1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 
  56 // Portions of code courtesy of Clifford Click
  57 
  58 // Optimization - Graph Style
  59 
  60 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  61 
  62 //=============================================================================
  63 uint MemNode::size_of() const { return sizeof(*this); }
  64 
  65 const TypePtr *MemNode::adr_type() const {
  66   Node* adr = in(Address);
  67   if (adr == NULL)  return NULL; // node is dead
  68   const TypePtr* cross_check = NULL;
  69   DEBUG_ONLY(cross_check = _adr_type);
  70   return calculate_adr_type(adr->bottom_type(), cross_check);
  71 }
  72 
  73 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  74   if (adr != NULL) {
  75     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  76       return true;
  77     }
  78   }
  79   return false;
  80 }
  81 
  82 #ifndef PRODUCT
  83 void MemNode::dump_spec(outputStream *st) const {
  84   if (in(Address) == NULL)  return; // node is dead
  85 #ifndef ASSERT
  86   // fake the missing field
  87   const TypePtr* _adr_type = NULL;
  88   if (in(Address) != NULL)
  89     _adr_type = in(Address)->bottom_type()->isa_ptr();
  90 #endif
  91   dump_adr_type(this, _adr_type, st);
  92 
  93   Compile* C = Compile::current();
  94   if (C->alias_type(_adr_type)->is_volatile()) {
  95     st->print(" Volatile!");
  96   }
  97   if (_unaligned_access) {
  98     st->print(" unaligned");
  99   }
 100   if (_mismatched_access) {
 101     st->print(" mismatched");
 102   }
 103   if (_unsafe_access) {
 104     st->print(" unsafe");
 105   }
 106 }
 107 
 108 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 109   st->print(" @");
 110   if (adr_type == NULL) {
 111     st->print("NULL");
 112   } else {
 113     adr_type->dump_on(st);
 114     Compile* C = Compile::current();
 115     Compile::AliasType* atp = NULL;
 116     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 117     if (atp == NULL)
 118       st->print(", idx=?\?;");
 119     else if (atp->index() == Compile::AliasIdxBot)
 120       st->print(", idx=Bot;");
 121     else if (atp->index() == Compile::AliasIdxTop)
 122       st->print(", idx=Top;");
 123     else if (atp->index() == Compile::AliasIdxRaw)
 124       st->print(", idx=Raw;");
 125     else {
 126       ciField* field = atp->field();
 127       if (field) {
 128         st->print(", name=");
 129         field->print_name_on(st);
 130       }
 131       st->print(", idx=%d;", atp->index());
 132     }
 133   }
 134 }
 135 
 136 extern void print_alias_types();
 137 
 138 #endif
 139 
 140 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 141   assert((t_oop != NULL), "sanity");
 142   bool is_instance = t_oop->is_known_instance_field();
 143   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 144                              (load != NULL) && load->is_Load() &&
 145                              (phase->is_IterGVN() != NULL);
 146   if (!(is_instance || is_boxed_value_load))
 147     return mchain;  // don't try to optimize non-instance types
 148   uint instance_id = t_oop->instance_id();
 149   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 150   Node *prev = NULL;
 151   Node *result = mchain;
 152   while (prev != result) {
 153     prev = result;
 154     if (result == start_mem)
 155       break;  // hit one of our sentinels
 156     // skip over a call which does not affect this memory slice
 157     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 158       Node *proj_in = result->in(0);
 159       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 160         break;  // hit one of our sentinels
 161       } else if (proj_in->is_Call()) {
 162         // ArrayCopyNodes processed here as well
 163         CallNode *call = proj_in->as_Call();
 164         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 165           result = call->in(TypeFunc::Memory);
 166         }
 167       } else if (proj_in->is_Initialize()) {
 168         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 169         // Stop if this is the initialization for the object instance which
 170         // contains this memory slice, otherwise skip over it.
 171         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 172           break;
 173         }
 174         if (is_instance) {
 175           result = proj_in->in(TypeFunc::Memory);
 176         } else if (is_boxed_value_load) {
 177           Node* klass = alloc->in(AllocateNode::KlassNode);
 178           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 179           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 180             result = proj_in->in(TypeFunc::Memory); // not related allocation
 181           }
 182         }
 183       } else if (proj_in->is_MemBar()) {
 184         ArrayCopyNode* ac = NULL;
 185         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 186           break;
 187         }
 188         result = proj_in->in(TypeFunc::Memory);
 189       } else {
 190         assert(false, "unexpected projection");
 191       }
 192     } else if (result->is_ClearArray()) {
 193       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 194         // Can not bypass initialization of the instance
 195         // we are looking for.
 196         break;
 197       }
 198       // Otherwise skip it (the call updated 'result' value).
 199     } else if (result->is_MergeMem()) {
 200       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 201     }
 202   }
 203   return result;
 204 }
 205 
 206 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 207   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 208   if (t_oop == NULL)
 209     return mchain;  // don't try to optimize non-oop types
 210   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 211   bool is_instance = t_oop->is_known_instance_field();
 212   PhaseIterGVN *igvn = phase->is_IterGVN();
 213   if (is_instance && igvn != NULL  && result->is_Phi()) {
 214     PhiNode *mphi = result->as_Phi();
 215     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 216     const TypePtr *t = mphi->adr_type();
 217     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 218         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 219          t->is_oopptr()->cast_to_exactness(true)
 220            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 221             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 222       // clone the Phi with our address type
 223       result = mphi->split_out_instance(t_adr, igvn);
 224     } else {
 225       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 226     }
 227   }
 228   return result;
 229 }
 230 
 231 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 232   uint alias_idx = phase->C->get_alias_index(tp);
 233   Node *mem = mmem;
 234 #ifdef ASSERT
 235   {
 236     // Check that current type is consistent with the alias index used during graph construction
 237     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 238     bool consistent =  adr_check == NULL || adr_check->empty() ||
 239                        phase->C->must_alias(adr_check, alias_idx );
 240     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 241     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 242                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 243         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 244         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 245           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 246           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 247       // don't assert if it is dead code.
 248       consistent = true;
 249     }
 250     if( !consistent ) {
 251       st->print("alias_idx==%d, adr_check==", alias_idx);
 252       if( adr_check == NULL ) {
 253         st->print("NULL");
 254       } else {
 255         adr_check->dump();
 256       }
 257       st->cr();
 258       print_alias_types();
 259       assert(consistent, "adr_check must match alias idx");
 260     }
 261   }
 262 #endif
 263   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 264   // means an array I have not precisely typed yet.  Do not do any
 265   // alias stuff with it any time soon.
 266   const TypeOopPtr *toop = tp->isa_oopptr();
 267   if( tp->base() != Type::AnyPtr &&
 268       !(toop &&
 269         toop->klass() != NULL &&
 270         toop->klass()->is_java_lang_Object() &&
 271         toop->offset() == Type::OffsetBot) ) {
 272     // compress paths and change unreachable cycles to TOP
 273     // If not, we can update the input infinitely along a MergeMem cycle
 274     // Equivalent code in PhiNode::Ideal
 275     Node* m  = phase->transform(mmem);
 276     // If transformed to a MergeMem, get the desired slice
 277     // Otherwise the returned node represents memory for every slice
 278     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 279     // Update input if it is progress over what we have now
 280   }
 281   return mem;
 282 }
 283 
 284 //--------------------------Ideal_common---------------------------------------
 285 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 286 // Unhook non-raw memories from complete (macro-expanded) initializations.
 287 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 288   // If our control input is a dead region, kill all below the region
 289   Node *ctl = in(MemNode::Control);
 290   if (ctl && remove_dead_region(phase, can_reshape))
 291     return this;
 292   ctl = in(MemNode::Control);
 293   // Don't bother trying to transform a dead node
 294   if (ctl && ctl->is_top())  return NodeSentinel;
 295 
 296   PhaseIterGVN *igvn = phase->is_IterGVN();
 297   // Wait if control on the worklist.
 298   if (ctl && can_reshape && igvn != NULL) {
 299     Node* bol = NULL;
 300     Node* cmp = NULL;
 301     if (ctl->in(0)->is_If()) {
 302       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 303       bol = ctl->in(0)->in(1);
 304       if (bol->is_Bool())
 305         cmp = ctl->in(0)->in(1)->in(1);
 306     }
 307     if (igvn->_worklist.member(ctl) ||
 308         (bol != NULL && igvn->_worklist.member(bol)) ||
 309         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 310       // This control path may be dead.
 311       // Delay this memory node transformation until the control is processed.
 312       phase->is_IterGVN()->_worklist.push(this);
 313       return NodeSentinel; // caller will return NULL
 314     }
 315   }
 316   // Ignore if memory is dead, or self-loop
 317   Node *mem = in(MemNode::Memory);
 318   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 319   assert(mem != this, "dead loop in MemNode::Ideal");
 320 
 321   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 322     // This memory slice may be dead.
 323     // Delay this mem node transformation until the memory is processed.
 324     phase->is_IterGVN()->_worklist.push(this);
 325     return NodeSentinel; // caller will return NULL
 326   }
 327 
 328   Node *address = in(MemNode::Address);
 329   const Type *t_adr = phase->type(address);
 330   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 331 
 332   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 333     // Unsafe off-heap access with zero address. Remove access and other control users
 334     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 335     assert(ctl != NULL, "unsafe accesses should be control dependent");
 336     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 337       Node* u = ctl->fast_out(i);
 338       if (u != ctl) {
 339         igvn->rehash_node_delayed(u);
 340         int nb = u->replace_edge(ctl, phase->C->top());
 341         --i, imax -= nb;
 342       }
 343     }
 344     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 345     Node* halt = igvn->transform(new HaltNode(ctl, frame));
 346     phase->C->root()->add_req(halt);
 347     return this;
 348   }
 349 
 350   if (can_reshape && igvn != NULL &&
 351       (igvn->_worklist.member(address) ||
 352        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 353     // The address's base and type may change when the address is processed.
 354     // Delay this mem node transformation until the address is processed.
 355     phase->is_IterGVN()->_worklist.push(this);
 356     return NodeSentinel; // caller will return NULL
 357   }
 358 
 359   // Do NOT remove or optimize the next lines: ensure a new alias index
 360   // is allocated for an oop pointer type before Escape Analysis.
 361   // Note: C++ will not remove it since the call has side effect.
 362   if (t_adr->isa_oopptr()) {
 363     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 364   }
 365 
 366   Node* base = NULL;
 367   if (address->is_AddP()) {
 368     base = address->in(AddPNode::Base);
 369   }
 370   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 371       !t_adr->isa_rawptr()) {
 372     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 373     // Skip this node optimization if its address has TOP base.
 374     return NodeSentinel; // caller will return NULL
 375   }
 376 
 377   // Avoid independent memory operations
 378   Node* old_mem = mem;
 379 
 380   // The code which unhooks non-raw memories from complete (macro-expanded)
 381   // initializations was removed. After macro-expansion all stores catched
 382   // by Initialize node became raw stores and there is no information
 383   // which memory slices they modify. So it is unsafe to move any memory
 384   // operation above these stores. Also in most cases hooked non-raw memories
 385   // were already unhooked by using information from detect_ptr_independence()
 386   // and find_previous_store().
 387 
 388   if (mem->is_MergeMem()) {
 389     MergeMemNode* mmem = mem->as_MergeMem();
 390     const TypePtr *tp = t_adr->is_ptr();
 391 
 392     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 393   }
 394 
 395   if (mem != old_mem) {
 396     set_req(MemNode::Memory, mem);
 397     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 398       igvn->_worklist.push(old_mem);
 399     }
 400     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 401     return this;
 402   }
 403 
 404   // let the subclass continue analyzing...
 405   return NULL;
 406 }
 407 
 408 // Helper function for proving some simple control dominations.
 409 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 410 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 411 // is not a constant (dominated by the method's StartNode).
 412 // Used by MemNode::find_previous_store to prove that the
 413 // control input of a memory operation predates (dominates)
 414 // an allocation it wants to look past.
 415 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 416   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 417     return false; // Conservative answer for dead code
 418 
 419   // Check 'dom'. Skip Proj and CatchProj nodes.
 420   dom = dom->find_exact_control(dom);
 421   if (dom == NULL || dom->is_top())
 422     return false; // Conservative answer for dead code
 423 
 424   if (dom == sub) {
 425     // For the case when, for example, 'sub' is Initialize and the original
 426     // 'dom' is Proj node of the 'sub'.
 427     return false;
 428   }
 429 
 430   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 431     return true;
 432 
 433   // 'dom' dominates 'sub' if its control edge and control edges
 434   // of all its inputs dominate or equal to sub's control edge.
 435 
 436   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 437   // Or Region for the check in LoadNode::Ideal();
 438   // 'sub' should have sub->in(0) != NULL.
 439   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 440          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 441 
 442   // Get control edge of 'sub'.
 443   Node* orig_sub = sub;
 444   sub = sub->find_exact_control(sub->in(0));
 445   if (sub == NULL || sub->is_top())
 446     return false; // Conservative answer for dead code
 447 
 448   assert(sub->is_CFG(), "expecting control");
 449 
 450   if (sub == dom)
 451     return true;
 452 
 453   if (sub->is_Start() || sub->is_Root())
 454     return false;
 455 
 456   {
 457     // Check all control edges of 'dom'.
 458 
 459     ResourceMark rm;
 460     Arena* arena = Thread::current()->resource_area();
 461     Node_List nlist(arena);
 462     Unique_Node_List dom_list(arena);
 463 
 464     dom_list.push(dom);
 465     bool only_dominating_controls = false;
 466 
 467     for (uint next = 0; next < dom_list.size(); next++) {
 468       Node* n = dom_list.at(next);
 469       if (n == orig_sub)
 470         return false; // One of dom's inputs dominated by sub.
 471       if (!n->is_CFG() && n->pinned()) {
 472         // Check only own control edge for pinned non-control nodes.
 473         n = n->find_exact_control(n->in(0));
 474         if (n == NULL || n->is_top())
 475           return false; // Conservative answer for dead code
 476         assert(n->is_CFG(), "expecting control");
 477         dom_list.push(n);
 478       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 479         only_dominating_controls = true;
 480       } else if (n->is_CFG()) {
 481         if (n->dominates(sub, nlist))
 482           only_dominating_controls = true;
 483         else
 484           return false;
 485       } else {
 486         // First, own control edge.
 487         Node* m = n->find_exact_control(n->in(0));
 488         if (m != NULL) {
 489           if (m->is_top())
 490             return false; // Conservative answer for dead code
 491           dom_list.push(m);
 492         }
 493         // Now, the rest of edges.
 494         uint cnt = n->req();
 495         for (uint i = 1; i < cnt; i++) {
 496           m = n->find_exact_control(n->in(i));
 497           if (m == NULL || m->is_top())
 498             continue;
 499           dom_list.push(m);
 500         }
 501       }
 502     }
 503     return only_dominating_controls;
 504   }
 505 }
 506 
 507 //---------------------detect_ptr_independence---------------------------------
 508 // Used by MemNode::find_previous_store to prove that two base
 509 // pointers are never equal.
 510 // The pointers are accompanied by their associated allocations,
 511 // if any, which have been previously discovered by the caller.
 512 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 513                                       Node* p2, AllocateNode* a2,
 514                                       PhaseTransform* phase) {
 515   // Attempt to prove that these two pointers cannot be aliased.
 516   // They may both manifestly be allocations, and they should differ.
 517   // Or, if they are not both allocations, they can be distinct constants.
 518   // Otherwise, one is an allocation and the other a pre-existing value.
 519   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 520     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 521   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 522     return (a1 != a2);
 523   } else if (a1 != NULL) {                  // one allocation a1
 524     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 525     return all_controls_dominate(p2, a1);
 526   } else { //(a2 != NULL)                   // one allocation a2
 527     return all_controls_dominate(p1, a2);
 528   }
 529   return false;
 530 }
 531 
 532 
 533 // Find an arraycopy that must have set (can_see_stored_value=true) or
 534 // could have set (can_see_stored_value=false) the value for this load
 535 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 536   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 537                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 538     Node* mb = mem->in(0);
 539     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 540         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 541       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 542       if (ac->is_clonebasic()) {
 543         intptr_t offset;
 544         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 545         if (alloc != NULL && alloc == ld_alloc) {
 546           return ac;
 547         }
 548       }
 549     }
 550   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 551     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 552 
 553     if (ac->is_arraycopy_validated() ||
 554         ac->is_copyof_validated() ||
 555         ac->is_copyofrange_validated()) {
 556       Node* ld_addp = in(MemNode::Address);
 557       if (ld_addp->is_AddP()) {
 558         Node* ld_base = ld_addp->in(AddPNode::Address);
 559         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 560 
 561         Node* dest = ac->in(ArrayCopyNode::Dest);
 562 
 563         if (dest == ld_base) {
 564           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 565           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 566             return ac;
 567           }
 568           if (!can_see_stored_value) {
 569             mem = ac->in(TypeFunc::Memory);
 570           }
 571         }
 572       }
 573     }
 574   }
 575   return NULL;
 576 }
 577 
 578 // The logic for reordering loads and stores uses four steps:
 579 // (a) Walk carefully past stores and initializations which we
 580 //     can prove are independent of this load.
 581 // (b) Observe that the next memory state makes an exact match
 582 //     with self (load or store), and locate the relevant store.
 583 // (c) Ensure that, if we were to wire self directly to the store,
 584 //     the optimizer would fold it up somehow.
 585 // (d) Do the rewiring, and return, depending on some other part of
 586 //     the optimizer to fold up the load.
 587 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 588 // specific to loads and stores, so they are handled by the callers.
 589 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 590 //
 591 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 592   Node*         ctrl   = in(MemNode::Control);
 593   Node*         adr    = in(MemNode::Address);
 594   intptr_t      offset = 0;
 595   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 596   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 597 
 598   if (offset == Type::OffsetBot)
 599     return NULL;            // cannot unalias unless there are precise offsets
 600 
 601   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 602   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 603 
 604   intptr_t size_in_bytes = memory_size();
 605 
 606   Node* mem = in(MemNode::Memory);   // start searching here...
 607 
 608   int cnt = 50;             // Cycle limiter
 609   for (;;) {                // While we can dance past unrelated stores...
 610     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 611 
 612     Node* prev = mem;
 613     if (mem->is_Store()) {
 614       Node* st_adr = mem->in(MemNode::Address);
 615       intptr_t st_offset = 0;
 616       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 617       if (st_base == NULL)
 618         break;              // inscrutable pointer
 619 
 620       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 621       // We need the bases to be the equal in order for the offset check to make sense.
 622       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 623         break;
 624       }
 625 
 626       if (st_offset != offset && st_offset != Type::OffsetBot) {
 627         const int MAX_STORE = BytesPerLong;
 628         if (st_offset >= offset + size_in_bytes ||
 629             st_offset <= offset - MAX_STORE ||
 630             st_offset <= offset - mem->as_Store()->memory_size()) {
 631           // Success:  The offsets are provably independent.
 632           // (You may ask, why not just test st_offset != offset and be done?
 633           // The answer is that stores of different sizes can co-exist
 634           // in the same sequence of RawMem effects.  We sometimes initialize
 635           // a whole 'tile' of array elements with a single jint or jlong.)
 636           mem = mem->in(MemNode::Memory);
 637           continue;           // (a) advance through independent store memory
 638         }
 639       }
 640       if (st_base != base &&
 641           detect_ptr_independence(base, alloc,
 642                                   st_base,
 643                                   AllocateNode::Ideal_allocation(st_base, phase),
 644                                   phase)) {
 645         // Success:  The bases are provably independent.
 646         mem = mem->in(MemNode::Memory);
 647         continue;           // (a) advance through independent store memory
 648       }
 649 
 650       // (b) At this point, if the bases or offsets do not agree, we lose,
 651       // since we have not managed to prove 'this' and 'mem' independent.
 652       if (st_base == base && st_offset == offset) {
 653         return mem;         // let caller handle steps (c), (d)
 654       }
 655 
 656     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 657       InitializeNode* st_init = mem->in(0)->as_Initialize();
 658       AllocateNode*  st_alloc = st_init->allocation();
 659       if (st_alloc == NULL)
 660         break;              // something degenerated
 661       bool known_identical = false;
 662       bool known_independent = false;
 663       if (alloc == st_alloc)
 664         known_identical = true;
 665       else if (alloc != NULL)
 666         known_independent = true;
 667       else if (all_controls_dominate(this, st_alloc))
 668         known_independent = true;
 669 
 670       if (known_independent) {
 671         // The bases are provably independent: Either they are
 672         // manifestly distinct allocations, or else the control
 673         // of this load dominates the store's allocation.
 674         int alias_idx = phase->C->get_alias_index(adr_type());
 675         if (alias_idx == Compile::AliasIdxRaw) {
 676           mem = st_alloc->in(TypeFunc::Memory);
 677         } else {
 678           mem = st_init->memory(alias_idx);
 679         }
 680         continue;           // (a) advance through independent store memory
 681       }
 682 
 683       // (b) at this point, if we are not looking at a store initializing
 684       // the same allocation we are loading from, we lose.
 685       if (known_identical) {
 686         // From caller, can_see_stored_value will consult find_captured_store.
 687         return mem;         // let caller handle steps (c), (d)
 688       }
 689 
 690     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 691       if (prev != mem) {
 692         // Found an arraycopy but it doesn't affect that load
 693         continue;
 694       }
 695       // Found an arraycopy that may affect that load
 696       return mem;
 697     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 698       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 699       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 700         // ArrayCopyNodes processed here as well.
 701         CallNode *call = mem->in(0)->as_Call();
 702         if (!call->may_modify(addr_t, phase)) {
 703           mem = call->in(TypeFunc::Memory);
 704           continue;         // (a) advance through independent call memory
 705         }
 706       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 707         ArrayCopyNode* ac = NULL;
 708         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 709           break;
 710         }
 711         mem = mem->in(0)->in(TypeFunc::Memory);
 712         continue;           // (a) advance through independent MemBar memory
 713       } else if (mem->is_ClearArray()) {
 714         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 715           // (the call updated 'mem' value)
 716           continue;         // (a) advance through independent allocation memory
 717         } else {
 718           // Can not bypass initialization of the instance
 719           // we are looking for.
 720           return mem;
 721         }
 722       } else if (mem->is_MergeMem()) {
 723         int alias_idx = phase->C->get_alias_index(adr_type());
 724         mem = mem->as_MergeMem()->memory_at(alias_idx);
 725         continue;           // (a) advance through independent MergeMem memory
 726       }
 727     }
 728 
 729     // Unless there is an explicit 'continue', we must bail out here,
 730     // because 'mem' is an inscrutable memory state (e.g., a call).
 731     break;
 732   }
 733 
 734   return NULL;              // bail out
 735 }
 736 
 737 //----------------------calculate_adr_type-------------------------------------
 738 // Helper function.  Notices when the given type of address hits top or bottom.
 739 // Also, asserts a cross-check of the type against the expected address type.
 740 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 741   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 742   #ifdef PRODUCT
 743   cross_check = NULL;
 744   #else
 745   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 746   #endif
 747   const TypePtr* tp = t->isa_ptr();
 748   if (tp == NULL) {
 749     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 750     return TypePtr::BOTTOM;           // touches lots of memory
 751   } else {
 752     #ifdef ASSERT
 753     // %%%% [phh] We don't check the alias index if cross_check is
 754     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 755     if (cross_check != NULL &&
 756         cross_check != TypePtr::BOTTOM &&
 757         cross_check != TypeRawPtr::BOTTOM) {
 758       // Recheck the alias index, to see if it has changed (due to a bug).
 759       Compile* C = Compile::current();
 760       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 761              "must stay in the original alias category");
 762       // The type of the address must be contained in the adr_type,
 763       // disregarding "null"-ness.
 764       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 765       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 766       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 767              "real address must not escape from expected memory type");
 768     }
 769     #endif
 770     return tp;
 771   }
 772 }
 773 
 774 //=============================================================================
 775 // Should LoadNode::Ideal() attempt to remove control edges?
 776 bool LoadNode::can_remove_control() const {
 777   return true;
 778 }
 779 uint LoadNode::size_of() const { return sizeof(*this); }
 780 bool LoadNode::cmp( const Node &n ) const
 781 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 782 const Type *LoadNode::bottom_type() const { return _type; }
 783 uint LoadNode::ideal_reg() const {
 784   return _type->ideal_reg();
 785 }
 786 
 787 #ifndef PRODUCT
 788 void LoadNode::dump_spec(outputStream *st) const {
 789   MemNode::dump_spec(st);
 790   if( !Verbose && !WizardMode ) {
 791     // standard dump does this in Verbose and WizardMode
 792     st->print(" #"); _type->dump_on(st);
 793   }
 794   if (!depends_only_on_test()) {
 795     st->print(" (does not depend only on test)");
 796   }
 797 }
 798 #endif
 799 
 800 #ifdef ASSERT
 801 //----------------------------is_immutable_value-------------------------------
 802 // Helper function to allow a raw load without control edge for some cases
 803 bool LoadNode::is_immutable_value(Node* adr) {
 804   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 805           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 806           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 807            in_bytes(JavaThread::osthread_offset())));
 808 }
 809 #endif
 810 
 811 //----------------------------LoadNode::make-----------------------------------
 812 // Polymorphic factory method:
 813 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 814                      ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 815   Compile* C = gvn.C;
 816 
 817   // sanity check the alias category against the created node type
 818   assert(!(adr_type->isa_oopptr() &&
 819            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 820          "use LoadKlassNode instead");
 821   assert(!(adr_type->isa_aryptr() &&
 822            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 823          "use LoadRangeNode instead");
 824   // Check control edge of raw loads
 825   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 826           // oop will be recorded in oop map if load crosses safepoint
 827           rt->isa_oopptr() || is_immutable_value(adr),
 828           "raw memory operations should have control edge");
 829   LoadNode* load = NULL;
 830   switch (bt) {
 831   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 832   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 833   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 834   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 835   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 836   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 837   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 838   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 839   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 840   case T_OBJECT:
 841 #ifdef _LP64
 842     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 843       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 844     } else
 845 #endif
 846     {
 847       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 848       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 849     }
 850     break;
 851   default:
 852     ShouldNotReachHere();
 853     break;
 854   }
 855   assert(load != NULL, "LoadNode should have been created");
 856   if (unaligned) {
 857     load->set_unaligned_access();
 858   }
 859   if (mismatched) {
 860     load->set_mismatched_access();
 861   }
 862   if (unsafe) {
 863     load->set_unsafe_access();
 864   }
 865   if (load->Opcode() == Op_LoadN) {
 866     Node* ld = gvn.transform(load);
 867     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 868   }
 869 
 870   return load;
 871 }
 872 
 873 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 874                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 875   bool require_atomic = true;
 876   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 877   if (unaligned) {
 878     load->set_unaligned_access();
 879   }
 880   if (mismatched) {
 881     load->set_mismatched_access();
 882   }
 883   if (unsafe) {
 884     load->set_unsafe_access();
 885   }
 886   return load;
 887 }
 888 
 889 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 890                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 891   bool require_atomic = true;
 892   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 893   if (unaligned) {
 894     load->set_unaligned_access();
 895   }
 896   if (mismatched) {
 897     load->set_mismatched_access();
 898   }
 899   if (unsafe) {
 900     load->set_unsafe_access();
 901   }
 902   return load;
 903 }
 904 
 905 
 906 
 907 //------------------------------hash-------------------------------------------
 908 uint LoadNode::hash() const {
 909   // unroll addition of interesting fields
 910   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 911 }
 912 
 913 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 914   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 915     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 916     bool is_stable_ary = FoldStableValues &&
 917                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 918                          tp->isa_aryptr()->is_stable();
 919 
 920     return (eliminate_boxing && non_volatile) || is_stable_ary;
 921   }
 922 
 923   return false;
 924 }
 925 
 926 // Is the value loaded previously stored by an arraycopy? If so return
 927 // a load node that reads from the source array so we may be able to
 928 // optimize out the ArrayCopy node later.
 929 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 930   Node* ld_adr = in(MemNode::Address);
 931   intptr_t ld_off = 0;
 932   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 933   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 934   if (ac != NULL) {
 935     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 936 
 937     Node* mem = ac->in(TypeFunc::Memory);
 938     Node* ctl = ac->in(0);
 939     Node* src = ac->in(ArrayCopyNode::Src);
 940 
 941     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 942       return NULL;
 943     }
 944 
 945     LoadNode* ld = clone()->as_Load();
 946     Node* addp = in(MemNode::Address)->clone();
 947     if (ac->as_ArrayCopy()->is_clonebasic()) {
 948       assert(ld_alloc != NULL, "need an alloc");
 949       assert(addp->is_AddP(), "address must be addp");
 950       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 951       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 952       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 953       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 954       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 955       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 956     } else {
 957       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 958              ac->as_ArrayCopy()->is_copyof_validated() ||
 959              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 960       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 961       addp->set_req(AddPNode::Base, src);
 962       addp->set_req(AddPNode::Address, src);
 963 
 964       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 965       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 966       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 967       uint shift  = exact_log2(type2aelembytes(ary_elem));
 968 
 969       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 970 #ifdef _LP64
 971       diff = phase->transform(new ConvI2LNode(diff));
 972 #endif
 973       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 974 
 975       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 976       addp->set_req(AddPNode::Offset, offset);
 977     }
 978     addp = phase->transform(addp);
 979 #ifdef ASSERT
 980     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 981     ld->_adr_type = adr_type;
 982 #endif
 983     ld->set_req(MemNode::Address, addp);
 984     ld->set_req(0, ctl);
 985     ld->set_req(MemNode::Memory, mem);
 986     // load depends on the tests that validate the arraycopy
 987     ld->_control_dependency = Pinned;
 988     return ld;
 989   }
 990   return NULL;
 991 }
 992 
 993 
 994 //---------------------------can_see_stored_value------------------------------
 995 // This routine exists to make sure this set of tests is done the same
 996 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 997 // will change the graph shape in a way which makes memory alive twice at the
 998 // same time (uses the Oracle model of aliasing), then some
 999 // LoadXNode::Identity will fold things back to the equivalence-class model
1000 // of aliasing.
1001 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
1002   Node* ld_adr = in(MemNode::Address);
1003   intptr_t ld_off = 0;
1004   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1005   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase);
1006   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1007   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
1008   // This is more general than load from boxing objects.
1009   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1010     uint alias_idx = atp->index();
1011     bool final = !atp->is_rewritable();
1012     Node* result = NULL;
1013     Node* current = st;
1014     // Skip through chains of MemBarNodes checking the MergeMems for
1015     // new states for the slice of this load.  Stop once any other
1016     // kind of node is encountered.  Loads from final memory can skip
1017     // through any kind of MemBar but normal loads shouldn't skip
1018     // through MemBarAcquire since the could allow them to move out of
1019     // a synchronized region.
1020     while (current->is_Proj()) {
1021       int opc = current->in(0)->Opcode();
1022       if ((final && (opc == Op_MemBarAcquire ||
1023                      opc == Op_MemBarAcquireLock ||
1024                      opc == Op_LoadFence)) ||
1025           opc == Op_MemBarRelease ||
1026           opc == Op_StoreFence ||
1027           opc == Op_MemBarReleaseLock ||
1028           opc == Op_MemBarStoreStore ||
1029           opc == Op_MemBarCPUOrder) {
1030         Node* mem = current->in(0)->in(TypeFunc::Memory);
1031         if (mem->is_MergeMem()) {
1032           MergeMemNode* merge = mem->as_MergeMem();
1033           Node* new_st = merge->memory_at(alias_idx);
1034           if (new_st == merge->base_memory()) {
1035             // Keep searching
1036             current = new_st;
1037             continue;
1038           }
1039           // Save the new memory state for the slice and fall through
1040           // to exit.
1041           result = new_st;
1042         }
1043       }
1044       break;
1045     }
1046     if (result != NULL) {
1047       st = result;
1048     }
1049   }
1050 
1051   // Loop around twice in the case Load -> Initialize -> Store.
1052   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1053   for (int trip = 0; trip <= 1; trip++) {
1054 
1055     if (st->is_Store()) {
1056       Node* st_adr = st->in(MemNode::Address);
1057       if (!phase->eqv(st_adr, ld_adr)) {
1058         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1059         intptr_t st_off = 0;
1060         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1061         if (ld_base == NULL)                                   return NULL;
1062         if (st_base == NULL)                                   return NULL;
1063         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL;
1064         if (ld_off != st_off)                                  return NULL;
1065         if (ld_off == Type::OffsetBot)                         return NULL;
1066         // Same base, same offset.
1067         // Possible improvement for arrays: check index value instead of absolute offset.
1068 
1069         // At this point we have proven something like this setup:
1070         //   B = << base >>
1071         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1072         //   S = StoreQ(AddP(             B , #Off), V)
1073         // (Actually, we haven't yet proven the Q's are the same.)
1074         // In other words, we are loading from a casted version of
1075         // the same pointer-and-offset that we stored to.
1076         // Casted version may carry a dependency and it is respected.
1077         // Thus, we are able to replace L by V.
1078       }
1079       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1080       if (store_Opcode() != st->Opcode())
1081         return NULL;
1082       return st->in(MemNode::ValueIn);
1083     }
1084 
1085     // A load from a freshly-created object always returns zero.
1086     // (This can happen after LoadNode::Ideal resets the load's memory input
1087     // to find_captured_store, which returned InitializeNode::zero_memory.)
1088     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1089         (st->in(0) == ld_alloc) &&
1090         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1091       // return a zero value for the load's basic type
1092       // (This is one of the few places where a generic PhaseTransform
1093       // can create new nodes.  Think of it as lazily manifesting
1094       // virtually pre-existing constants.)
1095       return phase->zerocon(memory_type());
1096     }
1097 
1098     // A load from an initialization barrier can match a captured store.
1099     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1100       InitializeNode* init = st->in(0)->as_Initialize();
1101       AllocateNode* alloc = init->allocation();
1102       if ((alloc != NULL) && (alloc == ld_alloc)) {
1103         // examine a captured store value
1104         st = init->find_captured_store(ld_off, memory_size(), phase);
1105         if (st != NULL) {
1106           continue;             // take one more trip around
1107         }
1108       }
1109     }
1110 
1111     // Load boxed value from result of valueOf() call is input parameter.
1112     if (this->is_Load() && ld_adr->is_AddP() &&
1113         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1114       intptr_t ignore = 0;
1115       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1116       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1117       base = bs->step_over_gc_barrier(base);
1118       if (base != NULL && base->is_Proj() &&
1119           base->as_Proj()->_con == TypeFunc::Parms &&
1120           base->in(0)->is_CallStaticJava() &&
1121           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1122         return base->in(0)->in(TypeFunc::Parms);
1123       }
1124     }
1125 
1126     break;
1127   }
1128 
1129   return NULL;
1130 }
1131 
1132 //----------------------is_instance_field_load_with_local_phi------------------
1133 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1134   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1135       in(Address)->is_AddP() ) {
1136     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1137     // Only instances and boxed values.
1138     if( t_oop != NULL &&
1139         (t_oop->is_ptr_to_boxed_value() ||
1140          t_oop->is_known_instance_field()) &&
1141         t_oop->offset() != Type::OffsetBot &&
1142         t_oop->offset() != Type::OffsetTop) {
1143       return true;
1144     }
1145   }
1146   return false;
1147 }
1148 
1149 //------------------------------Identity---------------------------------------
1150 // Loads are identity if previous store is to same address
1151 Node* LoadNode::Identity(PhaseGVN* phase) {
1152   // If the previous store-maker is the right kind of Store, and the store is
1153   // to the same address, then we are equal to the value stored.
1154   Node* mem = in(Memory);
1155   Node* value = can_see_stored_value(mem, phase);
1156   if( value ) {
1157     // byte, short & char stores truncate naturally.
1158     // A load has to load the truncated value which requires
1159     // some sort of masking operation and that requires an
1160     // Ideal call instead of an Identity call.
1161     if (memory_size() < BytesPerInt) {
1162       // If the input to the store does not fit with the load's result type,
1163       // it must be truncated via an Ideal call.
1164       if (!phase->type(value)->higher_equal(phase->type(this)))
1165         return this;
1166     }
1167     // (This works even when value is a Con, but LoadNode::Value
1168     // usually runs first, producing the singleton type of the Con.)
1169     return value;
1170   }
1171 
1172   // Search for an existing data phi which was generated before for the same
1173   // instance's field to avoid infinite generation of phis in a loop.
1174   Node *region = mem->in(0);
1175   if (is_instance_field_load_with_local_phi(region)) {
1176     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1177     int this_index  = phase->C->get_alias_index(addr_t);
1178     int this_offset = addr_t->offset();
1179     int this_iid    = addr_t->instance_id();
1180     if (!addr_t->is_known_instance() &&
1181          addr_t->is_ptr_to_boxed_value()) {
1182       // Use _idx of address base (could be Phi node) for boxed values.
1183       intptr_t   ignore = 0;
1184       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1185       if (base == NULL) {
1186         return this;
1187       }
1188       this_iid = base->_idx;
1189     }
1190     const Type* this_type = bottom_type();
1191     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1192       Node* phi = region->fast_out(i);
1193       if (phi->is_Phi() && phi != mem &&
1194           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1195         return phi;
1196       }
1197     }
1198   }
1199 
1200   return this;
1201 }
1202 
1203 // Construct an equivalent unsigned load.
1204 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1205   BasicType bt = T_ILLEGAL;
1206   const Type* rt = NULL;
1207   switch (Opcode()) {
1208     case Op_LoadUB: return this;
1209     case Op_LoadUS: return this;
1210     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1211     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1212     default:
1213       assert(false, "no unsigned variant: %s", Name());
1214       return NULL;
1215   }
1216   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1217                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1218                         is_unaligned_access(), is_mismatched_access());
1219 }
1220 
1221 // Construct an equivalent signed load.
1222 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1223   BasicType bt = T_ILLEGAL;
1224   const Type* rt = NULL;
1225   switch (Opcode()) {
1226     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1227     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1228     case Op_LoadB: // fall through
1229     case Op_LoadS: // fall through
1230     case Op_LoadI: // fall through
1231     case Op_LoadL: return this;
1232     default:
1233       assert(false, "no signed variant: %s", Name());
1234       return NULL;
1235   }
1236   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1237                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1238                         is_unaligned_access(), is_mismatched_access());
1239 }
1240 
1241 // We're loading from an object which has autobox behaviour.
1242 // If this object is result of a valueOf call we'll have a phi
1243 // merging a newly allocated object and a load from the cache.
1244 // We want to replace this load with the original incoming
1245 // argument to the valueOf call.
1246 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1247   assert(phase->C->eliminate_boxing(), "sanity");
1248   intptr_t ignore = 0;
1249   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1250   if ((base == NULL) || base->is_Phi()) {
1251     // Push the loads from the phi that comes from valueOf up
1252     // through it to allow elimination of the loads and the recovery
1253     // of the original value. It is done in split_through_phi().
1254     return NULL;
1255   } else if (base->is_Load() ||
1256              (base->is_DecodeN() && base->in(1)->is_Load())) {
1257     // Eliminate the load of boxed value for integer types from the cache
1258     // array by deriving the value from the index into the array.
1259     // Capture the offset of the load and then reverse the computation.
1260 
1261     // Get LoadN node which loads a boxing object from 'cache' array.
1262     if (base->is_DecodeN()) {
1263       base = base->in(1);
1264     }
1265     if (!base->in(Address)->is_AddP()) {
1266       return NULL; // Complex address
1267     }
1268     AddPNode* address = base->in(Address)->as_AddP();
1269     Node* cache_base = address->in(AddPNode::Base);
1270     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1271       // Get ConP node which is static 'cache' field.
1272       cache_base = cache_base->in(1);
1273     }
1274     if ((cache_base != NULL) && cache_base->is_Con()) {
1275       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1276       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1277         Node* elements[4];
1278         int shift = exact_log2(type2aelembytes(T_OBJECT));
1279         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1280         if (count > 0 && elements[0]->is_Con() &&
1281             (count == 1 ||
1282              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1283                             elements[1]->in(2) == phase->intcon(shift)))) {
1284           ciObjArray* array = base_type->const_oop()->as_obj_array();
1285           // Fetch the box object cache[0] at the base of the array and get its value
1286           ciInstance* box = array->obj_at(0)->as_instance();
1287           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1288           assert(ik->is_box_klass(), "sanity");
1289           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1290           if (ik->nof_nonstatic_fields() == 1) {
1291             // This should be true nonstatic_field_at requires calling
1292             // nof_nonstatic_fields so check it anyway
1293             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1294             BasicType bt = c.basic_type();
1295             // Only integer types have boxing cache.
1296             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1297                    bt == T_BYTE    || bt == T_SHORT ||
1298                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1299             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1300             if (cache_low != (int)cache_low) {
1301               return NULL; // should not happen since cache is array indexed by value
1302             }
1303             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1304             if (offset != (int)offset) {
1305               return NULL; // should not happen since cache is array indexed by value
1306             }
1307            // Add up all the offsets making of the address of the load
1308             Node* result = elements[0];
1309             for (int i = 1; i < count; i++) {
1310               result = phase->transform(new AddXNode(result, elements[i]));
1311             }
1312             // Remove the constant offset from the address and then
1313             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1314             // remove the scaling of the offset to recover the original index.
1315             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1316               // Peel the shift off directly but wrap it in a dummy node
1317               // since Ideal can't return existing nodes
1318               result = new RShiftXNode(result->in(1), phase->intcon(0));
1319             } else if (result->is_Add() && result->in(2)->is_Con() &&
1320                        result->in(1)->Opcode() == Op_LShiftX &&
1321                        result->in(1)->in(2) == phase->intcon(shift)) {
1322               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1323               // but for boxing cache access we know that X<<Z will not overflow
1324               // (there is range check) so we do this optimizatrion by hand here.
1325               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1326               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1327             } else {
1328               result = new RShiftXNode(result, phase->intcon(shift));
1329             }
1330 #ifdef _LP64
1331             if (bt != T_LONG) {
1332               result = new ConvL2INode(phase->transform(result));
1333             }
1334 #else
1335             if (bt == T_LONG) {
1336               result = new ConvI2LNode(phase->transform(result));
1337             }
1338 #endif
1339             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1340             // Need to preserve unboxing load type if it is unsigned.
1341             switch(this->Opcode()) {
1342               case Op_LoadUB:
1343                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1344                 break;
1345               case Op_LoadUS:
1346                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1347                 break;
1348             }
1349             return result;
1350           }
1351         }
1352       }
1353     }
1354   }
1355   return NULL;
1356 }
1357 
1358 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1359   Node* region = phi->in(0);
1360   if (region == NULL) {
1361     return false; // Wait stable graph
1362   }
1363   uint cnt = phi->req();
1364   for (uint i = 1; i < cnt; i++) {
1365     Node* rc = region->in(i);
1366     if (rc == NULL || phase->type(rc) == Type::TOP)
1367       return false; // Wait stable graph
1368     Node* in = phi->in(i);
1369     if (in == NULL || phase->type(in) == Type::TOP)
1370       return false; // Wait stable graph
1371   }
1372   return true;
1373 }
1374 //------------------------------split_through_phi------------------------------
1375 // Split instance or boxed field load through Phi.
1376 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1377   Node* mem     = in(Memory);
1378   Node* address = in(Address);
1379   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1380 
1381   assert((t_oop != NULL) &&
1382          (t_oop->is_known_instance_field() ||
1383           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1384 
1385   Compile* C = phase->C;
1386   intptr_t ignore = 0;
1387   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1388   bool base_is_phi = (base != NULL) && base->is_Phi();
1389   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1390                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1391                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1392 
1393   if (!((mem->is_Phi() || base_is_phi) &&
1394         (load_boxed_values || t_oop->is_known_instance_field()))) {
1395     return NULL; // memory is not Phi
1396   }
1397 
1398   if (mem->is_Phi()) {
1399     if (!stable_phi(mem->as_Phi(), phase)) {
1400       return NULL; // Wait stable graph
1401     }
1402     uint cnt = mem->req();
1403     // Check for loop invariant memory.
1404     if (cnt == 3) {
1405       for (uint i = 1; i < cnt; i++) {
1406         Node* in = mem->in(i);
1407         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1408         if (m == mem) {
1409           if (i == 1) {
1410             // if the first edge was a loop, check second edge too.
1411             // If both are replaceable - we are in an infinite loop
1412             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1413             if (n == mem) {
1414               break;
1415             }
1416           }
1417           set_req(Memory, mem->in(cnt - i));
1418           return this; // made change
1419         }
1420       }
1421     }
1422   }
1423   if (base_is_phi) {
1424     if (!stable_phi(base->as_Phi(), phase)) {
1425       return NULL; // Wait stable graph
1426     }
1427     uint cnt = base->req();
1428     // Check for loop invariant memory.
1429     if (cnt == 3) {
1430       for (uint i = 1; i < cnt; i++) {
1431         if (base->in(i) == base) {
1432           return NULL; // Wait stable graph
1433         }
1434       }
1435     }
1436   }
1437 
1438   // Split through Phi (see original code in loopopts.cpp).
1439   assert(C->have_alias_type(t_oop), "instance should have alias type");
1440 
1441   // Do nothing here if Identity will find a value
1442   // (to avoid infinite chain of value phis generation).
1443   if (!phase->eqv(this, phase->apply_identity(this)))
1444     return NULL;
1445 
1446   // Select Region to split through.
1447   Node* region;
1448   if (!base_is_phi) {
1449     assert(mem->is_Phi(), "sanity");
1450     region = mem->in(0);
1451     // Skip if the region dominates some control edge of the address.
1452     if (!MemNode::all_controls_dominate(address, region))
1453       return NULL;
1454   } else if (!mem->is_Phi()) {
1455     assert(base_is_phi, "sanity");
1456     region = base->in(0);
1457     // Skip if the region dominates some control edge of the memory.
1458     if (!MemNode::all_controls_dominate(mem, region))
1459       return NULL;
1460   } else if (base->in(0) != mem->in(0)) {
1461     assert(base_is_phi && mem->is_Phi(), "sanity");
1462     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1463       region = base->in(0);
1464     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1465       region = mem->in(0);
1466     } else {
1467       return NULL; // complex graph
1468     }
1469   } else {
1470     assert(base->in(0) == mem->in(0), "sanity");
1471     region = mem->in(0);
1472   }
1473 
1474   const Type* this_type = this->bottom_type();
1475   int this_index  = C->get_alias_index(t_oop);
1476   int this_offset = t_oop->offset();
1477   int this_iid    = t_oop->instance_id();
1478   if (!t_oop->is_known_instance() && load_boxed_values) {
1479     // Use _idx of address base for boxed values.
1480     this_iid = base->_idx;
1481   }
1482   PhaseIterGVN* igvn = phase->is_IterGVN();
1483   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1484   for (uint i = 1; i < region->req(); i++) {
1485     Node* x;
1486     Node* the_clone = NULL;
1487     if (region->in(i) == C->top()) {
1488       x = C->top();      // Dead path?  Use a dead data op
1489     } else {
1490       x = this->clone();        // Else clone up the data op
1491       the_clone = x;            // Remember for possible deletion.
1492       // Alter data node to use pre-phi inputs
1493       if (this->in(0) == region) {
1494         x->set_req(0, region->in(i));
1495       } else {
1496         x->set_req(0, NULL);
1497       }
1498       if (mem->is_Phi() && (mem->in(0) == region)) {
1499         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1500       }
1501       if (address->is_Phi() && address->in(0) == region) {
1502         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1503       }
1504       if (base_is_phi && (base->in(0) == region)) {
1505         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1506         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1507         x->set_req(Address, adr_x);
1508       }
1509     }
1510     // Check for a 'win' on some paths
1511     const Type *t = x->Value(igvn);
1512 
1513     bool singleton = t->singleton();
1514 
1515     // See comments in PhaseIdealLoop::split_thru_phi().
1516     if (singleton && t == Type::TOP) {
1517       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1518     }
1519 
1520     if (singleton) {
1521       x = igvn->makecon(t);
1522     } else {
1523       // We now call Identity to try to simplify the cloned node.
1524       // Note that some Identity methods call phase->type(this).
1525       // Make sure that the type array is big enough for
1526       // our new node, even though we may throw the node away.
1527       // (This tweaking with igvn only works because x is a new node.)
1528       igvn->set_type(x, t);
1529       // If x is a TypeNode, capture any more-precise type permanently into Node
1530       // otherwise it will be not updated during igvn->transform since
1531       // igvn->type(x) is set to x->Value() already.
1532       x->raise_bottom_type(t);
1533       Node *y = igvn->apply_identity(x);
1534       if (y != x) {
1535         x = y;
1536       } else {
1537         y = igvn->hash_find_insert(x);
1538         if (y) {
1539           x = y;
1540         } else {
1541           // Else x is a new node we are keeping
1542           // We do not need register_new_node_with_optimizer
1543           // because set_type has already been called.
1544           igvn->_worklist.push(x);
1545         }
1546       }
1547     }
1548     if (x != the_clone && the_clone != NULL) {
1549       igvn->remove_dead_node(the_clone);
1550     }
1551     phi->set_req(i, x);
1552   }
1553   // Record Phi
1554   igvn->register_new_node_with_optimizer(phi);
1555   return phi;
1556 }
1557 
1558 //------------------------------Ideal------------------------------------------
1559 // If the load is from Field memory and the pointer is non-null, it might be possible to
1560 // zero out the control input.
1561 // If the offset is constant and the base is an object allocation,
1562 // try to hook me up to the exact initializing store.
1563 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1564   Node* p = MemNode::Ideal_common(phase, can_reshape);
1565   if (p)  return (p == NodeSentinel) ? NULL : p;
1566 
1567   Node* ctrl    = in(MemNode::Control);
1568   Node* address = in(MemNode::Address);
1569   bool progress = false;
1570 
1571   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1572          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1573 
1574   // Skip up past a SafePoint control.  Cannot do this for Stores because
1575   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1576   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1577       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1578       !addr_mark ) {
1579     ctrl = ctrl->in(0);
1580     set_req(MemNode::Control,ctrl);
1581     progress = true;
1582   }
1583 
1584   intptr_t ignore = 0;
1585   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1586   if (base != NULL
1587       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1588     // Check for useless control edge in some common special cases
1589     if (in(MemNode::Control) != NULL
1590         && can_remove_control()
1591         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1592         && all_controls_dominate(base, phase->C->start())) {
1593       // A method-invariant, non-null address (constant or 'this' argument).
1594       set_req(MemNode::Control, NULL);
1595       progress = true;
1596     }
1597   }
1598 
1599   Node* mem = in(MemNode::Memory);
1600   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1601 
1602   if (can_reshape && (addr_t != NULL)) {
1603     // try to optimize our memory input
1604     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1605     if (opt_mem != mem) {
1606       set_req(MemNode::Memory, opt_mem);
1607       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1608       return this;
1609     }
1610     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1611     if ((t_oop != NULL) &&
1612         (t_oop->is_known_instance_field() ||
1613          t_oop->is_ptr_to_boxed_value())) {
1614       PhaseIterGVN *igvn = phase->is_IterGVN();
1615       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1616         // Delay this transformation until memory Phi is processed.
1617         phase->is_IterGVN()->_worklist.push(this);
1618         return NULL;
1619       }
1620       // Split instance field load through Phi.
1621       Node* result = split_through_phi(phase);
1622       if (result != NULL) return result;
1623 
1624       if (t_oop->is_ptr_to_boxed_value()) {
1625         Node* result = eliminate_autobox(phase);
1626         if (result != NULL) return result;
1627       }
1628     }
1629   }
1630 
1631   // Is there a dominating load that loads the same value?  Leave
1632   // anything that is not a load of a field/array element (like
1633   // barriers etc.) alone
1634   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1635     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1636       Node *use = mem->fast_out(i);
1637       if (use != this &&
1638           use->Opcode() == Opcode() &&
1639           use->in(0) != NULL &&
1640           use->in(0) != in(0) &&
1641           use->in(Address) == in(Address)) {
1642         Node* ctl = in(0);
1643         for (int i = 0; i < 10 && ctl != NULL; i++) {
1644           ctl = IfNode::up_one_dom(ctl);
1645           if (ctl == use->in(0)) {
1646             set_req(0, use->in(0));
1647             return this;
1648           }
1649         }
1650       }
1651     }
1652   }
1653 
1654   // Check for prior store with a different base or offset; make Load
1655   // independent.  Skip through any number of them.  Bail out if the stores
1656   // are in an endless dead cycle and report no progress.  This is a key
1657   // transform for Reflection.  However, if after skipping through the Stores
1658   // we can't then fold up against a prior store do NOT do the transform as
1659   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1660   // array memory alive twice: once for the hoisted Load and again after the
1661   // bypassed Store.  This situation only works if EVERYBODY who does
1662   // anti-dependence work knows how to bypass.  I.e. we need all
1663   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1664   // the alias index stuff.  So instead, peek through Stores and IFF we can
1665   // fold up, do so.
1666   Node* prev_mem = find_previous_store(phase);
1667   if (prev_mem != NULL) {
1668     Node* value = can_see_arraycopy_value(prev_mem, phase);
1669     if (value != NULL) {
1670       return value;
1671     }
1672   }
1673   // Steps (a), (b):  Walk past independent stores to find an exact match.
1674   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1675     // (c) See if we can fold up on the spot, but don't fold up here.
1676     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1677     // just return a prior value, which is done by Identity calls.
1678     if (can_see_stored_value(prev_mem, phase)) {
1679       // Make ready for step (d):
1680       set_req(MemNode::Memory, prev_mem);
1681       return this;
1682     }
1683   }
1684 
1685   return progress ? this : NULL;
1686 }
1687 
1688 // Helper to recognize certain Klass fields which are invariant across
1689 // some group of array types (e.g., int[] or all T[] where T < Object).
1690 const Type*
1691 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1692                                  ciKlass* klass) const {
1693   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1694     // The field is Klass::_modifier_flags.  Return its (constant) value.
1695     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1696     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1697     return TypeInt::make(klass->modifier_flags());
1698   }
1699   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1700     // The field is Klass::_access_flags.  Return its (constant) value.
1701     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1702     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1703     return TypeInt::make(klass->access_flags());
1704   }
1705   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1706     // The field is Klass::_layout_helper.  Return its constant value if known.
1707     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1708     return TypeInt::make(klass->layout_helper());
1709   }
1710 
1711   // No match.
1712   return NULL;
1713 }
1714 
1715 //------------------------------Value-----------------------------------------
1716 const Type* LoadNode::Value(PhaseGVN* phase) const {
1717   // Either input is TOP ==> the result is TOP
1718   Node* mem = in(MemNode::Memory);
1719   const Type *t1 = phase->type(mem);
1720   if (t1 == Type::TOP)  return Type::TOP;
1721   Node* adr = in(MemNode::Address);
1722   const TypePtr* tp = phase->type(adr)->isa_ptr();
1723   if (tp == NULL || tp->empty())  return Type::TOP;
1724   int off = tp->offset();
1725   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1726   Compile* C = phase->C;
1727 
1728   // Try to guess loaded type from pointer type
1729   if (tp->isa_aryptr()) {
1730     const TypeAryPtr* ary = tp->is_aryptr();
1731     const Type* t = ary->elem();
1732 
1733     // Determine whether the reference is beyond the header or not, by comparing
1734     // the offset against the offset of the start of the array's data.
1735     // Different array types begin at slightly different offsets (12 vs. 16).
1736     // We choose T_BYTE as an example base type that is least restrictive
1737     // as to alignment, which will therefore produce the smallest
1738     // possible base offset.
1739     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1740     const bool off_beyond_header = (off >= min_base_off);
1741 
1742     // Try to constant-fold a stable array element.
1743     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1744       // Make sure the reference is not into the header and the offset is constant
1745       ciObject* aobj = ary->const_oop();
1746       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1747         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1748         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1749                                                                       stable_dimension,
1750                                                                       memory_type(), is_unsigned());
1751         if (con_type != NULL) {
1752           return con_type;
1753         }
1754       }
1755     }
1756 
1757     // Don't do this for integer types. There is only potential profit if
1758     // the element type t is lower than _type; that is, for int types, if _type is
1759     // more restrictive than t.  This only happens here if one is short and the other
1760     // char (both 16 bits), and in those cases we've made an intentional decision
1761     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1762     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1763     //
1764     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1765     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1766     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1767     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1768     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1769     // In fact, that could have been the original type of p1, and p1 could have
1770     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1771     // expression (LShiftL quux 3) independently optimized to the constant 8.
1772     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1773         && (_type->isa_vect() == NULL)
1774         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1775       // t might actually be lower than _type, if _type is a unique
1776       // concrete subclass of abstract class t.
1777       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1778         const Type* jt = t->join_speculative(_type);
1779         // In any case, do not allow the join, per se, to empty out the type.
1780         if (jt->empty() && !t->empty()) {
1781           // This can happen if a interface-typed array narrows to a class type.
1782           jt = _type;
1783         }
1784 #ifdef ASSERT
1785         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1786           // The pointers in the autobox arrays are always non-null
1787           Node* base = adr->in(AddPNode::Base);
1788           if ((base != NULL) && base->is_DecodeN()) {
1789             // Get LoadN node which loads IntegerCache.cache field
1790             base = base->in(1);
1791           }
1792           if ((base != NULL) && base->is_Con()) {
1793             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1794             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1795               // It could be narrow oop
1796               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1797             }
1798           }
1799         }
1800 #endif
1801         return jt;
1802       }
1803     }
1804   } else if (tp->base() == Type::InstPtr) {
1805     assert( off != Type::OffsetBot ||
1806             // arrays can be cast to Objects
1807             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1808             // unsafe field access may not have a constant offset
1809             C->has_unsafe_access(),
1810             "Field accesses must be precise" );
1811     // For oop loads, we expect the _type to be precise.
1812 
1813     // Optimize loads from constant fields.
1814     const TypeInstPtr* tinst = tp->is_instptr();
1815     ciObject* const_oop = tinst->const_oop();
1816     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1817       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1818       if (con_type != NULL) {
1819         return con_type;
1820       }
1821     }
1822   } else if (tp->base() == Type::KlassPtr) {
1823     assert( off != Type::OffsetBot ||
1824             // arrays can be cast to Objects
1825             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1826             // also allow array-loading from the primary supertype
1827             // array during subtype checks
1828             Opcode() == Op_LoadKlass,
1829             "Field accesses must be precise" );
1830     // For klass/static loads, we expect the _type to be precise
1831   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1832     /* With mirrors being an indirect in the Klass*
1833      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1834      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1835      *
1836      * So check the type and klass of the node before the LoadP.
1837      */
1838     Node* adr2 = adr->in(MemNode::Address);
1839     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1840     if (tkls != NULL && !StressReflectiveCode) {
1841       ciKlass* klass = tkls->klass();
1842       if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1843         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1844         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1845         return TypeInstPtr::make(klass->java_mirror());
1846       }
1847     }
1848   }
1849 
1850   const TypeKlassPtr *tkls = tp->isa_klassptr();
1851   if (tkls != NULL && !StressReflectiveCode) {
1852     ciKlass* klass = tkls->klass();
1853     if (klass->is_loaded() && tkls->klass_is_exact()) {
1854       // We are loading a field from a Klass metaobject whose identity
1855       // is known at compile time (the type is "exact" or "precise").
1856       // Check for fields we know are maintained as constants by the VM.
1857       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1858         // The field is Klass::_super_check_offset.  Return its (constant) value.
1859         // (Folds up type checking code.)
1860         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1861         return TypeInt::make(klass->super_check_offset());
1862       }
1863       // Compute index into primary_supers array
1864       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1865       // Check for overflowing; use unsigned compare to handle the negative case.
1866       if( depth < ciKlass::primary_super_limit() ) {
1867         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1868         // (Folds up type checking code.)
1869         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1870         ciKlass *ss = klass->super_of_depth(depth);
1871         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1872       }
1873       const Type* aift = load_array_final_field(tkls, klass);
1874       if (aift != NULL)  return aift;
1875     }
1876 
1877     // We can still check if we are loading from the primary_supers array at a
1878     // shallow enough depth.  Even though the klass is not exact, entries less
1879     // than or equal to its super depth are correct.
1880     if (klass->is_loaded() ) {
1881       ciType *inner = klass;
1882       while( inner->is_obj_array_klass() )
1883         inner = inner->as_obj_array_klass()->base_element_type();
1884       if( inner->is_instance_klass() &&
1885           !inner->as_instance_klass()->flags().is_interface() ) {
1886         // Compute index into primary_supers array
1887         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1888         // Check for overflowing; use unsigned compare to handle the negative case.
1889         if( depth < ciKlass::primary_super_limit() &&
1890             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1891           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1892           // (Folds up type checking code.)
1893           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1894           ciKlass *ss = klass->super_of_depth(depth);
1895           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1896         }
1897       }
1898     }
1899 
1900     // If the type is enough to determine that the thing is not an array,
1901     // we can give the layout_helper a positive interval type.
1902     // This will help short-circuit some reflective code.
1903     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1904         && !klass->is_array_klass() // not directly typed as an array
1905         && !klass->is_interface()  // specifically not Serializable & Cloneable
1906         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1907         ) {
1908       // Note:  When interfaces are reliable, we can narrow the interface
1909       // test to (klass != Serializable && klass != Cloneable).
1910       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1911       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1912       // The key property of this type is that it folds up tests
1913       // for array-ness, since it proves that the layout_helper is positive.
1914       // Thus, a generic value like the basic object layout helper works fine.
1915       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1916     }
1917   }
1918 
1919   // If we are loading from a freshly-allocated object, produce a zero,
1920   // if the load is provably beyond the header of the object.
1921   // (Also allow a variable load from a fresh array to produce zero.)
1922   const TypeOopPtr *tinst = tp->isa_oopptr();
1923   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1924   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1925   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1926     Node* value = can_see_stored_value(mem,phase);
1927     if (value != NULL && value->is_Con()) {
1928       assert(value->bottom_type()->higher_equal(_type),"sanity");
1929       return value->bottom_type();
1930     }
1931   }
1932 
1933   if (is_instance) {
1934     // If we have an instance type and our memory input is the
1935     // programs's initial memory state, there is no matching store,
1936     // so just return a zero of the appropriate type
1937     Node *mem = in(MemNode::Memory);
1938     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1939       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1940       return Type::get_zero_type(_type->basic_type());
1941     }
1942   }
1943   return _type;
1944 }
1945 
1946 //------------------------------match_edge-------------------------------------
1947 // Do we Match on this edge index or not?  Match only the address.
1948 uint LoadNode::match_edge(uint idx) const {
1949   return idx == MemNode::Address;
1950 }
1951 
1952 //--------------------------LoadBNode::Ideal--------------------------------------
1953 //
1954 //  If the previous store is to the same address as this load,
1955 //  and the value stored was larger than a byte, replace this load
1956 //  with the value stored truncated to a byte.  If no truncation is
1957 //  needed, the replacement is done in LoadNode::Identity().
1958 //
1959 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1960   Node* mem = in(MemNode::Memory);
1961   Node* value = can_see_stored_value(mem,phase);
1962   if( value && !phase->type(value)->higher_equal( _type ) ) {
1963     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1964     return new RShiftINode(result, phase->intcon(24));
1965   }
1966   // Identity call will handle the case where truncation is not needed.
1967   return LoadNode::Ideal(phase, can_reshape);
1968 }
1969 
1970 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1971   Node* mem = in(MemNode::Memory);
1972   Node* value = can_see_stored_value(mem,phase);
1973   if (value != NULL && value->is_Con() &&
1974       !value->bottom_type()->higher_equal(_type)) {
1975     // If the input to the store does not fit with the load's result type,
1976     // it must be truncated. We can't delay until Ideal call since
1977     // a singleton Value is needed for split_thru_phi optimization.
1978     int con = value->get_int();
1979     return TypeInt::make((con << 24) >> 24);
1980   }
1981   return LoadNode::Value(phase);
1982 }
1983 
1984 //--------------------------LoadUBNode::Ideal-------------------------------------
1985 //
1986 //  If the previous store is to the same address as this load,
1987 //  and the value stored was larger than a byte, replace this load
1988 //  with the value stored truncated to a byte.  If no truncation is
1989 //  needed, the replacement is done in LoadNode::Identity().
1990 //
1991 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1992   Node* mem = in(MemNode::Memory);
1993   Node* value = can_see_stored_value(mem, phase);
1994   if (value && !phase->type(value)->higher_equal(_type))
1995     return new AndINode(value, phase->intcon(0xFF));
1996   // Identity call will handle the case where truncation is not needed.
1997   return LoadNode::Ideal(phase, can_reshape);
1998 }
1999 
2000 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2001   Node* mem = in(MemNode::Memory);
2002   Node* value = can_see_stored_value(mem,phase);
2003   if (value != NULL && value->is_Con() &&
2004       !value->bottom_type()->higher_equal(_type)) {
2005     // If the input to the store does not fit with the load's result type,
2006     // it must be truncated. We can't delay until Ideal call since
2007     // a singleton Value is needed for split_thru_phi optimization.
2008     int con = value->get_int();
2009     return TypeInt::make(con & 0xFF);
2010   }
2011   return LoadNode::Value(phase);
2012 }
2013 
2014 //--------------------------LoadUSNode::Ideal-------------------------------------
2015 //
2016 //  If the previous store is to the same address as this load,
2017 //  and the value stored was larger than a char, replace this load
2018 //  with the value stored truncated to a char.  If no truncation is
2019 //  needed, the replacement is done in LoadNode::Identity().
2020 //
2021 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2022   Node* mem = in(MemNode::Memory);
2023   Node* value = can_see_stored_value(mem,phase);
2024   if( value && !phase->type(value)->higher_equal( _type ) )
2025     return new AndINode(value,phase->intcon(0xFFFF));
2026   // Identity call will handle the case where truncation is not needed.
2027   return LoadNode::Ideal(phase, can_reshape);
2028 }
2029 
2030 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2031   Node* mem = in(MemNode::Memory);
2032   Node* value = can_see_stored_value(mem,phase);
2033   if (value != NULL && value->is_Con() &&
2034       !value->bottom_type()->higher_equal(_type)) {
2035     // If the input to the store does not fit with the load's result type,
2036     // it must be truncated. We can't delay until Ideal call since
2037     // a singleton Value is needed for split_thru_phi optimization.
2038     int con = value->get_int();
2039     return TypeInt::make(con & 0xFFFF);
2040   }
2041   return LoadNode::Value(phase);
2042 }
2043 
2044 //--------------------------LoadSNode::Ideal--------------------------------------
2045 //
2046 //  If the previous store is to the same address as this load,
2047 //  and the value stored was larger than a short, replace this load
2048 //  with the value stored truncated to a short.  If no truncation is
2049 //  needed, the replacement is done in LoadNode::Identity().
2050 //
2051 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2052   Node* mem = in(MemNode::Memory);
2053   Node* value = can_see_stored_value(mem,phase);
2054   if( value && !phase->type(value)->higher_equal( _type ) ) {
2055     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2056     return new RShiftINode(result, phase->intcon(16));
2057   }
2058   // Identity call will handle the case where truncation is not needed.
2059   return LoadNode::Ideal(phase, can_reshape);
2060 }
2061 
2062 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2063   Node* mem = in(MemNode::Memory);
2064   Node* value = can_see_stored_value(mem,phase);
2065   if (value != NULL && value->is_Con() &&
2066       !value->bottom_type()->higher_equal(_type)) {
2067     // If the input to the store does not fit with the load's result type,
2068     // it must be truncated. We can't delay until Ideal call since
2069     // a singleton Value is needed for split_thru_phi optimization.
2070     int con = value->get_int();
2071     return TypeInt::make((con << 16) >> 16);
2072   }
2073   return LoadNode::Value(phase);
2074 }
2075 
2076 //=============================================================================
2077 //----------------------------LoadKlassNode::make------------------------------
2078 // Polymorphic factory method:
2079 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2080   // sanity check the alias category against the created node type
2081   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2082   assert(adr_type != NULL, "expecting TypeKlassPtr");
2083 #ifdef _LP64
2084   if (adr_type->is_ptr_to_narrowklass()) {
2085     assert(UseCompressedClassPointers, "no compressed klasses");
2086     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2087     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2088   }
2089 #endif
2090   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2091   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2092 }
2093 
2094 //------------------------------Value------------------------------------------
2095 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2096   return klass_value_common(phase);
2097 }
2098 
2099 // In most cases, LoadKlassNode does not have the control input set. If the control
2100 // input is set, it must not be removed (by LoadNode::Ideal()).
2101 bool LoadKlassNode::can_remove_control() const {
2102   return false;
2103 }
2104 
2105 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2106   // Either input is TOP ==> the result is TOP
2107   const Type *t1 = phase->type( in(MemNode::Memory) );
2108   if (t1 == Type::TOP)  return Type::TOP;
2109   Node *adr = in(MemNode::Address);
2110   const Type *t2 = phase->type( adr );
2111   if (t2 == Type::TOP)  return Type::TOP;
2112   const TypePtr *tp = t2->is_ptr();
2113   if (TypePtr::above_centerline(tp->ptr()) ||
2114       tp->ptr() == TypePtr::Null)  return Type::TOP;
2115 
2116   // Return a more precise klass, if possible
2117   const TypeInstPtr *tinst = tp->isa_instptr();
2118   if (tinst != NULL) {
2119     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2120     int offset = tinst->offset();
2121     if (ik == phase->C->env()->Class_klass()
2122         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2123             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2124       // We are loading a special hidden field from a Class mirror object,
2125       // the field which points to the VM's Klass metaobject.
2126       ciType* t = tinst->java_mirror_type();
2127       // java_mirror_type returns non-null for compile-time Class constants.
2128       if (t != NULL) {
2129         // constant oop => constant klass
2130         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2131           if (t->is_void()) {
2132             // We cannot create a void array.  Since void is a primitive type return null
2133             // klass.  Users of this result need to do a null check on the returned klass.
2134             return TypePtr::NULL_PTR;
2135           }
2136           return TypeKlassPtr::make(ciArrayKlass::make(t));
2137         }
2138         if (!t->is_klass()) {
2139           // a primitive Class (e.g., int.class) has NULL for a klass field
2140           return TypePtr::NULL_PTR;
2141         }
2142         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2143         return TypeKlassPtr::make(t->as_klass());
2144       }
2145       // non-constant mirror, so we can't tell what's going on
2146     }
2147     if( !ik->is_loaded() )
2148       return _type;             // Bail out if not loaded
2149     if (offset == oopDesc::klass_offset_in_bytes()) {
2150       if (tinst->klass_is_exact()) {
2151         return TypeKlassPtr::make(ik);
2152       }
2153       // See if we can become precise: no subklasses and no interface
2154       // (Note:  We need to support verified interfaces.)
2155       if (!ik->is_interface() && !ik->has_subklass()) {
2156         //assert(!UseExactTypes, "this code should be useless with exact types");
2157         // Add a dependence; if any subclass added we need to recompile
2158         if (!ik->is_final()) {
2159           // %%% should use stronger assert_unique_concrete_subtype instead
2160           phase->C->dependencies()->assert_leaf_type(ik);
2161         }
2162         // Return precise klass
2163         return TypeKlassPtr::make(ik);
2164       }
2165 
2166       // Return root of possible klass
2167       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2168     }
2169   }
2170 
2171   // Check for loading klass from an array
2172   const TypeAryPtr *tary = tp->isa_aryptr();
2173   if( tary != NULL ) {
2174     ciKlass *tary_klass = tary->klass();
2175     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2176         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2177       if (tary->klass_is_exact()) {
2178         return TypeKlassPtr::make(tary_klass);
2179       }
2180       ciArrayKlass *ak = tary->klass()->as_array_klass();
2181       // If the klass is an object array, we defer the question to the
2182       // array component klass.
2183       if( ak->is_obj_array_klass() ) {
2184         assert( ak->is_loaded(), "" );
2185         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2186         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2187           ciInstanceKlass* ik = base_k->as_instance_klass();
2188           // See if we can become precise: no subklasses and no interface
2189           if (!ik->is_interface() && !ik->has_subklass()) {
2190             //assert(!UseExactTypes, "this code should be useless with exact types");
2191             // Add a dependence; if any subclass added we need to recompile
2192             if (!ik->is_final()) {
2193               phase->C->dependencies()->assert_leaf_type(ik);
2194             }
2195             // Return precise array klass
2196             return TypeKlassPtr::make(ak);
2197           }
2198         }
2199         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2200       } else {                  // Found a type-array?
2201         //assert(!UseExactTypes, "this code should be useless with exact types");
2202         assert( ak->is_type_array_klass(), "" );
2203         return TypeKlassPtr::make(ak); // These are always precise
2204       }
2205     }
2206   }
2207 
2208   // Check for loading klass from an array klass
2209   const TypeKlassPtr *tkls = tp->isa_klassptr();
2210   if (tkls != NULL && !StressReflectiveCode) {
2211     ciKlass* klass = tkls->klass();
2212     if( !klass->is_loaded() )
2213       return _type;             // Bail out if not loaded
2214     if( klass->is_obj_array_klass() &&
2215         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2216       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2217       // // Always returning precise element type is incorrect,
2218       // // e.g., element type could be object and array may contain strings
2219       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2220 
2221       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2222       // according to the element type's subclassing.
2223       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2224     }
2225     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2226         tkls->offset() == in_bytes(Klass::super_offset())) {
2227       ciKlass* sup = klass->as_instance_klass()->super();
2228       // The field is Klass::_super.  Return its (constant) value.
2229       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2230       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2231     }
2232   }
2233 
2234   // Bailout case
2235   return LoadNode::Value(phase);
2236 }
2237 
2238 //------------------------------Identity---------------------------------------
2239 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2240 // Also feed through the klass in Allocate(...klass...)._klass.
2241 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2242   return klass_identity_common(phase);
2243 }
2244 
2245 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2246   Node* x = LoadNode::Identity(phase);
2247   if (x != this)  return x;
2248 
2249   // Take apart the address into an oop and and offset.
2250   // Return 'this' if we cannot.
2251   Node*    adr    = in(MemNode::Address);
2252   intptr_t offset = 0;
2253   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2254   if (base == NULL)     return this;
2255   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2256   if (toop == NULL)     return this;
2257 
2258   // Step over potential GC barrier for OopHandle resolve
2259   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2260   if (bs->is_gc_barrier_node(base)) {
2261     base = bs->step_over_gc_barrier(base);
2262   }
2263 
2264   // We can fetch the klass directly through an AllocateNode.
2265   // This works even if the klass is not constant (clone or newArray).
2266   if (offset == oopDesc::klass_offset_in_bytes()) {
2267     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2268     if (allocated_klass != NULL) {
2269       return allocated_klass;
2270     }
2271   }
2272 
2273   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2274   // See inline_native_Class_query for occurrences of these patterns.
2275   // Java Example:  x.getClass().isAssignableFrom(y)
2276   //
2277   // This improves reflective code, often making the Class
2278   // mirror go completely dead.  (Current exception:  Class
2279   // mirrors may appear in debug info, but we could clean them out by
2280   // introducing a new debug info operator for Klass.java_mirror).
2281 
2282   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2283       && offset == java_lang_Class::klass_offset_in_bytes()) {
2284     if (base->is_Load()) {
2285       Node* base2 = base->in(MemNode::Address);
2286       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2287         Node* adr2 = base2->in(MemNode::Address);
2288         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2289         if (tkls != NULL && !tkls->empty()
2290             && (tkls->klass()->is_instance_klass() ||
2291               tkls->klass()->is_array_klass())
2292             && adr2->is_AddP()
2293            ) {
2294           int mirror_field = in_bytes(Klass::java_mirror_offset());
2295           if (tkls->offset() == mirror_field) {
2296             return adr2->in(AddPNode::Base);
2297           }
2298         }
2299       }
2300     }
2301   }
2302 
2303   return this;
2304 }
2305 
2306 
2307 //------------------------------Value------------------------------------------
2308 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2309   const Type *t = klass_value_common(phase);
2310   if (t == Type::TOP)
2311     return t;
2312 
2313   return t->make_narrowklass();
2314 }
2315 
2316 //------------------------------Identity---------------------------------------
2317 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2318 // Also feed through the klass in Allocate(...klass...)._klass.
2319 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2320   Node *x = klass_identity_common(phase);
2321 
2322   const Type *t = phase->type( x );
2323   if( t == Type::TOP ) return x;
2324   if( t->isa_narrowklass()) return x;
2325   assert (!t->isa_narrowoop(), "no narrow oop here");
2326 
2327   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2328 }
2329 
2330 //------------------------------Value-----------------------------------------
2331 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2332   // Either input is TOP ==> the result is TOP
2333   const Type *t1 = phase->type( in(MemNode::Memory) );
2334   if( t1 == Type::TOP ) return Type::TOP;
2335   Node *adr = in(MemNode::Address);
2336   const Type *t2 = phase->type( adr );
2337   if( t2 == Type::TOP ) return Type::TOP;
2338   const TypePtr *tp = t2->is_ptr();
2339   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2340   const TypeAryPtr *tap = tp->isa_aryptr();
2341   if( !tap ) return _type;
2342   return tap->size();
2343 }
2344 
2345 //-------------------------------Ideal---------------------------------------
2346 // Feed through the length in AllocateArray(...length...)._length.
2347 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2348   Node* p = MemNode::Ideal_common(phase, can_reshape);
2349   if (p)  return (p == NodeSentinel) ? NULL : p;
2350 
2351   // Take apart the address into an oop and and offset.
2352   // Return 'this' if we cannot.
2353   Node*    adr    = in(MemNode::Address);
2354   intptr_t offset = 0;
2355   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2356   if (base == NULL)     return NULL;
2357   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2358   if (tary == NULL)     return NULL;
2359 
2360   // We can fetch the length directly through an AllocateArrayNode.
2361   // This works even if the length is not constant (clone or newArray).
2362   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2363     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2364     if (alloc != NULL) {
2365       Node* allocated_length = alloc->Ideal_length();
2366       Node* len = alloc->make_ideal_length(tary, phase);
2367       if (allocated_length != len) {
2368         // New CastII improves on this.
2369         return len;
2370       }
2371     }
2372   }
2373 
2374   return NULL;
2375 }
2376 
2377 //------------------------------Identity---------------------------------------
2378 // Feed through the length in AllocateArray(...length...)._length.
2379 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2380   Node* x = LoadINode::Identity(phase);
2381   if (x != this)  return x;
2382 
2383   // Take apart the address into an oop and and offset.
2384   // Return 'this' if we cannot.
2385   Node*    adr    = in(MemNode::Address);
2386   intptr_t offset = 0;
2387   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2388   if (base == NULL)     return this;
2389   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2390   if (tary == NULL)     return this;
2391 
2392   // We can fetch the length directly through an AllocateArrayNode.
2393   // This works even if the length is not constant (clone or newArray).
2394   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2395     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2396     if (alloc != NULL) {
2397       Node* allocated_length = alloc->Ideal_length();
2398       // Do not allow make_ideal_length to allocate a CastII node.
2399       Node* len = alloc->make_ideal_length(tary, phase, false);
2400       if (allocated_length == len) {
2401         // Return allocated_length only if it would not be improved by a CastII.
2402         return allocated_length;
2403       }
2404     }
2405   }
2406 
2407   return this;
2408 
2409 }
2410 
2411 //=============================================================================
2412 //---------------------------StoreNode::make-----------------------------------
2413 // Polymorphic factory method:
2414 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2415   assert((mo == unordered || mo == release), "unexpected");
2416   Compile* C = gvn.C;
2417   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2418          ctl != NULL, "raw memory operations should have control edge");
2419 
2420   switch (bt) {
2421   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2422   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2423   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2424   case T_CHAR:
2425   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2426   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2427   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2428   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2429   case T_METADATA:
2430   case T_ADDRESS:
2431   case T_OBJECT:
2432 #ifdef _LP64
2433     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2434       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2435       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2436     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2437                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2438                 adr->bottom_type()->isa_rawptr())) {
2439       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2440       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2441     }
2442 #endif
2443     {
2444       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2445     }
2446   default:
2447     ShouldNotReachHere();
2448     return (StoreNode*)NULL;
2449   }
2450 }
2451 
2452 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2453   bool require_atomic = true;
2454   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2455 }
2456 
2457 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2458   bool require_atomic = true;
2459   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2460 }
2461 
2462 
2463 //--------------------------bottom_type----------------------------------------
2464 const Type *StoreNode::bottom_type() const {
2465   return Type::MEMORY;
2466 }
2467 
2468 //------------------------------hash-------------------------------------------
2469 uint StoreNode::hash() const {
2470   // unroll addition of interesting fields
2471   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2472 
2473   // Since they are not commoned, do not hash them:
2474   return NO_HASH;
2475 }
2476 
2477 //------------------------------Ideal------------------------------------------
2478 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2479 // When a store immediately follows a relevant allocation/initialization,
2480 // try to capture it into the initialization, or hoist it above.
2481 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2482   Node* p = MemNode::Ideal_common(phase, can_reshape);
2483   if (p)  return (p == NodeSentinel) ? NULL : p;
2484 
2485   Node* mem     = in(MemNode::Memory);
2486   Node* address = in(MemNode::Address);
2487   // Back-to-back stores to same address?  Fold em up.  Generally
2488   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2489   // since they must follow each StoreP operation.  Redundant StoreCMs
2490   // are eliminated just before matching in final_graph_reshape.
2491   {
2492     Node* st = mem;
2493     // If Store 'st' has more than one use, we cannot fold 'st' away.
2494     // For example, 'st' might be the final state at a conditional
2495     // return.  Or, 'st' might be used by some node which is live at
2496     // the same time 'st' is live, which might be unschedulable.  So,
2497     // require exactly ONE user until such time as we clone 'mem' for
2498     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2499     // true).
2500     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2501       // Looking at a dead closed cycle of memory?
2502       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2503       assert(Opcode() == st->Opcode() ||
2504              st->Opcode() == Op_StoreVector ||
2505              Opcode() == Op_StoreVector ||
2506              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2507              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2508              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2509              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2510              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2511 
2512       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2513           st->as_Store()->memory_size() <= this->memory_size()) {
2514         Node* use = st->raw_out(0);
2515         phase->igvn_rehash_node_delayed(use);
2516         if (can_reshape) {
2517           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2518         } else {
2519           // It's OK to do this in the parser, since DU info is always accurate,
2520           // and the parser always refers to nodes via SafePointNode maps.
2521           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2522         }
2523         return this;
2524       }
2525       st = st->in(MemNode::Memory);
2526     }
2527   }
2528 
2529 
2530   // Capture an unaliased, unconditional, simple store into an initializer.
2531   // Or, if it is independent of the allocation, hoist it above the allocation.
2532   if (ReduceFieldZeroing && /*can_reshape &&*/
2533       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2534     InitializeNode* init = mem->in(0)->as_Initialize();
2535     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2536     if (offset > 0) {
2537       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2538       // If the InitializeNode captured me, it made a raw copy of me,
2539       // and I need to disappear.
2540       if (moved != NULL) {
2541         // %%% hack to ensure that Ideal returns a new node:
2542         mem = MergeMemNode::make(mem);
2543         return mem;             // fold me away
2544       }
2545     }
2546   }
2547 
2548   return NULL;                  // No further progress
2549 }
2550 
2551 //------------------------------Value-----------------------------------------
2552 const Type* StoreNode::Value(PhaseGVN* phase) const {
2553   // Either input is TOP ==> the result is TOP
2554   const Type *t1 = phase->type( in(MemNode::Memory) );
2555   if( t1 == Type::TOP ) return Type::TOP;
2556   const Type *t2 = phase->type( in(MemNode::Address) );
2557   if( t2 == Type::TOP ) return Type::TOP;
2558   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2559   if( t3 == Type::TOP ) return Type::TOP;
2560   return Type::MEMORY;
2561 }
2562 
2563 //------------------------------Identity---------------------------------------
2564 // Remove redundant stores:
2565 //   Store(m, p, Load(m, p)) changes to m.
2566 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2567 Node* StoreNode::Identity(PhaseGVN* phase) {
2568   Node* mem = in(MemNode::Memory);
2569   Node* adr = in(MemNode::Address);
2570   Node* val = in(MemNode::ValueIn);
2571 
2572   Node* result = this;
2573 
2574   // Load then Store?  Then the Store is useless
2575   if (val->is_Load() &&
2576       val->in(MemNode::Address)->eqv_uncast(adr) &&
2577       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2578       val->as_Load()->store_Opcode() == Opcode()) {
2579     result = mem;
2580   }
2581 
2582   // Two stores in a row of the same value?
2583   if (result == this &&
2584       mem->is_Store() &&
2585       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2586       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2587       mem->Opcode() == Opcode()) {
2588     result = mem;
2589   }
2590 
2591   // Store of zero anywhere into a freshly-allocated object?
2592   // Then the store is useless.
2593   // (It must already have been captured by the InitializeNode.)
2594   if (result == this &&
2595       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2596     // a newly allocated object is already all-zeroes everywhere
2597     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2598       result = mem;
2599     }
2600 
2601     if (result == this) {
2602       // the store may also apply to zero-bits in an earlier object
2603       Node* prev_mem = find_previous_store(phase);
2604       // Steps (a), (b):  Walk past independent stores to find an exact match.
2605       if (prev_mem != NULL) {
2606         Node* prev_val = can_see_stored_value(prev_mem, phase);
2607         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2608           // prev_val and val might differ by a cast; it would be good
2609           // to keep the more informative of the two.
2610           result = mem;
2611         }
2612       }
2613     }
2614   }
2615 
2616   if (result != this && phase->is_IterGVN() != NULL) {
2617     MemBarNode* trailing = trailing_membar();
2618     if (trailing != NULL) {
2619 #ifdef ASSERT
2620       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2621       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2622 #endif
2623       PhaseIterGVN* igvn = phase->is_IterGVN();
2624       trailing->remove(igvn);
2625     }
2626   }
2627 
2628   return result;
2629 }
2630 
2631 //------------------------------match_edge-------------------------------------
2632 // Do we Match on this edge index or not?  Match only memory & value
2633 uint StoreNode::match_edge(uint idx) const {
2634   return idx == MemNode::Address || idx == MemNode::ValueIn;
2635 }
2636 
2637 //------------------------------cmp--------------------------------------------
2638 // Do not common stores up together.  They generally have to be split
2639 // back up anyways, so do not bother.
2640 bool StoreNode::cmp( const Node &n ) const {
2641   return (&n == this);          // Always fail except on self
2642 }
2643 
2644 //------------------------------Ideal_masked_input-----------------------------
2645 // Check for a useless mask before a partial-word store
2646 // (StoreB ... (AndI valIn conIa) )
2647 // If (conIa & mask == mask) this simplifies to
2648 // (StoreB ... (valIn) )
2649 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2650   Node *val = in(MemNode::ValueIn);
2651   if( val->Opcode() == Op_AndI ) {
2652     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2653     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2654       set_req(MemNode::ValueIn, val->in(1));
2655       return this;
2656     }
2657   }
2658   return NULL;
2659 }
2660 
2661 
2662 //------------------------------Ideal_sign_extended_input----------------------
2663 // Check for useless sign-extension before a partial-word store
2664 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2665 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2666 // (StoreB ... (valIn) )
2667 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2668   Node *val = in(MemNode::ValueIn);
2669   if( val->Opcode() == Op_RShiftI ) {
2670     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2671     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2672       Node *shl = val->in(1);
2673       if( shl->Opcode() == Op_LShiftI ) {
2674         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2675         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2676           set_req(MemNode::ValueIn, shl->in(1));
2677           return this;
2678         }
2679       }
2680     }
2681   }
2682   return NULL;
2683 }
2684 
2685 //------------------------------value_never_loaded-----------------------------------
2686 // Determine whether there are any possible loads of the value stored.
2687 // For simplicity, we actually check if there are any loads from the
2688 // address stored to, not just for loads of the value stored by this node.
2689 //
2690 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2691   Node *adr = in(Address);
2692   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2693   if (adr_oop == NULL)
2694     return false;
2695   if (!adr_oop->is_known_instance_field())
2696     return false; // if not a distinct instance, there may be aliases of the address
2697   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2698     Node *use = adr->fast_out(i);
2699     if (use->is_Load() || use->is_LoadStore()) {
2700       return false;
2701     }
2702   }
2703   return true;
2704 }
2705 
2706 MemBarNode* StoreNode::trailing_membar() const {
2707   if (is_release()) {
2708     MemBarNode* trailing_mb = NULL;
2709     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2710       Node* u = fast_out(i);
2711       if (u->is_MemBar()) {
2712         if (u->as_MemBar()->trailing_store()) {
2713           assert(u->Opcode() == Op_MemBarVolatile, "");
2714           assert(trailing_mb == NULL, "only one");
2715           trailing_mb = u->as_MemBar();
2716 #ifdef ASSERT
2717           Node* leading = u->as_MemBar()->leading_membar();
2718           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2719           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2720           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2721 #endif
2722         } else {
2723           assert(u->as_MemBar()->standalone(), "");
2724         }
2725       }
2726     }
2727     return trailing_mb;
2728   }
2729   return NULL;
2730 }
2731 
2732 
2733 //=============================================================================
2734 //------------------------------Ideal------------------------------------------
2735 // If the store is from an AND mask that leaves the low bits untouched, then
2736 // we can skip the AND operation.  If the store is from a sign-extension
2737 // (a left shift, then right shift) we can skip both.
2738 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2739   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2740   if( progress != NULL ) return progress;
2741 
2742   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2743   if( progress != NULL ) return progress;
2744 
2745   // Finally check the default case
2746   return StoreNode::Ideal(phase, can_reshape);
2747 }
2748 
2749 //=============================================================================
2750 //------------------------------Ideal------------------------------------------
2751 // If the store is from an AND mask that leaves the low bits untouched, then
2752 // we can skip the AND operation
2753 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2754   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2755   if( progress != NULL ) return progress;
2756 
2757   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2758   if( progress != NULL ) return progress;
2759 
2760   // Finally check the default case
2761   return StoreNode::Ideal(phase, can_reshape);
2762 }
2763 
2764 //=============================================================================
2765 //------------------------------Identity---------------------------------------
2766 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2767   // No need to card mark when storing a null ptr
2768   Node* my_store = in(MemNode::OopStore);
2769   if (my_store->is_Store()) {
2770     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2771     if( t1 == TypePtr::NULL_PTR ) {
2772       return in(MemNode::Memory);
2773     }
2774   }
2775   return this;
2776 }
2777 
2778 //=============================================================================
2779 //------------------------------Ideal---------------------------------------
2780 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2781   Node* progress = StoreNode::Ideal(phase, can_reshape);
2782   if (progress != NULL) return progress;
2783 
2784   Node* my_store = in(MemNode::OopStore);
2785   if (my_store->is_MergeMem()) {
2786     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2787     set_req(MemNode::OopStore, mem);
2788     return this;
2789   }
2790 
2791   return NULL;
2792 }
2793 
2794 //------------------------------Value-----------------------------------------
2795 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2796   // Either input is TOP ==> the result is TOP
2797   const Type *t = phase->type( in(MemNode::Memory) );
2798   if( t == Type::TOP ) return Type::TOP;
2799   t = phase->type( in(MemNode::Address) );
2800   if( t == Type::TOP ) return Type::TOP;
2801   t = phase->type( in(MemNode::ValueIn) );
2802   if( t == Type::TOP ) return Type::TOP;
2803   // If extra input is TOP ==> the result is TOP
2804   t = phase->type( in(MemNode::OopStore) );
2805   if( t == Type::TOP ) return Type::TOP;
2806 
2807   return StoreNode::Value( phase );
2808 }
2809 
2810 
2811 //=============================================================================
2812 //----------------------------------SCMemProjNode------------------------------
2813 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2814 {
2815   return bottom_type();
2816 }
2817 
2818 //=============================================================================
2819 //----------------------------------LoadStoreNode------------------------------
2820 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2821   : Node(required),
2822     _type(rt),
2823     _adr_type(at),
2824     _has_barrier(false)
2825 {
2826   init_req(MemNode::Control, c  );
2827   init_req(MemNode::Memory , mem);
2828   init_req(MemNode::Address, adr);
2829   init_req(MemNode::ValueIn, val);
2830   init_class_id(Class_LoadStore);
2831 }
2832 
2833 uint LoadStoreNode::ideal_reg() const {
2834   return _type->ideal_reg();
2835 }
2836 
2837 bool LoadStoreNode::result_not_used() const {
2838   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2839     Node *x = fast_out(i);
2840     if (x->Opcode() == Op_SCMemProj) continue;
2841     return false;
2842   }
2843   return true;
2844 }
2845 
2846 MemBarNode* LoadStoreNode::trailing_membar() const {
2847   MemBarNode* trailing = NULL;
2848   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2849     Node* u = fast_out(i);
2850     if (u->is_MemBar()) {
2851       if (u->as_MemBar()->trailing_load_store()) {
2852         assert(u->Opcode() == Op_MemBarAcquire, "");
2853         assert(trailing == NULL, "only one");
2854         trailing = u->as_MemBar();
2855 #ifdef ASSERT
2856         Node* leading = trailing->leading_membar();
2857         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2858         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2859         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2860 #endif
2861       } else {
2862         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2863       }
2864     }
2865   }
2866 
2867   return trailing;
2868 }
2869 
2870 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2871 
2872 //=============================================================================
2873 //----------------------------------LoadStoreConditionalNode--------------------
2874 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2875   init_req(ExpectedIn, ex );
2876 }
2877 
2878 //=============================================================================
2879 //-------------------------------adr_type--------------------------------------
2880 const TypePtr* ClearArrayNode::adr_type() const {
2881   Node *adr = in(3);
2882   if (adr == NULL)  return NULL; // node is dead
2883   return MemNode::calculate_adr_type(adr->bottom_type());
2884 }
2885 
2886 //------------------------------match_edge-------------------------------------
2887 // Do we Match on this edge index or not?  Do not match memory
2888 uint ClearArrayNode::match_edge(uint idx) const {
2889   return idx > 1;
2890 }
2891 
2892 //------------------------------Identity---------------------------------------
2893 // Clearing a zero length array does nothing
2894 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2895   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2896 }
2897 
2898 //------------------------------Idealize---------------------------------------
2899 // Clearing a short array is faster with stores
2900 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2901   // Already know this is a large node, do not try to ideal it
2902   if (!IdealizeClearArrayNode || _is_large) return NULL;
2903 
2904   const int unit = BytesPerLong;
2905   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2906   if (!t)  return NULL;
2907   if (!t->is_con())  return NULL;
2908   intptr_t raw_count = t->get_con();
2909   intptr_t size = raw_count;
2910   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2911   // Clearing nothing uses the Identity call.
2912   // Negative clears are possible on dead ClearArrays
2913   // (see jck test stmt114.stmt11402.val).
2914   if (size <= 0 || size % unit != 0)  return NULL;
2915   intptr_t count = size / unit;
2916   // Length too long; communicate this to matchers and assemblers.
2917   // Assemblers are responsible to produce fast hardware clears for it.
2918   if (size > InitArrayShortSize) {
2919     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2920   }
2921   Node *mem = in(1);
2922   if( phase->type(mem)==Type::TOP ) return NULL;
2923   Node *adr = in(3);
2924   const Type* at = phase->type(adr);
2925   if( at==Type::TOP ) return NULL;
2926   const TypePtr* atp = at->isa_ptr();
2927   // adjust atp to be the correct array element address type
2928   if (atp == NULL)  atp = TypePtr::BOTTOM;
2929   else              atp = atp->add_offset(Type::OffsetBot);
2930   // Get base for derived pointer purposes
2931   if( adr->Opcode() != Op_AddP ) Unimplemented();
2932   Node *base = adr->in(1);
2933 
2934   Node *zero = phase->makecon(TypeLong::ZERO);
2935   Node *off  = phase->MakeConX(BytesPerLong);
2936   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2937   count--;
2938   while( count-- ) {
2939     mem = phase->transform(mem);
2940     adr = phase->transform(new AddPNode(base,adr,off));
2941     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2942   }
2943   return mem;
2944 }
2945 
2946 //----------------------------step_through----------------------------------
2947 // Return allocation input memory edge if it is different instance
2948 // or itself if it is the one we are looking for.
2949 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2950   Node* n = *np;
2951   assert(n->is_ClearArray(), "sanity");
2952   intptr_t offset;
2953   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2954   // This method is called only before Allocate nodes are expanded
2955   // during macro nodes expansion. Before that ClearArray nodes are
2956   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2957   // Allocate nodes are expanded) which follows allocations.
2958   assert(alloc != NULL, "should have allocation");
2959   if (alloc->_idx == instance_id) {
2960     // Can not bypass initialization of the instance we are looking for.
2961     return false;
2962   }
2963   // Otherwise skip it.
2964   InitializeNode* init = alloc->initialization();
2965   if (init != NULL)
2966     *np = init->in(TypeFunc::Memory);
2967   else
2968     *np = alloc->in(TypeFunc::Memory);
2969   return true;
2970 }
2971 
2972 //----------------------------clear_memory-------------------------------------
2973 // Generate code to initialize object storage to zero.
2974 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2975                                    intptr_t start_offset,
2976                                    Node* end_offset,
2977                                    PhaseGVN* phase) {
2978   intptr_t offset = start_offset;
2979 
2980   int unit = BytesPerLong;
2981   if ((offset % unit) != 0) {
2982     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2983     adr = phase->transform(adr);
2984     const TypePtr* atp = TypeRawPtr::BOTTOM;
2985     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2986     mem = phase->transform(mem);
2987     offset += BytesPerInt;
2988   }
2989   assert((offset % unit) == 0, "");
2990 
2991   // Initialize the remaining stuff, if any, with a ClearArray.
2992   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2993 }
2994 
2995 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2996                                    Node* start_offset,
2997                                    Node* end_offset,
2998                                    PhaseGVN* phase) {
2999   if (start_offset == end_offset) {
3000     // nothing to do
3001     return mem;
3002   }
3003 
3004   int unit = BytesPerLong;
3005   Node* zbase = start_offset;
3006   Node* zend  = end_offset;
3007 
3008   // Scale to the unit required by the CPU:
3009   if (!Matcher::init_array_count_is_in_bytes) {
3010     Node* shift = phase->intcon(exact_log2(unit));
3011     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3012     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3013   }
3014 
3015   // Bulk clear double-words
3016   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3017   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3018   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3019   return phase->transform(mem);
3020 }
3021 
3022 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3023                                    intptr_t start_offset,
3024                                    intptr_t end_offset,
3025                                    PhaseGVN* phase) {
3026   if (start_offset == end_offset) {
3027     // nothing to do
3028     return mem;
3029   }
3030 
3031   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3032   intptr_t done_offset = end_offset;
3033   if ((done_offset % BytesPerLong) != 0) {
3034     done_offset -= BytesPerInt;
3035   }
3036   if (done_offset > start_offset) {
3037     mem = clear_memory(ctl, mem, dest,
3038                        start_offset, phase->MakeConX(done_offset), phase);
3039   }
3040   if (done_offset < end_offset) { // emit the final 32-bit store
3041     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3042     adr = phase->transform(adr);
3043     const TypePtr* atp = TypeRawPtr::BOTTOM;
3044     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3045     mem = phase->transform(mem);
3046     done_offset += BytesPerInt;
3047   }
3048   assert(done_offset == end_offset, "");
3049   return mem;
3050 }
3051 
3052 //=============================================================================
3053 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3054   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3055     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3056 #ifdef ASSERT
3057   , _pair_idx(0)
3058 #endif
3059 {
3060   init_class_id(Class_MemBar);
3061   Node* top = C->top();
3062   init_req(TypeFunc::I_O,top);
3063   init_req(TypeFunc::FramePtr,top);
3064   init_req(TypeFunc::ReturnAdr,top);
3065   if (precedent != NULL)
3066     init_req(TypeFunc::Parms, precedent);
3067 }
3068 
3069 //------------------------------cmp--------------------------------------------
3070 uint MemBarNode::hash() const { return NO_HASH; }
3071 bool MemBarNode::cmp( const Node &n ) const {
3072   return (&n == this);          // Always fail except on self
3073 }
3074 
3075 //------------------------------make-------------------------------------------
3076 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3077   switch (opcode) {
3078   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3079   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3080   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3081   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3082   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3083   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3084   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3085   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3086   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3087   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3088   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3089   default: ShouldNotReachHere(); return NULL;
3090   }
3091 }
3092 
3093 void MemBarNode::remove(PhaseIterGVN *igvn) {
3094   if (outcnt() != 2) {
3095     return;
3096   }
3097   if (trailing_store() || trailing_load_store()) {
3098     MemBarNode* leading = leading_membar();
3099     if (leading != NULL) {
3100       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3101       leading->remove(igvn);
3102     }
3103   }
3104   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3105   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3106 }
3107 
3108 //------------------------------Ideal------------------------------------------
3109 // Return a node which is more "ideal" than the current node.  Strip out
3110 // control copies
3111 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3112   if (remove_dead_region(phase, can_reshape)) return this;
3113   // Don't bother trying to transform a dead node
3114   if (in(0) && in(0)->is_top()) {
3115     return NULL;
3116   }
3117 
3118   bool progress = false;
3119   // Eliminate volatile MemBars for scalar replaced objects.
3120   if (can_reshape && req() == (Precedent+1)) {
3121     bool eliminate = false;
3122     int opc = Opcode();
3123     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3124       // Volatile field loads and stores.
3125       Node* my_mem = in(MemBarNode::Precedent);
3126       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3127       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3128         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3129         // replace this Precedent (decodeN) with the Load instead.
3130         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3131           Node* load_node = my_mem->in(1);
3132           set_req(MemBarNode::Precedent, load_node);
3133           phase->is_IterGVN()->_worklist.push(my_mem);
3134           my_mem = load_node;
3135         } else {
3136           assert(my_mem->unique_out() == this, "sanity");
3137           del_req(Precedent);
3138           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3139           my_mem = NULL;
3140         }
3141         progress = true;
3142       }
3143       if (my_mem != NULL && my_mem->is_Mem()) {
3144         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3145         // Check for scalar replaced object reference.
3146         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3147             t_oop->offset() != Type::OffsetBot &&
3148             t_oop->offset() != Type::OffsetTop) {
3149           eliminate = true;
3150         }
3151       }
3152     } else if (opc == Op_MemBarRelease) {
3153       // Final field stores.
3154       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3155       if ((alloc != NULL) && alloc->is_Allocate() &&
3156           alloc->as_Allocate()->does_not_escape_thread()) {
3157         // The allocated object does not escape.
3158         eliminate = true;
3159       }
3160     }
3161     if (eliminate) {
3162       // Replace MemBar projections by its inputs.
3163       PhaseIterGVN* igvn = phase->is_IterGVN();
3164       remove(igvn);
3165       // Must return either the original node (now dead) or a new node
3166       // (Do not return a top here, since that would break the uniqueness of top.)
3167       return new ConINode(TypeInt::ZERO);
3168     }
3169   }
3170   return progress ? this : NULL;
3171 }
3172 
3173 //------------------------------Value------------------------------------------
3174 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3175   if( !in(0) ) return Type::TOP;
3176   if( phase->type(in(0)) == Type::TOP )
3177     return Type::TOP;
3178   return TypeTuple::MEMBAR;
3179 }
3180 
3181 //------------------------------match------------------------------------------
3182 // Construct projections for memory.
3183 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3184   switch (proj->_con) {
3185   case TypeFunc::Control:
3186   case TypeFunc::Memory:
3187     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3188   }
3189   ShouldNotReachHere();
3190   return NULL;
3191 }
3192 
3193 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3194   trailing->_kind = TrailingStore;
3195   leading->_kind = LeadingStore;
3196 #ifdef ASSERT
3197   trailing->_pair_idx = leading->_idx;
3198   leading->_pair_idx = leading->_idx;
3199 #endif
3200 }
3201 
3202 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3203   trailing->_kind = TrailingLoadStore;
3204   leading->_kind = LeadingLoadStore;
3205 #ifdef ASSERT
3206   trailing->_pair_idx = leading->_idx;
3207   leading->_pair_idx = leading->_idx;
3208 #endif
3209 }
3210 
3211 MemBarNode* MemBarNode::trailing_membar() const {
3212   ResourceMark rm;
3213   Node* trailing = (Node*)this;
3214   VectorSet seen(Thread::current()->resource_area());
3215   Node_Stack multis(0);
3216   do {
3217     Node* c = trailing;
3218     uint i = 0;
3219     do {
3220       trailing = NULL;
3221       for (; i < c->outcnt(); i++) {
3222         Node* next = c->raw_out(i);
3223         if (next != c && next->is_CFG()) {
3224           if (c->is_MultiBranch()) {
3225             if (multis.node() == c) {
3226               multis.set_index(i+1);
3227             } else {
3228               multis.push(c, i+1);
3229             }
3230           }
3231           trailing = next;
3232           break;
3233         }
3234       }
3235       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3236         break;
3237       }
3238       while (multis.size() > 0) {
3239         c = multis.node();
3240         i = multis.index();
3241         if (i < c->req()) {
3242           break;
3243         }
3244         multis.pop();
3245       }
3246     } while (multis.size() > 0);
3247   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3248 
3249   MemBarNode* mb = trailing->as_MemBar();
3250   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3251          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3252   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3253   return mb;
3254 }
3255 
3256 MemBarNode* MemBarNode::leading_membar() const {
3257   ResourceMark rm;
3258   VectorSet seen(Thread::current()->resource_area());
3259   Node_Stack regions(0);
3260   Node* leading = in(0);
3261   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3262     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3263       leading = NULL;
3264       while (regions.size() > 0 && leading == NULL) {
3265         Node* r = regions.node();
3266         uint i = regions.index();
3267         if (i < r->req()) {
3268           leading = r->in(i);
3269           regions.set_index(i+1);
3270         } else {
3271           regions.pop();
3272         }
3273       }
3274       if (leading == NULL) {
3275         assert(regions.size() == 0, "all paths should have been tried");
3276         return NULL;
3277       }
3278     }
3279     if (leading->is_Region()) {
3280       regions.push(leading, 2);
3281       leading = leading->in(1);
3282     } else {
3283       leading = leading->in(0);
3284     }
3285   }
3286 #ifdef ASSERT
3287   Unique_Node_List wq;
3288   wq.push((Node*)this);
3289   uint found = 0;
3290   for (uint i = 0; i < wq.size(); i++) {
3291     Node* n = wq.at(i);
3292     if (n->is_Region()) {
3293       for (uint j = 1; j < n->req(); j++) {
3294         Node* in = n->in(j);
3295         if (in != NULL && !in->is_top()) {
3296           wq.push(in);
3297         }
3298       }
3299     } else {
3300       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3301         assert(n == leading, "consistency check failed");
3302         found++;
3303       } else {
3304         Node* in = n->in(0);
3305         if (in != NULL && !in->is_top()) {
3306           wq.push(in);
3307         }
3308       }
3309     }
3310   }
3311   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3312 #endif
3313   if (leading == NULL) {
3314     return NULL;
3315   }
3316   MemBarNode* mb = leading->as_MemBar();
3317   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3318          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3319   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3320   return mb;
3321 }
3322 
3323 //===========================InitializeNode====================================
3324 // SUMMARY:
3325 // This node acts as a memory barrier on raw memory, after some raw stores.
3326 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3327 // The Initialize can 'capture' suitably constrained stores as raw inits.
3328 // It can coalesce related raw stores into larger units (called 'tiles').
3329 // It can avoid zeroing new storage for memory units which have raw inits.
3330 // At macro-expansion, it is marked 'complete', and does not optimize further.
3331 //
3332 // EXAMPLE:
3333 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3334 //   ctl = incoming control; mem* = incoming memory
3335 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3336 // First allocate uninitialized memory and fill in the header:
3337 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3338 //   ctl := alloc.Control; mem* := alloc.Memory*
3339 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3340 // Then initialize to zero the non-header parts of the raw memory block:
3341 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3342 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3343 // After the initialize node executes, the object is ready for service:
3344 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3345 // Suppose its body is immediately initialized as {1,2}:
3346 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3347 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3348 //   mem.SLICE(#short[*]) := store2
3349 //
3350 // DETAILS:
3351 // An InitializeNode collects and isolates object initialization after
3352 // an AllocateNode and before the next possible safepoint.  As a
3353 // memory barrier (MemBarNode), it keeps critical stores from drifting
3354 // down past any safepoint or any publication of the allocation.
3355 // Before this barrier, a newly-allocated object may have uninitialized bits.
3356 // After this barrier, it may be treated as a real oop, and GC is allowed.
3357 //
3358 // The semantics of the InitializeNode include an implicit zeroing of
3359 // the new object from object header to the end of the object.
3360 // (The object header and end are determined by the AllocateNode.)
3361 //
3362 // Certain stores may be added as direct inputs to the InitializeNode.
3363 // These stores must update raw memory, and they must be to addresses
3364 // derived from the raw address produced by AllocateNode, and with
3365 // a constant offset.  They must be ordered by increasing offset.
3366 // The first one is at in(RawStores), the last at in(req()-1).
3367 // Unlike most memory operations, they are not linked in a chain,
3368 // but are displayed in parallel as users of the rawmem output of
3369 // the allocation.
3370 //
3371 // (See comments in InitializeNode::capture_store, which continue
3372 // the example given above.)
3373 //
3374 // When the associated Allocate is macro-expanded, the InitializeNode
3375 // may be rewritten to optimize collected stores.  A ClearArrayNode
3376 // may also be created at that point to represent any required zeroing.
3377 // The InitializeNode is then marked 'complete', prohibiting further
3378 // capturing of nearby memory operations.
3379 //
3380 // During macro-expansion, all captured initializations which store
3381 // constant values of 32 bits or smaller are coalesced (if advantageous)
3382 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3383 // initialized in fewer memory operations.  Memory words which are
3384 // covered by neither tiles nor non-constant stores are pre-zeroed
3385 // by explicit stores of zero.  (The code shape happens to do all
3386 // zeroing first, then all other stores, with both sequences occurring
3387 // in order of ascending offsets.)
3388 //
3389 // Alternatively, code may be inserted between an AllocateNode and its
3390 // InitializeNode, to perform arbitrary initialization of the new object.
3391 // E.g., the object copying intrinsics insert complex data transfers here.
3392 // The initialization must then be marked as 'complete' disable the
3393 // built-in zeroing semantics and the collection of initializing stores.
3394 //
3395 // While an InitializeNode is incomplete, reads from the memory state
3396 // produced by it are optimizable if they match the control edge and
3397 // new oop address associated with the allocation/initialization.
3398 // They return a stored value (if the offset matches) or else zero.
3399 // A write to the memory state, if it matches control and address,
3400 // and if it is to a constant offset, may be 'captured' by the
3401 // InitializeNode.  It is cloned as a raw memory operation and rewired
3402 // inside the initialization, to the raw oop produced by the allocation.
3403 // Operations on addresses which are provably distinct (e.g., to
3404 // other AllocateNodes) are allowed to bypass the initialization.
3405 //
3406 // The effect of all this is to consolidate object initialization
3407 // (both arrays and non-arrays, both piecewise and bulk) into a
3408 // single location, where it can be optimized as a unit.
3409 //
3410 // Only stores with an offset less than TrackedInitializationLimit words
3411 // will be considered for capture by an InitializeNode.  This puts a
3412 // reasonable limit on the complexity of optimized initializations.
3413 
3414 //---------------------------InitializeNode------------------------------------
3415 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3416   : MemBarNode(C, adr_type, rawoop),
3417     _is_complete(Incomplete), _does_not_escape(false)
3418 {
3419   init_class_id(Class_Initialize);
3420 
3421   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3422   assert(in(RawAddress) == rawoop, "proper init");
3423   // Note:  allocation() can be NULL, for secondary initialization barriers
3424 }
3425 
3426 // Since this node is not matched, it will be processed by the
3427 // register allocator.  Declare that there are no constraints
3428 // on the allocation of the RawAddress edge.
3429 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3430   // This edge should be set to top, by the set_complete.  But be conservative.
3431   if (idx == InitializeNode::RawAddress)
3432     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3433   return RegMask::Empty;
3434 }
3435 
3436 Node* InitializeNode::memory(uint alias_idx) {
3437   Node* mem = in(Memory);
3438   if (mem->is_MergeMem()) {
3439     return mem->as_MergeMem()->memory_at(alias_idx);
3440   } else {
3441     // incoming raw memory is not split
3442     return mem;
3443   }
3444 }
3445 
3446 bool InitializeNode::is_non_zero() {
3447   if (is_complete())  return false;
3448   remove_extra_zeroes();
3449   return (req() > RawStores);
3450 }
3451 
3452 void InitializeNode::set_complete(PhaseGVN* phase) {
3453   assert(!is_complete(), "caller responsibility");
3454   _is_complete = Complete;
3455 
3456   // After this node is complete, it contains a bunch of
3457   // raw-memory initializations.  There is no need for
3458   // it to have anything to do with non-raw memory effects.
3459   // Therefore, tell all non-raw users to re-optimize themselves,
3460   // after skipping the memory effects of this initialization.
3461   PhaseIterGVN* igvn = phase->is_IterGVN();
3462   if (igvn)  igvn->add_users_to_worklist(this);
3463 }
3464 
3465 // convenience function
3466 // return false if the init contains any stores already
3467 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3468   InitializeNode* init = initialization();
3469   if (init == NULL || init->is_complete())  return false;
3470   init->remove_extra_zeroes();
3471   // for now, if this allocation has already collected any inits, bail:
3472   if (init->is_non_zero())  return false;
3473   init->set_complete(phase);
3474   return true;
3475 }
3476 
3477 void InitializeNode::remove_extra_zeroes() {
3478   if (req() == RawStores)  return;
3479   Node* zmem = zero_memory();
3480   uint fill = RawStores;
3481   for (uint i = fill; i < req(); i++) {
3482     Node* n = in(i);
3483     if (n->is_top() || n == zmem)  continue;  // skip
3484     if (fill < i)  set_req(fill, n);          // compact
3485     ++fill;
3486   }
3487   // delete any empty spaces created:
3488   while (fill < req()) {
3489     del_req(fill);
3490   }
3491 }
3492 
3493 // Helper for remembering which stores go with which offsets.
3494 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3495   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3496   intptr_t offset = -1;
3497   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3498                                                phase, offset);
3499   if (base == NULL)     return -1;  // something is dead,
3500   if (offset < 0)       return -1;  //        dead, dead
3501   return offset;
3502 }
3503 
3504 // Helper for proving that an initialization expression is
3505 // "simple enough" to be folded into an object initialization.
3506 // Attempts to prove that a store's initial value 'n' can be captured
3507 // within the initialization without creating a vicious cycle, such as:
3508 //     { Foo p = new Foo(); p.next = p; }
3509 // True for constants and parameters and small combinations thereof.
3510 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3511   if (n == NULL)      return true;   // (can this really happen?)
3512   if (n->is_Proj())   n = n->in(0);
3513   if (n == this)      return false;  // found a cycle
3514   if (n->is_Con())    return true;
3515   if (n->is_Start())  return true;   // params, etc., are OK
3516   if (n->is_Root())   return true;   // even better
3517 
3518   Node* ctl = n->in(0);
3519   if (ctl != NULL && !ctl->is_top()) {
3520     if (ctl->is_Proj())  ctl = ctl->in(0);
3521     if (ctl == this)  return false;
3522 
3523     // If we already know that the enclosing memory op is pinned right after
3524     // the init, then any control flow that the store has picked up
3525     // must have preceded the init, or else be equal to the init.
3526     // Even after loop optimizations (which might change control edges)
3527     // a store is never pinned *before* the availability of its inputs.
3528     if (!MemNode::all_controls_dominate(n, this))
3529       return false;                  // failed to prove a good control
3530   }
3531 
3532   // Check data edges for possible dependencies on 'this'.
3533   if ((count += 1) > 20)  return false;  // complexity limit
3534   for (uint i = 1; i < n->req(); i++) {
3535     Node* m = n->in(i);
3536     if (m == NULL || m == n || m->is_top())  continue;
3537     uint first_i = n->find_edge(m);
3538     if (i != first_i)  continue;  // process duplicate edge just once
3539     if (!detect_init_independence(m, count)) {
3540       return false;
3541     }
3542   }
3543 
3544   return true;
3545 }
3546 
3547 // Here are all the checks a Store must pass before it can be moved into
3548 // an initialization.  Returns zero if a check fails.
3549 // On success, returns the (constant) offset to which the store applies,
3550 // within the initialized memory.
3551 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3552   const int FAIL = 0;
3553   if (st->req() != MemNode::ValueIn + 1)
3554     return FAIL;                // an inscrutable StoreNode (card mark?)
3555   Node* ctl = st->in(MemNode::Control);
3556   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3557     return FAIL;                // must be unconditional after the initialization
3558   Node* mem = st->in(MemNode::Memory);
3559   if (!(mem->is_Proj() && mem->in(0) == this))
3560     return FAIL;                // must not be preceded by other stores
3561   Node* adr = st->in(MemNode::Address);
3562   intptr_t offset;
3563   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3564   if (alloc == NULL)
3565     return FAIL;                // inscrutable address
3566   if (alloc != allocation())
3567     return FAIL;                // wrong allocation!  (store needs to float up)
3568   int size_in_bytes = st->memory_size();
3569   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3570     return FAIL;                // mismatched access
3571   }
3572   Node* val = st->in(MemNode::ValueIn);
3573   int complexity_count = 0;
3574   if (!detect_init_independence(val, complexity_count))
3575     return FAIL;                // stored value must be 'simple enough'
3576 
3577   // The Store can be captured only if nothing after the allocation
3578   // and before the Store is using the memory location that the store
3579   // overwrites.
3580   bool failed = false;
3581   // If is_complete_with_arraycopy() is true the shape of the graph is
3582   // well defined and is safe so no need for extra checks.
3583   if (!is_complete_with_arraycopy()) {
3584     // We are going to look at each use of the memory state following
3585     // the allocation to make sure nothing reads the memory that the
3586     // Store writes.
3587     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3588     int alias_idx = phase->C->get_alias_index(t_adr);
3589     ResourceMark rm;
3590     Unique_Node_List mems;
3591     mems.push(mem);
3592     Node* unique_merge = NULL;
3593     for (uint next = 0; next < mems.size(); ++next) {
3594       Node *m  = mems.at(next);
3595       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3596         Node *n = m->fast_out(j);
3597         if (n->outcnt() == 0) {
3598           continue;
3599         }
3600         if (n == st) {
3601           continue;
3602         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3603           // If the control of this use is different from the control
3604           // of the Store which is right after the InitializeNode then
3605           // this node cannot be between the InitializeNode and the
3606           // Store.
3607           continue;
3608         } else if (n->is_MergeMem()) {
3609           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3610             // We can hit a MergeMemNode (that will likely go away
3611             // later) that is a direct use of the memory state
3612             // following the InitializeNode on the same slice as the
3613             // store node that we'd like to capture. We need to check
3614             // the uses of the MergeMemNode.
3615             mems.push(n);
3616           }
3617         } else if (n->is_Mem()) {
3618           Node* other_adr = n->in(MemNode::Address);
3619           if (other_adr == adr) {
3620             failed = true;
3621             break;
3622           } else {
3623             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3624             if (other_t_adr != NULL) {
3625               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3626               if (other_alias_idx == alias_idx) {
3627                 // A load from the same memory slice as the store right
3628                 // after the InitializeNode. We check the control of the
3629                 // object/array that is loaded from. If it's the same as
3630                 // the store control then we cannot capture the store.
3631                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3632                 Node* base = other_adr;
3633                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3634                 base = base->in(AddPNode::Base);
3635                 if (base != NULL) {
3636                   base = base->uncast();
3637                   if (base->is_Proj() && base->in(0) == alloc) {
3638                     failed = true;
3639                     break;
3640                   }
3641                 }
3642               }
3643             }
3644           }
3645         } else {
3646           failed = true;
3647           break;
3648         }
3649       }
3650     }
3651   }
3652   if (failed) {
3653     if (!can_reshape) {
3654       // We decided we couldn't capture the store during parsing. We
3655       // should try again during the next IGVN once the graph is
3656       // cleaner.
3657       phase->C->record_for_igvn(st);
3658     }
3659     return FAIL;
3660   }
3661 
3662   return offset;                // success
3663 }
3664 
3665 // Find the captured store in(i) which corresponds to the range
3666 // [start..start+size) in the initialized object.
3667 // If there is one, return its index i.  If there isn't, return the
3668 // negative of the index where it should be inserted.
3669 // Return 0 if the queried range overlaps an initialization boundary
3670 // or if dead code is encountered.
3671 // If size_in_bytes is zero, do not bother with overlap checks.
3672 int InitializeNode::captured_store_insertion_point(intptr_t start,
3673                                                    int size_in_bytes,
3674                                                    PhaseTransform* phase) {
3675   const int FAIL = 0, MAX_STORE = BytesPerLong;
3676 
3677   if (is_complete())
3678     return FAIL;                // arraycopy got here first; punt
3679 
3680   assert(allocation() != NULL, "must be present");
3681 
3682   // no negatives, no header fields:
3683   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3684 
3685   // after a certain size, we bail out on tracking all the stores:
3686   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3687   if (start >= ti_limit)  return FAIL;
3688 
3689   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3690     if (i >= limit)  return -(int)i; // not found; here is where to put it
3691 
3692     Node*    st     = in(i);
3693     intptr_t st_off = get_store_offset(st, phase);
3694     if (st_off < 0) {
3695       if (st != zero_memory()) {
3696         return FAIL;            // bail out if there is dead garbage
3697       }
3698     } else if (st_off > start) {
3699       // ...we are done, since stores are ordered
3700       if (st_off < start + size_in_bytes) {
3701         return FAIL;            // the next store overlaps
3702       }
3703       return -(int)i;           // not found; here is where to put it
3704     } else if (st_off < start) {
3705       if (size_in_bytes != 0 &&
3706           start < st_off + MAX_STORE &&
3707           start < st_off + st->as_Store()->memory_size()) {
3708         return FAIL;            // the previous store overlaps
3709       }
3710     } else {
3711       if (size_in_bytes != 0 &&
3712           st->as_Store()->memory_size() != size_in_bytes) {
3713         return FAIL;            // mismatched store size
3714       }
3715       return i;
3716     }
3717 
3718     ++i;
3719   }
3720 }
3721 
3722 // Look for a captured store which initializes at the offset 'start'
3723 // with the given size.  If there is no such store, and no other
3724 // initialization interferes, then return zero_memory (the memory
3725 // projection of the AllocateNode).
3726 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3727                                           PhaseTransform* phase) {
3728   assert(stores_are_sane(phase), "");
3729   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3730   if (i == 0) {
3731     return NULL;                // something is dead
3732   } else if (i < 0) {
3733     return zero_memory();       // just primordial zero bits here
3734   } else {
3735     Node* st = in(i);           // here is the store at this position
3736     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3737     return st;
3738   }
3739 }
3740 
3741 // Create, as a raw pointer, an address within my new object at 'offset'.
3742 Node* InitializeNode::make_raw_address(intptr_t offset,
3743                                        PhaseTransform* phase) {
3744   Node* addr = in(RawAddress);
3745   if (offset != 0) {
3746     Compile* C = phase->C;
3747     addr = phase->transform( new AddPNode(C->top(), addr,
3748                                                  phase->MakeConX(offset)) );
3749   }
3750   return addr;
3751 }
3752 
3753 // Clone the given store, converting it into a raw store
3754 // initializing a field or element of my new object.
3755 // Caller is responsible for retiring the original store,
3756 // with subsume_node or the like.
3757 //
3758 // From the example above InitializeNode::InitializeNode,
3759 // here are the old stores to be captured:
3760 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3761 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3762 //
3763 // Here is the changed code; note the extra edges on init:
3764 //   alloc = (Allocate ...)
3765 //   rawoop = alloc.RawAddress
3766 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3767 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3768 //   init = (Initialize alloc.Control alloc.Memory rawoop
3769 //                      rawstore1 rawstore2)
3770 //
3771 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3772                                     PhaseTransform* phase, bool can_reshape) {
3773   assert(stores_are_sane(phase), "");
3774 
3775   if (start < 0)  return NULL;
3776   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3777 
3778   Compile* C = phase->C;
3779   int size_in_bytes = st->memory_size();
3780   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3781   if (i == 0)  return NULL;     // bail out
3782   Node* prev_mem = NULL;        // raw memory for the captured store
3783   if (i > 0) {
3784     prev_mem = in(i);           // there is a pre-existing store under this one
3785     set_req(i, C->top());       // temporarily disconnect it
3786     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3787   } else {
3788     i = -i;                     // no pre-existing store
3789     prev_mem = zero_memory();   // a slice of the newly allocated object
3790     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3791       set_req(--i, C->top());   // reuse this edge; it has been folded away
3792     else
3793       ins_req(i, C->top());     // build a new edge
3794   }
3795   Node* new_st = st->clone();
3796   new_st->set_req(MemNode::Control, in(Control));
3797   new_st->set_req(MemNode::Memory,  prev_mem);
3798   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3799   new_st = phase->transform(new_st);
3800 
3801   // At this point, new_st might have swallowed a pre-existing store
3802   // at the same offset, or perhaps new_st might have disappeared,
3803   // if it redundantly stored the same value (or zero to fresh memory).
3804 
3805   // In any case, wire it in:
3806   phase->igvn_rehash_node_delayed(this);
3807   set_req(i, new_st);
3808 
3809   // The caller may now kill the old guy.
3810   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3811   assert(check_st == new_st || check_st == NULL, "must be findable");
3812   assert(!is_complete(), "");
3813   return new_st;
3814 }
3815 
3816 static bool store_constant(jlong* tiles, int num_tiles,
3817                            intptr_t st_off, int st_size,
3818                            jlong con) {
3819   if ((st_off & (st_size-1)) != 0)
3820     return false;               // strange store offset (assume size==2**N)
3821   address addr = (address)tiles + st_off;
3822   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3823   switch (st_size) {
3824   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3825   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3826   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3827   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3828   default: return false;        // strange store size (detect size!=2**N here)
3829   }
3830   return true;                  // return success to caller
3831 }
3832 
3833 // Coalesce subword constants into int constants and possibly
3834 // into long constants.  The goal, if the CPU permits,
3835 // is to initialize the object with a small number of 64-bit tiles.
3836 // Also, convert floating-point constants to bit patterns.
3837 // Non-constants are not relevant to this pass.
3838 //
3839 // In terms of the running example on InitializeNode::InitializeNode
3840 // and InitializeNode::capture_store, here is the transformation
3841 // of rawstore1 and rawstore2 into rawstore12:
3842 //   alloc = (Allocate ...)
3843 //   rawoop = alloc.RawAddress
3844 //   tile12 = 0x00010002
3845 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3846 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3847 //
3848 void
3849 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3850                                         Node* size_in_bytes,
3851                                         PhaseGVN* phase) {
3852   Compile* C = phase->C;
3853 
3854   assert(stores_are_sane(phase), "");
3855   // Note:  After this pass, they are not completely sane,
3856   // since there may be some overlaps.
3857 
3858   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3859 
3860   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3861   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3862   size_limit = MIN2(size_limit, ti_limit);
3863   size_limit = align_up(size_limit, BytesPerLong);
3864   int num_tiles = size_limit / BytesPerLong;
3865 
3866   // allocate space for the tile map:
3867   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3868   jlong  tiles_buf[small_len];
3869   Node*  nodes_buf[small_len];
3870   jlong  inits_buf[small_len];
3871   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3872                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3873   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3874                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3875   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3876                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3877   // tiles: exact bitwise model of all primitive constants
3878   // nodes: last constant-storing node subsumed into the tiles model
3879   // inits: which bytes (in each tile) are touched by any initializations
3880 
3881   //// Pass A: Fill in the tile model with any relevant stores.
3882 
3883   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3884   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3885   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3886   Node* zmem = zero_memory(); // initially zero memory state
3887   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3888     Node* st = in(i);
3889     intptr_t st_off = get_store_offset(st, phase);
3890 
3891     // Figure out the store's offset and constant value:
3892     if (st_off < header_size)             continue; //skip (ignore header)
3893     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3894     int st_size = st->as_Store()->memory_size();
3895     if (st_off + st_size > size_limit)    break;
3896 
3897     // Record which bytes are touched, whether by constant or not.
3898     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3899       continue;                 // skip (strange store size)
3900 
3901     const Type* val = phase->type(st->in(MemNode::ValueIn));
3902     if (!val->singleton())                continue; //skip (non-con store)
3903     BasicType type = val->basic_type();
3904 
3905     jlong con = 0;
3906     switch (type) {
3907     case T_INT:    con = val->is_int()->get_con();  break;
3908     case T_LONG:   con = val->is_long()->get_con(); break;
3909     case T_FLOAT:  con = jint_cast(val->getf());    break;
3910     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3911     default:                              continue; //skip (odd store type)
3912     }
3913 
3914     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3915         st->Opcode() == Op_StoreL) {
3916       continue;                 // This StoreL is already optimal.
3917     }
3918 
3919     // Store down the constant.
3920     store_constant(tiles, num_tiles, st_off, st_size, con);
3921 
3922     intptr_t j = st_off >> LogBytesPerLong;
3923 
3924     if (type == T_INT && st_size == BytesPerInt
3925         && (st_off & BytesPerInt) == BytesPerInt) {
3926       jlong lcon = tiles[j];
3927       if (!Matcher::isSimpleConstant64(lcon) &&
3928           st->Opcode() == Op_StoreI) {
3929         // This StoreI is already optimal by itself.
3930         jint* intcon = (jint*) &tiles[j];
3931         intcon[1] = 0;  // undo the store_constant()
3932 
3933         // If the previous store is also optimal by itself, back up and
3934         // undo the action of the previous loop iteration... if we can.
3935         // But if we can't, just let the previous half take care of itself.
3936         st = nodes[j];
3937         st_off -= BytesPerInt;
3938         con = intcon[0];
3939         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3940           assert(st_off >= header_size, "still ignoring header");
3941           assert(get_store_offset(st, phase) == st_off, "must be");
3942           assert(in(i-1) == zmem, "must be");
3943           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3944           assert(con == tcon->is_int()->get_con(), "must be");
3945           // Undo the effects of the previous loop trip, which swallowed st:
3946           intcon[0] = 0;        // undo store_constant()
3947           set_req(i-1, st);     // undo set_req(i, zmem)
3948           nodes[j] = NULL;      // undo nodes[j] = st
3949           --old_subword;        // undo ++old_subword
3950         }
3951         continue;               // This StoreI is already optimal.
3952       }
3953     }
3954 
3955     // This store is not needed.
3956     set_req(i, zmem);
3957     nodes[j] = st;              // record for the moment
3958     if (st_size < BytesPerLong) // something has changed
3959           ++old_subword;        // includes int/float, but who's counting...
3960     else  ++old_long;
3961   }
3962 
3963   if ((old_subword + old_long) == 0)
3964     return;                     // nothing more to do
3965 
3966   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3967   // Be sure to insert them before overlapping non-constant stores.
3968   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3969   for (int j = 0; j < num_tiles; j++) {
3970     jlong con  = tiles[j];
3971     jlong init = inits[j];
3972     if (con == 0)  continue;
3973     jint con0,  con1;           // split the constant, address-wise
3974     jint init0, init1;          // split the init map, address-wise
3975     { union { jlong con; jint intcon[2]; } u;
3976       u.con = con;
3977       con0  = u.intcon[0];
3978       con1  = u.intcon[1];
3979       u.con = init;
3980       init0 = u.intcon[0];
3981       init1 = u.intcon[1];
3982     }
3983 
3984     Node* old = nodes[j];
3985     assert(old != NULL, "need the prior store");
3986     intptr_t offset = (j * BytesPerLong);
3987 
3988     bool split = !Matcher::isSimpleConstant64(con);
3989 
3990     if (offset < header_size) {
3991       assert(offset + BytesPerInt >= header_size, "second int counts");
3992       assert(*(jint*)&tiles[j] == 0, "junk in header");
3993       split = true;             // only the second word counts
3994       // Example:  int a[] = { 42 ... }
3995     } else if (con0 == 0 && init0 == -1) {
3996       split = true;             // first word is covered by full inits
3997       // Example:  int a[] = { ... foo(), 42 ... }
3998     } else if (con1 == 0 && init1 == -1) {
3999       split = true;             // second word is covered by full inits
4000       // Example:  int a[] = { ... 42, foo() ... }
4001     }
4002 
4003     // Here's a case where init0 is neither 0 nor -1:
4004     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4005     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4006     // In this case the tile is not split; it is (jlong)42.
4007     // The big tile is stored down, and then the foo() value is inserted.
4008     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4009 
4010     Node* ctl = old->in(MemNode::Control);
4011     Node* adr = make_raw_address(offset, phase);
4012     const TypePtr* atp = TypeRawPtr::BOTTOM;
4013 
4014     // One or two coalesced stores to plop down.
4015     Node*    st[2];
4016     intptr_t off[2];
4017     int  nst = 0;
4018     if (!split) {
4019       ++new_long;
4020       off[nst] = offset;
4021       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4022                                   phase->longcon(con), T_LONG, MemNode::unordered);
4023     } else {
4024       // Omit either if it is a zero.
4025       if (con0 != 0) {
4026         ++new_int;
4027         off[nst]  = offset;
4028         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4029                                     phase->intcon(con0), T_INT, MemNode::unordered);
4030       }
4031       if (con1 != 0) {
4032         ++new_int;
4033         offset += BytesPerInt;
4034         adr = make_raw_address(offset, phase);
4035         off[nst]  = offset;
4036         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4037                                     phase->intcon(con1), T_INT, MemNode::unordered);
4038       }
4039     }
4040 
4041     // Insert second store first, then the first before the second.
4042     // Insert each one just before any overlapping non-constant stores.
4043     while (nst > 0) {
4044       Node* st1 = st[--nst];
4045       C->copy_node_notes_to(st1, old);
4046       st1 = phase->transform(st1);
4047       offset = off[nst];
4048       assert(offset >= header_size, "do not smash header");
4049       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4050       guarantee(ins_idx != 0, "must re-insert constant store");
4051       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4052       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4053         set_req(--ins_idx, st1);
4054       else
4055         ins_req(ins_idx, st1);
4056     }
4057   }
4058 
4059   if (PrintCompilation && WizardMode)
4060     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4061                   old_subword, old_long, new_int, new_long);
4062   if (C->log() != NULL)
4063     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4064                    old_subword, old_long, new_int, new_long);
4065 
4066   // Clean up any remaining occurrences of zmem:
4067   remove_extra_zeroes();
4068 }
4069 
4070 // Explore forward from in(start) to find the first fully initialized
4071 // word, and return its offset.  Skip groups of subword stores which
4072 // together initialize full words.  If in(start) is itself part of a
4073 // fully initialized word, return the offset of in(start).  If there
4074 // are no following full-word stores, or if something is fishy, return
4075 // a negative value.
4076 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4077   int       int_map = 0;
4078   intptr_t  int_map_off = 0;
4079   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4080 
4081   for (uint i = start, limit = req(); i < limit; i++) {
4082     Node* st = in(i);
4083 
4084     intptr_t st_off = get_store_offset(st, phase);
4085     if (st_off < 0)  break;  // return conservative answer
4086 
4087     int st_size = st->as_Store()->memory_size();
4088     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4089       return st_off;            // we found a complete word init
4090     }
4091 
4092     // update the map:
4093 
4094     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4095     if (this_int_off != int_map_off) {
4096       // reset the map:
4097       int_map = 0;
4098       int_map_off = this_int_off;
4099     }
4100 
4101     int subword_off = st_off - this_int_off;
4102     int_map |= right_n_bits(st_size) << subword_off;
4103     if ((int_map & FULL_MAP) == FULL_MAP) {
4104       return this_int_off;      // we found a complete word init
4105     }
4106 
4107     // Did this store hit or cross the word boundary?
4108     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4109     if (next_int_off == this_int_off + BytesPerInt) {
4110       // We passed the current int, without fully initializing it.
4111       int_map_off = next_int_off;
4112       int_map >>= BytesPerInt;
4113     } else if (next_int_off > this_int_off + BytesPerInt) {
4114       // We passed the current and next int.
4115       return this_int_off + BytesPerInt;
4116     }
4117   }
4118 
4119   return -1;
4120 }
4121 
4122 
4123 // Called when the associated AllocateNode is expanded into CFG.
4124 // At this point, we may perform additional optimizations.
4125 // Linearize the stores by ascending offset, to make memory
4126 // activity as coherent as possible.
4127 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4128                                       intptr_t header_size,
4129                                       Node* size_in_bytes,
4130                                       PhaseGVN* phase) {
4131   assert(!is_complete(), "not already complete");
4132   assert(stores_are_sane(phase), "");
4133   assert(allocation() != NULL, "must be present");
4134 
4135   remove_extra_zeroes();
4136 
4137   if (ReduceFieldZeroing || ReduceBulkZeroing)
4138     // reduce instruction count for common initialization patterns
4139     coalesce_subword_stores(header_size, size_in_bytes, phase);
4140 
4141   Node* zmem = zero_memory();   // initially zero memory state
4142   Node* inits = zmem;           // accumulating a linearized chain of inits
4143   #ifdef ASSERT
4144   intptr_t first_offset = allocation()->minimum_header_size();
4145   intptr_t last_init_off = first_offset;  // previous init offset
4146   intptr_t last_init_end = first_offset;  // previous init offset+size
4147   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4148   #endif
4149   intptr_t zeroes_done = header_size;
4150 
4151   bool do_zeroing = true;       // we might give up if inits are very sparse
4152   int  big_init_gaps = 0;       // how many large gaps have we seen?
4153 
4154   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4155   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4156 
4157   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4158     Node* st = in(i);
4159     intptr_t st_off = get_store_offset(st, phase);
4160     if (st_off < 0)
4161       break;                    // unknown junk in the inits
4162     if (st->in(MemNode::Memory) != zmem)
4163       break;                    // complicated store chains somehow in list
4164 
4165     int st_size = st->as_Store()->memory_size();
4166     intptr_t next_init_off = st_off + st_size;
4167 
4168     if (do_zeroing && zeroes_done < next_init_off) {
4169       // See if this store needs a zero before it or under it.
4170       intptr_t zeroes_needed = st_off;
4171 
4172       if (st_size < BytesPerInt) {
4173         // Look for subword stores which only partially initialize words.
4174         // If we find some, we must lay down some word-level zeroes first,
4175         // underneath the subword stores.
4176         //
4177         // Examples:
4178         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4179         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4180         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4181         //
4182         // Note:  coalesce_subword_stores may have already done this,
4183         // if it was prompted by constant non-zero subword initializers.
4184         // But this case can still arise with non-constant stores.
4185 
4186         intptr_t next_full_store = find_next_fullword_store(i, phase);
4187 
4188         // In the examples above:
4189         //   in(i)          p   q   r   s     x   y     z
4190         //   st_off        12  13  14  15    12  13    14
4191         //   st_size        1   1   1   1     1   1     1
4192         //   next_full_s.  12  16  16  16    16  16    16
4193         //   z's_done      12  16  16  16    12  16    12
4194         //   z's_needed    12  16  16  16    16  16    16
4195         //   zsize          0   0   0   0     4   0     4
4196         if (next_full_store < 0) {
4197           // Conservative tack:  Zero to end of current word.
4198           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4199         } else {
4200           // Zero to beginning of next fully initialized word.
4201           // Or, don't zero at all, if we are already in that word.
4202           assert(next_full_store >= zeroes_needed, "must go forward");
4203           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4204           zeroes_needed = next_full_store;
4205         }
4206       }
4207 
4208       if (zeroes_needed > zeroes_done) {
4209         intptr_t zsize = zeroes_needed - zeroes_done;
4210         // Do some incremental zeroing on rawmem, in parallel with inits.
4211         zeroes_done = align_down(zeroes_done, BytesPerInt);
4212         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4213                                               zeroes_done, zeroes_needed,
4214                                               phase);
4215         zeroes_done = zeroes_needed;
4216         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4217           do_zeroing = false;   // leave the hole, next time
4218       }
4219     }
4220 
4221     // Collect the store and move on:
4222     st->set_req(MemNode::Memory, inits);
4223     inits = st;                 // put it on the linearized chain
4224     set_req(i, zmem);           // unhook from previous position
4225 
4226     if (zeroes_done == st_off)
4227       zeroes_done = next_init_off;
4228 
4229     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4230 
4231     #ifdef ASSERT
4232     // Various order invariants.  Weaker than stores_are_sane because
4233     // a large constant tile can be filled in by smaller non-constant stores.
4234     assert(st_off >= last_init_off, "inits do not reverse");
4235     last_init_off = st_off;
4236     const Type* val = NULL;
4237     if (st_size >= BytesPerInt &&
4238         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4239         (int)val->basic_type() < (int)T_OBJECT) {
4240       assert(st_off >= last_tile_end, "tiles do not overlap");
4241       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4242       last_tile_end = MAX2(last_tile_end, next_init_off);
4243     } else {
4244       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4245       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4246       assert(st_off      >= last_init_end, "inits do not overlap");
4247       last_init_end = next_init_off;  // it's a non-tile
4248     }
4249     #endif //ASSERT
4250   }
4251 
4252   remove_extra_zeroes();        // clear out all the zmems left over
4253   add_req(inits);
4254 
4255   if (!(UseTLAB && ZeroTLAB)) {
4256     // If anything remains to be zeroed, zero it all now.
4257     zeroes_done = align_down(zeroes_done, BytesPerInt);
4258     // if it is the last unused 4 bytes of an instance, forget about it
4259     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4260     if (zeroes_done + BytesPerLong >= size_limit) {
4261       AllocateNode* alloc = allocation();
4262       assert(alloc != NULL, "must be present");
4263       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4264         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4265         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4266         if (zeroes_done == k->layout_helper())
4267           zeroes_done = size_limit;
4268       }
4269     }
4270     if (zeroes_done < size_limit) {
4271       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4272                                             zeroes_done, size_in_bytes, phase);
4273     }
4274   }
4275 
4276   set_complete(phase);
4277   return rawmem;
4278 }
4279 
4280 
4281 #ifdef ASSERT
4282 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4283   if (is_complete())
4284     return true;                // stores could be anything at this point
4285   assert(allocation() != NULL, "must be present");
4286   intptr_t last_off = allocation()->minimum_header_size();
4287   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4288     Node* st = in(i);
4289     intptr_t st_off = get_store_offset(st, phase);
4290     if (st_off < 0)  continue;  // ignore dead garbage
4291     if (last_off > st_off) {
4292       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4293       this->dump(2);
4294       assert(false, "ascending store offsets");
4295       return false;
4296     }
4297     last_off = st_off + st->as_Store()->memory_size();
4298   }
4299   return true;
4300 }
4301 #endif //ASSERT
4302 
4303 
4304 
4305 
4306 //============================MergeMemNode=====================================
4307 //
4308 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4309 // contributing store or call operations.  Each contributor provides the memory
4310 // state for a particular "alias type" (see Compile::alias_type).  For example,
4311 // if a MergeMem has an input X for alias category #6, then any memory reference
4312 // to alias category #6 may use X as its memory state input, as an exact equivalent
4313 // to using the MergeMem as a whole.
4314 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4315 //
4316 // (Here, the <N> notation gives the index of the relevant adr_type.)
4317 //
4318 // In one special case (and more cases in the future), alias categories overlap.
4319 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4320 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4321 // it is exactly equivalent to that state W:
4322 //   MergeMem(<Bot>: W) <==> W
4323 //
4324 // Usually, the merge has more than one input.  In that case, where inputs
4325 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4326 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4327 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4328 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4329 //
4330 // A merge can take a "wide" memory state as one of its narrow inputs.
4331 // This simply means that the merge observes out only the relevant parts of
4332 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4333 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4334 //
4335 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4336 // and that memory slices "leak through":
4337 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4338 //
4339 // But, in such a cascade, repeated memory slices can "block the leak":
4340 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4341 //
4342 // In the last example, Y is not part of the combined memory state of the
4343 // outermost MergeMem.  The system must, of course, prevent unschedulable
4344 // memory states from arising, so you can be sure that the state Y is somehow
4345 // a precursor to state Y'.
4346 //
4347 //
4348 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4349 // of each MergeMemNode array are exactly the numerical alias indexes, including
4350 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4351 // Compile::alias_type (and kin) produce and manage these indexes.
4352 //
4353 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4354 // (Note that this provides quick access to the top node inside MergeMem methods,
4355 // without the need to reach out via TLS to Compile::current.)
4356 //
4357 // As a consequence of what was just described, a MergeMem that represents a full
4358 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4359 // containing all alias categories.
4360 //
4361 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4362 //
4363 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4364 // a memory state for the alias type <N>, or else the top node, meaning that
4365 // there is no particular input for that alias type.  Note that the length of
4366 // a MergeMem is variable, and may be extended at any time to accommodate new
4367 // memory states at larger alias indexes.  When merges grow, they are of course
4368 // filled with "top" in the unused in() positions.
4369 //
4370 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4371 // (Top was chosen because it works smoothly with passes like GCM.)
4372 //
4373 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4374 // the type of random VM bits like TLS references.)  Since it is always the
4375 // first non-Bot memory slice, some low-level loops use it to initialize an
4376 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4377 //
4378 //
4379 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4380 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4381 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4382 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4383 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4384 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4385 //
4386 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4387 // really that different from the other memory inputs.  An abbreviation called
4388 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4389 //
4390 //
4391 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4392 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4393 // that "emerges though" the base memory will be marked as excluding the alias types
4394 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4395 //
4396 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4397 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4398 //
4399 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4400 // (It is currently unimplemented.)  As you can see, the resulting merge is
4401 // actually a disjoint union of memory states, rather than an overlay.
4402 //
4403 
4404 //------------------------------MergeMemNode-----------------------------------
4405 Node* MergeMemNode::make_empty_memory() {
4406   Node* empty_memory = (Node*) Compile::current()->top();
4407   assert(empty_memory->is_top(), "correct sentinel identity");
4408   return empty_memory;
4409 }
4410 
4411 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4412   init_class_id(Class_MergeMem);
4413   // all inputs are nullified in Node::Node(int)
4414   // set_input(0, NULL);  // no control input
4415 
4416   // Initialize the edges uniformly to top, for starters.
4417   Node* empty_mem = make_empty_memory();
4418   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4419     init_req(i,empty_mem);
4420   }
4421   assert(empty_memory() == empty_mem, "");
4422 
4423   if( new_base != NULL && new_base->is_MergeMem() ) {
4424     MergeMemNode* mdef = new_base->as_MergeMem();
4425     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4426     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4427       mms.set_memory(mms.memory2());
4428     }
4429     assert(base_memory() == mdef->base_memory(), "");
4430   } else {
4431     set_base_memory(new_base);
4432   }
4433 }
4434 
4435 // Make a new, untransformed MergeMem with the same base as 'mem'.
4436 // If mem is itself a MergeMem, populate the result with the same edges.
4437 MergeMemNode* MergeMemNode::make(Node* mem) {
4438   return new MergeMemNode(mem);
4439 }
4440 
4441 //------------------------------cmp--------------------------------------------
4442 uint MergeMemNode::hash() const { return NO_HASH; }
4443 bool MergeMemNode::cmp( const Node &n ) const {
4444   return (&n == this);          // Always fail except on self
4445 }
4446 
4447 //------------------------------Identity---------------------------------------
4448 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4449   // Identity if this merge point does not record any interesting memory
4450   // disambiguations.
4451   Node* base_mem = base_memory();
4452   Node* empty_mem = empty_memory();
4453   if (base_mem != empty_mem) {  // Memory path is not dead?
4454     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4455       Node* mem = in(i);
4456       if (mem != empty_mem && mem != base_mem) {
4457         return this;            // Many memory splits; no change
4458       }
4459     }
4460   }
4461   return base_mem;              // No memory splits; ID on the one true input
4462 }
4463 
4464 //------------------------------Ideal------------------------------------------
4465 // This method is invoked recursively on chains of MergeMem nodes
4466 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4467   // Remove chain'd MergeMems
4468   //
4469   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4470   // relative to the "in(Bot)".  Since we are patching both at the same time,
4471   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4472   // but rewrite each "in(i)" relative to the new "in(Bot)".
4473   Node *progress = NULL;
4474 
4475 
4476   Node* old_base = base_memory();
4477   Node* empty_mem = empty_memory();
4478   if (old_base == empty_mem)
4479     return NULL; // Dead memory path.
4480 
4481   MergeMemNode* old_mbase;
4482   if (old_base != NULL && old_base->is_MergeMem())
4483     old_mbase = old_base->as_MergeMem();
4484   else
4485     old_mbase = NULL;
4486   Node* new_base = old_base;
4487 
4488   // simplify stacked MergeMems in base memory
4489   if (old_mbase)  new_base = old_mbase->base_memory();
4490 
4491   // the base memory might contribute new slices beyond my req()
4492   if (old_mbase)  grow_to_match(old_mbase);
4493 
4494   // Look carefully at the base node if it is a phi.
4495   PhiNode* phi_base;
4496   if (new_base != NULL && new_base->is_Phi())
4497     phi_base = new_base->as_Phi();
4498   else
4499     phi_base = NULL;
4500 
4501   Node*    phi_reg = NULL;
4502   uint     phi_len = (uint)-1;
4503   if (phi_base != NULL && !phi_base->is_copy()) {
4504     // do not examine phi if degraded to a copy
4505     phi_reg = phi_base->region();
4506     phi_len = phi_base->req();
4507     // see if the phi is unfinished
4508     for (uint i = 1; i < phi_len; i++) {
4509       if (phi_base->in(i) == NULL) {
4510         // incomplete phi; do not look at it yet!
4511         phi_reg = NULL;
4512         phi_len = (uint)-1;
4513         break;
4514       }
4515     }
4516   }
4517 
4518   // Note:  We do not call verify_sparse on entry, because inputs
4519   // can normalize to the base_memory via subsume_node or similar
4520   // mechanisms.  This method repairs that damage.
4521 
4522   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4523 
4524   // Look at each slice.
4525   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4526     Node* old_in = in(i);
4527     // calculate the old memory value
4528     Node* old_mem = old_in;
4529     if (old_mem == empty_mem)  old_mem = old_base;
4530     assert(old_mem == memory_at(i), "");
4531 
4532     // maybe update (reslice) the old memory value
4533 
4534     // simplify stacked MergeMems
4535     Node* new_mem = old_mem;
4536     MergeMemNode* old_mmem;
4537     if (old_mem != NULL && old_mem->is_MergeMem())
4538       old_mmem = old_mem->as_MergeMem();
4539     else
4540       old_mmem = NULL;
4541     if (old_mmem == this) {
4542       // This can happen if loops break up and safepoints disappear.
4543       // A merge of BotPtr (default) with a RawPtr memory derived from a
4544       // safepoint can be rewritten to a merge of the same BotPtr with
4545       // the BotPtr phi coming into the loop.  If that phi disappears
4546       // also, we can end up with a self-loop of the mergemem.
4547       // In general, if loops degenerate and memory effects disappear,
4548       // a mergemem can be left looking at itself.  This simply means
4549       // that the mergemem's default should be used, since there is
4550       // no longer any apparent effect on this slice.
4551       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4552       //       from start.  Update the input to TOP.
4553       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4554     }
4555     else if (old_mmem != NULL) {
4556       new_mem = old_mmem->memory_at(i);
4557     }
4558     // else preceding memory was not a MergeMem
4559 
4560     // replace equivalent phis (unfortunately, they do not GVN together)
4561     if (new_mem != NULL && new_mem != new_base &&
4562         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4563       if (new_mem->is_Phi()) {
4564         PhiNode* phi_mem = new_mem->as_Phi();
4565         for (uint i = 1; i < phi_len; i++) {
4566           if (phi_base->in(i) != phi_mem->in(i)) {
4567             phi_mem = NULL;
4568             break;
4569           }
4570         }
4571         if (phi_mem != NULL) {
4572           // equivalent phi nodes; revert to the def
4573           new_mem = new_base;
4574         }
4575       }
4576     }
4577 
4578     // maybe store down a new value
4579     Node* new_in = new_mem;
4580     if (new_in == new_base)  new_in = empty_mem;
4581 
4582     if (new_in != old_in) {
4583       // Warning:  Do not combine this "if" with the previous "if"
4584       // A memory slice might have be be rewritten even if it is semantically
4585       // unchanged, if the base_memory value has changed.
4586       set_req(i, new_in);
4587       progress = this;          // Report progress
4588     }
4589   }
4590 
4591   if (new_base != old_base) {
4592     set_req(Compile::AliasIdxBot, new_base);
4593     // Don't use set_base_memory(new_base), because we need to update du.
4594     assert(base_memory() == new_base, "");
4595     progress = this;
4596   }
4597 
4598   if( base_memory() == this ) {
4599     // a self cycle indicates this memory path is dead
4600     set_req(Compile::AliasIdxBot, empty_mem);
4601   }
4602 
4603   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4604   // Recursion must occur after the self cycle check above
4605   if( base_memory()->is_MergeMem() ) {
4606     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4607     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4608     if( m != NULL &&
4609         (m->is_top() ||
4610          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4611       // propagate rollup of dead cycle to self
4612       set_req(Compile::AliasIdxBot, empty_mem);
4613     }
4614   }
4615 
4616   if( base_memory() == empty_mem ) {
4617     progress = this;
4618     // Cut inputs during Parse phase only.
4619     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4620     if( !can_reshape ) {
4621       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4622         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4623       }
4624     }
4625   }
4626 
4627   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4628     // Check if PhiNode::Ideal's "Split phis through memory merges"
4629     // transform should be attempted. Look for this->phi->this cycle.
4630     uint merge_width = req();
4631     if (merge_width > Compile::AliasIdxRaw) {
4632       PhiNode* phi = base_memory()->as_Phi();
4633       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4634         if (phi->in(i) == this) {
4635           phase->is_IterGVN()->_worklist.push(phi);
4636           break;
4637         }
4638       }
4639     }
4640   }
4641 
4642   assert(progress || verify_sparse(), "please, no dups of base");
4643   return progress;
4644 }
4645 
4646 //-------------------------set_base_memory-------------------------------------
4647 void MergeMemNode::set_base_memory(Node *new_base) {
4648   Node* empty_mem = empty_memory();
4649   set_req(Compile::AliasIdxBot, new_base);
4650   assert(memory_at(req()) == new_base, "must set default memory");
4651   // Clear out other occurrences of new_base:
4652   if (new_base != empty_mem) {
4653     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4654       if (in(i) == new_base)  set_req(i, empty_mem);
4655     }
4656   }
4657 }
4658 
4659 //------------------------------out_RegMask------------------------------------
4660 const RegMask &MergeMemNode::out_RegMask() const {
4661   return RegMask::Empty;
4662 }
4663 
4664 //------------------------------dump_spec--------------------------------------
4665 #ifndef PRODUCT
4666 void MergeMemNode::dump_spec(outputStream *st) const {
4667   st->print(" {");
4668   Node* base_mem = base_memory();
4669   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4670     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4671     if (mem == base_mem) { st->print(" -"); continue; }
4672     st->print( " N%d:", mem->_idx );
4673     Compile::current()->get_adr_type(i)->dump_on(st);
4674   }
4675   st->print(" }");
4676 }
4677 #endif // !PRODUCT
4678 
4679 
4680 #ifdef ASSERT
4681 static bool might_be_same(Node* a, Node* b) {
4682   if (a == b)  return true;
4683   if (!(a->is_Phi() || b->is_Phi()))  return false;
4684   // phis shift around during optimization
4685   return true;  // pretty stupid...
4686 }
4687 
4688 // verify a narrow slice (either incoming or outgoing)
4689 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4690   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4691   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4692   if (Node::in_dump())               return;  // muzzle asserts when printing
4693   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4694   assert(n != NULL, "");
4695   // Elide intervening MergeMem's
4696   while (n->is_MergeMem()) {
4697     n = n->as_MergeMem()->memory_at(alias_idx);
4698   }
4699   Compile* C = Compile::current();
4700   const TypePtr* n_adr_type = n->adr_type();
4701   if (n == m->empty_memory()) {
4702     // Implicit copy of base_memory()
4703   } else if (n_adr_type != TypePtr::BOTTOM) {
4704     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4705     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4706   } else {
4707     // A few places like make_runtime_call "know" that VM calls are narrow,
4708     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4709     bool expected_wide_mem = false;
4710     if (n == m->base_memory()) {
4711       expected_wide_mem = true;
4712     } else if (alias_idx == Compile::AliasIdxRaw ||
4713                n == m->memory_at(Compile::AliasIdxRaw)) {
4714       expected_wide_mem = true;
4715     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4716       // memory can "leak through" calls on channels that
4717       // are write-once.  Allow this also.
4718       expected_wide_mem = true;
4719     }
4720     assert(expected_wide_mem, "expected narrow slice replacement");
4721   }
4722 }
4723 #else // !ASSERT
4724 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4725 #endif
4726 
4727 
4728 //-----------------------------memory_at---------------------------------------
4729 Node* MergeMemNode::memory_at(uint alias_idx) const {
4730   assert(alias_idx >= Compile::AliasIdxRaw ||
4731          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4732          "must avoid base_memory and AliasIdxTop");
4733 
4734   // Otherwise, it is a narrow slice.
4735   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4736   Compile *C = Compile::current();
4737   if (is_empty_memory(n)) {
4738     // the array is sparse; empty slots are the "top" node
4739     n = base_memory();
4740     assert(Node::in_dump()
4741            || n == NULL || n->bottom_type() == Type::TOP
4742            || n->adr_type() == NULL // address is TOP
4743            || n->adr_type() == TypePtr::BOTTOM
4744            || n->adr_type() == TypeRawPtr::BOTTOM
4745            || Compile::current()->AliasLevel() == 0,
4746            "must be a wide memory");
4747     // AliasLevel == 0 if we are organizing the memory states manually.
4748     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4749   } else {
4750     // make sure the stored slice is sane
4751     #ifdef ASSERT
4752     if (VMError::is_error_reported() || Node::in_dump()) {
4753     } else if (might_be_same(n, base_memory())) {
4754       // Give it a pass:  It is a mostly harmless repetition of the base.
4755       // This can arise normally from node subsumption during optimization.
4756     } else {
4757       verify_memory_slice(this, alias_idx, n);
4758     }
4759     #endif
4760   }
4761   return n;
4762 }
4763 
4764 //---------------------------set_memory_at-------------------------------------
4765 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4766   verify_memory_slice(this, alias_idx, n);
4767   Node* empty_mem = empty_memory();
4768   if (n == base_memory())  n = empty_mem;  // collapse default
4769   uint need_req = alias_idx+1;
4770   if (req() < need_req) {
4771     if (n == empty_mem)  return;  // already the default, so do not grow me
4772     // grow the sparse array
4773     do {
4774       add_req(empty_mem);
4775     } while (req() < need_req);
4776   }
4777   set_req( alias_idx, n );
4778 }
4779 
4780 
4781 
4782 //--------------------------iteration_setup------------------------------------
4783 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4784   if (other != NULL) {
4785     grow_to_match(other);
4786     // invariant:  the finite support of mm2 is within mm->req()
4787     #ifdef ASSERT
4788     for (uint i = req(); i < other->req(); i++) {
4789       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4790     }
4791     #endif
4792   }
4793   // Replace spurious copies of base_memory by top.
4794   Node* base_mem = base_memory();
4795   if (base_mem != NULL && !base_mem->is_top()) {
4796     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4797       if (in(i) == base_mem)
4798         set_req(i, empty_memory());
4799     }
4800   }
4801 }
4802 
4803 //---------------------------grow_to_match-------------------------------------
4804 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4805   Node* empty_mem = empty_memory();
4806   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4807   // look for the finite support of the other memory
4808   for (uint i = other->req(); --i >= req(); ) {
4809     if (other->in(i) != empty_mem) {
4810       uint new_len = i+1;
4811       while (req() < new_len)  add_req(empty_mem);
4812       break;
4813     }
4814   }
4815 }
4816 
4817 //---------------------------verify_sparse-------------------------------------
4818 #ifndef PRODUCT
4819 bool MergeMemNode::verify_sparse() const {
4820   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4821   Node* base_mem = base_memory();
4822   // The following can happen in degenerate cases, since empty==top.
4823   if (is_empty_memory(base_mem))  return true;
4824   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4825     assert(in(i) != NULL, "sane slice");
4826     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4827   }
4828   return true;
4829 }
4830 
4831 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4832   Node* n;
4833   n = mm->in(idx);
4834   if (mem == n)  return true;  // might be empty_memory()
4835   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4836   if (mem == n)  return true;
4837   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4838     if (mem == n)  return true;
4839     if (n == NULL)  break;
4840   }
4841   return false;
4842 }
4843 #endif // !PRODUCT