1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 
  56 // Portions of code courtesy of Clifford Click
  57 
  58 // Optimization - Graph Style
  59 
  60 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  61 
  62 //=============================================================================
  63 uint MemNode::size_of() const { return sizeof(*this); }
  64 
  65 const TypePtr *MemNode::adr_type() const {
  66   Node* adr = in(Address);
  67   if (adr == NULL)  return NULL; // node is dead
  68   const TypePtr* cross_check = NULL;
  69   DEBUG_ONLY(cross_check = _adr_type);
  70   return calculate_adr_type(adr->bottom_type(), cross_check);
  71 }
  72 
  73 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  74   if (adr != NULL) {
  75     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  76       return true;
  77     }
  78   }
  79   return false;
  80 }
  81 
  82 #ifndef PRODUCT
  83 void MemNode::dump_spec(outputStream *st) const {
  84   if (in(Address) == NULL)  return; // node is dead
  85 #ifndef ASSERT
  86   // fake the missing field
  87   const TypePtr* _adr_type = NULL;
  88   if (in(Address) != NULL)
  89     _adr_type = in(Address)->bottom_type()->isa_ptr();
  90 #endif
  91   dump_adr_type(this, _adr_type, st);
  92 
  93   Compile* C = Compile::current();
  94   if (C->alias_type(_adr_type)->is_volatile()) {
  95     st->print(" Volatile!");
  96   }
  97   if (_unaligned_access) {
  98     st->print(" unaligned");
  99   }
 100   if (_mismatched_access) {
 101     st->print(" mismatched");
 102   }
 103   if (_unsafe_access) {
 104     st->print(" unsafe");
 105   }
 106 }
 107 
 108 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 109   st->print(" @");
 110   if (adr_type == NULL) {
 111     st->print("NULL");
 112   } else {
 113     adr_type->dump_on(st);
 114     Compile* C = Compile::current();
 115     Compile::AliasType* atp = NULL;
 116     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 117     if (atp == NULL)
 118       st->print(", idx=?\?;");
 119     else if (atp->index() == Compile::AliasIdxBot)
 120       st->print(", idx=Bot;");
 121     else if (atp->index() == Compile::AliasIdxTop)
 122       st->print(", idx=Top;");
 123     else if (atp->index() == Compile::AliasIdxRaw)
 124       st->print(", idx=Raw;");
 125     else {
 126       ciField* field = atp->field();
 127       if (field) {
 128         st->print(", name=");
 129         field->print_name_on(st);
 130       }
 131       st->print(", idx=%d;", atp->index());
 132     }
 133   }
 134 }
 135 
 136 extern void print_alias_types();
 137 
 138 #endif
 139 
 140 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 141   assert((t_oop != NULL), "sanity");
 142   bool is_instance = t_oop->is_known_instance_field();
 143   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 144                              (load != NULL) && load->is_Load() &&
 145                              (phase->is_IterGVN() != NULL);
 146   if (!(is_instance || is_boxed_value_load))
 147     return mchain;  // don't try to optimize non-instance types
 148   uint instance_id = t_oop->instance_id();
 149   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 150   Node *prev = NULL;
 151   Node *result = mchain;
 152   while (prev != result) {
 153     prev = result;
 154     if (result == start_mem)
 155       break;  // hit one of our sentinels
 156     // skip over a call which does not affect this memory slice
 157     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 158       Node *proj_in = result->in(0);
 159       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 160         break;  // hit one of our sentinels
 161       } else if (proj_in->is_Call()) {
 162         // ArrayCopyNodes processed here as well
 163         CallNode *call = proj_in->as_Call();
 164         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 165           result = call->in(TypeFunc::Memory);
 166         }
 167       } else if (proj_in->is_Initialize()) {
 168         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 169         // Stop if this is the initialization for the object instance which
 170         // contains this memory slice, otherwise skip over it.
 171         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 172           break;
 173         }
 174         if (is_instance) {
 175           result = proj_in->in(TypeFunc::Memory);
 176         } else if (is_boxed_value_load) {
 177           Node* klass = alloc->in(AllocateNode::KlassNode);
 178           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 179           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 180             result = proj_in->in(TypeFunc::Memory); // not related allocation
 181           }
 182         }
 183       } else if (proj_in->is_MemBar()) {
 184         ArrayCopyNode* ac = NULL;
 185         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 186           break;
 187         }
 188         result = proj_in->in(TypeFunc::Memory);
 189       } else {
 190         assert(false, "unexpected projection");
 191       }
 192     } else if (result->is_ClearArray()) {
 193       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 194         // Can not bypass initialization of the instance
 195         // we are looking for.
 196         break;
 197       }
 198       // Otherwise skip it (the call updated 'result' value).
 199     } else if (result->is_MergeMem()) {
 200       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 201     }
 202   }
 203   return result;
 204 }
 205 
 206 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 207   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 208   if (t_oop == NULL)
 209     return mchain;  // don't try to optimize non-oop types
 210   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 211   bool is_instance = t_oop->is_known_instance_field();
 212   PhaseIterGVN *igvn = phase->is_IterGVN();
 213   if (is_instance && igvn != NULL  && result->is_Phi()) {
 214     PhiNode *mphi = result->as_Phi();
 215     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 216     const TypePtr *t = mphi->adr_type();
 217     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 218         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 219          t->is_oopptr()->cast_to_exactness(true)
 220            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 221             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 222       // clone the Phi with our address type
 223       result = mphi->split_out_instance(t_adr, igvn);
 224     } else {
 225       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 226     }
 227   }
 228   return result;
 229 }
 230 
 231 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 232   uint alias_idx = phase->C->get_alias_index(tp);
 233   Node *mem = mmem;
 234 #ifdef ASSERT
 235   {
 236     // Check that current type is consistent with the alias index used during graph construction
 237     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 238     bool consistent =  adr_check == NULL || adr_check->empty() ||
 239                        phase->C->must_alias(adr_check, alias_idx );
 240     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 241     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 242                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 243         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 244         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 245           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 246           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 247       // don't assert if it is dead code.
 248       consistent = true;
 249     }
 250     if( !consistent ) {
 251       st->print("alias_idx==%d, adr_check==", alias_idx);
 252       if( adr_check == NULL ) {
 253         st->print("NULL");
 254       } else {
 255         adr_check->dump();
 256       }
 257       st->cr();
 258       print_alias_types();
 259       assert(consistent, "adr_check must match alias idx");
 260     }
 261   }
 262 #endif
 263   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 264   // means an array I have not precisely typed yet.  Do not do any
 265   // alias stuff with it any time soon.
 266   const TypeOopPtr *toop = tp->isa_oopptr();
 267   if( tp->base() != Type::AnyPtr &&
 268       !(toop &&
 269         toop->klass() != NULL &&
 270         toop->klass()->is_java_lang_Object() &&
 271         toop->offset() == Type::OffsetBot) ) {
 272     // compress paths and change unreachable cycles to TOP
 273     // If not, we can update the input infinitely along a MergeMem cycle
 274     // Equivalent code in PhiNode::Ideal
 275     Node* m  = phase->transform(mmem);
 276     // If transformed to a MergeMem, get the desired slice
 277     // Otherwise the returned node represents memory for every slice
 278     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 279     // Update input if it is progress over what we have now
 280   }
 281   return mem;
 282 }
 283 
 284 //--------------------------Ideal_common---------------------------------------
 285 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 286 // Unhook non-raw memories from complete (macro-expanded) initializations.
 287 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 288   // If our control input is a dead region, kill all below the region
 289   Node *ctl = in(MemNode::Control);
 290   if (ctl && remove_dead_region(phase, can_reshape))
 291     return this;
 292   ctl = in(MemNode::Control);
 293   // Don't bother trying to transform a dead node
 294   if (ctl && ctl->is_top())  return NodeSentinel;
 295 
 296   PhaseIterGVN *igvn = phase->is_IterGVN();
 297   // Wait if control on the worklist.
 298   if (ctl && can_reshape && igvn != NULL) {
 299     Node* bol = NULL;
 300     Node* cmp = NULL;
 301     if (ctl->in(0)->is_If()) {
 302       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 303       bol = ctl->in(0)->in(1);
 304       if (bol->is_Bool())
 305         cmp = ctl->in(0)->in(1)->in(1);
 306     }
 307     if (igvn->_worklist.member(ctl) ||
 308         (bol != NULL && igvn->_worklist.member(bol)) ||
 309         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 310       // This control path may be dead.
 311       // Delay this memory node transformation until the control is processed.
 312       phase->is_IterGVN()->_worklist.push(this);
 313       return NodeSentinel; // caller will return NULL
 314     }
 315   }
 316   // Ignore if memory is dead, or self-loop
 317   Node *mem = in(MemNode::Memory);
 318   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 319   assert(mem != this, "dead loop in MemNode::Ideal");
 320 
 321   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 322     // This memory slice may be dead.
 323     // Delay this mem node transformation until the memory is processed.
 324     phase->is_IterGVN()->_worklist.push(this);
 325     return NodeSentinel; // caller will return NULL
 326   }
 327 
 328   Node *address = in(MemNode::Address);
 329   const Type *t_adr = phase->type(address);
 330   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 331 
 332   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 333     // Unsafe off-heap access with zero address. Remove access and other control users
 334     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 335     assert(ctl != NULL, "unsafe accesses should be control dependent");
 336     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 337       Node* u = ctl->fast_out(i);
 338       if (u != ctl) {
 339         igvn->rehash_node_delayed(u);
 340         int nb = u->replace_edge(ctl, phase->C->top());
 341         --i, imax -= nb;
 342       }
 343     }
 344     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 345     Node* halt = igvn->transform(new HaltNode(ctl, frame));
 346     phase->C->root()->add_req(halt);
 347     return this;
 348   }
 349 
 350   if (can_reshape && igvn != NULL &&
 351       (igvn->_worklist.member(address) ||
 352        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 353     // The address's base and type may change when the address is processed.
 354     // Delay this mem node transformation until the address is processed.
 355     phase->is_IterGVN()->_worklist.push(this);
 356     return NodeSentinel; // caller will return NULL
 357   }
 358 
 359   // Do NOT remove or optimize the next lines: ensure a new alias index
 360   // is allocated for an oop pointer type before Escape Analysis.
 361   // Note: C++ will not remove it since the call has side effect.
 362   if (t_adr->isa_oopptr()) {
 363     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 364   }
 365 
 366   Node* base = NULL;
 367   if (address->is_AddP()) {
 368     base = address->in(AddPNode::Base);
 369   }
 370   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 371       !t_adr->isa_rawptr()) {
 372     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 373     // Skip this node optimization if its address has TOP base.
 374     return NodeSentinel; // caller will return NULL
 375   }
 376 
 377   // Avoid independent memory operations
 378   Node* old_mem = mem;
 379 
 380   // The code which unhooks non-raw memories from complete (macro-expanded)
 381   // initializations was removed. After macro-expansion all stores catched
 382   // by Initialize node became raw stores and there is no information
 383   // which memory slices they modify. So it is unsafe to move any memory
 384   // operation above these stores. Also in most cases hooked non-raw memories
 385   // were already unhooked by using information from detect_ptr_independence()
 386   // and find_previous_store().
 387 
 388   if (mem->is_MergeMem()) {
 389     MergeMemNode* mmem = mem->as_MergeMem();
 390     const TypePtr *tp = t_adr->is_ptr();
 391 
 392     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 393   }
 394 
 395   if (mem != old_mem) {
 396     set_req(MemNode::Memory, mem);
 397     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 398       igvn->_worklist.push(old_mem);
 399     }
 400     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 401     return this;
 402   }
 403 
 404   // let the subclass continue analyzing...
 405   return NULL;
 406 }
 407 
 408 // Helper function for proving some simple control dominations.
 409 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 410 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 411 // is not a constant (dominated by the method's StartNode).
 412 // Used by MemNode::find_previous_store to prove that the
 413 // control input of a memory operation predates (dominates)
 414 // an allocation it wants to look past.
 415 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 416   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 417     return false; // Conservative answer for dead code
 418 
 419   // Check 'dom'. Skip Proj and CatchProj nodes.
 420   dom = dom->find_exact_control(dom);
 421   if (dom == NULL || dom->is_top())
 422     return false; // Conservative answer for dead code
 423 
 424   if (dom == sub) {
 425     // For the case when, for example, 'sub' is Initialize and the original
 426     // 'dom' is Proj node of the 'sub'.
 427     return false;
 428   }
 429 
 430   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 431     return true;
 432 
 433   // 'dom' dominates 'sub' if its control edge and control edges
 434   // of all its inputs dominate or equal to sub's control edge.
 435 
 436   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 437   // Or Region for the check in LoadNode::Ideal();
 438   // 'sub' should have sub->in(0) != NULL.
 439   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 440          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 441 
 442   // Get control edge of 'sub'.
 443   Node* orig_sub = sub;
 444   sub = sub->find_exact_control(sub->in(0));
 445   if (sub == NULL || sub->is_top())
 446     return false; // Conservative answer for dead code
 447 
 448   assert(sub->is_CFG(), "expecting control");
 449 
 450   if (sub == dom)
 451     return true;
 452 
 453   if (sub->is_Start() || sub->is_Root())
 454     return false;
 455 
 456   {
 457     // Check all control edges of 'dom'.
 458 
 459     ResourceMark rm;
 460     Arena* arena = Thread::current()->resource_area();
 461     Node_List nlist(arena);
 462     Unique_Node_List dom_list(arena);
 463 
 464     dom_list.push(dom);
 465     bool only_dominating_controls = false;
 466 
 467     for (uint next = 0; next < dom_list.size(); next++) {
 468       Node* n = dom_list.at(next);
 469       if (n == orig_sub)
 470         return false; // One of dom's inputs dominated by sub.
 471       if (!n->is_CFG() && n->pinned()) {
 472         // Check only own control edge for pinned non-control nodes.
 473         n = n->find_exact_control(n->in(0));
 474         if (n == NULL || n->is_top())
 475           return false; // Conservative answer for dead code
 476         assert(n->is_CFG(), "expecting control");
 477         dom_list.push(n);
 478       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 479         only_dominating_controls = true;
 480       } else if (n->is_CFG()) {
 481         if (n->dominates(sub, nlist))
 482           only_dominating_controls = true;
 483         else
 484           return false;
 485       } else {
 486         // First, own control edge.
 487         Node* m = n->find_exact_control(n->in(0));
 488         if (m != NULL) {
 489           if (m->is_top())
 490             return false; // Conservative answer for dead code
 491           dom_list.push(m);
 492         }
 493         // Now, the rest of edges.
 494         uint cnt = n->req();
 495         for (uint i = 1; i < cnt; i++) {
 496           m = n->find_exact_control(n->in(i));
 497           if (m == NULL || m->is_top())
 498             continue;
 499           dom_list.push(m);
 500         }
 501       }
 502     }
 503     return only_dominating_controls;
 504   }
 505 }
 506 
 507 //---------------------detect_ptr_independence---------------------------------
 508 // Used by MemNode::find_previous_store to prove that two base
 509 // pointers are never equal.
 510 // The pointers are accompanied by their associated allocations,
 511 // if any, which have been previously discovered by the caller.
 512 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 513                                       Node* p2, AllocateNode* a2,
 514                                       PhaseTransform* phase) {
 515   // Attempt to prove that these two pointers cannot be aliased.
 516   // They may both manifestly be allocations, and they should differ.
 517   // Or, if they are not both allocations, they can be distinct constants.
 518   // Otherwise, one is an allocation and the other a pre-existing value.
 519   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 520     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 521   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 522     return (a1 != a2);
 523   } else if (a1 != NULL) {                  // one allocation a1
 524     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 525     return all_controls_dominate(p2, a1);
 526   } else { //(a2 != NULL)                   // one allocation a2
 527     return all_controls_dominate(p1, a2);
 528   }
 529   return false;
 530 }
 531 
 532 
 533 // Find an arraycopy that must have set (can_see_stored_value=true) or
 534 // could have set (can_see_stored_value=false) the value for this load
 535 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 536   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 537                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 538     Node* mb = mem->in(0);
 539     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 540         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 541       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 542       if (ac->is_clonebasic()) {
 543         intptr_t offset;
 544         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 545         if (alloc != NULL && alloc == ld_alloc) {
 546           return ac;
 547         }
 548       }
 549     }
 550   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 551     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 552 
 553     if (ac->is_arraycopy_validated() ||
 554         ac->is_copyof_validated() ||
 555         ac->is_copyofrange_validated()) {
 556       Node* ld_addp = in(MemNode::Address);
 557       if (ld_addp->is_AddP()) {
 558         Node* ld_base = ld_addp->in(AddPNode::Address);
 559         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 560 
 561         Node* dest = ac->in(ArrayCopyNode::Dest);
 562 
 563         if (dest == ld_base) {
 564           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 565           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 566             return ac;
 567           }
 568           if (!can_see_stored_value) {
 569             mem = ac->in(TypeFunc::Memory);
 570           }
 571         }
 572       }
 573     }
 574   }
 575   return NULL;
 576 }
 577 
 578 // The logic for reordering loads and stores uses four steps:
 579 // (a) Walk carefully past stores and initializations which we
 580 //     can prove are independent of this load.
 581 // (b) Observe that the next memory state makes an exact match
 582 //     with self (load or store), and locate the relevant store.
 583 // (c) Ensure that, if we were to wire self directly to the store,
 584 //     the optimizer would fold it up somehow.
 585 // (d) Do the rewiring, and return, depending on some other part of
 586 //     the optimizer to fold up the load.
 587 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 588 // specific to loads and stores, so they are handled by the callers.
 589 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 590 //
 591 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 592   Node*         ctrl   = in(MemNode::Control);
 593   Node*         adr    = in(MemNode::Address);
 594   intptr_t      offset = 0;
 595   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 596   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 597 
 598   if (offset == Type::OffsetBot)
 599     return NULL;            // cannot unalias unless there are precise offsets
 600 
 601   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 602   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 603 
 604   intptr_t size_in_bytes = memory_size();
 605 
 606   Node* mem = in(MemNode::Memory);   // start searching here...
 607 
 608   int cnt = 50;             // Cycle limiter
 609   for (;;) {                // While we can dance past unrelated stores...
 610     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 611 
 612     Node* prev = mem;
 613     if (mem->is_Store()) {
 614       Node* st_adr = mem->in(MemNode::Address);
 615       intptr_t st_offset = 0;
 616       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 617       if (st_base == NULL)
 618         break;              // inscrutable pointer
 619 
 620       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 621       // We need the bases to be the equal in order for the offset check to make sense.
 622       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 623         break;
 624       }
 625 
 626       if (st_offset != offset && st_offset != Type::OffsetBot) {
 627         const int MAX_STORE = BytesPerLong;
 628         if (st_offset >= offset + size_in_bytes ||
 629             st_offset <= offset - MAX_STORE ||
 630             st_offset <= offset - mem->as_Store()->memory_size()) {
 631           // Success:  The offsets are provably independent.
 632           // (You may ask, why not just test st_offset != offset and be done?
 633           // The answer is that stores of different sizes can co-exist
 634           // in the same sequence of RawMem effects.  We sometimes initialize
 635           // a whole 'tile' of array elements with a single jint or jlong.)
 636           mem = mem->in(MemNode::Memory);
 637           continue;           // (a) advance through independent store memory
 638         }
 639       }
 640       if (st_base != base &&
 641           detect_ptr_independence(base, alloc,
 642                                   st_base,
 643                                   AllocateNode::Ideal_allocation(st_base, phase),
 644                                   phase)) {
 645         // Success:  The bases are provably independent.
 646         mem = mem->in(MemNode::Memory);
 647         continue;           // (a) advance through independent store memory
 648       }
 649 
 650       // (b) At this point, if the bases or offsets do not agree, we lose,
 651       // since we have not managed to prove 'this' and 'mem' independent.
 652       if (st_base == base && st_offset == offset) {
 653         return mem;         // let caller handle steps (c), (d)
 654       }
 655 
 656     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 657       InitializeNode* st_init = mem->in(0)->as_Initialize();
 658       AllocateNode*  st_alloc = st_init->allocation();
 659       if (st_alloc == NULL)
 660         break;              // something degenerated
 661       bool known_identical = false;
 662       bool known_independent = false;
 663       if (alloc == st_alloc)
 664         known_identical = true;
 665       else if (alloc != NULL)
 666         known_independent = true;
 667       else if (all_controls_dominate(this, st_alloc))
 668         known_independent = true;
 669 
 670       if (known_independent) {
 671         // The bases are provably independent: Either they are
 672         // manifestly distinct allocations, or else the control
 673         // of this load dominates the store's allocation.
 674         int alias_idx = phase->C->get_alias_index(adr_type());
 675         if (alias_idx == Compile::AliasIdxRaw) {
 676           mem = st_alloc->in(TypeFunc::Memory);
 677         } else {
 678           mem = st_init->memory(alias_idx);
 679         }
 680         continue;           // (a) advance through independent store memory
 681       }
 682 
 683       // (b) at this point, if we are not looking at a store initializing
 684       // the same allocation we are loading from, we lose.
 685       if (known_identical) {
 686         // From caller, can_see_stored_value will consult find_captured_store.
 687         return mem;         // let caller handle steps (c), (d)
 688       }
 689 
 690     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 691       if (prev != mem) {
 692         // Found an arraycopy but it doesn't affect that load
 693         continue;
 694       }
 695       // Found an arraycopy that may affect that load
 696       return mem;
 697     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 698       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 699       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 700         // ArrayCopyNodes processed here as well.
 701         CallNode *call = mem->in(0)->as_Call();
 702         if (!call->may_modify(addr_t, phase)) {
 703           mem = call->in(TypeFunc::Memory);
 704           continue;         // (a) advance through independent call memory
 705         }
 706       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 707         ArrayCopyNode* ac = NULL;
 708         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 709           break;
 710         }
 711         mem = mem->in(0)->in(TypeFunc::Memory);
 712         continue;           // (a) advance through independent MemBar memory
 713       } else if (mem->is_ClearArray()) {
 714         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 715           // (the call updated 'mem' value)
 716           continue;         // (a) advance through independent allocation memory
 717         } else {
 718           // Can not bypass initialization of the instance
 719           // we are looking for.
 720           return mem;
 721         }
 722       } else if (mem->is_MergeMem()) {
 723         int alias_idx = phase->C->get_alias_index(adr_type());
 724         mem = mem->as_MergeMem()->memory_at(alias_idx);
 725         continue;           // (a) advance through independent MergeMem memory
 726       }
 727     }
 728 
 729     // Unless there is an explicit 'continue', we must bail out here,
 730     // because 'mem' is an inscrutable memory state (e.g., a call).
 731     break;
 732   }
 733 
 734   return NULL;              // bail out
 735 }
 736 
 737 //----------------------calculate_adr_type-------------------------------------
 738 // Helper function.  Notices when the given type of address hits top or bottom.
 739 // Also, asserts a cross-check of the type against the expected address type.
 740 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 741   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 742   #ifdef PRODUCT
 743   cross_check = NULL;
 744   #else
 745   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 746   #endif
 747   const TypePtr* tp = t->isa_ptr();
 748   if (tp == NULL) {
 749     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 750     return TypePtr::BOTTOM;           // touches lots of memory
 751   } else {
 752     #ifdef ASSERT
 753     // %%%% [phh] We don't check the alias index if cross_check is
 754     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 755     if (cross_check != NULL &&
 756         cross_check != TypePtr::BOTTOM &&
 757         cross_check != TypeRawPtr::BOTTOM) {
 758       // Recheck the alias index, to see if it has changed (due to a bug).
 759       Compile* C = Compile::current();
 760       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 761              "must stay in the original alias category");
 762       // The type of the address must be contained in the adr_type,
 763       // disregarding "null"-ness.
 764       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 765       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 766       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 767              "real address must not escape from expected memory type");
 768     }
 769     #endif
 770     return tp;
 771   }
 772 }
 773 
 774 //=============================================================================
 775 // Should LoadNode::Ideal() attempt to remove control edges?
 776 bool LoadNode::can_remove_control() const {
 777   return true;
 778 }
 779 uint LoadNode::size_of() const { return sizeof(*this); }
 780 bool LoadNode::cmp( const Node &n ) const
 781 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 782 const Type *LoadNode::bottom_type() const { return _type; }
 783 uint LoadNode::ideal_reg() const {
 784   return _type->ideal_reg();
 785 }
 786 
 787 #ifndef PRODUCT
 788 void LoadNode::dump_spec(outputStream *st) const {
 789   MemNode::dump_spec(st);
 790   if( !Verbose && !WizardMode ) {
 791     // standard dump does this in Verbose and WizardMode
 792     st->print(" #"); _type->dump_on(st);
 793   }
 794   if (!depends_only_on_test()) {
 795     st->print(" (does not depend only on test)");
 796   }
 797 }
 798 #endif
 799 
 800 #ifdef ASSERT
 801 //----------------------------is_immutable_value-------------------------------
 802 // Helper function to allow a raw load without control edge for some cases
 803 bool LoadNode::is_immutable_value(Node* adr) {
 804   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 805           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 806           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 807            in_bytes(JavaThread::osthread_offset())));
 808 }
 809 #endif
 810 
 811 //----------------------------LoadNode::make-----------------------------------
 812 // Polymorphic factory method:
 813 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 814                      ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 815   Compile* C = gvn.C;
 816 
 817   // sanity check the alias category against the created node type
 818   assert(!(adr_type->isa_oopptr() &&
 819            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 820          "use LoadKlassNode instead");
 821   assert(!(adr_type->isa_aryptr() &&
 822            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 823          "use LoadRangeNode instead");
 824   // Check control edge of raw loads
 825   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 826           // oop will be recorded in oop map if load crosses safepoint
 827           rt->isa_oopptr() || is_immutable_value(adr),
 828           "raw memory operations should have control edge");
 829   LoadNode* load = NULL;
 830   switch (bt) {
 831   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 832   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 833   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 834   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 835   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 836   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 837   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 838   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 839   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 840   case T_OBJECT:
 841 #ifdef _LP64
 842     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 843       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 844     } else
 845 #endif
 846     {
 847       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 848       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 849     }
 850     break;
 851   default:
 852     ShouldNotReachHere();
 853     break;
 854   }
 855   assert(load != NULL, "LoadNode should have been created");
 856   if (unaligned) {
 857     load->set_unaligned_access();
 858   }
 859   if (mismatched) {
 860     load->set_mismatched_access();
 861   }
 862   if (unsafe) {
 863     load->set_unsafe_access();
 864   }
 865   if (load->Opcode() == Op_LoadN) {
 866     Node* ld = gvn.transform(load);
 867     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 868   }
 869 
 870   return load;
 871 }
 872 
 873 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 874                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 875   bool require_atomic = true;
 876   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 877   if (unaligned) {
 878     load->set_unaligned_access();
 879   }
 880   if (mismatched) {
 881     load->set_mismatched_access();
 882   }
 883   if (unsafe) {
 884     load->set_unsafe_access();
 885   }
 886   return load;
 887 }
 888 
 889 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 890                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 891   bool require_atomic = true;
 892   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 893   if (unaligned) {
 894     load->set_unaligned_access();
 895   }
 896   if (mismatched) {
 897     load->set_mismatched_access();
 898   }
 899   if (unsafe) {
 900     load->set_unsafe_access();
 901   }
 902   return load;
 903 }
 904 
 905 
 906 
 907 //------------------------------hash-------------------------------------------
 908 uint LoadNode::hash() const {
 909   // unroll addition of interesting fields
 910   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 911 }
 912 
 913 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 914   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 915     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 916     bool is_stable_ary = FoldStableValues &&
 917                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 918                          tp->isa_aryptr()->is_stable();
 919 
 920     return (eliminate_boxing && non_volatile) || is_stable_ary;
 921   }
 922 
 923   return false;
 924 }
 925 
 926 // Is the value loaded previously stored by an arraycopy? If so return
 927 // a load node that reads from the source array so we may be able to
 928 // optimize out the ArrayCopy node later.
 929 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 930   Node* ld_adr = in(MemNode::Address);
 931   intptr_t ld_off = 0;
 932   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 933   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 934   if (ac != NULL) {
 935     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 936 
 937     Node* mem = ac->in(TypeFunc::Memory);
 938     Node* ctl = ac->in(0);
 939     Node* src = ac->in(ArrayCopyNode::Src);
 940 
 941     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 942       return NULL;
 943     }
 944 
 945     LoadNode* ld = clone()->as_Load();
 946     Node* addp = in(MemNode::Address)->clone();
 947     if (ac->as_ArrayCopy()->is_clonebasic()) {
 948       assert(ld_alloc != NULL, "need an alloc");
 949       assert(addp->is_AddP(), "address must be addp");
 950       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 951       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 952       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 953       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 954       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 955       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 956     } else {
 957       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 958              ac->as_ArrayCopy()->is_copyof_validated() ||
 959              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 960       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 961       addp->set_req(AddPNode::Base, src);
 962       addp->set_req(AddPNode::Address, src);
 963 
 964       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 965       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 966       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 967       uint shift  = exact_log2(type2aelembytes(ary_elem));
 968 
 969       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 970 #ifdef _LP64
 971       diff = phase->transform(new ConvI2LNode(diff));
 972 #endif
 973       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 974 
 975       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 976       addp->set_req(AddPNode::Offset, offset);
 977     }
 978     addp = phase->transform(addp);
 979 #ifdef ASSERT
 980     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 981     ld->_adr_type = adr_type;
 982 #endif
 983     ld->set_req(MemNode::Address, addp);
 984     ld->set_req(0, ctl);
 985     ld->set_req(MemNode::Memory, mem);
 986     // load depends on the tests that validate the arraycopy
 987     ld->_control_dependency = Pinned;
 988     return ld;
 989   }
 990   return NULL;
 991 }
 992 
 993 
 994 //---------------------------can_see_stored_value------------------------------
 995 // This routine exists to make sure this set of tests is done the same
 996 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 997 // will change the graph shape in a way which makes memory alive twice at the
 998 // same time (uses the Oracle model of aliasing), then some
 999 // LoadXNode::Identity will fold things back to the equivalence-class model
1000 // of aliasing.
1001 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
1002   Node* ld_adr = in(MemNode::Address);
1003   intptr_t ld_off = 0;
1004   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1005   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase);
1006   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1007   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
1008   // This is more general than load from boxing objects.
1009   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1010     uint alias_idx = atp->index();
1011     bool final = !atp->is_rewritable();
1012     Node* result = NULL;
1013     Node* current = st;
1014     // Skip through chains of MemBarNodes checking the MergeMems for
1015     // new states for the slice of this load.  Stop once any other
1016     // kind of node is encountered.  Loads from final memory can skip
1017     // through any kind of MemBar but normal loads shouldn't skip
1018     // through MemBarAcquire since the could allow them to move out of
1019     // a synchronized region.
1020     while (current->is_Proj()) {
1021       int opc = current->in(0)->Opcode();
1022       if ((final && (opc == Op_MemBarAcquire ||
1023                      opc == Op_MemBarAcquireLock ||
1024                      opc == Op_LoadFence)) ||
1025           opc == Op_MemBarRelease ||
1026           opc == Op_StoreFence ||
1027           opc == Op_MemBarReleaseLock ||
1028           opc == Op_MemBarStoreStore ||
1029           opc == Op_MemBarCPUOrder) {
1030         Node* mem = current->in(0)->in(TypeFunc::Memory);
1031         if (mem->is_MergeMem()) {
1032           MergeMemNode* merge = mem->as_MergeMem();
1033           Node* new_st = merge->memory_at(alias_idx);
1034           if (new_st == merge->base_memory()) {
1035             // Keep searching
1036             current = new_st;
1037             continue;
1038           }
1039           // Save the new memory state for the slice and fall through
1040           // to exit.
1041           result = new_st;
1042         }
1043       }
1044       break;
1045     }
1046     if (result != NULL) {
1047       st = result;
1048     }
1049   }
1050 
1051   // Loop around twice in the case Load -> Initialize -> Store.
1052   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1053   for (int trip = 0; trip <= 1; trip++) {
1054 
1055     if (st->is_Store()) {
1056       Node* st_adr = st->in(MemNode::Address);
1057       if (!phase->eqv(st_adr, ld_adr)) {
1058         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1059         intptr_t st_off = 0;
1060         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1061         if (ld_base == NULL)                                   return NULL;
1062         if (st_base == NULL)                                   return NULL;
1063         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL;
1064         if (ld_off != st_off)                                  return NULL;
1065         if (ld_off == Type::OffsetBot)                         return NULL;
1066         // Same base, same offset.
1067         // Possible improvement for arrays: check index value instead of absolute offset.
1068 
1069         // At this point we have proven something like this setup:
1070         //   B = << base >>
1071         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1072         //   S = StoreQ(AddP(             B , #Off), V)
1073         // (Actually, we haven't yet proven the Q's are the same.)
1074         // In other words, we are loading from a casted version of
1075         // the same pointer-and-offset that we stored to.
1076         // Casted version may carry a dependency and it is respected.
1077         // Thus, we are able to replace L by V.
1078       }
1079       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1080       if (store_Opcode() != st->Opcode())
1081         return NULL;
1082       return st->in(MemNode::ValueIn);
1083     }
1084 
1085     // A load from a freshly-created object always returns zero.
1086     // (This can happen after LoadNode::Ideal resets the load's memory input
1087     // to find_captured_store, which returned InitializeNode::zero_memory.)
1088     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1089         (st->in(0) == ld_alloc) &&
1090         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1091       // return a zero value for the load's basic type
1092       // (This is one of the few places where a generic PhaseTransform
1093       // can create new nodes.  Think of it as lazily manifesting
1094       // virtually pre-existing constants.)
1095       return phase->zerocon(memory_type());
1096     }
1097 
1098     // A load from an initialization barrier can match a captured store.
1099     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1100       InitializeNode* init = st->in(0)->as_Initialize();
1101       AllocateNode* alloc = init->allocation();
1102       if ((alloc != NULL) && (alloc == ld_alloc)) {
1103         // examine a captured store value
1104         st = init->find_captured_store(ld_off, memory_size(), phase);
1105         if (st != NULL) {
1106           continue;             // take one more trip around
1107         }
1108       }
1109     }
1110 
1111     // Load boxed value from result of valueOf() call is input parameter.
1112     if (this->is_Load() && ld_adr->is_AddP() &&
1113         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1114       intptr_t ignore = 0;
1115       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1116       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1117       base = bs->step_over_gc_barrier(base);
1118       if (base != NULL && base->is_Proj() &&
1119           base->as_Proj()->_con == TypeFunc::Parms &&
1120           base->in(0)->is_CallStaticJava() &&
1121           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1122         return base->in(0)->in(TypeFunc::Parms);
1123       }
1124     }
1125 
1126     break;
1127   }
1128 
1129   return NULL;
1130 }
1131 
1132 //----------------------is_instance_field_load_with_local_phi------------------
1133 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1134   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1135       in(Address)->is_AddP() ) {
1136     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1137     // Only instances and boxed values.
1138     if( t_oop != NULL &&
1139         (t_oop->is_ptr_to_boxed_value() ||
1140          t_oop->is_known_instance_field()) &&
1141         t_oop->offset() != Type::OffsetBot &&
1142         t_oop->offset() != Type::OffsetTop) {
1143       return true;
1144     }
1145   }
1146   return false;
1147 }
1148 
1149 //------------------------------Identity---------------------------------------
1150 // Loads are identity if previous store is to same address
1151 Node* LoadNode::Identity(PhaseGVN* phase) {
1152   // If the previous store-maker is the right kind of Store, and the store is
1153   // to the same address, then we are equal to the value stored.
1154   Node* mem = in(Memory);
1155   Node* value = can_see_stored_value(mem, phase);
1156   if( value ) {
1157     // byte, short & char stores truncate naturally.
1158     // A load has to load the truncated value which requires
1159     // some sort of masking operation and that requires an
1160     // Ideal call instead of an Identity call.
1161     if (memory_size() < BytesPerInt) {
1162       // If the input to the store does not fit with the load's result type,
1163       // it must be truncated via an Ideal call.
1164       if (!phase->type(value)->higher_equal(phase->type(this)))
1165         return this;
1166     }
1167     // (This works even when value is a Con, but LoadNode::Value
1168     // usually runs first, producing the singleton type of the Con.)
1169     return value;
1170   }
1171 
1172   // Search for an existing data phi which was generated before for the same
1173   // instance's field to avoid infinite generation of phis in a loop.
1174   Node *region = mem->in(0);
1175   if (is_instance_field_load_with_local_phi(region)) {
1176     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1177     int this_index  = phase->C->get_alias_index(addr_t);
1178     int this_offset = addr_t->offset();
1179     int this_iid    = addr_t->instance_id();
1180     if (!addr_t->is_known_instance() &&
1181          addr_t->is_ptr_to_boxed_value()) {
1182       // Use _idx of address base (could be Phi node) for boxed values.
1183       intptr_t   ignore = 0;
1184       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1185       if (base == NULL) {
1186         return this;
1187       }
1188       this_iid = base->_idx;
1189     }
1190     const Type* this_type = bottom_type();
1191     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1192       Node* phi = region->fast_out(i);
1193       if (phi->is_Phi() && phi != mem &&
1194           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1195         return phi;
1196       }
1197     }
1198   }
1199 
1200   return this;
1201 }
1202 
1203 // Construct an equivalent unsigned load.
1204 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1205   BasicType bt = T_ILLEGAL;
1206   const Type* rt = NULL;
1207   switch (Opcode()) {
1208     case Op_LoadUB: return this;
1209     case Op_LoadUS: return this;
1210     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1211     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1212     default:
1213       assert(false, "no unsigned variant: %s", Name());
1214       return NULL;
1215   }
1216   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1217                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1218                         is_unaligned_access(), is_mismatched_access());
1219 }
1220 
1221 // Construct an equivalent signed load.
1222 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1223   BasicType bt = T_ILLEGAL;
1224   const Type* rt = NULL;
1225   switch (Opcode()) {
1226     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1227     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1228     case Op_LoadB: // fall through
1229     case Op_LoadS: // fall through
1230     case Op_LoadI: // fall through
1231     case Op_LoadL: return this;
1232     default:
1233       assert(false, "no signed variant: %s", Name());
1234       return NULL;
1235   }
1236   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1237                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1238                         is_unaligned_access(), is_mismatched_access());
1239 }
1240 
1241 // We're loading from an object which has autobox behaviour.
1242 // If this object is result of a valueOf call we'll have a phi
1243 // merging a newly allocated object and a load from the cache.
1244 // We want to replace this load with the original incoming
1245 // argument to the valueOf call.
1246 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1247   assert(phase->C->eliminate_boxing(), "sanity");
1248   intptr_t ignore = 0;
1249   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1250   if ((base == NULL) || base->is_Phi()) {
1251     // Push the loads from the phi that comes from valueOf up
1252     // through it to allow elimination of the loads and the recovery
1253     // of the original value. It is done in split_through_phi().
1254     return NULL;
1255   } else if (base->is_Load() ||
1256              (base->is_DecodeN() && base->in(1)->is_Load())) {
1257     // Eliminate the load of boxed value for integer types from the cache
1258     // array by deriving the value from the index into the array.
1259     // Capture the offset of the load and then reverse the computation.
1260 
1261     // Get LoadN node which loads a boxing object from 'cache' array.
1262     if (base->is_DecodeN()) {
1263       base = base->in(1);
1264     }
1265     if (!base->in(Address)->is_AddP()) {
1266       return NULL; // Complex address
1267     }
1268     AddPNode* address = base->in(Address)->as_AddP();
1269     Node* cache_base = address->in(AddPNode::Base);
1270     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1271       // Get ConP node which is static 'cache' field.
1272       cache_base = cache_base->in(1);
1273     }
1274     if ((cache_base != NULL) && cache_base->is_Con()) {
1275       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1276       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1277         Node* elements[4];
1278         int shift = exact_log2(type2aelembytes(T_OBJECT));
1279         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1280         if (count > 0 && elements[0]->is_Con() &&
1281             (count == 1 ||
1282              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1283                             elements[1]->in(2) == phase->intcon(shift)))) {
1284           ciObjArray* array = base_type->const_oop()->as_obj_array();
1285           // Fetch the box object cache[0] at the base of the array and get its value
1286           ciInstance* box = array->obj_at(0)->as_instance();
1287           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1288           assert(ik->is_box_klass(), "sanity");
1289           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1290           if (ik->nof_nonstatic_fields() == 1) {
1291             // This should be true nonstatic_field_at requires calling
1292             // nof_nonstatic_fields so check it anyway
1293             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1294             BasicType bt = c.basic_type();
1295             // Only integer types have boxing cache.
1296             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1297                    bt == T_BYTE    || bt == T_SHORT ||
1298                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1299             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1300             if (cache_low != (int)cache_low) {
1301               return NULL; // should not happen since cache is array indexed by value
1302             }
1303             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1304             if (offset != (int)offset) {
1305               return NULL; // should not happen since cache is array indexed by value
1306             }
1307            // Add up all the offsets making of the address of the load
1308             Node* result = elements[0];
1309             for (int i = 1; i < count; i++) {
1310               result = phase->transform(new AddXNode(result, elements[i]));
1311             }
1312             // Remove the constant offset from the address and then
1313             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1314             // remove the scaling of the offset to recover the original index.
1315             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1316               // Peel the shift off directly but wrap it in a dummy node
1317               // since Ideal can't return existing nodes
1318               result = new RShiftXNode(result->in(1), phase->intcon(0));
1319             } else if (result->is_Add() && result->in(2)->is_Con() &&
1320                        result->in(1)->Opcode() == Op_LShiftX &&
1321                        result->in(1)->in(2) == phase->intcon(shift)) {
1322               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1323               // but for boxing cache access we know that X<<Z will not overflow
1324               // (there is range check) so we do this optimizatrion by hand here.
1325               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1326               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1327             } else {
1328               result = new RShiftXNode(result, phase->intcon(shift));
1329             }
1330 #ifdef _LP64
1331             if (bt != T_LONG) {
1332               result = new ConvL2INode(phase->transform(result));
1333             }
1334 #else
1335             if (bt == T_LONG) {
1336               result = new ConvI2LNode(phase->transform(result));
1337             }
1338 #endif
1339             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1340             // Need to preserve unboxing load type if it is unsigned.
1341             switch(this->Opcode()) {
1342               case Op_LoadUB:
1343                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1344                 break;
1345               case Op_LoadUS:
1346                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1347                 break;
1348             }
1349             return result;
1350           }
1351         }
1352       }
1353     }
1354   }
1355   return NULL;
1356 }
1357 
1358 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1359   Node* region = phi->in(0);
1360   if (region == NULL) {
1361     return false; // Wait stable graph
1362   }
1363   uint cnt = phi->req();
1364   for (uint i = 1; i < cnt; i++) {
1365     Node* rc = region->in(i);
1366     if (rc == NULL || phase->type(rc) == Type::TOP)
1367       return false; // Wait stable graph
1368     Node* in = phi->in(i);
1369     if (in == NULL || phase->type(in) == Type::TOP)
1370       return false; // Wait stable graph
1371   }
1372   return true;
1373 }
1374 //------------------------------split_through_phi------------------------------
1375 // Split instance or boxed field load through Phi.
1376 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1377   Node* mem     = in(Memory);
1378   Node* address = in(Address);
1379   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1380 
1381   assert((t_oop != NULL) &&
1382          (t_oop->is_known_instance_field() ||
1383           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1384 
1385   Compile* C = phase->C;
1386   intptr_t ignore = 0;
1387   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1388   bool base_is_phi = (base != NULL) && base->is_Phi();
1389   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1390                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1391                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1392 
1393   if (!((mem->is_Phi() || base_is_phi) &&
1394         (load_boxed_values || t_oop->is_known_instance_field()))) {
1395     return NULL; // memory is not Phi
1396   }
1397 
1398   if (mem->is_Phi()) {
1399     if (!stable_phi(mem->as_Phi(), phase)) {
1400       return NULL; // Wait stable graph
1401     }
1402     uint cnt = mem->req();
1403     // Check for loop invariant memory.
1404     if (cnt == 3) {
1405       for (uint i = 1; i < cnt; i++) {
1406         Node* in = mem->in(i);
1407         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1408         if (m == mem) {
1409           if (i == 1) {
1410             // if the first edge was a loop, check second edge too.
1411             // If both are replaceable - we are in an infinite loop
1412             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1413             if (n == mem) {
1414               break;
1415             }
1416           }
1417           set_req(Memory, mem->in(cnt - i));
1418           return this; // made change
1419         }
1420       }
1421     }
1422   }
1423   if (base_is_phi) {
1424     if (!stable_phi(base->as_Phi(), phase)) {
1425       return NULL; // Wait stable graph
1426     }
1427     uint cnt = base->req();
1428     // Check for loop invariant memory.
1429     if (cnt == 3) {
1430       for (uint i = 1; i < cnt; i++) {
1431         if (base->in(i) == base) {
1432           return NULL; // Wait stable graph
1433         }
1434       }
1435     }
1436   }
1437 
1438   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1439 
1440   // Split through Phi (see original code in loopopts.cpp).
1441   assert(C->have_alias_type(t_oop), "instance should have alias type");
1442 
1443   // Do nothing here if Identity will find a value
1444   // (to avoid infinite chain of value phis generation).
1445   if (!phase->eqv(this, phase->apply_identity(this)))
1446     return NULL;
1447 
1448   // Select Region to split through.
1449   Node* region;
1450   if (!base_is_phi) {
1451     assert(mem->is_Phi(), "sanity");
1452     region = mem->in(0);
1453     // Skip if the region dominates some control edge of the address.
1454     if (!MemNode::all_controls_dominate(address, region))
1455       return NULL;
1456   } else if (!mem->is_Phi()) {
1457     assert(base_is_phi, "sanity");
1458     region = base->in(0);
1459     // Skip if the region dominates some control edge of the memory.
1460     if (!MemNode::all_controls_dominate(mem, region))
1461       return NULL;
1462   } else if (base->in(0) != mem->in(0)) {
1463     assert(base_is_phi && mem->is_Phi(), "sanity");
1464     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1465       region = base->in(0);
1466     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1467       region = mem->in(0);
1468     } else {
1469       return NULL; // complex graph
1470     }
1471   } else {
1472     assert(base->in(0) == mem->in(0), "sanity");
1473     region = mem->in(0);
1474   }
1475 
1476   const Type* this_type = this->bottom_type();
1477   int this_index  = C->get_alias_index(t_oop);
1478   int this_offset = t_oop->offset();
1479   int this_iid    = t_oop->instance_id();
1480   if (!t_oop->is_known_instance() && load_boxed_values) {
1481     // Use _idx of address base for boxed values.
1482     this_iid = base->_idx;
1483   }
1484   PhaseIterGVN* igvn = phase->is_IterGVN();
1485   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1486   for (uint i = 1; i < region->req(); i++) {
1487     Node* x;
1488     Node* the_clone = NULL;
1489     if (region->in(i) == C->top()) {
1490       x = C->top();      // Dead path?  Use a dead data op
1491     } else {
1492       x = this->clone();        // Else clone up the data op
1493       the_clone = x;            // Remember for possible deletion.
1494       // Alter data node to use pre-phi inputs
1495       if (this->in(0) == region) {
1496         x->set_req(0, region->in(i));
1497       } else {
1498         x->set_req(0, NULL);
1499       }
1500       if (mem->is_Phi() && (mem->in(0) == region)) {
1501         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1502       }
1503       if (address->is_Phi() && address->in(0) == region) {
1504         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1505       }
1506       if (base_is_phi && (base->in(0) == region)) {
1507         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1508         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1509         x->set_req(Address, adr_x);
1510       }
1511     }
1512     // Check for a 'win' on some paths
1513     const Type *t = x->Value(igvn);
1514 
1515     bool singleton = t->singleton();
1516 
1517     // See comments in PhaseIdealLoop::split_thru_phi().
1518     if (singleton && t == Type::TOP) {
1519       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1520     }
1521 
1522     if (singleton) {
1523       x = igvn->makecon(t);
1524     } else {
1525       // We now call Identity to try to simplify the cloned node.
1526       // Note that some Identity methods call phase->type(this).
1527       // Make sure that the type array is big enough for
1528       // our new node, even though we may throw the node away.
1529       // (This tweaking with igvn only works because x is a new node.)
1530       igvn->set_type(x, t);
1531       // If x is a TypeNode, capture any more-precise type permanently into Node
1532       // otherwise it will be not updated during igvn->transform since
1533       // igvn->type(x) is set to x->Value() already.
1534       x->raise_bottom_type(t);
1535       Node *y = igvn->apply_identity(x);
1536       if (y != x) {
1537         x = y;
1538       } else {
1539         y = igvn->hash_find_insert(x);
1540         if (y) {
1541           x = y;
1542         } else {
1543           // Else x is a new node we are keeping
1544           // We do not need register_new_node_with_optimizer
1545           // because set_type has already been called.
1546           igvn->_worklist.push(x);
1547         }
1548       }
1549     }
1550     if (x != the_clone && the_clone != NULL) {
1551       igvn->remove_dead_node(the_clone);
1552     }
1553     phi->set_req(i, x);
1554   }
1555   // Record Phi
1556   igvn->register_new_node_with_optimizer(phi);
1557   return phi;
1558 }
1559 
1560 //------------------------------Ideal------------------------------------------
1561 // If the load is from Field memory and the pointer is non-null, it might be possible to
1562 // zero out the control input.
1563 // If the offset is constant and the base is an object allocation,
1564 // try to hook me up to the exact initializing store.
1565 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1566   Node* p = MemNode::Ideal_common(phase, can_reshape);
1567   if (p)  return (p == NodeSentinel) ? NULL : p;
1568 
1569   Node* ctrl    = in(MemNode::Control);
1570   Node* address = in(MemNode::Address);
1571   bool progress = false;
1572 
1573   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1574          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1575 
1576   // Skip up past a SafePoint control.  Cannot do this for Stores because
1577   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1578   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1579       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1580       !addr_mark ) {
1581     ctrl = ctrl->in(0);
1582     set_req(MemNode::Control,ctrl);
1583     progress = true;
1584   }
1585 
1586   intptr_t ignore = 0;
1587   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1588   if (base != NULL
1589       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1590     // Check for useless control edge in some common special cases
1591     if (in(MemNode::Control) != NULL
1592         && can_remove_control()
1593         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1594         && all_controls_dominate(base, phase->C->start())) {
1595       // A method-invariant, non-null address (constant or 'this' argument).
1596       set_req(MemNode::Control, NULL);
1597       progress = true;
1598     }
1599   }
1600 
1601   Node* mem = in(MemNode::Memory);
1602   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1603 
1604   if (can_reshape && (addr_t != NULL)) {
1605     // try to optimize our memory input
1606     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1607     if (opt_mem != mem) {
1608       set_req(MemNode::Memory, opt_mem);
1609       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1610       return this;
1611     }
1612     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1613     if ((t_oop != NULL) &&
1614         (t_oop->is_known_instance_field() ||
1615          t_oop->is_ptr_to_boxed_value())) {
1616       PhaseIterGVN *igvn = phase->is_IterGVN();
1617       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1618         // Delay this transformation until memory Phi is processed.
1619         phase->is_IterGVN()->_worklist.push(this);
1620         return NULL;
1621       }
1622       // Split instance field load through Phi.
1623       Node* result = split_through_phi(phase);
1624       if (result != NULL) return result;
1625 
1626       if (t_oop->is_ptr_to_boxed_value()) {
1627         Node* result = eliminate_autobox(phase);
1628         if (result != NULL) return result;
1629       }
1630     }
1631   }
1632 
1633   // Is there a dominating load that loads the same value?  Leave
1634   // anything that is not a load of a field/array element (like
1635   // barriers etc.) alone
1636   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1637     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1638       Node *use = mem->fast_out(i);
1639       if (use != this &&
1640           use->Opcode() == Opcode() &&
1641           use->in(0) != NULL &&
1642           use->in(0) != in(0) &&
1643           use->in(Address) == in(Address)) {
1644         Node* ctl = in(0);
1645         for (int i = 0; i < 10 && ctl != NULL; i++) {
1646           ctl = IfNode::up_one_dom(ctl);
1647           if (ctl == use->in(0)) {
1648             set_req(0, use->in(0));
1649             return this;
1650           }
1651         }
1652       }
1653     }
1654   }
1655 
1656   // Check for prior store with a different base or offset; make Load
1657   // independent.  Skip through any number of them.  Bail out if the stores
1658   // are in an endless dead cycle and report no progress.  This is a key
1659   // transform for Reflection.  However, if after skipping through the Stores
1660   // we can't then fold up against a prior store do NOT do the transform as
1661   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1662   // array memory alive twice: once for the hoisted Load and again after the
1663   // bypassed Store.  This situation only works if EVERYBODY who does
1664   // anti-dependence work knows how to bypass.  I.e. we need all
1665   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1666   // the alias index stuff.  So instead, peek through Stores and IFF we can
1667   // fold up, do so.
1668   Node* prev_mem = find_previous_store(phase);
1669   if (prev_mem != NULL) {
1670     Node* value = can_see_arraycopy_value(prev_mem, phase);
1671     if (value != NULL) {
1672       return value;
1673     }
1674   }
1675   // Steps (a), (b):  Walk past independent stores to find an exact match.
1676   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1677     // (c) See if we can fold up on the spot, but don't fold up here.
1678     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1679     // just return a prior value, which is done by Identity calls.
1680     if (can_see_stored_value(prev_mem, phase)) {
1681       // Make ready for step (d):
1682       set_req(MemNode::Memory, prev_mem);
1683       return this;
1684     }
1685   }
1686 
1687   return progress ? this : NULL;
1688 }
1689 
1690 // Helper to recognize certain Klass fields which are invariant across
1691 // some group of array types (e.g., int[] or all T[] where T < Object).
1692 const Type*
1693 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1694                                  ciKlass* klass) const {
1695   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1696     // The field is Klass::_modifier_flags.  Return its (constant) value.
1697     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1698     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1699     return TypeInt::make(klass->modifier_flags());
1700   }
1701   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1702     // The field is Klass::_access_flags.  Return its (constant) value.
1703     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1704     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1705     return TypeInt::make(klass->access_flags());
1706   }
1707   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1708     // The field is Klass::_layout_helper.  Return its constant value if known.
1709     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1710     return TypeInt::make(klass->layout_helper());
1711   }
1712 
1713   // No match.
1714   return NULL;
1715 }
1716 
1717 //------------------------------Value-----------------------------------------
1718 const Type* LoadNode::Value(PhaseGVN* phase) const {
1719   // Either input is TOP ==> the result is TOP
1720   Node* mem = in(MemNode::Memory);
1721   const Type *t1 = phase->type(mem);
1722   if (t1 == Type::TOP)  return Type::TOP;
1723   Node* adr = in(MemNode::Address);
1724   const TypePtr* tp = phase->type(adr)->isa_ptr();
1725   if (tp == NULL || tp->empty())  return Type::TOP;
1726   int off = tp->offset();
1727   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1728   Compile* C = phase->C;
1729 
1730   // Try to guess loaded type from pointer type
1731   if (tp->isa_aryptr()) {
1732     const TypeAryPtr* ary = tp->is_aryptr();
1733     const Type* t = ary->elem();
1734 
1735     // Determine whether the reference is beyond the header or not, by comparing
1736     // the offset against the offset of the start of the array's data.
1737     // Different array types begin at slightly different offsets (12 vs. 16).
1738     // We choose T_BYTE as an example base type that is least restrictive
1739     // as to alignment, which will therefore produce the smallest
1740     // possible base offset.
1741     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1742     const bool off_beyond_header = (off >= min_base_off);
1743 
1744     // Try to constant-fold a stable array element.
1745     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1746       // Make sure the reference is not into the header and the offset is constant
1747       ciObject* aobj = ary->const_oop();
1748       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1749         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1750         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1751                                                                       stable_dimension,
1752                                                                       memory_type(), is_unsigned());
1753         if (con_type != NULL) {
1754           return con_type;
1755         }
1756       }
1757     }
1758 
1759     // Don't do this for integer types. There is only potential profit if
1760     // the element type t is lower than _type; that is, for int types, if _type is
1761     // more restrictive than t.  This only happens here if one is short and the other
1762     // char (both 16 bits), and in those cases we've made an intentional decision
1763     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1764     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1765     //
1766     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1767     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1768     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1769     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1770     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1771     // In fact, that could have been the original type of p1, and p1 could have
1772     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1773     // expression (LShiftL quux 3) independently optimized to the constant 8.
1774     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1775         && (_type->isa_vect() == NULL)
1776         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1777       // t might actually be lower than _type, if _type is a unique
1778       // concrete subclass of abstract class t.
1779       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1780         const Type* jt = t->join_speculative(_type);
1781         // In any case, do not allow the join, per se, to empty out the type.
1782         if (jt->empty() && !t->empty()) {
1783           // This can happen if a interface-typed array narrows to a class type.
1784           jt = _type;
1785         }
1786 #ifdef ASSERT
1787         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1788           // The pointers in the autobox arrays are always non-null
1789           Node* base = adr->in(AddPNode::Base);
1790           if ((base != NULL) && base->is_DecodeN()) {
1791             // Get LoadN node which loads IntegerCache.cache field
1792             base = base->in(1);
1793           }
1794           if ((base != NULL) && base->is_Con()) {
1795             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1796             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1797               // It could be narrow oop
1798               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1799             }
1800           }
1801         }
1802 #endif
1803         return jt;
1804       }
1805     }
1806   } else if (tp->base() == Type::InstPtr) {
1807     assert( off != Type::OffsetBot ||
1808             // arrays can be cast to Objects
1809             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1810             // unsafe field access may not have a constant offset
1811             C->has_unsafe_access(),
1812             "Field accesses must be precise" );
1813     // For oop loads, we expect the _type to be precise.
1814 
1815     // Optimize loads from constant fields.
1816     const TypeInstPtr* tinst = tp->is_instptr();
1817     ciObject* const_oop = tinst->const_oop();
1818     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1819       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1820       if (con_type != NULL) {
1821         return con_type;
1822       }
1823     }
1824   } else if (tp->base() == Type::KlassPtr) {
1825     assert( off != Type::OffsetBot ||
1826             // arrays can be cast to Objects
1827             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1828             // also allow array-loading from the primary supertype
1829             // array during subtype checks
1830             Opcode() == Op_LoadKlass,
1831             "Field accesses must be precise" );
1832     // For klass/static loads, we expect the _type to be precise
1833   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1834     /* With mirrors being an indirect in the Klass*
1835      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1836      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1837      *
1838      * So check the type and klass of the node before the LoadP.
1839      */
1840     Node* adr2 = adr->in(MemNode::Address);
1841     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1842     if (tkls != NULL && !StressReflectiveCode) {
1843       ciKlass* klass = tkls->klass();
1844       if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1845         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1846         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1847         return TypeInstPtr::make(klass->java_mirror());
1848       }
1849     }
1850   }
1851 
1852   const TypeKlassPtr *tkls = tp->isa_klassptr();
1853   if (tkls != NULL && !StressReflectiveCode) {
1854     ciKlass* klass = tkls->klass();
1855     if (klass->is_loaded() && tkls->klass_is_exact()) {
1856       // We are loading a field from a Klass metaobject whose identity
1857       // is known at compile time (the type is "exact" or "precise").
1858       // Check for fields we know are maintained as constants by the VM.
1859       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1860         // The field is Klass::_super_check_offset.  Return its (constant) value.
1861         // (Folds up type checking code.)
1862         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1863         return TypeInt::make(klass->super_check_offset());
1864       }
1865       // Compute index into primary_supers array
1866       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1867       // Check for overflowing; use unsigned compare to handle the negative case.
1868       if( depth < ciKlass::primary_super_limit() ) {
1869         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1870         // (Folds up type checking code.)
1871         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1872         ciKlass *ss = klass->super_of_depth(depth);
1873         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1874       }
1875       const Type* aift = load_array_final_field(tkls, klass);
1876       if (aift != NULL)  return aift;
1877     }
1878 
1879     // We can still check if we are loading from the primary_supers array at a
1880     // shallow enough depth.  Even though the klass is not exact, entries less
1881     // than or equal to its super depth are correct.
1882     if (klass->is_loaded() ) {
1883       ciType *inner = klass;
1884       while( inner->is_obj_array_klass() )
1885         inner = inner->as_obj_array_klass()->base_element_type();
1886       if( inner->is_instance_klass() &&
1887           !inner->as_instance_klass()->flags().is_interface() ) {
1888         // Compute index into primary_supers array
1889         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1890         // Check for overflowing; use unsigned compare to handle the negative case.
1891         if( depth < ciKlass::primary_super_limit() &&
1892             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1893           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1894           // (Folds up type checking code.)
1895           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1896           ciKlass *ss = klass->super_of_depth(depth);
1897           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1898         }
1899       }
1900     }
1901 
1902     // If the type is enough to determine that the thing is not an array,
1903     // we can give the layout_helper a positive interval type.
1904     // This will help short-circuit some reflective code.
1905     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1906         && !klass->is_array_klass() // not directly typed as an array
1907         && !klass->is_interface()  // specifically not Serializable & Cloneable
1908         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1909         ) {
1910       // Note:  When interfaces are reliable, we can narrow the interface
1911       // test to (klass != Serializable && klass != Cloneable).
1912       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1913       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1914       // The key property of this type is that it folds up tests
1915       // for array-ness, since it proves that the layout_helper is positive.
1916       // Thus, a generic value like the basic object layout helper works fine.
1917       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1918     }
1919   }
1920 
1921   // If we are loading from a freshly-allocated object, produce a zero,
1922   // if the load is provably beyond the header of the object.
1923   // (Also allow a variable load from a fresh array to produce zero.)
1924   const TypeOopPtr *tinst = tp->isa_oopptr();
1925   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1926   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1927   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1928     Node* value = can_see_stored_value(mem,phase);
1929     if (value != NULL && value->is_Con()) {
1930       assert(value->bottom_type()->higher_equal(_type),"sanity");
1931       return value->bottom_type();
1932     }
1933   }
1934 
1935   if (is_instance) {
1936     // If we have an instance type and our memory input is the
1937     // programs's initial memory state, there is no matching store,
1938     // so just return a zero of the appropriate type
1939     Node *mem = in(MemNode::Memory);
1940     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1941       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1942       return Type::get_zero_type(_type->basic_type());
1943     }
1944   }
1945   return _type;
1946 }
1947 
1948 //------------------------------match_edge-------------------------------------
1949 // Do we Match on this edge index or not?  Match only the address.
1950 uint LoadNode::match_edge(uint idx) const {
1951   return idx == MemNode::Address;
1952 }
1953 
1954 //--------------------------LoadBNode::Ideal--------------------------------------
1955 //
1956 //  If the previous store is to the same address as this load,
1957 //  and the value stored was larger than a byte, replace this load
1958 //  with the value stored truncated to a byte.  If no truncation is
1959 //  needed, the replacement is done in LoadNode::Identity().
1960 //
1961 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1962   Node* mem = in(MemNode::Memory);
1963   Node* value = can_see_stored_value(mem,phase);
1964   if( value && !phase->type(value)->higher_equal( _type ) ) {
1965     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1966     return new RShiftINode(result, phase->intcon(24));
1967   }
1968   // Identity call will handle the case where truncation is not needed.
1969   return LoadNode::Ideal(phase, can_reshape);
1970 }
1971 
1972 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1973   Node* mem = in(MemNode::Memory);
1974   Node* value = can_see_stored_value(mem,phase);
1975   if (value != NULL && value->is_Con() &&
1976       !value->bottom_type()->higher_equal(_type)) {
1977     // If the input to the store does not fit with the load's result type,
1978     // it must be truncated. We can't delay until Ideal call since
1979     // a singleton Value is needed for split_thru_phi optimization.
1980     int con = value->get_int();
1981     return TypeInt::make((con << 24) >> 24);
1982   }
1983   return LoadNode::Value(phase);
1984 }
1985 
1986 //--------------------------LoadUBNode::Ideal-------------------------------------
1987 //
1988 //  If the previous store is to the same address as this load,
1989 //  and the value stored was larger than a byte, replace this load
1990 //  with the value stored truncated to a byte.  If no truncation is
1991 //  needed, the replacement is done in LoadNode::Identity().
1992 //
1993 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1994   Node* mem = in(MemNode::Memory);
1995   Node* value = can_see_stored_value(mem, phase);
1996   if (value && !phase->type(value)->higher_equal(_type))
1997     return new AndINode(value, phase->intcon(0xFF));
1998   // Identity call will handle the case where truncation is not needed.
1999   return LoadNode::Ideal(phase, can_reshape);
2000 }
2001 
2002 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2003   Node* mem = in(MemNode::Memory);
2004   Node* value = can_see_stored_value(mem,phase);
2005   if (value != NULL && value->is_Con() &&
2006       !value->bottom_type()->higher_equal(_type)) {
2007     // If the input to the store does not fit with the load's result type,
2008     // it must be truncated. We can't delay until Ideal call since
2009     // a singleton Value is needed for split_thru_phi optimization.
2010     int con = value->get_int();
2011     return TypeInt::make(con & 0xFF);
2012   }
2013   return LoadNode::Value(phase);
2014 }
2015 
2016 //--------------------------LoadUSNode::Ideal-------------------------------------
2017 //
2018 //  If the previous store is to the same address as this load,
2019 //  and the value stored was larger than a char, replace this load
2020 //  with the value stored truncated to a char.  If no truncation is
2021 //  needed, the replacement is done in LoadNode::Identity().
2022 //
2023 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2024   Node* mem = in(MemNode::Memory);
2025   Node* value = can_see_stored_value(mem,phase);
2026   if( value && !phase->type(value)->higher_equal( _type ) )
2027     return new AndINode(value,phase->intcon(0xFFFF));
2028   // Identity call will handle the case where truncation is not needed.
2029   return LoadNode::Ideal(phase, can_reshape);
2030 }
2031 
2032 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2033   Node* mem = in(MemNode::Memory);
2034   Node* value = can_see_stored_value(mem,phase);
2035   if (value != NULL && value->is_Con() &&
2036       !value->bottom_type()->higher_equal(_type)) {
2037     // If the input to the store does not fit with the load's result type,
2038     // it must be truncated. We can't delay until Ideal call since
2039     // a singleton Value is needed for split_thru_phi optimization.
2040     int con = value->get_int();
2041     return TypeInt::make(con & 0xFFFF);
2042   }
2043   return LoadNode::Value(phase);
2044 }
2045 
2046 //--------------------------LoadSNode::Ideal--------------------------------------
2047 //
2048 //  If the previous store is to the same address as this load,
2049 //  and the value stored was larger than a short, replace this load
2050 //  with the value stored truncated to a short.  If no truncation is
2051 //  needed, the replacement is done in LoadNode::Identity().
2052 //
2053 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2054   Node* mem = in(MemNode::Memory);
2055   Node* value = can_see_stored_value(mem,phase);
2056   if( value && !phase->type(value)->higher_equal( _type ) ) {
2057     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2058     return new RShiftINode(result, phase->intcon(16));
2059   }
2060   // Identity call will handle the case where truncation is not needed.
2061   return LoadNode::Ideal(phase, can_reshape);
2062 }
2063 
2064 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2065   Node* mem = in(MemNode::Memory);
2066   Node* value = can_see_stored_value(mem,phase);
2067   if (value != NULL && value->is_Con() &&
2068       !value->bottom_type()->higher_equal(_type)) {
2069     // If the input to the store does not fit with the load's result type,
2070     // it must be truncated. We can't delay until Ideal call since
2071     // a singleton Value is needed for split_thru_phi optimization.
2072     int con = value->get_int();
2073     return TypeInt::make((con << 16) >> 16);
2074   }
2075   return LoadNode::Value(phase);
2076 }
2077 
2078 //=============================================================================
2079 //----------------------------LoadKlassNode::make------------------------------
2080 // Polymorphic factory method:
2081 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2082   // sanity check the alias category against the created node type
2083   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2084   assert(adr_type != NULL, "expecting TypeKlassPtr");
2085 #ifdef _LP64
2086   if (adr_type->is_ptr_to_narrowklass()) {
2087     assert(UseCompressedClassPointers, "no compressed klasses");
2088     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2089     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2090   }
2091 #endif
2092   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2093   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2094 }
2095 
2096 //------------------------------Value------------------------------------------
2097 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2098   return klass_value_common(phase);
2099 }
2100 
2101 // In most cases, LoadKlassNode does not have the control input set. If the control
2102 // input is set, it must not be removed (by LoadNode::Ideal()).
2103 bool LoadKlassNode::can_remove_control() const {
2104   return false;
2105 }
2106 
2107 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2108   // Either input is TOP ==> the result is TOP
2109   const Type *t1 = phase->type( in(MemNode::Memory) );
2110   if (t1 == Type::TOP)  return Type::TOP;
2111   Node *adr = in(MemNode::Address);
2112   const Type *t2 = phase->type( adr );
2113   if (t2 == Type::TOP)  return Type::TOP;
2114   const TypePtr *tp = t2->is_ptr();
2115   if (TypePtr::above_centerline(tp->ptr()) ||
2116       tp->ptr() == TypePtr::Null)  return Type::TOP;
2117 
2118   // Return a more precise klass, if possible
2119   const TypeInstPtr *tinst = tp->isa_instptr();
2120   if (tinst != NULL) {
2121     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2122     int offset = tinst->offset();
2123     if (ik == phase->C->env()->Class_klass()
2124         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2125             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2126       // We are loading a special hidden field from a Class mirror object,
2127       // the field which points to the VM's Klass metaobject.
2128       ciType* t = tinst->java_mirror_type();
2129       // java_mirror_type returns non-null for compile-time Class constants.
2130       if (t != NULL) {
2131         // constant oop => constant klass
2132         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2133           if (t->is_void()) {
2134             // We cannot create a void array.  Since void is a primitive type return null
2135             // klass.  Users of this result need to do a null check on the returned klass.
2136             return TypePtr::NULL_PTR;
2137           }
2138           return TypeKlassPtr::make(ciArrayKlass::make(t));
2139         }
2140         if (!t->is_klass()) {
2141           // a primitive Class (e.g., int.class) has NULL for a klass field
2142           return TypePtr::NULL_PTR;
2143         }
2144         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2145         return TypeKlassPtr::make(t->as_klass());
2146       }
2147       // non-constant mirror, so we can't tell what's going on
2148     }
2149     if( !ik->is_loaded() )
2150       return _type;             // Bail out if not loaded
2151     if (offset == oopDesc::klass_offset_in_bytes()) {
2152       if (tinst->klass_is_exact()) {
2153         return TypeKlassPtr::make(ik);
2154       }
2155       // See if we can become precise: no subklasses and no interface
2156       // (Note:  We need to support verified interfaces.)
2157       if (!ik->is_interface() && !ik->has_subklass()) {
2158         //assert(!UseExactTypes, "this code should be useless with exact types");
2159         // Add a dependence; if any subclass added we need to recompile
2160         if (!ik->is_final()) {
2161           // %%% should use stronger assert_unique_concrete_subtype instead
2162           phase->C->dependencies()->assert_leaf_type(ik);
2163         }
2164         // Return precise klass
2165         return TypeKlassPtr::make(ik);
2166       }
2167 
2168       // Return root of possible klass
2169       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2170     }
2171   }
2172 
2173   // Check for loading klass from an array
2174   const TypeAryPtr *tary = tp->isa_aryptr();
2175   if( tary != NULL ) {
2176     ciKlass *tary_klass = tary->klass();
2177     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2178         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2179       if (tary->klass_is_exact()) {
2180         return TypeKlassPtr::make(tary_klass);
2181       }
2182       ciArrayKlass *ak = tary->klass()->as_array_klass();
2183       // If the klass is an object array, we defer the question to the
2184       // array component klass.
2185       if( ak->is_obj_array_klass() ) {
2186         assert( ak->is_loaded(), "" );
2187         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2188         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2189           ciInstanceKlass* ik = base_k->as_instance_klass();
2190           // See if we can become precise: no subklasses and no interface
2191           if (!ik->is_interface() && !ik->has_subklass()) {
2192             //assert(!UseExactTypes, "this code should be useless with exact types");
2193             // Add a dependence; if any subclass added we need to recompile
2194             if (!ik->is_final()) {
2195               phase->C->dependencies()->assert_leaf_type(ik);
2196             }
2197             // Return precise array klass
2198             return TypeKlassPtr::make(ak);
2199           }
2200         }
2201         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2202       } else {                  // Found a type-array?
2203         //assert(!UseExactTypes, "this code should be useless with exact types");
2204         assert( ak->is_type_array_klass(), "" );
2205         return TypeKlassPtr::make(ak); // These are always precise
2206       }
2207     }
2208   }
2209 
2210   // Check for loading klass from an array klass
2211   const TypeKlassPtr *tkls = tp->isa_klassptr();
2212   if (tkls != NULL && !StressReflectiveCode) {
2213     ciKlass* klass = tkls->klass();
2214     if( !klass->is_loaded() )
2215       return _type;             // Bail out if not loaded
2216     if( klass->is_obj_array_klass() &&
2217         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2218       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2219       // // Always returning precise element type is incorrect,
2220       // // e.g., element type could be object and array may contain strings
2221       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2222 
2223       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2224       // according to the element type's subclassing.
2225       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2226     }
2227     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2228         tkls->offset() == in_bytes(Klass::super_offset())) {
2229       ciKlass* sup = klass->as_instance_klass()->super();
2230       // The field is Klass::_super.  Return its (constant) value.
2231       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2232       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2233     }
2234   }
2235 
2236   // Bailout case
2237   return LoadNode::Value(phase);
2238 }
2239 
2240 //------------------------------Identity---------------------------------------
2241 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2242 // Also feed through the klass in Allocate(...klass...)._klass.
2243 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2244   return klass_identity_common(phase);
2245 }
2246 
2247 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2248   Node* x = LoadNode::Identity(phase);
2249   if (x != this)  return x;
2250 
2251   // Take apart the address into an oop and and offset.
2252   // Return 'this' if we cannot.
2253   Node*    adr    = in(MemNode::Address);
2254   intptr_t offset = 0;
2255   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2256   if (base == NULL)     return this;
2257   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2258   if (toop == NULL)     return this;
2259 
2260   // Step over potential GC barrier for OopHandle resolve
2261   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2262   if (bs->is_gc_barrier_node(base)) {
2263     base = bs->step_over_gc_barrier(base);
2264   }
2265 
2266   // We can fetch the klass directly through an AllocateNode.
2267   // This works even if the klass is not constant (clone or newArray).
2268   if (offset == oopDesc::klass_offset_in_bytes()) {
2269     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2270     if (allocated_klass != NULL) {
2271       return allocated_klass;
2272     }
2273   }
2274 
2275   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2276   // See inline_native_Class_query for occurrences of these patterns.
2277   // Java Example:  x.getClass().isAssignableFrom(y)
2278   //
2279   // This improves reflective code, often making the Class
2280   // mirror go completely dead.  (Current exception:  Class
2281   // mirrors may appear in debug info, but we could clean them out by
2282   // introducing a new debug info operator for Klass.java_mirror).
2283 
2284   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2285       && offset == java_lang_Class::klass_offset_in_bytes()) {
2286     if (base->is_Load()) {
2287       Node* base2 = base->in(MemNode::Address);
2288       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2289         Node* adr2 = base2->in(MemNode::Address);
2290         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2291         if (tkls != NULL && !tkls->empty()
2292             && (tkls->klass()->is_instance_klass() ||
2293               tkls->klass()->is_array_klass())
2294             && adr2->is_AddP()
2295            ) {
2296           int mirror_field = in_bytes(Klass::java_mirror_offset());
2297           if (tkls->offset() == mirror_field) {
2298             return adr2->in(AddPNode::Base);
2299           }
2300         }
2301       }
2302     }
2303   }
2304 
2305   return this;
2306 }
2307 
2308 
2309 //------------------------------Value------------------------------------------
2310 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2311   const Type *t = klass_value_common(phase);
2312   if (t == Type::TOP)
2313     return t;
2314 
2315   return t->make_narrowklass();
2316 }
2317 
2318 //------------------------------Identity---------------------------------------
2319 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2320 // Also feed through the klass in Allocate(...klass...)._klass.
2321 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2322   Node *x = klass_identity_common(phase);
2323 
2324   const Type *t = phase->type( x );
2325   if( t == Type::TOP ) return x;
2326   if( t->isa_narrowklass()) return x;
2327   assert (!t->isa_narrowoop(), "no narrow oop here");
2328 
2329   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2330 }
2331 
2332 //------------------------------Value-----------------------------------------
2333 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2334   // Either input is TOP ==> the result is TOP
2335   const Type *t1 = phase->type( in(MemNode::Memory) );
2336   if( t1 == Type::TOP ) return Type::TOP;
2337   Node *adr = in(MemNode::Address);
2338   const Type *t2 = phase->type( adr );
2339   if( t2 == Type::TOP ) return Type::TOP;
2340   const TypePtr *tp = t2->is_ptr();
2341   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2342   const TypeAryPtr *tap = tp->isa_aryptr();
2343   if( !tap ) return _type;
2344   return tap->size();
2345 }
2346 
2347 //-------------------------------Ideal---------------------------------------
2348 // Feed through the length in AllocateArray(...length...)._length.
2349 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2350   Node* p = MemNode::Ideal_common(phase, can_reshape);
2351   if (p)  return (p == NodeSentinel) ? NULL : p;
2352 
2353   // Take apart the address into an oop and and offset.
2354   // Return 'this' if we cannot.
2355   Node*    adr    = in(MemNode::Address);
2356   intptr_t offset = 0;
2357   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2358   if (base == NULL)     return NULL;
2359   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2360   if (tary == NULL)     return NULL;
2361 
2362   // We can fetch the length directly through an AllocateArrayNode.
2363   // This works even if the length is not constant (clone or newArray).
2364   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2365     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2366     if (alloc != NULL) {
2367       Node* allocated_length = alloc->Ideal_length();
2368       Node* len = alloc->make_ideal_length(tary, phase);
2369       if (allocated_length != len) {
2370         // New CastII improves on this.
2371         return len;
2372       }
2373     }
2374   }
2375 
2376   return NULL;
2377 }
2378 
2379 //------------------------------Identity---------------------------------------
2380 // Feed through the length in AllocateArray(...length...)._length.
2381 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2382   Node* x = LoadINode::Identity(phase);
2383   if (x != this)  return x;
2384 
2385   // Take apart the address into an oop and and offset.
2386   // Return 'this' if we cannot.
2387   Node*    adr    = in(MemNode::Address);
2388   intptr_t offset = 0;
2389   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2390   if (base == NULL)     return this;
2391   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2392   if (tary == NULL)     return this;
2393 
2394   // We can fetch the length directly through an AllocateArrayNode.
2395   // This works even if the length is not constant (clone or newArray).
2396   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2397     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2398     if (alloc != NULL) {
2399       Node* allocated_length = alloc->Ideal_length();
2400       // Do not allow make_ideal_length to allocate a CastII node.
2401       Node* len = alloc->make_ideal_length(tary, phase, false);
2402       if (allocated_length == len) {
2403         // Return allocated_length only if it would not be improved by a CastII.
2404         return allocated_length;
2405       }
2406     }
2407   }
2408 
2409   return this;
2410 
2411 }
2412 
2413 //=============================================================================
2414 //---------------------------StoreNode::make-----------------------------------
2415 // Polymorphic factory method:
2416 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2417   assert((mo == unordered || mo == release), "unexpected");
2418   Compile* C = gvn.C;
2419   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2420          ctl != NULL, "raw memory operations should have control edge");
2421 
2422   switch (bt) {
2423   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2424   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2425   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2426   case T_CHAR:
2427   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2428   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2429   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2430   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2431   case T_METADATA:
2432   case T_ADDRESS:
2433   case T_OBJECT:
2434 #ifdef _LP64
2435     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2436       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2437       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2438     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2439                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2440                 adr->bottom_type()->isa_rawptr())) {
2441       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2442       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2443     }
2444 #endif
2445     {
2446       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2447     }
2448   default:
2449     ShouldNotReachHere();
2450     return (StoreNode*)NULL;
2451   }
2452 }
2453 
2454 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2455   bool require_atomic = true;
2456   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2457 }
2458 
2459 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2460   bool require_atomic = true;
2461   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2462 }
2463 
2464 
2465 //--------------------------bottom_type----------------------------------------
2466 const Type *StoreNode::bottom_type() const {
2467   return Type::MEMORY;
2468 }
2469 
2470 //------------------------------hash-------------------------------------------
2471 uint StoreNode::hash() const {
2472   // unroll addition of interesting fields
2473   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2474 
2475   // Since they are not commoned, do not hash them:
2476   return NO_HASH;
2477 }
2478 
2479 //------------------------------Ideal------------------------------------------
2480 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2481 // When a store immediately follows a relevant allocation/initialization,
2482 // try to capture it into the initialization, or hoist it above.
2483 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2484   Node* p = MemNode::Ideal_common(phase, can_reshape);
2485   if (p)  return (p == NodeSentinel) ? NULL : p;
2486 
2487   Node* mem     = in(MemNode::Memory);
2488   Node* address = in(MemNode::Address);
2489   // Back-to-back stores to same address?  Fold em up.  Generally
2490   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2491   // since they must follow each StoreP operation.  Redundant StoreCMs
2492   // are eliminated just before matching in final_graph_reshape.
2493   {
2494     Node* st = mem;
2495     // If Store 'st' has more than one use, we cannot fold 'st' away.
2496     // For example, 'st' might be the final state at a conditional
2497     // return.  Or, 'st' might be used by some node which is live at
2498     // the same time 'st' is live, which might be unschedulable.  So,
2499     // require exactly ONE user until such time as we clone 'mem' for
2500     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2501     // true).
2502     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2503       // Looking at a dead closed cycle of memory?
2504       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2505       assert(Opcode() == st->Opcode() ||
2506              st->Opcode() == Op_StoreVector ||
2507              Opcode() == Op_StoreVector ||
2508              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2509              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2510              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2511              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2512              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2513 
2514       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2515           st->as_Store()->memory_size() <= this->memory_size()) {
2516         Node* use = st->raw_out(0);
2517         phase->igvn_rehash_node_delayed(use);
2518         if (can_reshape) {
2519           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2520         } else {
2521           // It's OK to do this in the parser, since DU info is always accurate,
2522           // and the parser always refers to nodes via SafePointNode maps.
2523           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2524         }
2525         return this;
2526       }
2527       st = st->in(MemNode::Memory);
2528     }
2529   }
2530 
2531 
2532   // Capture an unaliased, unconditional, simple store into an initializer.
2533   // Or, if it is independent of the allocation, hoist it above the allocation.
2534   if (ReduceFieldZeroing && /*can_reshape &&*/
2535       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2536     InitializeNode* init = mem->in(0)->as_Initialize();
2537     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2538     if (offset > 0) {
2539       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2540       // If the InitializeNode captured me, it made a raw copy of me,
2541       // and I need to disappear.
2542       if (moved != NULL) {
2543         // %%% hack to ensure that Ideal returns a new node:
2544         mem = MergeMemNode::make(mem);
2545         return mem;             // fold me away
2546       }
2547     }
2548   }
2549 
2550   return NULL;                  // No further progress
2551 }
2552 
2553 //------------------------------Value-----------------------------------------
2554 const Type* StoreNode::Value(PhaseGVN* phase) const {
2555   // Either input is TOP ==> the result is TOP
2556   const Type *t1 = phase->type( in(MemNode::Memory) );
2557   if( t1 == Type::TOP ) return Type::TOP;
2558   const Type *t2 = phase->type( in(MemNode::Address) );
2559   if( t2 == Type::TOP ) return Type::TOP;
2560   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2561   if( t3 == Type::TOP ) return Type::TOP;
2562   return Type::MEMORY;
2563 }
2564 
2565 //------------------------------Identity---------------------------------------
2566 // Remove redundant stores:
2567 //   Store(m, p, Load(m, p)) changes to m.
2568 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2569 Node* StoreNode::Identity(PhaseGVN* phase) {
2570   Node* mem = in(MemNode::Memory);
2571   Node* adr = in(MemNode::Address);
2572   Node* val = in(MemNode::ValueIn);
2573 
2574   Node* result = this;
2575 
2576   // Load then Store?  Then the Store is useless
2577   if (val->is_Load() &&
2578       val->in(MemNode::Address)->eqv_uncast(adr) &&
2579       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2580       val->as_Load()->store_Opcode() == Opcode()) {
2581     result = mem;
2582   }
2583 
2584   // Two stores in a row of the same value?
2585   if (result == this &&
2586       mem->is_Store() &&
2587       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2588       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2589       mem->Opcode() == Opcode()) {
2590     result = mem;
2591   }
2592 
2593   // Store of zero anywhere into a freshly-allocated object?
2594   // Then the store is useless.
2595   // (It must already have been captured by the InitializeNode.)
2596   if (result == this &&
2597       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2598     // a newly allocated object is already all-zeroes everywhere
2599     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2600       result = mem;
2601     }
2602 
2603     if (result == this) {
2604       // the store may also apply to zero-bits in an earlier object
2605       Node* prev_mem = find_previous_store(phase);
2606       // Steps (a), (b):  Walk past independent stores to find an exact match.
2607       if (prev_mem != NULL) {
2608         Node* prev_val = can_see_stored_value(prev_mem, phase);
2609         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2610           // prev_val and val might differ by a cast; it would be good
2611           // to keep the more informative of the two.
2612           result = mem;
2613         }
2614       }
2615     }
2616   }
2617 
2618   if (result != this && phase->is_IterGVN() != NULL) {
2619     MemBarNode* trailing = trailing_membar();
2620     if (trailing != NULL) {
2621 #ifdef ASSERT
2622       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2623       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2624 #endif
2625       PhaseIterGVN* igvn = phase->is_IterGVN();
2626       trailing->remove(igvn);
2627     }
2628   }
2629 
2630   return result;
2631 }
2632 
2633 //------------------------------match_edge-------------------------------------
2634 // Do we Match on this edge index or not?  Match only memory & value
2635 uint StoreNode::match_edge(uint idx) const {
2636   return idx == MemNode::Address || idx == MemNode::ValueIn;
2637 }
2638 
2639 //------------------------------cmp--------------------------------------------
2640 // Do not common stores up together.  They generally have to be split
2641 // back up anyways, so do not bother.
2642 bool StoreNode::cmp( const Node &n ) const {
2643   return (&n == this);          // Always fail except on self
2644 }
2645 
2646 //------------------------------Ideal_masked_input-----------------------------
2647 // Check for a useless mask before a partial-word store
2648 // (StoreB ... (AndI valIn conIa) )
2649 // If (conIa & mask == mask) this simplifies to
2650 // (StoreB ... (valIn) )
2651 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2652   Node *val = in(MemNode::ValueIn);
2653   if( val->Opcode() == Op_AndI ) {
2654     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2655     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2656       set_req(MemNode::ValueIn, val->in(1));
2657       return this;
2658     }
2659   }
2660   return NULL;
2661 }
2662 
2663 
2664 //------------------------------Ideal_sign_extended_input----------------------
2665 // Check for useless sign-extension before a partial-word store
2666 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2667 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2668 // (StoreB ... (valIn) )
2669 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2670   Node *val = in(MemNode::ValueIn);
2671   if( val->Opcode() == Op_RShiftI ) {
2672     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2673     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2674       Node *shl = val->in(1);
2675       if( shl->Opcode() == Op_LShiftI ) {
2676         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2677         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2678           set_req(MemNode::ValueIn, shl->in(1));
2679           return this;
2680         }
2681       }
2682     }
2683   }
2684   return NULL;
2685 }
2686 
2687 //------------------------------value_never_loaded-----------------------------------
2688 // Determine whether there are any possible loads of the value stored.
2689 // For simplicity, we actually check if there are any loads from the
2690 // address stored to, not just for loads of the value stored by this node.
2691 //
2692 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2693   Node *adr = in(Address);
2694   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2695   if (adr_oop == NULL)
2696     return false;
2697   if (!adr_oop->is_known_instance_field())
2698     return false; // if not a distinct instance, there may be aliases of the address
2699   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2700     Node *use = adr->fast_out(i);
2701     if (use->is_Load() || use->is_LoadStore()) {
2702       return false;
2703     }
2704   }
2705   return true;
2706 }
2707 
2708 MemBarNode* StoreNode::trailing_membar() const {
2709   if (is_release()) {
2710     MemBarNode* trailing_mb = NULL;
2711     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2712       Node* u = fast_out(i);
2713       if (u->is_MemBar()) {
2714         if (u->as_MemBar()->trailing_store()) {
2715           assert(u->Opcode() == Op_MemBarVolatile, "");
2716           assert(trailing_mb == NULL, "only one");
2717           trailing_mb = u->as_MemBar();
2718 #ifdef ASSERT
2719           Node* leading = u->as_MemBar()->leading_membar();
2720           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2721           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2722           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2723 #endif
2724         } else {
2725           assert(u->as_MemBar()->standalone(), "");
2726         }
2727       }
2728     }
2729     return trailing_mb;
2730   }
2731   return NULL;
2732 }
2733 
2734 
2735 //=============================================================================
2736 //------------------------------Ideal------------------------------------------
2737 // If the store is from an AND mask that leaves the low bits untouched, then
2738 // we can skip the AND operation.  If the store is from a sign-extension
2739 // (a left shift, then right shift) we can skip both.
2740 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2741   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2742   if( progress != NULL ) return progress;
2743 
2744   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2745   if( progress != NULL ) return progress;
2746 
2747   // Finally check the default case
2748   return StoreNode::Ideal(phase, can_reshape);
2749 }
2750 
2751 //=============================================================================
2752 //------------------------------Ideal------------------------------------------
2753 // If the store is from an AND mask that leaves the low bits untouched, then
2754 // we can skip the AND operation
2755 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2756   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2757   if( progress != NULL ) return progress;
2758 
2759   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2760   if( progress != NULL ) return progress;
2761 
2762   // Finally check the default case
2763   return StoreNode::Ideal(phase, can_reshape);
2764 }
2765 
2766 //=============================================================================
2767 //------------------------------Identity---------------------------------------
2768 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2769   // No need to card mark when storing a null ptr
2770   Node* my_store = in(MemNode::OopStore);
2771   if (my_store->is_Store()) {
2772     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2773     if( t1 == TypePtr::NULL_PTR ) {
2774       return in(MemNode::Memory);
2775     }
2776   }
2777   return this;
2778 }
2779 
2780 //=============================================================================
2781 //------------------------------Ideal---------------------------------------
2782 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2783   Node* progress = StoreNode::Ideal(phase, can_reshape);
2784   if (progress != NULL) return progress;
2785 
2786   Node* my_store = in(MemNode::OopStore);
2787   if (my_store->is_MergeMem()) {
2788     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2789     set_req(MemNode::OopStore, mem);
2790     return this;
2791   }
2792 
2793   return NULL;
2794 }
2795 
2796 //------------------------------Value-----------------------------------------
2797 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2798   // Either input is TOP ==> the result is TOP
2799   const Type *t = phase->type( in(MemNode::Memory) );
2800   if( t == Type::TOP ) return Type::TOP;
2801   t = phase->type( in(MemNode::Address) );
2802   if( t == Type::TOP ) return Type::TOP;
2803   t = phase->type( in(MemNode::ValueIn) );
2804   if( t == Type::TOP ) return Type::TOP;
2805   // If extra input is TOP ==> the result is TOP
2806   t = phase->type( in(MemNode::OopStore) );
2807   if( t == Type::TOP ) return Type::TOP;
2808 
2809   return StoreNode::Value( phase );
2810 }
2811 
2812 
2813 //=============================================================================
2814 //----------------------------------SCMemProjNode------------------------------
2815 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2816 {
2817   return bottom_type();
2818 }
2819 
2820 //=============================================================================
2821 //----------------------------------LoadStoreNode------------------------------
2822 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2823   : Node(required),
2824     _type(rt),
2825     _adr_type(at),
2826     _has_barrier(false)
2827 {
2828   init_req(MemNode::Control, c  );
2829   init_req(MemNode::Memory , mem);
2830   init_req(MemNode::Address, adr);
2831   init_req(MemNode::ValueIn, val);
2832   init_class_id(Class_LoadStore);
2833 }
2834 
2835 uint LoadStoreNode::ideal_reg() const {
2836   return _type->ideal_reg();
2837 }
2838 
2839 bool LoadStoreNode::result_not_used() const {
2840   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2841     Node *x = fast_out(i);
2842     if (x->Opcode() == Op_SCMemProj) continue;
2843     return false;
2844   }
2845   return true;
2846 }
2847 
2848 MemBarNode* LoadStoreNode::trailing_membar() const {
2849   MemBarNode* trailing = NULL;
2850   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2851     Node* u = fast_out(i);
2852     if (u->is_MemBar()) {
2853       if (u->as_MemBar()->trailing_load_store()) {
2854         assert(u->Opcode() == Op_MemBarAcquire, "");
2855         assert(trailing == NULL, "only one");
2856         trailing = u->as_MemBar();
2857 #ifdef ASSERT
2858         Node* leading = trailing->leading_membar();
2859         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2860         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2861         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2862 #endif
2863       } else {
2864         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2865       }
2866     }
2867   }
2868 
2869   return trailing;
2870 }
2871 
2872 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2873 
2874 //=============================================================================
2875 //----------------------------------LoadStoreConditionalNode--------------------
2876 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2877   init_req(ExpectedIn, ex );
2878 }
2879 
2880 //=============================================================================
2881 //-------------------------------adr_type--------------------------------------
2882 const TypePtr* ClearArrayNode::adr_type() const {
2883   Node *adr = in(3);
2884   if (adr == NULL)  return NULL; // node is dead
2885   return MemNode::calculate_adr_type(adr->bottom_type());
2886 }
2887 
2888 //------------------------------match_edge-------------------------------------
2889 // Do we Match on this edge index or not?  Do not match memory
2890 uint ClearArrayNode::match_edge(uint idx) const {
2891   return idx > 1;
2892 }
2893 
2894 //------------------------------Identity---------------------------------------
2895 // Clearing a zero length array does nothing
2896 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2897   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2898 }
2899 
2900 //------------------------------Idealize---------------------------------------
2901 // Clearing a short array is faster with stores
2902 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2903   // Already know this is a large node, do not try to ideal it
2904   if (!IdealizeClearArrayNode || _is_large) return NULL;
2905 
2906   const int unit = BytesPerLong;
2907   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2908   if (!t)  return NULL;
2909   if (!t->is_con())  return NULL;
2910   intptr_t raw_count = t->get_con();
2911   intptr_t size = raw_count;
2912   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2913   // Clearing nothing uses the Identity call.
2914   // Negative clears are possible on dead ClearArrays
2915   // (see jck test stmt114.stmt11402.val).
2916   if (size <= 0 || size % unit != 0)  return NULL;
2917   intptr_t count = size / unit;
2918   // Length too long; communicate this to matchers and assemblers.
2919   // Assemblers are responsible to produce fast hardware clears for it.
2920   if (size > InitArrayShortSize) {
2921     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2922   }
2923   Node *mem = in(1);
2924   if( phase->type(mem)==Type::TOP ) return NULL;
2925   Node *adr = in(3);
2926   const Type* at = phase->type(adr);
2927   if( at==Type::TOP ) return NULL;
2928   const TypePtr* atp = at->isa_ptr();
2929   // adjust atp to be the correct array element address type
2930   if (atp == NULL)  atp = TypePtr::BOTTOM;
2931   else              atp = atp->add_offset(Type::OffsetBot);
2932   // Get base for derived pointer purposes
2933   if( adr->Opcode() != Op_AddP ) Unimplemented();
2934   Node *base = adr->in(1);
2935 
2936   Node *zero = phase->makecon(TypeLong::ZERO);
2937   Node *off  = phase->MakeConX(BytesPerLong);
2938   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2939   count--;
2940   while( count-- ) {
2941     mem = phase->transform(mem);
2942     adr = phase->transform(new AddPNode(base,adr,off));
2943     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2944   }
2945   return mem;
2946 }
2947 
2948 //----------------------------step_through----------------------------------
2949 // Return allocation input memory edge if it is different instance
2950 // or itself if it is the one we are looking for.
2951 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2952   Node* n = *np;
2953   assert(n->is_ClearArray(), "sanity");
2954   intptr_t offset;
2955   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2956   // This method is called only before Allocate nodes are expanded
2957   // during macro nodes expansion. Before that ClearArray nodes are
2958   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2959   // Allocate nodes are expanded) which follows allocations.
2960   assert(alloc != NULL, "should have allocation");
2961   if (alloc->_idx == instance_id) {
2962     // Can not bypass initialization of the instance we are looking for.
2963     return false;
2964   }
2965   // Otherwise skip it.
2966   InitializeNode* init = alloc->initialization();
2967   if (init != NULL)
2968     *np = init->in(TypeFunc::Memory);
2969   else
2970     *np = alloc->in(TypeFunc::Memory);
2971   return true;
2972 }
2973 
2974 //----------------------------clear_memory-------------------------------------
2975 // Generate code to initialize object storage to zero.
2976 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2977                                    intptr_t start_offset,
2978                                    Node* end_offset,
2979                                    PhaseGVN* phase) {
2980   intptr_t offset = start_offset;
2981 
2982   int unit = BytesPerLong;
2983   if ((offset % unit) != 0) {
2984     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2985     adr = phase->transform(adr);
2986     const TypePtr* atp = TypeRawPtr::BOTTOM;
2987     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2988     mem = phase->transform(mem);
2989     offset += BytesPerInt;
2990   }
2991   assert((offset % unit) == 0, "");
2992 
2993   // Initialize the remaining stuff, if any, with a ClearArray.
2994   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2995 }
2996 
2997 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2998                                    Node* start_offset,
2999                                    Node* end_offset,
3000                                    PhaseGVN* phase) {
3001   if (start_offset == end_offset) {
3002     // nothing to do
3003     return mem;
3004   }
3005 
3006   int unit = BytesPerLong;
3007   Node* zbase = start_offset;
3008   Node* zend  = end_offset;
3009 
3010   // Scale to the unit required by the CPU:
3011   if (!Matcher::init_array_count_is_in_bytes) {
3012     Node* shift = phase->intcon(exact_log2(unit));
3013     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3014     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3015   }
3016 
3017   // Bulk clear double-words
3018   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3019   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3020   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3021   return phase->transform(mem);
3022 }
3023 
3024 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3025                                    intptr_t start_offset,
3026                                    intptr_t end_offset,
3027                                    PhaseGVN* phase) {
3028   if (start_offset == end_offset) {
3029     // nothing to do
3030     return mem;
3031   }
3032 
3033   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3034   intptr_t done_offset = end_offset;
3035   if ((done_offset % BytesPerLong) != 0) {
3036     done_offset -= BytesPerInt;
3037   }
3038   if (done_offset > start_offset) {
3039     mem = clear_memory(ctl, mem, dest,
3040                        start_offset, phase->MakeConX(done_offset), phase);
3041   }
3042   if (done_offset < end_offset) { // emit the final 32-bit store
3043     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3044     adr = phase->transform(adr);
3045     const TypePtr* atp = TypeRawPtr::BOTTOM;
3046     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3047     mem = phase->transform(mem);
3048     done_offset += BytesPerInt;
3049   }
3050   assert(done_offset == end_offset, "");
3051   return mem;
3052 }
3053 
3054 //=============================================================================
3055 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3056   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3057     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3058 #ifdef ASSERT
3059   , _pair_idx(0)
3060 #endif
3061 {
3062   init_class_id(Class_MemBar);
3063   Node* top = C->top();
3064   init_req(TypeFunc::I_O,top);
3065   init_req(TypeFunc::FramePtr,top);
3066   init_req(TypeFunc::ReturnAdr,top);
3067   if (precedent != NULL)
3068     init_req(TypeFunc::Parms, precedent);
3069 }
3070 
3071 //------------------------------cmp--------------------------------------------
3072 uint MemBarNode::hash() const { return NO_HASH; }
3073 bool MemBarNode::cmp( const Node &n ) const {
3074   return (&n == this);          // Always fail except on self
3075 }
3076 
3077 //------------------------------make-------------------------------------------
3078 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3079   switch (opcode) {
3080   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3081   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3082   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3083   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3084   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3085   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3086   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3087   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3088   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3089   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3090   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3091   default: ShouldNotReachHere(); return NULL;
3092   }
3093 }
3094 
3095 void MemBarNode::remove(PhaseIterGVN *igvn) {
3096   if (outcnt() != 2) {
3097     return;
3098   }
3099   if (trailing_store() || trailing_load_store()) {
3100     MemBarNode* leading = leading_membar();
3101     if (leading != NULL) {
3102       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3103       leading->remove(igvn);
3104     }
3105   }
3106   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3107   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3108 }
3109 
3110 //------------------------------Ideal------------------------------------------
3111 // Return a node which is more "ideal" than the current node.  Strip out
3112 // control copies
3113 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3114   if (remove_dead_region(phase, can_reshape)) return this;
3115   // Don't bother trying to transform a dead node
3116   if (in(0) && in(0)->is_top()) {
3117     return NULL;
3118   }
3119 
3120   bool progress = false;
3121   // Eliminate volatile MemBars for scalar replaced objects.
3122   if (can_reshape && req() == (Precedent+1)) {
3123     bool eliminate = false;
3124     int opc = Opcode();
3125     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3126       // Volatile field loads and stores.
3127       Node* my_mem = in(MemBarNode::Precedent);
3128       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3129       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3130         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3131         // replace this Precedent (decodeN) with the Load instead.
3132         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3133           Node* load_node = my_mem->in(1);
3134           set_req(MemBarNode::Precedent, load_node);
3135           phase->is_IterGVN()->_worklist.push(my_mem);
3136           my_mem = load_node;
3137         } else {
3138           assert(my_mem->unique_out() == this, "sanity");
3139           del_req(Precedent);
3140           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3141           my_mem = NULL;
3142         }
3143         progress = true;
3144       }
3145       if (my_mem != NULL && my_mem->is_Mem()) {
3146         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3147         // Check for scalar replaced object reference.
3148         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3149             t_oop->offset() != Type::OffsetBot &&
3150             t_oop->offset() != Type::OffsetTop) {
3151           eliminate = true;
3152         }
3153       }
3154     } else if (opc == Op_MemBarRelease) {
3155       // Final field stores.
3156       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3157       if ((alloc != NULL) && alloc->is_Allocate() &&
3158           alloc->as_Allocate()->does_not_escape_thread()) {
3159         // The allocated object does not escape.
3160         eliminate = true;
3161       }
3162     }
3163     if (eliminate) {
3164       // Replace MemBar projections by its inputs.
3165       PhaseIterGVN* igvn = phase->is_IterGVN();
3166       remove(igvn);
3167       // Must return either the original node (now dead) or a new node
3168       // (Do not return a top here, since that would break the uniqueness of top.)
3169       return new ConINode(TypeInt::ZERO);
3170     }
3171   }
3172   return progress ? this : NULL;
3173 }
3174 
3175 //------------------------------Value------------------------------------------
3176 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3177   if( !in(0) ) return Type::TOP;
3178   if( phase->type(in(0)) == Type::TOP )
3179     return Type::TOP;
3180   return TypeTuple::MEMBAR;
3181 }
3182 
3183 //------------------------------match------------------------------------------
3184 // Construct projections for memory.
3185 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3186   switch (proj->_con) {
3187   case TypeFunc::Control:
3188   case TypeFunc::Memory:
3189     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3190   }
3191   ShouldNotReachHere();
3192   return NULL;
3193 }
3194 
3195 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3196   trailing->_kind = TrailingStore;
3197   leading->_kind = LeadingStore;
3198 #ifdef ASSERT
3199   trailing->_pair_idx = leading->_idx;
3200   leading->_pair_idx = leading->_idx;
3201 #endif
3202 }
3203 
3204 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3205   trailing->_kind = TrailingLoadStore;
3206   leading->_kind = LeadingLoadStore;
3207 #ifdef ASSERT
3208   trailing->_pair_idx = leading->_idx;
3209   leading->_pair_idx = leading->_idx;
3210 #endif
3211 }
3212 
3213 MemBarNode* MemBarNode::trailing_membar() const {
3214   ResourceMark rm;
3215   Node* trailing = (Node*)this;
3216   VectorSet seen(Thread::current()->resource_area());
3217   Node_Stack multis(0);
3218   do {
3219     Node* c = trailing;
3220     uint i = 0;
3221     do {
3222       trailing = NULL;
3223       for (; i < c->outcnt(); i++) {
3224         Node* next = c->raw_out(i);
3225         if (next != c && next->is_CFG()) {
3226           if (c->is_MultiBranch()) {
3227             if (multis.node() == c) {
3228               multis.set_index(i+1);
3229             } else {
3230               multis.push(c, i+1);
3231             }
3232           }
3233           trailing = next;
3234           break;
3235         }
3236       }
3237       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3238         break;
3239       }
3240       while (multis.size() > 0) {
3241         c = multis.node();
3242         i = multis.index();
3243         if (i < c->req()) {
3244           break;
3245         }
3246         multis.pop();
3247       }
3248     } while (multis.size() > 0);
3249   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3250 
3251   MemBarNode* mb = trailing->as_MemBar();
3252   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3253          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3254   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3255   return mb;
3256 }
3257 
3258 MemBarNode* MemBarNode::leading_membar() const {
3259   ResourceMark rm;
3260   VectorSet seen(Thread::current()->resource_area());
3261   Node_Stack regions(0);
3262   Node* leading = in(0);
3263   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3264     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3265       leading = NULL;
3266       while (regions.size() > 0 && leading == NULL) {
3267         Node* r = regions.node();
3268         uint i = regions.index();
3269         if (i < r->req()) {
3270           leading = r->in(i);
3271           regions.set_index(i+1);
3272         } else {
3273           regions.pop();
3274         }
3275       }
3276       if (leading == NULL) {
3277         assert(regions.size() == 0, "all paths should have been tried");
3278         return NULL;
3279       }
3280     }
3281     if (leading->is_Region()) {
3282       regions.push(leading, 2);
3283       leading = leading->in(1);
3284     } else {
3285       leading = leading->in(0);
3286     }
3287   }
3288 #ifdef ASSERT
3289   Unique_Node_List wq;
3290   wq.push((Node*)this);
3291   uint found = 0;
3292   for (uint i = 0; i < wq.size(); i++) {
3293     Node* n = wq.at(i);
3294     if (n->is_Region()) {
3295       for (uint j = 1; j < n->req(); j++) {
3296         Node* in = n->in(j);
3297         if (in != NULL && !in->is_top()) {
3298           wq.push(in);
3299         }
3300       }
3301     } else {
3302       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3303         assert(n == leading, "consistency check failed");
3304         found++;
3305       } else {
3306         Node* in = n->in(0);
3307         if (in != NULL && !in->is_top()) {
3308           wq.push(in);
3309         }
3310       }
3311     }
3312   }
3313   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3314 #endif
3315   if (leading == NULL) {
3316     return NULL;
3317   }
3318   MemBarNode* mb = leading->as_MemBar();
3319   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3320          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3321   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3322   return mb;
3323 }
3324 
3325 //===========================InitializeNode====================================
3326 // SUMMARY:
3327 // This node acts as a memory barrier on raw memory, after some raw stores.
3328 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3329 // The Initialize can 'capture' suitably constrained stores as raw inits.
3330 // It can coalesce related raw stores into larger units (called 'tiles').
3331 // It can avoid zeroing new storage for memory units which have raw inits.
3332 // At macro-expansion, it is marked 'complete', and does not optimize further.
3333 //
3334 // EXAMPLE:
3335 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3336 //   ctl = incoming control; mem* = incoming memory
3337 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3338 // First allocate uninitialized memory and fill in the header:
3339 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3340 //   ctl := alloc.Control; mem* := alloc.Memory*
3341 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3342 // Then initialize to zero the non-header parts of the raw memory block:
3343 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3344 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3345 // After the initialize node executes, the object is ready for service:
3346 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3347 // Suppose its body is immediately initialized as {1,2}:
3348 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3349 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3350 //   mem.SLICE(#short[*]) := store2
3351 //
3352 // DETAILS:
3353 // An InitializeNode collects and isolates object initialization after
3354 // an AllocateNode and before the next possible safepoint.  As a
3355 // memory barrier (MemBarNode), it keeps critical stores from drifting
3356 // down past any safepoint or any publication of the allocation.
3357 // Before this barrier, a newly-allocated object may have uninitialized bits.
3358 // After this barrier, it may be treated as a real oop, and GC is allowed.
3359 //
3360 // The semantics of the InitializeNode include an implicit zeroing of
3361 // the new object from object header to the end of the object.
3362 // (The object header and end are determined by the AllocateNode.)
3363 //
3364 // Certain stores may be added as direct inputs to the InitializeNode.
3365 // These stores must update raw memory, and they must be to addresses
3366 // derived from the raw address produced by AllocateNode, and with
3367 // a constant offset.  They must be ordered by increasing offset.
3368 // The first one is at in(RawStores), the last at in(req()-1).
3369 // Unlike most memory operations, they are not linked in a chain,
3370 // but are displayed in parallel as users of the rawmem output of
3371 // the allocation.
3372 //
3373 // (See comments in InitializeNode::capture_store, which continue
3374 // the example given above.)
3375 //
3376 // When the associated Allocate is macro-expanded, the InitializeNode
3377 // may be rewritten to optimize collected stores.  A ClearArrayNode
3378 // may also be created at that point to represent any required zeroing.
3379 // The InitializeNode is then marked 'complete', prohibiting further
3380 // capturing of nearby memory operations.
3381 //
3382 // During macro-expansion, all captured initializations which store
3383 // constant values of 32 bits or smaller are coalesced (if advantageous)
3384 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3385 // initialized in fewer memory operations.  Memory words which are
3386 // covered by neither tiles nor non-constant stores are pre-zeroed
3387 // by explicit stores of zero.  (The code shape happens to do all
3388 // zeroing first, then all other stores, with both sequences occurring
3389 // in order of ascending offsets.)
3390 //
3391 // Alternatively, code may be inserted between an AllocateNode and its
3392 // InitializeNode, to perform arbitrary initialization of the new object.
3393 // E.g., the object copying intrinsics insert complex data transfers here.
3394 // The initialization must then be marked as 'complete' disable the
3395 // built-in zeroing semantics and the collection of initializing stores.
3396 //
3397 // While an InitializeNode is incomplete, reads from the memory state
3398 // produced by it are optimizable if they match the control edge and
3399 // new oop address associated with the allocation/initialization.
3400 // They return a stored value (if the offset matches) or else zero.
3401 // A write to the memory state, if it matches control and address,
3402 // and if it is to a constant offset, may be 'captured' by the
3403 // InitializeNode.  It is cloned as a raw memory operation and rewired
3404 // inside the initialization, to the raw oop produced by the allocation.
3405 // Operations on addresses which are provably distinct (e.g., to
3406 // other AllocateNodes) are allowed to bypass the initialization.
3407 //
3408 // The effect of all this is to consolidate object initialization
3409 // (both arrays and non-arrays, both piecewise and bulk) into a
3410 // single location, where it can be optimized as a unit.
3411 //
3412 // Only stores with an offset less than TrackedInitializationLimit words
3413 // will be considered for capture by an InitializeNode.  This puts a
3414 // reasonable limit on the complexity of optimized initializations.
3415 
3416 //---------------------------InitializeNode------------------------------------
3417 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3418   : MemBarNode(C, adr_type, rawoop),
3419     _is_complete(Incomplete), _does_not_escape(false)
3420 {
3421   init_class_id(Class_Initialize);
3422 
3423   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3424   assert(in(RawAddress) == rawoop, "proper init");
3425   // Note:  allocation() can be NULL, for secondary initialization barriers
3426 }
3427 
3428 // Since this node is not matched, it will be processed by the
3429 // register allocator.  Declare that there are no constraints
3430 // on the allocation of the RawAddress edge.
3431 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3432   // This edge should be set to top, by the set_complete.  But be conservative.
3433   if (idx == InitializeNode::RawAddress)
3434     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3435   return RegMask::Empty;
3436 }
3437 
3438 Node* InitializeNode::memory(uint alias_idx) {
3439   Node* mem = in(Memory);
3440   if (mem->is_MergeMem()) {
3441     return mem->as_MergeMem()->memory_at(alias_idx);
3442   } else {
3443     // incoming raw memory is not split
3444     return mem;
3445   }
3446 }
3447 
3448 bool InitializeNode::is_non_zero() {
3449   if (is_complete())  return false;
3450   remove_extra_zeroes();
3451   return (req() > RawStores);
3452 }
3453 
3454 void InitializeNode::set_complete(PhaseGVN* phase) {
3455   assert(!is_complete(), "caller responsibility");
3456   _is_complete = Complete;
3457 
3458   // After this node is complete, it contains a bunch of
3459   // raw-memory initializations.  There is no need for
3460   // it to have anything to do with non-raw memory effects.
3461   // Therefore, tell all non-raw users to re-optimize themselves,
3462   // after skipping the memory effects of this initialization.
3463   PhaseIterGVN* igvn = phase->is_IterGVN();
3464   if (igvn)  igvn->add_users_to_worklist(this);
3465 }
3466 
3467 // convenience function
3468 // return false if the init contains any stores already
3469 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3470   InitializeNode* init = initialization();
3471   if (init == NULL || init->is_complete())  return false;
3472   init->remove_extra_zeroes();
3473   // for now, if this allocation has already collected any inits, bail:
3474   if (init->is_non_zero())  return false;
3475   init->set_complete(phase);
3476   return true;
3477 }
3478 
3479 void InitializeNode::remove_extra_zeroes() {
3480   if (req() == RawStores)  return;
3481   Node* zmem = zero_memory();
3482   uint fill = RawStores;
3483   for (uint i = fill; i < req(); i++) {
3484     Node* n = in(i);
3485     if (n->is_top() || n == zmem)  continue;  // skip
3486     if (fill < i)  set_req(fill, n);          // compact
3487     ++fill;
3488   }
3489   // delete any empty spaces created:
3490   while (fill < req()) {
3491     del_req(fill);
3492   }
3493 }
3494 
3495 // Helper for remembering which stores go with which offsets.
3496 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3497   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3498   intptr_t offset = -1;
3499   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3500                                                phase, offset);
3501   if (base == NULL)     return -1;  // something is dead,
3502   if (offset < 0)       return -1;  //        dead, dead
3503   return offset;
3504 }
3505 
3506 // Helper for proving that an initialization expression is
3507 // "simple enough" to be folded into an object initialization.
3508 // Attempts to prove that a store's initial value 'n' can be captured
3509 // within the initialization without creating a vicious cycle, such as:
3510 //     { Foo p = new Foo(); p.next = p; }
3511 // True for constants and parameters and small combinations thereof.
3512 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3513   if (n == NULL)      return true;   // (can this really happen?)
3514   if (n->is_Proj())   n = n->in(0);
3515   if (n == this)      return false;  // found a cycle
3516   if (n->is_Con())    return true;
3517   if (n->is_Start())  return true;   // params, etc., are OK
3518   if (n->is_Root())   return true;   // even better
3519 
3520   Node* ctl = n->in(0);
3521   if (ctl != NULL && !ctl->is_top()) {
3522     if (ctl->is_Proj())  ctl = ctl->in(0);
3523     if (ctl == this)  return false;
3524 
3525     // If we already know that the enclosing memory op is pinned right after
3526     // the init, then any control flow that the store has picked up
3527     // must have preceded the init, or else be equal to the init.
3528     // Even after loop optimizations (which might change control edges)
3529     // a store is never pinned *before* the availability of its inputs.
3530     if (!MemNode::all_controls_dominate(n, this))
3531       return false;                  // failed to prove a good control
3532   }
3533 
3534   // Check data edges for possible dependencies on 'this'.
3535   if ((count += 1) > 20)  return false;  // complexity limit
3536   for (uint i = 1; i < n->req(); i++) {
3537     Node* m = n->in(i);
3538     if (m == NULL || m == n || m->is_top())  continue;
3539     uint first_i = n->find_edge(m);
3540     if (i != first_i)  continue;  // process duplicate edge just once
3541     if (!detect_init_independence(m, count)) {
3542       return false;
3543     }
3544   }
3545 
3546   return true;
3547 }
3548 
3549 // Here are all the checks a Store must pass before it can be moved into
3550 // an initialization.  Returns zero if a check fails.
3551 // On success, returns the (constant) offset to which the store applies,
3552 // within the initialized memory.
3553 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3554   const int FAIL = 0;
3555   if (st->req() != MemNode::ValueIn + 1)
3556     return FAIL;                // an inscrutable StoreNode (card mark?)
3557   Node* ctl = st->in(MemNode::Control);
3558   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3559     return FAIL;                // must be unconditional after the initialization
3560   Node* mem = st->in(MemNode::Memory);
3561   if (!(mem->is_Proj() && mem->in(0) == this))
3562     return FAIL;                // must not be preceded by other stores
3563   Node* adr = st->in(MemNode::Address);
3564   intptr_t offset;
3565   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3566   if (alloc == NULL)
3567     return FAIL;                // inscrutable address
3568   if (alloc != allocation())
3569     return FAIL;                // wrong allocation!  (store needs to float up)
3570   int size_in_bytes = st->memory_size();
3571   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3572     return FAIL;                // mismatched access
3573   }
3574   Node* val = st->in(MemNode::ValueIn);
3575   int complexity_count = 0;
3576   if (!detect_init_independence(val, complexity_count))
3577     return FAIL;                // stored value must be 'simple enough'
3578 
3579   // The Store can be captured only if nothing after the allocation
3580   // and before the Store is using the memory location that the store
3581   // overwrites.
3582   bool failed = false;
3583   // If is_complete_with_arraycopy() is true the shape of the graph is
3584   // well defined and is safe so no need for extra checks.
3585   if (!is_complete_with_arraycopy()) {
3586     // We are going to look at each use of the memory state following
3587     // the allocation to make sure nothing reads the memory that the
3588     // Store writes.
3589     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3590     int alias_idx = phase->C->get_alias_index(t_adr);
3591     ResourceMark rm;
3592     Unique_Node_List mems;
3593     mems.push(mem);
3594     Node* unique_merge = NULL;
3595     for (uint next = 0; next < mems.size(); ++next) {
3596       Node *m  = mems.at(next);
3597       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3598         Node *n = m->fast_out(j);
3599         if (n->outcnt() == 0) {
3600           continue;
3601         }
3602         if (n == st) {
3603           continue;
3604         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3605           // If the control of this use is different from the control
3606           // of the Store which is right after the InitializeNode then
3607           // this node cannot be between the InitializeNode and the
3608           // Store.
3609           continue;
3610         } else if (n->is_MergeMem()) {
3611           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3612             // We can hit a MergeMemNode (that will likely go away
3613             // later) that is a direct use of the memory state
3614             // following the InitializeNode on the same slice as the
3615             // store node that we'd like to capture. We need to check
3616             // the uses of the MergeMemNode.
3617             mems.push(n);
3618           }
3619         } else if (n->is_Mem()) {
3620           Node* other_adr = n->in(MemNode::Address);
3621           if (other_adr == adr) {
3622             failed = true;
3623             break;
3624           } else {
3625             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3626             if (other_t_adr != NULL) {
3627               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3628               if (other_alias_idx == alias_idx) {
3629                 // A load from the same memory slice as the store right
3630                 // after the InitializeNode. We check the control of the
3631                 // object/array that is loaded from. If it's the same as
3632                 // the store control then we cannot capture the store.
3633                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3634                 Node* base = other_adr;
3635                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3636                 base = base->in(AddPNode::Base);
3637                 if (base != NULL) {
3638                   base = base->uncast();
3639                   if (base->is_Proj() && base->in(0) == alloc) {
3640                     failed = true;
3641                     break;
3642                   }
3643                 }
3644               }
3645             }
3646           }
3647         } else {
3648           failed = true;
3649           break;
3650         }
3651       }
3652     }
3653   }
3654   if (failed) {
3655     if (!can_reshape) {
3656       // We decided we couldn't capture the store during parsing. We
3657       // should try again during the next IGVN once the graph is
3658       // cleaner.
3659       phase->C->record_for_igvn(st);
3660     }
3661     return FAIL;
3662   }
3663 
3664   return offset;                // success
3665 }
3666 
3667 // Find the captured store in(i) which corresponds to the range
3668 // [start..start+size) in the initialized object.
3669 // If there is one, return its index i.  If there isn't, return the
3670 // negative of the index where it should be inserted.
3671 // Return 0 if the queried range overlaps an initialization boundary
3672 // or if dead code is encountered.
3673 // If size_in_bytes is zero, do not bother with overlap checks.
3674 int InitializeNode::captured_store_insertion_point(intptr_t start,
3675                                                    int size_in_bytes,
3676                                                    PhaseTransform* phase) {
3677   const int FAIL = 0, MAX_STORE = BytesPerLong;
3678 
3679   if (is_complete())
3680     return FAIL;                // arraycopy got here first; punt
3681 
3682   assert(allocation() != NULL, "must be present");
3683 
3684   // no negatives, no header fields:
3685   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3686 
3687   // after a certain size, we bail out on tracking all the stores:
3688   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3689   if (start >= ti_limit)  return FAIL;
3690 
3691   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3692     if (i >= limit)  return -(int)i; // not found; here is where to put it
3693 
3694     Node*    st     = in(i);
3695     intptr_t st_off = get_store_offset(st, phase);
3696     if (st_off < 0) {
3697       if (st != zero_memory()) {
3698         return FAIL;            // bail out if there is dead garbage
3699       }
3700     } else if (st_off > start) {
3701       // ...we are done, since stores are ordered
3702       if (st_off < start + size_in_bytes) {
3703         return FAIL;            // the next store overlaps
3704       }
3705       return -(int)i;           // not found; here is where to put it
3706     } else if (st_off < start) {
3707       if (size_in_bytes != 0 &&
3708           start < st_off + MAX_STORE &&
3709           start < st_off + st->as_Store()->memory_size()) {
3710         return FAIL;            // the previous store overlaps
3711       }
3712     } else {
3713       if (size_in_bytes != 0 &&
3714           st->as_Store()->memory_size() != size_in_bytes) {
3715         return FAIL;            // mismatched store size
3716       }
3717       return i;
3718     }
3719 
3720     ++i;
3721   }
3722 }
3723 
3724 // Look for a captured store which initializes at the offset 'start'
3725 // with the given size.  If there is no such store, and no other
3726 // initialization interferes, then return zero_memory (the memory
3727 // projection of the AllocateNode).
3728 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3729                                           PhaseTransform* phase) {
3730   assert(stores_are_sane(phase), "");
3731   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3732   if (i == 0) {
3733     return NULL;                // something is dead
3734   } else if (i < 0) {
3735     return zero_memory();       // just primordial zero bits here
3736   } else {
3737     Node* st = in(i);           // here is the store at this position
3738     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3739     return st;
3740   }
3741 }
3742 
3743 // Create, as a raw pointer, an address within my new object at 'offset'.
3744 Node* InitializeNode::make_raw_address(intptr_t offset,
3745                                        PhaseTransform* phase) {
3746   Node* addr = in(RawAddress);
3747   if (offset != 0) {
3748     Compile* C = phase->C;
3749     addr = phase->transform( new AddPNode(C->top(), addr,
3750                                                  phase->MakeConX(offset)) );
3751   }
3752   return addr;
3753 }
3754 
3755 // Clone the given store, converting it into a raw store
3756 // initializing a field or element of my new object.
3757 // Caller is responsible for retiring the original store,
3758 // with subsume_node or the like.
3759 //
3760 // From the example above InitializeNode::InitializeNode,
3761 // here are the old stores to be captured:
3762 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3763 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3764 //
3765 // Here is the changed code; note the extra edges on init:
3766 //   alloc = (Allocate ...)
3767 //   rawoop = alloc.RawAddress
3768 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3769 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3770 //   init = (Initialize alloc.Control alloc.Memory rawoop
3771 //                      rawstore1 rawstore2)
3772 //
3773 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3774                                     PhaseTransform* phase, bool can_reshape) {
3775   assert(stores_are_sane(phase), "");
3776 
3777   if (start < 0)  return NULL;
3778   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3779 
3780   Compile* C = phase->C;
3781   int size_in_bytes = st->memory_size();
3782   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3783   if (i == 0)  return NULL;     // bail out
3784   Node* prev_mem = NULL;        // raw memory for the captured store
3785   if (i > 0) {
3786     prev_mem = in(i);           // there is a pre-existing store under this one
3787     set_req(i, C->top());       // temporarily disconnect it
3788     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3789   } else {
3790     i = -i;                     // no pre-existing store
3791     prev_mem = zero_memory();   // a slice of the newly allocated object
3792     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3793       set_req(--i, C->top());   // reuse this edge; it has been folded away
3794     else
3795       ins_req(i, C->top());     // build a new edge
3796   }
3797   Node* new_st = st->clone();
3798   new_st->set_req(MemNode::Control, in(Control));
3799   new_st->set_req(MemNode::Memory,  prev_mem);
3800   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3801   new_st = phase->transform(new_st);
3802 
3803   // At this point, new_st might have swallowed a pre-existing store
3804   // at the same offset, or perhaps new_st might have disappeared,
3805   // if it redundantly stored the same value (or zero to fresh memory).
3806 
3807   // In any case, wire it in:
3808   phase->igvn_rehash_node_delayed(this);
3809   set_req(i, new_st);
3810 
3811   // The caller may now kill the old guy.
3812   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3813   assert(check_st == new_st || check_st == NULL, "must be findable");
3814   assert(!is_complete(), "");
3815   return new_st;
3816 }
3817 
3818 static bool store_constant(jlong* tiles, int num_tiles,
3819                            intptr_t st_off, int st_size,
3820                            jlong con) {
3821   if ((st_off & (st_size-1)) != 0)
3822     return false;               // strange store offset (assume size==2**N)
3823   address addr = (address)tiles + st_off;
3824   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3825   switch (st_size) {
3826   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3827   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3828   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3829   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3830   default: return false;        // strange store size (detect size!=2**N here)
3831   }
3832   return true;                  // return success to caller
3833 }
3834 
3835 // Coalesce subword constants into int constants and possibly
3836 // into long constants.  The goal, if the CPU permits,
3837 // is to initialize the object with a small number of 64-bit tiles.
3838 // Also, convert floating-point constants to bit patterns.
3839 // Non-constants are not relevant to this pass.
3840 //
3841 // In terms of the running example on InitializeNode::InitializeNode
3842 // and InitializeNode::capture_store, here is the transformation
3843 // of rawstore1 and rawstore2 into rawstore12:
3844 //   alloc = (Allocate ...)
3845 //   rawoop = alloc.RawAddress
3846 //   tile12 = 0x00010002
3847 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3848 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3849 //
3850 void
3851 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3852                                         Node* size_in_bytes,
3853                                         PhaseGVN* phase) {
3854   Compile* C = phase->C;
3855 
3856   assert(stores_are_sane(phase), "");
3857   // Note:  After this pass, they are not completely sane,
3858   // since there may be some overlaps.
3859 
3860   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3861 
3862   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3863   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3864   size_limit = MIN2(size_limit, ti_limit);
3865   size_limit = align_up(size_limit, BytesPerLong);
3866   int num_tiles = size_limit / BytesPerLong;
3867 
3868   // allocate space for the tile map:
3869   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3870   jlong  tiles_buf[small_len];
3871   Node*  nodes_buf[small_len];
3872   jlong  inits_buf[small_len];
3873   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3874                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3875   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3876                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3877   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3878                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3879   // tiles: exact bitwise model of all primitive constants
3880   // nodes: last constant-storing node subsumed into the tiles model
3881   // inits: which bytes (in each tile) are touched by any initializations
3882 
3883   //// Pass A: Fill in the tile model with any relevant stores.
3884 
3885   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3886   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3887   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3888   Node* zmem = zero_memory(); // initially zero memory state
3889   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3890     Node* st = in(i);
3891     intptr_t st_off = get_store_offset(st, phase);
3892 
3893     // Figure out the store's offset and constant value:
3894     if (st_off < header_size)             continue; //skip (ignore header)
3895     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3896     int st_size = st->as_Store()->memory_size();
3897     if (st_off + st_size > size_limit)    break;
3898 
3899     // Record which bytes are touched, whether by constant or not.
3900     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3901       continue;                 // skip (strange store size)
3902 
3903     const Type* val = phase->type(st->in(MemNode::ValueIn));
3904     if (!val->singleton())                continue; //skip (non-con store)
3905     BasicType type = val->basic_type();
3906 
3907     jlong con = 0;
3908     switch (type) {
3909     case T_INT:    con = val->is_int()->get_con();  break;
3910     case T_LONG:   con = val->is_long()->get_con(); break;
3911     case T_FLOAT:  con = jint_cast(val->getf());    break;
3912     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3913     default:                              continue; //skip (odd store type)
3914     }
3915 
3916     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3917         st->Opcode() == Op_StoreL) {
3918       continue;                 // This StoreL is already optimal.
3919     }
3920 
3921     // Store down the constant.
3922     store_constant(tiles, num_tiles, st_off, st_size, con);
3923 
3924     intptr_t j = st_off >> LogBytesPerLong;
3925 
3926     if (type == T_INT && st_size == BytesPerInt
3927         && (st_off & BytesPerInt) == BytesPerInt) {
3928       jlong lcon = tiles[j];
3929       if (!Matcher::isSimpleConstant64(lcon) &&
3930           st->Opcode() == Op_StoreI) {
3931         // This StoreI is already optimal by itself.
3932         jint* intcon = (jint*) &tiles[j];
3933         intcon[1] = 0;  // undo the store_constant()
3934 
3935         // If the previous store is also optimal by itself, back up and
3936         // undo the action of the previous loop iteration... if we can.
3937         // But if we can't, just let the previous half take care of itself.
3938         st = nodes[j];
3939         st_off -= BytesPerInt;
3940         con = intcon[0];
3941         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3942           assert(st_off >= header_size, "still ignoring header");
3943           assert(get_store_offset(st, phase) == st_off, "must be");
3944           assert(in(i-1) == zmem, "must be");
3945           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3946           assert(con == tcon->is_int()->get_con(), "must be");
3947           // Undo the effects of the previous loop trip, which swallowed st:
3948           intcon[0] = 0;        // undo store_constant()
3949           set_req(i-1, st);     // undo set_req(i, zmem)
3950           nodes[j] = NULL;      // undo nodes[j] = st
3951           --old_subword;        // undo ++old_subword
3952         }
3953         continue;               // This StoreI is already optimal.
3954       }
3955     }
3956 
3957     // This store is not needed.
3958     set_req(i, zmem);
3959     nodes[j] = st;              // record for the moment
3960     if (st_size < BytesPerLong) // something has changed
3961           ++old_subword;        // includes int/float, but who's counting...
3962     else  ++old_long;
3963   }
3964 
3965   if ((old_subword + old_long) == 0)
3966     return;                     // nothing more to do
3967 
3968   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3969   // Be sure to insert them before overlapping non-constant stores.
3970   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3971   for (int j = 0; j < num_tiles; j++) {
3972     jlong con  = tiles[j];
3973     jlong init = inits[j];
3974     if (con == 0)  continue;
3975     jint con0,  con1;           // split the constant, address-wise
3976     jint init0, init1;          // split the init map, address-wise
3977     { union { jlong con; jint intcon[2]; } u;
3978       u.con = con;
3979       con0  = u.intcon[0];
3980       con1  = u.intcon[1];
3981       u.con = init;
3982       init0 = u.intcon[0];
3983       init1 = u.intcon[1];
3984     }
3985 
3986     Node* old = nodes[j];
3987     assert(old != NULL, "need the prior store");
3988     intptr_t offset = (j * BytesPerLong);
3989 
3990     bool split = !Matcher::isSimpleConstant64(con);
3991 
3992     if (offset < header_size) {
3993       assert(offset + BytesPerInt >= header_size, "second int counts");
3994       assert(*(jint*)&tiles[j] == 0, "junk in header");
3995       split = true;             // only the second word counts
3996       // Example:  int a[] = { 42 ... }
3997     } else if (con0 == 0 && init0 == -1) {
3998       split = true;             // first word is covered by full inits
3999       // Example:  int a[] = { ... foo(), 42 ... }
4000     } else if (con1 == 0 && init1 == -1) {
4001       split = true;             // second word is covered by full inits
4002       // Example:  int a[] = { ... 42, foo() ... }
4003     }
4004 
4005     // Here's a case where init0 is neither 0 nor -1:
4006     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4007     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4008     // In this case the tile is not split; it is (jlong)42.
4009     // The big tile is stored down, and then the foo() value is inserted.
4010     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4011 
4012     Node* ctl = old->in(MemNode::Control);
4013     Node* adr = make_raw_address(offset, phase);
4014     const TypePtr* atp = TypeRawPtr::BOTTOM;
4015 
4016     // One or two coalesced stores to plop down.
4017     Node*    st[2];
4018     intptr_t off[2];
4019     int  nst = 0;
4020     if (!split) {
4021       ++new_long;
4022       off[nst] = offset;
4023       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4024                                   phase->longcon(con), T_LONG, MemNode::unordered);
4025     } else {
4026       // Omit either if it is a zero.
4027       if (con0 != 0) {
4028         ++new_int;
4029         off[nst]  = offset;
4030         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4031                                     phase->intcon(con0), T_INT, MemNode::unordered);
4032       }
4033       if (con1 != 0) {
4034         ++new_int;
4035         offset += BytesPerInt;
4036         adr = make_raw_address(offset, phase);
4037         off[nst]  = offset;
4038         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4039                                     phase->intcon(con1), T_INT, MemNode::unordered);
4040       }
4041     }
4042 
4043     // Insert second store first, then the first before the second.
4044     // Insert each one just before any overlapping non-constant stores.
4045     while (nst > 0) {
4046       Node* st1 = st[--nst];
4047       C->copy_node_notes_to(st1, old);
4048       st1 = phase->transform(st1);
4049       offset = off[nst];
4050       assert(offset >= header_size, "do not smash header");
4051       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4052       guarantee(ins_idx != 0, "must re-insert constant store");
4053       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4054       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4055         set_req(--ins_idx, st1);
4056       else
4057         ins_req(ins_idx, st1);
4058     }
4059   }
4060 
4061   if (PrintCompilation && WizardMode)
4062     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4063                   old_subword, old_long, new_int, new_long);
4064   if (C->log() != NULL)
4065     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4066                    old_subword, old_long, new_int, new_long);
4067 
4068   // Clean up any remaining occurrences of zmem:
4069   remove_extra_zeroes();
4070 }
4071 
4072 // Explore forward from in(start) to find the first fully initialized
4073 // word, and return its offset.  Skip groups of subword stores which
4074 // together initialize full words.  If in(start) is itself part of a
4075 // fully initialized word, return the offset of in(start).  If there
4076 // are no following full-word stores, or if something is fishy, return
4077 // a negative value.
4078 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4079   int       int_map = 0;
4080   intptr_t  int_map_off = 0;
4081   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4082 
4083   for (uint i = start, limit = req(); i < limit; i++) {
4084     Node* st = in(i);
4085 
4086     intptr_t st_off = get_store_offset(st, phase);
4087     if (st_off < 0)  break;  // return conservative answer
4088 
4089     int st_size = st->as_Store()->memory_size();
4090     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4091       return st_off;            // we found a complete word init
4092     }
4093 
4094     // update the map:
4095 
4096     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4097     if (this_int_off != int_map_off) {
4098       // reset the map:
4099       int_map = 0;
4100       int_map_off = this_int_off;
4101     }
4102 
4103     int subword_off = st_off - this_int_off;
4104     int_map |= right_n_bits(st_size) << subword_off;
4105     if ((int_map & FULL_MAP) == FULL_MAP) {
4106       return this_int_off;      // we found a complete word init
4107     }
4108 
4109     // Did this store hit or cross the word boundary?
4110     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4111     if (next_int_off == this_int_off + BytesPerInt) {
4112       // We passed the current int, without fully initializing it.
4113       int_map_off = next_int_off;
4114       int_map >>= BytesPerInt;
4115     } else if (next_int_off > this_int_off + BytesPerInt) {
4116       // We passed the current and next int.
4117       return this_int_off + BytesPerInt;
4118     }
4119   }
4120 
4121   return -1;
4122 }
4123 
4124 
4125 // Called when the associated AllocateNode is expanded into CFG.
4126 // At this point, we may perform additional optimizations.
4127 // Linearize the stores by ascending offset, to make memory
4128 // activity as coherent as possible.
4129 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4130                                       intptr_t header_size,
4131                                       Node* size_in_bytes,
4132                                       PhaseGVN* phase) {
4133   assert(!is_complete(), "not already complete");
4134   assert(stores_are_sane(phase), "");
4135   assert(allocation() != NULL, "must be present");
4136 
4137   remove_extra_zeroes();
4138 
4139   if (ReduceFieldZeroing || ReduceBulkZeroing)
4140     // reduce instruction count for common initialization patterns
4141     coalesce_subword_stores(header_size, size_in_bytes, phase);
4142 
4143   Node* zmem = zero_memory();   // initially zero memory state
4144   Node* inits = zmem;           // accumulating a linearized chain of inits
4145   #ifdef ASSERT
4146   intptr_t first_offset = allocation()->minimum_header_size();
4147   intptr_t last_init_off = first_offset;  // previous init offset
4148   intptr_t last_init_end = first_offset;  // previous init offset+size
4149   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4150   #endif
4151   intptr_t zeroes_done = header_size;
4152 
4153   bool do_zeroing = true;       // we might give up if inits are very sparse
4154   int  big_init_gaps = 0;       // how many large gaps have we seen?
4155 
4156   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4157   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4158 
4159   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4160     Node* st = in(i);
4161     intptr_t st_off = get_store_offset(st, phase);
4162     if (st_off < 0)
4163       break;                    // unknown junk in the inits
4164     if (st->in(MemNode::Memory) != zmem)
4165       break;                    // complicated store chains somehow in list
4166 
4167     int st_size = st->as_Store()->memory_size();
4168     intptr_t next_init_off = st_off + st_size;
4169 
4170     if (do_zeroing && zeroes_done < next_init_off) {
4171       // See if this store needs a zero before it or under it.
4172       intptr_t zeroes_needed = st_off;
4173 
4174       if (st_size < BytesPerInt) {
4175         // Look for subword stores which only partially initialize words.
4176         // If we find some, we must lay down some word-level zeroes first,
4177         // underneath the subword stores.
4178         //
4179         // Examples:
4180         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4181         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4182         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4183         //
4184         // Note:  coalesce_subword_stores may have already done this,
4185         // if it was prompted by constant non-zero subword initializers.
4186         // But this case can still arise with non-constant stores.
4187 
4188         intptr_t next_full_store = find_next_fullword_store(i, phase);
4189 
4190         // In the examples above:
4191         //   in(i)          p   q   r   s     x   y     z
4192         //   st_off        12  13  14  15    12  13    14
4193         //   st_size        1   1   1   1     1   1     1
4194         //   next_full_s.  12  16  16  16    16  16    16
4195         //   z's_done      12  16  16  16    12  16    12
4196         //   z's_needed    12  16  16  16    16  16    16
4197         //   zsize          0   0   0   0     4   0     4
4198         if (next_full_store < 0) {
4199           // Conservative tack:  Zero to end of current word.
4200           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4201         } else {
4202           // Zero to beginning of next fully initialized word.
4203           // Or, don't zero at all, if we are already in that word.
4204           assert(next_full_store >= zeroes_needed, "must go forward");
4205           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4206           zeroes_needed = next_full_store;
4207         }
4208       }
4209 
4210       if (zeroes_needed > zeroes_done) {
4211         intptr_t zsize = zeroes_needed - zeroes_done;
4212         // Do some incremental zeroing on rawmem, in parallel with inits.
4213         zeroes_done = align_down(zeroes_done, BytesPerInt);
4214         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4215                                               zeroes_done, zeroes_needed,
4216                                               phase);
4217         zeroes_done = zeroes_needed;
4218         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4219           do_zeroing = false;   // leave the hole, next time
4220       }
4221     }
4222 
4223     // Collect the store and move on:
4224     st->set_req(MemNode::Memory, inits);
4225     inits = st;                 // put it on the linearized chain
4226     set_req(i, zmem);           // unhook from previous position
4227 
4228     if (zeroes_done == st_off)
4229       zeroes_done = next_init_off;
4230 
4231     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4232 
4233     #ifdef ASSERT
4234     // Various order invariants.  Weaker than stores_are_sane because
4235     // a large constant tile can be filled in by smaller non-constant stores.
4236     assert(st_off >= last_init_off, "inits do not reverse");
4237     last_init_off = st_off;
4238     const Type* val = NULL;
4239     if (st_size >= BytesPerInt &&
4240         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4241         (int)val->basic_type() < (int)T_OBJECT) {
4242       assert(st_off >= last_tile_end, "tiles do not overlap");
4243       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4244       last_tile_end = MAX2(last_tile_end, next_init_off);
4245     } else {
4246       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4247       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4248       assert(st_off      >= last_init_end, "inits do not overlap");
4249       last_init_end = next_init_off;  // it's a non-tile
4250     }
4251     #endif //ASSERT
4252   }
4253 
4254   remove_extra_zeroes();        // clear out all the zmems left over
4255   add_req(inits);
4256 
4257   if (!(UseTLAB && ZeroTLAB)) {
4258     // If anything remains to be zeroed, zero it all now.
4259     zeroes_done = align_down(zeroes_done, BytesPerInt);
4260     // if it is the last unused 4 bytes of an instance, forget about it
4261     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4262     if (zeroes_done + BytesPerLong >= size_limit) {
4263       AllocateNode* alloc = allocation();
4264       assert(alloc != NULL, "must be present");
4265       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4266         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4267         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4268         if (zeroes_done == k->layout_helper())
4269           zeroes_done = size_limit;
4270       }
4271     }
4272     if (zeroes_done < size_limit) {
4273       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4274                                             zeroes_done, size_in_bytes, phase);
4275     }
4276   }
4277 
4278   set_complete(phase);
4279   return rawmem;
4280 }
4281 
4282 
4283 #ifdef ASSERT
4284 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4285   if (is_complete())
4286     return true;                // stores could be anything at this point
4287   assert(allocation() != NULL, "must be present");
4288   intptr_t last_off = allocation()->minimum_header_size();
4289   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4290     Node* st = in(i);
4291     intptr_t st_off = get_store_offset(st, phase);
4292     if (st_off < 0)  continue;  // ignore dead garbage
4293     if (last_off > st_off) {
4294       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4295       this->dump(2);
4296       assert(false, "ascending store offsets");
4297       return false;
4298     }
4299     last_off = st_off + st->as_Store()->memory_size();
4300   }
4301   return true;
4302 }
4303 #endif //ASSERT
4304 
4305 
4306 
4307 
4308 //============================MergeMemNode=====================================
4309 //
4310 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4311 // contributing store or call operations.  Each contributor provides the memory
4312 // state for a particular "alias type" (see Compile::alias_type).  For example,
4313 // if a MergeMem has an input X for alias category #6, then any memory reference
4314 // to alias category #6 may use X as its memory state input, as an exact equivalent
4315 // to using the MergeMem as a whole.
4316 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4317 //
4318 // (Here, the <N> notation gives the index of the relevant adr_type.)
4319 //
4320 // In one special case (and more cases in the future), alias categories overlap.
4321 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4322 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4323 // it is exactly equivalent to that state W:
4324 //   MergeMem(<Bot>: W) <==> W
4325 //
4326 // Usually, the merge has more than one input.  In that case, where inputs
4327 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4328 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4329 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4330 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4331 //
4332 // A merge can take a "wide" memory state as one of its narrow inputs.
4333 // This simply means that the merge observes out only the relevant parts of
4334 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4335 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4336 //
4337 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4338 // and that memory slices "leak through":
4339 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4340 //
4341 // But, in such a cascade, repeated memory slices can "block the leak":
4342 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4343 //
4344 // In the last example, Y is not part of the combined memory state of the
4345 // outermost MergeMem.  The system must, of course, prevent unschedulable
4346 // memory states from arising, so you can be sure that the state Y is somehow
4347 // a precursor to state Y'.
4348 //
4349 //
4350 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4351 // of each MergeMemNode array are exactly the numerical alias indexes, including
4352 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4353 // Compile::alias_type (and kin) produce and manage these indexes.
4354 //
4355 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4356 // (Note that this provides quick access to the top node inside MergeMem methods,
4357 // without the need to reach out via TLS to Compile::current.)
4358 //
4359 // As a consequence of what was just described, a MergeMem that represents a full
4360 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4361 // containing all alias categories.
4362 //
4363 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4364 //
4365 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4366 // a memory state for the alias type <N>, or else the top node, meaning that
4367 // there is no particular input for that alias type.  Note that the length of
4368 // a MergeMem is variable, and may be extended at any time to accommodate new
4369 // memory states at larger alias indexes.  When merges grow, they are of course
4370 // filled with "top" in the unused in() positions.
4371 //
4372 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4373 // (Top was chosen because it works smoothly with passes like GCM.)
4374 //
4375 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4376 // the type of random VM bits like TLS references.)  Since it is always the
4377 // first non-Bot memory slice, some low-level loops use it to initialize an
4378 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4379 //
4380 //
4381 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4382 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4383 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4384 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4385 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4386 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4387 //
4388 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4389 // really that different from the other memory inputs.  An abbreviation called
4390 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4391 //
4392 //
4393 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4394 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4395 // that "emerges though" the base memory will be marked as excluding the alias types
4396 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4397 //
4398 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4399 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4400 //
4401 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4402 // (It is currently unimplemented.)  As you can see, the resulting merge is
4403 // actually a disjoint union of memory states, rather than an overlay.
4404 //
4405 
4406 //------------------------------MergeMemNode-----------------------------------
4407 Node* MergeMemNode::make_empty_memory() {
4408   Node* empty_memory = (Node*) Compile::current()->top();
4409   assert(empty_memory->is_top(), "correct sentinel identity");
4410   return empty_memory;
4411 }
4412 
4413 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4414   init_class_id(Class_MergeMem);
4415   // all inputs are nullified in Node::Node(int)
4416   // set_input(0, NULL);  // no control input
4417 
4418   // Initialize the edges uniformly to top, for starters.
4419   Node* empty_mem = make_empty_memory();
4420   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4421     init_req(i,empty_mem);
4422   }
4423   assert(empty_memory() == empty_mem, "");
4424 
4425   if( new_base != NULL && new_base->is_MergeMem() ) {
4426     MergeMemNode* mdef = new_base->as_MergeMem();
4427     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4428     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4429       mms.set_memory(mms.memory2());
4430     }
4431     assert(base_memory() == mdef->base_memory(), "");
4432   } else {
4433     set_base_memory(new_base);
4434   }
4435 }
4436 
4437 // Make a new, untransformed MergeMem with the same base as 'mem'.
4438 // If mem is itself a MergeMem, populate the result with the same edges.
4439 MergeMemNode* MergeMemNode::make(Node* mem) {
4440   return new MergeMemNode(mem);
4441 }
4442 
4443 //------------------------------cmp--------------------------------------------
4444 uint MergeMemNode::hash() const { return NO_HASH; }
4445 bool MergeMemNode::cmp( const Node &n ) const {
4446   return (&n == this);          // Always fail except on self
4447 }
4448 
4449 //------------------------------Identity---------------------------------------
4450 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4451   // Identity if this merge point does not record any interesting memory
4452   // disambiguations.
4453   Node* base_mem = base_memory();
4454   Node* empty_mem = empty_memory();
4455   if (base_mem != empty_mem) {  // Memory path is not dead?
4456     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4457       Node* mem = in(i);
4458       if (mem != empty_mem && mem != base_mem) {
4459         return this;            // Many memory splits; no change
4460       }
4461     }
4462   }
4463   return base_mem;              // No memory splits; ID on the one true input
4464 }
4465 
4466 //------------------------------Ideal------------------------------------------
4467 // This method is invoked recursively on chains of MergeMem nodes
4468 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4469   // Remove chain'd MergeMems
4470   //
4471   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4472   // relative to the "in(Bot)".  Since we are patching both at the same time,
4473   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4474   // but rewrite each "in(i)" relative to the new "in(Bot)".
4475   Node *progress = NULL;
4476 
4477 
4478   Node* old_base = base_memory();
4479   Node* empty_mem = empty_memory();
4480   if (old_base == empty_mem)
4481     return NULL; // Dead memory path.
4482 
4483   MergeMemNode* old_mbase;
4484   if (old_base != NULL && old_base->is_MergeMem())
4485     old_mbase = old_base->as_MergeMem();
4486   else
4487     old_mbase = NULL;
4488   Node* new_base = old_base;
4489 
4490   // simplify stacked MergeMems in base memory
4491   if (old_mbase)  new_base = old_mbase->base_memory();
4492 
4493   // the base memory might contribute new slices beyond my req()
4494   if (old_mbase)  grow_to_match(old_mbase);
4495 
4496   // Look carefully at the base node if it is a phi.
4497   PhiNode* phi_base;
4498   if (new_base != NULL && new_base->is_Phi())
4499     phi_base = new_base->as_Phi();
4500   else
4501     phi_base = NULL;
4502 
4503   Node*    phi_reg = NULL;
4504   uint     phi_len = (uint)-1;
4505   if (phi_base != NULL && !phi_base->is_copy()) {
4506     // do not examine phi if degraded to a copy
4507     phi_reg = phi_base->region();
4508     phi_len = phi_base->req();
4509     // see if the phi is unfinished
4510     for (uint i = 1; i < phi_len; i++) {
4511       if (phi_base->in(i) == NULL) {
4512         // incomplete phi; do not look at it yet!
4513         phi_reg = NULL;
4514         phi_len = (uint)-1;
4515         break;
4516       }
4517     }
4518   }
4519 
4520   // Note:  We do not call verify_sparse on entry, because inputs
4521   // can normalize to the base_memory via subsume_node or similar
4522   // mechanisms.  This method repairs that damage.
4523 
4524   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4525 
4526   // Look at each slice.
4527   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4528     Node* old_in = in(i);
4529     // calculate the old memory value
4530     Node* old_mem = old_in;
4531     if (old_mem == empty_mem)  old_mem = old_base;
4532     assert(old_mem == memory_at(i), "");
4533 
4534     // maybe update (reslice) the old memory value
4535 
4536     // simplify stacked MergeMems
4537     Node* new_mem = old_mem;
4538     MergeMemNode* old_mmem;
4539     if (old_mem != NULL && old_mem->is_MergeMem())
4540       old_mmem = old_mem->as_MergeMem();
4541     else
4542       old_mmem = NULL;
4543     if (old_mmem == this) {
4544       // This can happen if loops break up and safepoints disappear.
4545       // A merge of BotPtr (default) with a RawPtr memory derived from a
4546       // safepoint can be rewritten to a merge of the same BotPtr with
4547       // the BotPtr phi coming into the loop.  If that phi disappears
4548       // also, we can end up with a self-loop of the mergemem.
4549       // In general, if loops degenerate and memory effects disappear,
4550       // a mergemem can be left looking at itself.  This simply means
4551       // that the mergemem's default should be used, since there is
4552       // no longer any apparent effect on this slice.
4553       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4554       //       from start.  Update the input to TOP.
4555       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4556     }
4557     else if (old_mmem != NULL) {
4558       new_mem = old_mmem->memory_at(i);
4559     }
4560     // else preceding memory was not a MergeMem
4561 
4562     // replace equivalent phis (unfortunately, they do not GVN together)
4563     if (new_mem != NULL && new_mem != new_base &&
4564         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4565       if (new_mem->is_Phi()) {
4566         PhiNode* phi_mem = new_mem->as_Phi();
4567         for (uint i = 1; i < phi_len; i++) {
4568           if (phi_base->in(i) != phi_mem->in(i)) {
4569             phi_mem = NULL;
4570             break;
4571           }
4572         }
4573         if (phi_mem != NULL) {
4574           // equivalent phi nodes; revert to the def
4575           new_mem = new_base;
4576         }
4577       }
4578     }
4579 
4580     // maybe store down a new value
4581     Node* new_in = new_mem;
4582     if (new_in == new_base)  new_in = empty_mem;
4583 
4584     if (new_in != old_in) {
4585       // Warning:  Do not combine this "if" with the previous "if"
4586       // A memory slice might have be be rewritten even if it is semantically
4587       // unchanged, if the base_memory value has changed.
4588       set_req(i, new_in);
4589       progress = this;          // Report progress
4590     }
4591   }
4592 
4593   if (new_base != old_base) {
4594     set_req(Compile::AliasIdxBot, new_base);
4595     // Don't use set_base_memory(new_base), because we need to update du.
4596     assert(base_memory() == new_base, "");
4597     progress = this;
4598   }
4599 
4600   if( base_memory() == this ) {
4601     // a self cycle indicates this memory path is dead
4602     set_req(Compile::AliasIdxBot, empty_mem);
4603   }
4604 
4605   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4606   // Recursion must occur after the self cycle check above
4607   if( base_memory()->is_MergeMem() ) {
4608     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4609     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4610     if( m != NULL &&
4611         (m->is_top() ||
4612          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4613       // propagate rollup of dead cycle to self
4614       set_req(Compile::AliasIdxBot, empty_mem);
4615     }
4616   }
4617 
4618   if( base_memory() == empty_mem ) {
4619     progress = this;
4620     // Cut inputs during Parse phase only.
4621     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4622     if( !can_reshape ) {
4623       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4624         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4625       }
4626     }
4627   }
4628 
4629   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4630     // Check if PhiNode::Ideal's "Split phis through memory merges"
4631     // transform should be attempted. Look for this->phi->this cycle.
4632     uint merge_width = req();
4633     if (merge_width > Compile::AliasIdxRaw) {
4634       PhiNode* phi = base_memory()->as_Phi();
4635       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4636         if (phi->in(i) == this) {
4637           phase->is_IterGVN()->_worklist.push(phi);
4638           break;
4639         }
4640       }
4641     }
4642   }
4643 
4644   assert(progress || verify_sparse(), "please, no dups of base");
4645   return progress;
4646 }
4647 
4648 //-------------------------set_base_memory-------------------------------------
4649 void MergeMemNode::set_base_memory(Node *new_base) {
4650   Node* empty_mem = empty_memory();
4651   set_req(Compile::AliasIdxBot, new_base);
4652   assert(memory_at(req()) == new_base, "must set default memory");
4653   // Clear out other occurrences of new_base:
4654   if (new_base != empty_mem) {
4655     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4656       if (in(i) == new_base)  set_req(i, empty_mem);
4657     }
4658   }
4659 }
4660 
4661 //------------------------------out_RegMask------------------------------------
4662 const RegMask &MergeMemNode::out_RegMask() const {
4663   return RegMask::Empty;
4664 }
4665 
4666 //------------------------------dump_spec--------------------------------------
4667 #ifndef PRODUCT
4668 void MergeMemNode::dump_spec(outputStream *st) const {
4669   st->print(" {");
4670   Node* base_mem = base_memory();
4671   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4672     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4673     if (mem == base_mem) { st->print(" -"); continue; }
4674     st->print( " N%d:", mem->_idx );
4675     Compile::current()->get_adr_type(i)->dump_on(st);
4676   }
4677   st->print(" }");
4678 }
4679 #endif // !PRODUCT
4680 
4681 
4682 #ifdef ASSERT
4683 static bool might_be_same(Node* a, Node* b) {
4684   if (a == b)  return true;
4685   if (!(a->is_Phi() || b->is_Phi()))  return false;
4686   // phis shift around during optimization
4687   return true;  // pretty stupid...
4688 }
4689 
4690 // verify a narrow slice (either incoming or outgoing)
4691 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4692   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4693   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4694   if (Node::in_dump())               return;  // muzzle asserts when printing
4695   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4696   assert(n != NULL, "");
4697   // Elide intervening MergeMem's
4698   while (n->is_MergeMem()) {
4699     n = n->as_MergeMem()->memory_at(alias_idx);
4700   }
4701   Compile* C = Compile::current();
4702   const TypePtr* n_adr_type = n->adr_type();
4703   if (n == m->empty_memory()) {
4704     // Implicit copy of base_memory()
4705   } else if (n_adr_type != TypePtr::BOTTOM) {
4706     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4707     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4708   } else {
4709     // A few places like make_runtime_call "know" that VM calls are narrow,
4710     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4711     bool expected_wide_mem = false;
4712     if (n == m->base_memory()) {
4713       expected_wide_mem = true;
4714     } else if (alias_idx == Compile::AliasIdxRaw ||
4715                n == m->memory_at(Compile::AliasIdxRaw)) {
4716       expected_wide_mem = true;
4717     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4718       // memory can "leak through" calls on channels that
4719       // are write-once.  Allow this also.
4720       expected_wide_mem = true;
4721     }
4722     assert(expected_wide_mem, "expected narrow slice replacement");
4723   }
4724 }
4725 #else // !ASSERT
4726 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4727 #endif
4728 
4729 
4730 //-----------------------------memory_at---------------------------------------
4731 Node* MergeMemNode::memory_at(uint alias_idx) const {
4732   assert(alias_idx >= Compile::AliasIdxRaw ||
4733          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4734          "must avoid base_memory and AliasIdxTop");
4735 
4736   // Otherwise, it is a narrow slice.
4737   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4738   Compile *C = Compile::current();
4739   if (is_empty_memory(n)) {
4740     // the array is sparse; empty slots are the "top" node
4741     n = base_memory();
4742     assert(Node::in_dump()
4743            || n == NULL || n->bottom_type() == Type::TOP
4744            || n->adr_type() == NULL // address is TOP
4745            || n->adr_type() == TypePtr::BOTTOM
4746            || n->adr_type() == TypeRawPtr::BOTTOM
4747            || Compile::current()->AliasLevel() == 0,
4748            "must be a wide memory");
4749     // AliasLevel == 0 if we are organizing the memory states manually.
4750     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4751   } else {
4752     // make sure the stored slice is sane
4753     #ifdef ASSERT
4754     if (VMError::is_error_reported() || Node::in_dump()) {
4755     } else if (might_be_same(n, base_memory())) {
4756       // Give it a pass:  It is a mostly harmless repetition of the base.
4757       // This can arise normally from node subsumption during optimization.
4758     } else {
4759       verify_memory_slice(this, alias_idx, n);
4760     }
4761     #endif
4762   }
4763   return n;
4764 }
4765 
4766 //---------------------------set_memory_at-------------------------------------
4767 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4768   verify_memory_slice(this, alias_idx, n);
4769   Node* empty_mem = empty_memory();
4770   if (n == base_memory())  n = empty_mem;  // collapse default
4771   uint need_req = alias_idx+1;
4772   if (req() < need_req) {
4773     if (n == empty_mem)  return;  // already the default, so do not grow me
4774     // grow the sparse array
4775     do {
4776       add_req(empty_mem);
4777     } while (req() < need_req);
4778   }
4779   set_req( alias_idx, n );
4780 }
4781 
4782 
4783 
4784 //--------------------------iteration_setup------------------------------------
4785 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4786   if (other != NULL) {
4787     grow_to_match(other);
4788     // invariant:  the finite support of mm2 is within mm->req()
4789     #ifdef ASSERT
4790     for (uint i = req(); i < other->req(); i++) {
4791       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4792     }
4793     #endif
4794   }
4795   // Replace spurious copies of base_memory by top.
4796   Node* base_mem = base_memory();
4797   if (base_mem != NULL && !base_mem->is_top()) {
4798     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4799       if (in(i) == base_mem)
4800         set_req(i, empty_memory());
4801     }
4802   }
4803 }
4804 
4805 //---------------------------grow_to_match-------------------------------------
4806 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4807   Node* empty_mem = empty_memory();
4808   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4809   // look for the finite support of the other memory
4810   for (uint i = other->req(); --i >= req(); ) {
4811     if (other->in(i) != empty_mem) {
4812       uint new_len = i+1;
4813       while (req() < new_len)  add_req(empty_mem);
4814       break;
4815     }
4816   }
4817 }
4818 
4819 //---------------------------verify_sparse-------------------------------------
4820 #ifndef PRODUCT
4821 bool MergeMemNode::verify_sparse() const {
4822   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4823   Node* base_mem = base_memory();
4824   // The following can happen in degenerate cases, since empty==top.
4825   if (is_empty_memory(base_mem))  return true;
4826   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4827     assert(in(i) != NULL, "sane slice");
4828     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4829   }
4830   return true;
4831 }
4832 
4833 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4834   Node* n;
4835   n = mm->in(idx);
4836   if (mem == n)  return true;  // might be empty_memory()
4837   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4838   if (mem == n)  return true;
4839   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4840     if (mem == n)  return true;
4841     if (n == NULL)  break;
4842   }
4843   return false;
4844 }
4845 #endif // !PRODUCT