1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 142   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 143   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 144   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 145   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 146   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 147   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 148   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 149   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 150   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 151   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 152   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 153   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 154   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 155 };
 156 
 157 // Map ideal registers (machine types) to ideal types
 158 const Type *Type::mreg2type[_last_machine_leaf];
 159 
 160 // Map basic types to canonical Type* pointers.
 161 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 162 
 163 // Map basic types to constant-zero Types.
 164 const Type* Type::            _zero_type[T_CONFLICT+1];
 165 
 166 // Map basic types to array-body alias types.
 167 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 168 
 169 //=============================================================================
 170 // Convenience common pre-built types.
 171 const Type *Type::ABIO;         // State-of-machine only
 172 const Type *Type::BOTTOM;       // All values
 173 const Type *Type::CONTROL;      // Control only
 174 const Type *Type::DOUBLE;       // All doubles
 175 const Type *Type::FLOAT;        // All floats
 176 const Type *Type::HALF;         // Placeholder half of doublewide type
 177 const Type *Type::MEMORY;       // Abstract store only
 178 const Type *Type::RETURN_ADDRESS;
 179 const Type *Type::TOP;          // No values in set
 180 
 181 //------------------------------get_const_type---------------------------
 182 const Type* Type::get_const_type(ciType* type) {
 183   if (type == NULL) {
 184     return NULL;
 185   } else if (type->is_primitive_type()) {
 186     return get_const_basic_type(type->basic_type());
 187   } else {
 188     return TypeOopPtr::make_from_klass(type->as_klass());
 189   }
 190 }
 191 
 192 //---------------------------array_element_basic_type---------------------------------
 193 // Mapping to the array element's basic type.
 194 BasicType Type::array_element_basic_type() const {
 195   BasicType bt = basic_type();
 196   if (bt == T_INT) {
 197     if (this == TypeInt::INT)   return T_INT;
 198     if (this == TypeInt::CHAR)  return T_CHAR;
 199     if (this == TypeInt::BYTE)  return T_BYTE;
 200     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 201     if (this == TypeInt::SHORT) return T_SHORT;
 202     return T_VOID;
 203   }
 204   return bt;
 205 }
 206 
 207 // For two instance arrays of same dimension, return the base element types.
 208 // Otherwise or if the arrays have different dimensions, return NULL.
 209 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 210                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 211 
 212   if (e1) *e1 = NULL;
 213   if (e2) *e2 = NULL;
 214   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 215   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 216 
 217   if (a1tap != NULL && a2tap != NULL) {
 218     // Handle multidimensional arrays
 219     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 220     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 221     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 222       a1tap = a1tp->is_aryptr();
 223       a2tap = a2tp->is_aryptr();
 224       a1tp = a1tap->elem()->make_ptr();
 225       a2tp = a2tap->elem()->make_ptr();
 226     }
 227     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 228       if (e1) *e1 = a1tp->is_instptr();
 229       if (e2) *e2 = a2tp->is_instptr();
 230     }
 231   }
 232 }
 233 
 234 //---------------------------get_typeflow_type---------------------------------
 235 // Import a type produced by ciTypeFlow.
 236 const Type* Type::get_typeflow_type(ciType* type) {
 237   switch (type->basic_type()) {
 238 
 239   case ciTypeFlow::StateVector::T_BOTTOM:
 240     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 241     return Type::BOTTOM;
 242 
 243   case ciTypeFlow::StateVector::T_TOP:
 244     assert(type == ciTypeFlow::StateVector::top_type(), "");
 245     return Type::TOP;
 246 
 247   case ciTypeFlow::StateVector::T_NULL:
 248     assert(type == ciTypeFlow::StateVector::null_type(), "");
 249     return TypePtr::NULL_PTR;
 250 
 251   case ciTypeFlow::StateVector::T_LONG2:
 252     // The ciTypeFlow pass pushes a long, then the half.
 253     // We do the same.
 254     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 255     return TypeInt::TOP;
 256 
 257   case ciTypeFlow::StateVector::T_DOUBLE2:
 258     // The ciTypeFlow pass pushes double, then the half.
 259     // Our convention is the same.
 260     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 261     return Type::TOP;
 262 
 263   case T_ADDRESS:
 264     assert(type->is_return_address(), "");
 265     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 266 
 267   case T_VALUETYPE: {
 268     bool is_never_null = type->is_never_null();
 269     ciValueKlass* vk = type->unwrap()->as_value_klass();
 270     if (vk->is_scalarizable() && is_never_null) {
 271       return TypeValueType::make(vk);
 272     } else {
 273       return TypeOopPtr::make_from_klass(vk)->join_speculative(is_never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 274     }
 275   }
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 297     case T_CHAR:     return TypeInt::make(constant.as_char());
 298     case T_BYTE:     return TypeInt::make(constant.as_byte());
 299     case T_SHORT:    return TypeInt::make(constant.as_short());
 300     case T_INT:      return TypeInt::make(constant.as_int());
 301     case T_LONG:     return TypeLong::make(constant.as_long());
 302     case T_FLOAT:    return TypeF::make(constant.as_float());
 303     case T_DOUBLE:   return TypeD::make(constant.as_double());
 304     case T_ARRAY:
 305     case T_VALUETYPE:
 306     case T_OBJECT: {
 307         const Type* con_type = NULL;
 308         ciObject* oop_constant = constant.as_object();
 309         if (oop_constant->is_null_object()) {
 310           con_type = Type::get_zero_type(T_OBJECT);
 311         } else {
 312           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 313           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 314           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 315             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 316           }
 317           if (stable_dimension > 0) {
 318             assert(FoldStableValues, "sanity");
 319             assert(!con_type->is_zero_type(), "default value for stable field");
 320             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 321           }
 322         }
 323         if (is_narrow_oop) {
 324           con_type = con_type->make_narrowoop();
 325         }
 326         return con_type;
 327       }
 328     case T_ILLEGAL:
 329       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 330       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 331       return NULL;
 332     default:
 333       // Fall through to failure
 334       return NULL;
 335   }
 336 }
 337 
 338 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 339   BasicType conbt = con.basic_type();
 340   switch (conbt) {
 341     case T_BOOLEAN: conbt = T_BYTE;   break;
 342     case T_ARRAY:   conbt = T_OBJECT; break;
 343     case T_VALUETYPE: conbt = T_OBJECT; break;
 344     default:                          break;
 345   }
 346   switch (loadbt) {
 347     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 348     case T_NARROWOOP: loadbt = T_OBJECT; break;
 349     case T_ARRAY:     loadbt = T_OBJECT; break;
 350     case T_VALUETYPE: loadbt = T_OBJECT; break;
 351     case T_ADDRESS:   loadbt = T_OBJECT; break;
 352     default:                             break;
 353   }
 354   if (conbt == loadbt) {
 355     if (is_unsigned && conbt == T_BYTE) {
 356       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 357       return ciConstant(T_INT, con.as_int() & 0xFF);
 358     } else {
 359       return con;
 360     }
 361   }
 362   if (conbt == T_SHORT && loadbt == T_CHAR) {
 363     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 364     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 365   }
 366   return ciConstant(); // T_ILLEGAL
 367 }
 368 
 369 // Try to constant-fold a stable array element.
 370 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 371                                                    BasicType loadbt, bool is_unsigned_load) {
 372   // Decode the results of GraphKit::array_element_address.
 373   ciConstant element_value = array->element_value_by_offset(off);
 374   if (element_value.basic_type() == T_ILLEGAL) {
 375     return NULL; // wrong offset
 376   }
 377   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 378 
 379   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 380          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 381 
 382   if (con.is_valid() &&          // not a mismatched access
 383       !con.is_null_or_zero()) {  // not a default value
 384     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 385     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 386   }
 387   return NULL;
 388 }
 389 
 390 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 391   ciField* field;
 392   ciType* type = holder->java_mirror_type();
 393   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 394     // Static field
 395     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 396   } else {
 397     // Instance field
 398     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 399   }
 400   if (field == NULL) {
 401     return NULL; // Wrong offset
 402   }
 403   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 404 }
 405 
 406 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 407                                            BasicType loadbt, bool is_unsigned_load) {
 408   if (!field->is_constant()) {
 409     return NULL; // Non-constant field
 410   }
 411   ciConstant field_value;
 412   if (field->is_static()) {
 413     // final static field
 414     field_value = field->constant_value();
 415   } else if (holder != NULL) {
 416     // final or stable non-static field
 417     // Treat final non-static fields of trusted classes (classes in
 418     // java.lang.invoke and sun.invoke packages and subpackages) as
 419     // compile time constants.
 420     field_value = field->constant_value_of(holder);
 421   }
 422   if (!field_value.is_valid()) {
 423     return NULL; // Not a constant
 424   }
 425 
 426   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 427 
 428   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 429          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 430 
 431   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 432   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 433   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 434 
 435   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 436                                             stable_dimension, is_narrow_oop,
 437                                             field->is_autobox_cache());
 438   if (con_type != NULL && field->is_call_site_target()) {
 439     ciCallSite* call_site = holder->as_call_site();
 440     if (!call_site->is_constant_call_site()) {
 441       ciMethodHandle* target = con.as_object()->as_method_handle();
 442       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 443     }
 444   }
 445   return con_type;
 446 }
 447 
 448 //------------------------------make-------------------------------------------
 449 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 450 // and look for an existing copy in the type dictionary.
 451 const Type *Type::make( enum TYPES t ) {
 452   return (new Type(t))->hashcons();
 453 }
 454 
 455 //------------------------------cmp--------------------------------------------
 456 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 457   if( t1->_base != t2->_base )
 458     return 1;                   // Missed badly
 459   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 460   return !t1->eq(t2);           // Return ZERO if equal
 461 }
 462 
 463 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 464   if (!include_speculative) {
 465     return remove_speculative();
 466   }
 467   return this;
 468 }
 469 
 470 //------------------------------hash-------------------------------------------
 471 int Type::uhash( const Type *const t ) {
 472   return t->hash();
 473 }
 474 
 475 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 476 
 477 static double pos_dinf() {
 478   union { int64_t i; double d; } v;
 479   v.i = CONST64(0x7ff0000000000000);
 480   return v.d;
 481 }
 482 
 483 static float pos_finf() {
 484   union { int32_t i; float f; } v;
 485   v.i = 0x7f800000;
 486   return v.f;
 487 }
 488 
 489 //--------------------------Initialize_shared----------------------------------
 490 void Type::Initialize_shared(Compile* current) {
 491   // This method does not need to be locked because the first system
 492   // compilations (stub compilations) occur serially.  If they are
 493   // changed to proceed in parallel, then this section will need
 494   // locking.
 495 
 496   Arena* save = current->type_arena();
 497   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 498 
 499   current->set_type_arena(shared_type_arena);
 500   _shared_type_dict =
 501     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 502                                   shared_type_arena, 128 );
 503   current->set_type_dict(_shared_type_dict);
 504 
 505   // Make shared pre-built types.
 506   CONTROL = make(Control);      // Control only
 507   TOP     = make(Top);          // No values in set
 508   MEMORY  = make(Memory);       // Abstract store only
 509   ABIO    = make(Abio);         // State-of-machine only
 510   RETURN_ADDRESS=make(Return_Address);
 511   FLOAT   = make(FloatBot);     // All floats
 512   DOUBLE  = make(DoubleBot);    // All doubles
 513   BOTTOM  = make(Bottom);       // Everything
 514   HALF    = make(Half);         // Placeholder half of doublewide type
 515 
 516   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 517   TypeF::ONE  = TypeF::make(1.0); // Float 1
 518   TypeF::POS_INF = TypeF::make(pos_finf());
 519   TypeF::NEG_INF = TypeF::make(-pos_finf());
 520 
 521   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 522   TypeD::ONE  = TypeD::make(1.0); // Double 1
 523   TypeD::POS_INF = TypeD::make(pos_dinf());
 524   TypeD::NEG_INF = TypeD::make(-pos_dinf());
 525 
 526   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 527   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 528   TypeInt::ONE     = TypeInt::make( 1);  //  1
 529   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 530   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 531   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 532   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 533   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 534   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 535   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 536   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 537   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 538   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 539   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 540   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 541   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 542   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 543   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 544   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 545   // CmpL is overloaded both as the bytecode computation returning
 546   // a trinary (-1,0,+1) integer result AND as an efficient long
 547   // compare returning optimizer ideal-type flags.
 548   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 549   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 550   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 551   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 552   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 553 
 554   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 555   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 556   TypeLong::ONE     = TypeLong::make( 1);        //  1
 557   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 558   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 559   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 560   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 561   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 562 
 563   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 564   fboth[0] = Type::CONTROL;
 565   fboth[1] = Type::CONTROL;
 566   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 567 
 568   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 569   ffalse[0] = Type::CONTROL;
 570   ffalse[1] = Type::TOP;
 571   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 572 
 573   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 574   fneither[0] = Type::TOP;
 575   fneither[1] = Type::TOP;
 576   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 577 
 578   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 579   ftrue[0] = Type::TOP;
 580   ftrue[1] = Type::CONTROL;
 581   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 582 
 583   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 584   floop[0] = Type::CONTROL;
 585   floop[1] = TypeInt::INT;
 586   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 587 
 588   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 589   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 590   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 591 
 592   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 593   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 594 
 595   const Type **fmembar = TypeTuple::fields(0);
 596   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 597 
 598   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 599   fsc[0] = TypeInt::CC;
 600   fsc[1] = Type::MEMORY;
 601   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 602 
 603   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 604   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 605   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 606   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 607                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 608   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 609                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 610   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 611 
 612   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 613 
 614   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 615   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 616 
 617   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 618 
 619   mreg2type[Op_Node] = Type::BOTTOM;
 620   mreg2type[Op_Set ] = 0;
 621   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 622   mreg2type[Op_RegI] = TypeInt::INT;
 623   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 624   mreg2type[Op_RegF] = Type::FLOAT;
 625   mreg2type[Op_RegD] = Type::DOUBLE;
 626   mreg2type[Op_RegL] = TypeLong::LONG;
 627   mreg2type[Op_RegFlags] = TypeInt::CC;
 628 
 629   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 630 
 631   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 632 
 633 #ifdef _LP64
 634   if (UseCompressedOops) {
 635     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 636     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 637   } else
 638 #endif
 639   {
 640     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 641     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 642   }
 643   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 644   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 645   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 646   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 647   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 648   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 649   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 650 
 651   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 652   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 653   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 654   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 655   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 656   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 657   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 658   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 659   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 660   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 661   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 662   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 663   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 664 
 665   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 666   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 667 
 668   const Type **fi2c = TypeTuple::fields(2);
 669   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 670   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 671   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 672 
 673   const Type **intpair = TypeTuple::fields(2);
 674   intpair[0] = TypeInt::INT;
 675   intpair[1] = TypeInt::INT;
 676   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 677 
 678   const Type **longpair = TypeTuple::fields(2);
 679   longpair[0] = TypeLong::LONG;
 680   longpair[1] = TypeLong::LONG;
 681   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 682 
 683   const Type **intccpair = TypeTuple::fields(2);
 684   intccpair[0] = TypeInt::INT;
 685   intccpair[1] = TypeInt::CC;
 686   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 687 
 688   const Type **longccpair = TypeTuple::fields(2);
 689   longccpair[0] = TypeLong::LONG;
 690   longccpair[1] = TypeInt::CC;
 691   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 692 
 693   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 694   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 695   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 696   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 697   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 698   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 699   _const_basic_type[T_INT]         = TypeInt::INT;
 700   _const_basic_type[T_LONG]        = TypeLong::LONG;
 701   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 702   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 703   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 704   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 705   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 706   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 707   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 708   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 709 
 710   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 711   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 712   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 713   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 714   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 715   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 716   _zero_type[T_INT]         = TypeInt::ZERO;
 717   _zero_type[T_LONG]        = TypeLong::ZERO;
 718   _zero_type[T_FLOAT]       = TypeF::ZERO;
 719   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 720   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 721   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 722   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 723   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 724   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 725 
 726   // get_zero_type() should not happen for T_CONFLICT
 727   _zero_type[T_CONFLICT]= NULL;
 728 
 729   // Vector predefined types, it needs initialized _const_basic_type[].
 730   if (Matcher::vector_size_supported(T_BYTE,4)) {
 731     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 732   }
 733   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 734     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 735   }
 736   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 737     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 738   }
 739   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 740     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 741   }
 742   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 743     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 744   }
 745   mreg2type[Op_VecS] = TypeVect::VECTS;
 746   mreg2type[Op_VecD] = TypeVect::VECTD;
 747   mreg2type[Op_VecX] = TypeVect::VECTX;
 748   mreg2type[Op_VecY] = TypeVect::VECTY;
 749   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 750 
 751   // Restore working type arena.
 752   current->set_type_arena(save);
 753   current->set_type_dict(NULL);
 754 }
 755 
 756 //------------------------------Initialize-------------------------------------
 757 void Type::Initialize(Compile* current) {
 758   assert(current->type_arena() != NULL, "must have created type arena");
 759 
 760   if (_shared_type_dict == NULL) {
 761     Initialize_shared(current);
 762   }
 763 
 764   Arena* type_arena = current->type_arena();
 765 
 766   // Create the hash-cons'ing dictionary with top-level storage allocation
 767   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 768   current->set_type_dict(tdic);
 769 
 770   // Transfer the shared types.
 771   DictI i(_shared_type_dict);
 772   for( ; i.test(); ++i ) {
 773     Type* t = (Type*)i._value;
 774     tdic->Insert(t,t);  // New Type, insert into Type table
 775   }
 776 }
 777 
 778 //------------------------------hashcons---------------------------------------
 779 // Do the hash-cons trick.  If the Type already exists in the type table,
 780 // delete the current Type and return the existing Type.  Otherwise stick the
 781 // current Type in the Type table.
 782 const Type *Type::hashcons(void) {
 783   debug_only(base());           // Check the assertion in Type::base().
 784   // Look up the Type in the Type dictionary
 785   Dict *tdic = type_dict();
 786   Type* old = (Type*)(tdic->Insert(this, this, false));
 787   if( old ) {                   // Pre-existing Type?
 788     if( old != this )           // Yes, this guy is not the pre-existing?
 789       delete this;              // Yes, Nuke this guy
 790     assert( old->_dual, "" );
 791     return old;                 // Return pre-existing
 792   }
 793 
 794   // Every type has a dual (to make my lattice symmetric).
 795   // Since we just discovered a new Type, compute its dual right now.
 796   assert( !_dual, "" );         // No dual yet
 797   _dual = xdual();              // Compute the dual
 798   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 799     _dual = this;
 800     return this;
 801   }
 802   assert( !_dual->_dual, "" );  // No reverse dual yet
 803   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 804   // New Type, insert into Type table
 805   tdic->Insert((void*)_dual,(void*)_dual);
 806   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 807 #ifdef ASSERT
 808   Type *dual_dual = (Type*)_dual->xdual();
 809   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 810   delete dual_dual;
 811 #endif
 812   return this;                  // Return new Type
 813 }
 814 
 815 //------------------------------eq---------------------------------------------
 816 // Structural equality check for Type representations
 817 bool Type::eq( const Type * ) const {
 818   return true;                  // Nothing else can go wrong
 819 }
 820 
 821 //------------------------------hash-------------------------------------------
 822 // Type-specific hashing function.
 823 int Type::hash(void) const {
 824   return _base;
 825 }
 826 
 827 //------------------------------is_finite--------------------------------------
 828 // Has a finite value
 829 bool Type::is_finite() const {
 830   return false;
 831 }
 832 
 833 //------------------------------is_nan-----------------------------------------
 834 // Is not a number (NaN)
 835 bool Type::is_nan()    const {
 836   return false;
 837 }
 838 
 839 //----------------------interface_vs_oop---------------------------------------
 840 #ifdef ASSERT
 841 bool Type::interface_vs_oop_helper(const Type *t) const {
 842   bool result = false;
 843 
 844   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 845   const TypePtr*    t_ptr =    t->make_ptr();
 846   if( this_ptr == NULL || t_ptr == NULL )
 847     return result;
 848 
 849   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 850   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 851   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 852     bool this_interface = this_inst->klass()->is_interface();
 853     bool    t_interface =    t_inst->klass()->is_interface();
 854     result = this_interface ^ t_interface;
 855   }
 856 
 857   return result;
 858 }
 859 
 860 bool Type::interface_vs_oop(const Type *t) const {
 861   if (interface_vs_oop_helper(t)) {
 862     return true;
 863   }
 864   // Now check the speculative parts as well
 865   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 866   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 867   if (this_spec != NULL && t_spec != NULL) {
 868     if (this_spec->interface_vs_oop_helper(t_spec)) {
 869       return true;
 870     }
 871     return false;
 872   }
 873   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 874     return true;
 875   }
 876   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 877     return true;
 878   }
 879   return false;
 880 }
 881 
 882 #endif
 883 
 884 //------------------------------meet-------------------------------------------
 885 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 886 // commutative and the lattice is symmetric.
 887 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 888   if (isa_narrowoop() && t->isa_narrowoop()) {
 889     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 890     return result->make_narrowoop();
 891   }
 892   if (isa_narrowklass() && t->isa_narrowklass()) {
 893     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 894     return result->make_narrowklass();
 895   }
 896 
 897   const Type *this_t = maybe_remove_speculative(include_speculative);
 898   t = t->maybe_remove_speculative(include_speculative);
 899 
 900   const Type *mt = this_t->xmeet(t);
 901   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 902   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 903 #ifdef ASSERT
 904   assert(mt == t->xmeet(this_t), "meet not commutative");
 905   const Type* dual_join = mt->_dual;
 906   const Type *t2t    = dual_join->xmeet(t->_dual);
 907   const Type *t2this = dual_join->xmeet(this_t->_dual);
 908 
 909   // Interface meet Oop is Not Symmetric:
 910   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 911   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 912 
 913   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 914     tty->print_cr("=== Meet Not Symmetric ===");
 915     tty->print("t   =                   ");              t->dump(); tty->cr();
 916     tty->print("this=                   ");         this_t->dump(); tty->cr();
 917     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 918 
 919     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 920     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 921     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 922 
 923     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 924     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 925 
 926     fatal("meet not symmetric" );
 927   }
 928 #endif
 929   return mt;
 930 }
 931 
 932 //------------------------------xmeet------------------------------------------
 933 // Compute the MEET of two types.  It returns a new Type object.
 934 const Type *Type::xmeet( const Type *t ) const {
 935   // Perform a fast test for common case; meeting the same types together.
 936   if( this == t ) return this;  // Meeting same type-rep?
 937 
 938   // Meeting TOP with anything?
 939   if( _base == Top ) return t;
 940 
 941   // Meeting BOTTOM with anything?
 942   if( _base == Bottom ) return BOTTOM;
 943 
 944   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 945   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 946   switch (t->base()) {  // Switch on original type
 947 
 948   // Cut in half the number of cases I must handle.  Only need cases for when
 949   // the given enum "t->type" is less than or equal to the local enum "type".
 950   case FloatCon:
 951   case DoubleCon:
 952   case Int:
 953   case Long:
 954     return t->xmeet(this);
 955 
 956   case OopPtr:
 957     return t->xmeet(this);
 958 
 959   case InstPtr:
 960     return t->xmeet(this);
 961 
 962   case MetadataPtr:
 963   case KlassPtr:
 964     return t->xmeet(this);
 965 
 966   case AryPtr:
 967     return t->xmeet(this);
 968 
 969   case NarrowOop:
 970     return t->xmeet(this);
 971 
 972   case NarrowKlass:
 973     return t->xmeet(this);
 974 
 975   case ValueType:
 976     return t->xmeet(this);
 977 
 978   case Bad:                     // Type check
 979   default:                      // Bogus type not in lattice
 980     typerr(t);
 981     return Type::BOTTOM;
 982 
 983   case Bottom:                  // Ye Olde Default
 984     return t;
 985 
 986   case FloatTop:
 987     if( _base == FloatTop ) return this;
 988   case FloatBot:                // Float
 989     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 990     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 991     typerr(t);
 992     return Type::BOTTOM;
 993 
 994   case DoubleTop:
 995     if( _base == DoubleTop ) return this;
 996   case DoubleBot:               // Double
 997     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 998     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 999     typerr(t);
1000     return Type::BOTTOM;
1001 
1002   // These next few cases must match exactly or it is a compile-time error.
1003   case Control:                 // Control of code
1004   case Abio:                    // State of world outside of program
1005   case Memory:
1006     if( _base == t->_base )  return this;
1007     typerr(t);
1008     return Type::BOTTOM;
1009 
1010   case Top:                     // Top of the lattice
1011     return this;
1012   }
1013 
1014   // The type is unchanged
1015   return this;
1016 }
1017 
1018 //-----------------------------filter------------------------------------------
1019 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1020   const Type* ft = join_helper(kills, include_speculative);
1021   if (ft->empty())
1022     return Type::TOP;           // Canonical empty value
1023   return ft;
1024 }
1025 
1026 //------------------------------xdual------------------------------------------
1027 // Compute dual right now.
1028 const Type::TYPES Type::dual_type[Type::lastype] = {
1029   Bad,          // Bad
1030   Control,      // Control
1031   Bottom,       // Top
1032   Bad,          // Int - handled in v-call
1033   Bad,          // Long - handled in v-call
1034   Half,         // Half
1035   Bad,          // NarrowOop - handled in v-call
1036   Bad,          // NarrowKlass - handled in v-call
1037 
1038   Bad,          // Tuple - handled in v-call
1039   Bad,          // Array - handled in v-call
1040   Bad,          // VectorS - handled in v-call
1041   Bad,          // VectorD - handled in v-call
1042   Bad,          // VectorX - handled in v-call
1043   Bad,          // VectorY - handled in v-call
1044   Bad,          // VectorZ - handled in v-call
1045   Bad,          // ValueType - handled in v-call
1046 
1047   Bad,          // AnyPtr - handled in v-call
1048   Bad,          // RawPtr - handled in v-call
1049   Bad,          // OopPtr - handled in v-call
1050   Bad,          // InstPtr - handled in v-call
1051   Bad,          // AryPtr - handled in v-call
1052 
1053   Bad,          //  MetadataPtr - handled in v-call
1054   Bad,          // KlassPtr - handled in v-call
1055 
1056   Bad,          // Function - handled in v-call
1057   Abio,         // Abio
1058   Return_Address,// Return_Address
1059   Memory,       // Memory
1060   FloatBot,     // FloatTop
1061   FloatCon,     // FloatCon
1062   FloatTop,     // FloatBot
1063   DoubleBot,    // DoubleTop
1064   DoubleCon,    // DoubleCon
1065   DoubleTop,    // DoubleBot
1066   Top           // Bottom
1067 };
1068 
1069 const Type *Type::xdual() const {
1070   // Note: the base() accessor asserts the sanity of _base.
1071   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1072   return new Type(_type_info[_base].dual_type);
1073 }
1074 
1075 //------------------------------has_memory-------------------------------------
1076 bool Type::has_memory() const {
1077   Type::TYPES tx = base();
1078   if (tx == Memory) return true;
1079   if (tx == Tuple) {
1080     const TypeTuple *t = is_tuple();
1081     for (uint i=0; i < t->cnt(); i++) {
1082       tx = t->field_at(i)->base();
1083       if (tx == Memory)  return true;
1084     }
1085   }
1086   return false;
1087 }
1088 
1089 #ifndef PRODUCT
1090 //------------------------------dump2------------------------------------------
1091 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1092   st->print("%s", _type_info[_base].msg);
1093 }
1094 
1095 //------------------------------dump-------------------------------------------
1096 void Type::dump_on(outputStream *st) const {
1097   ResourceMark rm;
1098   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1099   dump2(d,1, st);
1100   if (is_ptr_to_narrowoop()) {
1101     st->print(" [narrow]");
1102   } else if (is_ptr_to_narrowklass()) {
1103     st->print(" [narrowklass]");
1104   }
1105 }
1106 
1107 //-----------------------------------------------------------------------------
1108 const char* Type::str(const Type* t) {
1109   stringStream ss;
1110   t->dump_on(&ss);
1111   return ss.as_string();
1112 }
1113 #endif
1114 
1115 //------------------------------singleton--------------------------------------
1116 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1117 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1118 bool Type::singleton(void) const {
1119   return _base == Top || _base == Half;
1120 }
1121 
1122 //------------------------------empty------------------------------------------
1123 // TRUE if Type is a type with no values, FALSE otherwise.
1124 bool Type::empty(void) const {
1125   switch (_base) {
1126   case DoubleTop:
1127   case FloatTop:
1128   case Top:
1129     return true;
1130 
1131   case Half:
1132   case Abio:
1133   case Return_Address:
1134   case Memory:
1135   case Bottom:
1136   case FloatBot:
1137   case DoubleBot:
1138     return false;  // never a singleton, therefore never empty
1139 
1140   default:
1141     ShouldNotReachHere();
1142     return false;
1143   }
1144 }
1145 
1146 //------------------------------dump_stats-------------------------------------
1147 // Dump collected statistics to stderr
1148 #ifndef PRODUCT
1149 void Type::dump_stats() {
1150   tty->print("Types made: %d\n", type_dict()->Size());
1151 }
1152 #endif
1153 
1154 //------------------------------typerr-----------------------------------------
1155 void Type::typerr( const Type *t ) const {
1156 #ifndef PRODUCT
1157   tty->print("\nError mixing types: ");
1158   dump();
1159   tty->print(" and ");
1160   t->dump();
1161   tty->print("\n");
1162 #endif
1163   ShouldNotReachHere();
1164 }
1165 
1166 
1167 //=============================================================================
1168 // Convenience common pre-built types.
1169 const TypeF *TypeF::ZERO;       // Floating point zero
1170 const TypeF *TypeF::ONE;        // Floating point one
1171 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1172 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1173 
1174 //------------------------------make-------------------------------------------
1175 // Create a float constant
1176 const TypeF *TypeF::make(float f) {
1177   return (TypeF*)(new TypeF(f))->hashcons();
1178 }
1179 
1180 //------------------------------meet-------------------------------------------
1181 // Compute the MEET of two types.  It returns a new Type object.
1182 const Type *TypeF::xmeet( const Type *t ) const {
1183   // Perform a fast test for common case; meeting the same types together.
1184   if( this == t ) return this;  // Meeting same type-rep?
1185 
1186   // Current "this->_base" is FloatCon
1187   switch (t->base()) {          // Switch on original type
1188   case AnyPtr:                  // Mixing with oops happens when javac
1189   case RawPtr:                  // reuses local variables
1190   case OopPtr:
1191   case InstPtr:
1192   case AryPtr:
1193   case MetadataPtr:
1194   case KlassPtr:
1195   case NarrowOop:
1196   case NarrowKlass:
1197   case Int:
1198   case Long:
1199   case DoubleTop:
1200   case DoubleCon:
1201   case DoubleBot:
1202   case Bottom:                  // Ye Olde Default
1203     return Type::BOTTOM;
1204 
1205   case FloatBot:
1206     return t;
1207 
1208   default:                      // All else is a mistake
1209     typerr(t);
1210 
1211   case FloatCon:                // Float-constant vs Float-constant?
1212     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1213                                 // must compare bitwise as positive zero, negative zero and NaN have
1214                                 // all the same representation in C++
1215       return FLOAT;             // Return generic float
1216                                 // Equal constants
1217   case Top:
1218   case FloatTop:
1219     break;                      // Return the float constant
1220   }
1221   return this;                  // Return the float constant
1222 }
1223 
1224 //------------------------------xdual------------------------------------------
1225 // Dual: symmetric
1226 const Type *TypeF::xdual() const {
1227   return this;
1228 }
1229 
1230 //------------------------------eq---------------------------------------------
1231 // Structural equality check for Type representations
1232 bool TypeF::eq(const Type *t) const {
1233   // Bitwise comparison to distinguish between +/-0. These values must be treated
1234   // as different to be consistent with C1 and the interpreter.
1235   return (jint_cast(_f) == jint_cast(t->getf()));
1236 }
1237 
1238 //------------------------------hash-------------------------------------------
1239 // Type-specific hashing function.
1240 int TypeF::hash(void) const {
1241   return *(int*)(&_f);
1242 }
1243 
1244 //------------------------------is_finite--------------------------------------
1245 // Has a finite value
1246 bool TypeF::is_finite() const {
1247   return g_isfinite(getf()) != 0;
1248 }
1249 
1250 //------------------------------is_nan-----------------------------------------
1251 // Is not a number (NaN)
1252 bool TypeF::is_nan()    const {
1253   return g_isnan(getf()) != 0;
1254 }
1255 
1256 //------------------------------dump2------------------------------------------
1257 // Dump float constant Type
1258 #ifndef PRODUCT
1259 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1260   Type::dump2(d,depth, st);
1261   st->print("%f", _f);
1262 }
1263 #endif
1264 
1265 //------------------------------singleton--------------------------------------
1266 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1267 // constants (Ldi nodes).  Singletons are integer, float or double constants
1268 // or a single symbol.
1269 bool TypeF::singleton(void) const {
1270   return true;                  // Always a singleton
1271 }
1272 
1273 bool TypeF::empty(void) const {
1274   return false;                 // always exactly a singleton
1275 }
1276 
1277 //=============================================================================
1278 // Convenience common pre-built types.
1279 const TypeD *TypeD::ZERO;       // Floating point zero
1280 const TypeD *TypeD::ONE;        // Floating point one
1281 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1282 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1283 
1284 //------------------------------make-------------------------------------------
1285 const TypeD *TypeD::make(double d) {
1286   return (TypeD*)(new TypeD(d))->hashcons();
1287 }
1288 
1289 //------------------------------meet-------------------------------------------
1290 // Compute the MEET of two types.  It returns a new Type object.
1291 const Type *TypeD::xmeet( const Type *t ) const {
1292   // Perform a fast test for common case; meeting the same types together.
1293   if( this == t ) return this;  // Meeting same type-rep?
1294 
1295   // Current "this->_base" is DoubleCon
1296   switch (t->base()) {          // Switch on original type
1297   case AnyPtr:                  // Mixing with oops happens when javac
1298   case RawPtr:                  // reuses local variables
1299   case OopPtr:
1300   case InstPtr:
1301   case AryPtr:
1302   case MetadataPtr:
1303   case KlassPtr:
1304   case NarrowOop:
1305   case NarrowKlass:
1306   case Int:
1307   case Long:
1308   case FloatTop:
1309   case FloatCon:
1310   case FloatBot:
1311   case Bottom:                  // Ye Olde Default
1312     return Type::BOTTOM;
1313 
1314   case DoubleBot:
1315     return t;
1316 
1317   default:                      // All else is a mistake
1318     typerr(t);
1319 
1320   case DoubleCon:               // Double-constant vs Double-constant?
1321     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1322       return DOUBLE;            // Return generic double
1323   case Top:
1324   case DoubleTop:
1325     break;
1326   }
1327   return this;                  // Return the double constant
1328 }
1329 
1330 //------------------------------xdual------------------------------------------
1331 // Dual: symmetric
1332 const Type *TypeD::xdual() const {
1333   return this;
1334 }
1335 
1336 //------------------------------eq---------------------------------------------
1337 // Structural equality check for Type representations
1338 bool TypeD::eq(const Type *t) const {
1339   // Bitwise comparison to distinguish between +/-0. These values must be treated
1340   // as different to be consistent with C1 and the interpreter.
1341   return (jlong_cast(_d) == jlong_cast(t->getd()));
1342 }
1343 
1344 //------------------------------hash-------------------------------------------
1345 // Type-specific hashing function.
1346 int TypeD::hash(void) const {
1347   return *(int*)(&_d);
1348 }
1349 
1350 //------------------------------is_finite--------------------------------------
1351 // Has a finite value
1352 bool TypeD::is_finite() const {
1353   return g_isfinite(getd()) != 0;
1354 }
1355 
1356 //------------------------------is_nan-----------------------------------------
1357 // Is not a number (NaN)
1358 bool TypeD::is_nan()    const {
1359   return g_isnan(getd()) != 0;
1360 }
1361 
1362 //------------------------------dump2------------------------------------------
1363 // Dump double constant Type
1364 #ifndef PRODUCT
1365 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1366   Type::dump2(d,depth,st);
1367   st->print("%f", _d);
1368 }
1369 #endif
1370 
1371 //------------------------------singleton--------------------------------------
1372 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1373 // constants (Ldi nodes).  Singletons are integer, float or double constants
1374 // or a single symbol.
1375 bool TypeD::singleton(void) const {
1376   return true;                  // Always a singleton
1377 }
1378 
1379 bool TypeD::empty(void) const {
1380   return false;                 // always exactly a singleton
1381 }
1382 
1383 //=============================================================================
1384 // Convience common pre-built types.
1385 const TypeInt *TypeInt::MINUS_1;// -1
1386 const TypeInt *TypeInt::ZERO;   // 0
1387 const TypeInt *TypeInt::ONE;    // 1
1388 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1389 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1390 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1391 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1392 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1393 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1394 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1395 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1396 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1397 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1398 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1399 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1400 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1401 const TypeInt *TypeInt::INT;    // 32-bit integers
1402 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1403 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1404 
1405 //------------------------------TypeInt----------------------------------------
1406 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1407 }
1408 
1409 //------------------------------make-------------------------------------------
1410 const TypeInt *TypeInt::make( jint lo ) {
1411   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1412 }
1413 
1414 static int normalize_int_widen( jint lo, jint hi, int w ) {
1415   // Certain normalizations keep us sane when comparing types.
1416   // The 'SMALLINT' covers constants and also CC and its relatives.
1417   if (lo <= hi) {
1418     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1419     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1420   } else {
1421     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1422     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1423   }
1424   return w;
1425 }
1426 
1427 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1428   w = normalize_int_widen(lo, hi, w);
1429   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1430 }
1431 
1432 //------------------------------meet-------------------------------------------
1433 // Compute the MEET of two types.  It returns a new Type representation object
1434 // with reference count equal to the number of Types pointing at it.
1435 // Caller should wrap a Types around it.
1436 const Type *TypeInt::xmeet( const Type *t ) const {
1437   // Perform a fast test for common case; meeting the same types together.
1438   if( this == t ) return this;  // Meeting same type?
1439 
1440   // Currently "this->_base" is a TypeInt
1441   switch (t->base()) {          // Switch on original type
1442   case AnyPtr:                  // Mixing with oops happens when javac
1443   case RawPtr:                  // reuses local variables
1444   case OopPtr:
1445   case InstPtr:
1446   case AryPtr:
1447   case MetadataPtr:
1448   case KlassPtr:
1449   case NarrowOop:
1450   case NarrowKlass:
1451   case Long:
1452   case FloatTop:
1453   case FloatCon:
1454   case FloatBot:
1455   case DoubleTop:
1456   case DoubleCon:
1457   case DoubleBot:
1458   case Bottom:                  // Ye Olde Default
1459     return Type::BOTTOM;
1460   default:                      // All else is a mistake
1461     typerr(t);
1462   case Top:                     // No change
1463     return this;
1464   case Int:                     // Int vs Int?
1465     break;
1466   }
1467 
1468   // Expand covered set
1469   const TypeInt *r = t->is_int();
1470   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1471 }
1472 
1473 //------------------------------xdual------------------------------------------
1474 // Dual: reverse hi & lo; flip widen
1475 const Type *TypeInt::xdual() const {
1476   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1477   return new TypeInt(_hi,_lo,w);
1478 }
1479 
1480 //------------------------------widen------------------------------------------
1481 // Only happens for optimistic top-down optimizations.
1482 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1483   // Coming from TOP or such; no widening
1484   if( old->base() != Int ) return this;
1485   const TypeInt *ot = old->is_int();
1486 
1487   // If new guy is equal to old guy, no widening
1488   if( _lo == ot->_lo && _hi == ot->_hi )
1489     return old;
1490 
1491   // If new guy contains old, then we widened
1492   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1493     // New contains old
1494     // If new guy is already wider than old, no widening
1495     if( _widen > ot->_widen ) return this;
1496     // If old guy was a constant, do not bother
1497     if (ot->_lo == ot->_hi)  return this;
1498     // Now widen new guy.
1499     // Check for widening too far
1500     if (_widen == WidenMax) {
1501       int max = max_jint;
1502       int min = min_jint;
1503       if (limit->isa_int()) {
1504         max = limit->is_int()->_hi;
1505         min = limit->is_int()->_lo;
1506       }
1507       if (min < _lo && _hi < max) {
1508         // If neither endpoint is extremal yet, push out the endpoint
1509         // which is closer to its respective limit.
1510         if (_lo >= 0 ||                 // easy common case
1511             (juint)(_lo - min) >= (juint)(max - _hi)) {
1512           // Try to widen to an unsigned range type of 31 bits:
1513           return make(_lo, max, WidenMax);
1514         } else {
1515           return make(min, _hi, WidenMax);
1516         }
1517       }
1518       return TypeInt::INT;
1519     }
1520     // Returned widened new guy
1521     return make(_lo,_hi,_widen+1);
1522   }
1523 
1524   // If old guy contains new, then we probably widened too far & dropped to
1525   // bottom.  Return the wider fellow.
1526   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1527     return old;
1528 
1529   //fatal("Integer value range is not subset");
1530   //return this;
1531   return TypeInt::INT;
1532 }
1533 
1534 //------------------------------narrow---------------------------------------
1535 // Only happens for pessimistic optimizations.
1536 const Type *TypeInt::narrow( const Type *old ) const {
1537   if (_lo >= _hi)  return this;   // already narrow enough
1538   if (old == NULL)  return this;
1539   const TypeInt* ot = old->isa_int();
1540   if (ot == NULL)  return this;
1541   jint olo = ot->_lo;
1542   jint ohi = ot->_hi;
1543 
1544   // If new guy is equal to old guy, no narrowing
1545   if (_lo == olo && _hi == ohi)  return old;
1546 
1547   // If old guy was maximum range, allow the narrowing
1548   if (olo == min_jint && ohi == max_jint)  return this;
1549 
1550   if (_lo < olo || _hi > ohi)
1551     return this;                // doesn't narrow; pretty wierd
1552 
1553   // The new type narrows the old type, so look for a "death march".
1554   // See comments on PhaseTransform::saturate.
1555   juint nrange = (juint)_hi - _lo;
1556   juint orange = (juint)ohi - olo;
1557   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1558     // Use the new type only if the range shrinks a lot.
1559     // We do not want the optimizer computing 2^31 point by point.
1560     return old;
1561   }
1562 
1563   return this;
1564 }
1565 
1566 //-----------------------------filter------------------------------------------
1567 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1568   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1569   if (ft == NULL || ft->empty())
1570     return Type::TOP;           // Canonical empty value
1571   if (ft->_widen < this->_widen) {
1572     // Do not allow the value of kill->_widen to affect the outcome.
1573     // The widen bits must be allowed to run freely through the graph.
1574     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1575   }
1576   return ft;
1577 }
1578 
1579 //------------------------------eq---------------------------------------------
1580 // Structural equality check for Type representations
1581 bool TypeInt::eq( const Type *t ) const {
1582   const TypeInt *r = t->is_int(); // Handy access
1583   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1584 }
1585 
1586 //------------------------------hash-------------------------------------------
1587 // Type-specific hashing function.
1588 int TypeInt::hash(void) const {
1589   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1590 }
1591 
1592 //------------------------------is_finite--------------------------------------
1593 // Has a finite value
1594 bool TypeInt::is_finite() const {
1595   return true;
1596 }
1597 
1598 //------------------------------dump2------------------------------------------
1599 // Dump TypeInt
1600 #ifndef PRODUCT
1601 static const char* intname(char* buf, jint n) {
1602   if (n == min_jint)
1603     return "min";
1604   else if (n < min_jint + 10000)
1605     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1606   else if (n == max_jint)
1607     return "max";
1608   else if (n > max_jint - 10000)
1609     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1610   else
1611     sprintf(buf, INT32_FORMAT, n);
1612   return buf;
1613 }
1614 
1615 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1616   char buf[40], buf2[40];
1617   if (_lo == min_jint && _hi == max_jint)
1618     st->print("int");
1619   else if (is_con())
1620     st->print("int:%s", intname(buf, get_con()));
1621   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1622     st->print("bool");
1623   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1624     st->print("byte");
1625   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1626     st->print("char");
1627   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1628     st->print("short");
1629   else if (_hi == max_jint)
1630     st->print("int:>=%s", intname(buf, _lo));
1631   else if (_lo == min_jint)
1632     st->print("int:<=%s", intname(buf, _hi));
1633   else
1634     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1635 
1636   if (_widen != 0 && this != TypeInt::INT)
1637     st->print(":%.*s", _widen, "wwww");
1638 }
1639 #endif
1640 
1641 //------------------------------singleton--------------------------------------
1642 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1643 // constants.
1644 bool TypeInt::singleton(void) const {
1645   return _lo >= _hi;
1646 }
1647 
1648 bool TypeInt::empty(void) const {
1649   return _lo > _hi;
1650 }
1651 
1652 //=============================================================================
1653 // Convenience common pre-built types.
1654 const TypeLong *TypeLong::MINUS_1;// -1
1655 const TypeLong *TypeLong::ZERO; // 0
1656 const TypeLong *TypeLong::ONE;  // 1
1657 const TypeLong *TypeLong::POS;  // >=0
1658 const TypeLong *TypeLong::LONG; // 64-bit integers
1659 const TypeLong *TypeLong::INT;  // 32-bit subrange
1660 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1661 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1662 
1663 //------------------------------TypeLong---------------------------------------
1664 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1665 }
1666 
1667 //------------------------------make-------------------------------------------
1668 const TypeLong *TypeLong::make( jlong lo ) {
1669   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1670 }
1671 
1672 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1673   // Certain normalizations keep us sane when comparing types.
1674   // The 'SMALLINT' covers constants.
1675   if (lo <= hi) {
1676     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1677     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1678   } else {
1679     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1680     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1681   }
1682   return w;
1683 }
1684 
1685 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1686   w = normalize_long_widen(lo, hi, w);
1687   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1688 }
1689 
1690 
1691 //------------------------------meet-------------------------------------------
1692 // Compute the MEET of two types.  It returns a new Type representation object
1693 // with reference count equal to the number of Types pointing at it.
1694 // Caller should wrap a Types around it.
1695 const Type *TypeLong::xmeet( const Type *t ) const {
1696   // Perform a fast test for common case; meeting the same types together.
1697   if( this == t ) return this;  // Meeting same type?
1698 
1699   // Currently "this->_base" is a TypeLong
1700   switch (t->base()) {          // Switch on original type
1701   case AnyPtr:                  // Mixing with oops happens when javac
1702   case RawPtr:                  // reuses local variables
1703   case OopPtr:
1704   case InstPtr:
1705   case AryPtr:
1706   case MetadataPtr:
1707   case KlassPtr:
1708   case NarrowOop:
1709   case NarrowKlass:
1710   case Int:
1711   case FloatTop:
1712   case FloatCon:
1713   case FloatBot:
1714   case DoubleTop:
1715   case DoubleCon:
1716   case DoubleBot:
1717   case Bottom:                  // Ye Olde Default
1718     return Type::BOTTOM;
1719   default:                      // All else is a mistake
1720     typerr(t);
1721   case Top:                     // No change
1722     return this;
1723   case Long:                    // Long vs Long?
1724     break;
1725   }
1726 
1727   // Expand covered set
1728   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1729   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1730 }
1731 
1732 //------------------------------xdual------------------------------------------
1733 // Dual: reverse hi & lo; flip widen
1734 const Type *TypeLong::xdual() const {
1735   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1736   return new TypeLong(_hi,_lo,w);
1737 }
1738 
1739 //------------------------------widen------------------------------------------
1740 // Only happens for optimistic top-down optimizations.
1741 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1742   // Coming from TOP or such; no widening
1743   if( old->base() != Long ) return this;
1744   const TypeLong *ot = old->is_long();
1745 
1746   // If new guy is equal to old guy, no widening
1747   if( _lo == ot->_lo && _hi == ot->_hi )
1748     return old;
1749 
1750   // If new guy contains old, then we widened
1751   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1752     // New contains old
1753     // If new guy is already wider than old, no widening
1754     if( _widen > ot->_widen ) return this;
1755     // If old guy was a constant, do not bother
1756     if (ot->_lo == ot->_hi)  return this;
1757     // Now widen new guy.
1758     // Check for widening too far
1759     if (_widen == WidenMax) {
1760       jlong max = max_jlong;
1761       jlong min = min_jlong;
1762       if (limit->isa_long()) {
1763         max = limit->is_long()->_hi;
1764         min = limit->is_long()->_lo;
1765       }
1766       if (min < _lo && _hi < max) {
1767         // If neither endpoint is extremal yet, push out the endpoint
1768         // which is closer to its respective limit.
1769         if (_lo >= 0 ||                 // easy common case
1770             ((julong)_lo - min) >= ((julong)max - _hi)) {
1771           // Try to widen to an unsigned range type of 32/63 bits:
1772           if (max >= max_juint && _hi < max_juint)
1773             return make(_lo, max_juint, WidenMax);
1774           else
1775             return make(_lo, max, WidenMax);
1776         } else {
1777           return make(min, _hi, WidenMax);
1778         }
1779       }
1780       return TypeLong::LONG;
1781     }
1782     // Returned widened new guy
1783     return make(_lo,_hi,_widen+1);
1784   }
1785 
1786   // If old guy contains new, then we probably widened too far & dropped to
1787   // bottom.  Return the wider fellow.
1788   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1789     return old;
1790 
1791   //  fatal("Long value range is not subset");
1792   // return this;
1793   return TypeLong::LONG;
1794 }
1795 
1796 //------------------------------narrow----------------------------------------
1797 // Only happens for pessimistic optimizations.
1798 const Type *TypeLong::narrow( const Type *old ) const {
1799   if (_lo >= _hi)  return this;   // already narrow enough
1800   if (old == NULL)  return this;
1801   const TypeLong* ot = old->isa_long();
1802   if (ot == NULL)  return this;
1803   jlong olo = ot->_lo;
1804   jlong ohi = ot->_hi;
1805 
1806   // If new guy is equal to old guy, no narrowing
1807   if (_lo == olo && _hi == ohi)  return old;
1808 
1809   // If old guy was maximum range, allow the narrowing
1810   if (olo == min_jlong && ohi == max_jlong)  return this;
1811 
1812   if (_lo < olo || _hi > ohi)
1813     return this;                // doesn't narrow; pretty wierd
1814 
1815   // The new type narrows the old type, so look for a "death march".
1816   // See comments on PhaseTransform::saturate.
1817   julong nrange = _hi - _lo;
1818   julong orange = ohi - olo;
1819   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1820     // Use the new type only if the range shrinks a lot.
1821     // We do not want the optimizer computing 2^31 point by point.
1822     return old;
1823   }
1824 
1825   return this;
1826 }
1827 
1828 //-----------------------------filter------------------------------------------
1829 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1830   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1831   if (ft == NULL || ft->empty())
1832     return Type::TOP;           // Canonical empty value
1833   if (ft->_widen < this->_widen) {
1834     // Do not allow the value of kill->_widen to affect the outcome.
1835     // The widen bits must be allowed to run freely through the graph.
1836     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1837   }
1838   return ft;
1839 }
1840 
1841 //------------------------------eq---------------------------------------------
1842 // Structural equality check for Type representations
1843 bool TypeLong::eq( const Type *t ) const {
1844   const TypeLong *r = t->is_long(); // Handy access
1845   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1846 }
1847 
1848 //------------------------------hash-------------------------------------------
1849 // Type-specific hashing function.
1850 int TypeLong::hash(void) const {
1851   return (int)(_lo+_hi+_widen+(int)Type::Long);
1852 }
1853 
1854 //------------------------------is_finite--------------------------------------
1855 // Has a finite value
1856 bool TypeLong::is_finite() const {
1857   return true;
1858 }
1859 
1860 //------------------------------dump2------------------------------------------
1861 // Dump TypeLong
1862 #ifndef PRODUCT
1863 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1864   if (n > x) {
1865     if (n >= x + 10000)  return NULL;
1866     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1867   } else if (n < x) {
1868     if (n <= x - 10000)  return NULL;
1869     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1870   } else {
1871     return xname;
1872   }
1873   return buf;
1874 }
1875 
1876 static const char* longname(char* buf, jlong n) {
1877   const char* str;
1878   if (n == min_jlong)
1879     return "min";
1880   else if (n < min_jlong + 10000)
1881     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1882   else if (n == max_jlong)
1883     return "max";
1884   else if (n > max_jlong - 10000)
1885     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1886   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1887     return str;
1888   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1889     return str;
1890   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1891     return str;
1892   else
1893     sprintf(buf, JLONG_FORMAT, n);
1894   return buf;
1895 }
1896 
1897 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1898   char buf[80], buf2[80];
1899   if (_lo == min_jlong && _hi == max_jlong)
1900     st->print("long");
1901   else if (is_con())
1902     st->print("long:%s", longname(buf, get_con()));
1903   else if (_hi == max_jlong)
1904     st->print("long:>=%s", longname(buf, _lo));
1905   else if (_lo == min_jlong)
1906     st->print("long:<=%s", longname(buf, _hi));
1907   else
1908     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1909 
1910   if (_widen != 0 && this != TypeLong::LONG)
1911     st->print(":%.*s", _widen, "wwww");
1912 }
1913 #endif
1914 
1915 //------------------------------singleton--------------------------------------
1916 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1917 // constants
1918 bool TypeLong::singleton(void) const {
1919   return _lo >= _hi;
1920 }
1921 
1922 bool TypeLong::empty(void) const {
1923   return _lo > _hi;
1924 }
1925 
1926 //=============================================================================
1927 // Convenience common pre-built types.
1928 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1929 const TypeTuple *TypeTuple::IFFALSE;
1930 const TypeTuple *TypeTuple::IFTRUE;
1931 const TypeTuple *TypeTuple::IFNEITHER;
1932 const TypeTuple *TypeTuple::LOOPBODY;
1933 const TypeTuple *TypeTuple::MEMBAR;
1934 const TypeTuple *TypeTuple::STORECONDITIONAL;
1935 const TypeTuple *TypeTuple::START_I2C;
1936 const TypeTuple *TypeTuple::INT_PAIR;
1937 const TypeTuple *TypeTuple::LONG_PAIR;
1938 const TypeTuple *TypeTuple::INT_CC_PAIR;
1939 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1940 
1941 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos, ExtendedSignature& sig_cc) {
1942   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1943     ciField* field = vk->nonstatic_field_at(j);
1944     BasicType bt = field->type()->basic_type();
1945     const Type* ft = Type::get_const_type(field->type());
1946     field_array[pos++] = ft;
1947     if (type2size[bt] == 2) {
1948       field_array[pos++] = Type::HALF;
1949     }
1950     // Skip reserved arguments
1951     while (SigEntry::next_is_reserved(sig_cc, bt)) {
1952       field_array[pos++] = Type::get_const_basic_type(bt);
1953       if (type2size[bt] == 2) {
1954         field_array[pos++] = Type::HALF;
1955       }
1956     }
1957   }
1958 }
1959 
1960 //------------------------------make-------------------------------------------
1961 // Make a TypeTuple from the range of a method signature
1962 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1963   ciType* return_type = sig->return_type();
1964   bool never_null = sig->returns_never_null();
1965 
1966   uint arg_cnt = return_type->size();
1967   ret_vt_fields = ret_vt_fields && never_null && return_type->as_value_klass()->can_be_returned_as_fields();
1968   if (ret_vt_fields) {
1969     arg_cnt = return_type->as_value_klass()->value_arg_slots() + 1;
1970   }
1971 
1972   const Type **field_array = fields(arg_cnt);
1973   switch (return_type->basic_type()) {
1974   case T_LONG:
1975     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1976     field_array[TypeFunc::Parms+1] = Type::HALF;
1977     break;
1978   case T_DOUBLE:
1979     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1980     field_array[TypeFunc::Parms+1] = Type::HALF;
1981     break;
1982   case T_OBJECT:
1983   case T_ARRAY:
1984   case T_BOOLEAN:
1985   case T_CHAR:
1986   case T_FLOAT:
1987   case T_BYTE:
1988   case T_SHORT:
1989   case T_INT:
1990     field_array[TypeFunc::Parms] = get_const_type(return_type);
1991     break;
1992   case T_VALUETYPE:
1993     if (ret_vt_fields) {
1994       uint pos = TypeFunc::Parms;
1995       field_array[pos] = TypePtr::BOTTOM;
1996       pos++;
1997       ExtendedSignature sig = ExtendedSignature(NULL, SigEntryFilter());
1998       collect_value_fields(return_type->as_value_klass(), field_array, pos, sig);
1999     } else {
2000       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2001     }
2002     break;
2003   case T_VOID:
2004     break;
2005   default:
2006     ShouldNotReachHere();
2007   }
2008   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2009 }
2010 
2011 // Make a TypeTuple from the domain of a method signature
2012 const TypeTuple *TypeTuple::make_domain(ciMethod* method, bool vt_fields_as_args) {
2013   ciSignature* sig = method->signature();
2014   ExtendedSignature sig_cc = ExtendedSignature(vt_fields_as_args ? method->get_sig_cc() : NULL, SigEntryFilter());
2015 
2016   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2017   if (vt_fields_as_args) {
2018     for (arg_cnt = 0; !sig_cc.at_end(); ++sig_cc) {
2019       arg_cnt += type2size[(*sig_cc)._bt];
2020     }
2021     sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter());
2022   }
2023 
2024   uint pos = TypeFunc::Parms;
2025   const Type** field_array = fields(arg_cnt);
2026   if (!method->is_static()) {
2027     ciInstanceKlass* recv = method->holder();
2028     if (vt_fields_as_args && recv->is_valuetype()) {
2029       collect_value_fields(recv->as_value_klass(), field_array, pos, sig_cc);
2030     } else {
2031       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2032       if (vt_fields_as_args) {
2033         ++sig_cc;
2034       }
2035     }
2036   }
2037 
2038   int i = 0;
2039   while (pos < TypeFunc::Parms + arg_cnt) {
2040     ciType* type = sig->type_at(i);
2041     BasicType bt = type->basic_type();
2042     bool is_flattened = false;
2043 
2044     switch (bt) {
2045     case T_LONG:
2046       field_array[pos++] = TypeLong::LONG;
2047       field_array[pos++] = Type::HALF;
2048       break;
2049     case T_DOUBLE:
2050       field_array[pos++] = Type::DOUBLE;
2051       field_array[pos++] = Type::HALF;
2052       break;
2053     case T_OBJECT:
2054     case T_ARRAY:
2055     case T_FLOAT:
2056     case T_INT:
2057       field_array[pos++] = get_const_type(type);
2058       break;
2059     case T_BOOLEAN:
2060     case T_CHAR:
2061     case T_BYTE:
2062     case T_SHORT:
2063       field_array[pos++] = TypeInt::INT;
2064       break;
2065     case T_VALUETYPE: {
2066       bool never_null = sig->is_never_null_at(i);
2067       if (vt_fields_as_args && never_null) {
2068         is_flattened = true;
2069         collect_value_fields(type->as_value_klass(), field_array, pos, sig_cc);
2070       } else {
2071         field_array[pos++] = get_const_type(type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2072       }
2073       break;
2074     }
2075     default:
2076       ShouldNotReachHere();
2077     }
2078     // Skip reserved arguments
2079     while (!is_flattened && SigEntry::next_is_reserved(sig_cc, bt)) {
2080       field_array[pos++] = Type::get_const_basic_type(bt);
2081       if (type2size[bt] == 2) {
2082         field_array[pos++] = Type::HALF;
2083       }
2084     }
2085     i++;
2086   }
2087   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2088 
2089   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2090 }
2091 
2092 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2093   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2094 }
2095 
2096 //------------------------------fields-----------------------------------------
2097 // Subroutine call type with space allocated for argument types
2098 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2099 const Type **TypeTuple::fields( uint arg_cnt ) {
2100   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2101   flds[TypeFunc::Control  ] = Type::CONTROL;
2102   flds[TypeFunc::I_O      ] = Type::ABIO;
2103   flds[TypeFunc::Memory   ] = Type::MEMORY;
2104   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2105   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2106 
2107   return flds;
2108 }
2109 
2110 //------------------------------meet-------------------------------------------
2111 // Compute the MEET of two types.  It returns a new Type object.
2112 const Type *TypeTuple::xmeet( const Type *t ) const {
2113   // Perform a fast test for common case; meeting the same types together.
2114   if( this == t ) return this;  // Meeting same type-rep?
2115 
2116   // Current "this->_base" is Tuple
2117   switch (t->base()) {          // switch on original type
2118 
2119   case Bottom:                  // Ye Olde Default
2120     return t;
2121 
2122   default:                      // All else is a mistake
2123     typerr(t);
2124 
2125   case Tuple: {                 // Meeting 2 signatures?
2126     const TypeTuple *x = t->is_tuple();
2127     assert( _cnt == x->_cnt, "" );
2128     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2129     for( uint i=0; i<_cnt; i++ )
2130       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2131     return TypeTuple::make(_cnt,fields);
2132   }
2133   case Top:
2134     break;
2135   }
2136   return this;                  // Return the double constant
2137 }
2138 
2139 //------------------------------xdual------------------------------------------
2140 // Dual: compute field-by-field dual
2141 const Type *TypeTuple::xdual() const {
2142   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2143   for( uint i=0; i<_cnt; i++ )
2144     fields[i] = _fields[i]->dual();
2145   return new TypeTuple(_cnt,fields);
2146 }
2147 
2148 //------------------------------eq---------------------------------------------
2149 // Structural equality check for Type representations
2150 bool TypeTuple::eq( const Type *t ) const {
2151   const TypeTuple *s = (const TypeTuple *)t;
2152   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2153   for (uint i = 0; i < _cnt; i++)
2154     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2155       return false;             // Missed
2156   return true;
2157 }
2158 
2159 //------------------------------hash-------------------------------------------
2160 // Type-specific hashing function.
2161 int TypeTuple::hash(void) const {
2162   intptr_t sum = _cnt;
2163   for( uint i=0; i<_cnt; i++ )
2164     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2165   return sum;
2166 }
2167 
2168 //------------------------------dump2------------------------------------------
2169 // Dump signature Type
2170 #ifndef PRODUCT
2171 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2172   st->print("{");
2173   if( !depth || d[this] ) {     // Check for recursive print
2174     st->print("...}");
2175     return;
2176   }
2177   d.Insert((void*)this, (void*)this);   // Stop recursion
2178   if( _cnt ) {
2179     uint i;
2180     for( i=0; i<_cnt-1; i++ ) {
2181       st->print("%d:", i);
2182       _fields[i]->dump2(d, depth-1, st);
2183       st->print(", ");
2184     }
2185     st->print("%d:", i);
2186     _fields[i]->dump2(d, depth-1, st);
2187   }
2188   st->print("}");
2189 }
2190 #endif
2191 
2192 //------------------------------singleton--------------------------------------
2193 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2194 // constants (Ldi nodes).  Singletons are integer, float or double constants
2195 // or a single symbol.
2196 bool TypeTuple::singleton(void) const {
2197   return false;                 // Never a singleton
2198 }
2199 
2200 bool TypeTuple::empty(void) const {
2201   for( uint i=0; i<_cnt; i++ ) {
2202     if (_fields[i]->empty())  return true;
2203   }
2204   return false;
2205 }
2206 
2207 //=============================================================================
2208 // Convenience common pre-built types.
2209 
2210 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2211   // Certain normalizations keep us sane when comparing types.
2212   // We do not want arrayOop variables to differ only by the wideness
2213   // of their index types.  Pick minimum wideness, since that is the
2214   // forced wideness of small ranges anyway.
2215   if (size->_widen != Type::WidenMin)
2216     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2217   else
2218     return size;
2219 }
2220 
2221 //------------------------------make-------------------------------------------
2222 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2223   if (UseCompressedOops && elem->isa_oopptr()) {
2224     elem = elem->make_narrowoop();
2225   }
2226   size = normalize_array_size(size);
2227   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2228 }
2229 
2230 //------------------------------meet-------------------------------------------
2231 // Compute the MEET of two types.  It returns a new Type object.
2232 const Type *TypeAry::xmeet( const Type *t ) const {
2233   // Perform a fast test for common case; meeting the same types together.
2234   if( this == t ) return this;  // Meeting same type-rep?
2235 
2236   // Current "this->_base" is Ary
2237   switch (t->base()) {          // switch on original type
2238 
2239   case Bottom:                  // Ye Olde Default
2240     return t;
2241 
2242   default:                      // All else is a mistake
2243     typerr(t);
2244 
2245   case Array: {                 // Meeting 2 arrays?
2246     const TypeAry *a = t->is_ary();
2247     return TypeAry::make(_elem->meet_speculative(a->_elem),
2248                          _size->xmeet(a->_size)->is_int(),
2249                          _stable & a->_stable);
2250   }
2251   case Top:
2252     break;
2253   }
2254   return this;                  // Return the double constant
2255 }
2256 
2257 //------------------------------xdual------------------------------------------
2258 // Dual: compute field-by-field dual
2259 const Type *TypeAry::xdual() const {
2260   const TypeInt* size_dual = _size->dual()->is_int();
2261   size_dual = normalize_array_size(size_dual);
2262   return new TypeAry(_elem->dual(), size_dual, !_stable);
2263 }
2264 
2265 //------------------------------eq---------------------------------------------
2266 // Structural equality check for Type representations
2267 bool TypeAry::eq( const Type *t ) const {
2268   const TypeAry *a = (const TypeAry*)t;
2269   return _elem == a->_elem &&
2270     _stable == a->_stable &&
2271     _size == a->_size;
2272 }
2273 
2274 //------------------------------hash-------------------------------------------
2275 // Type-specific hashing function.
2276 int TypeAry::hash(void) const {
2277   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2278 }
2279 
2280 /**
2281  * Return same type without a speculative part in the element
2282  */
2283 const Type* TypeAry::remove_speculative() const {
2284   return make(_elem->remove_speculative(), _size, _stable);
2285 }
2286 
2287 /**
2288  * Return same type with cleaned up speculative part of element
2289  */
2290 const Type* TypeAry::cleanup_speculative() const {
2291   return make(_elem->cleanup_speculative(), _size, _stable);
2292 }
2293 
2294 /**
2295  * Return same type but with a different inline depth (used for speculation)
2296  *
2297  * @param depth  depth to meet with
2298  */
2299 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2300   if (!UseInlineDepthForSpeculativeTypes) {
2301     return this;
2302   }
2303   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2304 }
2305 
2306 //----------------------interface_vs_oop---------------------------------------
2307 #ifdef ASSERT
2308 bool TypeAry::interface_vs_oop(const Type *t) const {
2309   const TypeAry* t_ary = t->is_ary();
2310   if (t_ary) {
2311     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2312     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2313     if(this_ptr != NULL && t_ptr != NULL) {
2314       return this_ptr->interface_vs_oop(t_ptr);
2315     }
2316   }
2317   return false;
2318 }
2319 #endif
2320 
2321 //------------------------------dump2------------------------------------------
2322 #ifndef PRODUCT
2323 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2324   if (_stable)  st->print("stable:");
2325   _elem->dump2(d, depth, st);
2326   st->print("[");
2327   _size->dump2(d, depth, st);
2328   st->print("]");
2329 }
2330 #endif
2331 
2332 //------------------------------singleton--------------------------------------
2333 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2334 // constants (Ldi nodes).  Singletons are integer, float or double constants
2335 // or a single symbol.
2336 bool TypeAry::singleton(void) const {
2337   return false;                 // Never a singleton
2338 }
2339 
2340 bool TypeAry::empty(void) const {
2341   return _elem->empty() || _size->empty();
2342 }
2343 
2344 //--------------------------ary_must_be_exact----------------------------------
2345 bool TypeAry::ary_must_be_exact() const {
2346   if (!UseExactTypes)       return false;
2347   // This logic looks at the element type of an array, and returns true
2348   // if the element type is either a primitive or a final instance class.
2349   // In such cases, an array built on this ary must have no subclasses.
2350   if (_elem == BOTTOM)      return false;  // general array not exact
2351   if (_elem == TOP   )      return false;  // inverted general array not exact
2352   const TypeOopPtr*  toop = NULL;
2353   if (UseCompressedOops && _elem->isa_narrowoop()) {
2354     toop = _elem->make_ptr()->isa_oopptr();
2355   } else {
2356     toop = _elem->isa_oopptr();
2357   }
2358   if (!toop)                return true;   // a primitive type, like int
2359   ciKlass* tklass = toop->klass();
2360   if (tklass == NULL)       return false;  // unloaded class
2361   if (!tklass->is_loaded()) return false;  // unloaded class
2362   const TypeInstPtr* tinst;
2363   if (_elem->isa_narrowoop())
2364     tinst = _elem->make_ptr()->isa_instptr();
2365   else
2366     tinst = _elem->isa_instptr();
2367   if (tinst)
2368     return tklass->as_instance_klass()->is_final();
2369   const TypeAryPtr*  tap;
2370   if (_elem->isa_narrowoop())
2371     tap = _elem->make_ptr()->isa_aryptr();
2372   else
2373     tap = _elem->isa_aryptr();
2374   if (tap)
2375     return tap->ary()->ary_must_be_exact();
2376   return false;
2377 }
2378 
2379 //==============================TypeValueType=======================================
2380 
2381 //------------------------------make-------------------------------------------
2382 const TypeValueType* TypeValueType::make(ciValueKlass* vk, bool larval) {
2383   return (TypeValueType*)(new TypeValueType(vk, larval))->hashcons();
2384 }
2385 
2386 //------------------------------meet-------------------------------------------
2387 // Compute the MEET of two types.  It returns a new Type object.
2388 const Type* TypeValueType::xmeet(const Type* t) const {
2389   // Perform a fast test for common case; meeting the same types together.
2390   if(this == t) return this;  // Meeting same type-rep?
2391 
2392   // Current "this->_base" is ValueType
2393   switch (t->base()) {          // switch on original type
2394 
2395   case Int:
2396   case Long:
2397   case FloatTop:
2398   case FloatCon:
2399   case FloatBot:
2400   case DoubleTop:
2401   case DoubleCon:
2402   case DoubleBot:
2403   case NarrowKlass:
2404   case Bottom:
2405     return Type::BOTTOM;
2406 
2407   case OopPtr:
2408   case MetadataPtr:
2409   case KlassPtr:
2410   case RawPtr:
2411     return TypePtr::BOTTOM;
2412 
2413   case Top:
2414     return this;
2415 
2416   case NarrowOop: {
2417     const Type* res = t->make_ptr()->xmeet(this);
2418     if (res->isa_ptr()) {
2419       return res->make_narrowoop();
2420     }
2421     return res;
2422   }
2423 
2424   case AryPtr:
2425   case InstPtr: {
2426     return t->xmeet(this);
2427   }
2428 
2429   case ValueType: {
2430     // All value types inherit from Object
2431     const TypeValueType* other = t->is_valuetype();
2432     if (_vk == other->_vk) {
2433       if (_larval == other->_larval ||
2434           !_larval) {
2435         return this;
2436       } else {
2437         return t;
2438       }
2439     }
2440     return TypeInstPtr::NOTNULL;
2441   }
2442 
2443   default:                      // All else is a mistake
2444     typerr(t);
2445 
2446   }
2447   return this;
2448 }
2449 
2450 //------------------------------xdual------------------------------------------
2451 const Type* TypeValueType::xdual() const {
2452   return this;
2453 }
2454 
2455 //------------------------------eq---------------------------------------------
2456 // Structural equality check for Type representations
2457 bool TypeValueType::eq(const Type* t) const {
2458   const TypeValueType* vt = t->is_valuetype();
2459   return (_vk == vt->value_klass() && _larval == vt->larval());
2460 }
2461 
2462 //------------------------------hash-------------------------------------------
2463 // Type-specific hashing function.
2464 int TypeValueType::hash(void) const {
2465   return (intptr_t)_vk;
2466 }
2467 
2468 //------------------------------singleton--------------------------------------
2469 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2470 bool TypeValueType::singleton(void) const {
2471   return false;
2472 }
2473 
2474 //------------------------------empty------------------------------------------
2475 // TRUE if Type is a type with no values, FALSE otherwise.
2476 bool TypeValueType::empty(void) const {
2477   return false;
2478 }
2479 
2480 //------------------------------dump2------------------------------------------
2481 #ifndef PRODUCT
2482 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2483   int count = _vk->nof_declared_nonstatic_fields();
2484   st->print("valuetype[%d]:{", count);
2485   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2486   for (int i = 1; i < count; ++i) {
2487     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2488   }
2489   st->print("}%s", _larval?" : larval":"");
2490 }
2491 #endif
2492 
2493 //==============================TypeVect=======================================
2494 // Convenience common pre-built types.
2495 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2496 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2497 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2498 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2499 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2500 
2501 //------------------------------make-------------------------------------------
2502 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2503   BasicType elem_bt = elem->array_element_basic_type();
2504   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2505   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2506   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2507   int size = length * type2aelembytes(elem_bt);
2508   switch (Matcher::vector_ideal_reg(size)) {
2509   case Op_VecS:
2510     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2511   case Op_RegL:
2512   case Op_VecD:
2513   case Op_RegD:
2514     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2515   case Op_VecX:
2516     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2517   case Op_VecY:
2518     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2519   case Op_VecZ:
2520     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2521   }
2522  ShouldNotReachHere();
2523   return NULL;
2524 }
2525 
2526 //------------------------------meet-------------------------------------------
2527 // Compute the MEET of two types.  It returns a new Type object.
2528 const Type *TypeVect::xmeet( const Type *t ) const {
2529   // Perform a fast test for common case; meeting the same types together.
2530   if( this == t ) return this;  // Meeting same type-rep?
2531 
2532   // Current "this->_base" is Vector
2533   switch (t->base()) {          // switch on original type
2534 
2535   case Bottom:                  // Ye Olde Default
2536     return t;
2537 
2538   default:                      // All else is a mistake
2539     typerr(t);
2540 
2541   case VectorS:
2542   case VectorD:
2543   case VectorX:
2544   case VectorY:
2545   case VectorZ: {                // Meeting 2 vectors?
2546     const TypeVect* v = t->is_vect();
2547     assert(  base() == v->base(), "");
2548     assert(length() == v->length(), "");
2549     assert(element_basic_type() == v->element_basic_type(), "");
2550     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2551   }
2552   case Top:
2553     break;
2554   }
2555   return this;
2556 }
2557 
2558 //------------------------------xdual------------------------------------------
2559 // Dual: compute field-by-field dual
2560 const Type *TypeVect::xdual() const {
2561   return new TypeVect(base(), _elem->dual(), _length);
2562 }
2563 
2564 //------------------------------eq---------------------------------------------
2565 // Structural equality check for Type representations
2566 bool TypeVect::eq(const Type *t) const {
2567   const TypeVect *v = t->is_vect();
2568   return (_elem == v->_elem) && (_length == v->_length);
2569 }
2570 
2571 //------------------------------hash-------------------------------------------
2572 // Type-specific hashing function.
2573 int TypeVect::hash(void) const {
2574   return (intptr_t)_elem + (intptr_t)_length;
2575 }
2576 
2577 //------------------------------singleton--------------------------------------
2578 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2579 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2580 // constant value (when vector is created with Replicate code).
2581 bool TypeVect::singleton(void) const {
2582 // There is no Con node for vectors yet.
2583 //  return _elem->singleton();
2584   return false;
2585 }
2586 
2587 bool TypeVect::empty(void) const {
2588   return _elem->empty();
2589 }
2590 
2591 //------------------------------dump2------------------------------------------
2592 #ifndef PRODUCT
2593 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2594   switch (base()) {
2595   case VectorS:
2596     st->print("vectors["); break;
2597   case VectorD:
2598     st->print("vectord["); break;
2599   case VectorX:
2600     st->print("vectorx["); break;
2601   case VectorY:
2602     st->print("vectory["); break;
2603   case VectorZ:
2604     st->print("vectorz["); break;
2605   default:
2606     ShouldNotReachHere();
2607   }
2608   st->print("%d]:{", _length);
2609   _elem->dump2(d, depth, st);
2610   st->print("}");
2611 }
2612 #endif
2613 
2614 
2615 //=============================================================================
2616 // Convenience common pre-built types.
2617 const TypePtr *TypePtr::NULL_PTR;
2618 const TypePtr *TypePtr::NOTNULL;
2619 const TypePtr *TypePtr::BOTTOM;
2620 
2621 //------------------------------meet-------------------------------------------
2622 // Meet over the PTR enum
2623 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2624   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2625   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2626   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2627   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2628   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2629   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2630   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2631 };
2632 
2633 //------------------------------make-------------------------------------------
2634 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2635   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2636 }
2637 
2638 //------------------------------cast_to_ptr_type-------------------------------
2639 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2640   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2641   if( ptr == _ptr ) return this;
2642   return make(_base, ptr, _offset, _speculative, _inline_depth);
2643 }
2644 
2645 //------------------------------get_con----------------------------------------
2646 intptr_t TypePtr::get_con() const {
2647   assert( _ptr == Null, "" );
2648   return offset();
2649 }
2650 
2651 //------------------------------meet-------------------------------------------
2652 // Compute the MEET of two types.  It returns a new Type object.
2653 const Type *TypePtr::xmeet(const Type *t) const {
2654   const Type* res = xmeet_helper(t);
2655   if (res->isa_ptr() == NULL) {
2656     return res;
2657   }
2658 
2659   const TypePtr* res_ptr = res->is_ptr();
2660   if (res_ptr->speculative() != NULL) {
2661     // type->speculative() == NULL means that speculation is no better
2662     // than type, i.e. type->speculative() == type. So there are 2
2663     // ways to represent the fact that we have no useful speculative
2664     // data and we should use a single one to be able to test for
2665     // equality between types. Check whether type->speculative() ==
2666     // type and set speculative to NULL if it is the case.
2667     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2668       return res_ptr->remove_speculative();
2669     }
2670   }
2671 
2672   return res;
2673 }
2674 
2675 const Type *TypePtr::xmeet_helper(const Type *t) const {
2676   // Perform a fast test for common case; meeting the same types together.
2677   if( this == t ) return this;  // Meeting same type-rep?
2678 
2679   // Current "this->_base" is AnyPtr
2680   switch (t->base()) {          // switch on original type
2681   case Int:                     // Mixing ints & oops happens when javac
2682   case Long:                    // reuses local variables
2683   case FloatTop:
2684   case FloatCon:
2685   case FloatBot:
2686   case DoubleTop:
2687   case DoubleCon:
2688   case DoubleBot:
2689   case NarrowOop:
2690   case NarrowKlass:
2691   case Bottom:                  // Ye Olde Default
2692     return Type::BOTTOM;
2693   case Top:
2694     return this;
2695 
2696   case AnyPtr: {                // Meeting to AnyPtrs
2697     const TypePtr *tp = t->is_ptr();
2698     const TypePtr* speculative = xmeet_speculative(tp);
2699     int depth = meet_inline_depth(tp->inline_depth());
2700     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2701   }
2702   case RawPtr:                  // For these, flip the call around to cut down
2703   case OopPtr:
2704   case InstPtr:                 // on the cases I have to handle.
2705   case AryPtr:
2706   case MetadataPtr:
2707   case KlassPtr:
2708     return t->xmeet(this);      // Call in reverse direction
2709   default:                      // All else is a mistake
2710     typerr(t);
2711 
2712   }
2713   return this;
2714 }
2715 
2716 //------------------------------meet_offset------------------------------------
2717 Type::Offset TypePtr::meet_offset(int offset) const {
2718   return _offset.meet(Offset(offset));
2719 }
2720 
2721 //------------------------------dual_offset------------------------------------
2722 Type::Offset TypePtr::dual_offset() const {
2723   return _offset.dual();
2724 }
2725 
2726 //------------------------------xdual------------------------------------------
2727 // Dual: compute field-by-field dual
2728 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2729   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2730 };
2731 const Type *TypePtr::xdual() const {
2732   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2733 }
2734 
2735 //------------------------------xadd_offset------------------------------------
2736 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2737   return _offset.add(offset);
2738 }
2739 
2740 //------------------------------add_offset-------------------------------------
2741 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2742   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2743 }
2744 
2745 //------------------------------eq---------------------------------------------
2746 // Structural equality check for Type representations
2747 bool TypePtr::eq( const Type *t ) const {
2748   const TypePtr *a = (const TypePtr*)t;
2749   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2750 }
2751 
2752 //------------------------------hash-------------------------------------------
2753 // Type-specific hashing function.
2754 int TypePtr::hash(void) const {
2755   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2756 ;
2757 }
2758 
2759 /**
2760  * Return same type without a speculative part
2761  */
2762 const Type* TypePtr::remove_speculative() const {
2763   if (_speculative == NULL) {
2764     return this;
2765   }
2766   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2767   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2768 }
2769 
2770 /**
2771  * Return same type but drop speculative part if we know we won't use
2772  * it
2773  */
2774 const Type* TypePtr::cleanup_speculative() const {
2775   if (speculative() == NULL) {
2776     return this;
2777   }
2778   const Type* no_spec = remove_speculative();
2779   // If this is NULL_PTR then we don't need the speculative type
2780   // (with_inline_depth in case the current type inline depth is
2781   // InlineDepthTop)
2782   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2783     return no_spec;
2784   }
2785   if (above_centerline(speculative()->ptr())) {
2786     return no_spec;
2787   }
2788   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2789   // If the speculative may be null and is an inexact klass then it
2790   // doesn't help
2791   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2792       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2793     return no_spec;
2794   }
2795   return this;
2796 }
2797 
2798 /**
2799  * dual of the speculative part of the type
2800  */
2801 const TypePtr* TypePtr::dual_speculative() const {
2802   if (_speculative == NULL) {
2803     return NULL;
2804   }
2805   return _speculative->dual()->is_ptr();
2806 }
2807 
2808 /**
2809  * meet of the speculative parts of 2 types
2810  *
2811  * @param other  type to meet with
2812  */
2813 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2814   bool this_has_spec = (_speculative != NULL);
2815   bool other_has_spec = (other->speculative() != NULL);
2816 
2817   if (!this_has_spec && !other_has_spec) {
2818     return NULL;
2819   }
2820 
2821   // If we are at a point where control flow meets and one branch has
2822   // a speculative type and the other has not, we meet the speculative
2823   // type of one branch with the actual type of the other. If the
2824   // actual type is exact and the speculative is as well, then the
2825   // result is a speculative type which is exact and we can continue
2826   // speculation further.
2827   const TypePtr* this_spec = _speculative;
2828   const TypePtr* other_spec = other->speculative();
2829 
2830   if (!this_has_spec) {
2831     this_spec = this;
2832   }
2833 
2834   if (!other_has_spec) {
2835     other_spec = other;
2836   }
2837 
2838   return this_spec->meet(other_spec)->is_ptr();
2839 }
2840 
2841 /**
2842  * dual of the inline depth for this type (used for speculation)
2843  */
2844 int TypePtr::dual_inline_depth() const {
2845   return -inline_depth();
2846 }
2847 
2848 /**
2849  * meet of 2 inline depths (used for speculation)
2850  *
2851  * @param depth  depth to meet with
2852  */
2853 int TypePtr::meet_inline_depth(int depth) const {
2854   return MAX2(inline_depth(), depth);
2855 }
2856 
2857 /**
2858  * Are the speculative parts of 2 types equal?
2859  *
2860  * @param other  type to compare this one to
2861  */
2862 bool TypePtr::eq_speculative(const TypePtr* other) const {
2863   if (_speculative == NULL || other->speculative() == NULL) {
2864     return _speculative == other->speculative();
2865   }
2866 
2867   if (_speculative->base() != other->speculative()->base()) {
2868     return false;
2869   }
2870 
2871   return _speculative->eq(other->speculative());
2872 }
2873 
2874 /**
2875  * Hash of the speculative part of the type
2876  */
2877 int TypePtr::hash_speculative() const {
2878   if (_speculative == NULL) {
2879     return 0;
2880   }
2881 
2882   return _speculative->hash();
2883 }
2884 
2885 /**
2886  * add offset to the speculative part of the type
2887  *
2888  * @param offset  offset to add
2889  */
2890 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2891   if (_speculative == NULL) {
2892     return NULL;
2893   }
2894   return _speculative->add_offset(offset)->is_ptr();
2895 }
2896 
2897 /**
2898  * return exact klass from the speculative type if there's one
2899  */
2900 ciKlass* TypePtr::speculative_type() const {
2901   if (_speculative != NULL && _speculative->isa_oopptr()) {
2902     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2903     if (speculative->klass_is_exact()) {
2904       return speculative->klass();
2905     }
2906   }
2907   return NULL;
2908 }
2909 
2910 /**
2911  * return true if speculative type may be null
2912  */
2913 bool TypePtr::speculative_maybe_null() const {
2914   if (_speculative != NULL) {
2915     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2916     return speculative->maybe_null();
2917   }
2918   return true;
2919 }
2920 
2921 bool TypePtr::speculative_always_null() const {
2922   if (_speculative != NULL) {
2923     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2924     return speculative == TypePtr::NULL_PTR;
2925   }
2926   return false;
2927 }
2928 
2929 /**
2930  * Same as TypePtr::speculative_type() but return the klass only if
2931  * the speculative tells us is not null
2932  */
2933 ciKlass* TypePtr::speculative_type_not_null() const {
2934   if (speculative_maybe_null()) {
2935     return NULL;
2936   }
2937   return speculative_type();
2938 }
2939 
2940 /**
2941  * Check whether new profiling would improve speculative type
2942  *
2943  * @param   exact_kls    class from profiling
2944  * @param   inline_depth inlining depth of profile point
2945  *
2946  * @return  true if type profile is valuable
2947  */
2948 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2949   // no profiling?
2950   if (exact_kls == NULL) {
2951     return false;
2952   }
2953   if (speculative() == TypePtr::NULL_PTR) {
2954     return false;
2955   }
2956   // no speculative type or non exact speculative type?
2957   if (speculative_type() == NULL) {
2958     return true;
2959   }
2960   // If the node already has an exact speculative type keep it,
2961   // unless it was provided by profiling that is at a deeper
2962   // inlining level. Profiling at a higher inlining depth is
2963   // expected to be less accurate.
2964   if (_speculative->inline_depth() == InlineDepthBottom) {
2965     return false;
2966   }
2967   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2968   return inline_depth < _speculative->inline_depth();
2969 }
2970 
2971 /**
2972  * Check whether new profiling would improve ptr (= tells us it is non
2973  * null)
2974  *
2975  * @param   ptr_kind always null or not null?
2976  *
2977  * @return  true if ptr profile is valuable
2978  */
2979 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2980   // profiling doesn't tell us anything useful
2981   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2982     return false;
2983   }
2984   // We already know this is not null
2985   if (!this->maybe_null()) {
2986     return false;
2987   }
2988   // We already know the speculative type cannot be null
2989   if (!speculative_maybe_null()) {
2990     return false;
2991   }
2992   // We already know this is always null
2993   if (this == TypePtr::NULL_PTR) {
2994     return false;
2995   }
2996   // We already know the speculative type is always null
2997   if (speculative_always_null()) {
2998     return false;
2999   }
3000   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
3001     return false;
3002   }
3003   return true;
3004 }
3005 
3006 //------------------------------dump2------------------------------------------
3007 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3008   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
3009 };
3010 
3011 #ifndef PRODUCT
3012 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3013   if( _ptr == Null ) st->print("NULL");
3014   else st->print("%s *", ptr_msg[_ptr]);
3015   _offset.dump2(st);
3016   dump_inline_depth(st);
3017   dump_speculative(st);
3018 }
3019 
3020 /**
3021  *dump the speculative part of the type
3022  */
3023 void TypePtr::dump_speculative(outputStream *st) const {
3024   if (_speculative != NULL) {
3025     st->print(" (speculative=");
3026     _speculative->dump_on(st);
3027     st->print(")");
3028   }
3029 }
3030 
3031 /**
3032  *dump the inline depth of the type
3033  */
3034 void TypePtr::dump_inline_depth(outputStream *st) const {
3035   if (_inline_depth != InlineDepthBottom) {
3036     if (_inline_depth == InlineDepthTop) {
3037       st->print(" (inline_depth=InlineDepthTop)");
3038     } else {
3039       st->print(" (inline_depth=%d)", _inline_depth);
3040     }
3041   }
3042 }
3043 #endif
3044 
3045 //------------------------------singleton--------------------------------------
3046 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3047 // constants
3048 bool TypePtr::singleton(void) const {
3049   // TopPTR, Null, AnyNull, Constant are all singletons
3050   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3051 }
3052 
3053 bool TypePtr::empty(void) const {
3054   return (_offset == Offset::top) || above_centerline(_ptr);
3055 }
3056 
3057 //=============================================================================
3058 // Convenience common pre-built types.
3059 const TypeRawPtr *TypeRawPtr::BOTTOM;
3060 const TypeRawPtr *TypeRawPtr::NOTNULL;
3061 
3062 //------------------------------make-------------------------------------------
3063 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3064   assert( ptr != Constant, "what is the constant?" );
3065   assert( ptr != Null, "Use TypePtr for NULL" );
3066   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3067 }
3068 
3069 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3070   assert( bits, "Use TypePtr for NULL" );
3071   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3072 }
3073 
3074 //------------------------------cast_to_ptr_type-------------------------------
3075 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3076   assert( ptr != Constant, "what is the constant?" );
3077   assert( ptr != Null, "Use TypePtr for NULL" );
3078   assert( _bits==0, "Why cast a constant address?");
3079   if( ptr == _ptr ) return this;
3080   return make(ptr);
3081 }
3082 
3083 //------------------------------get_con----------------------------------------
3084 intptr_t TypeRawPtr::get_con() const {
3085   assert( _ptr == Null || _ptr == Constant, "" );
3086   return (intptr_t)_bits;
3087 }
3088 
3089 //------------------------------meet-------------------------------------------
3090 // Compute the MEET of two types.  It returns a new Type object.
3091 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3092   // Perform a fast test for common case; meeting the same types together.
3093   if( this == t ) return this;  // Meeting same type-rep?
3094 
3095   // Current "this->_base" is RawPtr
3096   switch( t->base() ) {         // switch on original type
3097   case Bottom:                  // Ye Olde Default
3098     return t;
3099   case Top:
3100     return this;
3101   case AnyPtr:                  // Meeting to AnyPtrs
3102     break;
3103   case RawPtr: {                // might be top, bot, any/not or constant
3104     enum PTR tptr = t->is_ptr()->ptr();
3105     enum PTR ptr = meet_ptr( tptr );
3106     if( ptr == Constant ) {     // Cannot be equal constants, so...
3107       if( tptr == Constant && _ptr != Constant)  return t;
3108       if( _ptr == Constant && tptr != Constant)  return this;
3109       ptr = NotNull;            // Fall down in lattice
3110     }
3111     return make( ptr );
3112   }
3113 
3114   case OopPtr:
3115   case InstPtr:
3116   case AryPtr:
3117   case MetadataPtr:
3118   case KlassPtr:
3119     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3120   default:                      // All else is a mistake
3121     typerr(t);
3122   }
3123 
3124   // Found an AnyPtr type vs self-RawPtr type
3125   const TypePtr *tp = t->is_ptr();
3126   switch (tp->ptr()) {
3127   case TypePtr::TopPTR:  return this;
3128   case TypePtr::BotPTR:  return t;
3129   case TypePtr::Null:
3130     if( _ptr == TypePtr::TopPTR ) return t;
3131     return TypeRawPtr::BOTTOM;
3132   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3133   case TypePtr::AnyNull:
3134     if( _ptr == TypePtr::Constant) return this;
3135     return make( meet_ptr(TypePtr::AnyNull) );
3136   default: ShouldNotReachHere();
3137   }
3138   return this;
3139 }
3140 
3141 //------------------------------xdual------------------------------------------
3142 // Dual: compute field-by-field dual
3143 const Type *TypeRawPtr::xdual() const {
3144   return new TypeRawPtr( dual_ptr(), _bits );
3145 }
3146 
3147 //------------------------------add_offset-------------------------------------
3148 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3149   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3150   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3151   if( offset == 0 ) return this; // No change
3152   switch (_ptr) {
3153   case TypePtr::TopPTR:
3154   case TypePtr::BotPTR:
3155   case TypePtr::NotNull:
3156     return this;
3157   case TypePtr::Null:
3158   case TypePtr::Constant: {
3159     address bits = _bits+offset;
3160     if ( bits == 0 ) return TypePtr::NULL_PTR;
3161     return make( bits );
3162   }
3163   default:  ShouldNotReachHere();
3164   }
3165   return NULL;                  // Lint noise
3166 }
3167 
3168 //------------------------------eq---------------------------------------------
3169 // Structural equality check for Type representations
3170 bool TypeRawPtr::eq( const Type *t ) const {
3171   const TypeRawPtr *a = (const TypeRawPtr*)t;
3172   return _bits == a->_bits && TypePtr::eq(t);
3173 }
3174 
3175 //------------------------------hash-------------------------------------------
3176 // Type-specific hashing function.
3177 int TypeRawPtr::hash(void) const {
3178   return (intptr_t)_bits + TypePtr::hash();
3179 }
3180 
3181 //------------------------------dump2------------------------------------------
3182 #ifndef PRODUCT
3183 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3184   if( _ptr == Constant )
3185     st->print(INTPTR_FORMAT, p2i(_bits));
3186   else
3187     st->print("rawptr:%s", ptr_msg[_ptr]);
3188 }
3189 #endif
3190 
3191 //=============================================================================
3192 // Convenience common pre-built type.
3193 const TypeOopPtr *TypeOopPtr::BOTTOM;
3194 
3195 //------------------------------TypeOopPtr-------------------------------------
3196 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3197                        int instance_id, const TypePtr* speculative, int inline_depth)
3198   : TypePtr(t, ptr, offset, speculative, inline_depth),
3199     _const_oop(o), _klass(k),
3200     _klass_is_exact(xk),
3201     _is_ptr_to_narrowoop(false),
3202     _is_ptr_to_narrowklass(false),
3203     _is_ptr_to_boxed_value(false),
3204     _instance_id(instance_id) {
3205   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3206       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3207     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3208   }
3209 #ifdef _LP64
3210   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3211     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3212       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3213     } else if (klass() == NULL) {
3214       // Array with unknown body type
3215       assert(this->isa_aryptr(), "only arrays without klass");
3216       _is_ptr_to_narrowoop = UseCompressedOops;
3217     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3218       if (klass()->is_obj_array_klass()) {
3219         _is_ptr_to_narrowoop = true;
3220       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3221         // Check if the field of the value type array element contains oops
3222         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3223         int foffset = field_offset.get() + vk->first_field_offset();
3224         ciField* field = vk->get_field_by_offset(foffset, false);
3225         assert(field != NULL, "missing field");
3226         BasicType bt = field->layout_type();
3227         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3228       }
3229     } else if (klass()->is_instance_klass()) {
3230       if (this->isa_klassptr()) {
3231         // Perm objects don't use compressed references
3232       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3233         // unsafe access
3234         _is_ptr_to_narrowoop = UseCompressedOops;
3235       } else { // exclude unsafe ops
3236         assert(this->isa_instptr(), "must be an instance ptr.");
3237         if (klass() == ciEnv::current()->Class_klass() &&
3238             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3239              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3240           // Special hidden fields from the Class.
3241           assert(this->isa_instptr(), "must be an instance ptr.");
3242           _is_ptr_to_narrowoop = false;
3243         } else if (klass() == ciEnv::current()->Class_klass() &&
3244                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3245           // Static fields
3246           assert(o != NULL, "must be constant");
3247           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3248           BasicType basic_elem_type;
3249           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3250             // Special hidden field that contains the oop of the default value type
3251             basic_elem_type = T_VALUETYPE;
3252           } else {
3253             ciField* field = ik->get_field_by_offset(this->offset(), true);
3254             assert(field != NULL, "missing field");
3255             basic_elem_type = field->layout_type();
3256           }
3257           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3258                                                        basic_elem_type == T_VALUETYPE ||
3259                                                        basic_elem_type == T_ARRAY);
3260         } else {
3261           // Instance fields which contains a compressed oop references.
3262           ciInstanceKlass* ik = klass()->as_instance_klass();
3263           ciField* field = ik->get_field_by_offset(this->offset(), false);
3264           if (field != NULL) {
3265             BasicType basic_elem_type = field->layout_type();
3266             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3267                                                          basic_elem_type == T_VALUETYPE ||
3268                                                          basic_elem_type == T_ARRAY);
3269           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3270             // Compile::find_alias_type() cast exactness on all types to verify
3271             // that it does not affect alias type.
3272             _is_ptr_to_narrowoop = UseCompressedOops;
3273           } else {
3274             // Type for the copy start in LibraryCallKit::inline_native_clone().
3275             _is_ptr_to_narrowoop = UseCompressedOops;
3276           }
3277         }
3278       }
3279     }
3280   }
3281 #endif
3282 }
3283 
3284 //------------------------------make-------------------------------------------
3285 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3286                                    const TypePtr* speculative, int inline_depth) {
3287   assert(ptr != Constant, "no constant generic pointers");
3288   ciKlass*  k = Compile::current()->env()->Object_klass();
3289   bool      xk = false;
3290   ciObject* o = NULL;
3291   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3292 }
3293 
3294 
3295 //------------------------------cast_to_ptr_type-------------------------------
3296 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3297   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3298   if( ptr == _ptr ) return this;
3299   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3300 }
3301 
3302 //-----------------------------cast_to_instance_id----------------------------
3303 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3304   // There are no instances of a general oop.
3305   // Return self unchanged.
3306   return this;
3307 }
3308 
3309 const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const {
3310   return this;
3311 }
3312 
3313 //-----------------------------cast_to_exactness-------------------------------
3314 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3315   // There is no such thing as an exact general oop.
3316   // Return self unchanged.
3317   return this;
3318 }
3319 
3320 
3321 //------------------------------as_klass_type----------------------------------
3322 // Return the klass type corresponding to this instance or array type.
3323 // It is the type that is loaded from an object of this type.
3324 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3325   ciKlass* k = klass();
3326   bool    xk = klass_is_exact();
3327   if (k == NULL)
3328     return TypeKlassPtr::OBJECT;
3329   else
3330     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3331 }
3332 
3333 //------------------------------meet-------------------------------------------
3334 // Compute the MEET of two types.  It returns a new Type object.
3335 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3336   // Perform a fast test for common case; meeting the same types together.
3337   if( this == t ) return this;  // Meeting same type-rep?
3338 
3339   // Current "this->_base" is OopPtr
3340   switch (t->base()) {          // switch on original type
3341 
3342   case Int:                     // Mixing ints & oops happens when javac
3343   case Long:                    // reuses local variables
3344   case FloatTop:
3345   case FloatCon:
3346   case FloatBot:
3347   case DoubleTop:
3348   case DoubleCon:
3349   case DoubleBot:
3350   case NarrowOop:
3351   case NarrowKlass:
3352   case Bottom:                  // Ye Olde Default
3353     return Type::BOTTOM;
3354   case Top:
3355     return this;
3356 
3357   default:                      // All else is a mistake
3358     typerr(t);
3359 
3360   case RawPtr:
3361   case MetadataPtr:
3362   case KlassPtr:
3363     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3364 
3365   case AnyPtr: {
3366     // Found an AnyPtr type vs self-OopPtr type
3367     const TypePtr *tp = t->is_ptr();
3368     Offset offset = meet_offset(tp->offset());
3369     PTR ptr = meet_ptr(tp->ptr());
3370     const TypePtr* speculative = xmeet_speculative(tp);
3371     int depth = meet_inline_depth(tp->inline_depth());
3372     switch (tp->ptr()) {
3373     case Null:
3374       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3375       // else fall through:
3376     case TopPTR:
3377     case AnyNull: {
3378       int instance_id = meet_instance_id(InstanceTop);
3379       return make(ptr, offset, instance_id, speculative, depth);
3380     }
3381     case BotPTR:
3382     case NotNull:
3383       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3384     default: typerr(t);
3385     }
3386   }
3387 
3388   case OopPtr: {                 // Meeting to other OopPtrs
3389     const TypeOopPtr *tp = t->is_oopptr();
3390     int instance_id = meet_instance_id(tp->instance_id());
3391     const TypePtr* speculative = xmeet_speculative(tp);
3392     int depth = meet_inline_depth(tp->inline_depth());
3393     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3394   }
3395 
3396   case InstPtr:                  // For these, flip the call around to cut down
3397   case AryPtr:
3398     return t->xmeet(this);      // Call in reverse direction
3399 
3400   } // End of switch
3401   return this;                  // Return the double constant
3402 }
3403 
3404 
3405 //------------------------------xdual------------------------------------------
3406 // Dual of a pure heap pointer.  No relevant klass or oop information.
3407 const Type *TypeOopPtr::xdual() const {
3408   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3409   assert(const_oop() == NULL,             "no constants here");
3410   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3411 }
3412 
3413 //--------------------------make_from_klass_common-----------------------------
3414 // Computes the element-type given a klass.
3415 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3416   if (klass->is_instance_klass() || klass->is_valuetype()) {
3417     Compile* C = Compile::current();
3418     Dependencies* deps = C->dependencies();
3419     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3420     // Element is an instance
3421     bool klass_is_exact = false;
3422     if (klass->is_loaded()) {
3423       // Try to set klass_is_exact.
3424       ciInstanceKlass* ik = klass->as_instance_klass();
3425       klass_is_exact = ik->is_final();
3426       if (!klass_is_exact && klass_change
3427           && deps != NULL && UseUniqueSubclasses) {
3428         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3429         if (sub != NULL) {
3430           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3431           klass = ik = sub;
3432           klass_is_exact = sub->is_final();
3433         }
3434       }
3435       if (!klass_is_exact && try_for_exact
3436           && deps != NULL && UseExactTypes) {
3437         if (!ik->is_interface() && !ik->has_subklass()) {
3438           // Add a dependence; if concrete subclass added we need to recompile
3439           deps->assert_leaf_type(ik);
3440           klass_is_exact = true;
3441         }
3442       }
3443     }
3444     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3445   } else if (klass->is_obj_array_klass()) {
3446     // Element is an object or value array. Recursively call ourself.
3447     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3448     bool null_free = klass->is_loaded() && klass->as_array_klass()->storage_properties().is_null_free();
3449     if (null_free && etype->is_valuetypeptr()) {
3450       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3451     }
3452     bool xk = etype->klass_is_exact();
3453     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3454     // We used to pass NotNull in here, asserting that the sub-arrays
3455     // are all not-null.  This is not true in generally, as code can
3456     // slam NULLs down in the subarrays.
3457     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3458     return arr;
3459   } else if (klass->is_type_array_klass()) {
3460     // Element is an typeArray
3461     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3462     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3463     // We used to pass NotNull in here, asserting that the array pointer
3464     // is not-null. That was not true in general.
3465     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3466     return arr;
3467   } else if (klass->is_value_array_klass()) {
3468     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3469     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3470     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3471     return arr;
3472   } else {
3473     ShouldNotReachHere();
3474     return NULL;
3475   }
3476 }
3477 
3478 //------------------------------make_from_constant-----------------------------
3479 // Make a java pointer from an oop constant
3480 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3481   assert(!o->is_null_object(), "null object not yet handled here.");
3482 
3483   const bool make_constant = require_constant || o->should_be_constant();
3484 
3485   ciKlass* klass = o->klass();
3486   if (klass->is_instance_klass() || klass->is_valuetype()) {
3487     // Element is an instance or value type
3488     if (make_constant) {
3489       return TypeInstPtr::make(o);
3490     } else {
3491       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3492     }
3493   } else if (klass->is_obj_array_klass()) {
3494     // Element is an object array. Recursively call ourself.
3495     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3496     bool null_free = klass->is_loaded() && klass->as_array_klass()->storage_properties().is_null_free();
3497     if (null_free && etype->is_valuetypeptr()) {
3498       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3499     }
3500     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3501     // We used to pass NotNull in here, asserting that the sub-arrays
3502     // are all not-null.  This is not true in generally, as code can
3503     // slam NULLs down in the subarrays.
3504     if (make_constant) {
3505       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3506     } else {
3507       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3508     }
3509   } else if (klass->is_type_array_klass()) {
3510     // Element is an typeArray
3511     const Type* etype =
3512       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3513     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3514     // We used to pass NotNull in here, asserting that the array pointer
3515     // is not-null. That was not true in general.
3516     if (make_constant) {
3517       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3518     } else {
3519       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3520     }
3521   } else if (klass->is_value_array_klass()) {
3522     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3523     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3524     // We used to pass NotNull in here, asserting that the sub-arrays
3525     // are all not-null.  This is not true in generally, as code can
3526     // slam NULLs down in the subarrays.
3527     if (make_constant) {
3528       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3529     } else {
3530       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3531     }
3532   }
3533 
3534   fatal("unhandled object type");
3535   return NULL;
3536 }
3537 
3538 //------------------------------get_con----------------------------------------
3539 intptr_t TypeOopPtr::get_con() const {
3540   assert( _ptr == Null || _ptr == Constant, "" );
3541   assert(offset() >= 0, "");
3542 
3543   if (offset() != 0) {
3544     // After being ported to the compiler interface, the compiler no longer
3545     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3546     // to a handle at compile time.  This handle is embedded in the generated
3547     // code and dereferenced at the time the nmethod is made.  Until that time,
3548     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3549     // have access to the addresses!).  This does not seem to currently happen,
3550     // but this assertion here is to help prevent its occurence.
3551     tty->print_cr("Found oop constant with non-zero offset");
3552     ShouldNotReachHere();
3553   }
3554 
3555   return (intptr_t)const_oop()->constant_encoding();
3556 }
3557 
3558 
3559 //-----------------------------filter------------------------------------------
3560 // Do not allow interface-vs.-noninterface joins to collapse to top.
3561 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3562 
3563   const Type* ft = join_helper(kills, include_speculative);
3564   const TypeInstPtr* ftip = ft->isa_instptr();
3565   const TypeInstPtr* ktip = kills->isa_instptr();
3566 
3567   if (ft->empty()) {
3568     // Check for evil case of 'this' being a class and 'kills' expecting an
3569     // interface.  This can happen because the bytecodes do not contain
3570     // enough type info to distinguish a Java-level interface variable
3571     // from a Java-level object variable.  If we meet 2 classes which
3572     // both implement interface I, but their meet is at 'j/l/O' which
3573     // doesn't implement I, we have no way to tell if the result should
3574     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3575     // into a Phi which "knows" it's an Interface type we'll have to
3576     // uplift the type.
3577     if (!empty()) {
3578       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3579         return kills;           // Uplift to interface
3580       }
3581       // Also check for evil cases of 'this' being a class array
3582       // and 'kills' expecting an array of interfaces.
3583       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3584       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3585         return kills;           // Uplift to array of interface
3586       }
3587     }
3588 
3589     return Type::TOP;           // Canonical empty value
3590   }
3591 
3592   // If we have an interface-typed Phi or cast and we narrow to a class type,
3593   // the join should report back the class.  However, if we have a J/L/Object
3594   // class-typed Phi and an interface flows in, it's possible that the meet &
3595   // join report an interface back out.  This isn't possible but happens
3596   // because the type system doesn't interact well with interfaces.
3597   if (ftip != NULL && ktip != NULL &&
3598       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3599       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3600     assert(!ftip->klass_is_exact(), "interface could not be exact");
3601     return ktip->cast_to_ptr_type(ftip->ptr());
3602   }
3603 
3604   return ft;
3605 }
3606 
3607 //------------------------------eq---------------------------------------------
3608 // Structural equality check for Type representations
3609 bool TypeOopPtr::eq( const Type *t ) const {
3610   const TypeOopPtr *a = (const TypeOopPtr*)t;
3611   if (_klass_is_exact != a->_klass_is_exact ||
3612       _instance_id != a->_instance_id)  return false;
3613   ciObject* one = const_oop();
3614   ciObject* two = a->const_oop();
3615   if (one == NULL || two == NULL) {
3616     return (one == two) && TypePtr::eq(t);
3617   } else {
3618     return one->equals(two) && TypePtr::eq(t);
3619   }
3620 }
3621 
3622 //------------------------------hash-------------------------------------------
3623 // Type-specific hashing function.
3624 int TypeOopPtr::hash(void) const {
3625   return
3626     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3627              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3628 }
3629 
3630 //------------------------------dump2------------------------------------------
3631 #ifndef PRODUCT
3632 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3633   st->print("oopptr:%s", ptr_msg[_ptr]);
3634   if( _klass_is_exact ) st->print(":exact");
3635   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3636   _offset.dump2(st);
3637   if (_instance_id == InstanceTop)
3638     st->print(",iid=top");
3639   else if (_instance_id != InstanceBot)
3640     st->print(",iid=%d",_instance_id);
3641 
3642   dump_inline_depth(st);
3643   dump_speculative(st);
3644 }
3645 #endif
3646 
3647 //------------------------------singleton--------------------------------------
3648 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3649 // constants
3650 bool TypeOopPtr::singleton(void) const {
3651   // detune optimizer to not generate constant oop + constant offset as a constant!
3652   // TopPTR, Null, AnyNull, Constant are all singletons
3653   return (offset() == 0) && !below_centerline(_ptr);
3654 }
3655 
3656 //------------------------------add_offset-------------------------------------
3657 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3658   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3659 }
3660 
3661 /**
3662  * Return same type without a speculative part
3663  */
3664 const Type* TypeOopPtr::remove_speculative() const {
3665   if (_speculative == NULL) {
3666     return this;
3667   }
3668   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3669   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3670 }
3671 
3672 /**
3673  * Return same type but drop speculative part if we know we won't use
3674  * it
3675  */
3676 const Type* TypeOopPtr::cleanup_speculative() const {
3677   // If the klass is exact and the ptr is not null then there's
3678   // nothing that the speculative type can help us with
3679   if (klass_is_exact() && !maybe_null()) {
3680     return remove_speculative();
3681   }
3682   return TypePtr::cleanup_speculative();
3683 }
3684 
3685 /**
3686  * Return same type but with a different inline depth (used for speculation)
3687  *
3688  * @param depth  depth to meet with
3689  */
3690 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3691   if (!UseInlineDepthForSpeculativeTypes) {
3692     return this;
3693   }
3694   return make(_ptr, _offset, _instance_id, _speculative, depth);
3695 }
3696 
3697 //------------------------------with_instance_id--------------------------------
3698 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3699   assert(_instance_id != -1, "should be known");
3700   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3701 }
3702 
3703 //------------------------------meet_instance_id--------------------------------
3704 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3705   // Either is 'TOP' instance?  Return the other instance!
3706   if( _instance_id == InstanceTop ) return  instance_id;
3707   if(  instance_id == InstanceTop ) return _instance_id;
3708   // If either is different, return 'BOTTOM' instance
3709   if( _instance_id != instance_id ) return InstanceBot;
3710   return _instance_id;
3711 }
3712 
3713 //------------------------------dual_instance_id--------------------------------
3714 int TypeOopPtr::dual_instance_id( ) const {
3715   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3716   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3717   return _instance_id;              // Map everything else into self
3718 }
3719 
3720 /**
3721  * Check whether new profiling would improve speculative type
3722  *
3723  * @param   exact_kls    class from profiling
3724  * @param   inline_depth inlining depth of profile point
3725  *
3726  * @return  true if type profile is valuable
3727  */
3728 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3729   // no way to improve an already exact type
3730   if (klass_is_exact()) {
3731     return false;
3732   }
3733   return TypePtr::would_improve_type(exact_kls, inline_depth);
3734 }
3735 
3736 //=============================================================================
3737 // Convenience common pre-built types.
3738 const TypeInstPtr *TypeInstPtr::NOTNULL;
3739 const TypeInstPtr *TypeInstPtr::BOTTOM;
3740 const TypeInstPtr *TypeInstPtr::MIRROR;
3741 const TypeInstPtr *TypeInstPtr::MARK;
3742 const TypeInstPtr *TypeInstPtr::KLASS;
3743 
3744 //------------------------------TypeInstPtr-------------------------------------
3745 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3746                          int instance_id, const TypePtr* speculative, int inline_depth)
3747   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3748     _name(k->name()) {
3749    assert(k != NULL &&
3750           (k->is_loaded() || o == NULL),
3751           "cannot have constants with non-loaded klass");
3752 };
3753 
3754 //------------------------------make-------------------------------------------
3755 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3756                                      ciKlass* k,
3757                                      bool xk,
3758                                      ciObject* o,
3759                                      Offset offset,
3760                                      int instance_id,
3761                                      const TypePtr* speculative,
3762                                      int inline_depth) {
3763   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3764   // Either const_oop() is NULL or else ptr is Constant
3765   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3766           "constant pointers must have a value supplied" );
3767   // Ptr is never Null
3768   assert( ptr != Null, "NULL pointers are not typed" );
3769 
3770   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3771   if (!UseExactTypes)  xk = false;
3772   if (ptr == Constant) {
3773     // Note:  This case includes meta-object constants, such as methods.
3774     xk = true;
3775   } else if (k->is_loaded()) {
3776     ciInstanceKlass* ik = k->as_instance_klass();
3777     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3778     if (xk && ik->is_interface())  xk = false;  // no exact interface
3779   }
3780 
3781   // Now hash this baby
3782   TypeInstPtr *result =
3783     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3784 
3785   return result;
3786 }
3787 
3788 /**
3789  *  Create constant type for a constant boxed value
3790  */
3791 const Type* TypeInstPtr::get_const_boxed_value() const {
3792   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3793   assert((const_oop() != NULL), "should be called only for constant object");
3794   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3795   BasicType bt = constant.basic_type();
3796   switch (bt) {
3797     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3798     case T_INT:      return TypeInt::make(constant.as_int());
3799     case T_CHAR:     return TypeInt::make(constant.as_char());
3800     case T_BYTE:     return TypeInt::make(constant.as_byte());
3801     case T_SHORT:    return TypeInt::make(constant.as_short());
3802     case T_FLOAT:    return TypeF::make(constant.as_float());
3803     case T_DOUBLE:   return TypeD::make(constant.as_double());
3804     case T_LONG:     return TypeLong::make(constant.as_long());
3805     default:         break;
3806   }
3807   fatal("Invalid boxed value type '%s'", type2name(bt));
3808   return NULL;
3809 }
3810 
3811 //------------------------------cast_to_ptr_type-------------------------------
3812 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3813   if( ptr == _ptr ) return this;
3814   // Reconstruct _sig info here since not a problem with later lazy
3815   // construction, _sig will show up on demand.
3816   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3817 }
3818 
3819 
3820 //-----------------------------cast_to_exactness-------------------------------
3821 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3822   if( klass_is_exact == _klass_is_exact ) return this;
3823   if (!UseExactTypes)  return this;
3824   if (!_klass->is_loaded())  return this;
3825   ciInstanceKlass* ik = _klass->as_instance_klass();
3826   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3827   if( ik->is_interface() )              return this;  // cannot set xk
3828   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3829 }
3830 
3831 //-----------------------------cast_to_instance_id----------------------------
3832 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3833   if( instance_id == _instance_id ) return this;
3834   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3835 }
3836 
3837 const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const {
3838   if (const_oop() == NULL) return this;
3839   return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth);
3840 }
3841 
3842 //------------------------------xmeet_unloaded---------------------------------
3843 // Compute the MEET of two InstPtrs when at least one is unloaded.
3844 // Assume classes are different since called after check for same name/class-loader
3845 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3846     Offset off = meet_offset(tinst->offset());
3847     PTR ptr = meet_ptr(tinst->ptr());
3848     int instance_id = meet_instance_id(tinst->instance_id());
3849     const TypePtr* speculative = xmeet_speculative(tinst);
3850     int depth = meet_inline_depth(tinst->inline_depth());
3851 
3852     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3853     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3854     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3855       //
3856       // Meet unloaded class with java/lang/Object
3857       //
3858       // Meet
3859       //          |                     Unloaded Class
3860       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3861       //  ===================================================================
3862       //   TOP    | ..........................Unloaded......................|
3863       //  AnyNull |  U-AN    |................Unloaded......................|
3864       // Constant | ... O-NN .................................. |   O-BOT   |
3865       //  NotNull | ... O-NN .................................. |   O-BOT   |
3866       //  BOTTOM  | ........................Object-BOTTOM ..................|
3867       //
3868       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3869       //
3870       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3871       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3872       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3873       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3874         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3875         else                                      { return TypeInstPtr::NOTNULL; }
3876       }
3877       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3878 
3879       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3880     }
3881 
3882     // Both are unloaded, not the same class, not Object
3883     // Or meet unloaded with a different loaded class, not java/lang/Object
3884     if( ptr != TypePtr::BotPTR ) {
3885       return TypeInstPtr::NOTNULL;
3886     }
3887     return TypeInstPtr::BOTTOM;
3888 }
3889 
3890 
3891 //------------------------------meet-------------------------------------------
3892 // Compute the MEET of two types.  It returns a new Type object.
3893 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3894   // Perform a fast test for common case; meeting the same types together.
3895   if( this == t ) return this;  // Meeting same type-rep?
3896 
3897   // Current "this->_base" is Pointer
3898   switch (t->base()) {          // switch on original type
3899 
3900   case Int:                     // Mixing ints & oops happens when javac
3901   case Long:                    // reuses local variables
3902   case FloatTop:
3903   case FloatCon:
3904   case FloatBot:
3905   case DoubleTop:
3906   case DoubleCon:
3907   case DoubleBot:
3908   case NarrowOop:
3909   case NarrowKlass:
3910   case Bottom:                  // Ye Olde Default
3911     return Type::BOTTOM;
3912   case Top:
3913     return this;
3914 
3915   default:                      // All else is a mistake
3916     typerr(t);
3917 
3918   case MetadataPtr:
3919   case KlassPtr:
3920   case RawPtr: return TypePtr::BOTTOM;
3921 
3922   case AryPtr: {                // All arrays inherit from Object class
3923     const TypeAryPtr *tp = t->is_aryptr();
3924     Offset offset = meet_offset(tp->offset());
3925     PTR ptr = meet_ptr(tp->ptr());
3926     int instance_id = meet_instance_id(tp->instance_id());
3927     const TypePtr* speculative = xmeet_speculative(tp);
3928     int depth = meet_inline_depth(tp->inline_depth());
3929     switch (ptr) {
3930     case TopPTR:
3931     case AnyNull:                // Fall 'down' to dual of object klass
3932       // For instances when a subclass meets a superclass we fall
3933       // below the centerline when the superclass is exact. We need to
3934       // do the same here.
3935       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3936         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3937       } else {
3938         // cannot subclass, so the meet has to fall badly below the centerline
3939         ptr = NotNull;
3940         instance_id = InstanceBot;
3941         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3942       }
3943     case Constant:
3944     case NotNull:
3945     case BotPTR:                // Fall down to object klass
3946       // LCA is object_klass, but if we subclass from the top we can do better
3947       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3948         // If 'this' (InstPtr) is above the centerline and it is Object class
3949         // then we can subclass in the Java class hierarchy.
3950         // For instances when a subclass meets a superclass we fall
3951         // below the centerline when the superclass is exact. We need
3952         // to do the same here.
3953         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3954           // that is, tp's array type is a subtype of my klass
3955           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3956                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3957         }
3958       }
3959       // The other case cannot happen, since I cannot be a subtype of an array.
3960       // The meet falls down to Object class below centerline.
3961       if( ptr == Constant )
3962          ptr = NotNull;
3963       instance_id = InstanceBot;
3964       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3965     default: typerr(t);
3966     }
3967   }
3968 
3969   case OopPtr: {                // Meeting to OopPtrs
3970     // Found a OopPtr type vs self-InstPtr type
3971     const TypeOopPtr *tp = t->is_oopptr();
3972     Offset offset = meet_offset(tp->offset());
3973     PTR ptr = meet_ptr(tp->ptr());
3974     switch (tp->ptr()) {
3975     case TopPTR:
3976     case AnyNull: {
3977       int instance_id = meet_instance_id(InstanceTop);
3978       const TypePtr* speculative = xmeet_speculative(tp);
3979       int depth = meet_inline_depth(tp->inline_depth());
3980       return make(ptr, klass(), klass_is_exact(),
3981                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3982     }
3983     case NotNull:
3984     case BotPTR: {
3985       int instance_id = meet_instance_id(tp->instance_id());
3986       const TypePtr* speculative = xmeet_speculative(tp);
3987       int depth = meet_inline_depth(tp->inline_depth());
3988       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3989     }
3990     default: typerr(t);
3991     }
3992   }
3993 
3994   case AnyPtr: {                // Meeting to AnyPtrs
3995     // Found an AnyPtr type vs self-InstPtr type
3996     const TypePtr *tp = t->is_ptr();
3997     Offset offset = meet_offset(tp->offset());
3998     PTR ptr = meet_ptr(tp->ptr());
3999     int instance_id = meet_instance_id(InstanceTop);
4000     const TypePtr* speculative = xmeet_speculative(tp);
4001     int depth = meet_inline_depth(tp->inline_depth());
4002     switch (tp->ptr()) {
4003     case Null:
4004       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4005       // else fall through to AnyNull
4006     case TopPTR:
4007     case AnyNull: {
4008       return make(ptr, klass(), klass_is_exact(),
4009                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4010     }
4011     case NotNull:
4012     case BotPTR:
4013       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4014     default: typerr(t);
4015     }
4016   }
4017 
4018   /*
4019                  A-top         }
4020                /   |   \       }  Tops
4021            B-top A-any C-top   }
4022               | /  |  \ |      }  Any-nulls
4023            B-any   |   C-any   }
4024               |    |    |
4025            B-con A-con C-con   } constants; not comparable across classes
4026               |    |    |
4027            B-not   |   C-not   }
4028               | \  |  / |      }  not-nulls
4029            B-bot A-not C-bot   }
4030                \   |   /       }  Bottoms
4031                  A-bot         }
4032   */
4033 
4034   case InstPtr: {                // Meeting 2 Oops?
4035     // Found an InstPtr sub-type vs self-InstPtr type
4036     const TypeInstPtr *tinst = t->is_instptr();
4037     Offset off = meet_offset( tinst->offset() );
4038     PTR ptr = meet_ptr( tinst->ptr() );
4039     int instance_id = meet_instance_id(tinst->instance_id());
4040     const TypePtr* speculative = xmeet_speculative(tinst);
4041     int depth = meet_inline_depth(tinst->inline_depth());
4042 
4043     // Check for easy case; klasses are equal (and perhaps not loaded!)
4044     // If we have constants, then we created oops so classes are loaded
4045     // and we can handle the constants further down.  This case handles
4046     // both-not-loaded or both-loaded classes
4047     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4048       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4049     }
4050 
4051     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4052     ciKlass* tinst_klass = tinst->klass();
4053     ciKlass* this_klass  = this->klass();
4054     bool tinst_xk = tinst->klass_is_exact();
4055     bool this_xk  = this->klass_is_exact();
4056     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4057       // One of these classes has not been loaded
4058       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4059 #ifndef PRODUCT
4060       if( PrintOpto && Verbose ) {
4061         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4062         tty->print("  this == "); this->dump(); tty->cr();
4063         tty->print(" tinst == "); tinst->dump(); tty->cr();
4064       }
4065 #endif
4066       return unloaded_meet;
4067     }
4068 
4069     // Handle mixing oops and interfaces first.
4070     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4071                                         tinst_klass == ciEnv::current()->Object_klass())) {
4072       ciKlass *tmp = tinst_klass; // Swap interface around
4073       tinst_klass = this_klass;
4074       this_klass = tmp;
4075       bool tmp2 = tinst_xk;
4076       tinst_xk = this_xk;
4077       this_xk = tmp2;
4078     }
4079     if (tinst_klass->is_interface() &&
4080         !(this_klass->is_interface() ||
4081           // Treat java/lang/Object as an honorary interface,
4082           // because we need a bottom for the interface hierarchy.
4083           this_klass == ciEnv::current()->Object_klass())) {
4084       // Oop meets interface!
4085 
4086       // See if the oop subtypes (implements) interface.
4087       ciKlass *k;
4088       bool xk;
4089       if( this_klass->is_subtype_of( tinst_klass ) ) {
4090         // Oop indeed subtypes.  Now keep oop or interface depending
4091         // on whether we are both above the centerline or either is
4092         // below the centerline.  If we are on the centerline
4093         // (e.g., Constant vs. AnyNull interface), use the constant.
4094         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4095         // If we are keeping this_klass, keep its exactness too.
4096         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4097       } else {                  // Does not implement, fall to Object
4098         // Oop does not implement interface, so mixing falls to Object
4099         // just like the verifier does (if both are above the
4100         // centerline fall to interface)
4101         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4102         xk = above_centerline(ptr) ? tinst_xk : false;
4103         // Watch out for Constant vs. AnyNull interface.
4104         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4105         instance_id = InstanceBot;
4106       }
4107       ciObject* o = NULL;  // the Constant value, if any
4108       if (ptr == Constant) {
4109         // Find out which constant.
4110         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4111       }
4112       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4113     }
4114 
4115     // Either oop vs oop or interface vs interface or interface vs Object
4116 
4117     // !!! Here's how the symmetry requirement breaks down into invariants:
4118     // If we split one up & one down AND they subtype, take the down man.
4119     // If we split one up & one down AND they do NOT subtype, "fall hard".
4120     // If both are up and they subtype, take the subtype class.
4121     // If both are up and they do NOT subtype, "fall hard".
4122     // If both are down and they subtype, take the supertype class.
4123     // If both are down and they do NOT subtype, "fall hard".
4124     // Constants treated as down.
4125 
4126     // Now, reorder the above list; observe that both-down+subtype is also
4127     // "fall hard"; "fall hard" becomes the default case:
4128     // If we split one up & one down AND they subtype, take the down man.
4129     // If both are up and they subtype, take the subtype class.
4130 
4131     // If both are down and they subtype, "fall hard".
4132     // If both are down and they do NOT subtype, "fall hard".
4133     // If both are up and they do NOT subtype, "fall hard".
4134     // If we split one up & one down AND they do NOT subtype, "fall hard".
4135 
4136     // If a proper subtype is exact, and we return it, we return it exactly.
4137     // If a proper supertype is exact, there can be no subtyping relationship!
4138     // If both types are equal to the subtype, exactness is and-ed below the
4139     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4140 
4141     // Check for subtyping:
4142     ciKlass *subtype = NULL;
4143     bool subtype_exact = false;
4144     if( tinst_klass->equals(this_klass) ) {
4145       subtype = this_klass;
4146       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4147     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4148       subtype = this_klass;     // Pick subtyping class
4149       subtype_exact = this_xk;
4150     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4151       subtype = tinst_klass;    // Pick subtyping class
4152       subtype_exact = tinst_xk;
4153     }
4154 
4155     if( subtype ) {
4156       if( above_centerline(ptr) ) { // both are up?
4157         this_klass = tinst_klass = subtype;
4158         this_xk = tinst_xk = subtype_exact;
4159       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4160         this_klass = tinst_klass; // tinst is down; keep down man
4161         this_xk = tinst_xk;
4162       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4163         tinst_klass = this_klass; // this is down; keep down man
4164         tinst_xk = this_xk;
4165       } else {
4166         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4167       }
4168     }
4169 
4170     // Check for classes now being equal
4171     if (tinst_klass->equals(this_klass)) {
4172       // If the klasses are equal, the constants may still differ.  Fall to
4173       // NotNull if they do (neither constant is NULL; that is a special case
4174       // handled elsewhere).
4175       ciObject* o = NULL;             // Assume not constant when done
4176       ciObject* this_oop  = const_oop();
4177       ciObject* tinst_oop = tinst->const_oop();
4178       if( ptr == Constant ) {
4179         if (this_oop != NULL && tinst_oop != NULL &&
4180             this_oop->equals(tinst_oop) )
4181           o = this_oop;
4182         else if (above_centerline(this ->_ptr))
4183           o = tinst_oop;
4184         else if (above_centerline(tinst ->_ptr))
4185           o = this_oop;
4186         else
4187           ptr = NotNull;
4188       }
4189       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4190     } // Else classes are not equal
4191 
4192     // Since klasses are different, we require a LCA in the Java
4193     // class hierarchy - which means we have to fall to at least NotNull.
4194     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4195       ptr = NotNull;
4196 
4197     instance_id = InstanceBot;
4198 
4199     // Now we find the LCA of Java classes
4200     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4201     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4202   } // End of case InstPtr
4203 
4204   case ValueType: {
4205     const TypeValueType *tv = t->is_valuetype();
4206     if (above_centerline(ptr())) {
4207       if (tv->value_klass()->is_subtype_of(_klass)) {
4208         return t;
4209       } else {
4210         return TypeInstPtr::make(NotNull, _klass);
4211       }
4212     } else {
4213       if (tv->value_klass()->is_subtype_of(_klass)) {
4214         return TypeInstPtr::make(ptr(), _klass);
4215       } else {
4216         return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4217       }
4218     }
4219   }
4220 
4221   } // End of switch
4222   return this;                  // Return the double constant
4223 }
4224 
4225 
4226 //------------------------java_mirror_type--------------------------------------
4227 ciType* TypeInstPtr::java_mirror_type(bool* is_val_type) const {
4228   // must be a singleton type
4229   if( const_oop() == NULL )  return NULL;
4230 
4231   // must be of type java.lang.Class
4232   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4233 
4234   return const_oop()->as_instance()->java_mirror_type(is_val_type);
4235 }
4236 
4237 
4238 //------------------------------xdual------------------------------------------
4239 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4240 // inheritance mechanism.
4241 const Type *TypeInstPtr::xdual() const {
4242   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4243 }
4244 
4245 //------------------------------eq---------------------------------------------
4246 // Structural equality check for Type representations
4247 bool TypeInstPtr::eq( const Type *t ) const {
4248   const TypeInstPtr *p = t->is_instptr();
4249   return
4250     klass()->equals(p->klass()) &&
4251     TypeOopPtr::eq(p);          // Check sub-type stuff
4252 }
4253 
4254 //------------------------------hash-------------------------------------------
4255 // Type-specific hashing function.
4256 int TypeInstPtr::hash(void) const {
4257   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4258   return hash;
4259 }
4260 
4261 //------------------------------dump2------------------------------------------
4262 // Dump oop Type
4263 #ifndef PRODUCT
4264 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4265   // Print the name of the klass.
4266   klass()->print_name_on(st);
4267 
4268   switch( _ptr ) {
4269   case Constant:
4270     // TO DO: Make CI print the hex address of the underlying oop.
4271     if (WizardMode || Verbose) {
4272       const_oop()->print_oop(st);
4273     }
4274   case BotPTR:
4275     if (!WizardMode && !Verbose) {
4276       if( _klass_is_exact ) st->print(":exact");
4277       break;
4278     }
4279   case TopPTR:
4280   case AnyNull:
4281   case NotNull:
4282     st->print(":%s", ptr_msg[_ptr]);
4283     if( _klass_is_exact ) st->print(":exact");
4284     break;
4285   default:
4286     break;
4287   }
4288 
4289   _offset.dump2(st);
4290 
4291   st->print(" *");
4292   if (_instance_id == InstanceTop)
4293     st->print(",iid=top");
4294   else if (_instance_id != InstanceBot)
4295     st->print(",iid=%d",_instance_id);
4296 
4297   dump_inline_depth(st);
4298   dump_speculative(st);
4299 }
4300 #endif
4301 
4302 //------------------------------add_offset-------------------------------------
4303 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4304   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4305               _instance_id, add_offset_speculative(offset), _inline_depth);
4306 }
4307 
4308 const Type *TypeInstPtr::remove_speculative() const {
4309   if (_speculative == NULL) {
4310     return this;
4311   }
4312   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4313   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4314               _instance_id, NULL, _inline_depth);
4315 }
4316 
4317 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4318   if (!UseInlineDepthForSpeculativeTypes) {
4319     return this;
4320   }
4321   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4322 }
4323 
4324 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4325   assert(is_known_instance(), "should be known");
4326   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4327 }
4328 
4329 //=============================================================================
4330 // Convenience common pre-built types.
4331 const TypeAryPtr *TypeAryPtr::RANGE;
4332 const TypeAryPtr *TypeAryPtr::OOPS;
4333 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4334 const TypeAryPtr *TypeAryPtr::BYTES;
4335 const TypeAryPtr *TypeAryPtr::SHORTS;
4336 const TypeAryPtr *TypeAryPtr::CHARS;
4337 const TypeAryPtr *TypeAryPtr::INTS;
4338 const TypeAryPtr *TypeAryPtr::LONGS;
4339 const TypeAryPtr *TypeAryPtr::FLOATS;
4340 const TypeAryPtr *TypeAryPtr::DOUBLES;
4341 
4342 //------------------------------make-------------------------------------------
4343 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4344                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4345   assert(!(k == NULL && ary->_elem->isa_int()),
4346          "integral arrays must be pre-equipped with a class");
4347   if (!xk)  xk = ary->ary_must_be_exact();
4348   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4349   if (!UseExactTypes)  xk = (ptr == Constant);
4350   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4351 }
4352 
4353 //------------------------------make-------------------------------------------
4354 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4355                                    int instance_id, const TypePtr* speculative, int inline_depth,
4356                                    bool is_autobox_cache) {
4357   assert(!(k == NULL && ary->_elem->isa_int()),
4358          "integral arrays must be pre-equipped with a class");
4359   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4360   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4361   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4362   if (!UseExactTypes)  xk = (ptr == Constant);
4363   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4364 }
4365 
4366 //------------------------------cast_to_ptr_type-------------------------------
4367 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4368   if( ptr == _ptr ) return this;
4369   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4370 }
4371 
4372 
4373 //-----------------------------cast_to_exactness-------------------------------
4374 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4375   if( klass_is_exact == _klass_is_exact ) return this;
4376   if (!UseExactTypes)  return this;
4377   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4378   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4379 }
4380 
4381 //-----------------------------cast_to_instance_id----------------------------
4382 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4383   if( instance_id == _instance_id ) return this;
4384   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4385 }
4386 
4387 const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const {
4388   if (const_oop() == NULL) return this;
4389   return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth);
4390 }
4391 
4392 
4393 //-----------------------------narrow_size_type-------------------------------
4394 // Local cache for arrayOopDesc::max_array_length(etype),
4395 // which is kind of slow (and cached elsewhere by other users).
4396 static jint max_array_length_cache[T_CONFLICT+1];
4397 static jint max_array_length(BasicType etype) {
4398   jint& cache = max_array_length_cache[etype];
4399   jint res = cache;
4400   if (res == 0) {
4401     switch (etype) {
4402     case T_NARROWOOP:
4403       etype = T_OBJECT;
4404       break;
4405     case T_NARROWKLASS:
4406     case T_CONFLICT:
4407     case T_ILLEGAL:
4408     case T_VOID:
4409       etype = T_BYTE;           // will produce conservatively high value
4410       break;
4411     default:
4412       break;
4413     }
4414     cache = res = arrayOopDesc::max_array_length(etype);
4415   }
4416   return res;
4417 }
4418 
4419 // Narrow the given size type to the index range for the given array base type.
4420 // Return NULL if the resulting int type becomes empty.
4421 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4422   jint hi = size->_hi;
4423   jint lo = size->_lo;
4424   jint min_lo = 0;
4425   jint max_hi = max_array_length(elem()->basic_type());
4426   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4427   bool chg = false;
4428   if (lo < min_lo) {
4429     lo = min_lo;
4430     if (size->is_con()) {
4431       hi = lo;
4432     }
4433     chg = true;
4434   }
4435   if (hi > max_hi) {
4436     hi = max_hi;
4437     if (size->is_con()) {
4438       lo = hi;
4439     }
4440     chg = true;
4441   }
4442   // Negative length arrays will produce weird intermediate dead fast-path code
4443   if (lo > hi)
4444     return TypeInt::ZERO;
4445   if (!chg)
4446     return size;
4447   return TypeInt::make(lo, hi, Type::WidenMin);
4448 }
4449 
4450 //-------------------------------cast_to_size----------------------------------
4451 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4452   assert(new_size != NULL, "");
4453   new_size = narrow_size_type(new_size);
4454   if (new_size == size())  return this;
4455   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4456   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4457 }
4458 
4459 //------------------------------cast_to_stable---------------------------------
4460 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4461   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4462     return this;
4463 
4464   const Type* elem = this->elem();
4465   const TypePtr* elem_ptr = elem->make_ptr();
4466 
4467   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4468     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4469     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4470   }
4471 
4472   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4473 
4474   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4475 }
4476 
4477 //-----------------------------stable_dimension--------------------------------
4478 int TypeAryPtr::stable_dimension() const {
4479   if (!is_stable())  return 0;
4480   int dim = 1;
4481   const TypePtr* elem_ptr = elem()->make_ptr();
4482   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4483     dim += elem_ptr->is_aryptr()->stable_dimension();
4484   return dim;
4485 }
4486 
4487 //----------------------cast_to_autobox_cache-----------------------------------
4488 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4489   if (is_autobox_cache() == cache)  return this;
4490   const TypeOopPtr* etype = elem()->make_oopptr();
4491   if (etype == NULL)  return this;
4492   // The pointers in the autobox arrays are always non-null.
4493   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4494   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4495   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4496   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4497 }
4498 
4499 //------------------------------eq---------------------------------------------
4500 // Structural equality check for Type representations
4501 bool TypeAryPtr::eq( const Type *t ) const {
4502   const TypeAryPtr *p = t->is_aryptr();
4503   return
4504     _ary == p->_ary &&  // Check array
4505     TypeOopPtr::eq(p) &&// Check sub-parts
4506     _field_offset == p->_field_offset;
4507 }
4508 
4509 //------------------------------hash-------------------------------------------
4510 // Type-specific hashing function.
4511 int TypeAryPtr::hash(void) const {
4512   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4513 }
4514 
4515 //------------------------------meet-------------------------------------------
4516 // Compute the MEET of two types.  It returns a new Type object.
4517 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4518   // Perform a fast test for common case; meeting the same types together.
4519   if( this == t ) return this;  // Meeting same type-rep?
4520   // Current "this->_base" is Pointer
4521   switch (t->base()) {          // switch on original type
4522 
4523   // Mixing ints & oops happens when javac reuses local variables
4524   case Int:
4525   case Long:
4526   case FloatTop:
4527   case FloatCon:
4528   case FloatBot:
4529   case DoubleTop:
4530   case DoubleCon:
4531   case DoubleBot:
4532   case NarrowOop:
4533   case NarrowKlass:
4534   case Bottom:                  // Ye Olde Default
4535     return Type::BOTTOM;
4536   case Top:
4537     return this;
4538 
4539   default:                      // All else is a mistake
4540     typerr(t);
4541 
4542   case OopPtr: {                // Meeting to OopPtrs
4543     // Found a OopPtr type vs self-AryPtr type
4544     const TypeOopPtr *tp = t->is_oopptr();
4545     Offset offset = meet_offset(tp->offset());
4546     PTR ptr = meet_ptr(tp->ptr());
4547     int depth = meet_inline_depth(tp->inline_depth());
4548     const TypePtr* speculative = xmeet_speculative(tp);
4549     switch (tp->ptr()) {
4550     case TopPTR:
4551     case AnyNull: {
4552       int instance_id = meet_instance_id(InstanceTop);
4553       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4554                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4555     }
4556     case BotPTR:
4557     case NotNull: {
4558       int instance_id = meet_instance_id(tp->instance_id());
4559       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4560     }
4561     default: ShouldNotReachHere();
4562     }
4563   }
4564 
4565   case AnyPtr: {                // Meeting two AnyPtrs
4566     // Found an AnyPtr type vs self-AryPtr type
4567     const TypePtr *tp = t->is_ptr();
4568     Offset offset = meet_offset(tp->offset());
4569     PTR ptr = meet_ptr(tp->ptr());
4570     const TypePtr* speculative = xmeet_speculative(tp);
4571     int depth = meet_inline_depth(tp->inline_depth());
4572     switch (tp->ptr()) {
4573     case TopPTR:
4574       return this;
4575     case BotPTR:
4576     case NotNull:
4577       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4578     case Null:
4579       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4580       // else fall through to AnyNull
4581     case AnyNull: {
4582       int instance_id = meet_instance_id(InstanceTop);
4583       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4584                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4585     }
4586     default: ShouldNotReachHere();
4587     }
4588   }
4589 
4590   case MetadataPtr:
4591   case KlassPtr:
4592   case RawPtr: return TypePtr::BOTTOM;
4593 
4594   case AryPtr: {                // Meeting 2 references?
4595     const TypeAryPtr *tap = t->is_aryptr();
4596     Offset off = meet_offset(tap->offset());
4597     Offset field_off = meet_field_offset(tap->field_offset());
4598     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4599     PTR ptr = meet_ptr(tap->ptr());
4600     int instance_id = meet_instance_id(tap->instance_id());
4601     const TypePtr* speculative = xmeet_speculative(tap);
4602     int depth = meet_inline_depth(tap->inline_depth());
4603     ciKlass* lazy_klass = NULL;
4604     if (tary->_elem->isa_int()) {
4605       // Integral array element types have irrelevant lattice relations.
4606       // It is the klass that determines array layout, not the element type.
4607       if (_klass == NULL)
4608         lazy_klass = tap->_klass;
4609       else if (tap->_klass == NULL || tap->_klass == _klass) {
4610         lazy_klass = _klass;
4611       } else {
4612         // Something like byte[int+] meets char[int+].
4613         // This must fall to bottom, not (int[-128..65535])[int+].
4614         instance_id = InstanceBot;
4615         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4616       }
4617     } else if (klass() != NULL && tap->klass() != NULL &&
4618                klass()->as_array_klass()->storage_properties().value() != tap->klass()->as_array_klass()->storage_properties().value()) {
4619       // Meeting value type arrays with conflicting storage properties
4620       if (tary->_elem->isa_valuetype()) {
4621         // Result is flattened
4622         off = Offset(elem()->isa_valuetype() ? offset() : tap->offset());
4623         field_off = elem()->isa_valuetype() ? field_offset() : tap->field_offset();
4624       } else if (tary->_elem->make_oopptr() != NULL && tary->_elem->make_oopptr()->isa_instptr() && below_centerline(ptr)) {
4625         // Result is non-flattened (fall back to object)
4626         off = Offset(flattened_offset()).meet(Offset(tap->flattened_offset()));
4627         field_off = Offset::bottom;
4628         tary = TypeAry::make(TypeInstPtr::BOTTOM, tary->_size, tary->_stable);
4629       }
4630     } else // Non integral arrays.
4631       // Must fall to bottom if exact klasses in upper lattice
4632       // are not equal or super klass is exact.
4633       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4634           // meet with top[] and bottom[] are processed further down:
4635           tap->_klass != NULL && this->_klass != NULL &&
4636           // both are exact and not equal:
4637           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4638            // 'tap' is exact and super or unrelated:
4639            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4640            // 'this' is exact and super or unrelated:
4641            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4642       if (above_centerline(ptr)) {
4643         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4644       }
4645       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4646     }
4647 
4648     bool xk = false;
4649     switch (tap->ptr()) {
4650     case AnyNull:
4651     case TopPTR:
4652       // Compute new klass on demand, do not use tap->_klass
4653       if (below_centerline(this->_ptr)) {
4654         xk = this->_klass_is_exact;
4655       } else {
4656         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4657       }
4658       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4659     case Constant: {
4660       ciObject* o = const_oop();
4661       if( _ptr == Constant ) {
4662         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4663           xk = (klass() == tap->klass());
4664           ptr = NotNull;
4665           o = NULL;
4666           instance_id = InstanceBot;
4667         } else {
4668           xk = true;
4669         }
4670       } else if(above_centerline(_ptr)) {
4671         o = tap->const_oop();
4672         xk = true;
4673       } else {
4674         // Only precise for identical arrays
4675         xk = this->_klass_is_exact && (klass() == tap->klass());
4676       }
4677       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4678     }
4679     case NotNull:
4680     case BotPTR:
4681       // Compute new klass on demand, do not use tap->_klass
4682       if (above_centerline(this->_ptr))
4683             xk = tap->_klass_is_exact;
4684       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4685               (klass() == tap->klass()); // Only precise for identical arrays
4686       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4687     default: ShouldNotReachHere();
4688     }
4689   }
4690 
4691   // All arrays inherit from Object class
4692   case InstPtr: {
4693     const TypeInstPtr *tp = t->is_instptr();
4694     Offset offset = meet_offset(tp->offset());
4695     PTR ptr = meet_ptr(tp->ptr());
4696     int instance_id = meet_instance_id(tp->instance_id());
4697     const TypePtr* speculative = xmeet_speculative(tp);
4698     int depth = meet_inline_depth(tp->inline_depth());
4699     switch (ptr) {
4700     case TopPTR:
4701     case AnyNull:                // Fall 'down' to dual of object klass
4702       // For instances when a subclass meets a superclass we fall
4703       // below the centerline when the superclass is exact. We need to
4704       // do the same here.
4705       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4706         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4707       } else {
4708         // cannot subclass, so the meet has to fall badly below the centerline
4709         ptr = NotNull;
4710         instance_id = InstanceBot;
4711         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4712       }
4713     case Constant:
4714     case NotNull:
4715     case BotPTR:                // Fall down to object klass
4716       // LCA is object_klass, but if we subclass from the top we can do better
4717       if (above_centerline(tp->ptr())) {
4718         // If 'tp'  is above the centerline and it is Object class
4719         // then we can subclass in the Java class hierarchy.
4720         // For instances when a subclass meets a superclass we fall
4721         // below the centerline when the superclass is exact. We need
4722         // to do the same here.
4723         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4724           // that is, my array type is a subtype of 'tp' klass
4725           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4726                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4727         }
4728       }
4729       // The other case cannot happen, since t cannot be a subtype of an array.
4730       // The meet falls down to Object class below centerline.
4731       if( ptr == Constant )
4732          ptr = NotNull;
4733       instance_id = InstanceBot;
4734       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4735     default: typerr(t);
4736     }
4737   }
4738 
4739   case ValueType: {
4740     // All value types inherit from Object
4741     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4742   }
4743 
4744   }
4745   return this;                  // Lint noise
4746 }
4747 
4748 //------------------------------xdual------------------------------------------
4749 // Dual: compute field-by-field dual
4750 const Type *TypeAryPtr::xdual() const {
4751   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4752 }
4753 
4754 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4755   return _field_offset.meet(offset);
4756 }
4757 
4758 //------------------------------dual_offset------------------------------------
4759 Type::Offset TypeAryPtr::dual_field_offset() const {
4760   return _field_offset.dual();
4761 }
4762 
4763 //----------------------interface_vs_oop---------------------------------------
4764 #ifdef ASSERT
4765 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4766   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4767   if (t_aryptr) {
4768     return _ary->interface_vs_oop(t_aryptr->_ary);
4769   }
4770   return false;
4771 }
4772 #endif
4773 
4774 //------------------------------dump2------------------------------------------
4775 #ifndef PRODUCT
4776 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4777   _ary->dump2(d,depth,st);
4778   switch( _ptr ) {
4779   case Constant:
4780     const_oop()->print(st);
4781     break;
4782   case BotPTR:
4783     if (!WizardMode && !Verbose) {
4784       if( _klass_is_exact ) st->print(":exact");
4785       break;
4786     }
4787   case TopPTR:
4788   case AnyNull:
4789   case NotNull:
4790     st->print(":%s", ptr_msg[_ptr]);
4791     if( _klass_is_exact ) st->print(":exact");
4792     break;
4793   default:
4794     break;
4795   }
4796 
4797   if (elem()->isa_valuetype()) {
4798     st->print("(");
4799     _field_offset.dump2(st);
4800     st->print(")");
4801   }
4802   if (offset() != 0) {
4803     int header_size = objArrayOopDesc::header_size() * wordSize;
4804     if( _offset == Offset::top )       st->print("+undefined");
4805     else if( _offset == Offset::bottom )  st->print("+any");
4806     else if( offset() < header_size ) st->print("+%d", offset());
4807     else {
4808       BasicType basic_elem_type = elem()->basic_type();
4809       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4810       int elem_size = type2aelembytes(basic_elem_type);
4811       st->print("[%d]", (offset() - array_base)/elem_size);
4812     }
4813   }
4814   st->print(" *");
4815   if (_instance_id == InstanceTop)
4816     st->print(",iid=top");
4817   else if (_instance_id != InstanceBot)
4818     st->print(",iid=%d",_instance_id);
4819 
4820   dump_inline_depth(st);
4821   dump_speculative(st);
4822 }
4823 #endif
4824 
4825 bool TypeAryPtr::empty(void) const {
4826   if (_ary->empty())       return true;
4827   return TypeOopPtr::empty();
4828 }
4829 
4830 //------------------------------add_offset-------------------------------------
4831 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4832   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4833 }
4834 
4835 const Type *TypeAryPtr::remove_speculative() const {
4836   if (_speculative == NULL) {
4837     return this;
4838   }
4839   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4840   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4841 }
4842 
4843 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4844   if (!UseInlineDepthForSpeculativeTypes) {
4845     return this;
4846   }
4847   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4848 }
4849 
4850 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4851   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4852 }
4853 
4854 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4855   int adj = 0;
4856   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4857     const Type* elemtype = elem();
4858     if (elemtype->isa_valuetype()) {
4859       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4860         adj = _offset.get();
4861         offset += _offset.get();
4862       }
4863       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4864       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4865         offset += _field_offset.get();
4866         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4867           offset += header;
4868         }
4869       }
4870       if (offset >= (intptr_t)header || offset < 0) {
4871         // Try to get the field of the value type array element we are pointing to
4872         ciKlass* arytype_klass = klass();
4873         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4874         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4875         int shift = vak->log2_element_size();
4876         int mask = (1 << shift) - 1;
4877         intptr_t field_offset = ((offset - header) & mask);
4878         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4879         if (field == NULL) {
4880           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4881           return add_offset(offset);
4882         } else {
4883           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4884         }
4885       }
4886     }
4887   }
4888   return add_offset(offset - adj);
4889 }
4890 
4891 // Return offset incremented by field_offset for flattened value type arrays
4892 const int TypeAryPtr::flattened_offset() const {
4893   int offset = _offset.get();
4894   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4895       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4896     offset += _field_offset.get();
4897   }
4898   return offset;
4899 }
4900 
4901 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4902   assert(is_known_instance(), "should be known");
4903   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
4904 }
4905 
4906 //=============================================================================
4907 
4908 
4909 //------------------------------hash-------------------------------------------
4910 // Type-specific hashing function.
4911 int TypeNarrowPtr::hash(void) const {
4912   return _ptrtype->hash() + 7;
4913 }
4914 
4915 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4916   return _ptrtype->singleton();
4917 }
4918 
4919 bool TypeNarrowPtr::empty(void) const {
4920   return _ptrtype->empty();
4921 }
4922 
4923 intptr_t TypeNarrowPtr::get_con() const {
4924   return _ptrtype->get_con();
4925 }
4926 
4927 bool TypeNarrowPtr::eq( const Type *t ) const {
4928   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4929   if (tc != NULL) {
4930     if (_ptrtype->base() != tc->_ptrtype->base()) {
4931       return false;
4932     }
4933     return tc->_ptrtype->eq(_ptrtype);
4934   }
4935   return false;
4936 }
4937 
4938 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4939   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4940   return make_same_narrowptr(odual);
4941 }
4942 
4943 
4944 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4945   if (isa_same_narrowptr(kills)) {
4946     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4947     if (ft->empty())
4948       return Type::TOP;           // Canonical empty value
4949     if (ft->isa_ptr()) {
4950       return make_hash_same_narrowptr(ft->isa_ptr());
4951     }
4952     return ft;
4953   } else if (kills->isa_ptr()) {
4954     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4955     if (ft->empty())
4956       return Type::TOP;           // Canonical empty value
4957     return ft;
4958   } else {
4959     return Type::TOP;
4960   }
4961 }
4962 
4963 //------------------------------xmeet------------------------------------------
4964 // Compute the MEET of two types.  It returns a new Type object.
4965 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4966   // Perform a fast test for common case; meeting the same types together.
4967   if( this == t ) return this;  // Meeting same type-rep?
4968 
4969   if (t->base() == base()) {
4970     const Type* result = _ptrtype->xmeet(t->make_ptr());
4971     if (result->isa_ptr()) {
4972       return make_hash_same_narrowptr(result->is_ptr());
4973     }
4974     return result;
4975   }
4976 
4977   // Current "this->_base" is NarrowKlass or NarrowOop
4978   switch (t->base()) {          // switch on original type
4979 
4980   case Int:                     // Mixing ints & oops happens when javac
4981   case Long:                    // reuses local variables
4982   case FloatTop:
4983   case FloatCon:
4984   case FloatBot:
4985   case DoubleTop:
4986   case DoubleCon:
4987   case DoubleBot:
4988   case AnyPtr:
4989   case RawPtr:
4990   case OopPtr:
4991   case InstPtr:
4992   case AryPtr:
4993   case MetadataPtr:
4994   case KlassPtr:
4995   case NarrowOop:
4996   case NarrowKlass:
4997   case Bottom:                  // Ye Olde Default
4998     return Type::BOTTOM;
4999   case Top:
5000     return this;
5001 
5002   case ValueType:
5003     return t->xmeet(this);
5004 
5005   default:                      // All else is a mistake
5006     typerr(t);
5007 
5008   } // End of switch
5009 
5010   return this;
5011 }
5012 
5013 #ifndef PRODUCT
5014 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5015   _ptrtype->dump2(d, depth, st);
5016 }
5017 #endif
5018 
5019 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5020 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5021 
5022 
5023 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5024   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5025 }
5026 
5027 const Type* TypeNarrowOop::remove_speculative() const {
5028   return make(_ptrtype->remove_speculative()->is_ptr());
5029 }
5030 
5031 const Type* TypeNarrowOop::cleanup_speculative() const {
5032   return make(_ptrtype->cleanup_speculative()->is_ptr());
5033 }
5034 
5035 #ifndef PRODUCT
5036 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5037   st->print("narrowoop: ");
5038   TypeNarrowPtr::dump2(d, depth, st);
5039 }
5040 #endif
5041 
5042 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5043 
5044 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5045   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5046 }
5047 
5048 #ifndef PRODUCT
5049 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5050   st->print("narrowklass: ");
5051   TypeNarrowPtr::dump2(d, depth, st);
5052 }
5053 #endif
5054 
5055 
5056 //------------------------------eq---------------------------------------------
5057 // Structural equality check for Type representations
5058 bool TypeMetadataPtr::eq( const Type *t ) const {
5059   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5060   ciMetadata* one = metadata();
5061   ciMetadata* two = a->metadata();
5062   if (one == NULL || two == NULL) {
5063     return (one == two) && TypePtr::eq(t);
5064   } else {
5065     return one->equals(two) && TypePtr::eq(t);
5066   }
5067 }
5068 
5069 //------------------------------hash-------------------------------------------
5070 // Type-specific hashing function.
5071 int TypeMetadataPtr::hash(void) const {
5072   return
5073     (metadata() ? metadata()->hash() : 0) +
5074     TypePtr::hash();
5075 }
5076 
5077 //------------------------------singleton--------------------------------------
5078 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5079 // constants
5080 bool TypeMetadataPtr::singleton(void) const {
5081   // detune optimizer to not generate constant metadata + constant offset as a constant!
5082   // TopPTR, Null, AnyNull, Constant are all singletons
5083   return (offset() == 0) && !below_centerline(_ptr);
5084 }
5085 
5086 //------------------------------add_offset-------------------------------------
5087 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5088   return make( _ptr, _metadata, xadd_offset(offset));
5089 }
5090 
5091 //-----------------------------filter------------------------------------------
5092 // Do not allow interface-vs.-noninterface joins to collapse to top.
5093 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5094   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5095   if (ft == NULL || ft->empty())
5096     return Type::TOP;           // Canonical empty value
5097   return ft;
5098 }
5099 
5100  //------------------------------get_con----------------------------------------
5101 intptr_t TypeMetadataPtr::get_con() const {
5102   assert( _ptr == Null || _ptr == Constant, "" );
5103   assert(offset() >= 0, "");
5104 
5105   if (offset() != 0) {
5106     // After being ported to the compiler interface, the compiler no longer
5107     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5108     // to a handle at compile time.  This handle is embedded in the generated
5109     // code and dereferenced at the time the nmethod is made.  Until that time,
5110     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5111     // have access to the addresses!).  This does not seem to currently happen,
5112     // but this assertion here is to help prevent its occurence.
5113     tty->print_cr("Found oop constant with non-zero offset");
5114     ShouldNotReachHere();
5115   }
5116 
5117   return (intptr_t)metadata()->constant_encoding();
5118 }
5119 
5120 //------------------------------cast_to_ptr_type-------------------------------
5121 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5122   if( ptr == _ptr ) return this;
5123   return make(ptr, metadata(), _offset);
5124 }
5125 
5126 //------------------------------meet-------------------------------------------
5127 // Compute the MEET of two types.  It returns a new Type object.
5128 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5129   // Perform a fast test for common case; meeting the same types together.
5130   if( this == t ) return this;  // Meeting same type-rep?
5131 
5132   // Current "this->_base" is OopPtr
5133   switch (t->base()) {          // switch on original type
5134 
5135   case Int:                     // Mixing ints & oops happens when javac
5136   case Long:                    // reuses local variables
5137   case FloatTop:
5138   case FloatCon:
5139   case FloatBot:
5140   case DoubleTop:
5141   case DoubleCon:
5142   case DoubleBot:
5143   case NarrowOop:
5144   case NarrowKlass:
5145   case Bottom:                  // Ye Olde Default
5146     return Type::BOTTOM;
5147   case Top:
5148     return this;
5149 
5150   default:                      // All else is a mistake
5151     typerr(t);
5152 
5153   case AnyPtr: {
5154     // Found an AnyPtr type vs self-OopPtr type
5155     const TypePtr *tp = t->is_ptr();
5156     Offset offset = meet_offset(tp->offset());
5157     PTR ptr = meet_ptr(tp->ptr());
5158     switch (tp->ptr()) {
5159     case Null:
5160       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5161       // else fall through:
5162     case TopPTR:
5163     case AnyNull: {
5164       return make(ptr, _metadata, offset);
5165     }
5166     case BotPTR:
5167     case NotNull:
5168       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5169     default: typerr(t);
5170     }
5171   }
5172 
5173   case RawPtr:
5174   case KlassPtr:
5175   case OopPtr:
5176   case InstPtr:
5177   case AryPtr:
5178     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5179 
5180   case MetadataPtr: {
5181     const TypeMetadataPtr *tp = t->is_metadataptr();
5182     Offset offset = meet_offset(tp->offset());
5183     PTR tptr = tp->ptr();
5184     PTR ptr = meet_ptr(tptr);
5185     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5186     if (tptr == TopPTR || _ptr == TopPTR ||
5187         metadata()->equals(tp->metadata())) {
5188       return make(ptr, md, offset);
5189     }
5190     // metadata is different
5191     if( ptr == Constant ) {  // Cannot be equal constants, so...
5192       if( tptr == Constant && _ptr != Constant)  return t;
5193       if( _ptr == Constant && tptr != Constant)  return this;
5194       ptr = NotNull;            // Fall down in lattice
5195     }
5196     return make(ptr, NULL, offset);
5197     break;
5198   }
5199   } // End of switch
5200   return this;                  // Return the double constant
5201 }
5202 
5203 
5204 //------------------------------xdual------------------------------------------
5205 // Dual of a pure metadata pointer.
5206 const Type *TypeMetadataPtr::xdual() const {
5207   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5208 }
5209 
5210 //------------------------------dump2------------------------------------------
5211 #ifndef PRODUCT
5212 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5213   st->print("metadataptr:%s", ptr_msg[_ptr]);
5214   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5215   switch (offset()) {
5216   case OffsetTop: st->print("+top"); break;
5217   case OffsetBot: st->print("+any"); break;
5218   case         0: break;
5219   default:        st->print("+%d",offset()); break;
5220   }
5221 }
5222 #endif
5223 
5224 
5225 //=============================================================================
5226 // Convenience common pre-built type.
5227 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5228 
5229 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5230   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5231 }
5232 
5233 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5234   return make(Constant, m, Offset(0));
5235 }
5236 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5237   return make(Constant, m, Offset(0));
5238 }
5239 
5240 //------------------------------make-------------------------------------------
5241 // Create a meta data constant
5242 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5243   assert(m == NULL || !m->is_klass(), "wrong type");
5244   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5245 }
5246 
5247 
5248 //=============================================================================
5249 // Convenience common pre-built types.
5250 
5251 // Not-null object klass or below
5252 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5253 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5254 
5255 //------------------------------TypeKlassPtr-----------------------------------
5256 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5257   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5258 }
5259 
5260 //------------------------------make-------------------------------------------
5261 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5262 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5263   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5264   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5265 }
5266 
5267 //------------------------------eq---------------------------------------------
5268 // Structural equality check for Type representations
5269 bool TypeKlassPtr::eq( const Type *t ) const {
5270   const TypeKlassPtr *p = t->is_klassptr();
5271   return klass() == p->klass() && TypePtr::eq(p);
5272 }
5273 
5274 //------------------------------hash-------------------------------------------
5275 // Type-specific hashing function.
5276 int TypeKlassPtr::hash(void) const {
5277   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5278 }
5279 
5280 //------------------------------singleton--------------------------------------
5281 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5282 // constants
5283 bool TypeKlassPtr::singleton(void) const {
5284   // detune optimizer to not generate constant klass + constant offset as a constant!
5285   // TopPTR, Null, AnyNull, Constant are all singletons
5286   return (offset() == 0) && !below_centerline(_ptr);
5287 }
5288 
5289 // Do not allow interface-vs.-noninterface joins to collapse to top.
5290 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5291   // logic here mirrors the one from TypeOopPtr::filter. See comments
5292   // there.
5293   const Type* ft = join_helper(kills, include_speculative);
5294   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5295   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5296 
5297   if (ft->empty()) {
5298     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5299       return kills;             // Uplift to interface
5300 
5301     return Type::TOP;           // Canonical empty value
5302   }
5303 
5304   // Interface klass type could be exact in opposite to interface type,
5305   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5306   if (ftkp != NULL && ktkp != NULL &&
5307       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5308       !ftkp->klass_is_exact() && // Keep exact interface klass
5309       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5310     return ktkp->cast_to_ptr_type(ftkp->ptr());
5311   }
5312 
5313   return ft;
5314 }
5315 
5316 //----------------------compute_klass------------------------------------------
5317 // Compute the defining klass for this class
5318 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5319   // Compute _klass based on element type.
5320   ciKlass* k_ary = NULL;
5321   const TypeAryPtr *tary;
5322   const Type* el = elem();
5323   if (el->isa_narrowoop()) {
5324     el = el->make_ptr();
5325   }
5326 
5327   // Get element klass
5328   if (el->isa_instptr()) {
5329     // Compute object array klass from element klass
5330     bool null_free = el->is_valuetypeptr() && el->isa_instptr()->ptr() != TypePtr::TopPTR && !el->isa_instptr()->maybe_null();
5331     k_ary = ciArrayKlass::make(el->is_oopptr()->klass(), null_free);
5332   } else if (el->isa_valuetype()) {
5333     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass(), /* null_free */ true);
5334   } else if ((tary = el->isa_aryptr()) != NULL) {
5335     // Compute array klass from element klass
5336     ciKlass* k_elem = tary->klass();
5337     // If element type is something like bottom[], k_elem will be null.
5338     if (k_elem != NULL)
5339       k_ary = ciObjArrayKlass::make(k_elem);
5340   } else if ((el->base() == Type::Top) ||
5341              (el->base() == Type::Bottom)) {
5342     // element type of Bottom occurs from meet of basic type
5343     // and object; Top occurs when doing join on Bottom.
5344     // Leave k_ary at NULL.
5345   } else {
5346     // Cannot compute array klass directly from basic type,
5347     // since subtypes of TypeInt all have basic type T_INT.
5348 #ifdef ASSERT
5349     if (verify && el->isa_int()) {
5350       // Check simple cases when verifying klass.
5351       BasicType bt = T_ILLEGAL;
5352       if (el == TypeInt::BYTE) {
5353         bt = T_BYTE;
5354       } else if (el == TypeInt::SHORT) {
5355         bt = T_SHORT;
5356       } else if (el == TypeInt::CHAR) {
5357         bt = T_CHAR;
5358       } else if (el == TypeInt::INT) {
5359         bt = T_INT;
5360       } else {
5361         return _klass; // just return specified klass
5362       }
5363       return ciTypeArrayKlass::make(bt);
5364     }
5365 #endif
5366     assert(!el->isa_int(),
5367            "integral arrays must be pre-equipped with a class");
5368     // Compute array klass directly from basic type
5369     k_ary = ciTypeArrayKlass::make(el->basic_type());
5370   }
5371   return k_ary;
5372 }
5373 
5374 //------------------------------klass------------------------------------------
5375 // Return the defining klass for this class
5376 ciKlass* TypeAryPtr::klass() const {
5377   if( _klass ) return _klass;   // Return cached value, if possible
5378 
5379   // Oops, need to compute _klass and cache it
5380   ciKlass* k_ary = compute_klass();
5381 
5382   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5383     // The _klass field acts as a cache of the underlying
5384     // ciKlass for this array type.  In order to set the field,
5385     // we need to cast away const-ness.
5386     //
5387     // IMPORTANT NOTE: we *never* set the _klass field for the
5388     // type TypeAryPtr::OOPS.  This Type is shared between all
5389     // active compilations.  However, the ciKlass which represents
5390     // this Type is *not* shared between compilations, so caching
5391     // this value would result in fetching a dangling pointer.
5392     //
5393     // Recomputing the underlying ciKlass for each request is
5394     // a bit less efficient than caching, but calls to
5395     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5396     ((TypeAryPtr*)this)->_klass = k_ary;
5397     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5398         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5399       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5400     }
5401   }
5402   return k_ary;
5403 }
5404 
5405 
5406 //------------------------------add_offset-------------------------------------
5407 // Access internals of klass object
5408 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5409   return make( _ptr, klass(), xadd_offset(offset) );
5410 }
5411 
5412 //------------------------------cast_to_ptr_type-------------------------------
5413 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5414   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5415   if( ptr == _ptr ) return this;
5416   return make(ptr, _klass, _offset);
5417 }
5418 
5419 
5420 //-----------------------------cast_to_exactness-------------------------------
5421 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5422   if( klass_is_exact == _klass_is_exact ) return this;
5423   if (!UseExactTypes)  return this;
5424   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5425 }
5426 
5427 
5428 //-----------------------------as_instance_type--------------------------------
5429 // Corresponding type for an instance of the given class.
5430 // It will be NotNull, and exact if and only if the klass type is exact.
5431 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5432   ciKlass* k = klass();
5433   assert(k != NULL, "klass should not be NULL");
5434   bool    xk = klass_is_exact();
5435   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5436   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5437   guarantee(toop != NULL, "need type for given klass");
5438   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5439   return toop->cast_to_exactness(xk)->is_oopptr();
5440 }
5441 
5442 
5443 //------------------------------xmeet------------------------------------------
5444 // Compute the MEET of two types, return a new Type object.
5445 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5446   // Perform a fast test for common case; meeting the same types together.
5447   if( this == t ) return this;  // Meeting same type-rep?
5448 
5449   // Current "this->_base" is Pointer
5450   switch (t->base()) {          // switch on original type
5451 
5452   case Int:                     // Mixing ints & oops happens when javac
5453   case Long:                    // reuses local variables
5454   case FloatTop:
5455   case FloatCon:
5456   case FloatBot:
5457   case DoubleTop:
5458   case DoubleCon:
5459   case DoubleBot:
5460   case NarrowOop:
5461   case NarrowKlass:
5462   case Bottom:                  // Ye Olde Default
5463     return Type::BOTTOM;
5464   case Top:
5465     return this;
5466 
5467   default:                      // All else is a mistake
5468     typerr(t);
5469 
5470   case AnyPtr: {                // Meeting to AnyPtrs
5471     // Found an AnyPtr type vs self-KlassPtr type
5472     const TypePtr *tp = t->is_ptr();
5473     Offset offset = meet_offset(tp->offset());
5474     PTR ptr = meet_ptr(tp->ptr());
5475     switch (tp->ptr()) {
5476     case TopPTR:
5477       return this;
5478     case Null:
5479       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5480     case AnyNull:
5481       return make( ptr, klass(), offset );
5482     case BotPTR:
5483     case NotNull:
5484       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5485     default: typerr(t);
5486     }
5487   }
5488 
5489   case RawPtr:
5490   case MetadataPtr:
5491   case OopPtr:
5492   case AryPtr:                  // Meet with AryPtr
5493   case InstPtr:                 // Meet with InstPtr
5494     return TypePtr::BOTTOM;
5495 
5496   //
5497   //             A-top         }
5498   //           /   |   \       }  Tops
5499   //       B-top A-any C-top   }
5500   //          | /  |  \ |      }  Any-nulls
5501   //       B-any   |   C-any   }
5502   //          |    |    |
5503   //       B-con A-con C-con   } constants; not comparable across classes
5504   //          |    |    |
5505   //       B-not   |   C-not   }
5506   //          | \  |  / |      }  not-nulls
5507   //       B-bot A-not C-bot   }
5508   //           \   |   /       }  Bottoms
5509   //             A-bot         }
5510   //
5511 
5512   case KlassPtr: {  // Meet two KlassPtr types
5513     const TypeKlassPtr *tkls = t->is_klassptr();
5514     Offset  off  = meet_offset(tkls->offset());
5515     PTR  ptr     = meet_ptr(tkls->ptr());
5516 
5517     if (klass() == NULL || tkls->klass() == NULL) {
5518       ciKlass* k = NULL;
5519       if (ptr == Constant) {
5520         k = (klass() == NULL) ? tkls->klass() : klass();
5521       }
5522       return make(ptr, k, off);
5523     }
5524 
5525     // Check for easy case; klasses are equal (and perhaps not loaded!)
5526     // If we have constants, then we created oops so classes are loaded
5527     // and we can handle the constants further down.  This case handles
5528     // not-loaded classes
5529     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5530       return make( ptr, klass(), off );
5531     }
5532 
5533     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5534     ciKlass* tkls_klass = tkls->klass();
5535     ciKlass* this_klass = this->klass();
5536     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5537     assert( this_klass->is_loaded(), "This class should have been loaded.");
5538 
5539     // If 'this' type is above the centerline and is a superclass of the
5540     // other, we can treat 'this' as having the same type as the other.
5541     if ((above_centerline(this->ptr())) &&
5542         tkls_klass->is_subtype_of(this_klass)) {
5543       this_klass = tkls_klass;
5544     }
5545     // If 'tinst' type is above the centerline and is a superclass of the
5546     // other, we can treat 'tinst' as having the same type as the other.
5547     if ((above_centerline(tkls->ptr())) &&
5548         this_klass->is_subtype_of(tkls_klass)) {
5549       tkls_klass = this_klass;
5550     }
5551 
5552     // Check for classes now being equal
5553     if (tkls_klass->equals(this_klass)) {
5554       // If the klasses are equal, the constants may still differ.  Fall to
5555       // NotNull if they do (neither constant is NULL; that is a special case
5556       // handled elsewhere).
5557       if( ptr == Constant ) {
5558         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5559             this->klass()->equals(tkls->klass()));
5560         else if (above_centerline(this->ptr()));
5561         else if (above_centerline(tkls->ptr()));
5562         else
5563           ptr = NotNull;
5564       }
5565       return make( ptr, this_klass, off );
5566     } // Else classes are not equal
5567 
5568     // Since klasses are different, we require the LCA in the Java
5569     // class hierarchy - which means we have to fall to at least NotNull.
5570     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5571       ptr = NotNull;
5572     // Now we find the LCA of Java classes
5573     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5574     return   make( ptr, k, off );
5575   } // End of case KlassPtr
5576 
5577   } // End of switch
5578   return this;                  // Return the double constant
5579 }
5580 
5581 //------------------------------xdual------------------------------------------
5582 // Dual: compute field-by-field dual
5583 const Type    *TypeKlassPtr::xdual() const {
5584   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5585 }
5586 
5587 //------------------------------get_con----------------------------------------
5588 intptr_t TypeKlassPtr::get_con() const {
5589   assert( _ptr == Null || _ptr == Constant, "" );
5590   assert(offset() >= 0, "");
5591 
5592   if (offset() != 0) {
5593     // After being ported to the compiler interface, the compiler no longer
5594     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5595     // to a handle at compile time.  This handle is embedded in the generated
5596     // code and dereferenced at the time the nmethod is made.  Until that time,
5597     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5598     // have access to the addresses!).  This does not seem to currently happen,
5599     // but this assertion here is to help prevent its occurence.
5600     tty->print_cr("Found oop constant with non-zero offset");
5601     ShouldNotReachHere();
5602   }
5603 
5604   return (intptr_t)klass()->constant_encoding();
5605 }
5606 //------------------------------dump2------------------------------------------
5607 // Dump Klass Type
5608 #ifndef PRODUCT
5609 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5610   switch( _ptr ) {
5611   case Constant:
5612     st->print("precise ");
5613   case NotNull:
5614     {
5615       if (klass() != NULL) {
5616         const char* name = klass()->name()->as_utf8();
5617         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5618       } else {
5619         st->print("klass BOTTOM");
5620       }
5621     }
5622   case BotPTR:
5623     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5624   case TopPTR:
5625   case AnyNull:
5626     st->print(":%s", ptr_msg[_ptr]);
5627     if( _klass_is_exact ) st->print(":exact");
5628     break;
5629   default:
5630     break;
5631   }
5632 
5633   _offset.dump2(st);
5634 
5635   st->print(" *");
5636 }
5637 #endif
5638 
5639 
5640 
5641 //=============================================================================
5642 // Convenience common pre-built types.
5643 
5644 //------------------------------make-------------------------------------------
5645 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5646                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5647   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5648 }
5649 
5650 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5651   return make(domain, domain, range, range);
5652 }
5653 
5654 //------------------------------make-------------------------------------------
5655 const TypeFunc *TypeFunc::make(ciMethod* method) {
5656   Compile* C = Compile::current();
5657   const TypeFunc* tf = C->last_tf(method); // check cache
5658   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5659   // Value types are not passed/returned by reference, instead each field of
5660   // the value type is passed/returned as an argument. We maintain two views of
5661   // the argument/return list here: one based on the signature (with a value
5662   // type argument/return as a single slot), one based on the actual calling
5663   // convention (with a value type argument/return as a list of its fields).
5664   const TypeTuple* domain_sig = TypeTuple::make_domain(method, false);
5665   const TypeTuple* domain_cc = TypeTuple::make_domain(method, method->has_scalarized_args());
5666   const TypeTuple* range_sig = TypeTuple::make_range(method->signature(), false);
5667   const TypeTuple* range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5668   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5669   C->set_last_tf(method, tf);  // fill cache
5670   return tf;
5671 }
5672 
5673 //------------------------------meet-------------------------------------------
5674 // Compute the MEET of two types.  It returns a new Type object.
5675 const Type *TypeFunc::xmeet( const Type *t ) const {
5676   // Perform a fast test for common case; meeting the same types together.
5677   if( this == t ) return this;  // Meeting same type-rep?
5678 
5679   // Current "this->_base" is Func
5680   switch (t->base()) {          // switch on original type
5681 
5682   case Bottom:                  // Ye Olde Default
5683     return t;
5684 
5685   default:                      // All else is a mistake
5686     typerr(t);
5687 
5688   case Top:
5689     break;
5690   }
5691   return this;                  // Return the double constant
5692 }
5693 
5694 //------------------------------xdual------------------------------------------
5695 // Dual: compute field-by-field dual
5696 const Type *TypeFunc::xdual() const {
5697   return this;
5698 }
5699 
5700 //------------------------------eq---------------------------------------------
5701 // Structural equality check for Type representations
5702 bool TypeFunc::eq( const Type *t ) const {
5703   const TypeFunc *a = (const TypeFunc*)t;
5704   return _domain_sig == a->_domain_sig &&
5705     _domain_cc == a->_domain_cc &&
5706     _range_sig == a->_range_sig &&
5707     _range_cc == a->_range_cc;
5708 }
5709 
5710 //------------------------------hash-------------------------------------------
5711 // Type-specific hashing function.
5712 int TypeFunc::hash(void) const {
5713   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5714 }
5715 
5716 //------------------------------dump2------------------------------------------
5717 // Dump Function Type
5718 #ifndef PRODUCT
5719 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5720   if( _range_sig->cnt() <= Parms )
5721     st->print("void");
5722   else {
5723     uint i;
5724     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5725       _range_sig->field_at(i)->dump2(d,depth,st);
5726       st->print("/");
5727     }
5728     _range_sig->field_at(i)->dump2(d,depth,st);
5729   }
5730   st->print(" ");
5731   st->print("( ");
5732   if( !depth || d[this] ) {     // Check for recursive dump
5733     st->print("...)");
5734     return;
5735   }
5736   d.Insert((void*)this,(void*)this);    // Stop recursion
5737   if (Parms < _domain_sig->cnt())
5738     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5739   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5740     st->print(", ");
5741     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5742   }
5743   st->print(" )");
5744 }
5745 #endif
5746 
5747 //------------------------------singleton--------------------------------------
5748 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5749 // constants (Ldi nodes).  Singletons are integer, float or double constants
5750 // or a single symbol.
5751 bool TypeFunc::singleton(void) const {
5752   return false;                 // Never a singleton
5753 }
5754 
5755 bool TypeFunc::empty(void) const {
5756   return false;                 // Never empty
5757 }
5758 
5759 
5760 BasicType TypeFunc::return_type() const{
5761   if (range_sig()->cnt() == TypeFunc::Parms) {
5762     return T_VOID;
5763   }
5764   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5765 }