/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciUtilities.hpp" #include "compiler/compileLog.hpp" #include "ci/ciValueKlass.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/c2/barrierSetC2.hpp" #include "interpreter/interpreter.hpp" #include "memory/resourceArea.hpp" #include "opto/addnode.hpp" #include "opto/castnode.hpp" #include "opto/convertnode.hpp" #include "opto/graphKit.hpp" #include "opto/idealKit.hpp" #include "opto/intrinsicnode.hpp" #include "opto/locknode.hpp" #include "opto/machnode.hpp" #include "opto/narrowptrnode.hpp" #include "opto/opaquenode.hpp" #include "opto/parse.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/valuetypenode.hpp" #include "runtime/deoptimization.hpp" #include "runtime/sharedRuntime.hpp" //----------------------------GraphKit----------------------------------------- // Main utility constructor. GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn) : Phase(Phase::Parser), _env(C->env()), _gvn((gvn != NULL) ? *gvn : *C->initial_gvn()), _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) { assert(gvn == NULL || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled"); _exceptions = jvms->map()->next_exception(); if (_exceptions != NULL) jvms->map()->set_next_exception(NULL); set_jvms(jvms); #ifdef ASSERT if (_gvn.is_IterGVN() != NULL) { assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used"); // Save the initial size of _for_igvn worklist for verification (see ~GraphKit) _worklist_size = _gvn.C->for_igvn()->size(); } #endif } // Private constructor for parser. GraphKit::GraphKit() : Phase(Phase::Parser), _env(C->env()), _gvn(*C->initial_gvn()), _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) { _exceptions = NULL; set_map(NULL); debug_only(_sp = -99); debug_only(set_bci(-99)); } //---------------------------clean_stack--------------------------------------- // Clear away rubbish from the stack area of the JVM state. // This destroys any arguments that may be waiting on the stack. void GraphKit::clean_stack(int from_sp) { SafePointNode* map = this->map(); JVMState* jvms = this->jvms(); int stk_size = jvms->stk_size(); int stkoff = jvms->stkoff(); Node* top = this->top(); for (int i = from_sp; i < stk_size; i++) { if (map->in(stkoff + i) != top) { map->set_req(stkoff + i, top); } } } //--------------------------------sync_jvms----------------------------------- // Make sure our current jvms agrees with our parse state. JVMState* GraphKit::sync_jvms() const { JVMState* jvms = this->jvms(); jvms->set_bci(bci()); // Record the new bci in the JVMState jvms->set_sp(sp()); // Record the new sp in the JVMState assert(jvms_in_sync(), "jvms is now in sync"); return jvms; } //--------------------------------sync_jvms_for_reexecute--------------------- // Make sure our current jvms agrees with our parse state. This version // uses the reexecute_sp for reexecuting bytecodes. JVMState* GraphKit::sync_jvms_for_reexecute() { JVMState* jvms = this->jvms(); jvms->set_bci(bci()); // Record the new bci in the JVMState jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState return jvms; } #ifdef ASSERT bool GraphKit::jvms_in_sync() const { Parse* parse = is_Parse(); if (parse == NULL) { if (bci() != jvms()->bci()) return false; if (sp() != (int)jvms()->sp()) return false; return true; } if (jvms()->method() != parse->method()) return false; if (jvms()->bci() != parse->bci()) return false; int jvms_sp = jvms()->sp(); if (jvms_sp != parse->sp()) return false; int jvms_depth = jvms()->depth(); if (jvms_depth != parse->depth()) return false; return true; } // Local helper checks for special internal merge points // used to accumulate and merge exception states. // They are marked by the region's in(0) edge being the map itself. // Such merge points must never "escape" into the parser at large, // until they have been handed to gvn.transform. static bool is_hidden_merge(Node* reg) { if (reg == NULL) return false; if (reg->is_Phi()) { reg = reg->in(0); if (reg == NULL) return false; } return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root(); } void GraphKit::verify_map() const { if (map() == NULL) return; // null map is OK assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); } void GraphKit::verify_exception_state(SafePointNode* ex_map) { assert(ex_map->next_exception() == NULL, "not already part of a chain"); assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); } #endif //---------------------------stop_and_kill_map--------------------------------- // Set _map to NULL, signalling a stop to further bytecode execution. // First smash the current map's control to a constant, to mark it dead. void GraphKit::stop_and_kill_map() { SafePointNode* dead_map = stop(); if (dead_map != NULL) { dead_map->disconnect_inputs(NULL, C); // Mark the map as killed. assert(dead_map->is_killed(), "must be so marked"); } } //--------------------------------stopped-------------------------------------- // Tell if _map is NULL, or control is top. bool GraphKit::stopped() { if (map() == NULL) return true; else if (control() == top()) return true; else return false; } //-----------------------------has_ex_handler---------------------------------- // Tell if this method or any caller method has exception handlers. bool GraphKit::has_ex_handler() { for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) { if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { return true; } } return false; } //------------------------------save_ex_oop------------------------------------ // Save an exception without blowing stack contents or other JVM state. void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); ex_map->add_req(ex_oop); debug_only(verify_exception_state(ex_map)); } inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); Node* ex_oop = ex_map->in(ex_map->req()-1); if (clear_it) ex_map->del_req(ex_map->req()-1); return ex_oop; } //-----------------------------saved_ex_oop------------------------------------ // Recover a saved exception from its map. Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { return common_saved_ex_oop(ex_map, false); } //--------------------------clear_saved_ex_oop--------------------------------- // Erase a previously saved exception from its map. Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { return common_saved_ex_oop(ex_map, true); } #ifdef ASSERT //---------------------------has_saved_ex_oop---------------------------------- // Erase a previously saved exception from its map. bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { return ex_map->req() == ex_map->jvms()->endoff()+1; } #endif //-------------------------make_exception_state-------------------------------- // Turn the current JVM state into an exception state, appending the ex_oop. SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { sync_jvms(); SafePointNode* ex_map = stop(); // do not manipulate this map any more set_saved_ex_oop(ex_map, ex_oop); return ex_map; } //--------------------------add_exception_state-------------------------------- // Add an exception to my list of exceptions. void GraphKit::add_exception_state(SafePointNode* ex_map) { if (ex_map == NULL || ex_map->control() == top()) { return; } #ifdef ASSERT verify_exception_state(ex_map); if (has_exceptions()) { assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); } #endif // If there is already an exception of exactly this type, merge with it. // In particular, null-checks and other low-level exceptions common up here. Node* ex_oop = saved_ex_oop(ex_map); const Type* ex_type = _gvn.type(ex_oop); if (ex_oop == top()) { // No action needed. return; } assert(ex_type->isa_instptr(), "exception must be an instance"); for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) { const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); // We check sp also because call bytecodes can generate exceptions // both before and after arguments are popped! if (ex_type2 == ex_type && e2->_jvms->sp() == ex_map->_jvms->sp()) { combine_exception_states(ex_map, e2); return; } } // No pre-existing exception of the same type. Chain it on the list. push_exception_state(ex_map); } //-----------------------add_exception_states_from----------------------------- void GraphKit::add_exception_states_from(JVMState* jvms) { SafePointNode* ex_map = jvms->map()->next_exception(); if (ex_map != NULL) { jvms->map()->set_next_exception(NULL); for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) { next_map = ex_map->next_exception(); ex_map->set_next_exception(NULL); add_exception_state(ex_map); } } } //-----------------------transfer_exceptions_into_jvms------------------------- JVMState* GraphKit::transfer_exceptions_into_jvms() { if (map() == NULL) { // We need a JVMS to carry the exceptions, but the map has gone away. // Create a scratch JVMS, cloned from any of the exception states... if (has_exceptions()) { _map = _exceptions; _map = clone_map(); _map->set_next_exception(NULL); clear_saved_ex_oop(_map); debug_only(verify_map()); } else { // ...or created from scratch JVMState* jvms = new (C) JVMState(_method, NULL); jvms->set_bci(_bci); jvms->set_sp(_sp); jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); set_jvms(jvms); for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); set_all_memory(top()); while (map()->req() < jvms->endoff()) map()->add_req(top()); } // (This is a kludge, in case you didn't notice.) set_control(top()); } JVMState* jvms = sync_jvms(); assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); jvms->map()->set_next_exception(_exceptions); _exceptions = NULL; // done with this set of exceptions return jvms; } static inline void add_n_reqs(Node* dstphi, Node* srcphi) { assert(is_hidden_merge(dstphi), "must be a special merge node"); assert(is_hidden_merge(srcphi), "must be a special merge node"); uint limit = srcphi->req(); for (uint i = PhiNode::Input; i < limit; i++) { dstphi->add_req(srcphi->in(i)); } } static inline void add_one_req(Node* dstphi, Node* src) { assert(is_hidden_merge(dstphi), "must be a special merge node"); assert(!is_hidden_merge(src), "must not be a special merge node"); dstphi->add_req(src); } //-----------------------combine_exception_states------------------------------ // This helper function combines exception states by building phis on a // specially marked state-merging region. These regions and phis are // untransformed, and can build up gradually. The region is marked by // having a control input of its exception map, rather than NULL. Such // regions do not appear except in this function, and in use_exception_state. void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { if (failing()) return; // dying anyway... JVMState* ex_jvms = ex_map->_jvms; assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); assert(ex_map->req() == phi_map->req(), "matching maps"); uint tos = ex_jvms->stkoff() + ex_jvms->sp(); Node* hidden_merge_mark = root(); Node* region = phi_map->control(); MergeMemNode* phi_mem = phi_map->merged_memory(); MergeMemNode* ex_mem = ex_map->merged_memory(); if (region->in(0) != hidden_merge_mark) { // The control input is not (yet) a specially-marked region in phi_map. // Make it so, and build some phis. region = new RegionNode(2); _gvn.set_type(region, Type::CONTROL); region->set_req(0, hidden_merge_mark); // marks an internal ex-state region->init_req(1, phi_map->control()); phi_map->set_control(region); Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); record_for_igvn(io_phi); _gvn.set_type(io_phi, Type::ABIO); phi_map->set_i_o(io_phi); for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { Node* m = mms.memory(); Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); record_for_igvn(m_phi); _gvn.set_type(m_phi, Type::MEMORY); mms.set_memory(m_phi); } } // Either or both of phi_map and ex_map might already be converted into phis. Node* ex_control = ex_map->control(); // if there is special marking on ex_map also, we add multiple edges from src bool add_multiple = (ex_control->in(0) == hidden_merge_mark); // how wide was the destination phi_map, originally? uint orig_width = region->req(); if (add_multiple) { add_n_reqs(region, ex_control); add_n_reqs(phi_map->i_o(), ex_map->i_o()); } else { // ex_map has no merges, so we just add single edges everywhere add_one_req(region, ex_control); add_one_req(phi_map->i_o(), ex_map->i_o()); } for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { if (mms.is_empty()) { // get a copy of the base memory, and patch some inputs into it const TypePtr* adr_type = mms.adr_type(C); Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); mms.set_memory(phi); // Prepare to append interesting stuff onto the newly sliced phi: while (phi->req() > orig_width) phi->del_req(phi->req()-1); } // Append stuff from ex_map: if (add_multiple) { add_n_reqs(mms.memory(), mms.memory2()); } else { add_one_req(mms.memory(), mms.memory2()); } } uint limit = ex_map->req(); for (uint i = TypeFunc::Parms; i < limit; i++) { // Skip everything in the JVMS after tos. (The ex_oop follows.) if (i == tos) i = ex_jvms->monoff(); Node* src = ex_map->in(i); Node* dst = phi_map->in(i); if (src != dst) { PhiNode* phi; if (dst->in(0) != region) { dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); record_for_igvn(phi); _gvn.set_type(phi, phi->type()); phi_map->set_req(i, dst); // Prepare to append interesting stuff onto the new phi: while (dst->req() > orig_width) dst->del_req(dst->req()-1); } else { assert(dst->is_Phi(), "nobody else uses a hidden region"); phi = dst->as_Phi(); } if (add_multiple && src->in(0) == ex_control) { // Both are phis. add_n_reqs(dst, src); } else { while (dst->req() < region->req()) add_one_req(dst, src); } const Type* srctype = _gvn.type(src); if (phi->type() != srctype) { const Type* dsttype = phi->type()->meet_speculative(srctype); if (phi->type() != dsttype) { phi->set_type(dsttype); _gvn.set_type(phi, dsttype); } } } } phi_map->merge_replaced_nodes_with(ex_map); } //--------------------------use_exception_state-------------------------------- Node* GraphKit::use_exception_state(SafePointNode* phi_map) { if (failing()) { stop(); return top(); } Node* region = phi_map->control(); Node* hidden_merge_mark = root(); assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); Node* ex_oop = clear_saved_ex_oop(phi_map); if (region->in(0) == hidden_merge_mark) { // Special marking for internal ex-states. Process the phis now. region->set_req(0, region); // now it's an ordinary region set_jvms(phi_map->jvms()); // ...so now we can use it as a map // Note: Setting the jvms also sets the bci and sp. set_control(_gvn.transform(region)); uint tos = jvms()->stkoff() + sp(); for (uint i = 1; i < tos; i++) { Node* x = phi_map->in(i); if (x->in(0) == region) { assert(x->is_Phi(), "expected a special phi"); phi_map->set_req(i, _gvn.transform(x)); } } for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { Node* x = mms.memory(); if (x->in(0) == region) { assert(x->is_Phi(), "nobody else uses a hidden region"); mms.set_memory(_gvn.transform(x)); } } if (ex_oop->in(0) == region) { assert(ex_oop->is_Phi(), "expected a special phi"); ex_oop = _gvn.transform(ex_oop); } } else { set_jvms(phi_map->jvms()); } assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); return ex_oop; } //---------------------------------java_bc------------------------------------- Bytecodes::Code GraphKit::java_bc() const { ciMethod* method = this->method(); int bci = this->bci(); if (method != NULL && bci != InvocationEntryBci) return method->java_code_at_bci(bci); else return Bytecodes::_illegal; } void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, bool must_throw) { // if the exception capability is set, then we will generate code // to check the JavaThread.should_post_on_exceptions flag to see // if we actually need to report exception events (for this // thread). If we don't need to report exception events, we will // take the normal fast path provided by add_exception_events. If // exception event reporting is enabled for this thread, we will // take the uncommon_trap in the BuildCutout below. // first must access the should_post_on_exceptions_flag in this thread's JavaThread Node* jthread = _gvn.transform(new ThreadLocalNode()); Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); // Test the should_post_on_exceptions_flag vs. 0 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); // Branch to slow_path if should_post_on_exceptions_flag was true { BuildCutout unless(this, tst, PROB_MAX); // Do not try anything fancy if we're notifying the VM on every throw. // Cf. case Bytecodes::_athrow in parse2.cpp. uncommon_trap(reason, Deoptimization::Action_none, (ciKlass*)NULL, (char*)NULL, must_throw); } } //------------------------------builtin_throw---------------------------------- void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) { bool must_throw = true; if (env()->jvmti_can_post_on_exceptions()) { // check if we must post exception events, take uncommon trap if so uncommon_trap_if_should_post_on_exceptions(reason, must_throw); // here if should_post_on_exceptions is false // continue on with the normal codegen } // If this particular condition has not yet happened at this // bytecode, then use the uncommon trap mechanism, and allow for // a future recompilation if several traps occur here. // If the throw is hot, try to use a more complicated inline mechanism // which keeps execution inside the compiled code. bool treat_throw_as_hot = false; ciMethodData* md = method()->method_data(); if (ProfileTraps) { if (too_many_traps(reason)) { treat_throw_as_hot = true; } // (If there is no MDO at all, assume it is early in // execution, and that any deopts are part of the // startup transient, and don't need to be remembered.) // Also, if there is a local exception handler, treat all throws // as hot if there has been at least one in this method. if (C->trap_count(reason) != 0 && method()->method_data()->trap_count(reason) != 0 && has_ex_handler()) { treat_throw_as_hot = true; } } // If this throw happens frequently, an uncommon trap might cause // a performance pothole. If there is a local exception handler, // and if this particular bytecode appears to be deoptimizing often, // let us handle the throw inline, with a preconstructed instance. // Note: If the deopt count has blown up, the uncommon trap // runtime is going to flush this nmethod, not matter what. if (treat_throw_as_hot && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) { // If the throw is local, we use a pre-existing instance and // punt on the backtrace. This would lead to a missing backtrace // (a repeat of 4292742) if the backtrace object is ever asked // for its backtrace. // Fixing this remaining case of 4292742 requires some flavor of // escape analysis. Leave that for the future. ciInstance* ex_obj = NULL; switch (reason) { case Deoptimization::Reason_null_check: ex_obj = env()->NullPointerException_instance(); break; case Deoptimization::Reason_div0_check: ex_obj = env()->ArithmeticException_instance(); break; case Deoptimization::Reason_range_check: ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); break; case Deoptimization::Reason_class_check: if (java_bc() == Bytecodes::_aastore) { ex_obj = env()->ArrayStoreException_instance(); } else { ex_obj = env()->ClassCastException_instance(); } break; default: break; } if (failing()) { stop(); return; } // exception allocation might fail if (ex_obj != NULL) { // Cheat with a preallocated exception object. if (C->log() != NULL) C->log()->elem("hot_throw preallocated='1' reason='%s'", Deoptimization::trap_reason_name(reason)); const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); Node* ex_node = _gvn.transform(ConNode::make(ex_con)); // Clear the detail message of the preallocated exception object. // Weblogic sometimes mutates the detail message of exceptions // using reflection. int offset = java_lang_Throwable::get_detailMessage_offset(); const TypePtr* adr_typ = ex_con->add_offset(offset); Node *adr = basic_plus_adr(ex_node, ex_node, offset); const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); add_exception_state(make_exception_state(ex_node)); return; } } // %%% Maybe add entry to OptoRuntime which directly throws the exc.? // It won't be much cheaper than bailing to the interp., since we'll // have to pass up all the debug-info, and the runtime will have to // create the stack trace. // Usual case: Bail to interpreter. // Reserve the right to recompile if we haven't seen anything yet. ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL; Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; if (treat_throw_as_hot && (method()->method_data()->trap_recompiled_at(bci(), m) || C->too_many_traps(reason))) { // We cannot afford to take more traps here. Suffer in the interpreter. if (C->log() != NULL) C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", Deoptimization::trap_reason_name(reason), C->trap_count(reason)); action = Deoptimization::Action_none; } // "must_throw" prunes the JVM state to include only the stack, if there // are no local exception handlers. This should cut down on register // allocation time and code size, by drastically reducing the number // of in-edges on the call to the uncommon trap. uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw); } //----------------------------PreserveJVMState--------------------------------- PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { debug_only(kit->verify_map()); _kit = kit; _map = kit->map(); // preserve the map _sp = kit->sp(); kit->set_map(clone_map ? kit->clone_map() : NULL); #ifdef ASSERT _bci = kit->bci(); Parse* parser = kit->is_Parse(); int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); _block = block; #endif } PreserveJVMState::~PreserveJVMState() { GraphKit* kit = _kit; #ifdef ASSERT assert(kit->bci() == _bci, "bci must not shift"); Parse* parser = kit->is_Parse(); int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); assert(block == _block, "block must not shift"); #endif kit->set_map(_map); kit->set_sp(_sp); } //-----------------------------BuildCutout------------------------------------- BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) : PreserveJVMState(kit) { assert(p->is_Con() || p->is_Bool(), "test must be a bool"); SafePointNode* outer_map = _map; // preserved map is caller's SafePointNode* inner_map = kit->map(); IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); } BuildCutout::~BuildCutout() { GraphKit* kit = _kit; assert(kit->stopped(), "cutout code must stop, throw, return, etc."); } //---------------------------PreserveReexecuteState---------------------------- PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { assert(!kit->stopped(), "must call stopped() before"); _kit = kit; _sp = kit->sp(); _reexecute = kit->jvms()->_reexecute; } PreserveReexecuteState::~PreserveReexecuteState() { if (_kit->stopped()) return; _kit->jvms()->_reexecute = _reexecute; _kit->set_sp(_sp); } //------------------------------clone_map-------------------------------------- // Implementation of PreserveJVMState // // Only clone_map(...) here. If this function is only used in the // PreserveJVMState class we may want to get rid of this extra // function eventually and do it all there. SafePointNode* GraphKit::clone_map() { if (map() == NULL) return NULL; // Clone the memory edge first Node* mem = MergeMemNode::make(map()->memory()); gvn().set_type_bottom(mem); SafePointNode *clonemap = (SafePointNode*)map()->clone(); JVMState* jvms = this->jvms(); JVMState* clonejvms = jvms->clone_shallow(C); clonemap->set_memory(mem); clonemap->set_jvms(clonejvms); clonejvms->set_map(clonemap); record_for_igvn(clonemap); gvn().set_type_bottom(clonemap); return clonemap; } //-----------------------------set_map_clone----------------------------------- void GraphKit::set_map_clone(SafePointNode* m) { _map = m; _map = clone_map(); _map->set_next_exception(NULL); debug_only(verify_map()); } //----------------------------kill_dead_locals--------------------------------- // Detect any locals which are known to be dead, and force them to top. void GraphKit::kill_dead_locals() { // Consult the liveness information for the locals. If any // of them are unused, then they can be replaced by top(). This // should help register allocation time and cut down on the size // of the deoptimization information. // This call is made from many of the bytecode handling // subroutines called from the Big Switch in do_one_bytecode. // Every bytecode which might include a slow path is responsible // for killing its dead locals. The more consistent we // are about killing deads, the fewer useless phis will be // constructed for them at various merge points. // bci can be -1 (InvocationEntryBci). We return the entry // liveness for the method. if (method() == NULL || method()->code_size() == 0) { // We are building a graph for a call to a native method. // All locals are live. return; } ResourceMark rm; // Consult the liveness information for the locals. If any // of them are unused, then they can be replaced by top(). This // should help register allocation time and cut down on the size // of the deoptimization information. MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); int len = (int)live_locals.size(); assert(len <= jvms()->loc_size(), "too many live locals"); for (int local = 0; local < len; local++) { if (!live_locals.at(local)) { set_local(local, top()); } } } #ifdef ASSERT //-------------------------dead_locals_are_killed------------------------------ // Return true if all dead locals are set to top in the map. // Used to assert "clean" debug info at various points. bool GraphKit::dead_locals_are_killed() { if (method() == NULL || method()->code_size() == 0) { // No locals need to be dead, so all is as it should be. return true; } // Make sure somebody called kill_dead_locals upstream. ResourceMark rm; for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { if (jvms->loc_size() == 0) continue; // no locals to consult SafePointNode* map = jvms->map(); ciMethod* method = jvms->method(); int bci = jvms->bci(); if (jvms == this->jvms()) { bci = this->bci(); // it might not yet be synched } MethodLivenessResult live_locals = method->liveness_at_bci(bci); int len = (int)live_locals.size(); if (!live_locals.is_valid() || len == 0) // This method is trivial, or is poisoned by a breakpoint. return true; assert(len == jvms->loc_size(), "live map consistent with locals map"); for (int local = 0; local < len; local++) { if (!live_locals.at(local) && map->local(jvms, local) != top()) { if (PrintMiscellaneous && (Verbose || WizardMode)) { tty->print_cr("Zombie local %d: ", local); jvms->dump(); } return false; } } } return true; } #endif //ASSERT // Helper function for enforcing certain bytecodes to reexecute if // deoptimization happens static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { ciMethod* cur_method = jvms->method(); int cur_bci = jvms->bci(); if (cur_method != NULL && cur_bci != InvocationEntryBci) { Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); return Interpreter::bytecode_should_reexecute(code) || (is_anewarray && (code == Bytecodes::_multianewarray)); // Reexecute _multianewarray bytecode which was replaced with // sequence of [a]newarray. See Parse::do_multianewarray(). // // Note: interpreter should not have it set since this optimization // is limited by dimensions and guarded by flag so in some cases // multianewarray() runtime calls will be generated and // the bytecode should not be reexecutes (stack will not be reset). } else { return false; } } // Helper function for adding JVMState and debug information to node void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { // Add the safepoint edges to the call (or other safepoint). // Make sure dead locals are set to top. This // should help register allocation time and cut down on the size // of the deoptimization information. assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); // Walk the inline list to fill in the correct set of JVMState's // Also fill in the associated edges for each JVMState. // If the bytecode needs to be reexecuted we need to put // the arguments back on the stack. const bool should_reexecute = jvms()->should_reexecute(); JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to // undefined if the bci is different. This is normal for Parse but it // should not happen for LibraryCallKit because only one bci is processed. assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), "in LibraryCallKit the reexecute bit should not change"); // If we are guaranteed to throw, we can prune everything but the // input to the current bytecode. bool can_prune_locals = false; uint stack_slots_not_pruned = 0; int inputs = 0, depth = 0; if (must_throw) { assert(method() == youngest_jvms->method(), "sanity"); if (compute_stack_effects(inputs, depth)) { can_prune_locals = true; stack_slots_not_pruned = inputs; } } if (env()->should_retain_local_variables()) { // At any safepoint, this method can get breakpointed, which would // then require an immediate deoptimization. can_prune_locals = false; // do not prune locals stack_slots_not_pruned = 0; } // do not scribble on the input jvms JVMState* out_jvms = youngest_jvms->clone_deep(C); call->set_jvms(out_jvms); // Start jvms list for call node // For a known set of bytecodes, the interpreter should reexecute them if // deoptimization happens. We set the reexecute state for them here if (out_jvms->is_reexecute_undefined() && //don't change if already specified should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed } // Presize the call: DEBUG_ONLY(uint non_debug_edges = call->req()); call->add_req_batch(top(), youngest_jvms->debug_depth()); assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); // Set up edges so that the call looks like this: // Call [state:] ctl io mem fptr retadr // [parms:] parm0 ... parmN // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN // Note that caller debug info precedes callee debug info. // Fill pointer walks backwards from "young:" to "root:" in the diagram above: uint debug_ptr = call->req(); // Loop over the map input edges associated with jvms, add them // to the call node, & reset all offsets to match call node array. for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) { uint debug_end = debug_ptr; uint debug_start = debug_ptr - in_jvms->debug_size(); debug_ptr = debug_start; // back up the ptr uint p = debug_start; // walks forward in [debug_start, debug_end) uint j, k, l; SafePointNode* in_map = in_jvms->map(); out_jvms->set_map(call); if (can_prune_locals) { assert(in_jvms->method() == out_jvms->method(), "sanity"); // If the current throw can reach an exception handler in this JVMS, // then we must keep everything live that can reach that handler. // As a quick and dirty approximation, we look for any handlers at all. if (in_jvms->method()->has_exception_handlers()) { can_prune_locals = false; } } // Add the Locals k = in_jvms->locoff(); l = in_jvms->loc_size(); out_jvms->set_locoff(p); if (!can_prune_locals) { for (j = 0; j < l; j++) call->set_req(p++, in_map->in(k+j)); } else { p += l; // already set to top above by add_req_batch } // Add the Expression Stack k = in_jvms->stkoff(); l = in_jvms->sp(); out_jvms->set_stkoff(p); if (!can_prune_locals) { for (j = 0; j < l; j++) call->set_req(p++, in_map->in(k+j)); } else if (can_prune_locals && stack_slots_not_pruned != 0) { // Divide stack into {S0,...,S1}, where S0 is set to top. uint s1 = stack_slots_not_pruned; stack_slots_not_pruned = 0; // for next iteration if (s1 > l) s1 = l; uint s0 = l - s1; p += s0; // skip the tops preinstalled by add_req_batch for (j = s0; j < l; j++) call->set_req(p++, in_map->in(k+j)); } else { p += l; // already set to top above by add_req_batch } // Add the Monitors k = in_jvms->monoff(); l = in_jvms->mon_size(); out_jvms->set_monoff(p); for (j = 0; j < l; j++) call->set_req(p++, in_map->in(k+j)); // Copy any scalar object fields. k = in_jvms->scloff(); l = in_jvms->scl_size(); out_jvms->set_scloff(p); for (j = 0; j < l; j++) call->set_req(p++, in_map->in(k+j)); // Finish the new jvms. out_jvms->set_endoff(p); assert(out_jvms->endoff() == debug_end, "fill ptr must match"); assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); // Update the two tail pointers in parallel. out_jvms = out_jvms->caller(); in_jvms = in_jvms->caller(); } assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); // Test the correctness of JVMState::debug_xxx accessors: assert(call->jvms()->debug_start() == non_debug_edges, ""); assert(call->jvms()->debug_end() == call->req(), ""); assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); } bool GraphKit::compute_stack_effects(int& inputs, int& depth) { Bytecodes::Code code = java_bc(); if (code == Bytecodes::_wide) { code = method()->java_code_at_bci(bci() + 1); } BasicType rtype = T_ILLEGAL; int rsize = 0; if (code != Bytecodes::_illegal) { depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V if (rtype < T_CONFLICT) rsize = type2size[rtype]; } switch (code) { case Bytecodes::_illegal: return false; case Bytecodes::_ldc: case Bytecodes::_ldc_w: case Bytecodes::_ldc2_w: inputs = 0; break; case Bytecodes::_dup: inputs = 1; break; case Bytecodes::_dup_x1: inputs = 2; break; case Bytecodes::_dup_x2: inputs = 3; break; case Bytecodes::_dup2: inputs = 2; break; case Bytecodes::_dup2_x1: inputs = 3; break; case Bytecodes::_dup2_x2: inputs = 4; break; case Bytecodes::_swap: inputs = 2; break; case Bytecodes::_arraylength: inputs = 1; break; case Bytecodes::_getstatic: case Bytecodes::_putstatic: case Bytecodes::_getfield: case Bytecodes::_putfield: { bool ignored_will_link; ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); int size = field->type()->size(); bool is_get = (depth >= 0), is_static = (depth & 1); inputs = (is_static ? 0 : 1); if (is_get) { depth = size - inputs; } else { inputs += size; // putxxx pops the value from the stack depth = - inputs; } } break; case Bytecodes::_invokevirtual: case Bytecodes::_invokespecial: case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokeinterface: { bool ignored_will_link; ciSignature* declared_signature = NULL; ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); assert(declared_signature != NULL, "cannot be null"); inputs = declared_signature->arg_size_for_bc(code); int size = declared_signature->return_type()->size(); depth = size - inputs; } break; case Bytecodes::_multianewarray: { ciBytecodeStream iter(method()); iter.reset_to_bci(bci()); iter.next(); inputs = iter.get_dimensions(); assert(rsize == 1, ""); depth = rsize - inputs; } break; case Bytecodes::_withfield: { bool ignored_will_link; ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); int size = field->type()->size(); inputs = size+1; depth = rsize - inputs; break; } case Bytecodes::_ireturn: case Bytecodes::_lreturn: case Bytecodes::_freturn: case Bytecodes::_dreturn: case Bytecodes::_areturn: assert(rsize == -depth, ""); inputs = rsize; break; case Bytecodes::_jsr: case Bytecodes::_jsr_w: inputs = 0; depth = 1; // S.B. depth=1, not zero break; default: // bytecode produces a typed result inputs = rsize - depth; assert(inputs >= 0, ""); break; } #ifdef ASSERT // spot check int outputs = depth + inputs; assert(outputs >= 0, "sanity"); switch (code) { case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; default: break; } #endif //ASSERT return true; } //------------------------------basic_plus_adr--------------------------------- Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { // short-circuit a common case if (offset == intcon(0)) return ptr; return _gvn.transform( new AddPNode(base, ptr, offset) ); } Node* GraphKit::ConvI2L(Node* offset) { // short-circuit a common case jint offset_con = find_int_con(offset, Type::OffsetBot); if (offset_con != Type::OffsetBot) { return longcon((jlong) offset_con); } return _gvn.transform( new ConvI2LNode(offset)); } Node* GraphKit::ConvI2UL(Node* offset) { juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); if (offset_con != (juint) Type::OffsetBot) { return longcon((julong) offset_con); } Node* conv = _gvn.transform( new ConvI2LNode(offset)); Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); return _gvn.transform( new AndLNode(conv, mask) ); } Node* GraphKit::ConvL2I(Node* offset) { // short-circuit a common case jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); if (offset_con != (jlong)Type::OffsetBot) { return intcon((int) offset_con); } return _gvn.transform( new ConvL2INode(offset)); } //-------------------------load_object_klass----------------------------------- Node* GraphKit::load_object_klass(Node* obj, bool clear_prop_bits) { // Special-case a fresh allocation to avoid building nodes: Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); if (akls != NULL) return akls; Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT, clear_prop_bits)); } //-------------------------load_array_length----------------------------------- Node* GraphKit::load_array_length(Node* array) { // Special-case a fresh allocation to avoid building nodes: AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn); Node *alen; if (alloc == NULL) { Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS)); } else { alen = alloc->Ideal_length(); Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn); if (ccast != alen) { alen = _gvn.transform(ccast); } } return alen; } //------------------------------do_null_check---------------------------------- // Helper function to do a NULL pointer check. Returned value is // the incoming address with NULL casted away. You are allowed to use the // not-null value only if you are control dependent on the test. #ifndef PRODUCT extern int explicit_null_checks_inserted, explicit_null_checks_elided; #endif Node* GraphKit::null_check_common(Node* value, BasicType type, // optional arguments for variations: bool assert_null, Node* *null_control, bool speculative) { assert(!assert_null || null_control == NULL, "not both at once"); if (stopped()) return top(); NOT_PRODUCT(explicit_null_checks_inserted++); // Construct NULL check Node *chk = NULL; switch(type) { case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; case T_VALUETYPE : // fall through case T_ARRAY : // fall through type = T_OBJECT; // simplify further tests case T_OBJECT : { const Type *t = _gvn.type( value ); const TypeOopPtr* tp = t->isa_oopptr(); if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded() // Only for do_null_check, not any of its siblings: && !assert_null && null_control == NULL) { // Usually, any field access or invocation on an unloaded oop type // will simply fail to link, since the statically linked class is // likely also to be unloaded. However, in -Xcomp mode, sometimes // the static class is loaded but the sharper oop type is not. // Rather than checking for this obscure case in lots of places, // we simply observe that a null check on an unloaded class // will always be followed by a nonsense operation, so we // can just issue the uncommon trap here. // Our access to the unloaded class will only be correct // after it has been loaded and initialized, which requires // a trip through the interpreter. #ifndef PRODUCT if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); } #endif uncommon_trap(Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, tp->klass(), "!loaded"); return top(); } if (assert_null) { // See if the type is contained in NULL_PTR. // If so, then the value is already null. if (t->higher_equal(TypePtr::NULL_PTR)) { NOT_PRODUCT(explicit_null_checks_elided++); return value; // Elided null assert quickly! } } else { // See if mixing in the NULL pointer changes type. // If so, then the NULL pointer was not allowed in the original // type. In other words, "value" was not-null. if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... NOT_PRODUCT(explicit_null_checks_elided++); return value; // Elided null check quickly! } } chk = new CmpPNode( value, null() ); break; } default: fatal("unexpected type: %s", type2name(type)); } assert(chk != NULL, "sanity check"); chk = _gvn.transform(chk); BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; BoolNode *btst = new BoolNode( chk, btest); Node *tst = _gvn.transform( btst ); //----------- // if peephole optimizations occurred, a prior test existed. // If a prior test existed, maybe it dominates as we can avoid this test. if (tst != btst && type == T_OBJECT) { // At this point we want to scan up the CFG to see if we can // find an identical test (and so avoid this test altogether). Node *cfg = control(); int depth = 0; while( depth < 16 ) { // Limit search depth for speed if( cfg->Opcode() == Op_IfTrue && cfg->in(0)->in(1) == tst ) { // Found prior test. Use "cast_not_null" to construct an identical // CastPP (and hence hash to) as already exists for the prior test. // Return that casted value. if (assert_null) { replace_in_map(value, null()); return null(); // do not issue the redundant test } Node *oldcontrol = control(); set_control(cfg); Node *res = cast_not_null(value); set_control(oldcontrol); NOT_PRODUCT(explicit_null_checks_elided++); return res; } cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); if (cfg == NULL) break; // Quit at region nodes depth++; } } //----------- // Branch to failure if null float ok_prob = PROB_MAX; // a priori estimate: nulls never happen Deoptimization::DeoptReason reason; if (assert_null) { reason = Deoptimization::reason_null_assert(speculative); } else if (type == T_OBJECT) { reason = Deoptimization::reason_null_check(speculative); } else { reason = Deoptimization::Reason_div0_check; } // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, // ciMethodData::has_trap_at will return a conservative -1 if any // must-be-null assertion has failed. This could cause performance // problems for a method after its first do_null_assert failure. // Consider using 'Reason_class_check' instead? // To cause an implicit null check, we set the not-null probability // to the maximum (PROB_MAX). For an explicit check the probability // is set to a smaller value. if (null_control != NULL || too_many_traps(reason)) { // probability is less likely ok_prob = PROB_LIKELY_MAG(3); } else if (!assert_null && (ImplicitNullCheckThreshold > 0) && method() != NULL && (method()->method_data()->trap_count(reason) >= (uint)ImplicitNullCheckThreshold)) { ok_prob = PROB_LIKELY_MAG(3); } if (null_control != NULL) { IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); Node* null_true = _gvn.transform( new IfFalseNode(iff)); set_control( _gvn.transform( new IfTrueNode(iff))); #ifndef PRODUCT if (null_true == top()) { explicit_null_checks_elided++; } #endif (*null_control) = null_true; } else { BuildCutout unless(this, tst, ok_prob); // Check for optimizer eliding test at parse time if (stopped()) { // Failure not possible; do not bother making uncommon trap. NOT_PRODUCT(explicit_null_checks_elided++); } else if (assert_null) { uncommon_trap(reason, Deoptimization::Action_make_not_entrant, NULL, "assert_null"); } else { replace_in_map(value, zerocon(type)); builtin_throw(reason); } } // Must throw exception, fall-thru not possible? if (stopped()) { return top(); // No result } if (assert_null) { // Cast obj to null on this path. replace_in_map(value, zerocon(type)); return zerocon(type); } // Cast obj to not-null on this path, if there is no null_control. // (If there is a null_control, a non-null value may come back to haunt us.) return cast_not_null(value, (null_control == NULL || (*null_control) == top())); } Node* GraphKit::null2default(Node* value, ciValueKlass* vk) { Node* null_ctl = top(); value = null_check_oop(value, &null_ctl); if (!null_ctl->is_top()) { // Return default value if oop is null Node* region = new RegionNode(3); region->init_req(1, control()); region->init_req(2, null_ctl); value = PhiNode::make(region, value, TypeInstPtr::make(TypePtr::BotPTR, vk)); value->set_req(2, ValueTypeNode::default_oop(gvn(), vk)); set_control(gvn().transform(region)); value = gvn().transform(value); } return value; } //------------------------------cast_not_null---------------------------------- // Cast obj to not-null on this path Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { if (obj->is_ValueType()) { return obj; } Node* cast = NULL; const Type* t = _gvn.type(obj); if (t->make_ptr() != NULL) { const Type* t_not_null = t->join_speculative(TypePtr::NOTNULL); // Object is already not-null? if (t == t_not_null) { return obj; } cast = ConstraintCastNode::make_cast(Op_CastPP, control(), obj, t_not_null, false); } else if (t->isa_int() != NULL) { cast = ConstraintCastNode::make_cast(Op_CastII, control(), obj, TypeInt::INT, true); } else if (t->isa_long() != NULL) { cast = ConstraintCastNode::make_cast(Op_CastLL, control(), obj, TypeLong::LONG, true); } else { fatal("unexpected type: %s", type2name(t->basic_type())); } cast = _gvn.transform(cast); // Scan for instances of 'obj' in the current JVM mapping. // These instances are known to be not-null after the test. if (do_replace_in_map) { replace_in_map(obj, cast); } return cast; } // Sometimes in intrinsics, we implicitly know an object is not null // (there's no actual null check) so we can cast it to not null. In // the course of optimizations, the input to the cast can become null. // In that case that data path will die and we need the control path // to become dead as well to keep the graph consistent. So we have to // add a check for null for which one branch can't be taken. It uses // an Opaque4 node that will cause the check to be removed after loop // opts so the test goes away and the compiled code doesn't execute a // useless check. Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { Node* chk = _gvn.transform(new CmpPNode(value, null())); Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1))); IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); _gvn.set_type(iff, iff->Value(&_gvn)); Node *if_f = _gvn.transform(new IfFalseNode(iff)); Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); C->root()->add_req(halt); Node *if_t = _gvn.transform(new IfTrueNode(iff)); set_control(if_t); return cast_not_null(value, do_replace_in_map); } //--------------------------replace_in_map------------------------------------- void GraphKit::replace_in_map(Node* old, Node* neww) { if (old == neww) { return; } map()->replace_edge(old, neww); // Note: This operation potentially replaces any edge // on the map. This includes locals, stack, and monitors // of the current (innermost) JVM state. // don't let inconsistent types from profiling escape this // method const Type* told = _gvn.type(old); const Type* tnew = _gvn.type(neww); if (!tnew->higher_equal(told)) { return; } map()->record_replaced_node(old, neww); } //============================================================================= //--------------------------------memory--------------------------------------- Node* GraphKit::memory(uint alias_idx) { MergeMemNode* mem = merged_memory(); Node* p = mem->memory_at(alias_idx); _gvn.set_type(p, Type::MEMORY); // must be mapped return p; } //-----------------------------reset_memory------------------------------------ Node* GraphKit::reset_memory() { Node* mem = map()->memory(); // do not use this node for any more parsing! debug_only( map()->set_memory((Node*)NULL) ); return _gvn.transform( mem ); } //------------------------------set_all_memory--------------------------------- void GraphKit::set_all_memory(Node* newmem) { Node* mergemem = MergeMemNode::make(newmem); gvn().set_type_bottom(mergemem); map()->set_memory(mergemem); } //------------------------------set_all_memory_call---------------------------- void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); set_all_memory(newmem); } //============================================================================= // // parser factory methods for MemNodes // // These are layered on top of the factory methods in LoadNode and StoreNode, // and integrate with the parser's memory state and _gvn engine. // // factory methods in "int adr_idx" Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, int adr_idx, MemNode::MemOrd mo, LoadNode::ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe) { assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); const TypePtr* adr_type = NULL; // debug-mode-only argument debug_only(adr_type = C->get_adr_type(adr_idx)); Node* mem = memory(adr_idx); Node* ld; if (require_atomic_access && bt == T_LONG) { ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe); } else if (require_atomic_access && bt == T_DOUBLE) { ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe); } else { ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched, unsafe); } ld = _gvn.transform(ld); if (((bt == T_OBJECT || bt == T_VALUETYPE) && C->do_escape_analysis()) || C->eliminate_boxing()) { // Improve graph before escape analysis and boxing elimination. record_for_igvn(ld); } return ld; } Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, int adr_idx, MemNode::MemOrd mo, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe) { assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); const TypePtr* adr_type = NULL; debug_only(adr_type = C->get_adr_type(adr_idx)); Node *mem = memory(adr_idx); Node* st; if (require_atomic_access && bt == T_LONG) { st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo); } else if (require_atomic_access && bt == T_DOUBLE) { st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo); } else { st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo); } if (unaligned) { st->as_Store()->set_unaligned_access(); } if (mismatched) { st->as_Store()->set_mismatched_access(); } if (unsafe) { st->as_Store()->set_unsafe_access(); } st = _gvn.transform(st); set_memory(st, adr_idx); // Back-to-back stores can only remove intermediate store with DU info // so push on worklist for optimizer. if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) record_for_igvn(st); return st; } Node* GraphKit::access_store_at(Node* obj, Node* adr, const TypePtr* adr_type, Node* val, const Type* val_type, BasicType bt, DecoratorSet decorators, bool deoptimize_on_exception, bool safe_for_replace) { // Transformation of a value which could be NULL pointer (CastPP #NULL) // could be delayed during Parse (for example, in adjust_map_after_if()). // Execute transformation here to avoid barrier generation in such case. if (_gvn.type(val) == TypePtr::NULL_PTR) { val = _gvn.makecon(TypePtr::NULL_PTR); } if (stopped()) { return top(); // Dead path ? } assert(val != NULL, "not dead path"); if (val->is_ValueType()) { // Allocate value type and get oop val = val->as_ValueType()->allocate(this, deoptimize_on_exception, safe_for_replace)->get_oop(); } C2AccessValuePtr addr(adr, adr_type); C2AccessValue value(val, val_type); C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr); if (access.is_raw()) { return _barrier_set->BarrierSetC2::store_at(access, value); } else { return _barrier_set->store_at(access, value); } } Node* GraphKit::access_load_at(Node* obj, // containing obj Node* adr, // actual adress to store val at const TypePtr* adr_type, const Type* val_type, BasicType bt, DecoratorSet decorators, Node* ctl) { if (stopped()) { return top(); // Dead path ? } C2AccessValuePtr addr(adr, adr_type); C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl); if (access.is_raw()) { return _barrier_set->BarrierSetC2::load_at(access, val_type); } else { return _barrier_set->load_at(access, val_type); } } Node* GraphKit::access_load(Node* adr, // actual adress to load val at const Type* val_type, BasicType bt, DecoratorSet decorators) { if (stopped()) { return top(); // Dead path ? } C2AccessValuePtr addr(adr, NULL); C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr); if (access.is_raw()) { return _barrier_set->BarrierSetC2::load_at(access, val_type); } else { return _barrier_set->load_at(access, val_type); } } Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, Node* adr, const TypePtr* adr_type, int alias_idx, Node* expected_val, Node* new_val, const Type* value_type, BasicType bt, DecoratorSet decorators) { C2AccessValuePtr addr(adr, adr_type); C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); if (access.is_raw()) { return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); } else { return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); } } Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, Node* adr, const TypePtr* adr_type, int alias_idx, Node* expected_val, Node* new_val, const Type* value_type, BasicType bt, DecoratorSet decorators) { C2AccessValuePtr addr(adr, adr_type); C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); if (access.is_raw()) { return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); } else { return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); } } Node* GraphKit::access_atomic_xchg_at(Node* obj, Node* adr, const TypePtr* adr_type, int alias_idx, Node* new_val, const Type* value_type, BasicType bt, DecoratorSet decorators) { C2AccessValuePtr addr(adr, adr_type); C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); if (access.is_raw()) { return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); } else { return _barrier_set->atomic_xchg_at(access, new_val, value_type); } } Node* GraphKit::access_atomic_add_at(Node* obj, Node* adr, const TypePtr* adr_type, int alias_idx, Node* new_val, const Type* value_type, BasicType bt, DecoratorSet decorators) { C2AccessValuePtr addr(adr, adr_type); C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); if (access.is_raw()) { return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); } else { return _barrier_set->atomic_add_at(access, new_val, value_type); } } void GraphKit::access_clone(Node* src_base, Node* dst_base, Node* countx, bool is_array) { return _barrier_set->clone(this, src_base, dst_base, countx, is_array); } Node* GraphKit::access_resolve(Node* n, DecoratorSet decorators) { // Use stronger ACCESS_WRITE|ACCESS_READ by default. if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { decorators |= ACCESS_READ | ACCESS_WRITE; } return _barrier_set->resolve(this, n, decorators); } //-------------------------array_element_address------------------------- Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, const TypeInt* sizetype, Node* ctrl) { uint shift = exact_log2(type2aelembytes(elembt)); ciKlass* arytype_klass = _gvn.type(ary)->is_aryptr()->klass(); if (arytype_klass != NULL && arytype_klass->is_value_array_klass()) { ciValueArrayKlass* vak = arytype_klass->as_value_array_klass(); shift = vak->log2_element_size(); } uint header = arrayOopDesc::base_offset_in_bytes(elembt); // short-circuit a common case (saves lots of confusing waste motion) jint idx_con = find_int_con(idx, -1); if (idx_con >= 0) { intptr_t offset = header + ((intptr_t)idx_con << shift); return basic_plus_adr(ary, offset); } // must be correct type for alignment purposes Node* base = basic_plus_adr(ary, header); idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); return basic_plus_adr(ary, base, scale); } //-------------------------load_array_element------------------------- Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) { const Type* elemtype = arytype->elem(); BasicType elembt = elemtype->array_element_basic_type(); assert(elembt != T_VALUETYPE, "value types are not supported by this method"); Node* adr = array_element_address(ary, idx, elembt, arytype->size()); if (elembt == T_NARROWOOP) { elembt = T_OBJECT; // To satisfy switch in LoadNode::make() } Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered); return ld; } //-------------------------set_arguments_for_java_call------------------------- // Arguments (pre-popped from the stack) are taken from the JVMS. void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool incremental_inlining) { // Add the call arguments: const TypeTuple* domain = call->tf()->domain_sig(); ExtendedSignature sig_cc = ExtendedSignature(call->method()->get_sig_cc(), SigEntryFilter()); uint nargs = domain->cnt(); for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) { Node* arg = argument(i-TypeFunc::Parms); const Type* t = domain->field_at(i); if (call->method()->has_scalarized_args() && t->is_valuetypeptr() && !t->maybe_null()) { // We don't pass value type arguments by reference but instead pass each field of the value type ValueTypeNode* vt = arg->as_ValueType(); vt->pass_fields(this, call, sig_cc, idx); // If a value type argument is passed as fields, attach the Method* to the call site // to be able to access the extended signature later via attached_method_before_pc(). // For example, see CompiledMethod::preserve_callee_argument_oops(). call->set_override_symbolic_info(true); continue; } else if (arg->is_ValueType()) { // Pass value type argument via oop to callee if (!incremental_inlining) { arg = arg->as_ValueType()->allocate(this)->get_oop(); } else { arg = ValueTypePtrNode::make_from_value_type(this, arg->as_ValueType()); } } call->init_req(idx++, arg); // Skip reserved arguments BasicType bt = t->basic_type(); while (SigEntry::next_is_reserved(sig_cc, bt, true)) { call->init_req(idx++, top()); if (type2size[bt] == 2) { call->init_req(idx++, top()); } } } } //---------------------------set_edges_for_java_call--------------------------- // Connect a newly created call into the current JVMS. // A return value node (if any) is returned from set_edges_for_java_call. void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { // Add the predefined inputs: call->init_req( TypeFunc::Control, control() ); call->init_req( TypeFunc::I_O , i_o() ); call->init_req( TypeFunc::Memory , reset_memory() ); call->init_req( TypeFunc::FramePtr, frameptr() ); call->init_req( TypeFunc::ReturnAdr, top() ); add_safepoint_edges(call, must_throw); Node* xcall = _gvn.transform(call); if (xcall == top()) { set_control(top()); return; } assert(xcall == call, "call identity is stable"); // Re-use the current map to produce the result. set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); set_all_memory_call(xcall, separate_io_proj); //return xcall; // no need, caller already has it } Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { if (stopped()) return top(); // maybe the call folded up? // Note: Since any out-of-line call can produce an exception, // we always insert an I_O projection from the call into the result. make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); if (separate_io_proj) { // The caller requested separate projections be used by the fall // through and exceptional paths, so replace the projections for // the fall through path. set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); } // Capture the return value, if any. Node* ret; if (call->method() == NULL || call->method()->return_type()->basic_type() == T_VOID) { ret = top(); } else if (call->tf()->returns_value_type_as_fields()) { // Return of multiple values (value type fields): we create a // ValueType node, each field is a projection from the call. ciValueKlass* vk = call->method()->return_type()->as_value_klass(); const Array* sig_array = vk->extended_sig(); GrowableArray sig = GrowableArray(sig_array->length()); sig.appendAll(sig_array); ExtendedSignature sig_cc = ExtendedSignature(&sig, SigEntryFilter()); uint base_input = TypeFunc::Parms + 1; ret = ValueTypeNode::make_from_multi(this, call, sig_cc, vk, base_input, false); } else { ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); } return ret; } //--------------------set_predefined_input_for_runtime_call-------------------- // Reading and setting the memory state is way conservative here. // The real problem is that I am not doing real Type analysis on memory, // so I cannot distinguish card mark stores from other stores. Across a GC // point the Store Barrier and the card mark memory has to agree. I cannot // have a card mark store and its barrier split across the GC point from // either above or below. Here I get that to happen by reading ALL of memory. // A better answer would be to separate out card marks from other memory. // For now, return the input memory state, so that it can be reused // after the call, if this call has restricted memory effects. Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { // Set fixed predefined input arguments Node* memory = reset_memory(); Node* m = narrow_mem == NULL ? memory : narrow_mem; call->init_req( TypeFunc::Control, control() ); call->init_req( TypeFunc::I_O, top() ); // does no i/o call->init_req( TypeFunc::Memory, m ); // may gc ptrs call->init_req( TypeFunc::FramePtr, frameptr() ); call->init_req( TypeFunc::ReturnAdr, top() ); return memory; } //-------------------set_predefined_output_for_runtime_call-------------------- // Set control and memory (not i_o) from the call. // If keep_mem is not NULL, use it for the output state, // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. // If hook_mem is NULL, this call produces no memory effects at all. // If hook_mem is a Java-visible memory slice (such as arraycopy operands), // then only that memory slice is taken from the call. // In the last case, we must put an appropriate memory barrier before // the call, so as to create the correct anti-dependencies on loads // preceding the call. void GraphKit::set_predefined_output_for_runtime_call(Node* call, Node* keep_mem, const TypePtr* hook_mem) { // no i/o set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); if (keep_mem) { // First clone the existing memory state set_all_memory(keep_mem); if (hook_mem != NULL) { // Make memory for the call Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); // Set the RawPtr memory state only. This covers all the heap top/GC stuff // We also use hook_mem to extract specific effects from arraycopy stubs. set_memory(mem, hook_mem); } // ...else the call has NO memory effects. // Make sure the call advertises its memory effects precisely. // This lets us build accurate anti-dependences in gcm.cpp. assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), "call node must be constructed correctly"); } else { assert(hook_mem == NULL, ""); // This is not a "slow path" call; all memory comes from the call. set_all_memory_call(call); } } // Keep track of MergeMems feeding into other MergeMems static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { if (!mem->is_MergeMem()) { return; } for (SimpleDUIterator i(mem); i.has_next(); i.next()) { Node* use = i.get(); if (use->is_MergeMem()) { wl.push(use); } } } // Replace the call with the current state of the kit. void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) { JVMState* ejvms = NULL; if (has_exceptions()) { ejvms = transfer_exceptions_into_jvms(); } ReplacedNodes replaced_nodes = map()->replaced_nodes(); ReplacedNodes replaced_nodes_exception; Node* ex_ctl = top(); SafePointNode* final_state = stop(); // Find all the needed outputs of this call CallProjections* callprojs = call->extract_projections(true); Unique_Node_List wl; Node* init_mem = call->in(TypeFunc::Memory); Node* final_mem = final_state->in(TypeFunc::Memory); Node* final_ctl = final_state->in(TypeFunc::Control); Node* final_io = final_state->in(TypeFunc::I_O); // Replace all the old call edges with the edges from the inlining result if (callprojs->fallthrough_catchproj != NULL) { C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl); } if (callprojs->fallthrough_memproj != NULL) { if (final_mem->is_MergeMem()) { // Parser's exits MergeMem was not transformed but may be optimized final_mem = _gvn.transform(final_mem); } C->gvn_replace_by(callprojs->fallthrough_memproj, final_mem); add_mergemem_users_to_worklist(wl, final_mem); } if (callprojs->fallthrough_ioproj != NULL) { C->gvn_replace_by(callprojs->fallthrough_ioproj, final_io); } // Replace the result with the new result if it exists and is used if (callprojs->resproj[0] != NULL && result != NULL) { assert(callprojs->nb_resproj == 1, "unexpected number of results"); C->gvn_replace_by(callprojs->resproj[0], result); } if (ejvms == NULL) { // No exception edges to simply kill off those paths if (callprojs->catchall_catchproj != NULL) { C->gvn_replace_by(callprojs->catchall_catchproj, C->top()); } if (callprojs->catchall_memproj != NULL) { C->gvn_replace_by(callprojs->catchall_memproj, C->top()); } if (callprojs->catchall_ioproj != NULL) { C->gvn_replace_by(callprojs->catchall_ioproj, C->top()); } // Replace the old exception object with top if (callprojs->exobj != NULL) { C->gvn_replace_by(callprojs->exobj, C->top()); } } else { GraphKit ekit(ejvms); // Load my combined exception state into the kit, with all phis transformed: SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); replaced_nodes_exception = ex_map->replaced_nodes(); Node* ex_oop = ekit.use_exception_state(ex_map); if (callprojs->catchall_catchproj != NULL) { C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control()); ex_ctl = ekit.control(); } if (callprojs->catchall_memproj != NULL) { Node* ex_mem = ekit.reset_memory(); C->gvn_replace_by(callprojs->catchall_memproj, ex_mem); add_mergemem_users_to_worklist(wl, ex_mem); } if (callprojs->catchall_ioproj != NULL) { C->gvn_replace_by(callprojs->catchall_ioproj, ekit.i_o()); } // Replace the old exception object with the newly created one if (callprojs->exobj != NULL) { C->gvn_replace_by(callprojs->exobj, ex_oop); } } // Disconnect the call from the graph call->disconnect_inputs(NULL, C); C->gvn_replace_by(call, C->top()); // Clean up any MergeMems that feed other MergeMems since the // optimizer doesn't like that. while (wl.size() > 0) { _gvn.transform(wl.pop()); } if (callprojs->fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) { replaced_nodes.apply(C, final_ctl); } if (!ex_ctl->is_top() && do_replaced_nodes) { replaced_nodes_exception.apply(C, ex_ctl); } } //------------------------------increment_counter------------------------------ // for statistics: increment a VM counter by 1 void GraphKit::increment_counter(address counter_addr) { Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); increment_counter(adr1); } void GraphKit::increment_counter(Node* counter_addr) { int adr_type = Compile::AliasIdxRaw; Node* ctrl = control(); Node* cnt = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1))); store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered); } //------------------------------uncommon_trap---------------------------------- // Bail out to the interpreter in mid-method. Implemented by calling the // uncommon_trap blob. This helper function inserts a runtime call with the // right debug info. void GraphKit::uncommon_trap(int trap_request, ciKlass* klass, const char* comment, bool must_throw, bool keep_exact_action) { if (failing()) stop(); if (stopped()) return; // trap reachable? // Note: If ProfileTraps is true, and if a deopt. actually // occurs here, the runtime will make sure an MDO exists. There is // no need to call method()->ensure_method_data() at this point. // Set the stack pointer to the right value for reexecution: set_sp(reexecute_sp()); #ifdef ASSERT if (!must_throw) { // Make sure the stack has at least enough depth to execute // the current bytecode. int inputs, ignored_depth; if (compute_stack_effects(inputs, ignored_depth)) { assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", Bytecodes::name(java_bc()), sp(), inputs); } } #endif Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); switch (action) { case Deoptimization::Action_maybe_recompile: case Deoptimization::Action_reinterpret: // Temporary fix for 6529811 to allow virtual calls to be sure they // get the chance to go from mono->bi->mega if (!keep_exact_action && Deoptimization::trap_request_index(trap_request) < 0 && too_many_recompiles(reason)) { // This BCI is causing too many recompilations. if (C->log() != NULL) { C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", Deoptimization::trap_reason_name(reason), Deoptimization::trap_action_name(action)); } action = Deoptimization::Action_none; trap_request = Deoptimization::make_trap_request(reason, action); } else { C->set_trap_can_recompile(true); } break; case Deoptimization::Action_make_not_entrant: C->set_trap_can_recompile(true); break; case Deoptimization::Action_none: case Deoptimization::Action_make_not_compilable: break; default: #ifdef ASSERT fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); #endif break; } if (TraceOptoParse) { char buf[100]; tty->print_cr("Uncommon trap %s at bci:%d", Deoptimization::format_trap_request(buf, sizeof(buf), trap_request), bci()); } CompileLog* log = C->log(); if (log != NULL) { int kid = (klass == NULL)? -1: log->identify(klass); log->begin_elem("uncommon_trap bci='%d'", bci()); char buf[100]; log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), trap_request)); if (kid >= 0) log->print(" klass='%d'", kid); if (comment != NULL) log->print(" comment='%s'", comment); log->end_elem(); } // Make sure any guarding test views this path as very unlikely Node *i0 = control()->in(0); if (i0 != NULL && i0->is_If()) { // Found a guarding if test? IfNode *iff = i0->as_If(); float f = iff->_prob; // Get prob if (control()->Opcode() == Op_IfTrue) { if (f > PROB_UNLIKELY_MAG(4)) iff->_prob = PROB_MIN; } else { if (f < PROB_LIKELY_MAG(4)) iff->_prob = PROB_MAX; } } // Clear out dead values from the debug info. kill_dead_locals(); // Now insert the uncommon trap subroutine call address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point(); const TypePtr* no_memory_effects = NULL; // Pass the index of the class to be loaded Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | (must_throw ? RC_MUST_THROW : 0), OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", no_memory_effects, intcon(trap_request)); assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, "must extract request correctly from the graph"); assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); call->set_req(TypeFunc::ReturnAdr, returnadr()); // The debug info is the only real input to this call. // Halt-and-catch fire here. The above call should never return! HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"); _gvn.set_type_bottom(halt); root()->add_req(halt); stop_and_kill_map(); } //--------------------------just_allocated_object------------------------------ // Report the object that was just allocated. // It must be the case that there are no intervening safepoints. // We use this to determine if an object is so "fresh" that // it does not require card marks. Node* GraphKit::just_allocated_object(Node* current_control) { Node* ctrl = current_control; // Object:: is invoked after allocation, most of invoke nodes // will be reduced, but a region node is kept in parse time, we check // the pattern and skip the region node if it degraded to a copy. if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 && ctrl->as_Region()->is_copy()) { ctrl = ctrl->as_Region()->is_copy(); } if (C->recent_alloc_ctl() == ctrl) { return C->recent_alloc_obj(); } return NULL; } void GraphKit::round_double_arguments(ciMethod* dest_method) { // (Note: TypeFunc::make has a cache that makes this fast.) const TypeFunc* tf = TypeFunc::make(dest_method); int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; for (int j = 0; j < nargs; j++) { const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); if( targ->basic_type() == T_DOUBLE ) { // If any parameters are doubles, they must be rounded before // the call, dstore_rounding does gvn.transform Node *arg = argument(j); arg = dstore_rounding(arg); set_argument(j, arg); } } } /** * Record profiling data exact_kls for Node n with the type system so * that it can propagate it (speculation) * * @param n node that the type applies to * @param exact_kls type from profiling * @param maybe_null did profiling see null? * * @return node with improved type */ Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { const Type* current_type = _gvn.type(n); assert(UseTypeSpeculation, "type speculation must be on"); const TypePtr* speculative = current_type->speculative(); // Should the klass from the profile be recorded in the speculative type? if (current_type->would_improve_type(exact_kls, jvms()->depth())) { const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls); const TypeOopPtr* xtype = tklass->as_instance_type(); assert(xtype->klass_is_exact(), "Should be exact"); // Any reason to believe n is not null (from this profiling or a previous one)? assert(ptr_kind != ProfileAlwaysNull, "impossible here"); const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; // record the new speculative type's depth speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); speculative = speculative->with_inline_depth(jvms()->depth()); } else if (current_type->would_improve_ptr(ptr_kind)) { // Profiling report that null was never seen so we can change the // speculative type to non null ptr. if (ptr_kind == ProfileAlwaysNull) { speculative = TypePtr::NULL_PTR; } else { assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); const TypePtr* ptr = TypePtr::NOTNULL; if (speculative != NULL) { speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); } else { speculative = ptr; } } } if (speculative != current_type->speculative()) { // Build a type with a speculative type (what we think we know // about the type but will need a guard when we use it) const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative); // We're changing the type, we need a new CheckCast node to carry // the new type. The new type depends on the control: what // profiling tells us is only valid from here as far as we can // tell. Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); cast = _gvn.transform(cast); replace_in_map(n, cast); n = cast; } return n; } /** * Record profiling data from receiver profiling at an invoke with the * type system so that it can propagate it (speculation) * * @param n receiver node * * @return node with improved type */ Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { if (!UseTypeSpeculation) { return n; } ciKlass* exact_kls = profile_has_unique_klass(); ProfilePtrKind ptr_kind = ProfileMaybeNull; if ((java_bc() == Bytecodes::_checkcast || java_bc() == Bytecodes::_instanceof || java_bc() == Bytecodes::_aastore) && method()->method_data()->is_mature()) { ciProfileData* data = method()->method_data()->bci_to_data(bci()); if (data != NULL) { if (!data->as_BitData()->null_seen()) { ptr_kind = ProfileNeverNull; } else { assert(data->is_ReceiverTypeData(), "bad profile data type"); ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); uint i = 0; for (; i < call->row_limit(); i++) { ciKlass* receiver = call->receiver(i); if (receiver != NULL) { break; } } ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; } } } return record_profile_for_speculation(n, exact_kls, ptr_kind); } /** * Record profiling data from argument profiling at an invoke with the * type system so that it can propagate it (speculation) * * @param dest_method target method for the call * @param bc what invoke bytecode is this? */ void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { if (!UseTypeSpeculation) { return; } const TypeFunc* tf = TypeFunc::make(dest_method); int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; int skip = Bytecodes::has_receiver(bc) ? 1 : 0; for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); if (is_reference_type(targ->basic_type())) { ProfilePtrKind ptr_kind = ProfileMaybeNull; ciKlass* better_type = NULL; if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { record_profile_for_speculation(argument(j), better_type, ptr_kind); } i++; } } } /** * Record profiling data from parameter profiling at an invoke with * the type system so that it can propagate it (speculation) */ void GraphKit::record_profiled_parameters_for_speculation() { if (!UseTypeSpeculation) { return; } for (int i = 0, j = 0; i < method()->arg_size() ; i++) { if (_gvn.type(local(i))->isa_oopptr()) { ProfilePtrKind ptr_kind = ProfileMaybeNull; ciKlass* better_type = NULL; if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { record_profile_for_speculation(local(i), better_type, ptr_kind); } j++; } } } /** * Record profiling data from return value profiling at an invoke with * the type system so that it can propagate it (speculation) */ void GraphKit::record_profiled_return_for_speculation() { if (!UseTypeSpeculation) { return; } ProfilePtrKind ptr_kind = ProfileMaybeNull; ciKlass* better_type = NULL; if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { // If profiling reports a single type for the return value, // feed it to the type system so it can propagate it as a // speculative type record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); } } void GraphKit::round_double_result(ciMethod* dest_method) { // A non-strict method may return a double value which has an extended // exponent, but this must not be visible in a caller which is 'strict' // If a strict caller invokes a non-strict callee, round a double result BasicType result_type = dest_method->return_type()->basic_type(); assert( method() != NULL, "must have caller context"); if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) { // Destination method's return value is on top of stack // dstore_rounding() does gvn.transform Node *result = pop_pair(); result = dstore_rounding(result); push_pair(result); } } // rounding for strict float precision conformance Node* GraphKit::precision_rounding(Node* n) { return UseStrictFP && _method->flags().is_strict() && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding ? _gvn.transform( new RoundFloatNode(0, n) ) : n; } // rounding for strict double precision conformance Node* GraphKit::dprecision_rounding(Node *n) { return UseStrictFP && _method->flags().is_strict() && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding ? _gvn.transform( new RoundDoubleNode(0, n) ) : n; } // rounding for non-strict double stores Node* GraphKit::dstore_rounding(Node* n) { return Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1 ? _gvn.transform( new RoundDoubleNode(0, n) ) : n; } //============================================================================= // Generate a fast path/slow path idiom. Graph looks like: // [foo] indicates that 'foo' is a parameter // // [in] NULL // \ / // CmpP // Bool ne // If // / \ // True False-<2> // / | // / cast_not_null // Load | | ^ // [fast_test] | | // gvn to opt_test | | // / \ | <1> // True False | // | \\ | // [slow_call] \[fast_result] // Ctl Val \ \ // | \ \ // Catch <1> \ \ // / \ ^ \ \ // Ex No_Ex | \ \ // | \ \ | \ <2> \ // ... \ [slow_res] | | \ [null_result] // \ \--+--+--- | | // \ | / \ | / // --------Region Phi // //============================================================================= // Code is structured as a series of driver functions all called 'do_XXX' that // call a set of helper functions. Helper functions first, then drivers. //------------------------------null_check_oop--------------------------------- // Null check oop. Set null-path control into Region in slot 3. // Make a cast-not-nullness use the other not-null control. Return cast. Node* GraphKit::null_check_oop(Node* value, Node* *null_control, bool never_see_null, bool safe_for_replace, bool speculative) { // Initial NULL check taken path (*null_control) = top(); Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); // Generate uncommon_trap: if (never_see_null && (*null_control) != top()) { // If we see an unexpected null at a check-cast we record it and force a // recompile; the offending check-cast will be compiled to handle NULLs. // If we see more than one offending BCI, then all checkcasts in the // method will be compiled to handle NULLs. PreserveJVMState pjvms(this); set_control(*null_control); replace_in_map(value, null()); Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); uncommon_trap(reason, Deoptimization::Action_make_not_entrant); (*null_control) = top(); // NULL path is dead } if ((*null_control) == top() && safe_for_replace) { replace_in_map(value, cast); } // Cast away null-ness on the result return cast; } //------------------------------opt_iff---------------------------------------- // Optimize the fast-check IfNode. Set the fast-path region slot 2. // Return slow-path control. Node* GraphKit::opt_iff(Node* region, Node* iff) { IfNode *opt_iff = _gvn.transform(iff)->as_If(); // Fast path taken; set region slot 2 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); region->init_req(2,fast_taken); // Capture fast-control // Fast path not-taken, i.e. slow path Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); return slow_taken; } //-----------------------------make_runtime_call------------------------------- Node* GraphKit::make_runtime_call(int flags, const TypeFunc* call_type, address call_addr, const char* call_name, const TypePtr* adr_type, // The following parms are all optional. // The first NULL ends the list. Node* parm0, Node* parm1, Node* parm2, Node* parm3, Node* parm4, Node* parm5, Node* parm6, Node* parm7) { assert(call_addr != NULL, "must not call NULL targets"); // Slow-path call bool is_leaf = !(flags & RC_NO_LEAF); bool has_io = (!is_leaf && !(flags & RC_NO_IO)); if (call_name == NULL) { assert(!is_leaf, "must supply name for leaf"); call_name = OptoRuntime::stub_name(call_addr); } CallNode* call; if (!is_leaf) { call = new CallStaticJavaNode(call_type, call_addr, call_name, bci(), adr_type); } else if (flags & RC_NO_FP) { call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); } else { call = new CallLeafNode(call_type, call_addr, call_name, adr_type); } // The following is similar to set_edges_for_java_call, // except that the memory effects of the call are restricted to AliasIdxRaw. // Slow path call has no side-effects, uses few values bool wide_in = !(flags & RC_NARROW_MEM); bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); Node* prev_mem = NULL; if (wide_in) { prev_mem = set_predefined_input_for_runtime_call(call); } else { assert(!wide_out, "narrow in => narrow out"); Node* narrow_mem = memory(adr_type); prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); } // Hook each parm in order. Stop looking at the first NULL. if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); /* close each nested if ===> */ } } } } } } } } assert(call->in(call->req()-1) != NULL, "must initialize all parms"); if (!is_leaf) { // Non-leaves can block and take safepoints: add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); } // Non-leaves can throw exceptions: if (has_io) { call->set_req(TypeFunc::I_O, i_o()); } if (flags & RC_UNCOMMON) { // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. // (An "if" probability corresponds roughly to an unconditional count. // Sort of.) call->set_cnt(PROB_UNLIKELY_MAG(4)); } Node* c = _gvn.transform(call); assert(c == call, "cannot disappear"); if (wide_out) { // Slow path call has full side-effects. set_predefined_output_for_runtime_call(call); } else { // Slow path call has few side-effects, and/or sets few values. set_predefined_output_for_runtime_call(call, prev_mem, adr_type); } if (has_io) { set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); } return call; } //------------------------------merge_memory----------------------------------- // Merge memory from one path into the current memory state. void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { Node* old_slice = mms.force_memory(); Node* new_slice = mms.memory2(); if (old_slice != new_slice) { PhiNode* phi; if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { if (mms.is_empty()) { // clone base memory Phi's inputs for this memory slice assert(old_slice == mms.base_memory(), "sanity"); phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C)); _gvn.set_type(phi, Type::MEMORY); for (uint i = 1; i < phi->req(); i++) { phi->init_req(i, old_slice->in(i)); } } else { phi = old_slice->as_Phi(); // Phi was generated already } } else { phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); _gvn.set_type(phi, Type::MEMORY); } phi->set_req(new_path, new_slice); mms.set_memory(phi); } } } //------------------------------make_slow_call_ex------------------------------ // Make the exception handler hookups for the slow call void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { if (stopped()) return; // Make a catch node with just two handlers: fall-through and catch-all Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) ); Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); { PreserveJVMState pjvms(this); set_control(excp); set_i_o(i_o); if (excp != top()) { if (deoptimize) { // Deoptimize if an exception is caught. Don't construct exception state in this case. uncommon_trap(Deoptimization::Reason_unhandled, Deoptimization::Action_none); } else { // Create an exception state also. // Use an exact type if the caller has a specific exception. const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); Node* ex_oop = new CreateExNode(ex_type, control(), i_o); add_exception_state(make_exception_state(_gvn.transform(ex_oop))); } } } // Get the no-exception control from the CatchNode. set_control(norm); } static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) { Node* cmp = NULL; switch(bt) { case T_INT: cmp = new CmpINode(in1, in2); break; case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; default: fatal("unexpected comparison type %s", type2name(bt)); } gvn->transform(cmp); Node* bol = gvn->transform(new BoolNode(cmp, test)); IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); gvn->transform(iff); if (!bol->is_Con()) gvn->record_for_igvn(iff); return iff; } //-------------------------------gen_subtype_check----------------------------- // Generate a subtyping check. Takes as input the subtype and supertype. // Returns 2 values: sets the default control() to the true path and returns // the false path. Only reads invariant memory; sets no (visible) memory. // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding // but that's not exposed to the optimizer. This call also doesn't take in an // Object; if you wish to check an Object you need to load the Object's class // prior to coming here. Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) { Compile* C = gvn->C; if ((*ctrl)->is_top()) { return C->top(); } // Fast check for identical types, perhaps identical constants. // The types can even be identical non-constants, in cases // involving Array.newInstance, Object.clone, etc. if (subklass == superklass) return C->top(); // false path is dead; no test needed. if (gvn->type(superklass)->singleton()) { ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass(); ciKlass* subk = gvn->type(subklass)->is_klassptr()->klass(); // In the common case of an exact superklass, try to fold up the // test before generating code. You may ask, why not just generate // the code and then let it fold up? The answer is that the generated // code will necessarily include null checks, which do not always // completely fold away. If they are also needless, then they turn // into a performance loss. Example: // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; // Here, the type of 'fa' is often exact, so the store check // of fa[1]=x will fold up, without testing the nullness of x. switch (C->static_subtype_check(superk, subk)) { case Compile::SSC_always_false: { Node* always_fail = *ctrl; *ctrl = gvn->C->top(); return always_fail; } case Compile::SSC_always_true: return C->top(); case Compile::SSC_easy_test: { // Just do a direct pointer compare and be done. IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); *ctrl = gvn->transform(new IfTrueNode(iff)); return gvn->transform(new IfFalseNode(iff)); } case Compile::SSC_full_test: break; default: ShouldNotReachHere(); } } // %%% Possible further optimization: Even if the superklass is not exact, // if the subklass is the unique subtype of the superklass, the check // will always succeed. We could leave a dependency behind to ensure this. // First load the super-klass's check-offset Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset())))); Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr())); Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con); // Load from the sub-klass's super-class display list, or a 1-word cache of // the secondary superclass list, or a failing value with a sentinel offset // if the super-klass is an interface or exceptionally deep in the Java // hierarchy and we have to scan the secondary superclass list the hard way. // Worst-case type is a little odd: NULL is allowed as a result (usually // klass loads can never produce a NULL). Node *chk_off_X = chk_off; #ifdef _LP64 chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X)); #endif Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X)); // For some types like interfaces the following loadKlass is from a 1-word // cache which is mutable so can't use immutable memory. Other // types load from the super-class display table which is immutable. m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr())); Node *kmem = might_be_cache ? m : C->immutable_memory(); Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL)); // Compile speed common case: ARE a subtype and we canNOT fail if( superklass == nkls ) return C->top(); // false path is dead; no test needed. // See if we get an immediate positive hit. Happens roughly 83% of the // time. Test to see if the value loaded just previously from the subklass // is exactly the superklass. IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); Node *iftrue1 = gvn->transform( new IfTrueNode (iff1)); *ctrl = gvn->transform(new IfFalseNode(iff1)); // Compile speed common case: Check for being deterministic right now. If // chk_off is a constant and not equal to cacheoff then we are NOT a // subklass. In this case we need exactly the 1 test above and we can // return those results immediately. if (!might_be_cache) { Node* not_subtype_ctrl = *ctrl; *ctrl = iftrue1; // We need exactly the 1 test above return not_subtype_ctrl; } // Gather the various success & failures here RegionNode *r_ok_subtype = new RegionNode(4); gvn->record_for_igvn(r_ok_subtype); RegionNode *r_not_subtype = new RegionNode(3); gvn->record_for_igvn(r_not_subtype); r_ok_subtype->init_req(1, iftrue1); // Check for immediate negative hit. Happens roughly 11% of the time (which // is roughly 63% of the remaining cases). Test to see if the loaded // check-offset points into the subklass display list or the 1-element // cache. If it points to the display (and NOT the cache) and the display // missed then it's not a subtype. Node *cacheoff = gvn->intcon(cacheoff_con); IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2))); *ctrl = gvn->transform(new IfFalseNode(iff2)); // Check for self. Very rare to get here, but it is taken 1/3 the time. // No performance impact (too rare) but allows sharing of secondary arrays // which has some footprint reduction. IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3))); *ctrl = gvn->transform(new IfFalseNode(iff3)); // -- Roads not taken here: -- // We could also have chosen to perform the self-check at the beginning // of this code sequence, as the assembler does. This would not pay off // the same way, since the optimizer, unlike the assembler, can perform // static type analysis to fold away many successful self-checks. // Non-foldable self checks work better here in second position, because // the initial primary superclass check subsumes a self-check for most // types. An exception would be a secondary type like array-of-interface, // which does not appear in its own primary supertype display. // Finally, we could have chosen to move the self-check into the // PartialSubtypeCheckNode, and from there out-of-line in a platform // dependent manner. But it is worthwhile to have the check here, // where it can be perhaps be optimized. The cost in code space is // small (register compare, branch). // Now do a linear scan of the secondary super-klass array. Again, no real // performance impact (too rare) but it's gotta be done. // Since the code is rarely used, there is no penalty for moving it // out of line, and it can only improve I-cache density. // The decision to inline or out-of-line this final check is platform // dependent, and is found in the AD file definition of PartialSubtypeCheck. Node* psc = gvn->transform( new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4))); r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4))); // Return false path; set default control to true path. *ctrl = gvn->transform(r_ok_subtype); return gvn->transform(r_not_subtype); } // Profile-driven exact type check: Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, float prob, Node* *casted_receiver) { const TypeKlassPtr* tklass = TypeKlassPtr::make(klass); Node* recv_klass = load_object_klass(receiver); Node* fail = type_check(recv_klass, tklass, prob); const TypeOopPtr* recv_xtype = tklass->as_instance_type(); assert(recv_xtype->klass_is_exact(), ""); // Subsume downstream occurrences of receiver with a cast to // recv_xtype, since now we know what the type will be. Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); Node* res = _gvn.transform(cast); if (recv_xtype->is_valuetypeptr() && recv_xtype->value_klass()->is_scalarizable()) { assert(!gvn().type(res)->maybe_null(), "receiver should never be null"); res = ValueTypeNode::make_from_oop(this, res, recv_xtype->value_klass()); } (*casted_receiver) = res; // (User must make the replace_in_map call.) return fail; } Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass, float prob) { Node* want_klass = makecon(tklass); Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass)); Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) ); IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); set_control( _gvn.transform( new IfTrueNode (iff))); Node* fail = _gvn.transform( new IfFalseNode(iff)); return fail; } //------------------------------subtype_check_receiver------------------------- Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, Node** casted_receiver) { const TypeKlassPtr* tklass = TypeKlassPtr::make(klass); Node* recv_klass = load_object_klass(receiver); Node* want_klass = makecon(tklass); Node* slow_ctl = gen_subtype_check(recv_klass, want_klass); // Cast receiver after successful check const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); Node* cast = new CheckCastPPNode(control(), receiver, recv_type); (*casted_receiver) = _gvn.transform(cast); return slow_ctl; } //------------------------------seems_never_null------------------------------- // Use null_seen information if it is available from the profile. // If we see an unexpected null at a type check we record it and force a // recompile; the offending check will be recompiled to handle NULLs. // If we see several offending BCIs, then all checks in the // method will be recompiled. bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { speculating = !_gvn.type(obj)->speculative_maybe_null(); Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); if (UncommonNullCast // Cutout for this technique && obj != null() // And not the -Xcomp stupid case? && !too_many_traps(reason) ) { if (speculating) { return true; } if (data == NULL) // Edge case: no mature data. Be optimistic here. return true; // If the profile has not seen a null, assume it won't happen. assert(java_bc() == Bytecodes::_checkcast || java_bc() == Bytecodes::_instanceof || java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); return !data->as_BitData()->null_seen(); } speculating = false; return false; } void GraphKit::guard_klass_being_initialized(Node* klass) { int init_state_off = in_bytes(InstanceKlass::init_state_offset()); Node* adr = basic_plus_adr(top(), klass, init_state_off); Node* init_state = LoadNode::make(_gvn, NULL, immutable_memory(), adr, adr->bottom_type()->is_ptr(), TypeInt::BYTE, T_BYTE, MemNode::unordered); init_state = _gvn.transform(init_state); Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); { BuildCutout unless(this, tst, PROB_MAX); uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); } } void GraphKit::guard_init_thread(Node* klass) { int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); Node* adr = basic_plus_adr(top(), klass, init_thread_off); Node* init_thread = LoadNode::make(_gvn, NULL, immutable_memory(), adr, adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); init_thread = _gvn.transform(init_thread); Node* cur_thread = _gvn.transform(new ThreadLocalNode()); Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); { BuildCutout unless(this, tst, PROB_MAX); uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); } } void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { if (ik->is_being_initialized()) { if (C->needs_clinit_barrier(ik, context)) { Node* klass = makecon(TypeKlassPtr::make(ik)); guard_klass_being_initialized(klass); guard_init_thread(klass); insert_mem_bar(Op_MemBarCPUOrder); } } else if (ik->is_initialized()) { return; // no barrier needed } else { uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret, NULL); } } //------------------------maybe_cast_profiled_receiver------------------------- // If the profile has seen exactly one type, narrow to exactly that type. // Subsequent type checks will always fold up. Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, ciKlass* require_klass, ciKlass* spec_klass, bool safe_for_replace) { if (!UseTypeProfile || !TypeProfileCasts) return NULL; Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL); // Make sure we haven't already deoptimized from this tactic. if (too_many_traps_or_recompiles(reason)) return NULL; // (No, this isn't a call, but it's enough like a virtual call // to use the same ciMethod accessor to get the profile info...) // If we have a speculative type use it instead of profiling (which // may not help us) ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass; if (exact_kls != NULL) {// no cast failures here if (require_klass == NULL || C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) { // If we narrow the type to match what the type profile sees or // the speculative type, we can then remove the rest of the // cast. // This is a win, even if the exact_kls is very specific, // because downstream operations, such as method calls, // will often benefit from the sharper type. Node* exact_obj = not_null_obj; // will get updated in place... Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, &exact_obj); { PreserveJVMState pjvms(this); set_control(slow_ctl); uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); } if (safe_for_replace) { replace_in_map(not_null_obj, exact_obj); } return exact_obj; } // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. } return NULL; } /** * Cast obj to type and emit guard unless we had too many traps here * already * * @param obj node being casted * @param type type to cast the node to * @param not_null true if we know node cannot be null */ Node* GraphKit::maybe_cast_profiled_obj(Node* obj, ciKlass* type, bool not_null) { if (stopped()) { return obj; } // type == NULL if profiling tells us this object is always null if (type != NULL) { Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; if (!too_many_traps_or_recompiles(null_reason) && !too_many_traps_or_recompiles(class_reason)) { Node* not_null_obj = NULL; // not_null is true if we know the object is not null and // there's no need for a null check if (!not_null) { Node* null_ctl = top(); not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); assert(null_ctl->is_top(), "no null control here"); } else { not_null_obj = obj; } Node* exact_obj = not_null_obj; ciKlass* exact_kls = type; Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, &exact_obj); { PreserveJVMState pjvms(this); set_control(slow_ctl); uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); } replace_in_map(not_null_obj, exact_obj); obj = exact_obj; } } else { if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { Node* exact_obj = null_assert(obj); replace_in_map(obj, exact_obj); obj = exact_obj; } } return obj; } //-------------------------------gen_instanceof-------------------------------- // Generate an instance-of idiom. Used by both the instance-of bytecode // and the reflective instance-of call. Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { kill_dead_locals(); // Benefit all the uncommon traps assert( !stopped(), "dead parse path should be checked in callers" ); assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), "must check for not-null not-dead klass in callers"); // Make the merge point enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; RegionNode* region = new RegionNode(PATH_LIMIT); Node* phi = new PhiNode(region, TypeInt::BOOL); C->set_has_split_ifs(true); // Has chance for split-if optimization ciProfileData* data = NULL; if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode data = method()->method_data()->bci_to_data(bci()); } bool speculative_not_null = false; bool never_see_null = (ProfileDynamicTypes // aggressive use of profile && seems_never_null(obj, data, speculative_not_null)); bool is_value = obj->is_ValueType(); // Null check; get casted pointer; set region slot 3 Node* null_ctl = top(); Node* not_null_obj = is_value ? obj : null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); // If not_null_obj is dead, only null-path is taken if (stopped()) { // Doing instance-of on a NULL? set_control(null_ctl); return intcon(0); } region->init_req(_null_path, null_ctl); phi ->init_req(_null_path, intcon(0)); // Set null path value if (null_ctl == top()) { // Do this eagerly, so that pattern matches like is_diamond_phi // will work even during parsing. assert(_null_path == PATH_LIMIT-1, "delete last"); region->del_req(_null_path); phi ->del_req(_null_path); } // Do we know the type check always succeed? if (!is_value) { bool known_statically = false; if (_gvn.type(superklass)->singleton()) { ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass(); ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass(); if (subk != NULL && subk->is_loaded()) { int static_res = C->static_subtype_check(superk, subk); known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); } } if (!known_statically) { const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); // We may not have profiling here or it may not help us. If we // have a speculative type use it to perform an exact cast. ciKlass* spec_obj_type = obj_type->speculative_type(); if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) { Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace); if (stopped()) { // Profile disagrees with this path. set_control(null_ctl); // Null is the only remaining possibility. return intcon(0); } if (cast_obj != NULL && // A value that's sometimes null is not something we can optimize well !(cast_obj->is_ValueType() && null_ctl != top())) { not_null_obj = cast_obj; is_value = not_null_obj->is_ValueType(); } } } } // Load the object's klass Node* obj_klass = NULL; if (is_value) { obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->value_klass())); } else { obj_klass = load_object_klass(not_null_obj); } // Generate the subtype check Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass); // Plug in the success path to the general merge in slot 1. region->init_req(_obj_path, control()); phi ->init_req(_obj_path, intcon(1)); // Plug in the failing path to the general merge in slot 2. region->init_req(_fail_path, not_subtype_ctrl); phi ->init_req(_fail_path, intcon(0)); // Return final merged results set_control( _gvn.transform(region) ); record_for_igvn(region); // If we know the type check always succeeds then we don't use the // profiling data at this bytecode. Don't lose it, feed it to the // type system as a speculative type. if (safe_for_replace && !is_value) { Node* casted_obj = record_profiled_receiver_for_speculation(obj); replace_in_map(obj, casted_obj); } return _gvn.transform(phi); } //-------------------------------gen_checkcast--------------------------------- // Generate a checkcast idiom. Used by both the checkcast bytecode and the // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the // uncommon-trap paths work. Adjust stack after this call. // If failure_control is supplied and not null, it is filled in with // the control edge for the cast failure. Otherwise, an appropriate // uncommon trap or exception is thrown. Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool never_null) { kill_dead_locals(); // Benefit all the uncommon traps const TypeKlassPtr* tk = _gvn.type(superklass)->is_klassptr(); const TypeOopPtr* toop = TypeOopPtr::make_from_klass(tk->klass()); assert(!never_null || toop->is_valuetypeptr(), "must be a value type pointer"); bool is_value = obj->is_ValueType(); // Fast cutout: Check the case that the cast is vacuously true. // This detects the common cases where the test will short-circuit // away completely. We do this before we perform the null check, // because if the test is going to turn into zero code, we don't // want a residual null check left around. (Causes a slowdown, // for example, in some objArray manipulations, such as a[i]=a[j].) if (tk->singleton()) { ciKlass* klass = NULL; if (is_value) { klass = _gvn.type(obj)->value_klass(); } else { const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr(); if (objtp != NULL) { klass = objtp->klass(); } } if (klass != NULL) { switch (C->static_subtype_check(tk->klass(), klass)) { case Compile::SSC_always_true: // If we know the type check always succeed then we don't use // the profiling data at this bytecode. Don't lose it, feed it // to the type system as a speculative type. if (!is_value) { obj = record_profiled_receiver_for_speculation(obj); if (never_null) { obj = null_check(obj); } if (toop->is_valuetypeptr() && toop->value_klass()->is_scalarizable() && !gvn().type(obj)->maybe_null()) { obj = ValueTypeNode::make_from_oop(this, obj, toop->value_klass()); } } return obj; case Compile::SSC_always_false: if (is_value || never_null) { if (!is_value) { null_check(obj); } // Value type is never null. Always throw an exception. builtin_throw(Deoptimization::Reason_class_check, makecon(TypeKlassPtr::make(klass))); return top(); } else { // It needs a null check because a null will *pass* the cast check. return null_assert(obj); } } } } ciProfileData* data = NULL; bool safe_for_replace = false; if (failure_control == NULL) { // use MDO in regular case only assert(java_bc() == Bytecodes::_aastore || java_bc() == Bytecodes::_checkcast, "interpreter profiles type checks only for these BCs"); data = method()->method_data()->bci_to_data(bci()); safe_for_replace = true; } // Make the merge point enum { _obj_path = 1, _null_path, PATH_LIMIT }; RegionNode* region = new RegionNode(PATH_LIMIT); Node* phi = new PhiNode(region, toop); _gvn.set_type(region, Type::CONTROL); _gvn.set_type(phi, toop); C->set_has_split_ifs(true); // Has chance for split-if optimization // Use null-cast information if it is available bool speculative_not_null = false; bool never_see_null = ((failure_control == NULL) // regular case only && seems_never_null(obj, data, speculative_not_null)); // Null check; get casted pointer; set region slot 3 Node* null_ctl = top(); Node* not_null_obj = NULL; if (is_value) { not_null_obj = obj; } else if (never_null) { not_null_obj = null_check(obj); } else { not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); } // If not_null_obj is dead, only null-path is taken if (stopped()) { // Doing instance-of on a NULL? set_control(null_ctl); return null(); } region->init_req(_null_path, null_ctl); phi ->init_req(_null_path, null()); // Set null path value if (null_ctl == top()) { // Do this eagerly, so that pattern matches like is_diamond_phi // will work even during parsing. assert(_null_path == PATH_LIMIT-1, "delete last"); region->del_req(_null_path); phi ->del_req(_null_path); } Node* cast_obj = NULL; if (!is_value && tk->klass_is_exact()) { // The following optimization tries to statically cast the speculative type of the object // (for example obtained during profiling) to the type of the superklass and then do a // dynamic check that the type of the object is what we expect. To work correctly // for checkcast and aastore the type of superklass should be exact. const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); // We may not have profiling here or it may not help us. If we have // a speculative type use it to perform an exact cast. ciKlass* spec_obj_type = obj_type->speculative_type(); if (spec_obj_type != NULL || data != NULL) { cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace); if (cast_obj != NULL && cast_obj->is_ValueType()) { if (null_ctl != top()) { cast_obj = NULL; // A value that's sometimes null is not something we can optimize well } else { return cast_obj; } } if (cast_obj != NULL) { if (failure_control != NULL) // failure is now impossible (*failure_control) = top(); // adjust the type of the phi to the exact klass: phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); } } } if (cast_obj == NULL) { // Load the object's klass Node* obj_klass = NULL; if (is_value) { obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->value_klass())); } else { obj_klass = load_object_klass(not_null_obj); } // Generate the subtype check Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass ); // Plug in success path into the merge cast_obj = is_value ? not_null_obj : _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); // Failure path ends in uncommon trap (or may be dead - failure impossible) if (failure_control == NULL) { if (not_subtype_ctrl != top()) { // If failure is possible PreserveJVMState pjvms(this); set_control(not_subtype_ctrl); builtin_throw(Deoptimization::Reason_class_check, obj_klass); } } else { (*failure_control) = not_subtype_ctrl; } } region->init_req(_obj_path, control()); phi ->init_req(_obj_path, cast_obj); // A merge of NULL or Casted-NotNull obj Node* res = _gvn.transform(phi); // Note I do NOT always 'replace_in_map(obj,result)' here. // if( tk->klass()->can_be_primary_super() ) // This means that if I successfully store an Object into an array-of-String // I 'forget' that the Object is really now known to be a String. I have to // do this because we don't have true union types for interfaces - if I store // a Baz into an array-of-Interface and then tell the optimizer it's an // Interface, I forget that it's also a Baz and cannot do Baz-like field // references to it. FIX THIS WHEN UNION TYPES APPEAR! // replace_in_map( obj, res ); // Return final merged results set_control( _gvn.transform(region) ); record_for_igvn(region); bool not_null_free = !toop->can_be_value_type(); bool not_flattenable = !ValueArrayFlatten || not_null_free || (toop->is_valuetypeptr() && !toop->value_klass()->flatten_array()); if (EnableValhalla && not_flattenable) { // Check if obj has been loaded from an array obj = obj->isa_DecodeN() ? obj->in(1) : obj; Node* array = NULL; if (obj->isa_Load()) { Node* address = obj->in(MemNode::Address); if (address->isa_AddP()) { array = address->as_AddP()->in(AddPNode::Base); } } else if (obj->is_Phi()) { Node* region = obj->in(0); if (region->req() == 3 && region->in(1) != NULL && region->in(1)->in(0) != NULL) { IfNode* iff = region->in(1)->in(0)->isa_If(); if (iff != NULL) { iff->is_flattened_array_check(&_gvn, array); } } } if (array != NULL) { const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr(); if (ary_t != NULL) { if (!ary_t->is_not_null_free() && not_null_free) { // Casting array element to a non-inline-type, mark array as not null-free. Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free())); replace_in_map(array, cast); } else if (!ary_t->is_not_flat()) { // Casting array element to a non-flattenable type, mark array as not flat. Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat())); replace_in_map(array, cast); } } } } if (!is_value) { res = record_profiled_receiver_for_speculation(res); if (toop->is_valuetypeptr() && toop->value_klass()->is_scalarizable() && !gvn().type(res)->maybe_null()) { res = ValueTypeNode::make_from_oop(this, res, toop->value_klass()); } } return res; } Node* GraphKit::is_always_locked(Node* obj) { Node* mark_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); Node* mark = make_load(NULL, mark_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); Node* mask = _gvn.MakeConX(markWord::always_locked_pattern); Node* andx = _gvn.transform(new AndXNode(mark, mask)); Node* cmp = _gvn.transform(new CmpXNode(andx, mask)); return _gvn.transform(new BoolNode(cmp, BoolTest::eq)); } Node* GraphKit::is_value_mirror(Node* mirror) { Node* p = basic_plus_adr(mirror, java_lang_Class::inline_mirror_offset_in_bytes()); Node* inline_mirror = access_load_at(mirror, p, _gvn.type(p)->is_ptr(), TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR), T_OBJECT, IN_HEAP); Node* cmp = _gvn.transform(new CmpPNode(mirror, inline_mirror)); return _gvn.transform(new BoolNode(cmp, BoolTest::eq)); } // Check if 'ary' is a null-free value type array Node* GraphKit::gen_null_free_array_check(Node* ary) { assert(EnableValhalla, "should only be used if value types are enabled"); // Extract null free property from klass pointer Node* k_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); const TypePtr* k_adr_type = k_adr->bottom_type()->isa_ptr(); Node* klass = NULL; if (k_adr_type->is_ptr_to_narrowklass()) { klass = _gvn.transform(new LoadNKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT->make_narrowklass(), MemNode::unordered, true)); } else { klass = _gvn.transform(new LoadKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT, MemNode::unordered, true)); } Node* null_free = _gvn.transform(new GetNullFreePropertyNode(klass)); Node* cmp = NULL; if (_gvn.type(klass)->isa_klassptr()) { cmp = _gvn.transform(new CmpLNode(null_free, zerocon(T_LONG))); } else { cmp = _gvn.transform(new CmpINode(null_free, zerocon(T_INT))); } return _gvn.transform(new BoolNode(cmp, BoolTest::eq)); } Node* GraphKit::gen_flattened_array_test(Node* ary) { assert(EnableValhalla, "should only be used if value types are enabled"); // Extract flattened property from klass pointer Node* k_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); const TypePtr* k_adr_type = k_adr->bottom_type()->isa_ptr(); Node* klass = NULL; if (k_adr_type->is_ptr_to_narrowklass()) { klass = _gvn.transform(new LoadNKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT->make_narrowklass(), MemNode::unordered, true)); } else { klass = _gvn.transform(new LoadKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT, MemNode::unordered, true)); } return _gvn.transform(new GetFlattenedPropertyNode(klass)); } // Deoptimize if 'ary' is a null-free value type array and 'val' is null Node* GraphKit::gen_value_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) { const Type* val_t = _gvn.type(val); if (val->is_ValueType() || !TypePtr::NULL_PTR->higher_equal(val_t)) { return ary; // Never null } RegionNode* region = new RegionNode(3); Node* null_ctl = top(); null_check_oop(val, &null_ctl); if (null_ctl != top()) { PreserveJVMState pjvms(this); set_control(null_ctl); // Deoptimize if null-free array Node* bol = gen_null_free_array_check(ary); { BuildCutout unless(this, bol, PROB_MAX); inc_sp(nargs); uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none); } region->init_req(1, control()); } region->init_req(2, control()); set_control(_gvn.transform(region)); record_for_igvn(region); const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); if (val_t == TypePtr::NULL_PTR && !ary_t->is_not_null_free()) { // Since we were just successfully storing null, the array can't be null free. ary_t = ary_t->cast_to_not_null_free(); Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); if (safe_for_replace) { replace_in_map(ary, cast); } ary = cast; } return ary; } Node* GraphKit::load_lh_array_tag(Node* kls) { Node* lhp = basic_plus_adr(kls, in_bytes(Klass::layout_helper_offset())); Node* layout_val = _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), lhp, lhp->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered)); return _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); } Node* GraphKit::gen_lh_array_test(Node* kls, unsigned int lh_value) { Node* layout_val = load_lh_array_tag(kls); Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(lh_value))); return cmp; } //------------------------------next_monitor----------------------------------- // What number should be given to the next monitor? int GraphKit::next_monitor() { int current = jvms()->monitor_depth()* C->sync_stack_slots(); int next = current + C->sync_stack_slots(); // Keep the toplevel high water mark current: if (C->fixed_slots() < next) C->set_fixed_slots(next); return current; } //------------------------------insert_mem_bar--------------------------------- // Memory barrier to avoid floating things around // The membar serves as a pinch point between both control and all memory slices. Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); mb->init_req(TypeFunc::Control, control()); mb->init_req(TypeFunc::Memory, reset_memory()); Node* membar = _gvn.transform(mb); set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); set_all_memory_call(membar); return membar; } //-------------------------insert_mem_bar_volatile---------------------------- // Memory barrier to avoid floating things around // The membar serves as a pinch point between both control and memory(alias_idx). // If you want to make a pinch point on all memory slices, do not use this // function (even with AliasIdxBot); use insert_mem_bar() instead. Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { // When Parse::do_put_xxx updates a volatile field, it appends a series // of MemBarVolatile nodes, one for *each* volatile field alias category. // The first membar is on the same memory slice as the field store opcode. // This forces the membar to follow the store. (Bug 6500685 broke this.) // All the other membars (for other volatile slices, including AliasIdxBot, // which stands for all unknown volatile slices) are control-dependent // on the first membar. This prevents later volatile loads or stores // from sliding up past the just-emitted store. MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); mb->set_req(TypeFunc::Control,control()); if (alias_idx == Compile::AliasIdxBot) { mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); } else { assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); mb->set_req(TypeFunc::Memory, memory(alias_idx)); } Node* membar = _gvn.transform(mb); set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); if (alias_idx == Compile::AliasIdxBot) { merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); } else { set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); } return membar; } //------------------------------shared_lock------------------------------------ // Emit locking code. FastLockNode* GraphKit::shared_lock(Node* obj) { // bci is either a monitorenter bc or InvocationEntryBci // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces assert(SynchronizationEntryBCI == InvocationEntryBci, ""); if( !GenerateSynchronizationCode ) return NULL; // Not locking things? if (stopped()) // Dead monitor? return NULL; assert(dead_locals_are_killed(), "should kill locals before sync. point"); obj = access_resolve(obj, ACCESS_READ | ACCESS_WRITE); // Box the stack location Node* box = _gvn.transform(new BoxLockNode(next_monitor())); Node* mem = reset_memory(); FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock(); if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) { // Create the counters for this fast lock. flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci } // Create the rtm counters for this fast lock if needed. flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci // Add monitor to debug info for the slow path. If we block inside the // slow path and de-opt, we need the monitor hanging around map()->push_monitor( flock ); const TypeFunc *tf = LockNode::lock_type(); LockNode *lock = new LockNode(C, tf); lock->init_req( TypeFunc::Control, control() ); lock->init_req( TypeFunc::Memory , mem ); lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o lock->init_req( TypeFunc::FramePtr, frameptr() ); lock->init_req( TypeFunc::ReturnAdr, top() ); lock->init_req(TypeFunc::Parms + 0, obj); lock->init_req(TypeFunc::Parms + 1, box); lock->init_req(TypeFunc::Parms + 2, flock); add_safepoint_edges(lock); lock = _gvn.transform( lock )->as_Lock(); // lock has no side-effects, sets few values set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); insert_mem_bar(Op_MemBarAcquireLock); // Add this to the worklist so that the lock can be eliminated record_for_igvn(lock); #ifndef PRODUCT if (PrintLockStatistics) { // Update the counter for this lock. Don't bother using an atomic // operation since we don't require absolute accuracy. lock->create_lock_counter(map()->jvms()); increment_counter(lock->counter()->addr()); } #endif return flock; } //------------------------------shared_unlock---------------------------------- // Emit unlocking code. void GraphKit::shared_unlock(Node* box, Node* obj) { // bci is either a monitorenter bc or InvocationEntryBci // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces assert(SynchronizationEntryBCI == InvocationEntryBci, ""); if( !GenerateSynchronizationCode ) return; if (stopped()) { // Dead monitor? map()->pop_monitor(); // Kill monitor from debug info return; } assert(!obj->is_ValueTypeBase(), "should not unlock on value type"); // Memory barrier to avoid floating things down past the locked region insert_mem_bar(Op_MemBarReleaseLock); const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); UnlockNode *unlock = new UnlockNode(C, tf); #ifdef ASSERT unlock->set_dbg_jvms(sync_jvms()); #endif uint raw_idx = Compile::AliasIdxRaw; unlock->init_req( TypeFunc::Control, control() ); unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o unlock->init_req( TypeFunc::FramePtr, frameptr() ); unlock->init_req( TypeFunc::ReturnAdr, top() ); unlock->init_req(TypeFunc::Parms + 0, obj); unlock->init_req(TypeFunc::Parms + 1, box); unlock = _gvn.transform(unlock)->as_Unlock(); Node* mem = reset_memory(); // unlock has no side-effects, sets few values set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); // Kill monitor from debug info map()->pop_monitor( ); } //-------------------------------get_layout_helper----------------------------- // If the given klass is a constant or known to be an array, // fetch the constant layout helper value into constant_value // and return (Node*)NULL. Otherwise, load the non-constant // layout helper value, and return the node which represents it. // This two-faced routine is useful because allocation sites // almost always feature constant types. Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr(); if (!StressReflectiveCode && inst_klass != NULL) { ciKlass* klass = inst_klass->klass(); assert(klass != NULL, "klass should not be NULL"); bool xklass = inst_klass->klass_is_exact(); bool can_be_flattened = false; if (ValueArrayFlatten && klass->is_obj_array_klass()) { ciKlass* elem = klass->as_obj_array_klass()->element_klass(); can_be_flattened = elem->is_java_lang_Object() || elem->is_interface() || (elem->is_valuetype() && !klass->as_array_klass()->storage_properties().is_null_free()); } if (xklass || (klass->is_array_klass() && !can_be_flattened)) { jint lhelper = klass->layout_helper(); if (lhelper != Klass::_lh_neutral_value) { constant_value = lhelper; return (Node*) NULL; } } } constant_value = Klass::_lh_neutral_value; // put in a known value Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered); } // We just put in an allocate/initialize with a big raw-memory effect. // Hook selected additional alias categories on the initialization. static void hook_memory_on_init(GraphKit& kit, int alias_idx, MergeMemNode* init_in_merge, Node* init_out_raw) { DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); Node* prevmem = kit.memory(alias_idx); init_in_merge->set_memory_at(alias_idx, prevmem); kit.set_memory(init_out_raw, alias_idx); } //---------------------------set_output_for_allocation------------------------- Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, const TypeOopPtr* oop_type, bool deoptimize_on_exception) { int rawidx = Compile::AliasIdxRaw; alloc->set_req( TypeFunc::FramePtr, frameptr() ); add_safepoint_edges(alloc); Node* allocx = _gvn.transform(alloc); set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); // create memory projection for i_o set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); // create a memory projection as for the normal control path Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); set_memory(malloc, rawidx); // a normal slow-call doesn't change i_o, but an allocation does // we create a separate i_o projection for the normal control path set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); // put in an initialization barrier InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, rawoop)->as_Initialize(); assert(alloc->initialization() == init, "2-way macro link must work"); assert(init ->allocation() == alloc, "2-way macro link must work"); { // Extract memory strands which may participate in the new object's // initialization, and source them from the new InitializeNode. // This will allow us to observe initializations when they occur, // and link them properly (as a group) to the InitializeNode. assert(init->in(InitializeNode::Memory) == malloc, ""); MergeMemNode* minit_in = MergeMemNode::make(malloc); init->set_req(InitializeNode::Memory, minit_in); record_for_igvn(minit_in); // fold it up later, if possible _gvn.set_type(minit_in, Type::MEMORY); Node* minit_out = memory(rawidx); assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); // Add an edge in the MergeMem for the header fields so an access // to one of those has correct memory state set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); if (oop_type->isa_aryptr()) { const TypeAryPtr* arytype = oop_type->is_aryptr(); if (arytype->klass()->is_value_array_klass()) { // Initially all flattened array accesses share a single slice // but that changes after parsing. Prepare the memory graph so // it can optimize flattened array accesses properly once they // don't share a single slice. assert(C->flattened_accesses_share_alias(), "should be set at parse time"); C->set_flattened_accesses_share_alias(false); ciValueArrayKlass* vak = arytype->klass()->as_value_array_klass(); ciValueKlass* vk = vak->element_klass()->as_value_klass(); for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) { ciField* field = vk->nonstatic_field_at(i); if (field->offset() >= TrackedInitializationLimit * HeapWordSize) continue; // do not bother to track really large numbers of fields int off_in_vt = field->offset() - vk->first_field_offset(); const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot); int fieldidx = C->get_alias_index(adr_type, true); hook_memory_on_init(*this, fieldidx, minit_in, minit_out); } C->set_flattened_accesses_share_alias(true); hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::VALUES), minit_in, minit_out); } else { const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); int elemidx = C->get_alias_index(telemref); hook_memory_on_init(*this, elemidx, minit_in, minit_out); } } else if (oop_type->isa_instptr()) { set_memory(minit_out, C->get_alias_index(oop_type)); // mark word ciInstanceKlass* ik = oop_type->klass()->as_instance_klass(); for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { ciField* field = ik->nonstatic_field_at(i); if (field->offset() >= TrackedInitializationLimit * HeapWordSize) continue; // do not bother to track really large numbers of fields // Find (or create) the alias category for this field: int fieldidx = C->alias_type(field)->index(); hook_memory_on_init(*this, fieldidx, minit_in, minit_out); } } } // Cast raw oop to the real thing... Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); javaoop = _gvn.transform(javaoop); C->set_recent_alloc(control(), javaoop); assert(just_allocated_object(control()) == javaoop, "just allocated"); #ifdef ASSERT { // Verify that the AllocateNode::Ideal_allocation recognizers work: assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc, "Ideal_allocation works"); assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc, "Ideal_allocation works"); if (alloc->is_AllocateArray()) { assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(), "Ideal_allocation works"); assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(), "Ideal_allocation works"); } else { assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); } } #endif //ASSERT return javaoop; } //---------------------------new_instance-------------------------------------- // This routine takes a klass_node which may be constant (for a static type) // or may be non-constant (for reflective code). It will work equally well // for either, and the graph will fold nicely if the optimizer later reduces // the type to a constant. // The optional arguments are for specialized use by intrinsics: // - If 'extra_slow_test' if not null is an extra condition for the slow-path. // - If 'return_size_val', report the the total object size to the caller. // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) Node* GraphKit::new_instance(Node* klass_node, Node* extra_slow_test, Node* *return_size_val, bool deoptimize_on_exception, ValueTypeBaseNode* value_node) { // Compute size in doublewords // The size is always an integral number of doublewords, represented // as a positive bytewise size stored in the klass's layout_helper. // The layout_helper also encodes (in a low bit) the need for a slow path. jint layout_con = Klass::_lh_neutral_value; Node* layout_val = get_layout_helper(klass_node, layout_con); bool layout_is_con = (layout_val == NULL); if (extra_slow_test == NULL) extra_slow_test = intcon(0); // Generate the initial go-slow test. It's either ALWAYS (return a // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective // case) a computed value derived from the layout_helper. Node* initial_slow_test = NULL; if (layout_is_con) { assert(!StressReflectiveCode, "stress mode does not use these paths"); bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; } else { // reflective case // This reflective path is used by Unsafe.allocateInstance. // (It may be stress-tested by specifying StressReflectiveCode.) // Basically, we want to get into the VM is there's an illegal argument. Node* bit = intcon(Klass::_lh_instance_slow_path_bit); initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); if (extra_slow_test != intcon(0)) { initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); } // (Macro-expander will further convert this to a Bool, if necessary.) } // Find the size in bytes. This is easy; it's the layout_helper. // The size value must be valid even if the slow path is taken. Node* size = NULL; if (layout_is_con) { size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); } else { // reflective case // This reflective path is used by clone and Unsafe.allocateInstance. size = ConvI2X(layout_val); // Clear the low bits to extract layout_helper_size_in_bytes: assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); size = _gvn.transform( new AndXNode(size, mask) ); } if (return_size_val != NULL) { (*return_size_val) = size; } // This is a precise notnull oop of the klass. // (Actually, it need not be precise if this is a reflective allocation.) // It's what we cast the result to. const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); if (!tklass) tklass = TypeKlassPtr::OBJECT; const TypeOopPtr* oop_type = tklass->as_instance_type(); // Now generate allocation code // The entire memory state is needed for slow path of the allocation // since GC and deoptimization can happen. Node *mem = reset_memory(); set_all_memory(mem); // Create new memory state AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), control(), mem, i_o(), size, klass_node, initial_slow_test, value_node); return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); } // With compressed oops, the 64 bit init value for non flattened value // arrays is built from 2 32 bit compressed oops static Node* raw_default_for_coops(Node* default_value, GraphKit& kit) { Node* lower = kit.gvn().transform(new CastP2XNode(kit.control(), default_value)); Node* upper = kit.gvn().transform(new LShiftLNode(lower, kit.intcon(32))); return kit.gvn().transform(new OrLNode(lower, upper)); } //-------------------------------new_array------------------------------------- // helper for newarray and anewarray // The 'length' parameter is (obviously) the length of the array. // See comments on new_instance for the meaning of the other arguments. Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) Node* length, // number of array elements int nargs, // number of arguments to push back for uncommon trap Node* *return_size_val, bool deoptimize_on_exception, Node* elem_mirror) { jint layout_con = Klass::_lh_neutral_value; Node* layout_val = get_layout_helper(klass_node, layout_con); bool layout_is_con = (layout_val == NULL); if (!layout_is_con && !StressReflectiveCode && !too_many_traps(Deoptimization::Reason_class_check)) { // This is a reflective array creation site. // Optimistically assume that it is a subtype of Object[], // so that we can fold up all the address arithmetic. layout_con = Klass::array_layout_helper(T_OBJECT); Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); { BuildCutout unless(this, bol_lh, PROB_MAX); inc_sp(nargs); uncommon_trap(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); } layout_val = NULL; layout_is_con = true; } // Generate the initial go-slow test. Make sure we do not overflow // if length is huge (near 2Gig) or negative! We do not need // exact double-words here, just a close approximation of needed // double-words. We can't add any offset or rounding bits, lest we // take a size -1 of bytes and make it positive. Use an unsigned // compare, so negative sizes look hugely positive. int fast_size_limit = FastAllocateSizeLimit; if (layout_is_con) { assert(!StressReflectiveCode, "stress mode does not use these paths"); // Increase the size limit if we have exact knowledge of array type. int log2_esize = Klass::layout_helper_log2_element_size(layout_con); fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0); } Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); // --- Size Computation --- // array_size = round_to_heap(array_header + (length << elem_shift)); // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) // and align_to(x, y) == ((x + y-1) & ~(y-1)) // The rounding mask is strength-reduced, if possible. int round_mask = MinObjAlignmentInBytes - 1; Node* header_size = NULL; int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); // (T_BYTE has the weakest alignment and size restrictions...) if (layout_is_con) { int hsize = Klass::layout_helper_header_size(layout_con); int eshift = Klass::layout_helper_log2_element_size(layout_con); bool is_value_array = Klass::layout_helper_is_valueArray(layout_con); if ((round_mask & ~right_n_bits(eshift)) == 0) round_mask = 0; // strength-reduce it if it goes away completely assert(is_value_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); assert(header_size_min <= hsize, "generic minimum is smallest"); header_size_min = hsize; header_size = intcon(hsize + round_mask); } else { Node* hss = intcon(Klass::_lh_header_size_shift); Node* hsm = intcon(Klass::_lh_header_size_mask); Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) ); hsize = _gvn.transform( new AndINode(hsize, hsm) ); Node* mask = intcon(round_mask); header_size = _gvn.transform( new AddINode(hsize, mask) ); } Node* elem_shift = NULL; if (layout_is_con) { int eshift = Klass::layout_helper_log2_element_size(layout_con); if (eshift != 0) elem_shift = intcon(eshift); } else { // There is no need to mask or shift this value. // The semantics of LShiftINode include an implicit mask to 0x1F. assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); elem_shift = layout_val; } // Transition to native address size for all offset calculations: Node* lengthx = ConvI2X(length); Node* headerx = ConvI2X(header_size); #ifdef _LP64 { const TypeInt* tilen = _gvn.find_int_type(length); if (tilen != NULL && tilen->_lo < 0) { // Add a manual constraint to a positive range. Cf. array_element_address. jint size_max = fast_size_limit; if (size_max > tilen->_hi) size_max = tilen->_hi; const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); // Only do a narrow I2L conversion if the range check passed. IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); _gvn.transform(iff); RegionNode* region = new RegionNode(3); _gvn.set_type(region, Type::CONTROL); lengthx = new PhiNode(region, TypeLong::LONG); _gvn.set_type(lengthx, TypeLong::LONG); // Range check passed. Use ConvI2L node with narrow type. Node* passed = IfFalse(iff); region->init_req(1, passed); // Make I2L conversion control dependent to prevent it from // floating above the range check during loop optimizations. lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); // Range check failed. Use ConvI2L with wide type because length may be invalid. region->init_req(2, IfTrue(iff)); lengthx->init_req(2, ConvI2X(length)); set_control(region); record_for_igvn(region); record_for_igvn(lengthx); } } #endif // Combine header size (plus rounding) and body size. Then round down. // This computation cannot overflow, because it is used only in two // places, one where the length is sharply limited, and the other // after a successful allocation. Node* abody = lengthx; if (elem_shift != NULL) abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) ); Node* size = _gvn.transform( new AddXNode(headerx, abody) ); if (round_mask != 0) { Node* mask = MakeConX(~round_mask); size = _gvn.transform( new AndXNode(size, mask) ); } // else if round_mask == 0, the size computation is self-rounding if (return_size_val != NULL) { // This is the size (*return_size_val) = size; } // Now generate allocation code // The entire memory state is needed for slow path of the allocation // since GC and deoptimization can happen. Node *mem = reset_memory(); set_all_memory(mem); // Create new memory state if (initial_slow_test->is_Bool()) { // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); } const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type(); const TypeAryPtr* ary_ptr = ary_type->isa_aryptr(); const Type* elem = NULL; ciKlass* elem_klass = NULL; // Compute default value and storage properties for value type arrays: // - null-ok: MyValue.box[] (ciObjArrayKlass "[LMyValue") // - null-free: MyValue.val[] (ciObjArrayKlass "[QMyValue") // - null-free, flattened: MyValue.val[] (ciValueArrayKlass "[QMyValue") Node* storage_properties = NULL; Node* default_value = NULL; Node* raw_default_value = NULL; int props_shift = UseCompressedClassPointers ? oopDesc::narrow_storage_props_shift : oopDesc::wide_storage_props_shift; if (ary_ptr != NULL && ary_ptr->klass_is_exact()) { // Array type is known elem = ary_ptr->elem(); ciArrayKlass* ary_klass = ary_ptr->klass()->as_array_klass(); elem_klass = ary_klass->element_klass(); ArrayStorageProperties props = ary_klass->storage_properties(); if (!props.is_empty() && elem_klass->is_valuetype()) { if (props.is_null_free() && !props.is_flattened()) { default_value = ValueTypeNode::default_oop(gvn(), elem_klass->as_value_klass()); if (elem->isa_narrowoop()) { default_value = _gvn.transform(new EncodePNode(default_value, elem)); raw_default_value = raw_default_for_coops(default_value, *this); } else { raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value)); } } storage_properties = MakeConX(props.encode(props_shift)); } } if (EnableValhalla && (elem == NULL || (elem_klass != NULL && (elem_klass->is_java_lang_Object() || elem_klass->is_valuetype()) && !ary_type->klass_is_exact()))) { // Array type is not known, compute default value and storage properties for initialization. assert(default_value == NULL && raw_default_value == NULL && storage_properties == NULL, "shouldn't be set yet"); assert(elem_mirror != NULL, "should not be null"); Node* r = new RegionNode(4); default_value = new PhiNode(r, TypeInstPtr::BOTTOM); storage_properties = new PhiNode(r, TypeX_X); Node* empty = MakeConX(ArrayStorageProperties::empty.encode(props_shift)); Node* null_free = MakeConX(ArrayStorageProperties::null_free.encode(props_shift)); Node* flat = MakeConX(ArrayStorageProperties::flattened_and_null_free.encode(props_shift)); // Check if element mirror is a value mirror IfNode* iff = create_and_map_if(control(), is_value_mirror(elem_mirror), PROB_FAIR, COUNT_UNKNOWN); // Not a value mirror but a box mirror or not a value type array, initialize with all zero r->init_req(1, _gvn.transform(new IfFalseNode(iff))); default_value->init_req(1, null()); storage_properties->init_req(1, empty); // Value mirror (= null-free), check if flattened set_control(_gvn.transform(new IfTrueNode(iff))); Node* cmp = gen_lh_array_test(klass_node, Klass::_lh_array_tag_vt_value); Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); // Flattened, initialize with all zero r->init_req(2, _gvn.transform(new IfTrueNode(iff))); default_value->init_req(2, null()); storage_properties->init_req(2, flat); // Non-flattened, initialize with the default value set_control(_gvn.transform(new IfFalseNode(iff))); Node* p = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset())); Node* eklass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), p, TypeInstPtr::KLASS)); Node* adr_fixed_block_addr = basic_plus_adr(eklass, in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset())); Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(ValueKlass::default_value_offset_offset())); Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered); Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset)); Node* val = access_load_at(elem_mirror, default_value_addr, _gvn.type(default_value_addr)->is_ptr(), TypeInstPtr::BOTTOM, T_OBJECT, IN_HEAP); r->init_req(3, control()); default_value->init_req(3, val); storage_properties->init_req(3, null_free); set_control(_gvn.transform(r)); default_value = _gvn.transform(default_value); storage_properties = _gvn.transform(storage_properties); if (UseCompressedOops) { default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop())); raw_default_value = raw_default_for_coops(default_value, *this); } else { raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value)); } } // Create the AllocateArrayNode and its result projections AllocateArrayNode* alloc = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), control(), mem, i_o(), size, klass_node, initial_slow_test, length, default_value, raw_default_value, storage_properties); // Cast to correct type. Note that the klass_node may be constant or not, // and in the latter case the actual array type will be inexact also. // (This happens via a non-constant argument to inline_native_newArray.) // In any case, the value of klass_node provides the desired array type. const TypeInt* length_type = _gvn.find_int_type(length); if (ary_type->isa_aryptr() && length_type != NULL) { // Try to get a better type than POS for the size ary_type = ary_type->is_aryptr()->cast_to_size(length_type); } Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); // Cast length on remaining path to be as narrow as possible if (map()->find_edge(length) >= 0) { Node* ccast = alloc->make_ideal_length(ary_type, &_gvn); if (ccast != length) { _gvn.set_type_bottom(ccast); record_for_igvn(ccast); replace_in_map(length, ccast); } } return javaoop; } // The following "Ideal_foo" functions are placed here because they recognize // the graph shapes created by the functions immediately above. //---------------------------Ideal_allocation---------------------------------- // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) { if (ptr == NULL) { // reduce dumb test in callers return NULL; } BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); ptr = bs->step_over_gc_barrier(ptr); if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast ptr = ptr->in(1); if (ptr == NULL) return NULL; } // Return NULL for allocations with several casts: // j.l.reflect.Array.newInstance(jobject, jint) // Object.clone() // to keep more precise type from last cast. if (ptr->is_Proj()) { Node* allo = ptr->in(0); if (allo != NULL && allo->is_Allocate()) { return allo->as_Allocate(); } } // Report failure to match. return NULL; } // Fancy version which also strips off an offset (and reports it to caller). AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase, intptr_t& offset) { Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); if (base == NULL) return NULL; return Ideal_allocation(base, phase); } // Trace Initialize <- Proj[Parm] <- Allocate AllocateNode* InitializeNode::allocation() { Node* rawoop = in(InitializeNode::RawAddress); if (rawoop->is_Proj()) { Node* alloc = rawoop->in(0); if (alloc->is_Allocate()) { return alloc->as_Allocate(); } } return NULL; } // Trace Allocate -> Proj[Parm] -> Initialize InitializeNode* AllocateNode::initialization() { ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); if (rawoop == NULL) return NULL; for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { Node* init = rawoop->fast_out(i); if (init->is_Initialize()) { assert(init->as_Initialize()->allocation() == this, "2-way link"); return init->as_Initialize(); } } return NULL; } //----------------------------- loop predicates --------------------------- //------------------------------add_predicate_impl---------------------------- void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) { // Too many traps seen? if (too_many_traps(reason)) { #ifdef ASSERT if (TraceLoopPredicate) { int tc = C->trap_count(reason); tty->print("too many traps=%s tcount=%d in ", Deoptimization::trap_reason_name(reason), tc); method()->print(); // which method has too many predicate traps tty->cr(); } #endif // We cannot afford to take more traps here, // do not generate predicate. return; } Node *cont = _gvn.intcon(1); Node* opq = _gvn.transform(new Opaque1Node(C, cont)); Node *bol = _gvn.transform(new Conv2BNode(opq)); IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN); Node* iffalse = _gvn.transform(new IfFalseNode(iff)); C->add_predicate_opaq(opq); { PreserveJVMState pjvms(this); set_control(iffalse); inc_sp(nargs); uncommon_trap(reason, Deoptimization::Action_maybe_recompile); } Node* iftrue = _gvn.transform(new IfTrueNode(iff)); set_control(iftrue); } //------------------------------add_predicate--------------------------------- void GraphKit::add_predicate(int nargs) { if (UseLoopPredicate) { add_predicate_impl(Deoptimization::Reason_predicate, nargs); } if (UseProfiledLoopPredicate) { add_predicate_impl(Deoptimization::Reason_profile_predicate, nargs); } // loop's limit check predicate should be near the loop. add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs); } void GraphKit::sync_kit(IdealKit& ideal) { set_all_memory(ideal.merged_memory()); set_i_o(ideal.i_o()); set_control(ideal.ctrl()); } void GraphKit::final_sync(IdealKit& ideal) { // Final sync IdealKit and graphKit. sync_kit(ideal); } Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { Node* len = load_array_length(load_String_value(str, set_ctrl)); Node* coder = load_String_coder(str, set_ctrl); // Divide length by 2 if coder is UTF16 return _gvn.transform(new RShiftINode(len, coder)); } Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { int value_offset = java_lang_String::value_offset_in_bytes(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), false, NULL, Type::Offset(0), false); const TypePtr* value_field_type = string_type->add_offset(value_offset); const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, true, true), ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0)); Node* p = basic_plus_adr(str, str, value_offset); Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); return load; } Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { if (!CompactStrings) { return intcon(java_lang_String::CODER_UTF16); } int coder_offset = java_lang_String::coder_offset_in_bytes(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), false, NULL, Type::Offset(0), false); const TypePtr* coder_field_type = string_type->add_offset(coder_offset); Node* p = basic_plus_adr(str, str, coder_offset); Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); return load; } void GraphKit::store_String_value(Node* str, Node* value) { int value_offset = java_lang_String::value_offset_in_bytes(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), false, NULL, Type::Offset(0), false); const TypePtr* value_field_type = string_type->add_offset(value_offset); access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); } void GraphKit::store_String_coder(Node* str, Node* value) { int coder_offset = java_lang_String::coder_offset_in_bytes(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), false, NULL, Type::Offset(0), false); const TypePtr* coder_field_type = string_type->add_offset(coder_offset); access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); } // Capture src and dst memory state with a MergeMemNode Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { if (src_type == dst_type) { // Types are equal, we don't need a MergeMemNode return memory(src_type); } MergeMemNode* merge = MergeMemNode::make(map()->memory()); record_for_igvn(merge); // fold it up later, if possible int src_idx = C->get_alias_index(src_type); int dst_idx = C->get_alias_index(dst_type); merge->set_memory_at(src_idx, memory(src_idx)); merge->set_memory_at(dst_idx, memory(dst_idx)); return merge; } Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); // If input and output memory types differ, capture both states to preserve // the dependency between preceding and subsequent loads/stores. // For example, the following program: // StoreB // compress_string // LoadB // has this memory graph (use->def): // LoadB -> compress_string -> CharMem // ... -> StoreB -> ByteMem // The intrinsic hides the dependency between LoadB and StoreB, causing // the load to read from memory not containing the result of the StoreB. // The correct memory graph should look like this: // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); Node* res_mem = _gvn.transform(new SCMemProjNode(str)); set_memory(res_mem, TypeAryPtr::BYTES); return str; } void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); // Capture src and dst memory (see comment in 'compress_string'). Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); set_memory(_gvn.transform(str), dst_type); } void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { /** * int i_char = start; * for (int i_byte = 0; i_byte < count; i_byte++) { * dst[i_char++] = (char)(src[i_byte] & 0xff); * } */ src = access_resolve(src, ACCESS_READ); dst = access_resolve(dst, ACCESS_WRITE); add_predicate(); RegionNode* head = new RegionNode(3); head->init_req(1, control()); gvn().set_type(head, Type::CONTROL); record_for_igvn(head); Node* i_byte = new PhiNode(head, TypeInt::INT); i_byte->init_req(1, intcon(0)); gvn().set_type(i_byte, TypeInt::INT); record_for_igvn(i_byte); Node* i_char = new PhiNode(head, TypeInt::INT); i_char->init_req(1, start); gvn().set_type(i_char, TypeInt::INT); record_for_igvn(i_char); Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); gvn().set_type(mem, Type::MEMORY); record_for_igvn(mem); set_control(head); set_memory(mem, TypeAryPtr::BYTES); Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES); Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, false, false, true /* mismatched */); IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); head->init_req(2, IfTrue(iff)); mem->init_req(2, st); i_byte->init_req(2, AddI(i_byte, intcon(1))); i_char->init_req(2, AddI(i_char, intcon(2))); set_control(IfFalse(iff)); set_memory(st, TypeAryPtr::BYTES); } Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { if (!field->is_constant()) { return NULL; // Field not marked as constant. } ciInstance* holder = NULL; if (!field->is_static()) { ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); if (const_oop != NULL && const_oop->is_instance()) { holder = const_oop->as_instance(); } } const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), /*is_unsigned_load=*/false); if (con_type != NULL) { Node* con = makecon(con_type); if (field->layout_type() == T_VALUETYPE && field->type()->as_value_klass()->is_scalarizable() && !con_type->maybe_null()) { // Load value type from constant oop con = ValueTypeNode::make_from_oop(this, con, field->type()->as_value_klass()); } return con; } return NULL; } //---------------------------load_mirror_from_klass---------------------------- // Given a klass oop, load its java mirror (a java.lang.Class oop). Node* GraphKit::load_mirror_from_klass(Node* klass) { Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); // mirror = ((OopHandle)mirror)->resolve(); return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); }