr(t);
2469 
2470   }
2471   return this;
2472 }
2473 
2474 //------------------------------xdual------------------------------------------
2475 const Type* TypeValueType::xdual() const {
2476   return this;
2477 }
2478 
2479 //------------------------------eq---------------------------------------------
2480 // Structural equality check for Type representations
2481 bool TypeValueType::eq(const Type* t) const {
2482   const TypeValueType* vt = t->is_valuetype();
2483   return (_vk == vt->value_klass() && _larval == vt->larval());
2484 }
2485 
2486 //------------------------------hash-------------------------------------------
2487 // Type-specific hashing function.
2488 int TypeValueType::hash(void) const {
2489   return (intptr_t)_vk;
2490 }
2491 
2492 //------------------------------singleton--------------------------------------
2493 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2494 bool TypeValueType::singleton(void) const {
2495   return false;
2496 }
2497 
2498 //------------------------------empty------------------------------------------
2499 // TRUE if Type is a type with no values, FALSE otherwise.
2500 bool TypeValueType::empty(void) const {
2501   return false;
2502 }
2503 
2504 //------------------------------dump2------------------------------------------
2505 #ifndef PRODUCT
2506 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2507   if (_vk == NULL) {
2508     st->print("BOTTOM valuetype");
2509     return;
2510   }
2511   int count = _vk->nof_declared_nonstatic_fields();
2512   st->print("valuetype[%d]:{", count);
2513   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2514   for (int i = 1; i < count; ++i) {
2515     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2516   }
2517   st->print("}%s", _larval?" : larval":"");
2518 }
2519 #endif
2520 
2521 //==============================TypeVect=======================================
2522 // Convenience common pre-built types.
2523 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2524 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2525 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2526 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2527 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2528 
2529 //------------------------------make-------------------------------------------
2530 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2531   BasicType elem_bt = elem->array_element_basic_type();
2532   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2533   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2534   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2535   int size = length * type2aelembytes(elem_bt);
2536   switch (Matcher::vector_ideal_reg(size)) {
2537   case Op_VecS:
2538     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2539   case Op_RegL:
2540   case Op_VecD:
2541   case Op_RegD:
2542     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2543   case Op_VecX:
2544     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2545   case Op_VecY:
2546     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2547   case Op_VecZ:
2548     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2549   }
2550  ShouldNotReachHere();
2551   return NULL;
2552 }
2553 
2554 //------------------------------meet-------------------------------------------
2555 // Compute the MEET of two types.  It returns a new Type object.
2556 const Type *TypeVect::xmeet( const Type *t ) const {
2557   // Perform a fast test for common case; meeting the same types together.
2558   if( this == t ) return this;  // Meeting same type-rep?
2559 
2560   // Current "this->_base" is Vector
2561   switch (t->base()) {          // switch on original type
2562 
2563   case Bottom:                  // Ye Olde Default
2564     return t;
2565 
2566   default:                      // All else is a mistake
2567     typerr(t);
2568 
2569   case VectorS:
2570   case VectorD:
2571   case VectorX:
2572   case VectorY:
2573   case VectorZ: {                // Meeting 2 vectors?
2574     const TypeVect* v = t->is_vect();
2575     assert(  base() == v->base(), "");
2576     assert(length() == v->length(), "");
2577     assert(element_basic_type() == v->element_basic_type(), "");
2578     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2579   }
2580   case Top:
2581     break;
2582   }
2583   return this;
2584 }
2585 
2586 //------------------------------xdual------------------------------------------
2587 // Dual: compute field-by-field dual
2588 const Type *TypeVect::xdual() const {
2589   return new TypeVect(base(), _elem->dual(), _length);
2590 }
2591 
2592 //------------------------------eq---------------------------------------------
2593 // Structural equality check for Type representations
2594 bool TypeVect::eq(const Type *t) const {
2595   const TypeVect *v = t->is_vect();
2596   return (_elem == v->_elem) && (_length == v->_length);
2597 }
2598 
2599 //------------------------------hash-------------------------------------------
2600 // Type-specific hashing function.
2601 int TypeVect::hash(void) const {
2602   return (intptr_t)_elem + (intptr_t)_length;
2603 }
2604 
2605 //------------------------------singleton--------------------------------------
2606 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2607 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2608 // constant value (when vector is created with Replicate code).
2609 bool TypeVect::singleton(void) const {
2610 // There is no Con node for vectors yet.
2611 //  return _elem->singleton();
2612   return false;
2613 }
2614 
2615 bool TypeVect::empty(void) const {
2616   return _elem->empty();
2617 }
2618 
2619 //------------------------------dump2------------------------------------------
2620 #ifndef PRODUCT
2621 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2622   switch (base()) {
2623   case VectorS:
2624     st->print("vectors["); break;
2625   case VectorD:
2626     st->print("vectord["); break;
2627   case VectorX:
2628     st->print("vectorx["); break;
2629   case VectorY:
2630     st->print("vectory["); break;
2631   case VectorZ:
2632     st->print("vectorz["); break;
2633   default:
2634     ShouldNotReachHere();
2635   }
2636   st->print("%d]:{", _length);
2637   _elem->dump2(d, depth, st);
2638   st->print("}");
2639 }
2640 #endif
2641 
2642 
2643 //=============================================================================
2644 // Convenience common pre-built types.
2645 const TypePtr *TypePtr::NULL_PTR;
2646 const TypePtr *TypePtr::NOTNULL;
2647 const TypePtr *TypePtr::BOTTOM;
2648 
2649 //------------------------------meet-------------------------------------------
2650 // Meet over the PTR enum
2651 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2652   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2653   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2654   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2655   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2656   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2657   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2658   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2659 };
2660 
2661 //------------------------------make-------------------------------------------
2662 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2663   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2664 }
2665 
2666 //------------------------------cast_to_ptr_type-------------------------------
2667 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2668   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2669   if( ptr == _ptr ) return this;
2670   return make(_base, ptr, _offset, _speculative, _inline_depth);
2671 }
2672 
2673 //------------------------------get_con----------------------------------------
2674 intptr_t TypePtr::get_con() const {
2675   assert( _ptr == Null, "" );
2676   return offset();
2677 }
2678 
2679 //------------------------------meet-------------------------------------------
2680 // Compute the MEET of two types.  It returns a new Type object.
2681 const Type *TypePtr::xmeet(const Type *t) const {
2682   const Type* res = xmeet_helper(t);
2683   if (res->isa_ptr() == NULL) {
2684     return res;
2685   }
2686 
2687   const TypePtr* res_ptr = res->is_ptr();
2688   if (res_ptr->speculative() != NULL) {
2689     // type->speculative() == NULL means that speculation is no better
2690     // than type, i.e. type->speculative() == type. So there are 2
2691     // ways to represent the fact that we have no useful speculative
2692     // data and we should use a single one to be able to test for
2693     // equality between types. Check whether type->speculative() ==
2694     // type and set speculative to NULL if it is the case.
2695     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2696       return res_ptr->remove_speculative();
2697     }
2698   }
2699 
2700   return res;
2701 }
2702 
2703 const Type *TypePtr::xmeet_helper(const Type *t) const {
2704   // Perform a fast test for common case; meeting the same types together.
2705   if( this == t ) return this;  // Meeting same type-rep?
2706 
2707   // Current "this->_base" is AnyPtr
2708   switch (t->base()) {          // switch on original type
2709   case Int:                     // Mixing ints & oops happens when javac
2710   case Long:                    // reuses local variables
2711   case FloatTop:
2712   case FloatCon:
2713   case FloatBot:
2714   case DoubleTop:
2715   case DoubleCon:
2716   case DoubleBot:
2717   case NarrowOop:
2718   case NarrowKlass:
2719   case Bottom:                  // Ye Olde Default
2720     return Type::BOTTOM;
2721   case Top:
2722     return this;
2723 
2724   case AnyPtr: {                // Meeting to AnyPtrs
2725     const TypePtr *tp = t->is_ptr();
2726     const TypePtr* speculative = xmeet_speculative(tp);
2727     int depth = meet_inline_depth(tp->inline_depth());
2728     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2729   }
2730   case RawPtr:                  // For these, flip the call around to cut down
2731   case OopPtr:
2732   case InstPtr:                 // on the cases I have to handle.
2733   case AryPtr:
2734   case MetadataPtr:
2735   case KlassPtr:
2736     return t->xmeet(this);      // Call in reverse direction
2737   default:                      // All else is a mistake
2738     typerr(t);
2739 
2740   }
2741   return this;
2742 }
2743 
2744 //------------------------------meet_offset------------------------------------
2745 Type::Offset TypePtr::meet_offset(int offset) const {
2746   return _offset.meet(Offset(offset));
2747 }
2748 
2749 //------------------------------dual_offset------------------------------------
2750 Type::Offset TypePtr::dual_offset() const {
2751   return _offset.dual();
2752 }
2753 
2754 //------------------------------xdual------------------------------------------
2755 // Dual: compute field-by-field dual
2756 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2757   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2758 };
2759 const Type *TypePtr::xdual() const {
2760   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2761 }
2762 
2763 //------------------------------xadd_offset------------------------------------
2764 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2765   return _offset.add(offset);
2766 }
2767 
2768 //------------------------------add_offset-------------------------------------
2769 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2770   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2771 }
2772 
2773 //------------------------------eq---------------------------------------------
2774 // Structural equality check for Type representations
2775 bool TypePtr::eq( const Type *t ) const {
2776   const TypePtr *a = (const TypePtr*)t;
2777   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2778 }
2779 
2780 //------------------------------hash-------------------------------------------
2781 // Type-specific hashing function.
2782 int TypePtr::hash(void) const {
2783   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2784 ;
2785 }
2786 
2787 /**
2788  * Return same type without a speculative part
2789  */
2790 const Type* TypePtr::remove_speculative() const {
2791   if (_speculative == NULL) {
2792     return this;
2793   }
2794   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2795   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2796 }
2797 
2798 /**
2799  * Return same type but drop speculative part if we know we won't use
2800  * it
2801  */
2802 const Type* TypePtr::cleanup_speculative() const {
2803   if (speculative() == NULL) {
2804     return this;
2805   }
2806   const Type* no_spec = remove_speculative();
2807   // If this is NULL_PTR then we don't need the speculative type
2808   // (with_inline_depth in case the current type inline depth is
2809   // InlineDepthTop)
2810   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2811     return no_spec;
2812   }
2813   if (above_centerline(speculative()->ptr())) {
2814     return no_spec;
2815   }
2816   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2817   // If the speculative may be null and is an inexact klass then it
2818   // doesn't help
2819   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2820       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2821     return no_spec;
2822   }
2823   return this;
2824 }
2825 
2826 /**
2827  * dual of the speculative part of the type
2828  */
2829 const TypePtr* TypePtr::dual_speculative() const {
2830   if (_speculative == NULL) {
2831     return NULL;
2832   }
2833   return _speculative->dual()->is_ptr();
2834 }
2835 
2836 /**
2837  * meet of the speculative parts of 2 types
2838  *
2839  * @param other  type to meet with
2840  */
2841 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2842   bool this_has_spec = (_speculative != NULL);
2843   bool other_has_spec = (other->speculative() != NULL);
2844 
2845   if (!this_has_spec && !other_has_spec) {
2846     return NULL;
2847   }
2848 
2849   // If we are at a point where control flow meets and one branch has
2850   // a speculative type and the other has not, we meet the speculative
2851   // type of one branch with the actual type of the other. If the
2852   // actual type is exact and the speculative is as well, then the
2853   // result is a speculative type which is exact and we can continue
2854   // speculation further.
2855   const TypePtr* this_spec = _speculative;
2856   const TypePtr* other_spec = other->speculative();
2857 
2858   if (!this_has_spec) {
2859     this_spec = this;
2860   }
2861 
2862   if (!other_has_spec) {
2863     other_spec = other;
2864   }
2865 
2866   return this_spec->meet(other_spec)->is_ptr();
2867 }
2868 
2869 /**
2870  * dual of the inline depth for this type (used for speculation)
2871  */
2872 int TypePtr::dual_inline_depth() const {
2873   return -inline_depth();
2874 }
2875 
2876 /**
2877  * meet of 2 inline depths (used for speculation)
2878  *
2879  * @param depth  depth to meet with
2880  */
2881 int TypePtr::meet_inline_depth(int depth) const {
2882   return MAX2(inline_depth(), depth);
2883 }
2884 
2885 /**
2886  * Are the speculative parts of 2 types equal?
2887  *
2888  * @param other  type to compare this one to
2889  */
2890 bool TypePtr::eq_speculative(const TypePtr* other) const {
2891   if (_speculative == NULL || other->speculative() == NULL) {
2892     return _speculative == other->speculative();
2893   }
2894 
2895   if (_speculative->base() != other->speculative()->base()) {
2896     return false;
2897   }
2898 
2899   return _speculative->eq(other->speculative());
2900 }
2901 
2902 /**
2903  * Hash of the speculative part of the type
2904  */
2905 int TypePtr::hash_speculative() const {
2906   if (_speculative == NULL) {
2907     return 0;
2908   }
2909 
2910   return _speculative->hash();
2911 }
2912 
2913 /**
2914  * add offset to the speculative part of the type
2915  *
2916  * @param offset  offset to add
2917  */
2918 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2919   if (_speculative == NULL) {
2920     return NULL;
2921   }
2922   return _speculative->add_offset(offset)->is_ptr();
2923 }
2924 
2925 /**
2926  * return exact klass from the speculative type if there's one
2927  */
2928 ciKlass* TypePtr::speculative_type() const {
2929   if (_speculative != NULL && _speculative->isa_oopptr()) {
2930     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2931     if (speculative->klass_is_exact()) {
2932       return speculative->klass();
2933     }
2934   }
2935   return NULL;
2936 }
2937 
2938 /**
2939  * return true if speculative type may be null
2940  */
2941 bool TypePtr::speculative_maybe_null() const {
2942   if (_speculative != NULL) {
2943     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2944     return speculative->maybe_null();
2945   }
2946   return true;
2947 }
2948 
2949 bool TypePtr::speculative_always_null() const {
2950   if (_speculative != NULL) {
2951     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2952     return speculative == TypePtr::NULL_PTR;
2953   }
2954   return false;
2955 }
2956 
2957 /**
2958  * Same as TypePtr::speculative_type() but return the klass only if
2959  * the speculative tells us is not null
2960  */
2961 ciKlass* TypePtr::speculative_type_not_null() const {
2962   if (speculative_maybe_null()) {
2963     return NULL;
2964   }
2965   return speculative_type();
2966 }
2967 
2968 /**
2969  * Check whether new profiling would improve speculative type
2970  *
2971  * @param   exact_kls    class from profiling
2972  * @param   inline_depth inlining depth of profile point
2973  *
2974  * @return  true if type profile is valuable
2975  */
2976 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2977   // no profiling?
2978   if (exact_kls == NULL) {
2979     return false;
2980   }
2981   if (speculative() == TypePtr::NULL_PTR) {
2982     return false;
2983   }
2984   // no speculative type or non exact speculative type?
2985   if (speculative_type() == NULL) {
2986     return true;
2987   }
2988   // If the node already has an exact speculative type keep it,
2989   // unless it was provided by profiling that is at a deeper
2990   // inlining level. Profiling at a higher inlining depth is
2991   // expected to be less accurate.
2992   if (_speculative->inline_depth() == InlineDepthBottom) {
2993     return false;
2994   }
2995   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2996   return inline_depth < _speculative->inline_depth();
2997 }
2998 
2999 /**
3000  * Check whether new profiling would improve ptr (= tells us it is non
3001  * null)
3002  *
3003  * @param   ptr_kind always null or not null?
3004  *
3005  * @return  true if ptr profile is valuable
3006  */
3007 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3008   // profiling doesn't tell us anything useful
3009   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3010     return false;
3011   }
3012   // We already know this is not null
3013   if (!this->maybe_null()) {
3014     return false;
3015   }
3016   // We already know the speculative type cannot be null
3017   if (!speculative_maybe_null()) {
3018     return false;
3019   }
3020   // We already know this is always null
3021   if (this == TypePtr::NULL_PTR) {
3022     return false;
3023   }
3024   // We already know the speculative type is always null
3025   if (speculative_always_null()) {
3026     return false;
3027   }
3028   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
3029     return false;
3030   }
3031   return true;
3032 }
3033 
3034 //------------------------------dump2------------------------------------------
3035 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3036   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
3037 };
3038 
3039 #ifndef PRODUCT
3040 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3041   if( _ptr == Null ) st->print("NULL");
3042   else st->print("%s *", ptr_msg[_ptr]);
3043   _offset.dump2(st);
3044   dump_inline_depth(st);
3045   dump_speculative(st);
3046 }
3047 
3048 /**
3049  *dump the speculative part of the type
3050  */
3051 void TypePtr::dump_speculative(outputStream *st) const {
3052   if (_speculative != NULL) {
3053     st->print(" (speculative=");
3054     _speculative->dump_on(st);
3055     st->print(")");
3056   }
3057 }
3058 
3059 /**
3060  *dump the inline depth of the type
3061  */
3062 void TypePtr::dump_inline_depth(outputStream *st) const {
3063   if (_inline_depth != InlineDepthBottom) {
3064     if (_inline_depth == InlineDepthTop) {
3065       st->print(" (inline_depth=InlineDepthTop)");
3066     } else {
3067       st->print(" (inline_depth=%d)", _inline_depth);
3068     }
3069   }
3070 }
3071 #endif
3072 
3073 //------------------------------singleton--------------------------------------
3074 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3075 // constants
3076 bool TypePtr::singleton(void) const {
3077   // TopPTR, Null, AnyNull, Constant are all singletons
3078   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3079 }
3080 
3081 bool TypePtr::empty(void) const {
3082   return (_offset == Offset::top) || above_centerline(_ptr);
3083 }
3084 
3085 //=============================================================================
3086 // Convenience common pre-built types.
3087 const TypeRawPtr *TypeRawPtr::BOTTOM;
3088 const TypeRawPtr *TypeRawPtr::NOTNULL;
3089 
3090 //------------------------------make-------------------------------------------
3091 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3092   assert( ptr != Constant, "what is the constant?" );
3093   assert( ptr != Null, "Use TypePtr for NULL" );
3094   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3095 }
3096 
3097 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3098   assert( bits, "Use TypePtr for NULL" );
3099   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3100 }
3101 
3102 //------------------------------cast_to_ptr_type-------------------------------
3103 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3104   assert( ptr != Constant, "what is the constant?" );
3105   assert( ptr != Null, "Use TypePtr for NULL" );
3106   assert( _bits==0, "Why cast a constant address?");
3107   if( ptr == _ptr ) return this;
3108   return make(ptr);
3109 }
3110 
3111 //------------------------------get_con----------------------------------------
3112 intptr_t TypeRawPtr::get_con() const {
3113   assert( _ptr == Null || _ptr == Constant, "" );
3114   return (intptr_t)_bits;
3115 }
3116 
3117 //------------------------------meet-------------------------------------------
3118 // Compute the MEET of two types.  It returns a new Type object.
3119 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3120   // Perform a fast test for common case; meeting the same types together.
3121   if( this == t ) return this;  // Meeting same type-rep?
3122 
3123   // Current "this->_base" is RawPtr
3124   switch( t->base() ) {         // switch on original type
3125   case Bottom:                  // Ye Olde Default
3126     return t;
3127   case Top:
3128     return this;
3129   case AnyPtr:                  // Meeting to AnyPtrs
3130     break;
3131   case RawPtr: {                // might be top, bot, any/not or constant
3132     enum PTR tptr = t->is_ptr()->ptr();
3133     enum PTR ptr = meet_ptr( tptr );
3134     if( ptr == Constant ) {     // Cannot be equal constants, so...
3135       if( tptr == Constant && _ptr != Constant)  return t;
3136       if( _ptr == Constant && tptr != Constant)  return this;
3137       ptr = NotNull;            // Fall down in lattice
3138     }
3139     return make( ptr );
3140   }
3141 
3142   case OopPtr:
3143   case InstPtr:
3144   case AryPtr:
3145   case MetadataPtr:
3146   case KlassPtr:
3147     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3148   default:                      // All else is a mistake
3149     typerr(t);
3150   }
3151 
3152   // Found an AnyPtr type vs self-RawPtr type
3153   const TypePtr *tp = t->is_ptr();
3154   switch (tp->ptr()) {
3155   case TypePtr::TopPTR:  return this;
3156   case TypePtr::BotPTR:  return t;
3157   case TypePtr::Null:
3158     if( _ptr == TypePtr::TopPTR ) return t;
3159     return TypeRawPtr::BOTTOM;
3160   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3161   case TypePtr::AnyNull:
3162     if( _ptr == TypePtr::Constant) return this;
3163     return make( meet_ptr(TypePtr::AnyNull) );
3164   default: ShouldNotReachHere();
3165   }
3166   return this;
3167 }
3168 
3169 //------------------------------xdual------------------------------------------
3170 // Dual: compute field-by-field dual
3171 const Type *TypeRawPtr::xdual() const {
3172   return new TypeRawPtr( dual_ptr(), _bits );
3173 }
3174 
3175 //------------------------------add_offset-------------------------------------
3176 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3177   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3178   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3179   if( offset == 0 ) return this; // No change
3180   switch (_ptr) {
3181   case TypePtr::TopPTR:
3182   case TypePtr::BotPTR:
3183   case TypePtr::NotNull:
3184     return this;
3185   case TypePtr::Null:
3186   case TypePtr::Constant: {
3187     address bits = _bits+offset;
3188     if ( bits == 0 ) return TypePtr::NULL_PTR;
3189     return make( bits );
3190   }
3191   default:  ShouldNotReachHere();
3192   }
3193   return NULL;                  // Lint noise
3194 }
3195 
3196 //------------------------------eq---------------------------------------------
3197 // Structural equality check for Type representations
3198 bool TypeRawPtr::eq( const Type *t ) const {
3199   const TypeRawPtr *a = (const TypeRawPtr*)t;
3200   return _bits == a->_bits && TypePtr::eq(t);
3201 }
3202 
3203 //------------------------------hash-------------------------------------------
3204 // Type-specific hashing function.
3205 int TypeRawPtr::hash(void) const {
3206   return (intptr_t)_bits + TypePtr::hash();
3207 }
3208 
3209 //------------------------------dump2------------------------------------------
3210 #ifndef PRODUCT
3211 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3212   if( _ptr == Constant )
3213     st->print(INTPTR_FORMAT, p2i(_bits));
3214   else
3215     st->print("rawptr:%s", ptr_msg[_ptr]);
3216 }
3217 #endif
3218 
3219 //=============================================================================
3220 // Convenience common pre-built type.
3221 const TypeOopPtr *TypeOopPtr::BOTTOM;
3222 
3223 //------------------------------TypeOopPtr-------------------------------------
3224 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3225                        int instance_id, const TypePtr* speculative, int inline_depth)
3226   : TypePtr(t, ptr, offset, speculative, inline_depth),
3227     _const_oop(o), _klass(k),
3228     _klass_is_exact(xk),
3229     _is_ptr_to_narrowoop(false),
3230     _is_ptr_to_narrowklass(false),
3231     _is_ptr_to_boxed_value(false),
3232     _instance_id(instance_id) {
3233   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3234       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3235     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3236   }
3237 #ifdef _LP64
3238   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3239     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3240       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3241     } else if (klass() == NULL) {
3242       // Array with unknown body type
3243       assert(this->isa_aryptr(), "only arrays without klass");
3244       _is_ptr_to_narrowoop = UseCompressedOops;
3245     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3246       if (klass()->is_obj_array_klass()) {
3247         _is_ptr_to_narrowoop = true;
3248       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3249         // Check if the field of the value type array element contains oops
3250         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3251         int foffset = field_offset.get() + vk->first_field_offset();
3252         ciField* field = vk->get_field_by_offset(foffset, false);
3253         assert(field != NULL, "missing field");
3254         BasicType bt = field->layout_type();
3255         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3256       }
3257     } else if (klass()->is_instance_klass()) {
3258       if (this->isa_klassptr()) {
3259         // Perm objects don't use compressed references
3260       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3261         // unsafe access
3262         _is_ptr_to_narrowoop = UseCompressedOops;
3263       } else { // exclude unsafe ops
3264         assert(this->isa_instptr(), "must be an instance ptr.");
3265         if (klass() == ciEnv::current()->Class_klass() &&
3266             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3267              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3268           // Special hidden fields from the Class.
3269           assert(this->isa_instptr(), "must be an instance ptr.");
3270           _is_ptr_to_narrowoop = false;
3271         } else if (klass() == ciEnv::current()->Class_klass() &&
3272                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3273           // Static fields
3274           assert(o != NULL, "must be constant");
3275           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3276           BasicType basic_elem_type;
3277           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3278             // Special hidden field that contains the oop of the default value type
3279             basic_elem_type = T_VALUETYPE;
3280           } else {
3281             ciField* field = ik->get_field_by_offset(this->offset(), true);
3282             assert(field != NULL, "missing field");
3283             basic_elem_type = field->layout_type();
3284           }
3285           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3286                                                        basic_elem_type == T_VALUETYPE ||
3287                                                        basic_elem_type == T_ARRAY);
3288         } else {
3289           // Instance fields which contains a compressed oop references.
3290           ciInstanceKlass* ik = klass()->as_instance_klass();
3291           ciField* field = ik->get_field_by_offset(this->offset(), false);
3292           if (field != NULL) {
3293             BasicType basic_elem_type = field->layout_type();
3294             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3295                                                          basic_elem_type == T_VALUETYPE ||
3296                                                          basic_elem_type == T_ARRAY);
3297           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3298             // Compile::find_alias_type() cast exactness on all types to verify
3299             // that it does not affect alias type.
3300             _is_ptr_to_narrowoop = UseCompressedOops;
3301           } else {
3302             // Type for the copy start in LibraryCallKit::inline_native_clone().
3303             _is_ptr_to_narrowoop = UseCompressedOops;
3304           }
3305         }
3306       }
3307     }
3308   }
3309 #endif
3310 }
3311 
3312 //------------------------------make-------------------------------------------
3313 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3314                                    const TypePtr* speculative, int inline_depth) {
3315   assert(ptr != Constant, "no constant generic pointers");
3316   ciKlass*  k = Compile::current()->env()->Object_klass();
3317   bool      xk = false;
3318   ciObject* o = NULL;
3319   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3320 }
3321 
3322 
3323 //------------------------------cast_to_ptr_type-------------------------------
3324 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3325   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3326   if( ptr == _ptr ) return this;
3327   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3328 }
3329 
3330 //-----------------------------cast_to_instance_id----------------------------
3331 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3332   // There are no instances of a general oop.
3333   // Return self unchanged.
3334   return this;
3335 }
3336 
3337 const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const {
3338   return this;
3339 }
3340 
3341 //-----------------------------cast_to_exactness-------------------------------
3342 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3343   // There is no such thing as an exact general oop.
3344   // Return self unchanged.
3345   return this;
3346 }
3347 
3348 
3349 //------------------------------as_klass_type----------------------------------
3350 // Return the klass type corresponding to this instance or array type.
3351 // It is the type that is loaded from an object of this type.
3352 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3353   ciKlass* k = klass();
3354   bool    xk = klass_is_exact();
3355   if (k == NULL)
3356     return TypeKlassPtr::OBJECT;
3357   else
3358     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3359 }
3360 
3361 //------------------------------meet-------------------------------------------
3362 // Compute the MEET of two types.  It returns a new Type object.
3363 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3364   // Perform a fast test for common case; meeting the same types together.
3365   if( this == t ) return this;  // Meeting same type-rep?
3366 
3367   // Current "this->_base" is OopPtr
3368   switch (t->base()) {          // switch on original type
3369 
3370   case Int:                     // Mixing ints & oops happens when javac
3371   case Long:                    // reuses local variables
3372   case FloatTop:
3373   case FloatCon:
3374   case FloatBot:
3375   case DoubleTop:
3376   case DoubleCon:
3377   case DoubleBot:
3378   case NarrowOop:
3379   case NarrowKlass:
3380   case Bottom:                  // Ye Olde Default
3381     return Type::BOTTOM;
3382   case Top:
3383     return this;
3384 
3385   default:                      // All else is a mistake
3386     typerr(t);
3387 
3388   case RawPtr:
3389   case MetadataPtr:
3390   case KlassPtr:
3391     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3392 
3393   case AnyPtr: {
3394     // Found an AnyPtr type vs self-OopPtr type
3395     const TypePtr *tp = t->is_ptr();
3396     Offset offset = meet_offset(tp->offset());
3397     PTR ptr = meet_ptr(tp->ptr());
3398     const TypePtr* speculative = xmeet_speculative(tp);
3399     int depth = meet_inline_depth(tp->inline_depth());
3400     switch (tp->ptr()) {
3401     case Null:
3402       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3403       // else fall through:
3404     case TopPTR:
3405     case AnyNull: {
3406       int instance_id = meet_instance_id(InstanceTop);
3407       return make(ptr, offset, instance_id, speculative, depth);
3408     }
3409     case BotPTR:
3410     case NotNull:
3411       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3412     default: typerr(t);
3413     }
3414   }
3415 
3416   case OopPtr: {                 // Meeting to other OopPtrs
3417     const TypeOopPtr *tp = t->is_oopptr();
3418     int instance_id = meet_instance_id(tp->instance_id());
3419     const TypePtr* speculative = xmeet_speculative(tp);
3420     int depth = meet_inline_depth(tp->inline_depth());
3421     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3422   }
3423 
3424   case InstPtr:                  // For these, flip the call around to cut down
3425   case AryPtr:
3426     return t->xmeet(this);      // Call in reverse direction
3427 
3428   } // End of switch
3429   return this;                  // Return the double constant
3430 }
3431 
3432 
3433 //------------------------------xdual------------------------------------------
3434 // Dual of a pure heap pointer.  No relevant klass or oop information.
3435 const Type *TypeOopPtr::xdual() const {
3436   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3437   assert(const_oop() == NULL,             "no constants here");
3438   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3439 }
3440 
3441 //--------------------------make_from_klass_common-----------------------------
3442 // Computes the element-type given a klass.
3443 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3444   if (klass->is_instance_klass() || klass->is_valuetype()) {
3445     Compile* C = Compile::current();
3446     Dependencies* deps = C->dependencies();
3447     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3448     // Element is an instance
3449     bool klass_is_exact = false;
3450     if (klass->is_loaded()) {
3451       // Try to set klass_is_exact.
3452       ciInstanceKlass* ik = klass->as_instance_klass();
3453       klass_is_exact = ik->is_final();
3454       if (!klass_is_exact && klass_change
3455           && deps != NULL && UseUniqueSubclasses) {
3456         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3457         if (sub != NULL) {
3458           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3459           klass = ik = sub;
3460           klass_is_exact = sub->is_final();
3461         }
3462       }
3463       if (!klass_is_exact && try_for_exact
3464           && deps != NULL && UseExactTypes) {
3465         if (!ik->is_interface() && !ik->has_subklass()) {
3466           // Add a dependence; if concrete subclass added we need to recompile
3467           deps->assert_leaf_type(ik);
3468           klass_is_exact = true;
3469         }
3470       }
3471     }
3472     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3473   } else if (klass->is_obj_array_klass()) {
3474     // Element is an object or value array. Recursively call ourself.
3475     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3476     bool null_free = klass->is_loaded() && klass->as_array_klass()->storage_properties().is_null_free();
3477     if (null_free) {
3478       assert(etype->is_valuetypeptr(), "must be a valuetypeptr");
3479       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3480     }
3481     // [V? has a subtype: [V. So even though V is final, [V? is not exact.
3482     bool xk = etype->klass_is_exact() && (!etype->is_valuetypeptr() || null_free);
3483     bool not_flat = !ValueArrayFlatten || xk || !etype->can_be_value_type() || (etype->is_valuetypeptr() && !etype->value_klass()->flatten_array());
3484     bool not_null_free = !etype->can_be_value_type();
3485     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, false, not_flat, not_null_free);
3486     // We used to pass NotNull in here, asserting that the sub-arrays
3487     // are all not-null.  This is not true in generally, as code can
3488     // slam NULLs down in the subarrays.
3489     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3490     return arr;
3491   } else if (klass->is_type_array_klass()) {
3492     // Element is an typeArray
3493     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3494     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3495                                         /* stable= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3496     // We used to pass NotNull in here, asserting that the array pointer
3497     // is not-null. That was not true in general.
3498     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3499     return arr;
3500   } else if (klass->is_value_array_klass()) {
3501     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3502     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3503     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3504     return arr;
3505   } else {
3506     ShouldNotReachHere();
3507     return NULL;
3508   }
3509 }
3510 
3511 //------------------------------make_from_constant-----------------------------
3512 // Make a java pointer from an oop constant
3513 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3514   assert(!o->is_null_object(), "null object not yet handled here.");
3515 
3516   const bool make_constant = require_constant || o->should_be_constant();
3517 
3518   ciKlass* klass = o->klass();
3519   if (klass->is_instance_klass() || klass->is_valuetype()) {
3520     // Element is an instance or value type
3521     if (make_constant) {
3522       return TypeInstPtr::make(o);
3523     } else {
3524       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3525     }
3526   } else if (klass->is_obj_array_klass()) {
3527     // Element is an object array. Recursively call ourself.
3528     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3529     bool null_free = klass->is_loaded() && klass->as_array_klass()->storage_properties().is_null_free();
3530     if (null_free) {
3531       assert(etype->is_valuetypeptr(), "must be a valuetypeptr");
3532       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3533     }
3534     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3535                                         /* stable= */ false, /* not_flat= */ true, /* not_null_free= */ !null_free);
3536     // We used to pass NotNull in here, asserting that the sub-arrays
3537     // are all not-null.  This is not true in generally, as code can
3538     // slam NULLs down in the subarrays.
3539     if (make_constant) {
3540       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3541     } else {
3542       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3543     }
3544   } else if (klass->is_type_array_klass()) {
3545     // Element is an typeArray
3546     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3547     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3548                                         /* stable= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3549     // We used to pass NotNull in here, asserting that the array pointer
3550     // is not-null. That was not true in general.
3551     if (make_constant) {
3552       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3553     } else {
3554       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3555     }
3556   } else if (klass->is_value_array_klass()) {
3557     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3558     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3559     // We used to pass NotNull in here, asserting that the sub-arrays
3560     // are all not-null.  This is not true in generally, as code can
3561     // slam NULLs down in the subarrays.
3562     if (make_constant) {
3563       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3564     } else {
3565       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3566     }
3567   }
3568 
3569   fatal("unhandled object type");
3570   return NULL;
3571 }
3572 
3573 //------------------------------get_con----------------------------------------
3574 intptr_t TypeOopPtr::get_con() const {
3575   assert( _ptr == Null || _ptr == Constant, "" );
3576   assert(offset() >= 0, "");
3577 
3578   if (offset() != 0) {
3579     // After being ported to the compiler interface, the compiler no longer
3580     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3581     // to a handle at compile time.  This handle is embedded in the generated
3582     // code and dereferenced at the time the nmethod is made.  Until that time,
3583     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3584     // have access to the addresses!).  This does not seem to currently happen,
3585     // but this assertion here is to help prevent its occurence.
3586     tty->print_cr("Found oop constant with non-zero offset");
3587     ShouldNotReachHere();
3588   }
3589 
3590   return (intptr_t)const_oop()->constant_encoding();
3591 }
3592 
3593 
3594 //-----------------------------filter------------------------------------------
3595 // Do not allow interface-vs.-noninterface joins to collapse to top.
3596 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3597 
3598   const Type* ft = join_helper(kills, include_speculative);
3599   const TypeInstPtr* ftip = ft->isa_instptr();
3600   const TypeInstPtr* ktip = kills->isa_instptr();
3601 
3602   if (ft->empty()) {
3603     // Check for evil case of 'this' being a class and 'kills' expecting an
3604     // interface.  This can happen because the bytecodes do not contain
3605     // enough type info to distinguish a Java-level interface variable
3606     // from a Java-level object variable.  If we meet 2 classes which
3607     // both implement interface I, but their meet is at 'j/l/O' which
3608     // doesn't implement I, we have no way to tell if the result should
3609     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3610     // into a Phi which "knows" it's an Interface type we'll have to
3611     // uplift the type.
3612     if (!empty()) {
3613       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3614         return kills;           // Uplift to interface
3615       }
3616       // Also check for evil cases of 'this' being a class array
3617       // and 'kills' expecting an array of interfaces.
3618       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3619       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3620         return kills;           // Uplift to array of interface
3621       }
3622     }
3623 
3624     return Type::TOP;           // Canonical empty value
3625   }
3626 
3627   // If we have an interface-typed Phi or cast and we narrow to a class type,
3628   // the join should report back the class.  However, if we have a J/L/Object
3629   // class-typed Phi and an interface flows in, it's possible that the meet &
3630   // join report an interface back out.  This isn't possible but happens
3631   // because the type system doesn't interact well with interfaces.
3632   if (ftip != NULL && ktip != NULL &&
3633       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3634       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3635     assert(!ftip->klass_is_exact(), "interface could not be exact");
3636     return ktip->cast_to_ptr_type(ftip->ptr());
3637   }
3638 
3639   return ft;
3640 }
3641 
3642 //------------------------------eq---------------------------------------------
3643 // Structural equality check for Type representations
3644 bool TypeOopPtr::eq( const Type *t ) const {
3645   const TypeOopPtr *a = (const TypeOopPtr*)t;
3646   if (_klass_is_exact != a->_klass_is_exact ||
3647       _instance_id != a->_instance_id)  return false;
3648   ciObject* one = const_oop();
3649   ciObject* two = a->const_oop();
3650   if (one == NULL || two == NULL) {
3651     return (one == two) && TypePtr::eq(t);
3652   } else {
3653     return one->equals(two) && TypePtr::eq(t);
3654   }
3655 }
3656 
3657 //------------------------------hash-------------------------------------------
3658 // Type-specific hashing function.
3659 int TypeOopPtr::hash(void) const {
3660   return
3661     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3662              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3663 }
3664 
3665 //------------------------------dump2------------------------------------------
3666 #ifndef PRODUCT
3667 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3668   st->print("oopptr:%s", ptr_msg[_ptr]);
3669   if( _klass_is_exact ) st->print(":exact");
3670   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3671   _offset.dump2(st);
3672   if (_instance_id == InstanceTop)
3673     st->print(",iid=top");
3674   else if (_instance_id != InstanceBot)
3675     st->print(",iid=%d",_instance_id);
3676 
3677   dump_inline_depth(st);
3678   dump_speculative(st);
3679 }
3680 #endif
3681 
3682 //------------------------------singleton--------------------------------------
3683 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3684 // constants
3685 bool TypeOopPtr::singleton(void) const {
3686   // detune optimizer to not generate constant oop + constant offset as a constant!
3687   // TopPTR, Null, AnyNull, Constant are all singletons
3688   return (offset() == 0) && !below_centerline(_ptr);
3689 }
3690 
3691 //------------------------------add_offset-------------------------------------
3692 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3693   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3694 }
3695 
3696 /**
3697  * Return same type without a speculative part
3698  */
3699 const Type* TypeOopPtr::remove_speculative() const {
3700   if (_speculative == NULL) {
3701     return this;
3702   }
3703   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3704   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3705 }
3706 
3707 /**
3708  * Return same type but drop speculative part if we know we won't use
3709  * it
3710  */
3711 const Type* TypeOopPtr::cleanup_speculative() const {
3712   // If the klass is exact and the ptr is not null then there's
3713   // nothing that the speculative type can help us with
3714   if (klass_is_exact() && !maybe_null()) {
3715     return remove_speculative();
3716   }
3717   return TypePtr::cleanup_speculative();
3718 }
3719 
3720 /**
3721  * Return same type but with a different inline depth (used for speculation)
3722  *
3723  * @param depth  depth to meet with
3724  */
3725 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3726   if (!UseInlineDepthForSpeculativeTypes) {
3727     return this;
3728   }
3729   return make(_ptr, _offset, _instance_id, _speculative, depth);
3730 }
3731 
3732 //------------------------------with_instance_id--------------------------------
3733 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3734   assert(_instance_id != -1, "should be known");
3735   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3736 }
3737 
3738 //------------------------------meet_instance_id--------------------------------
3739 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3740   // Either is 'TOP' instance?  Return the other instance!
3741   if( _instance_id == InstanceTop ) return  instance_id;
3742   if(  instance_id == InstanceTop ) return _instance_id;
3743   // If either is different, return 'BOTTOM' instance
3744   if( _instance_id != instance_id ) return InstanceBot;
3745   return _instance_id;
3746 }
3747 
3748 //------------------------------dual_instance_id--------------------------------
3749 int TypeOopPtr::dual_instance_id( ) const {
3750   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3751   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3752   return _instance_id;              // Map everything else into self
3753 }
3754 
3755 /**
3756  * Check whether new profiling would improve speculative type
3757  *
3758  * @param   exact_kls    class from profiling
3759  * @param   inline_depth inlining depth of profile point
3760  *
3761  * @return  true if type profile is valuable
3762  */
3763 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3764   // no way to improve an already exact type
3765   if (klass_is_exact()) {
3766     return false;
3767   }
3768   return TypePtr::would_improve_type(exact_kls, inline_depth);
3769 }
3770 
3771 //=============================================================================
3772 // Convenience common pre-built types.
3773 const TypeInstPtr *TypeInstPtr::NOTNULL;
3774 const TypeInstPtr *TypeInstPtr::BOTTOM;
3775 const TypeInstPtr *TypeInstPtr::MIRROR;
3776 const TypeInstPtr *TypeInstPtr::MARK;
3777 const TypeInstPtr *TypeInstPtr::KLASS;
3778 
3779 //------------------------------TypeInstPtr-------------------------------------
3780 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3781                          int instance_id, const TypePtr* speculative, int inline_depth)
3782   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3783     _name(k->name()) {
3784    assert(k != NULL &&
3785           (k->is_loaded() || o == NULL),
3786           "cannot have constants with non-loaded klass");
3787 };
3788 
3789 //------------------------------make-------------------------------------------
3790 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3791                                      ciKlass* k,
3792                                      bool xk,
3793                                      ciObject* o,
3794                                      Offset offset,
3795                                      int instance_id,
3796                                      const TypePtr* speculative,
3797                                      int inline_depth) {
3798   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3799   // Either const_oop() is NULL or else ptr is Constant
3800   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3801           "constant pointers must have a value supplied" );
3802   // Ptr is never Null
3803   assert( ptr != Null, "NULL pointers are not typed" );
3804 
3805   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3806   if (!UseExactTypes)  xk = false;
3807   if (ptr == Constant) {
3808     // Note:  This case includes meta-object constants, such as methods.
3809     xk = true;
3810   } else if (k->is_loaded()) {
3811     ciInstanceKlass* ik = k->as_instance_klass();
3812     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3813     if (xk && ik->is_interface())  xk = false;  // no exact interface
3814   }
3815 
3816   // Now hash this baby
3817   TypeInstPtr *result =
3818     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3819 
3820   return result;
3821 }
3822 
3823 /**
3824  *  Create constant type for a constant boxed value
3825  */
3826 const Type* TypeInstPtr::get_const_boxed_value() const {
3827   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3828   assert((const_oop() != NULL), "should be called only for constant object");
3829   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3830   BasicType bt = constant.basic_type();
3831   switch (bt) {
3832     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3833     case T_INT:      return TypeInt::make(constant.as_int());
3834     case T_CHAR:     return TypeInt::make(constant.as_char());
3835     case T_BYTE:     return TypeInt::make(constant.as_byte());
3836     case T_SHORT:    return TypeInt::make(constant.as_short());
3837     case T_FLOAT:    return TypeF::make(constant.as_float());
3838     case T_DOUBLE:   return TypeD::make(constant.as_double());
3839     case T_LONG:     return TypeLong::make(constant.as_long());
3840     default:         break;
3841   }
3842   fatal("Invalid boxed value type '%s'", type2name(bt));
3843   return NULL;
3844 }
3845 
3846 //------------------------------cast_to_ptr_type-------------------------------
3847 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3848   if( ptr == _ptr ) return this;
3849   // Reconstruct _sig info here since not a problem with later lazy
3850   // construction, _sig will show up on demand.
3851   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3852 }
3853 
3854 
3855 //-----------------------------cast_to_exactness-------------------------------
3856 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3857   if( klass_is_exact == _klass_is_exact ) return this;
3858   if (!UseExactTypes)  return this;
3859   if (!_klass->is_loaded())  return this;
3860   ciInstanceKlass* ik = _klass->as_instance_klass();
3861   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3862   if( ik->is_interface() )              return this;  // cannot set xk
3863   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3864 }
3865 
3866 //-----------------------------cast_to_instance_id----------------------------
3867 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3868   if( instance_id == _instance_id ) return this;
3869   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3870 }
3871 
3872 const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const {
3873   if (const_oop() == NULL) return this;
3874   return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth);
3875 }
3876 
3877 //------------------------------xmeet_unloaded---------------------------------
3878 // Compute the MEET of two InstPtrs when at least one is unloaded.
3879 // Assume classes are different since called after check for same name/class-loader
3880 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3881     Offset off = meet_offset(tinst->offset());
3882     PTR ptr = meet_ptr(tinst->ptr());
3883     int instance_id = meet_instance_id(tinst->instance_id());
3884     const TypePtr* speculative = xmeet_speculative(tinst);
3885     int depth = meet_inline_depth(tinst->inline_depth());
3886 
3887     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3888     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3889     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3890       //
3891       // Meet unloaded class with java/lang/Object
3892       //
3893       // Meet
3894       //          |                     Unloaded Class
3895       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3896       //  ===================================================================
3897       //   TOP    | ..........................Unloaded......................|
3898       //  AnyNull |  U-AN    |................Unloaded......................|
3899       // Constant | ... O-NN .................................. |   O-BOT   |
3900       //  NotNull | ... O-NN .................................. |   O-BOT   |
3901       //  BOTTOM  | ........................Object-BOTTOM ..................|
3902       //
3903       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3904       //
3905       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3906       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3907       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3908       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3909         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3910         else                                      { return TypeInstPtr::NOTNULL; }
3911       }
3912       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3913 
3914       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3915     }
3916 
3917     // Both are unloaded, not the same class, not Object
3918     // Or meet unloaded with a different loaded class, not java/lang/Object
3919     if( ptr != TypePtr::BotPTR ) {
3920       return TypeInstPtr::NOTNULL;
3921     }
3922     return TypeInstPtr::BOTTOM;
3923 }
3924 
3925 
3926 //------------------------------meet-------------------------------------------
3927 // Compute the MEET of two types.  It returns a new Type object.
3928 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3929   // Perform a fast test for common case; meeting the same types together.
3930   if( this == t ) return this;  // Meeting same type-rep?
3931 
3932   // Current "this->_base" is Pointer
3933   switch (t->base()) {          // switch on original type
3934 
3935   case Int:                     // Mixing ints & oops happens when javac
3936   case Long:                    // reuses local variables
3937   case FloatTop:
3938   case FloatCon:
3939   case FloatBot:
3940   case DoubleTop:
3941   case DoubleCon:
3942   case DoubleBot:
3943   case NarrowOop:
3944   case NarrowKlass:
3945   case Bottom:                  // Ye Olde Default
3946     return Type::BOTTOM;
3947   case Top:
3948     return this;
3949 
3950   default:                      // All else is a mistake
3951     typerr(t);
3952 
3953   case MetadataPtr:
3954   case KlassPtr:
3955   case RawPtr: return TypePtr::BOTTOM;
3956 
3957   case AryPtr: {                // All arrays inherit from Object class
3958     const TypeAryPtr *tp = t->is_aryptr();
3959     Offset offset = meet_offset(tp->offset());
3960     PTR ptr = meet_ptr(tp->ptr());
3961     int instance_id = meet_instance_id(tp->instance_id());
3962     const TypePtr* speculative = xmeet_speculative(tp);
3963     int depth = meet_inline_depth(tp->inline_depth());
3964     switch (ptr) {
3965     case TopPTR:
3966     case AnyNull:                // Fall 'down' to dual of object klass
3967       // For instances when a subclass meets a superclass we fall
3968       // below the centerline when the superclass is exact. We need to
3969       // do the same here.
3970       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3971         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3972       } else {
3973         // cannot subclass, so the meet has to fall badly below the centerline
3974         ptr = NotNull;
3975         instance_id = InstanceBot;
3976         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3977       }
3978     case Constant:
3979     case NotNull:
3980     case BotPTR:                // Fall down to object klass
3981       // LCA is object_klass, but if we subclass from the top we can do better
3982       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3983         // If 'this' (InstPtr) is above the centerline and it is Object class
3984         // then we can subclass in the Java class hierarchy.
3985         // For instances when a subclass meets a superclass we fall
3986         // below the centerline when the superclass is exact. We need
3987         // to do the same here.
3988         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3989           // that is, tp's array type is a subtype of my klass
3990           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3991                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3992         }
3993       }
3994       // The other case cannot happen, since I cannot be a subtype of an array.
3995       // The meet falls down to Object class below centerline.
3996       if( ptr == Constant )
3997          ptr = NotNull;
3998       instance_id = InstanceBot;
3999       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4000     default: typerr(t);
4001     }
4002   }
4003 
4004   case OopPtr: {                // Meeting to OopPtrs
4005     // Found a OopPtr type vs self-InstPtr type
4006     const TypeOopPtr *tp = t->is_oopptr();
4007     Offset offset = meet_offset(tp->offset());
4008     PTR ptr = meet_ptr(tp->ptr());
4009     switch (tp->ptr()) {
4010     case TopPTR:
4011     case AnyNull: {
4012       int instance_id = meet_instance_id(InstanceTop);
4013       const TypePtr* speculative = xmeet_speculative(tp);
4014       int depth = meet_inline_depth(tp->inline_depth());
4015       return make(ptr, klass(), klass_is_exact(),
4016                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4017     }
4018     case NotNull:
4019     case BotPTR: {
4020       int instance_id = meet_instance_id(tp->instance_id());
4021       const TypePtr* speculative = xmeet_speculative(tp);
4022       int depth = meet_inline_depth(tp->inline_depth());
4023       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4024     }
4025     default: typerr(t);
4026     }
4027   }
4028 
4029   case AnyPtr: {                // Meeting to AnyPtrs
4030     // Found an AnyPtr type vs self-InstPtr type
4031     const TypePtr *tp = t->is_ptr();
4032     Offset offset = meet_offset(tp->offset());
4033     PTR ptr = meet_ptr(tp->ptr());
4034     int instance_id = meet_instance_id(InstanceTop);
4035     const TypePtr* speculative = xmeet_speculative(tp);
4036     int depth = meet_inline_depth(tp->inline_depth());
4037     switch (tp->ptr()) {
4038     case Null:
4039       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4040       // else fall through to AnyNull
4041     case TopPTR:
4042     case AnyNull: {
4043       return make(ptr, klass(), klass_is_exact(),
4044                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4045     }
4046     case NotNull:
4047     case BotPTR:
4048       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4049     default: typerr(t);
4050     }
4051   }
4052 
4053   /*
4054                  A-top         }
4055                /   |   \       }  Tops
4056            B-top A-any C-top   }
4057               | /  |  \ |      }  Any-nulls
4058            B-any   |   C-any   }
4059               |    |    |
4060            B-con A-con C-con   } constants; not comparable across classes
4061               |    |    |
4062            B-not   |   C-not   }
4063               | \  |  / |      }  not-nulls
4064            B-bot A-not C-bot   }
4065                \   |   /       }  Bottoms
4066                  A-bot         }
4067   */
4068 
4069   case InstPtr: {                // Meeting 2 Oops?
4070     // Found an InstPtr sub-type vs self-InstPtr type
4071     const TypeInstPtr *tinst = t->is_instptr();
4072     Offset off = meet_offset( tinst->offset() );
4073     PTR ptr = meet_ptr( tinst->ptr() );
4074     int instance_id = meet_instance_id(tinst->instance_id());
4075     const TypePtr* speculative = xmeet_speculative(tinst);
4076     int depth = meet_inline_depth(tinst->inline_depth());
4077 
4078     // Check for easy case; klasses are equal (and perhaps not loaded!)
4079     // If we have constants, then we created oops so classes are loaded
4080     // and we can handle the constants further down.  This case handles
4081     // both-not-loaded or both-loaded classes
4082     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4083       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4084     }
4085 
4086     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4087     ciKlass* tinst_klass = tinst->klass();
4088     ciKlass* this_klass  = this->klass();
4089     bool tinst_xk = tinst->klass_is_exact();
4090     bool this_xk  = this->klass_is_exact();
4091     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4092       // One of these classes has not been loaded
4093       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4094 #ifndef PRODUCT
4095       if( PrintOpto && Verbose ) {
4096         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4097         tty->print("  this == "); this->dump(); tty->cr();
4098         tty->print(" tinst == "); tinst->dump(); tty->cr();
4099       }
4100 #endif
4101       return unloaded_meet;
4102     }
4103 
4104     // Handle mixing oops and interfaces first.
4105     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4106                                         tinst_klass == ciEnv::current()->Object_klass())) {
4107       ciKlass *tmp = tinst_klass; // Swap interface around
4108       tinst_klass = this_klass;
4109       this_klass = tmp;
4110       bool tmp2 = tinst_xk;
4111       tinst_xk = this_xk;
4112       this_xk = tmp2;
4113     }
4114     if (tinst_klass->is_interface() &&
4115         !(this_klass->is_interface() ||
4116           // Treat java/lang/Object as an honorary interface,
4117           // because we need a bottom for the interface hierarchy.
4118           this_klass == ciEnv::current()->Object_klass())) {
4119       // Oop meets interface!
4120 
4121       // See if the oop subtypes (implements) interface.
4122       ciKlass *k;
4123       bool xk;
4124       if( this_klass->is_subtype_of( tinst_klass ) ) {
4125         // Oop indeed subtypes.  Now keep oop or interface depending
4126         // on whether we are both above the centerline or either is
4127         // below the centerline.  If we are on the centerline
4128         // (e.g., Constant vs. AnyNull interface), use the constant.
4129         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4130         // If we are keeping this_klass, keep its exactness too.
4131         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4132       } else {                  // Does not implement, fall to Object
4133         // Oop does not implement interface, so mixing falls to Object
4134         // just like the verifier does (if both are above the
4135         // centerline fall to interface)
4136         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4137         xk = above_centerline(ptr) ? tinst_xk : false;
4138         // Watch out for Constant vs. AnyNull interface.
4139         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4140         instance_id = InstanceBot;
4141       }
4142       ciObject* o = NULL;  // the Constant value, if any
4143       if (ptr == Constant) {
4144         // Find out which constant.
4145         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4146       }
4147       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4148     }
4149 
4150     // Either oop vs oop or interface vs interface or interface vs Object
4151 
4152     // !!! Here's how the symmetry requirement breaks down into invariants:
4153     // If we split one up & one down AND they subtype, take the down man.
4154     // If we split one up & one down AND they do NOT subtype, "fall hard".
4155     // If both are up and they subtype, take the subtype class.
4156     // If both are up and they do NOT subtype, "fall hard".
4157     // If both are down and they subtype, take the supertype class.
4158     // If both are down and they do NOT subtype, "fall hard".
4159     // Constants treated as down.
4160 
4161     // Now, reorder the above list; observe that both-down+subtype is also
4162     // "fall hard"; "fall hard" becomes the default case:
4163     // If we split one up & one down AND they subtype, take the down man.
4164     // If both are up and they subtype, take the subtype class.
4165 
4166     // If both are down and they subtype, "fall hard".
4167     // If both are down and they do NOT subtype, "fall hard".
4168     // If both are up and they do NOT subtype, "fall hard".
4169     // If we split one up & one down AND they do NOT subtype, "fall hard".
4170 
4171     // If a proper subtype is exact, and we return it, we return it exactly.
4172     // If a proper supertype is exact, there can be no subtyping relationship!
4173     // If both types are equal to the subtype, exactness is and-ed below the
4174     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4175 
4176     // Check for subtyping:
4177     ciKlass *subtype = NULL;
4178     bool subtype_exact = false;
4179     if( tinst_klass->equals(this_klass) ) {
4180       subtype = this_klass;
4181       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
4182     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4183       subtype = this_klass;     // Pick subtyping class
4184       subtype_exact = this_xk;
4185     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4186       subtype = tinst_klass;    // Pick subtyping class
4187       subtype_exact = tinst_xk;
4188     }
4189 
4190     if( subtype ) {
4191       if( above_centerline(ptr) ) { // both are up?
4192         this_klass = tinst_klass = subtype;
4193         this_xk = tinst_xk = subtype_exact;
4194       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4195         this_klass = tinst_klass; // tinst is down; keep down man
4196         this_xk = tinst_xk;
4197       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4198         tinst_klass = this_klass; // this is down; keep down man
4199         tinst_xk = this_xk;
4200       } else {
4201         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4202       }
4203     }
4204 
4205     // Check for classes now being equal
4206     if (tinst_klass->equals(this_klass)) {
4207       // If the klasses are equal, the constants may still differ.  Fall to
4208       // NotNull if they do (neither constant is NULL; that is a special case
4209       // handled elsewhere).
4210       ciObject* o = NULL;             // Assume not constant when done
4211       ciObject* this_oop  = const_oop();
4212       ciObject* tinst_oop = tinst->const_oop();
4213       if( ptr == Constant ) {
4214         if (this_oop != NULL && tinst_oop != NULL &&
4215             this_oop->equals(tinst_oop) )
4216           o = this_oop;
4217         else if (above_centerline(this ->_ptr))
4218           o = tinst_oop;
4219         else if (above_centerline(tinst ->_ptr))
4220           o = this_oop;
4221         else
4222           ptr = NotNull;
4223       }
4224       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4225     } // Else classes are not equal
4226 
4227     // Since klasses are different, we require a LCA in the Java
4228     // class hierarchy - which means we have to fall to at least NotNull.
4229     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4230       ptr = NotNull;
4231 
4232     instance_id = InstanceBot;
4233 
4234     // Now we find the LCA of Java classes
4235     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4236     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4237   } // End of case InstPtr
4238 
4239   case ValueType: {
4240     const TypeValueType* tv = t->is_valuetype();
4241     if (above_centerline(ptr())) {
4242       if (tv->value_klass()->is_subtype_of(_klass)) {
4243         return t;
4244       } else {
4245         return TypeInstPtr::make(NotNull, _klass);
4246       }
4247     } else {
4248       PTR ptr = this->_ptr;
4249       if (ptr == Constant) {
4250         ptr = NotNull;
4251       }
4252       if (tv->value_klass()->is_subtype_of(_klass)) {
4253         return TypeInstPtr::make(ptr, _klass);
4254       } else {
4255         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass());
4256       }
4257     }
4258   }
4259 
4260   } // End of switch
4261   return this;                  // Return the double constant
4262 }
4263 
4264 
4265 //------------------------java_mirror_type--------------------------------------
4266 ciType* TypeInstPtr::java_mirror_type(bool* is_val_type) const {
4267   // must be a singleton type
4268   if( const_oop() == NULL )  return NULL;
4269 
4270   // must be of type java.lang.Class
4271   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4272 
4273   return const_oop()->as_instance()->java_mirror_type(is_val_type);
4274 }
4275 
4276 
4277 //------------------------------xdual------------------------------------------
4278 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4279 // inheritance mechanism.
4280 const Type *TypeInstPtr::xdual() const {
4281   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4282 }
4283 
4284 //------------------------------eq---------------------------------------------
4285 // Structural equality check for Type representations
4286 bool TypeInstPtr::eq( const Type *t ) const {
4287   const TypeInstPtr *p = t->is_instptr();
4288   return
4289     klass()->equals(p->klass()) &&
4290     TypeOopPtr::eq(p);          // Check sub-type stuff
4291 }
4292 
4293 //------------------------------hash-------------------------------------------
4294 // Type-specific hashing function.
4295 int TypeInstPtr::hash(void) const {
4296   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4297   return hash;
4298 }
4299 
4300 //------------------------------dump2------------------------------------------
4301 // Dump oop Type
4302 #ifndef PRODUCT
4303 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4304   // Print the name of the klass.
4305   klass()->print_name_on(st);
4306 
4307   switch( _ptr ) {
4308   case Constant:
4309     // TO DO: Make CI print the hex address of the underlying oop.
4310     if (WizardMode || Verbose) {
4311       const_oop()->print_oop(st);
4312     }
4313   case BotPTR:
4314     if (!WizardMode && !Verbose) {
4315       if( _klass_is_exact ) st->print(":exact");
4316       break;
4317     }
4318   case TopPTR:
4319   case AnyNull:
4320   case NotNull:
4321     st->print(":%s", ptr_msg[_ptr]);
4322     if( _klass_is_exact ) st->print(":exact");
4323     break;
4324   default:
4325     break;
4326   }
4327 
4328   _offset.dump2(st);
4329 
4330   st->print(" *");
4331   if (_instance_id == InstanceTop)
4332     st->print(",iid=top");
4333   else if (_instance_id != InstanceBot)
4334     st->print(",iid=%d",_instance_id);
4335 
4336   dump_inline_depth(st);
4337   dump_speculative(st);
4338 }
4339 #endif
4340 
4341 //------------------------------add_offset-------------------------------------
4342 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4343   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4344               _instance_id, add_offset_speculative(offset), _inline_depth);
4345 }
4346 
4347 const Type *TypeInstPtr::remove_speculative() const {
4348   if (_speculative == NULL) {
4349     return this;
4350   }
4351   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4352   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4353               _instance_id, NULL, _inline_depth);
4354 }
4355 
4356 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4357   if (!UseInlineDepthForSpeculativeTypes) {
4358     return this;
4359   }
4360   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4361 }
4362 
4363 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4364   assert(is_known_instance(), "should be known");
4365   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4366 }
4367 
4368 //=============================================================================
4369 // Convenience common pre-built types.
4370 const TypeAryPtr *TypeAryPtr::RANGE;
4371 const TypeAryPtr *TypeAryPtr::OOPS;
4372 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4373 const TypeAryPtr *TypeAryPtr::BYTES;
4374 const TypeAryPtr *TypeAryPtr::SHORTS;
4375 const TypeAryPtr *TypeAryPtr::CHARS;
4376 const TypeAryPtr *TypeAryPtr::INTS;
4377 const TypeAryPtr *TypeAryPtr::LONGS;
4378 const TypeAryPtr *TypeAryPtr::FLOATS;
4379 const TypeAryPtr *TypeAryPtr::DOUBLES;
4380 const TypeAryPtr *TypeAryPtr::VALUES;
4381 
4382 //------------------------------make-------------------------------------------
4383 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4384                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4385   assert(!(k == NULL && ary->_elem->isa_int()),
4386          "integral arrays must be pre-equipped with a class");
4387   if (!xk) xk = ary->ary_must_be_exact();
4388   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4389   if (!UseExactTypes)  xk = (ptr == Constant);
4390   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4391 }
4392 
4393 //------------------------------make-------------------------------------------
4394 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4395                                    int instance_id, const TypePtr* speculative, int inline_depth,
4396                                    bool is_autobox_cache) {
4397   assert(!(k == NULL && ary->_elem->isa_int()),
4398          "integral arrays must be pre-equipped with a class");
4399   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4400   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4401   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4402   if (!UseExactTypes)  xk = (ptr == Constant);
4403   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4404 }
4405 
4406 //------------------------------cast_to_ptr_type-------------------------------
4407 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4408   if( ptr == _ptr ) return this;
4409   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4410 }
4411 
4412 
4413 //-----------------------------cast_to_exactness-------------------------------
4414 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4415   if( klass_is_exact == _klass_is_exact ) return this;
4416   if (!UseExactTypes)  return this;
4417   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4418   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4419 }
4420 
4421 //-----------------------------cast_to_instance_id----------------------------
4422 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4423   if( instance_id == _instance_id ) return this;
4424   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4425 }
4426 
4427 const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const {
4428   if (const_oop() == NULL) return this;
4429   return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth);
4430 }
4431 
4432 
4433 //-----------------------------narrow_size_type-------------------------------
4434 // Local cache for arrayOopDesc::max_array_length(etype),
4435 // which is kind of slow (and cached elsewhere by other users).
4436 static jint max_array_length_cache[T_CONFLICT+1];
4437 static jint max_array_length(BasicType etype) {
4438   jint& cache = max_array_length_cache[etype];
4439   jint res = cache;
4440   if (res == 0) {
4441     switch (etype) {
4442     case T_NARROWOOP:
4443       etype = T_OBJECT;
4444       break;
4445     case T_NARROWKLASS:
4446     case T_CONFLICT:
4447     case T_ILLEGAL:
4448     case T_VOID:
4449       etype = T_BYTE;           // will produce conservatively high value
4450       break;
4451     default:
4452       break;
4453     }
4454     cache = res = arrayOopDesc::max_array_length(etype);
4455   }
4456   return res;
4457 }
4458 
4459 // Narrow the given size type to the index range for the given array base type.
4460 // Return NULL if the resulting int type becomes empty.
4461 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4462   jint hi = size->_hi;
4463   jint lo = size->_lo;
4464   jint min_lo = 0;
4465   jint max_hi = max_array_length(elem()->basic_type());
4466   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4467   bool chg = false;
4468   if (lo < min_lo) {
4469     lo = min_lo;
4470     if (size->is_con()) {
4471       hi = lo;
4472     }
4473     chg = true;
4474   }
4475   if (hi > max_hi) {
4476     hi = max_hi;
4477     if (size->is_con()) {
4478       lo = hi;
4479     }
4480     chg = true;
4481   }
4482   // Negative length arrays will produce weird intermediate dead fast-path code
4483   if (lo > hi)
4484     return TypeInt::ZERO;
4485   if (!chg)
4486     return size;
4487   return TypeInt::make(lo, hi, Type::WidenMin);
4488 }
4489 
4490 //-------------------------------cast_to_size----------------------------------
4491 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4492   assert(new_size != NULL, "");
4493   new_size = narrow_size_type(new_size);
4494   if (new_size == size())  return this;
4495   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_not_flat(), is_not_null_free());
4496   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4497 }
4498 
4499 //-------------------------------cast_to_not_flat------------------------------
4500 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
4501   if (not_flat == is_not_flat()) {
4502     return this;
4503   }
4504   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), not_flat, is_not_null_free());
4505   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4506 }
4507 
4508 //-------------------------------cast_to_not_null_free-------------------------
4509 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
4510   if (not_null_free == is_not_null_free()) {
4511     return this;
4512   }
4513   // Not null free implies not flat
4514   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), not_null_free ? true : is_not_flat(), not_null_free);
4515   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4516 }
4517 
4518 //------------------------------cast_to_stable---------------------------------
4519 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4520   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4521     return this;
4522 
4523   const Type* elem = this->elem();
4524   const TypePtr* elem_ptr = elem->make_ptr();
4525 
4526   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4527     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4528     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4529   }
4530 
4531   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_not_flat(), is_not_null_free());
4532 
4533   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4534 }
4535 
4536 //-----------------------------stable_dimension--------------------------------
4537 int TypeAryPtr::stable_dimension() const {
4538   if (!is_stable())  return 0;
4539   int dim = 1;
4540   const TypePtr* elem_ptr = elem()->make_ptr();
4541   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4542     dim += elem_ptr->is_aryptr()->stable_dimension();
4543   return dim;
4544 }
4545 
4546 //----------------------cast_to_autobox_cache-----------------------------------
4547 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4548   if (is_autobox_cache() == cache)  return this;
4549   const TypeOopPtr* etype = elem()->make_oopptr();
4550   if (etype == NULL)  return this;
4551   // The pointers in the autobox arrays are always non-null.
4552   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4553   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4554   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_not_flat(), is_not_null_free());
4555   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4556 }
4557 
4558 //------------------------------eq---------------------------------------------
4559 // Structural equality check for Type representations
4560 bool TypeAryPtr::eq( const Type *t ) const {
4561   const TypeAryPtr *p = t->is_aryptr();
4562   return
4563     _ary == p->_ary &&  // Check array
4564     TypeOopPtr::eq(p) &&// Check sub-parts
4565     _field_offset == p->_field_offset;
4566 }
4567 
4568 //------------------------------hash-------------------------------------------
4569 // Type-specific hashing function.
4570 int TypeAryPtr::hash(void) const {
4571   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4572 }
4573 
4574 //------------------------------meet-------------------------------------------
4575 // Compute the MEET of two types.  It returns a new Type object.
4576 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4577   // Perform a fast test for common case; meeting the same types together.
4578   if( this == t ) return this;  // Meeting same type-rep?
4579   // Current "this->_base" is Pointer
4580   switch (t->base()) {          // switch on original type
4581 
4582   // Mixing ints & oops happens when javac reuses local variables
4583   case Int:
4584   case Long:
4585   case FloatTop:
4586   case FloatCon:
4587   case FloatBot:
4588   case DoubleTop:
4589   case DoubleCon:
4590   case DoubleBot:
4591   case NarrowOop:
4592   case NarrowKlass:
4593   case Bottom:                  // Ye Olde Default
4594     return Type::BOTTOM;
4595   case Top:
4596     return this;
4597 
4598   default:                      // All else is a mistake
4599     typerr(t);
4600 
4601   case OopPtr: {                // Meeting to OopPtrs
4602     // Found a OopPtr type vs self-AryPtr type
4603     const TypeOopPtr *tp = t->is_oopptr();
4604     Offset offset = meet_offset(tp->offset());
4605     PTR ptr = meet_ptr(tp->ptr());
4606     int depth = meet_inline_depth(tp->inline_depth());
4607     const TypePtr* speculative = xmeet_speculative(tp);
4608     switch (tp->ptr()) {
4609     case TopPTR:
4610     case AnyNull: {
4611       int instance_id = meet_instance_id(InstanceTop);
4612       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4613                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4614     }
4615     case BotPTR:
4616     case NotNull: {
4617       int instance_id = meet_instance_id(tp->instance_id());
4618       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4619     }
4620     default: ShouldNotReachHere();
4621     }
4622   }
4623 
4624   case AnyPtr: {                // Meeting two AnyPtrs
4625     // Found an AnyPtr type vs self-AryPtr type
4626     const TypePtr *tp = t->is_ptr();
4627     Offset offset = meet_offset(tp->offset());
4628     PTR ptr = meet_ptr(tp->ptr());
4629     const TypePtr* speculative = xmeet_speculative(tp);
4630     int depth = meet_inline_depth(tp->inline_depth());
4631     switch (tp->ptr()) {
4632     case TopPTR:
4633       return this;
4634     case BotPTR:
4635     case NotNull:
4636       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4637     case Null:
4638       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4639       // else fall through to AnyNull
4640     case AnyNull: {
4641       int instance_id = meet_instance_id(InstanceTop);
4642       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4643                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4644     }
4645     default: ShouldNotReachHere();
4646     }
4647   }
4648 
4649   case MetadataPtr:
4650   case KlassPtr:
4651   case RawPtr: return TypePtr::BOTTOM;
4652 
4653   case AryPtr: {                // Meeting 2 references?
4654     const TypeAryPtr *tap = t->is_aryptr();
4655     Offset off = meet_offset(tap->offset());
4656     Offset field_off = meet_field_offset(tap->field_offset());
4657     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4658     PTR ptr = meet_ptr(tap->ptr());
4659     int instance_id = meet_instance_id(tap->instance_id());
4660     const TypePtr* speculative = xmeet_speculative(tap);
4661     int depth = meet_inline_depth(tap->inline_depth());
4662     ciKlass* lazy_klass = NULL;
4663     if (tary->_elem->isa_int()) {
4664       // Integral array element types have irrelevant lattice relations.
4665       // It is the klass that determines array layout, not the element type.
4666       if (_klass == NULL)
4667         lazy_klass = tap->_klass;
4668       else if (tap->_klass == NULL || tap->_klass == _klass) {
4669         lazy_klass = _klass;
4670       } else {
4671         // Something like byte[int+] meets char[int+].
4672         // This must fall to bottom, not (int[-128..65535])[int+].
4673         instance_id = InstanceBot;
4674         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable, tary->_not_flat, tary->_not_null_free);
4675       }
4676     } else if (klass() != NULL && tap->klass() != NULL &&
4677                klass()->as_array_klass()->storage_properties().value() != tap->klass()->as_array_klass()->storage_properties().value()) {
4678       // Meeting value type arrays with conflicting storage properties
4679       if (tary->_elem->isa_valuetype()) {
4680         // Result is flattened
4681         off = Offset(elem()->isa_valuetype() ? offset() : tap->offset());
4682         field_off = elem()->isa_valuetype() ? field_offset() : tap->field_offset();
4683       } else if (tary->_elem->make_oopptr() != NULL && tary->_elem->make_oopptr()->isa_instptr() && below_centerline(ptr)) {
4684         // Result is non-flattened
4685         off = Offset(flattened_offset()).meet(Offset(tap->flattened_offset()));
4686         field_off = Offset::bottom;
4687       }
4688     } else // Non integral arrays.
4689       // Must fall to bottom if exact klasses in upper lattice
4690       // are not equal or super klass is exact.
4691       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4692           // meet with top[] and bottom[] are processed further down:
4693           tap->_klass != NULL && this->_klass != NULL &&
4694           // both are exact and not equal:
4695           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4696            // 'tap' is exact and super or unrelated:
4697            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4698            // 'this' is exact and super or unrelated:
4699            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4700       if (above_centerline(ptr)) {
4701         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable, tary->_not_flat, tary->_not_null_free);
4702       }
4703       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4704     }
4705 
4706     bool xk = false;
4707     switch (tap->ptr()) {
4708     case AnyNull:
4709     case TopPTR:
4710       // Compute new klass on demand, do not use tap->_klass
4711       if (below_centerline(this->_ptr)) {
4712         xk = this->_klass_is_exact;
4713       } else {
4714         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4715       }
4716       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4717     case Constant: {
4718       ciObject* o = const_oop();
4719       if( _ptr == Constant ) {
4720         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4721           xk = (klass() == tap->klass());
4722           ptr = NotNull;
4723           o = NULL;
4724           instance_id = InstanceBot;
4725         } else {
4726           xk = true;
4727         }
4728       } else if(above_centerline(_ptr)) {
4729         o = tap->const_oop();
4730         xk = true;
4731       } else {
4732         // Only precise for identical arrays
4733         xk = this->_klass_is_exact && (klass() == tap->klass());
4734       }
4735       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4736     }
4737     case NotNull:
4738     case BotPTR:
4739       // Compute new klass on demand, do not use tap->_klass
4740       if (above_centerline(this->_ptr))
4741             xk = tap->_klass_is_exact;
4742       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4743               (klass() == tap->klass()); // Only precise for identical arrays
4744       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4745     default: ShouldNotReachHere();
4746     }
4747   }
4748 
4749   // All arrays inherit from Object class
4750   case InstPtr: {
4751     const TypeInstPtr *tp = t->is_instptr();
4752     Offset offset = meet_offset(tp->offset());
4753     PTR ptr = meet_ptr(tp->ptr());
4754     int instance_id = meet_instance_id(tp->instance_id());
4755     const TypePtr* speculative = xmeet_speculative(tp);
4756     int depth = meet_inline_depth(tp->inline_depth());
4757     switch (ptr) {
4758     case TopPTR:
4759     case AnyNull:                // Fall 'down' to dual of object klass
4760       // For instances when a subclass meets a superclass we fall
4761       // below the centerline when the superclass is exact. We need to
4762       // do the same here.
4763       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4764         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4765       } else {
4766         // cannot subclass, so the meet has to fall badly below the centerline
4767         ptr = NotNull;
4768         instance_id = InstanceBot;
4769         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4770       }
4771     case Constant:
4772     case NotNull:
4773     case BotPTR:                // Fall down to object klass
4774       // LCA is object_klass, but if we subclass from the top we can do better
4775       if (above_centerline(tp->ptr())) {
4776         // If 'tp'  is above the centerline and it is Object class
4777         // then we can subclass in the Java class hierarchy.
4778         // For instances when a subclass meets a superclass we fall
4779         // below the centerline when the superclass is exact. We need
4780         // to do the same here.
4781         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4782           // that is, my array type is a subtype of 'tp' klass
4783           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4784                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4785         }
4786       }
4787       // The other case cannot happen, since t cannot be a subtype of an array.
4788       // The meet falls down to Object class below centerline.
4789       if( ptr == Constant )
4790          ptr = NotNull;
4791       instance_id = InstanceBot;
4792       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4793     default: typerr(t);
4794     }
4795   }
4796 
4797   case ValueType: {
4798     // All value types inherit from Object
4799     PTR ptr = this->_ptr;
4800     if (ptr == Constant) {
4801       ptr = NotNull;
4802     }
4803     return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass());
4804   }
4805 
4806   }
4807   return this;                  // Lint noise
4808 }
4809 
4810 //------------------------------xdual------------------------------------------
4811 // Dual: compute field-by-field dual
4812 const Type *TypeAryPtr::xdual() const {
4813   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4814 }
4815 
4816 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4817   return _field_offset.meet(offset);
4818 }
4819 
4820 //------------------------------dual_offset------------------------------------
4821 Type::Offset TypeAryPtr::dual_field_offset() const {
4822   return _field_offset.dual();
4823 }
4824 
4825 //----------------------interface_vs_oop---------------------------------------
4826 #ifdef ASSERT
4827 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4828   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4829   if (t_aryptr) {
4830     return _ary->interface_vs_oop(t_aryptr->_ary);
4831   }
4832   return false;
4833 }
4834 #endif
4835 
4836 //------------------------------dump2------------------------------------------
4837 #ifndef PRODUCT
4838 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4839   _ary->dump2(d,depth,st);
4840   switch( _ptr ) {
4841   case Constant:
4842     const_oop()->print(st);
4843     break;
4844   case BotPTR:
4845     if (!WizardMode && !Verbose) {
4846       if( _klass_is_exact ) st->print(":exact");
4847       break;
4848     }
4849   case TopPTR:
4850   case AnyNull:
4851   case NotNull:
4852     st->print(":%s", ptr_msg[_ptr]);
4853     if( _klass_is_exact ) st->print(":exact");
4854     break;
4855   default:
4856     break;
4857   }
4858 
4859   if (elem()->isa_valuetype()) {
4860     st->print("(");
4861     _field_offset.dump2(st);
4862     st->print(")");
4863   }
4864   if (offset() != 0) {
4865     int header_size = objArrayOopDesc::header_size() * wordSize;
4866     if( _offset == Offset::top )       st->print("+undefined");
4867     else if( _offset == Offset::bottom )  st->print("+any");
4868     else if( offset() < header_size ) st->print("+%d", offset());
4869     else {
4870       BasicType basic_elem_type = elem()->basic_type();
4871       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4872       int elem_size = type2aelembytes(basic_elem_type);
4873       st->print("[%d]", (offset() - array_base)/elem_size);
4874     }
4875   }
4876   st->print(" *");
4877   if (_instance_id == InstanceTop)
4878     st->print(",iid=top");
4879   else if (_instance_id != InstanceBot)
4880     st->print(",iid=%d",_instance_id);
4881 
4882   dump_inline_depth(st);
4883   dump_speculative(st);
4884 }
4885 #endif
4886 
4887 bool TypeAryPtr::empty(void) const {
4888   if (_ary->empty())       return true;
4889   return TypeOopPtr::empty();
4890 }
4891 
4892 //------------------------------add_offset-------------------------------------
4893 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4894   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4895 }
4896 
4897 const Type *TypeAryPtr::remove_speculative() const {
4898   if (_speculative == NULL) {
4899     return this;
4900   }
4901   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4902   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4903 }
4904 
4905 const Type* TypeAryPtr::cleanup_speculative() const {
4906   if (speculative() == NULL) {
4907     return this;
4908   }
4909   // Keep speculative part if it contains information about flat-/nullability
4910   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
4911   if (spec_aryptr != NULL && (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
4912     return this;
4913   }
4914   return TypeOopPtr::cleanup_speculative();
4915 }
4916 
4917 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4918   if (!UseInlineDepthForSpeculativeTypes) {
4919     return this;
4920   }
4921   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4922 }
4923 
4924 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4925   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4926 }
4927 
4928 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4929   int adj = 0;
4930   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4931     const Type* elemtype = elem();
4932     if (elemtype->isa_valuetype()) {
4933       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4934         adj = _offset.get();
4935         offset += _offset.get();
4936       }
4937       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4938       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4939         offset += _field_offset.get();
4940         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4941           offset += header;
4942         }
4943       }
4944       if (offset >= (intptr_t)header || offset < 0) {
4945         // Try to get the field of the value type array element we are pointing to
4946         ciKlass* arytype_klass = klass();
4947         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4948         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4949         int shift = vak->log2_element_size();
4950         int mask = (1 << shift) - 1;
4951         intptr_t field_offset = ((offset - header) & mask);
4952         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4953         if (field == NULL) {
4954           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4955           return add_offset(offset);
4956         } else {
4957           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4958         }
4959       }
4960     }
4961   }
4962   return add_offset(offset - adj);
4963 }
4964 
4965 // Return offset incremented by field_offset for flattened value type arrays
4966 const int TypeAryPtr::flattened_offset() const {
4967   int offset = _offset.get();
4968   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4969       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4970     offset += _field_offset.get();
4971   }
4972   return offset;
4973 }
4974 
4975 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4976   assert(is_known_instance(), "should be known");
4977   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
4978 }
4979 
4980 //=============================================================================
4981 
4982 
4983 //------------------------------hash-------------------------------------------
4984 // Type-specific hashing function.
4985 int TypeNarrowPtr::hash(void) const {
4986   return _ptrtype->hash() + 7;
4987 }
4988 
4989 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4990   return _ptrtype->singleton();
4991 }
4992 
4993 bool TypeNarrowPtr::empty(void) const {
4994   return _ptrtype->empty();
4995 }
4996 
4997 intptr_t TypeNarrowPtr::get_con() const {
4998   return _ptrtype->get_con();
4999 }
5000 
5001 bool TypeNarrowPtr::eq( const Type *t ) const {
5002   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5003   if (tc != NULL) {
5004     if (_ptrtype->base() != tc->_ptrtype->base()) {
5005       return false;
5006     }
5007     return tc->_ptrtype->eq(_ptrtype);
5008   }
5009   return false;
5010 }
5011 
5012 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5013   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5014   return make_same_narrowptr(odual);
5015 }
5016 
5017 
5018 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5019   if (isa_same_narrowptr(kills)) {
5020     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5021     if (ft->empty())
5022       return Type::TOP;           // Canonical empty value
5023     if (ft->isa_ptr()) {
5024       return make_hash_same_narrowptr(ft->isa_ptr());
5025     }
5026     return ft;
5027   } else if (kills->isa_ptr()) {
5028     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5029     if (ft->empty())
5030       return Type::TOP;           // Canonical empty value
5031     return ft;
5032   } else {
5033     return Type::TOP;
5034   }
5035 }
5036 
5037 //------------------------------xmeet------------------------------------------
5038 // Compute the MEET of two types.  It returns a new Type object.
5039 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5040   // Perform a fast test for common case; meeting the same types together.
5041   if( this == t ) return this;  // Meeting same type-rep?
5042 
5043   if (t->base() == base()) {
5044     const Type* result = _ptrtype->xmeet(t->make_ptr());
5045     if (result->isa_ptr()) {
5046       return make_hash_same_narrowptr(result->is_ptr());
5047     }
5048     return result;
5049   }
5050 
5051   // Current "this->_base" is NarrowKlass or NarrowOop
5052   switch (t->base()) {          // switch on original type
5053 
5054   case Int:                     // Mixing ints & oops happens when javac
5055   case Long:                    // reuses local variables
5056   case FloatTop:
5057   case FloatCon:
5058   case FloatBot:
5059   case DoubleTop:
5060   case DoubleCon:
5061   case DoubleBot:
5062   case AnyPtr:
5063   case RawPtr:
5064   case OopPtr:
5065   case InstPtr:
5066   case AryPtr:
5067   case MetadataPtr:
5068   case KlassPtr:
5069   case NarrowOop:
5070   case NarrowKlass:
5071   case Bottom:                  // Ye Olde Default
5072     return Type::BOTTOM;
5073   case Top:
5074     return this;
5075 
5076   case ValueType:
5077     return t->xmeet(this);
5078 
5079   default:                      // All else is a mistake
5080     typerr(t);
5081 
5082   } // End of switch
5083 
5084   return this;
5085 }
5086 
5087 #ifndef PRODUCT
5088 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5089   _ptrtype->dump2(d, depth, st);
5090 }
5091 #endif
5092 
5093 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5094 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5095 
5096 
5097 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5098   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5099 }
5100 
5101 const Type* TypeNarrowOop::remove_speculative() const {
5102   return make(_ptrtype->remove_speculative()->is_ptr());
5103 }
5104 
5105 const Type* TypeNarrowOop::cleanup_speculative() const {
5106   return make(_ptrtype->cleanup_speculative()->is_ptr());
5107 }
5108 
5109 #ifndef PRODUCT
5110 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5111   st->print("narrowoop: ");
5112   TypeNarrowPtr::dump2(d, depth, st);
5113 }
5114 #endif
5115 
5116 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5117 
5118 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5119   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5120 }
5121 
5122 #ifndef PRODUCT
5123 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5124   st->print("narrowklass: ");
5125   TypeNarrowPtr::dump2(d, depth, st);
5126 }
5127 #endif
5128 
5129 
5130 //------------------------------eq---------------------------------------------
5131 // Structural equality check for Type representations
5132 bool TypeMetadataPtr::eq( const Type *t ) const {
5133   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5134   ciMetadata* one = metadata();
5135   ciMetadata* two = a->metadata();
5136   if (one == NULL || two == NULL) {
5137     return (one == two) && TypePtr::eq(t);
5138   } else {
5139     return one->equals(two) && TypePtr::eq(t);
5140   }
5141 }
5142 
5143 //------------------------------hash-------------------------------------------
5144 // Type-specific hashing function.
5145 int TypeMetadataPtr::hash(void) const {
5146   return
5147     (metadata() ? metadata()->hash() : 0) +
5148     TypePtr::hash();
5149 }
5150 
5151 //------------------------------singleton--------------------------------------
5152 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5153 // constants
5154 bool TypeMetadataPtr::singleton(void) const {
5155   // detune optimizer to not generate constant metadata + constant offset as a constant!
5156   // TopPTR, Null, AnyNull, Constant are all singletons
5157   return (offset() == 0) && !below_centerline(_ptr);
5158 }
5159 
5160 //------------------------------add_offset-------------------------------------
5161 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5162   return make( _ptr, _metadata, xadd_offset(offset));
5163 }
5164 
5165 //-----------------------------filter------------------------------------------
5166 // Do not allow interface-vs.-noninterface joins to collapse to top.
5167 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5168   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5169   if (ft == NULL || ft->empty())
5170     return Type::TOP;           // Canonical empty value
5171   return ft;
5172 }
5173 
5174  //------------------------------get_con----------------------------------------
5175 intptr_t TypeMetadataPtr::get_con() const {
5176   assert( _ptr == Null || _ptr == Constant, "" );
5177   assert(offset() >= 0, "");
5178 
5179   if (offset() != 0) {
5180     // After being ported to the compiler interface, the compiler no longer
5181     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5182     // to a handle at compile time.  This handle is embedded in the generated
5183     // code and dereferenced at the time the nmethod is made.  Until that time,
5184     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5185     // have access to the addresses!).  This does not seem to currently happen,
5186     // but this assertion here is to help prevent its occurence.
5187     tty->print_cr("Found oop constant with non-zero offset");
5188     ShouldNotReachHere();
5189   }
5190 
5191   return (intptr_t)metadata()->constant_encoding();
5192 }
5193 
5194 //------------------------------cast_to_ptr_type-------------------------------
5195 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5196   if( ptr == _ptr ) return this;
5197   return make(ptr, metadata(), _offset);
5198 }
5199 
5200 //------------------------------meet-------------------------------------------
5201 // Compute the MEET of two types.  It returns a new Type object.
5202 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5203   // Perform a fast test for common case; meeting the same types together.
5204   if( this == t ) return this;  // Meeting same type-rep?
5205 
5206   // Current "this->_base" is OopPtr
5207   switch (t->base()) {          // switch on original type
5208 
5209   case Int:                     // Mixing ints & oops happens when javac
5210   case Long:                    // reuses local variables
5211   case FloatTop:
5212   case FloatCon:
5213   case FloatBot:
5214   case DoubleTop:
5215   case DoubleCon:
5216   case DoubleBot:
5217   case NarrowOop:
5218   case NarrowKlass:
5219   case Bottom:                  // Ye Olde Default
5220     return Type::BOTTOM;
5221   case Top:
5222     return this;
5223 
5224   default:                      // All else is a mistake
5225     typerr(t);
5226 
5227   case AnyPtr: {
5228     // Found an AnyPtr type vs self-OopPtr type
5229     const TypePtr *tp = t->is_ptr();
5230     Offset offset = meet_offset(tp->offset());
5231     PTR ptr = meet_ptr(tp->ptr());
5232     switch (tp->ptr()) {
5233     case Null:
5234       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5235       // else fall through:
5236     case TopPTR:
5237     case AnyNull: {
5238       return make(ptr, _metadata, offset);
5239     }
5240     case BotPTR:
5241     case NotNull:
5242       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5243     default: typerr(t);
5244     }
5245   }
5246 
5247   case RawPtr:
5248   case KlassPtr:
5249   case OopPtr:
5250   case InstPtr:
5251   case AryPtr:
5252     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5253 
5254   case MetadataPtr: {
5255     const TypeMetadataPtr *tp = t->is_metadataptr();
5256     Offset offset = meet_offset(tp->offset());
5257     PTR tptr = tp->ptr();
5258     PTR ptr = meet_ptr(tptr);
5259     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5260     if (tptr == TopPTR || _ptr == TopPTR ||
5261         metadata()->equals(tp->metadata())) {
5262       return make(ptr, md, offset);
5263     }
5264     // metadata is different
5265     if( ptr == Constant ) {  // Cannot be equal constants, so...
5266       if( tptr == Constant && _ptr != Constant)  return t;
5267       if( _ptr == Constant && tptr != Constant)  return this;
5268       ptr = NotNull;            // Fall down in lattice
5269     }
5270     return make(ptr, NULL, offset);
5271     break;
5272   }
5273   } // End of switch
5274   return this;                  // Return the double constant
5275 }
5276 
5277 
5278 //------------------------------xdual------------------------------------------
5279 // Dual of a pure metadata pointer.
5280 const Type *TypeMetadataPtr::xdual() const {
5281   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5282 }
5283 
5284 //------------------------------dump2------------------------------------------
5285 #ifndef PRODUCT
5286 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5287   st->print("metadataptr:%s", ptr_msg[_ptr]);
5288   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5289   switch (offset()) {
5290   case OffsetTop: st->print("+top"); break;
5291   case OffsetBot: st->print("+any"); break;
5292   case         0: break;
5293   default:        st->print("+%d",offset()); break;
5294   }
5295 }
5296 #endif
5297 
5298 
5299 //=============================================================================
5300 // Convenience common pre-built type.
5301 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5302 
5303 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5304   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5305 }
5306 
5307 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5308   return make(Constant, m, Offset(0));
5309 }
5310 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5311   return make(Constant, m, Offset(0));
5312 }
5313 
5314 //------------------------------make-------------------------------------------
5315 // Create a meta data constant
5316 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5317   assert(m == NULL || !m->is_klass(), "wrong type");
5318   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5319 }
5320 
5321 
5322 //=============================================================================
5323 // Convenience common pre-built types.
5324 
5325 // Not-null object klass or below
5326 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5327 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5328 
5329 //------------------------------TypeKlassPtr-----------------------------------
5330 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5331   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5332 }
5333 
5334 //------------------------------make-------------------------------------------
5335 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5336 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5337   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5338   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5339 }
5340 
5341 //------------------------------eq---------------------------------------------
5342 // Structural equality check for Type representations
5343 bool TypeKlassPtr::eq( const Type *t ) const {
5344   const TypeKlassPtr *p = t->is_klassptr();
5345   return klass() == p->klass() && TypePtr::eq(p);
5346 }
5347 
5348 //------------------------------hash-------------------------------------------
5349 // Type-specific hashing function.
5350 int TypeKlassPtr::hash(void) const {
5351   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5352 }
5353 
5354 //------------------------------singleton--------------------------------------
5355 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5356 // constants
5357 bool TypeKlassPtr::singleton(void) const {
5358   // detune optimizer to not generate constant klass + constant offset as a constant!
5359   // TopPTR, Null, AnyNull, Constant are all singletons
5360   return (offset() == 0) && !below_centerline(_ptr);
5361 }
5362 
5363 // Do not allow interface-vs.-noninterface joins to collapse to top.
5364 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5365   // logic here mirrors the one from TypeOopPtr::filter. See comments
5366   // there.
5367   const Type* ft = join_helper(kills, include_speculative);
5368   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5369   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5370 
5371   if (ft->empty()) {
5372     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5373       return kills;             // Uplift to interface
5374 
5375     return Type::TOP;           // Canonical empty value
5376   }
5377 
5378   // Interface klass type could be exact in opposite to interface type,
5379   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5380   if (ftkp != NULL && ktkp != NULL &&
5381       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5382       !ftkp->klass_is_exact() && // Keep exact interface klass
5383       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5384     return ktkp->cast_to_ptr_type(ftkp->ptr());
5385   }
5386 
5387   return ft;
5388 }
5389 
5390 //----------------------compute_klass------------------------------------------
5391 // Compute the defining klass for this class
5392 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5393   // Compute _klass based on element type.
5394   ciKlass* k_ary = NULL;
5395   const TypeAryPtr *tary;
5396   const Type* el = elem();
5397   if (el->isa_narrowoop()) {
5398     el = el->make_ptr();
5399   }
5400 
5401   // Get element klass
5402   if (el->isa_instptr()) {
5403     // Compute object array klass from element klass
5404     bool null_free = el->is_valuetypeptr() && el->isa_instptr()->ptr() != TypePtr::TopPTR && !el->isa_instptr()->maybe_null();
5405     k_ary = ciArrayKlass::make(el->is_oopptr()->klass(), null_free);
5406   } else if (el->isa_valuetype()) {
5407     if (el->value_klass() != NULL) {
5408       k_ary = ciArrayKlass::make(el->value_klass(), /* null_free */ true);
5409     }
5410   } else if ((tary = el->isa_aryptr()) != NULL) {
5411     // Compute array klass from element klass
5412     ciKlass* k_elem = tary->klass();
5413     // If element type is something like bottom[], k_elem will be null.
5414     if (k_elem != NULL)
5415       k_ary = ciObjArrayKlass::make(k_elem);
5416   } else if ((el->base() == Type::Top) ||
5417              (el->base() == Type::Bottom)) {
5418     // element type of Bottom occurs from meet of basic type
5419     // and object; Top occurs when doing join on Bottom.
5420     // Leave k_ary at NULL.
5421   } else {
5422     // Cannot compute array klass directly from basic type,
5423     // since subtypes of TypeInt all have basic type T_INT.
5424 #ifdef ASSERT
5425     if (verify && el->isa_int()) {
5426       // Check simple cases when verifying klass.
5427       BasicType bt = T_ILLEGAL;
5428       if (el == TypeInt::BYTE) {
5429         bt = T_BYTE;
5430       } else if (el == TypeInt::SHORT) {
5431         bt = T_SHORT;
5432       } else if (el == TypeInt::CHAR) {
5433         bt = T_CHAR;
5434       } else if (el == TypeInt::INT) {
5435         bt = T_INT;
5436       } else {
5437         return _klass; // just return specified klass
5438       }
5439       return ciTypeArrayKlass::make(bt);
5440     }
5441 #endif
5442     assert(!el->isa_int(),
5443            "integral arrays must be pre-equipped with a class");
5444     // Compute array klass directly from basic type
5445     k_ary = ciTypeArrayKlass::make(el->basic_type());
5446   }
5447   return k_ary;
5448 }
5449 
5450 //------------------------------klass------------------------------------------
5451 // Return the defining klass for this class
5452 ciKlass* TypeAryPtr::klass() const {
5453   if( _klass ) return _klass;   // Return cached value, if possible
5454 
5455   // Oops, need to compute _klass and cache it
5456   ciKlass* k_ary = compute_klass();
5457 
5458   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5459     // The _klass field acts as a cache of the underlying
5460     // ciKlass for this array type.  In order to set the field,
5461     // we need to cast away const-ness.
5462     //
5463     // IMPORTANT NOTE: we *never* set the _klass field for the
5464     // type TypeAryPtr::OOPS.  This Type is shared between all
5465     // active compilations.  However, the ciKlass which represents
5466     // this Type is *not* shared between compilations, so caching
5467     // this value would result in fetching a dangling pointer.
5468     //
5469     // Recomputing the underlying ciKlass for each request is
5470     // a bit less efficient than caching, but calls to
5471     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5472     ((TypeAryPtr*)this)->_klass = k_ary;
5473     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5474         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5475       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5476     }
5477   }
5478   return k_ary;
5479 }
5480 
5481 
5482 //------------------------------add_offset-------------------------------------
5483 // Access internals of klass object
5484 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5485   return make( _ptr, klass(), xadd_offset(offset) );
5486 }
5487 
5488 //------------------------------cast_to_ptr_type-------------------------------
5489 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5490   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5491   if( ptr == _ptr ) return this;
5492   return make(ptr, _klass, _offset);
5493 }
5494 
5495 
5496 //-----------------------------cast_to_exactness-------------------------------
5497 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5498   if( klass_is_exact == _klass_is_exact ) return this;
5499   if (!UseExactTypes)  return this;
5500   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5501 }
5502 
5503 
5504 //-----------------------------as_instance_type--------------------------------
5505 // Corresponding type for an instance of the given class.
5506 // It will be NotNull, and exact if and only if the klass type is exact.
5507 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5508   ciKlass* k = klass();
5509   assert(k != NULL, "klass should not be NULL");
5510   bool    xk = klass_is_exact();
5511   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5512   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5513   guarantee(toop != NULL, "need type for given klass");
5514   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5515   return toop->cast_to_exactness(xk)->is_oopptr();
5516 }
5517 
5518 
5519 //------------------------------xmeet------------------------------------------
5520 // Compute the MEET of two types, return a new Type object.
5521 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5522   // Perform a fast test for common case; meeting the same types together.
5523   if( this == t ) return this;  // Meeting same type-rep?
5524 
5525   // Current "this->_base" is Pointer
5526   switch (t->base()) {          // switch on original type
5527 
5528   case Int:                     // Mixing ints & oops happens when javac
5529   case Long:                    // reuses local variables
5530   case FloatTop:
5531   case FloatCon:
5532   case FloatBot:
5533   case DoubleTop:
5534   case DoubleCon:
5535   case DoubleBot:
5536   case NarrowOop:
5537   case NarrowKlass:
5538   case Bottom:                  // Ye Olde Default
5539     return Type::BOTTOM;
5540   case Top:
5541     return this;
5542 
5543   default:                      // All else is a mistake
5544     typerr(t);
5545 
5546   case AnyPtr: {                // Meeting to AnyPtrs
5547     // Found an AnyPtr type vs self-KlassPtr type
5548     const TypePtr *tp = t->is_ptr();
5549     Offset offset = meet_offset(tp->offset());
5550     PTR ptr = meet_ptr(tp->ptr());
5551     switch (tp->ptr()) {
5552     case TopPTR:
5553       return this;
5554     case Null:
5555       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5556     case AnyNull:
5557       return make( ptr, klass(), offset );
5558     case BotPTR:
5559     case NotNull:
5560       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5561     default: typerr(t);
5562     }
5563   }
5564 
5565   case RawPtr:
5566   case MetadataPtr:
5567   case OopPtr:
5568   case AryPtr:                  // Meet with AryPtr
5569   case InstPtr:                 // Meet with InstPtr
5570     return TypePtr::BOTTOM;
5571 
5572   //
5573   //             A-top         }
5574   //           /   |   \       }  Tops
5575   //       B-top A-any C-top   }
5576   //          | /  |  \ |      }  Any-nulls
5577   //       B-any   |   C-any   }
5578   //          |    |    |
5579   //       B-con A-con C-con   } constants; not comparable across classes
5580   //          |    |    |
5581   //       B-not   |   C-not   }
5582   //          | \  |  / |      }  not-nulls
5583   //       B-bot A-not C-bot   }
5584   //           \   |   /       }  Bottoms
5585   //             A-bot         }
5586   //
5587 
5588   case KlassPtr: {  // Meet two KlassPtr types
5589     const TypeKlassPtr *tkls = t->is_klassptr();
5590     Offset  off  = meet_offset(tkls->offset());
5591     PTR  ptr     = meet_ptr(tkls->ptr());
5592 
5593     if (klass() == NULL || tkls->klass() == NULL) {
5594       ciKlass* k = NULL;
5595       if (ptr == Constant) {
5596         k = (klass() == NULL) ? tkls->klass() : klass();
5597       }
5598       return make(ptr, k, off);
5599     }
5600 
5601     // Check for easy case; klasses are equal (and perhaps not loaded!)
5602     // If we have constants, then we created oops so classes are loaded
5603     // and we can handle the constants further down.  This case handles
5604     // not-loaded classes
5605     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5606       return make( ptr, klass(), off );
5607     }
5608 
5609     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5610     ciKlass* tkls_klass = tkls->klass();
5611     ciKlass* this_klass = this->klass();
5612     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5613     assert( this_klass->is_loaded(), "This class should have been loaded.");
5614 
5615     // If 'this' type is above the centerline and is a superclass of the
5616     // other, we can treat 'this' as having the same type as the other.
5617     if ((above_centerline(this->ptr())) &&
5618         tkls_klass->is_subtype_of(this_klass)) {
5619       this_klass = tkls_klass;
5620     }
5621     // If 'tinst' type is above the centerline and is a superclass of the
5622     // other, we can treat 'tinst' as having the same type as the other.
5623     if ((above_centerline(tkls->ptr())) &&
5624         this_klass->is_subtype_of(tkls_klass)) {
5625       tkls_klass = this_klass;
5626     }
5627 
5628     // Check for classes now being equal
5629     if (tkls_klass->equals(this_klass)) {
5630       // If the klasses are equal, the constants may still differ.  Fall to
5631       // NotNull if they do (neither constant is NULL; that is a special case
5632       // handled elsewhere).
5633       if( ptr == Constant ) {
5634         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5635             this->klass()->equals(tkls->klass()));
5636         else if (above_centerline(this->ptr()));
5637         else if (above_centerline(tkls->ptr()));
5638         else
5639           ptr = NotNull;
5640       }
5641       return make( ptr, this_klass, off );
5642     } // Else classes are not equal
5643 
5644     // Since klasses are different, we require the LCA in the Java
5645     // class hierarchy - which means we have to fall to at least NotNull.
5646     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5647       ptr = NotNull;
5648     // Now we find the LCA of Java classes
5649     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5650     return   make( ptr, k, off );
5651   } // End of case KlassPtr
5652 
5653   } // End of switch
5654   return this;                  // Return the double constant
5655 }
5656 
5657 //------------------------------xdual------------------------------------------
5658 // Dual: compute field-by-field dual
5659 const Type    *TypeKlassPtr::xdual() const {
5660   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5661 }
5662 
5663 //------------------------------get_con----------------------------------------
5664 intptr_t TypeKlassPtr::get_con() const {
5665   assert( _ptr == Null || _ptr == Constant, "" );
5666   assert(offset() >= 0, "");
5667 
5668   if (offset() != 0) {
5669     // After being ported to the compiler interface, the compiler no longer
5670     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5671     // to a handle at compile time.  This handle is embedded in the generated
5672     // code and dereferenced at the time the nmethod is made.  Until that time,
5673     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5674     // have access to the addresses!).  This does not seem to currently happen,
5675     // but this assertion here is to help prevent its occurence.
5676     tty->print_cr("Found oop constant with non-zero offset");
5677     ShouldNotReachHere();
5678   }
5679 
5680   return (intptr_t)klass()->constant_encoding();
5681 }
5682 //------------------------------dump2------------------------------------------
5683 // Dump Klass Type
5684 #ifndef PRODUCT
5685 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5686   switch( _ptr ) {
5687   case Constant:
5688     st->print("precise ");
5689   case NotNull:
5690     {
5691       if (klass() != NULL) {
5692         const char* name = klass()->name()->as_utf8();
5693         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5694       } else {
5695         st->print("klass BOTTOM");
5696       }
5697     }
5698   case BotPTR:
5699     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5700   case TopPTR:
5701   case AnyNull:
5702     st->print(":%s", ptr_msg[_ptr]);
5703     if( _klass_is_exact ) st->print(":exact");
5704     break;
5705   default:
5706     break;
5707   }
5708 
5709   _offset.dump2(st);
5710 
5711   st->print(" *");
5712 }
5713 #endif
5714 
5715 
5716 
5717 //=============================================================================
5718 // Convenience common pre-built types.
5719 
5720 //------------------------------make-------------------------------------------
5721 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5722                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5723   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5724 }
5725 
5726 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5727   return make(domain, domain, range, range);
5728 }
5729 
5730 //------------------------------make-------------------------------------------
5731 const TypeFunc *TypeFunc::make(ciMethod* method) {
5732   Compile* C = Compile::current();
5733   const TypeFunc* tf = C->last_tf(method); // check cache
5734   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5735   // Value types are not passed/returned by reference, instead each field of
5736   // the value type is passed/returned as an argument. We maintain two views of
5737   // the argument/return list here: one based on the signature (with a value
5738   // type argument/return as a single slot), one based on the actual calling
5739   // convention (with a value type argument/return as a list of its fields).
5740   const TypeTuple* domain_sig = TypeTuple::make_domain(method, false);
5741   const TypeTuple* domain_cc = method->has_scalarized_args() ? TypeTuple::make_domain(method, true) : domain_sig;
5742   ciSignature* sig = method->signature();
5743   bool has_scalarized_ret = sig->returns_never_null() && sig->return_type()->as_value_klass()->can_be_returned_as_fields();
5744   const TypeTuple* range_sig = TypeTuple::make_range(sig, false);
5745   const TypeTuple* range_cc = has_scalarized_ret ? TypeTuple::make_range(sig, true) : range_sig;
5746   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5747   C->set_last_tf(method, tf);  // fill cache
5748   return tf;
5749 }
5750 
5751 //------------------------------meet-------------------------------------------
5752 // Compute the MEET of two types.  It returns a new Type object.
5753 const Type *TypeFunc::xmeet( const Type *t ) const {
5754   // Perform a fast test for common case; meeting the same types together.
5755   if( this == t ) return this;  // Meeting same type-rep?
5756 
5757   // Current "this->_base" is Func
5758   switch (t->base()) {          // switch on original type
5759 
5760   case Bottom:                  // Ye Olde Default
5761     return t;
5762 
5763   default:                      // All else is a mistake
5764     typerr(t);
5765 
5766   case Top:
5767     break;
5768   }
5769   return this;                  // Return the double constant
5770 }
5771 
5772 //------------------------------xdual------------------------------------------
5773 // Dual: compute field-by-field dual
5774 const Type *TypeFunc::xdual() const {
5775   return this;
5776 }
5777 
5778 //------------------------------eq---------------------------------------------
5779 // Structural equality check for Type representations
5780 bool TypeFunc::eq( const Type *t ) const {
5781   const TypeFunc *a = (const TypeFunc*)t;
5782   return _domain_sig == a->_domain_sig &&
5783     _domain_cc == a->_domain_cc &&
5784     _range_sig == a->_range_sig &&
5785     _range_cc == a->_range_cc;
5786 }
5787 
5788 //------------------------------hash-------------------------------------------
5789 // Type-specific hashing function.
5790 int TypeFunc::hash(void) const {
5791   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5792 }
5793 
5794 //------------------------------dump2------------------------------------------
5795 // Dump Function Type
5796 #ifndef PRODUCT
5797 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5798   if( _range_sig->cnt() <= Parms )
5799     st->print("void");
5800   else {
5801     uint i;
5802     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5803       _range_sig->field_at(i)->dump2(d,depth,st);
5804       st->print("/");
5805     }
5806     _range_sig->field_at(i)->dump2(d,depth,st);
5807   }
5808   st->print(" ");
5809   st->print("( ");
5810   if( !depth || d[this] ) {     // Check for recursive dump
5811     st->print("...)");
5812     return;
5813   }
5814   d.Insert((void*)this,(void*)this);    // Stop recursion
5815   if (Parms < _domain_sig->cnt())
5816     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5817   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5818     st->print(", ");
5819     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5820   }
5821   st->print(" )");
5822 }
5823 #endif
5824 
5825 //------------------------------singleton--------------------------------------
5826 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5827 // constants (Ldi nodes).  Singletons are integer, float or double constants
5828 // or a single symbol.
5829 bool TypeFunc::singleton(void) const {
5830   return false;                 // Never a singleton
5831 }
5832 
5833 bool TypeFunc::empty(void) const {
5834   return false;                 // Never empty
5835 }
5836 
5837 
5838 BasicType TypeFunc::return_type() const{
5839   if (range_sig()->cnt() == TypeFunc::Parms) {
5840     return T_VOID;
5841   }
5842   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5843 }