1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/valuetypenode.hpp"
  49 #include "utilities/align.hpp"
  50 #include "utilities/copy.hpp"
  51 #include "utilities/macros.hpp"
  52 #include "utilities/vmError.hpp"
  53 #if INCLUDE_ZGC
  54 #include "gc/z/c2/zBarrierSetC2.hpp"
  55 #endif
  56 
  57 // Portions of code courtesy of Clifford Click
  58 
  59 // Optimization - Graph Style
  60 
  61 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  62 
  63 //=============================================================================
  64 uint MemNode::size_of() const { return sizeof(*this); }
  65 
  66 const TypePtr *MemNode::adr_type() const {
  67   Node* adr = in(Address);
  68   if (adr == NULL)  return NULL; // node is dead
  69   const TypePtr* cross_check = NULL;
  70   DEBUG_ONLY(cross_check = _adr_type);
  71   return calculate_adr_type(adr->bottom_type(), cross_check);
  72 }
  73 
  74 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  75   if (adr != NULL) {
  76     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  77       return true;
  78     }
  79   }
  80   return false;
  81 }
  82 
  83 #ifndef PRODUCT
  84 void MemNode::dump_spec(outputStream *st) const {
  85   if (in(Address) == NULL)  return; // node is dead
  86 #ifndef ASSERT
  87   // fake the missing field
  88   const TypePtr* _adr_type = NULL;
  89   if (in(Address) != NULL)
  90     _adr_type = in(Address)->bottom_type()->isa_ptr();
  91 #endif
  92   dump_adr_type(this, _adr_type, st);
  93 
  94   Compile* C = Compile::current();
  95   if (C->alias_type(_adr_type)->is_volatile()) {
  96     st->print(" Volatile!");
  97   }
  98   if (_unaligned_access) {
  99     st->print(" unaligned");
 100   }
 101   if (_mismatched_access) {
 102     st->print(" mismatched");
 103   }
 104   if (_unsafe_access) {
 105     st->print(" unsafe");
 106   }
 107 }
 108 
 109 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 110   st->print(" @");
 111   if (adr_type == NULL) {
 112     st->print("NULL");
 113   } else {
 114     adr_type->dump_on(st);
 115     Compile* C = Compile::current();
 116     Compile::AliasType* atp = NULL;
 117     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 118     if (atp == NULL)
 119       st->print(", idx=?\?;");
 120     else if (atp->index() == Compile::AliasIdxBot)
 121       st->print(", idx=Bot;");
 122     else if (atp->index() == Compile::AliasIdxTop)
 123       st->print(", idx=Top;");
 124     else if (atp->index() == Compile::AliasIdxRaw)
 125       st->print(", idx=Raw;");
 126     else {
 127       ciField* field = atp->field();
 128       if (field) {
 129         st->print(", name=");
 130         field->print_name_on(st);
 131       }
 132       st->print(", idx=%d;", atp->index());
 133     }
 134   }
 135 }
 136 
 137 extern void print_alias_types();
 138 
 139 #endif
 140 
 141 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 142   assert((t_oop != NULL), "sanity");
 143   bool is_instance = t_oop->is_known_instance_field();
 144   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 145                              (load != NULL) && load->is_Load() &&
 146                              (phase->is_IterGVN() != NULL);
 147   if (!(is_instance || is_boxed_value_load))
 148     return mchain;  // don't try to optimize non-instance types
 149   uint instance_id = t_oop->instance_id();
 150   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 151   Node *prev = NULL;
 152   Node *result = mchain;
 153   while (prev != result) {
 154     prev = result;
 155     if (result == start_mem)
 156       break;  // hit one of our sentinels
 157     // skip over a call which does not affect this memory slice
 158     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 159       Node *proj_in = result->in(0);
 160       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 161         break;  // hit one of our sentinels
 162       } else if (proj_in->is_Call()) {
 163         // ArrayCopyNodes processed here as well
 164         CallNode *call = proj_in->as_Call();
 165         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 166           result = call->in(TypeFunc::Memory);
 167         }
 168       } else if (proj_in->is_Initialize()) {
 169         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 170         // Stop if this is the initialization for the object instance which
 171         // contains this memory slice, otherwise skip over it.
 172         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 173           break;
 174         }
 175         if (is_instance) {
 176           result = proj_in->in(TypeFunc::Memory);
 177         } else if (is_boxed_value_load) {
 178           Node* klass = alloc->in(AllocateNode::KlassNode);
 179           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 180           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 181             result = proj_in->in(TypeFunc::Memory); // not related allocation
 182           }
 183         }
 184       } else if (proj_in->is_MemBar()) {
 185         ArrayCopyNode* ac = NULL;
 186         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 187           break;
 188         }
 189         result = proj_in->in(TypeFunc::Memory);
 190       } else {
 191         assert(false, "unexpected projection");
 192       }
 193     } else if (result->is_ClearArray()) {
 194       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 195         // Can not bypass initialization of the instance
 196         // we are looking for.
 197         break;
 198       }
 199       // Otherwise skip it (the call updated 'result' value).
 200     } else if (result->is_MergeMem()) {
 201       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 202     }
 203   }
 204   return result;
 205 }
 206 
 207 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 208   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 209   if (t_oop == NULL)
 210     return mchain;  // don't try to optimize non-oop types
 211   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 212   bool is_instance = t_oop->is_known_instance_field();
 213   PhaseIterGVN *igvn = phase->is_IterGVN();
 214   if (is_instance && igvn != NULL  && result->is_Phi()) {
 215     PhiNode *mphi = result->as_Phi();
 216     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 217     const TypePtr *t = mphi->adr_type();
 218     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 219         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 220          t->is_oopptr()->cast_to_exactness(true)
 221            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 222             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 223       // clone the Phi with our address type
 224       result = mphi->split_out_instance(t_adr, igvn);
 225     } else {
 226       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 227     }
 228   }
 229   return result;
 230 }
 231 
 232 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 233   uint alias_idx = phase->C->get_alias_index(tp);
 234   Node *mem = mmem;
 235 #ifdef ASSERT
 236   {
 237     // Check that current type is consistent with the alias index used during graph construction
 238     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 239     bool consistent =  adr_check == NULL || adr_check->empty() ||
 240                        phase->C->must_alias(adr_check, alias_idx );
 241     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 242     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 243         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 244         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 245         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 246           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 247           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 248       // don't assert if it is dead code.
 249       consistent = true;
 250     }
 251     if( !consistent ) {
 252       st->print("alias_idx==%d, adr_check==", alias_idx);
 253       if( adr_check == NULL ) {
 254         st->print("NULL");
 255       } else {
 256         adr_check->dump();
 257       }
 258       st->cr();
 259       print_alias_types();
 260       assert(consistent, "adr_check must match alias idx");
 261     }
 262   }
 263 #endif
 264   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 265   // means an array I have not precisely typed yet.  Do not do any
 266   // alias stuff with it any time soon.
 267   const TypeOopPtr *toop = tp->isa_oopptr();
 268   if( tp->base() != Type::AnyPtr &&
 269       !(toop &&
 270         toop->klass() != NULL &&
 271         toop->klass()->is_java_lang_Object() &&
 272         toop->offset() == Type::OffsetBot) ) {
 273     // compress paths and change unreachable cycles to TOP
 274     // If not, we can update the input infinitely along a MergeMem cycle
 275     // Equivalent code in PhiNode::Ideal
 276     Node* m  = phase->transform(mmem);
 277     // If transformed to a MergeMem, get the desired slice
 278     // Otherwise the returned node represents memory for every slice
 279     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 280     // Update input if it is progress over what we have now
 281   }
 282   return mem;
 283 }
 284 
 285 //--------------------------Ideal_common---------------------------------------
 286 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 287 // Unhook non-raw memories from complete (macro-expanded) initializations.
 288 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 289   // If our control input is a dead region, kill all below the region
 290   Node *ctl = in(MemNode::Control);
 291   if (ctl && remove_dead_region(phase, can_reshape))
 292     return this;
 293   ctl = in(MemNode::Control);
 294   // Don't bother trying to transform a dead node
 295   if (ctl && ctl->is_top())  return NodeSentinel;
 296 
 297   PhaseIterGVN *igvn = phase->is_IterGVN();
 298   // Wait if control on the worklist.
 299   if (ctl && can_reshape && igvn != NULL) {
 300     Node* bol = NULL;
 301     Node* cmp = NULL;
 302     if (ctl->in(0)->is_If()) {
 303       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 304       bol = ctl->in(0)->in(1);
 305       if (bol->is_Bool())
 306         cmp = ctl->in(0)->in(1)->in(1);
 307     }
 308     if (igvn->_worklist.member(ctl) ||
 309         (bol != NULL && igvn->_worklist.member(bol)) ||
 310         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 311       // This control path may be dead.
 312       // Delay this memory node transformation until the control is processed.
 313       phase->is_IterGVN()->_worklist.push(this);
 314       return NodeSentinel; // caller will return NULL
 315     }
 316   }
 317   // Ignore if memory is dead, or self-loop
 318   Node *mem = in(MemNode::Memory);
 319   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 320   assert(mem != this, "dead loop in MemNode::Ideal");
 321 
 322   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 323     // This memory slice may be dead.
 324     // Delay this mem node transformation until the memory is processed.
 325     phase->is_IterGVN()->_worklist.push(this);
 326     return NodeSentinel; // caller will return NULL
 327   }
 328 
 329   Node *address = in(MemNode::Address);
 330   const Type *t_adr = phase->type(address);
 331   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 332 
 333   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 334     // Unsafe off-heap access with zero address. Remove access and other control users
 335     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 336     assert(ctl != NULL, "unsafe accesses should be control dependent");
 337     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 338       Node* u = ctl->fast_out(i);
 339       if (u != ctl) {
 340         igvn->rehash_node_delayed(u);
 341         int nb = u->replace_edge(ctl, phase->C->top());
 342         --i, imax -= nb;
 343       }
 344     }
 345     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 346     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 347     phase->C->root()->add_req(halt);
 348     return this;
 349   }
 350 
 351   if (can_reshape && igvn != NULL &&
 352       (igvn->_worklist.member(address) ||
 353        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 354     // The address's base and type may change when the address is processed.
 355     // Delay this mem node transformation until the address is processed.
 356     phase->is_IterGVN()->_worklist.push(this);
 357     return NodeSentinel; // caller will return NULL
 358   }
 359 
 360   // Do NOT remove or optimize the next lines: ensure a new alias index
 361   // is allocated for an oop pointer type before Escape Analysis.
 362   // Note: C++ will not remove it since the call has side effect.
 363   if (t_adr->isa_oopptr()) {
 364     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 365   }
 366 
 367   Node* base = NULL;
 368   if (address->is_AddP()) {
 369     base = address->in(AddPNode::Base);
 370   }
 371   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 372       !t_adr->isa_rawptr()) {
 373     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 374     // Skip this node optimization if its address has TOP base.
 375     return NodeSentinel; // caller will return NULL
 376   }
 377 
 378   // Avoid independent memory operations
 379   Node* old_mem = mem;
 380 
 381   // The code which unhooks non-raw memories from complete (macro-expanded)
 382   // initializations was removed. After macro-expansion all stores catched
 383   // by Initialize node became raw stores and there is no information
 384   // which memory slices they modify. So it is unsafe to move any memory
 385   // operation above these stores. Also in most cases hooked non-raw memories
 386   // were already unhooked by using information from detect_ptr_independence()
 387   // and find_previous_store().
 388 
 389   if (mem->is_MergeMem()) {
 390     MergeMemNode* mmem = mem->as_MergeMem();
 391     const TypePtr *tp = t_adr->is_ptr();
 392 
 393     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 394   }
 395 
 396   if (mem != old_mem) {
 397     set_req(MemNode::Memory, mem);
 398     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 399       igvn->_worklist.push(old_mem);
 400     }
 401     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 402     return this;
 403   }
 404 
 405   // let the subclass continue analyzing...
 406   return NULL;
 407 }
 408 
 409 // Helper function for proving some simple control dominations.
 410 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 411 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 412 // is not a constant (dominated by the method's StartNode).
 413 // Used by MemNode::find_previous_store to prove that the
 414 // control input of a memory operation predates (dominates)
 415 // an allocation it wants to look past.
 416 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 417   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 418     return false; // Conservative answer for dead code
 419 
 420   // Check 'dom'. Skip Proj and CatchProj nodes.
 421   dom = dom->find_exact_control(dom);
 422   if (dom == NULL || dom->is_top())
 423     return false; // Conservative answer for dead code
 424 
 425   if (dom == sub) {
 426     // For the case when, for example, 'sub' is Initialize and the original
 427     // 'dom' is Proj node of the 'sub'.
 428     return false;
 429   }
 430 
 431   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 432     return true;
 433 
 434   // 'dom' dominates 'sub' if its control edge and control edges
 435   // of all its inputs dominate or equal to sub's control edge.
 436 
 437   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 438   // Or Region for the check in LoadNode::Ideal();
 439   // 'sub' should have sub->in(0) != NULL.
 440   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 441          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 442 
 443   // Get control edge of 'sub'.
 444   Node* orig_sub = sub;
 445   sub = sub->find_exact_control(sub->in(0));
 446   if (sub == NULL || sub->is_top())
 447     return false; // Conservative answer for dead code
 448 
 449   assert(sub->is_CFG(), "expecting control");
 450 
 451   if (sub == dom)
 452     return true;
 453 
 454   if (sub->is_Start() || sub->is_Root())
 455     return false;
 456 
 457   {
 458     // Check all control edges of 'dom'.
 459 
 460     ResourceMark rm;
 461     Arena* arena = Thread::current()->resource_area();
 462     Node_List nlist(arena);
 463     Unique_Node_List dom_list(arena);
 464 
 465     dom_list.push(dom);
 466     bool only_dominating_controls = false;
 467 
 468     for (uint next = 0; next < dom_list.size(); next++) {
 469       Node* n = dom_list.at(next);
 470       if (n == orig_sub)
 471         return false; // One of dom's inputs dominated by sub.
 472       if (!n->is_CFG() && n->pinned()) {
 473         // Check only own control edge for pinned non-control nodes.
 474         n = n->find_exact_control(n->in(0));
 475         if (n == NULL || n->is_top())
 476           return false; // Conservative answer for dead code
 477         assert(n->is_CFG(), "expecting control");
 478         dom_list.push(n);
 479       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 480         only_dominating_controls = true;
 481       } else if (n->is_CFG()) {
 482         if (n->dominates(sub, nlist))
 483           only_dominating_controls = true;
 484         else
 485           return false;
 486       } else {
 487         // First, own control edge.
 488         Node* m = n->find_exact_control(n->in(0));
 489         if (m != NULL) {
 490           if (m->is_top())
 491             return false; // Conservative answer for dead code
 492           dom_list.push(m);
 493         }
 494         // Now, the rest of edges.
 495         uint cnt = n->req();
 496         for (uint i = 1; i < cnt; i++) {
 497           m = n->find_exact_control(n->in(i));
 498           if (m == NULL || m->is_top())
 499             continue;
 500           dom_list.push(m);
 501         }
 502       }
 503     }
 504     return only_dominating_controls;
 505   }
 506 }
 507 
 508 //---------------------detect_ptr_independence---------------------------------
 509 // Used by MemNode::find_previous_store to prove that two base
 510 // pointers are never equal.
 511 // The pointers are accompanied by their associated allocations,
 512 // if any, which have been previously discovered by the caller.
 513 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 514                                       Node* p2, AllocateNode* a2,
 515                                       PhaseTransform* phase) {
 516   // Attempt to prove that these two pointers cannot be aliased.
 517   // They may both manifestly be allocations, and they should differ.
 518   // Or, if they are not both allocations, they can be distinct constants.
 519   // Otherwise, one is an allocation and the other a pre-existing value.
 520   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 521     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 522   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 523     return (a1 != a2);
 524   } else if (a1 != NULL) {                  // one allocation a1
 525     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 526     return all_controls_dominate(p2, a1);
 527   } else { //(a2 != NULL)                   // one allocation a2
 528     return all_controls_dominate(p1, a2);
 529   }
 530   return false;
 531 }
 532 
 533 
 534 // Find an arraycopy that must have set (can_see_stored_value=true) or
 535 // could have set (can_see_stored_value=false) the value for this load
 536 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 537   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 538                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 539     Node* mb = mem->in(0);
 540     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 541         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 542       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 543       if (ac->is_clonebasic()) {
 544         intptr_t offset;
 545         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 546         if (alloc != NULL && alloc == ld_alloc) {
 547           return ac;
 548         }
 549       }
 550     }
 551   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 552     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 553 
 554     if (ac->is_arraycopy_validated() ||
 555         ac->is_copyof_validated() ||
 556         ac->is_copyofrange_validated()) {
 557       Node* ld_addp = in(MemNode::Address);
 558       if (ld_addp->is_AddP()) {
 559         Node* ld_base = ld_addp->in(AddPNode::Address);
 560         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 561 
 562         Node* dest = ac->in(ArrayCopyNode::Dest);
 563 
 564         if (dest == ld_base) {
 565           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 566           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 567             return ac;
 568           }
 569           if (!can_see_stored_value) {
 570             mem = ac->in(TypeFunc::Memory);
 571           }
 572         }
 573       }
 574     }
 575   }
 576   return NULL;
 577 }
 578 
 579 // The logic for reordering loads and stores uses four steps:
 580 // (a) Walk carefully past stores and initializations which we
 581 //     can prove are independent of this load.
 582 // (b) Observe that the next memory state makes an exact match
 583 //     with self (load or store), and locate the relevant store.
 584 // (c) Ensure that, if we were to wire self directly to the store,
 585 //     the optimizer would fold it up somehow.
 586 // (d) Do the rewiring, and return, depending on some other part of
 587 //     the optimizer to fold up the load.
 588 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 589 // specific to loads and stores, so they are handled by the callers.
 590 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 591 //
 592 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 593   Node*         ctrl   = in(MemNode::Control);
 594   Node*         adr    = in(MemNode::Address);
 595   intptr_t      offset = 0;
 596   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 597   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 598 
 599   if (offset == Type::OffsetBot)
 600     return NULL;            // cannot unalias unless there are precise offsets
 601 
 602   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 603   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 604 
 605   intptr_t size_in_bytes = memory_size();
 606 
 607   Node* mem = in(MemNode::Memory);   // start searching here...
 608 
 609   int cnt = 50;             // Cycle limiter
 610   for (;;) {                // While we can dance past unrelated stores...
 611     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 612 
 613     Node* prev = mem;
 614     if (mem->is_Store()) {
 615       Node* st_adr = mem->in(MemNode::Address);
 616       intptr_t st_offset = 0;
 617       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 618       if (st_base == NULL)
 619         break;              // inscrutable pointer
 620 
 621       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 622       // We need the bases to be the equal in order for the offset check to make sense.
 623       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 624         break;
 625       }
 626 
 627       if (st_offset != offset && st_offset != Type::OffsetBot) {
 628         const int MAX_STORE = BytesPerLong;
 629         if (st_offset >= offset + size_in_bytes ||
 630             st_offset <= offset - MAX_STORE ||
 631             st_offset <= offset - mem->as_Store()->memory_size()) {
 632           // Success:  The offsets are provably independent.
 633           // (You may ask, why not just test st_offset != offset and be done?
 634           // The answer is that stores of different sizes can co-exist
 635           // in the same sequence of RawMem effects.  We sometimes initialize
 636           // a whole 'tile' of array elements with a single jint or jlong.)
 637           mem = mem->in(MemNode::Memory);
 638           continue;           // (a) advance through independent store memory
 639         }
 640       }
 641       if (st_base != base &&
 642           detect_ptr_independence(base, alloc,
 643                                   st_base,
 644                                   AllocateNode::Ideal_allocation(st_base, phase),
 645                                   phase)) {
 646         // Success:  The bases are provably independent.
 647         mem = mem->in(MemNode::Memory);
 648         continue;           // (a) advance through independent store memory
 649       }
 650 
 651       // (b) At this point, if the bases or offsets do not agree, we lose,
 652       // since we have not managed to prove 'this' and 'mem' independent.
 653       if (st_base == base && st_offset == offset) {
 654         return mem;         // let caller handle steps (c), (d)
 655       }
 656 
 657     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 658       InitializeNode* st_init = mem->in(0)->as_Initialize();
 659       AllocateNode*  st_alloc = st_init->allocation();
 660       if (st_alloc == NULL)
 661         break;              // something degenerated
 662       bool known_identical = false;
 663       bool known_independent = false;
 664       if (alloc == st_alloc)
 665         known_identical = true;
 666       else if (alloc != NULL)
 667         known_independent = true;
 668       else if (all_controls_dominate(this, st_alloc))
 669         known_independent = true;
 670 
 671       if (known_independent) {
 672         // The bases are provably independent: Either they are
 673         // manifestly distinct allocations, or else the control
 674         // of this load dominates the store's allocation.
 675         int alias_idx = phase->C->get_alias_index(adr_type());
 676         if (alias_idx == Compile::AliasIdxRaw) {
 677           mem = st_alloc->in(TypeFunc::Memory);
 678         } else {
 679           mem = st_init->memory(alias_idx);
 680         }
 681         continue;           // (a) advance through independent store memory
 682       }
 683 
 684       // (b) at this point, if we are not looking at a store initializing
 685       // the same allocation we are loading from, we lose.
 686       if (known_identical) {
 687         // From caller, can_see_stored_value will consult find_captured_store.
 688         return mem;         // let caller handle steps (c), (d)
 689       }
 690 
 691     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 692       if (prev != mem) {
 693         // Found an arraycopy but it doesn't affect that load
 694         continue;
 695       }
 696       // Found an arraycopy that may affect that load
 697       return mem;
 698     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 699       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 700       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 701         // ArrayCopyNodes processed here as well.
 702         CallNode *call = mem->in(0)->as_Call();
 703         if (!call->may_modify(addr_t, phase)) {
 704           mem = call->in(TypeFunc::Memory);
 705           continue;         // (a) advance through independent call memory
 706         }
 707       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 708         ArrayCopyNode* ac = NULL;
 709         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 710           break;
 711         }
 712         mem = mem->in(0)->in(TypeFunc::Memory);
 713         continue;           // (a) advance through independent MemBar memory
 714       } else if (mem->is_ClearArray()) {
 715         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 716           // (the call updated 'mem' value)
 717           continue;         // (a) advance through independent allocation memory
 718         } else {
 719           // Can not bypass initialization of the instance
 720           // we are looking for.
 721           return mem;
 722         }
 723       } else if (mem->is_MergeMem()) {
 724         int alias_idx = phase->C->get_alias_index(adr_type());
 725         mem = mem->as_MergeMem()->memory_at(alias_idx);
 726         continue;           // (a) advance through independent MergeMem memory
 727       }
 728     }
 729 
 730     // Unless there is an explicit 'continue', we must bail out here,
 731     // because 'mem' is an inscrutable memory state (e.g., a call).
 732     break;
 733   }
 734 
 735   return NULL;              // bail out
 736 }
 737 
 738 //----------------------calculate_adr_type-------------------------------------
 739 // Helper function.  Notices when the given type of address hits top or bottom.
 740 // Also, asserts a cross-check of the type against the expected address type.
 741 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 742   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 743   #ifdef PRODUCT
 744   cross_check = NULL;
 745   #else
 746   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 747   #endif
 748   const TypePtr* tp = t->isa_ptr();
 749   if (tp == NULL) {
 750     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 751     return TypePtr::BOTTOM;           // touches lots of memory
 752   } else {
 753     #ifdef ASSERT
 754     // %%%% [phh] We don't check the alias index if cross_check is
 755     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 756     if (cross_check != NULL &&
 757         cross_check != TypePtr::BOTTOM &&
 758         cross_check != TypeRawPtr::BOTTOM) {
 759       // Recheck the alias index, to see if it has changed (due to a bug).
 760       Compile* C = Compile::current();
 761       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 762              "must stay in the original alias category");
 763       // The type of the address must be contained in the adr_type,
 764       // disregarding "null"-ness.
 765       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 766       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 767       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 768              "real address must not escape from expected memory type");
 769     }
 770     #endif
 771     return tp;
 772   }
 773 }
 774 
 775 //=============================================================================
 776 // Should LoadNode::Ideal() attempt to remove control edges?
 777 bool LoadNode::can_remove_control() const {
 778   return true;
 779 }
 780 uint LoadNode::size_of() const { return sizeof(*this); }
 781 bool LoadNode::cmp( const Node &n ) const
 782 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 783 const Type *LoadNode::bottom_type() const { return _type; }
 784 uint LoadNode::ideal_reg() const {
 785   return _type->ideal_reg();
 786 }
 787 
 788 #ifndef PRODUCT
 789 void LoadNode::dump_spec(outputStream *st) const {
 790   MemNode::dump_spec(st);
 791   if( !Verbose && !WizardMode ) {
 792     // standard dump does this in Verbose and WizardMode
 793     st->print(" #"); _type->dump_on(st);
 794   }
 795   if (!depends_only_on_test()) {
 796     st->print(" (does not depend only on test)");
 797   }
 798 }
 799 #endif
 800 
 801 #ifdef ASSERT
 802 //----------------------------is_immutable_value-------------------------------
 803 // Helper function to allow a raw load without control edge for some cases
 804 bool LoadNode::is_immutable_value(Node* adr) {
 805   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 806           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 807           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 808            in_bytes(JavaThread::osthread_offset())));
 809 }
 810 #endif
 811 
 812 //----------------------------LoadNode::make-----------------------------------
 813 // Polymorphic factory method:
 814 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 815                      ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 816   Compile* C = gvn.C;
 817 
 818   // sanity check the alias category against the created node type
 819   assert(!(adr_type->isa_oopptr() &&
 820            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 821          "use LoadKlassNode instead");
 822   assert(!(adr_type->isa_aryptr() &&
 823            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 824          "use LoadRangeNode instead");
 825   // Check control edge of raw loads
 826   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 827           // oop will be recorded in oop map if load crosses safepoint
 828           rt->isa_oopptr() || is_immutable_value(adr),
 829           "raw memory operations should have control edge");
 830   LoadNode* load = NULL;
 831   switch (bt) {
 832   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 833   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 834   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 835   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 836   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 837   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 838   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 839   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 840   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 841   case T_VALUETYPE:
 842   case T_OBJECT:
 843 #ifdef _LP64
 844     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 845       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 846     } else
 847 #endif
 848     {
 849       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 850       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 851     }
 852     break;
 853   default:
 854     ShouldNotReachHere();
 855     break;
 856   }
 857   assert(load != NULL, "LoadNode should have been created");
 858   if (unaligned) {
 859     load->set_unaligned_access();
 860   }
 861   if (mismatched) {
 862     load->set_mismatched_access();
 863   }
 864   if (unsafe) {
 865     load->set_unsafe_access();
 866   }
 867   if (load->Opcode() == Op_LoadN) {
 868     Node* ld = gvn.transform(load);
 869     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 870   }
 871 
 872   return load;
 873 }
 874 
 875 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 876                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 877   bool require_atomic = true;
 878   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 879   if (unaligned) {
 880     load->set_unaligned_access();
 881   }
 882   if (mismatched) {
 883     load->set_mismatched_access();
 884   }
 885   if (unsafe) {
 886     load->set_unsafe_access();
 887   }
 888   return load;
 889 }
 890 
 891 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 892                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 893   bool require_atomic = true;
 894   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 895   if (unaligned) {
 896     load->set_unaligned_access();
 897   }
 898   if (mismatched) {
 899     load->set_mismatched_access();
 900   }
 901   if (unsafe) {
 902     load->set_unsafe_access();
 903   }
 904   return load;
 905 }
 906 
 907 
 908 
 909 //------------------------------hash-------------------------------------------
 910 uint LoadNode::hash() const {
 911   // unroll addition of interesting fields
 912   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 913 }
 914 
 915 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 916   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 917     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 918     bool is_stable_ary = FoldStableValues &&
 919                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 920                          tp->isa_aryptr()->is_stable();
 921 
 922     return (eliminate_boxing && non_volatile) || is_stable_ary;
 923   }
 924 
 925   return false;
 926 }
 927 
 928 // Is the value loaded previously stored by an arraycopy? If so return
 929 // a load node that reads from the source array so we may be able to
 930 // optimize out the ArrayCopy node later.
 931 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 932   Node* ld_adr = in(MemNode::Address);
 933   intptr_t ld_off = 0;
 934   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 935   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 936   if (ac != NULL) {
 937     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 938 
 939     Node* mem = ac->in(TypeFunc::Memory);
 940     Node* ctl = ac->in(0);
 941     Node* src = ac->in(ArrayCopyNode::Src);
 942 
 943     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 944       return NULL;
 945     }
 946 
 947     LoadNode* ld = clone()->as_Load();
 948     Node* addp = in(MemNode::Address)->clone();
 949     if (ac->as_ArrayCopy()->is_clonebasic()) {
 950       assert(ld_alloc != NULL, "need an alloc");
 951       assert(addp->is_AddP(), "address must be addp");
 952       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 953       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 954       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 955       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 956       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 957       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 958     } else {
 959       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 960              ac->as_ArrayCopy()->is_copyof_validated() ||
 961              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 962       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 963       addp->set_req(AddPNode::Base, src);
 964       addp->set_req(AddPNode::Address, src);
 965 
 966       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 967       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 968       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 969       uint shift  = exact_log2(type2aelembytes(ary_elem));
 970 
 971       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 972 #ifdef _LP64
 973       diff = phase->transform(new ConvI2LNode(diff));
 974 #endif
 975       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 976 
 977       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 978       addp->set_req(AddPNode::Offset, offset);
 979     }
 980     addp = phase->transform(addp);
 981 #ifdef ASSERT
 982     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 983     ld->_adr_type = adr_type;
 984 #endif
 985     ld->set_req(MemNode::Address, addp);
 986     ld->set_req(0, ctl);
 987     ld->set_req(MemNode::Memory, mem);
 988     // load depends on the tests that validate the arraycopy
 989     ld->_control_dependency = UnknownControl;
 990     return ld;
 991   }
 992   return NULL;
 993 }
 994 
 995 
 996 //---------------------------can_see_stored_value------------------------------
 997 // This routine exists to make sure this set of tests is done the same
 998 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 999 // will change the graph shape in a way which makes memory alive twice at the
1000 // same time (uses the Oracle model of aliasing), then some
1001 // LoadXNode::Identity will fold things back to the equivalence-class model
1002 // of aliasing.
1003 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
1004   Node* ld_adr = in(MemNode::Address);
1005   intptr_t ld_off = 0;
1006   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1007   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase);
1008   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1009   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
1010   // This is more general than load from boxing objects.
1011   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1012     uint alias_idx = atp->index();
1013     bool final = !atp->is_rewritable();
1014     Node* result = NULL;
1015     Node* current = st;
1016     // Skip through chains of MemBarNodes checking the MergeMems for
1017     // new states for the slice of this load.  Stop once any other
1018     // kind of node is encountered.  Loads from final memory can skip
1019     // through any kind of MemBar but normal loads shouldn't skip
1020     // through MemBarAcquire since the could allow them to move out of
1021     // a synchronized region.
1022     while (current->is_Proj()) {
1023       int opc = current->in(0)->Opcode();
1024       if ((final && (opc == Op_MemBarAcquire ||
1025                      opc == Op_MemBarAcquireLock ||
1026                      opc == Op_LoadFence)) ||
1027           opc == Op_MemBarRelease ||
1028           opc == Op_StoreFence ||
1029           opc == Op_MemBarReleaseLock ||
1030           opc == Op_MemBarStoreStore ||
1031           opc == Op_MemBarCPUOrder) {
1032         Node* mem = current->in(0)->in(TypeFunc::Memory);
1033         if (mem->is_MergeMem()) {
1034           MergeMemNode* merge = mem->as_MergeMem();
1035           Node* new_st = merge->memory_at(alias_idx);
1036           if (new_st == merge->base_memory()) {
1037             // Keep searching
1038             current = new_st;
1039             continue;
1040           }
1041           // Save the new memory state for the slice and fall through
1042           // to exit.
1043           result = new_st;
1044         }
1045       }
1046       break;
1047     }
1048     if (result != NULL) {
1049       st = result;
1050     }
1051   }
1052 
1053   // Loop around twice in the case Load -> Initialize -> Store.
1054   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1055   for (int trip = 0; trip <= 1; trip++) {
1056 
1057     if (st->is_Store()) {
1058       Node* st_adr = st->in(MemNode::Address);
1059       if (!phase->eqv(st_adr, ld_adr)) {
1060         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1061         intptr_t st_off = 0;
1062         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1063         if (ld_base == NULL)                                   return NULL;
1064         if (st_base == NULL)                                   return NULL;
1065         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL;
1066         if (ld_off != st_off)                                  return NULL;
1067         if (ld_off == Type::OffsetBot)                         return NULL;
1068         // Same base, same offset.
1069         // Possible improvement for arrays: check index value instead of absolute offset.
1070 
1071         // At this point we have proven something like this setup:
1072         //   B = << base >>
1073         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1074         //   S = StoreQ(AddP(             B , #Off), V)
1075         // (Actually, we haven't yet proven the Q's are the same.)
1076         // In other words, we are loading from a casted version of
1077         // the same pointer-and-offset that we stored to.
1078         // Casted version may carry a dependency and it is respected.
1079         // Thus, we are able to replace L by V.
1080       }
1081       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1082       if (store_Opcode() != st->Opcode())
1083         return NULL;
1084       return st->in(MemNode::ValueIn);
1085     }
1086 
1087     // A load from a freshly-created object always returns zero.
1088     // (This can happen after LoadNode::Ideal resets the load's memory input
1089     // to find_captured_store, which returned InitializeNode::zero_memory.)
1090     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1091         (st->in(0) == ld_alloc) &&
1092         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1093       // return a zero value for the load's basic type
1094       // (This is one of the few places where a generic PhaseTransform
1095       // can create new nodes.  Think of it as lazily manifesting
1096       // virtually pre-existing constants.)
1097       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1098       Node* default_value = ld_alloc->in(AllocateNode::DefaultValue);
1099       if (default_value != NULL) {
1100         return default_value;
1101       }
1102       assert(ld_alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null");
1103       return phase->zerocon(memory_type());
1104     }
1105 
1106     // A load from an initialization barrier can match a captured store.
1107     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1108       InitializeNode* init = st->in(0)->as_Initialize();
1109       AllocateNode* alloc = init->allocation();
1110       if ((alloc != NULL) && (alloc == ld_alloc)) {
1111         // examine a captured store value
1112         st = init->find_captured_store(ld_off, memory_size(), phase);
1113         if (st != NULL) {
1114           continue;             // take one more trip around
1115         }
1116       }
1117     }
1118 
1119     // Load boxed value from result of valueOf() call is input parameter.
1120     if (this->is_Load() && ld_adr->is_AddP() &&
1121         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1122       intptr_t ignore = 0;
1123       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1124       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1125       base = bs->step_over_gc_barrier(base);
1126       if (base != NULL && base->is_Proj() &&
1127           base->as_Proj()->_con == TypeFunc::Parms &&
1128           base->in(0)->is_CallStaticJava() &&
1129           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1130         return base->in(0)->in(TypeFunc::Parms);
1131       }
1132     }
1133 
1134     break;
1135   }
1136 
1137   return NULL;
1138 }
1139 
1140 //----------------------is_instance_field_load_with_local_phi------------------
1141 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1142   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1143       in(Address)->is_AddP() ) {
1144     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1145     // Only instances and boxed values.
1146     if( t_oop != NULL &&
1147         (t_oop->is_ptr_to_boxed_value() ||
1148          t_oop->is_known_instance_field()) &&
1149         t_oop->offset() != Type::OffsetBot &&
1150         t_oop->offset() != Type::OffsetTop) {
1151       return true;
1152     }
1153   }
1154   return false;
1155 }
1156 
1157 //------------------------------Identity---------------------------------------
1158 // Loads are identity if previous store is to same address
1159 Node* LoadNode::Identity(PhaseGVN* phase) {
1160   // Loading from a ValueTypePtr? The ValueTypePtr has the values of
1161   // all fields as input. Look for the field with matching offset.
1162   Node* addr = in(Address);
1163   intptr_t offset;
1164   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
1165   if (base != NULL && base->is_ValueTypePtr() && offset > oopDesc::klass_offset_in_bytes()) {
1166     Node* value = base->as_ValueTypePtr()->field_value_by_offset((int)offset, true);
1167     if (value->is_ValueType()) {
1168       // Non-flattened value type field
1169       ValueTypeNode* vt = value->as_ValueType();
1170       if (vt->is_allocated(phase)) {
1171         value = vt->get_oop();
1172       } else {
1173         // Not yet allocated, bail out
1174         value = NULL;
1175       }
1176     }
1177     if (value != NULL) {
1178       if (Opcode() == Op_LoadN) {
1179         // Encode oop value if we are loading a narrow oop
1180         assert(!phase->type(value)->isa_narrowoop(), "should already be decoded");
1181         value = phase->transform(new EncodePNode(value, bottom_type()));
1182       }
1183       return value;
1184     }
1185   }
1186 
1187   // If the previous store-maker is the right kind of Store, and the store is
1188   // to the same address, then we are equal to the value stored.
1189   Node* mem = in(Memory);
1190   Node* value = can_see_stored_value(mem, phase);
1191   if( value ) {
1192     // byte, short & char stores truncate naturally.
1193     // A load has to load the truncated value which requires
1194     // some sort of masking operation and that requires an
1195     // Ideal call instead of an Identity call.
1196     if (memory_size() < BytesPerInt) {
1197       // If the input to the store does not fit with the load's result type,
1198       // it must be truncated via an Ideal call.
1199       if (!phase->type(value)->higher_equal(phase->type(this)))
1200         return this;
1201     }
1202     // (This works even when value is a Con, but LoadNode::Value
1203     // usually runs first, producing the singleton type of the Con.)
1204     return value;
1205   }
1206 
1207   // Search for an existing data phi which was generated before for the same
1208   // instance's field to avoid infinite generation of phis in a loop.
1209   Node *region = mem->in(0);
1210   if (is_instance_field_load_with_local_phi(region)) {
1211     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1212     int this_index  = phase->C->get_alias_index(addr_t);
1213     int this_offset = addr_t->offset();
1214     int this_iid    = addr_t->instance_id();
1215     if (!addr_t->is_known_instance() &&
1216          addr_t->is_ptr_to_boxed_value()) {
1217       // Use _idx of address base (could be Phi node) for boxed values.
1218       intptr_t   ignore = 0;
1219       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1220       if (base == NULL) {
1221         return this;
1222       }
1223       this_iid = base->_idx;
1224     }
1225     const Type* this_type = bottom_type();
1226     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1227       Node* phi = region->fast_out(i);
1228       if (phi->is_Phi() && phi != mem &&
1229           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1230         return phi;
1231       }
1232     }
1233   }
1234 
1235   return this;
1236 }
1237 
1238 // Construct an equivalent unsigned load.
1239 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1240   BasicType bt = T_ILLEGAL;
1241   const Type* rt = NULL;
1242   switch (Opcode()) {
1243     case Op_LoadUB: return this;
1244     case Op_LoadUS: return this;
1245     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1246     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1247     default:
1248       assert(false, "no unsigned variant: %s", Name());
1249       return NULL;
1250   }
1251   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1252                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1253                         is_unaligned_access(), is_mismatched_access());
1254 }
1255 
1256 // Construct an equivalent signed load.
1257 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1258   BasicType bt = T_ILLEGAL;
1259   const Type* rt = NULL;
1260   switch (Opcode()) {
1261     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1262     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1263     case Op_LoadB: // fall through
1264     case Op_LoadS: // fall through
1265     case Op_LoadI: // fall through
1266     case Op_LoadL: return this;
1267     default:
1268       assert(false, "no signed variant: %s", Name());
1269       return NULL;
1270   }
1271   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1272                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1273                         is_unaligned_access(), is_mismatched_access());
1274 }
1275 
1276 // We're loading from an object which has autobox behaviour.
1277 // If this object is result of a valueOf call we'll have a phi
1278 // merging a newly allocated object and a load from the cache.
1279 // We want to replace this load with the original incoming
1280 // argument to the valueOf call.
1281 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1282   assert(phase->C->eliminate_boxing(), "sanity");
1283   intptr_t ignore = 0;
1284   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1285   if ((base == NULL) || base->is_Phi()) {
1286     // Push the loads from the phi that comes from valueOf up
1287     // through it to allow elimination of the loads and the recovery
1288     // of the original value. It is done in split_through_phi().
1289     return NULL;
1290   } else if (base->is_Load() ||
1291              (base->is_DecodeN() && base->in(1)->is_Load())) {
1292     // Eliminate the load of boxed value for integer types from the cache
1293     // array by deriving the value from the index into the array.
1294     // Capture the offset of the load and then reverse the computation.
1295 
1296     // Get LoadN node which loads a boxing object from 'cache' array.
1297     if (base->is_DecodeN()) {
1298       base = base->in(1);
1299     }
1300     if (!base->in(Address)->is_AddP()) {
1301       return NULL; // Complex address
1302     }
1303     AddPNode* address = base->in(Address)->as_AddP();
1304     Node* cache_base = address->in(AddPNode::Base);
1305     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1306       // Get ConP node which is static 'cache' field.
1307       cache_base = cache_base->in(1);
1308     }
1309     if ((cache_base != NULL) && cache_base->is_Con()) {
1310       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1311       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1312         Node* elements[4];
1313         int shift = exact_log2(type2aelembytes(T_OBJECT));
1314         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1315         if (count > 0 && elements[0]->is_Con() &&
1316             (count == 1 ||
1317              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1318                             elements[1]->in(2) == phase->intcon(shift)))) {
1319           ciObjArray* array = base_type->const_oop()->as_obj_array();
1320           // Fetch the box object cache[0] at the base of the array and get its value
1321           ciInstance* box = array->obj_at(0)->as_instance();
1322           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1323           assert(ik->is_box_klass(), "sanity");
1324           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1325           if (ik->nof_nonstatic_fields() == 1) {
1326             // This should be true nonstatic_field_at requires calling
1327             // nof_nonstatic_fields so check it anyway
1328             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1329             BasicType bt = c.basic_type();
1330             // Only integer types have boxing cache.
1331             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1332                    bt == T_BYTE    || bt == T_SHORT ||
1333                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1334             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1335             if (cache_low != (int)cache_low) {
1336               return NULL; // should not happen since cache is array indexed by value
1337             }
1338             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1339             if (offset != (int)offset) {
1340               return NULL; // should not happen since cache is array indexed by value
1341             }
1342            // Add up all the offsets making of the address of the load
1343             Node* result = elements[0];
1344             for (int i = 1; i < count; i++) {
1345               result = phase->transform(new AddXNode(result, elements[i]));
1346             }
1347             // Remove the constant offset from the address and then
1348             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1349             // remove the scaling of the offset to recover the original index.
1350             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1351               // Peel the shift off directly but wrap it in a dummy node
1352               // since Ideal can't return existing nodes
1353               result = new RShiftXNode(result->in(1), phase->intcon(0));
1354             } else if (result->is_Add() && result->in(2)->is_Con() &&
1355                        result->in(1)->Opcode() == Op_LShiftX &&
1356                        result->in(1)->in(2) == phase->intcon(shift)) {
1357               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1358               // but for boxing cache access we know that X<<Z will not overflow
1359               // (there is range check) so we do this optimizatrion by hand here.
1360               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1361               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1362             } else {
1363               result = new RShiftXNode(result, phase->intcon(shift));
1364             }
1365 #ifdef _LP64
1366             if (bt != T_LONG) {
1367               result = new ConvL2INode(phase->transform(result));
1368             }
1369 #else
1370             if (bt == T_LONG) {
1371               result = new ConvI2LNode(phase->transform(result));
1372             }
1373 #endif
1374             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1375             // Need to preserve unboxing load type if it is unsigned.
1376             switch(this->Opcode()) {
1377               case Op_LoadUB:
1378                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1379                 break;
1380               case Op_LoadUS:
1381                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1382                 break;
1383             }
1384             return result;
1385           }
1386         }
1387       }
1388     }
1389   }
1390   return NULL;
1391 }
1392 
1393 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1394   Node* region = phi->in(0);
1395   if (region == NULL) {
1396     return false; // Wait stable graph
1397   }
1398   uint cnt = phi->req();
1399   for (uint i = 1; i < cnt; i++) {
1400     Node* rc = region->in(i);
1401     if (rc == NULL || phase->type(rc) == Type::TOP)
1402       return false; // Wait stable graph
1403     Node* in = phi->in(i);
1404     if (in == NULL || phase->type(in) == Type::TOP)
1405       return false; // Wait stable graph
1406   }
1407   return true;
1408 }
1409 //------------------------------split_through_phi------------------------------
1410 // Split instance or boxed field load through Phi.
1411 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1412   Node* mem     = in(Memory);
1413   Node* address = in(Address);
1414   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1415 
1416   assert((t_oop != NULL) &&
1417          (t_oop->is_known_instance_field() ||
1418           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1419 
1420   Compile* C = phase->C;
1421   intptr_t ignore = 0;
1422   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1423   bool base_is_phi = (base != NULL) && base->is_Phi();
1424   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1425                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1426                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1427 
1428   if (!((mem->is_Phi() || base_is_phi) &&
1429         (load_boxed_values || t_oop->is_known_instance_field()))) {
1430     return NULL; // memory is not Phi
1431   }
1432 
1433   if (mem->is_Phi()) {
1434     if (!stable_phi(mem->as_Phi(), phase)) {
1435       return NULL; // Wait stable graph
1436     }
1437     uint cnt = mem->req();
1438     // Check for loop invariant memory.
1439     if (cnt == 3) {
1440       for (uint i = 1; i < cnt; i++) {
1441         Node* in = mem->in(i);
1442         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1443         if (m == mem) {
1444           if (i == 1) {
1445             // if the first edge was a loop, check second edge too.
1446             // If both are replaceable - we are in an infinite loop
1447             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1448             if (n == mem) {
1449               break;
1450             }
1451           }
1452           set_req(Memory, mem->in(cnt - i));
1453           return this; // made change
1454         }
1455       }
1456     }
1457   }
1458   if (base_is_phi) {
1459     if (!stable_phi(base->as_Phi(), phase)) {
1460       return NULL; // Wait stable graph
1461     }
1462     uint cnt = base->req();
1463     // Check for loop invariant memory.
1464     if (cnt == 3) {
1465       for (uint i = 1; i < cnt; i++) {
1466         if (base->in(i) == base) {
1467           return NULL; // Wait stable graph
1468         }
1469       }
1470     }
1471   }
1472 
1473   // Split through Phi (see original code in loopopts.cpp).
1474   assert(C->have_alias_type(t_oop), "instance should have alias type");
1475 
1476   // Do nothing here if Identity will find a value
1477   // (to avoid infinite chain of value phis generation).
1478   if (!phase->eqv(this, phase->apply_identity(this)))
1479     return NULL;
1480 
1481   // Select Region to split through.
1482   Node* region;
1483   if (!base_is_phi) {
1484     assert(mem->is_Phi(), "sanity");
1485     region = mem->in(0);
1486     // Skip if the region dominates some control edge of the address.
1487     if (!MemNode::all_controls_dominate(address, region))
1488       return NULL;
1489   } else if (!mem->is_Phi()) {
1490     assert(base_is_phi, "sanity");
1491     region = base->in(0);
1492     // Skip if the region dominates some control edge of the memory.
1493     if (!MemNode::all_controls_dominate(mem, region))
1494       return NULL;
1495   } else if (base->in(0) != mem->in(0)) {
1496     assert(base_is_phi && mem->is_Phi(), "sanity");
1497     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1498       region = base->in(0);
1499     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1500       region = mem->in(0);
1501     } else {
1502       return NULL; // complex graph
1503     }
1504   } else {
1505     assert(base->in(0) == mem->in(0), "sanity");
1506     region = mem->in(0);
1507   }
1508 
1509   const Type* this_type = this->bottom_type();
1510   int this_index  = C->get_alias_index(t_oop);
1511   int this_offset = t_oop->offset();
1512   int this_iid    = t_oop->instance_id();
1513   if (!t_oop->is_known_instance() && load_boxed_values) {
1514     // Use _idx of address base for boxed values.
1515     this_iid = base->_idx;
1516   }
1517   PhaseIterGVN* igvn = phase->is_IterGVN();
1518   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1519   for (uint i = 1; i < region->req(); i++) {
1520     Node* x;
1521     Node* the_clone = NULL;
1522     if (region->in(i) == C->top()) {
1523       x = C->top();      // Dead path?  Use a dead data op
1524     } else {
1525       x = this->clone();        // Else clone up the data op
1526       the_clone = x;            // Remember for possible deletion.
1527       // Alter data node to use pre-phi inputs
1528       if (this->in(0) == region) {
1529         x->set_req(0, region->in(i));
1530       } else {
1531         x->set_req(0, NULL);
1532       }
1533       if (mem->is_Phi() && (mem->in(0) == region)) {
1534         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1535       }
1536       if (address->is_Phi() && address->in(0) == region) {
1537         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1538       }
1539       if (base_is_phi && (base->in(0) == region)) {
1540         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1541         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1542         x->set_req(Address, adr_x);
1543       }
1544     }
1545     // Check for a 'win' on some paths
1546     const Type *t = x->Value(igvn);
1547 
1548     bool singleton = t->singleton();
1549 
1550     // See comments in PhaseIdealLoop::split_thru_phi().
1551     if (singleton && t == Type::TOP) {
1552       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1553     }
1554 
1555     if (singleton) {
1556       x = igvn->makecon(t);
1557     } else {
1558       // We now call Identity to try to simplify the cloned node.
1559       // Note that some Identity methods call phase->type(this).
1560       // Make sure that the type array is big enough for
1561       // our new node, even though we may throw the node away.
1562       // (This tweaking with igvn only works because x is a new node.)
1563       igvn->set_type(x, t);
1564       // If x is a TypeNode, capture any more-precise type permanently into Node
1565       // otherwise it will be not updated during igvn->transform since
1566       // igvn->type(x) is set to x->Value() already.
1567       x->raise_bottom_type(t);
1568       Node *y = igvn->apply_identity(x);
1569       if (y != x) {
1570         x = y;
1571       } else {
1572         y = igvn->hash_find_insert(x);
1573         if (y) {
1574           x = y;
1575         } else {
1576           // Else x is a new node we are keeping
1577           // We do not need register_new_node_with_optimizer
1578           // because set_type has already been called.
1579           igvn->_worklist.push(x);
1580         }
1581       }
1582     }
1583     if (x != the_clone && the_clone != NULL) {
1584       igvn->remove_dead_node(the_clone);
1585     }
1586     phi->set_req(i, x);
1587   }
1588   // Record Phi
1589   igvn->register_new_node_with_optimizer(phi);
1590   return phi;
1591 }
1592 
1593 AllocateNode* LoadNode::is_new_object_mark_load(PhaseGVN *phase) const {
1594   if (Opcode() == Op_LoadX) {
1595     Node* address = in(MemNode::Address);
1596     AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase);
1597     Node* mem = in(MemNode::Memory);
1598     if (alloc != NULL && mem->is_Proj() &&
1599         mem->in(0) != NULL &&
1600         mem->in(0) == alloc->initialization() &&
1601         alloc->initialization()->proj_out_or_null(0) != NULL) {
1602       return alloc;
1603     }
1604   }
1605   return NULL;
1606 }
1607 
1608 
1609 //------------------------------Ideal------------------------------------------
1610 // If the load is from Field memory and the pointer is non-null, it might be possible to
1611 // zero out the control input.
1612 // If the offset is constant and the base is an object allocation,
1613 // try to hook me up to the exact initializing store.
1614 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1615   Node* p = MemNode::Ideal_common(phase, can_reshape);
1616   if (p)  return (p == NodeSentinel) ? NULL : p;
1617 
1618   Node* ctrl    = in(MemNode::Control);
1619   Node* address = in(MemNode::Address);
1620   bool progress = false;
1621 
1622   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1623          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1624 
1625   // Skip up past a SafePoint control.  Cannot do this for Stores because
1626   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1627   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1628       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1629       !addr_mark &&
1630       (depends_only_on_test() || has_unknown_control_dependency())) {
1631     ctrl = ctrl->in(0);
1632     set_req(MemNode::Control,ctrl);
1633     progress = true;
1634   }
1635 
1636   intptr_t ignore = 0;
1637   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1638   if (base != NULL
1639       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1640     // Check for useless control edge in some common special cases
1641     if (in(MemNode::Control) != NULL
1642         && can_remove_control()
1643         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1644         && all_controls_dominate(base, phase->C->start())) {
1645       // A method-invariant, non-null address (constant or 'this' argument).
1646       set_req(MemNode::Control, NULL);
1647       progress = true;
1648     }
1649   }
1650 
1651   Node* mem = in(MemNode::Memory);
1652   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1653 
1654   if (can_reshape && (addr_t != NULL)) {
1655     // try to optimize our memory input
1656     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1657     if (opt_mem != mem) {
1658       set_req(MemNode::Memory, opt_mem);
1659       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1660       return this;
1661     }
1662     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1663     if ((t_oop != NULL) &&
1664         (t_oop->is_known_instance_field() ||
1665          t_oop->is_ptr_to_boxed_value())) {
1666       PhaseIterGVN *igvn = phase->is_IterGVN();
1667       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1668         // Delay this transformation until memory Phi is processed.
1669         phase->is_IterGVN()->_worklist.push(this);
1670         return NULL;
1671       }
1672       // Split instance field load through Phi.
1673       Node* result = split_through_phi(phase);
1674       if (result != NULL) return result;
1675 
1676       if (t_oop->is_ptr_to_boxed_value()) {
1677         Node* result = eliminate_autobox(phase);
1678         if (result != NULL) return result;
1679       }
1680     }
1681   }
1682 
1683   // Is there a dominating load that loads the same value?  Leave
1684   // anything that is not a load of a field/array element (like
1685   // barriers etc.) alone
1686   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1687     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1688       Node *use = mem->fast_out(i);
1689       if (use != this &&
1690           use->Opcode() == Opcode() &&
1691           use->in(0) != NULL &&
1692           use->in(0) != in(0) &&
1693           use->in(Address) == in(Address)) {
1694         Node* ctl = in(0);
1695         for (int i = 0; i < 10 && ctl != NULL; i++) {
1696           ctl = IfNode::up_one_dom(ctl);
1697           if (ctl == use->in(0)) {
1698             set_req(0, use->in(0));
1699             return this;
1700           }
1701         }
1702       }
1703     }
1704   }
1705 
1706   // Check for prior store with a different base or offset; make Load
1707   // independent.  Skip through any number of them.  Bail out if the stores
1708   // are in an endless dead cycle and report no progress.  This is a key
1709   // transform for Reflection.  However, if after skipping through the Stores
1710   // we can't then fold up against a prior store do NOT do the transform as
1711   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1712   // array memory alive twice: once for the hoisted Load and again after the
1713   // bypassed Store.  This situation only works if EVERYBODY who does
1714   // anti-dependence work knows how to bypass.  I.e. we need all
1715   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1716   // the alias index stuff.  So instead, peek through Stores and IFF we can
1717   // fold up, do so.
1718   Node* prev_mem = find_previous_store(phase);
1719   if (prev_mem != NULL) {
1720     Node* value = can_see_arraycopy_value(prev_mem, phase);
1721     if (value != NULL) {
1722       return value;
1723     }
1724   }
1725   // Steps (a), (b):  Walk past independent stores to find an exact match.
1726   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1727     // (c) See if we can fold up on the spot, but don't fold up here.
1728     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1729     // just return a prior value, which is done by Identity calls.
1730     if (can_see_stored_value(prev_mem, phase)) {
1731       // Make ready for step (d):
1732       set_req(MemNode::Memory, prev_mem);
1733       return this;
1734     }
1735   }
1736 
1737   AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase);
1738   if (alloc != NULL && mem->is_Proj() &&
1739       mem->in(0) != NULL &&
1740       mem->in(0) == alloc->initialization() &&
1741       Opcode() == Op_LoadX &&
1742       alloc->initialization()->proj_out_or_null(0) != NULL) {
1743     InitializeNode* init = alloc->initialization();
1744     Node* control = init->proj_out(0);
1745     return alloc->make_ideal_mark(phase, address, control, mem);
1746   }
1747 
1748   return progress ? this : NULL;
1749 }
1750 
1751 // Helper to recognize certain Klass fields which are invariant across
1752 // some group of array types (e.g., int[] or all T[] where T < Object).
1753 const Type*
1754 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1755                                  ciKlass* klass) const {
1756   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1757     // The field is Klass::_modifier_flags.  Return its (constant) value.
1758     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1759     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1760     return TypeInt::make(klass->modifier_flags());
1761   }
1762   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1763     // The field is Klass::_access_flags.  Return its (constant) value.
1764     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1765     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1766     return TypeInt::make(klass->access_flags());
1767   }
1768   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1769     // The field is Klass::_layout_helper.  Return its constant value if known.
1770     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1771     return TypeInt::make(klass->layout_helper());
1772   }
1773 
1774   // No match.
1775   return NULL;
1776 }
1777 
1778 //------------------------------Value-----------------------------------------
1779 const Type* LoadNode::Value(PhaseGVN* phase) const {
1780   // Either input is TOP ==> the result is TOP
1781   Node* mem = in(MemNode::Memory);
1782   const Type *t1 = phase->type(mem);
1783   if (t1 == Type::TOP)  return Type::TOP;
1784   Node* adr = in(MemNode::Address);
1785   const TypePtr* tp = phase->type(adr)->isa_ptr();
1786   if (tp == NULL || tp->empty())  return Type::TOP;
1787   int off = tp->offset();
1788   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1789   Compile* C = phase->C;
1790 
1791   // Try to guess loaded type from pointer type
1792   if (tp->isa_aryptr()) {
1793     const TypeAryPtr* ary = tp->is_aryptr();
1794     const Type* t = ary->elem();
1795 
1796     // Determine whether the reference is beyond the header or not, by comparing
1797     // the offset against the offset of the start of the array's data.
1798     // Different array types begin at slightly different offsets (12 vs. 16).
1799     // We choose T_BYTE as an example base type that is least restrictive
1800     // as to alignment, which will therefore produce the smallest
1801     // possible base offset.
1802     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1803     const bool off_beyond_header = (off >= min_base_off);
1804 
1805     // Try to constant-fold a stable array element.
1806     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1807       // Make sure the reference is not into the header and the offset is constant
1808       ciObject* aobj = ary->const_oop();
1809       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1810         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1811         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1812                                                                       stable_dimension,
1813                                                                       memory_type(), is_unsigned());
1814         if (con_type != NULL) {
1815           return con_type;
1816         }
1817       }
1818     }
1819 
1820     // Don't do this for integer types. There is only potential profit if
1821     // the element type t is lower than _type; that is, for int types, if _type is
1822     // more restrictive than t.  This only happens here if one is short and the other
1823     // char (both 16 bits), and in those cases we've made an intentional decision
1824     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1825     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1826     //
1827     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1828     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1829     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1830     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1831     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1832     // In fact, that could have been the original type of p1, and p1 could have
1833     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1834     // expression (LShiftL quux 3) independently optimized to the constant 8.
1835     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1836         && (_type->isa_vect() == NULL)
1837         && t->isa_valuetype() == NULL
1838         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1839       // t might actually be lower than _type, if _type is a unique
1840       // concrete subclass of abstract class t.
1841       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1842         const Type* jt = t->join_speculative(_type);
1843         // In any case, do not allow the join, per se, to empty out the type.
1844         if (jt->empty() && !t->empty()) {
1845           // This can happen if a interface-typed array narrows to a class type.
1846           jt = _type;
1847         }
1848 #ifdef ASSERT
1849         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1850           // The pointers in the autobox arrays are always non-null
1851           Node* base = adr->in(AddPNode::Base);
1852           if ((base != NULL) && base->is_DecodeN()) {
1853             // Get LoadN node which loads IntegerCache.cache field
1854             base = base->in(1);
1855           }
1856           if ((base != NULL) && base->is_Con()) {
1857             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1858             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1859               // It could be narrow oop
1860               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1861             }
1862           }
1863         }
1864 #endif
1865         return jt;
1866       }
1867     }
1868   } else if (tp->base() == Type::InstPtr) {
1869     assert( off != Type::OffsetBot ||
1870             // arrays can be cast to Objects
1871             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1872             tp->is_oopptr()->klass() == ciEnv::current()->Class_klass() ||
1873             // unsafe field access may not have a constant offset
1874             C->has_unsafe_access(),
1875             "Field accesses must be precise" );
1876     // For oop loads, we expect the _type to be precise.
1877 
1878     const TypeInstPtr* tinst = tp->is_instptr();
1879     BasicType bt = memory_type();
1880 
1881     // Fold component and value mirror loads
1882     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1883     if (ik == phase->C->env()->Class_klass() && (off == java_lang_Class::component_mirror_offset_in_bytes() ||
1884                                                  off == java_lang_Class::inline_mirror_offset_in_bytes())) {
1885       ciType* mirror_type = tinst->java_mirror_type();
1886       if (mirror_type != NULL) {
1887         const Type* const_oop = TypePtr::NULL_PTR;
1888         if (mirror_type->is_array_klass()) {
1889           const_oop = TypeInstPtr::make(mirror_type->as_array_klass()->component_mirror_instance());
1890         } else if (mirror_type->is_valuetype()) {
1891           const_oop = TypeInstPtr::make(mirror_type->as_value_klass()->inline_mirror_instance());
1892         }
1893         return (bt == T_NARROWOOP) ? const_oop->make_narrowoop() : const_oop;
1894       }
1895     }
1896 
1897     // Optimize loads from constant fields.
1898     ciObject* const_oop = tinst->const_oop();
1899     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1900       ciType* mirror_type = const_oop->as_instance()->java_mirror_type();
1901       if (mirror_type != NULL && mirror_type->is_valuetype()) {
1902         ciValueKlass* vk = mirror_type->as_value_klass();
1903         if (off == vk->default_value_offset()) {
1904           // Loading a special hidden field that contains the oop of the default value type
1905           const Type* const_oop = TypeInstPtr::make(vk->default_value_instance());
1906           return (bt == T_NARROWOOP) ? const_oop->make_narrowoop() : const_oop;
1907         }
1908       }
1909       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
1910       if (con_type != NULL) {
1911         return con_type;
1912       }
1913     }
1914   } else if (tp->base() == Type::KlassPtr) {
1915     assert( off != Type::OffsetBot ||
1916             // arrays can be cast to Objects
1917             tp->is_klassptr()->klass() == NULL ||
1918             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1919             // also allow array-loading from the primary supertype
1920             // array during subtype checks
1921             Opcode() == Op_LoadKlass,
1922             "Field accesses must be precise" );
1923     // For klass/static loads, we expect the _type to be precise
1924   } else if (tp->base() == Type::RawPtr && !StressReflectiveCode) {
1925     if (adr->is_Load() && off == 0) {
1926       /* With mirrors being an indirect in the Klass*
1927        * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1928        * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1929        *
1930        * So check the type and klass of the node before the LoadP.
1931        */
1932       Node* adr2 = adr->in(MemNode::Address);
1933       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1934       if (tkls != NULL) {
1935         ciKlass* klass = tkls->klass();
1936         if (klass != NULL && klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1937           assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1938           assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1939           return TypeInstPtr::make(klass->java_mirror());
1940         }
1941       }
1942     } else {
1943       // Check for a load of the default value offset from the ValueKlassFixedBlock:
1944       // LoadI(LoadP(value_klass, adr_valueklass_fixed_block_offset), default_value_offset_offset)
1945       intptr_t offset = 0;
1946       Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1947       if (base != NULL && base->is_Load() && offset == in_bytes(ValueKlass::default_value_offset_offset())) {
1948         const TypeKlassPtr* tkls = phase->type(base->in(MemNode::Address))->isa_klassptr();
1949         if (tkls != NULL && tkls->is_loaded() && tkls->klass_is_exact() && tkls->isa_valuetype() &&
1950             tkls->offset() == in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset())) {
1951           assert(base->Opcode() == Op_LoadP, "must load an oop from klass");
1952           assert(Opcode() == Op_LoadI, "must load an int from fixed block");
1953           return TypeInt::make(tkls->klass()->as_value_klass()->default_value_offset());
1954         }
1955       }
1956     }
1957   }
1958 
1959   const TypeKlassPtr *tkls = tp->isa_klassptr();
1960   if (tkls != NULL && !StressReflectiveCode) {
1961     ciKlass* klass = tkls->klass();
1962     if (tkls->is_loaded() && tkls->klass_is_exact()) {
1963       // We are loading a field from a Klass metaobject whose identity
1964       // is known at compile time (the type is "exact" or "precise").
1965       // Check for fields we know are maintained as constants by the VM.
1966       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1967         // The field is Klass::_super_check_offset.  Return its (constant) value.
1968         // (Folds up type checking code.)
1969         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1970         return TypeInt::make(klass->super_check_offset());
1971       }
1972       // Compute index into primary_supers array
1973       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1974       // Check for overflowing; use unsigned compare to handle the negative case.
1975       if( depth < ciKlass::primary_super_limit() ) {
1976         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1977         // (Folds up type checking code.)
1978         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1979         ciKlass *ss = klass->super_of_depth(depth);
1980         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1981       }
1982       const Type* aift = load_array_final_field(tkls, klass);
1983       if (aift != NULL)  return aift;
1984     }
1985 
1986     // We can still check if we are loading from the primary_supers array at a
1987     // shallow enough depth.  Even though the klass is not exact, entries less
1988     // than or equal to its super depth are correct.
1989     if (tkls->is_loaded()) {
1990       ciType *inner = klass;
1991       while( inner->is_obj_array_klass() )
1992         inner = inner->as_obj_array_klass()->base_element_type();
1993       if( inner->is_instance_klass() &&
1994           !inner->as_instance_klass()->flags().is_interface() ) {
1995         // Compute index into primary_supers array
1996         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1997         // Check for overflowing; use unsigned compare to handle the negative case.
1998         if( depth < ciKlass::primary_super_limit() &&
1999             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
2000           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2001           // (Folds up type checking code.)
2002           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2003           ciKlass *ss = klass->super_of_depth(depth);
2004           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
2005         }
2006       }
2007     }
2008 
2009     // If the type is enough to determine that the thing is not an array,
2010     // we can give the layout_helper a positive interval type.
2011     // This will help short-circuit some reflective code.
2012     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
2013         && !klass->is_array_klass() // not directly typed as an array
2014         && !klass->is_interface()  // specifically not Serializable & Cloneable
2015         && !klass->is_java_lang_Object()   // not the supertype of all T[]
2016         ) {
2017       // Note:  When interfaces are reliable, we can narrow the interface
2018       // test to (klass != Serializable && klass != Cloneable).
2019       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2020       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2021       // The key property of this type is that it folds up tests
2022       // for array-ness, since it proves that the layout_helper is positive.
2023       // Thus, a generic value like the basic object layout helper works fine.
2024       return TypeInt::make(min_size, max_jint, Type::WidenMin);
2025     }
2026   }
2027 
2028   // If we are loading from a freshly-allocated object, produce a zero,
2029   // if the load is provably beyond the header of the object.
2030   // (Also allow a variable load from a fresh array to produce zero.)
2031   const TypeOopPtr *tinst = tp->isa_oopptr();
2032   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
2033   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
2034   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
2035     Node* value = can_see_stored_value(mem,phase);
2036     if (value != NULL && value->is_Con()) {
2037       assert(value->bottom_type()->higher_equal(_type),"sanity");
2038       return value->bottom_type();
2039     }
2040   }
2041 
2042   if (is_instance) {
2043     // If we have an instance type and our memory input is the
2044     // programs's initial memory state, there is no matching store,
2045     // so just return a zero of the appropriate type
2046     Node *mem = in(MemNode::Memory);
2047     if (mem->is_Parm() && mem->in(0)->is_Start()) {
2048       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
2049       return Type::get_zero_type(_type->basic_type());
2050     }
2051   }
2052 
2053   Node* alloc = is_new_object_mark_load(phase);
2054   if (alloc != NULL && !(alloc->Opcode() == Op_Allocate && UseBiasedLocking)) {
2055     return TypeX::make(markWord::prototype().value());
2056   }
2057 
2058   return _type;
2059 }
2060 
2061 //------------------------------match_edge-------------------------------------
2062 // Do we Match on this edge index or not?  Match only the address.
2063 uint LoadNode::match_edge(uint idx) const {
2064   return idx == MemNode::Address;
2065 }
2066 
2067 //--------------------------LoadBNode::Ideal--------------------------------------
2068 //
2069 //  If the previous store is to the same address as this load,
2070 //  and the value stored was larger than a byte, replace this load
2071 //  with the value stored truncated to a byte.  If no truncation is
2072 //  needed, the replacement is done in LoadNode::Identity().
2073 //
2074 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2075   Node* mem = in(MemNode::Memory);
2076   Node* value = can_see_stored_value(mem,phase);
2077   if( value && !phase->type(value)->higher_equal( _type ) ) {
2078     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
2079     return new RShiftINode(result, phase->intcon(24));
2080   }
2081   // Identity call will handle the case where truncation is not needed.
2082   return LoadNode::Ideal(phase, can_reshape);
2083 }
2084 
2085 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2086   Node* mem = in(MemNode::Memory);
2087   Node* value = can_see_stored_value(mem,phase);
2088   if (value != NULL && value->is_Con() &&
2089       !value->bottom_type()->higher_equal(_type)) {
2090     // If the input to the store does not fit with the load's result type,
2091     // it must be truncated. We can't delay until Ideal call since
2092     // a singleton Value is needed for split_thru_phi optimization.
2093     int con = value->get_int();
2094     return TypeInt::make((con << 24) >> 24);
2095   }
2096   return LoadNode::Value(phase);
2097 }
2098 
2099 //--------------------------LoadUBNode::Ideal-------------------------------------
2100 //
2101 //  If the previous store is to the same address as this load,
2102 //  and the value stored was larger than a byte, replace this load
2103 //  with the value stored truncated to a byte.  If no truncation is
2104 //  needed, the replacement is done in LoadNode::Identity().
2105 //
2106 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2107   Node* mem = in(MemNode::Memory);
2108   Node* value = can_see_stored_value(mem, phase);
2109   if (value && !phase->type(value)->higher_equal(_type))
2110     return new AndINode(value, phase->intcon(0xFF));
2111   // Identity call will handle the case where truncation is not needed.
2112   return LoadNode::Ideal(phase, can_reshape);
2113 }
2114 
2115 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2116   Node* mem = in(MemNode::Memory);
2117   Node* value = can_see_stored_value(mem,phase);
2118   if (value != NULL && value->is_Con() &&
2119       !value->bottom_type()->higher_equal(_type)) {
2120     // If the input to the store does not fit with the load's result type,
2121     // it must be truncated. We can't delay until Ideal call since
2122     // a singleton Value is needed for split_thru_phi optimization.
2123     int con = value->get_int();
2124     return TypeInt::make(con & 0xFF);
2125   }
2126   return LoadNode::Value(phase);
2127 }
2128 
2129 //--------------------------LoadUSNode::Ideal-------------------------------------
2130 //
2131 //  If the previous store is to the same address as this load,
2132 //  and the value stored was larger than a char, replace this load
2133 //  with the value stored truncated to a char.  If no truncation is
2134 //  needed, the replacement is done in LoadNode::Identity().
2135 //
2136 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2137   Node* mem = in(MemNode::Memory);
2138   Node* value = can_see_stored_value(mem,phase);
2139   if( value && !phase->type(value)->higher_equal( _type ) )
2140     return new AndINode(value,phase->intcon(0xFFFF));
2141   // Identity call will handle the case where truncation is not needed.
2142   return LoadNode::Ideal(phase, can_reshape);
2143 }
2144 
2145 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2146   Node* mem = in(MemNode::Memory);
2147   Node* value = can_see_stored_value(mem,phase);
2148   if (value != NULL && value->is_Con() &&
2149       !value->bottom_type()->higher_equal(_type)) {
2150     // If the input to the store does not fit with the load's result type,
2151     // it must be truncated. We can't delay until Ideal call since
2152     // a singleton Value is needed for split_thru_phi optimization.
2153     int con = value->get_int();
2154     return TypeInt::make(con & 0xFFFF);
2155   }
2156   return LoadNode::Value(phase);
2157 }
2158 
2159 //--------------------------LoadSNode::Ideal--------------------------------------
2160 //
2161 //  If the previous store is to the same address as this load,
2162 //  and the value stored was larger than a short, replace this load
2163 //  with the value stored truncated to a short.  If no truncation is
2164 //  needed, the replacement is done in LoadNode::Identity().
2165 //
2166 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2167   Node* mem = in(MemNode::Memory);
2168   Node* value = can_see_stored_value(mem,phase);
2169   if( value && !phase->type(value)->higher_equal( _type ) ) {
2170     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2171     return new RShiftINode(result, phase->intcon(16));
2172   }
2173   // Identity call will handle the case where truncation is not needed.
2174   return LoadNode::Ideal(phase, can_reshape);
2175 }
2176 
2177 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2178   Node* mem = in(MemNode::Memory);
2179   Node* value = can_see_stored_value(mem,phase);
2180   if (value != NULL && value->is_Con() &&
2181       !value->bottom_type()->higher_equal(_type)) {
2182     // If the input to the store does not fit with the load's result type,
2183     // it must be truncated. We can't delay until Ideal call since
2184     // a singleton Value is needed for split_thru_phi optimization.
2185     int con = value->get_int();
2186     return TypeInt::make((con << 16) >> 16);
2187   }
2188   return LoadNode::Value(phase);
2189 }
2190 
2191 //=============================================================================
2192 //----------------------------LoadKlassNode::make------------------------------
2193 // Polymorphic factory method:
2194 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2195   // sanity check the alias category against the created node type
2196   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2197   assert(adr_type != NULL, "expecting TypeKlassPtr");
2198 #ifdef _LP64
2199   if (adr_type->is_ptr_to_narrowklass()) {
2200     assert(UseCompressedClassPointers, "no compressed klasses");
2201     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2202     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2203   }
2204 #endif
2205   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2206   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2207 }
2208 
2209 //------------------------------Value------------------------------------------
2210 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2211   return klass_value_common(phase);
2212 }
2213 
2214 // In most cases, LoadKlassNode does not have the control input set. If the control
2215 // input is set, it must not be removed (by LoadNode::Ideal()).
2216 bool LoadKlassNode::can_remove_control() const {
2217   return false;
2218 }
2219 
2220 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2221   // Either input is TOP ==> the result is TOP
2222   const Type *t1 = phase->type( in(MemNode::Memory) );
2223   if (t1 == Type::TOP)  return Type::TOP;
2224   Node *adr = in(MemNode::Address);
2225   const Type *t2 = phase->type( adr );
2226   if (t2 == Type::TOP)  return Type::TOP;
2227   const TypePtr *tp = t2->is_ptr();
2228   if (TypePtr::above_centerline(tp->ptr()) ||
2229       tp->ptr() == TypePtr::Null)  return Type::TOP;
2230 
2231   // Return a more precise klass, if possible
2232   const TypeInstPtr *tinst = tp->isa_instptr();
2233   if (tinst != NULL) {
2234     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2235     int offset = tinst->offset();
2236     if (ik == phase->C->env()->Class_klass()
2237         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2238             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2239       // We are loading a special hidden field from a Class mirror object,
2240       // the field which points to the VM's Klass metaobject.
2241       bool is_indirect_type = true;
2242       ciType* t = tinst->java_mirror_type(&is_indirect_type);
2243       // java_mirror_type returns non-null for compile-time Class constants.
2244       if (t != NULL) {
2245         // constant oop => constant klass
2246         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2247           if (t->is_void()) {
2248             // We cannot create a void array.  Since void is a primitive type return null
2249             // klass.  Users of this result need to do a null check on the returned klass.
2250             return TypePtr::NULL_PTR;
2251           }
2252           return TypeKlassPtr::make(ciArrayKlass::make(t, /* never_null */ !is_indirect_type));
2253         }
2254         if (!t->is_klass()) {
2255           // a primitive Class (e.g., int.class) has NULL for a klass field
2256           return TypePtr::NULL_PTR;
2257         }
2258         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2259         return TypeKlassPtr::make(t->as_klass());
2260       }
2261       // non-constant mirror, so we can't tell what's going on
2262     }
2263     if( !ik->is_loaded() )
2264       return _type;             // Bail out if not loaded
2265     if (offset == oopDesc::klass_offset_in_bytes()) {
2266       if (tinst->klass_is_exact()) {
2267         return TypeKlassPtr::make(ik);
2268       }
2269       // See if we can become precise: no subklasses and no interface
2270       // (Note:  We need to support verified interfaces.)
2271       if (!ik->is_interface() && !ik->has_subklass()) {
2272         //assert(!UseExactTypes, "this code should be useless with exact types");
2273         // Add a dependence; if any subclass added we need to recompile
2274         if (!ik->is_final()) {
2275           // %%% should use stronger assert_unique_concrete_subtype instead
2276           phase->C->dependencies()->assert_leaf_type(ik);
2277         }
2278         // Return precise klass
2279         return TypeKlassPtr::make(ik);
2280       }
2281 
2282       // Return root of possible klass
2283       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0), tinst->flat_array());
2284     }
2285   }
2286 
2287   // Check for loading klass from an array
2288   const TypeAryPtr *tary = tp->isa_aryptr();
2289   if (tary != NULL) {
2290     ciKlass *tary_klass = tary->klass();
2291     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2292         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2293       ciArrayKlass* ak = tary_klass->as_array_klass();
2294       // Do not fold klass loads from [V?. The runtime type might be [V due to [V <: [V?
2295       // and the klass for [V is not equal to the klass for [V?.
2296       if (tary->klass_is_exact()) {
2297         return TypeKlassPtr::make(tary_klass);
2298       }
2299 
2300       // If the klass is an object array, we defer the question to the
2301       // array component klass.
2302       if (ak->is_obj_array_klass()) {
2303         assert(ak->is_loaded(), "");
2304         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2305         if (base_k->is_loaded() && base_k->is_instance_klass()) {
2306           ciInstanceKlass *ik = base_k->as_instance_klass();
2307           // See if we can become precise: no subklasses and no interface
2308           if (!ik->is_interface() && !ik->has_subklass() && (!ik->is_valuetype() || ak->storage_properties().is_null_free())) {
2309             //assert(!UseExactTypes, "this code should be useless with exact types");
2310             // Add a dependence; if any subclass added we need to recompile
2311             if (!ik->is_final()) {
2312               phase->C->dependencies()->assert_leaf_type(ik);
2313             }
2314             // Return precise array klass
2315             return TypeKlassPtr::make(ak);
2316           }
2317         }
2318         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0), false);
2319       } else if (ak->is_type_array_klass()) {
2320         //assert(!UseExactTypes, "this code should be useless with exact types");
2321         return TypeKlassPtr::make(ak); // These are always precise
2322       }
2323     }
2324   }
2325 
2326   // Check for loading klass from an array klass
2327   const TypeKlassPtr *tkls = tp->isa_klassptr();
2328   if (tkls != NULL && !StressReflectiveCode) {
2329     if (!tkls->is_loaded()) {
2330       return _type;             // Bail out if not loaded
2331     }
2332     ciKlass* klass = tkls->klass();
2333     if( klass->is_obj_array_klass() &&
2334         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2335       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2336       // // Always returning precise element type is incorrect,
2337       // // e.g., element type could be object and array may contain strings
2338       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2339 
2340       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2341       // according to the element type's subclassing.
2342       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0), elem->flatten_array());
2343     } else if (klass->is_value_array_klass() &&
2344                tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2345       ciKlass* elem = klass->as_value_array_klass()->element_klass();
2346       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0), true);
2347     }
2348     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2349         tkls->offset() == in_bytes(Klass::super_offset())) {
2350       ciKlass* sup = klass->as_instance_klass()->super();
2351       // The field is Klass::_super.  Return its (constant) value.
2352       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2353       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2354     }
2355   }
2356 
2357   // Bailout case
2358   return LoadNode::Value(phase);
2359 }
2360 
2361 //------------------------------Identity---------------------------------------
2362 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2363 // Also feed through the klass in Allocate(...klass...)._klass.
2364 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2365   return klass_identity_common(phase);
2366 }
2367 
2368 const Type* GetStoragePropertyNode::Value(PhaseGVN* phase) const {
2369   if (in(1) != NULL) {
2370     const Type* in1_t = phase->type(in(1));
2371     if (in1_t == Type::TOP) {
2372       return Type::TOP;
2373     }
2374     const TypeKlassPtr* tk = in1_t->make_ptr()->is_klassptr();
2375     ciArrayKlass* ak = tk->klass()->as_array_klass();
2376     ciKlass* elem = ak->element_klass();
2377     if (tk->klass_is_exact() || (!elem->is_java_lang_Object() && !elem->is_interface() && !elem->is_valuetype())) {
2378       int props_shift = in1_t->isa_narrowklass() ? oopDesc::narrow_storage_props_shift : oopDesc::wide_storage_props_shift;
2379       ArrayStorageProperties props = ak->storage_properties();
2380       intptr_t storage_properties = 0;
2381       if ((Opcode() == Op_GetFlattenedProperty && props.is_flattened()) ||
2382           (Opcode() == Op_GetNullFreeProperty && props.is_null_free())) {
2383         storage_properties = 1;
2384       }
2385       if (in1_t->isa_narrowklass()) {
2386         return TypeInt::make((int)storage_properties);
2387       }
2388       return TypeX::make(storage_properties);
2389     }
2390   }
2391   return bottom_type();
2392 }
2393 
2394 Node* GetStoragePropertyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2395   if (!can_reshape) {
2396     return NULL;
2397   }
2398   if (in(1) != NULL && in(1)->is_Phi()) {
2399     Node* phi = in(1);
2400     Node* r = phi->in(0);
2401     Node* new_phi = new PhiNode(r, bottom_type());
2402     for (uint i = 1; i < r->req(); i++) {
2403       Node* in = phi->in(i);
2404       if (in == NULL) continue;
2405       Node* n = clone();
2406       n->set_req(1, in);
2407       new_phi->init_req(i, phase->transform(n));
2408     }
2409     return new_phi;
2410   }
2411   return NULL;
2412 }
2413 
2414 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2415   Node* x = LoadNode::Identity(phase);
2416   if (x != this)  return x;
2417 
2418   // Take apart the address into an oop and and offset.
2419   // Return 'this' if we cannot.
2420   Node*    adr    = in(MemNode::Address);
2421   intptr_t offset = 0;
2422   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2423   if (base == NULL)     return this;
2424   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2425   if (toop == NULL)     return this;
2426 
2427   // Step over potential GC barrier for OopHandle resolve
2428   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2429   if (bs->is_gc_barrier_node(base)) {
2430     base = bs->step_over_gc_barrier(base);
2431   }
2432 
2433   // We can fetch the klass directly through an AllocateNode.
2434   // This works even if the klass is not constant (clone or newArray).
2435   if (offset == oopDesc::klass_offset_in_bytes()) {
2436     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2437     if (allocated_klass != NULL) {
2438       return allocated_klass;
2439     }
2440   }
2441 
2442   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2443   // See inline_native_Class_query for occurrences of these patterns.
2444   // Java Example:  x.getClass().isAssignableFrom(y)
2445   //
2446   // This improves reflective code, often making the Class
2447   // mirror go completely dead.  (Current exception:  Class
2448   // mirrors may appear in debug info, but we could clean them out by
2449   // introducing a new debug info operator for Klass.java_mirror).
2450 
2451   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2452       && offset == java_lang_Class::klass_offset_in_bytes()) {
2453     if (base->is_Load()) {
2454       Node* base2 = base->in(MemNode::Address);
2455       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2456         Node* adr2 = base2->in(MemNode::Address);
2457         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2458         if (tkls != NULL && !tkls->empty()
2459             && (tkls->klass()->is_instance_klass() ||
2460               tkls->klass()->is_array_klass())
2461             && adr2->is_AddP()
2462            ) {
2463           int mirror_field = in_bytes(Klass::java_mirror_offset());
2464           if (tkls->offset() == mirror_field) {
2465             return adr2->in(AddPNode::Base);
2466           }
2467         }
2468       }
2469     }
2470   }
2471 
2472   return this;
2473 }
2474 
2475 
2476 //------------------------------Value------------------------------------------
2477 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2478   const Type *t = klass_value_common(phase);
2479   if (t == Type::TOP)
2480     return t;
2481 
2482   return t->make_narrowklass();
2483 }
2484 
2485 //------------------------------Identity---------------------------------------
2486 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2487 // Also feed through the klass in Allocate(...klass...)._klass.
2488 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2489   Node *x = klass_identity_common(phase);
2490 
2491   const Type *t = phase->type( x );
2492   if( t == Type::TOP ) return x;
2493   if( t->isa_narrowklass()) return x;
2494   assert (!t->isa_narrowoop(), "no narrow oop here");
2495 
2496   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2497 }
2498 
2499 //------------------------------Value-----------------------------------------
2500 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2501   // Either input is TOP ==> the result is TOP
2502   const Type *t1 = phase->type( in(MemNode::Memory) );
2503   if( t1 == Type::TOP ) return Type::TOP;
2504   Node *adr = in(MemNode::Address);
2505   const Type *t2 = phase->type( adr );
2506   if( t2 == Type::TOP ) return Type::TOP;
2507   const TypePtr *tp = t2->is_ptr();
2508   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2509   const TypeAryPtr *tap = tp->isa_aryptr();
2510   if( !tap ) return _type;
2511   return tap->size();
2512 }
2513 
2514 //-------------------------------Ideal---------------------------------------
2515 // Feed through the length in AllocateArray(...length...)._length.
2516 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2517   Node* p = MemNode::Ideal_common(phase, can_reshape);
2518   if (p)  return (p == NodeSentinel) ? NULL : p;
2519 
2520   // Take apart the address into an oop and and offset.
2521   // Return 'this' if we cannot.
2522   Node*    adr    = in(MemNode::Address);
2523   intptr_t offset = 0;
2524   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2525   if (base == NULL)     return NULL;
2526   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2527   if (tary == NULL)     return NULL;
2528 
2529   // We can fetch the length directly through an AllocateArrayNode.
2530   // This works even if the length is not constant (clone or newArray).
2531   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2532     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2533     if (alloc != NULL) {
2534       Node* allocated_length = alloc->Ideal_length();
2535       Node* len = alloc->make_ideal_length(tary, phase);
2536       if (allocated_length != len) {
2537         // New CastII improves on this.
2538         return len;
2539       }
2540     }
2541   }
2542 
2543   return NULL;
2544 }
2545 
2546 //------------------------------Identity---------------------------------------
2547 // Feed through the length in AllocateArray(...length...)._length.
2548 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2549   Node* x = LoadINode::Identity(phase);
2550   if (x != this)  return x;
2551 
2552   // Take apart the address into an oop and and offset.
2553   // Return 'this' if we cannot.
2554   Node*    adr    = in(MemNode::Address);
2555   intptr_t offset = 0;
2556   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2557   if (base == NULL)     return this;
2558   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2559   if (tary == NULL)     return this;
2560 
2561   // We can fetch the length directly through an AllocateArrayNode.
2562   // This works even if the length is not constant (clone or newArray).
2563   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2564     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2565     if (alloc != NULL) {
2566       Node* allocated_length = alloc->Ideal_length();
2567       // Do not allow make_ideal_length to allocate a CastII node.
2568       Node* len = alloc->make_ideal_length(tary, phase, false);
2569       if (allocated_length == len) {
2570         // Return allocated_length only if it would not be improved by a CastII.
2571         return allocated_length;
2572       }
2573     }
2574   }
2575 
2576   return this;
2577 
2578 }
2579 
2580 //=============================================================================
2581 //---------------------------StoreNode::make-----------------------------------
2582 // Polymorphic factory method:
2583 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2584   assert((mo == unordered || mo == release), "unexpected");
2585   Compile* C = gvn.C;
2586   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2587          ctl != NULL, "raw memory operations should have control edge");
2588 
2589   switch (bt) {
2590   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2591   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2592   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2593   case T_CHAR:
2594   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2595   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2596   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2597   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2598   case T_METADATA:
2599   case T_ADDRESS:
2600   case T_VALUETYPE:
2601   case T_OBJECT:
2602 #ifdef _LP64
2603     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2604       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2605       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2606     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2607                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2608                 adr->bottom_type()->isa_rawptr())) {
2609       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2610       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2611     }
2612 #endif
2613     {
2614       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2615     }
2616   default:
2617     ShouldNotReachHere();
2618     return (StoreNode*)NULL;
2619   }
2620 }
2621 
2622 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2623   bool require_atomic = true;
2624   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2625 }
2626 
2627 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2628   bool require_atomic = true;
2629   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2630 }
2631 
2632 
2633 //--------------------------bottom_type----------------------------------------
2634 const Type *StoreNode::bottom_type() const {
2635   return Type::MEMORY;
2636 }
2637 
2638 //------------------------------hash-------------------------------------------
2639 uint StoreNode::hash() const {
2640   // unroll addition of interesting fields
2641   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2642 
2643   // Since they are not commoned, do not hash them:
2644   return NO_HASH;
2645 }
2646 
2647 //------------------------------Ideal------------------------------------------
2648 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2649 // When a store immediately follows a relevant allocation/initialization,
2650 // try to capture it into the initialization, or hoist it above.
2651 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2652   Node* p = MemNode::Ideal_common(phase, can_reshape);
2653   if (p)  return (p == NodeSentinel) ? NULL : p;
2654 
2655   Node* mem     = in(MemNode::Memory);
2656   Node* address = in(MemNode::Address);
2657   // Back-to-back stores to same address?  Fold em up.  Generally
2658   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2659   // since they must follow each StoreP operation.  Redundant StoreCMs
2660   // are eliminated just before matching in final_graph_reshape.
2661   if (phase->C->get_adr_type(phase->C->get_alias_index(adr_type())) != TypeAryPtr::VALUES) {
2662     Node* st = mem;
2663     // If Store 'st' has more than one use, we cannot fold 'st' away.
2664     // For example, 'st' might be the final state at a conditional
2665     // return.  Or, 'st' might be used by some node which is live at
2666     // the same time 'st' is live, which might be unschedulable.  So,
2667     // require exactly ONE user until such time as we clone 'mem' for
2668     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2669     // true).
2670     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2671       // Looking at a dead closed cycle of memory?
2672       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2673       assert(Opcode() == st->Opcode() ||
2674              st->Opcode() == Op_StoreVector ||
2675              Opcode() == Op_StoreVector ||
2676              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2677              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2678              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2679              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
2680              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2681              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2682 
2683       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2684           st->as_Store()->memory_size() <= this->memory_size()) {
2685         Node* use = st->raw_out(0);
2686         phase->igvn_rehash_node_delayed(use);
2687         if (can_reshape) {
2688           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2689         } else {
2690           // It's OK to do this in the parser, since DU info is always accurate,
2691           // and the parser always refers to nodes via SafePointNode maps.
2692           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2693         }
2694         return this;
2695       }
2696       st = st->in(MemNode::Memory);
2697     }
2698   }
2699 
2700 
2701   // Capture an unaliased, unconditional, simple store into an initializer.
2702   // Or, if it is independent of the allocation, hoist it above the allocation.
2703   if (ReduceFieldZeroing && /*can_reshape &&*/
2704       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2705     InitializeNode* init = mem->in(0)->as_Initialize();
2706     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2707     if (offset > 0) {
2708       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2709       // If the InitializeNode captured me, it made a raw copy of me,
2710       // and I need to disappear.
2711       if (moved != NULL) {
2712         // %%% hack to ensure that Ideal returns a new node:
2713         mem = MergeMemNode::make(mem);
2714         return mem;             // fold me away
2715       }
2716     }
2717   }
2718 
2719   return NULL;                  // No further progress
2720 }
2721 
2722 //------------------------------Value-----------------------------------------
2723 const Type* StoreNode::Value(PhaseGVN* phase) const {
2724   // Either input is TOP ==> the result is TOP
2725   const Type *t1 = phase->type( in(MemNode::Memory) );
2726   if( t1 == Type::TOP ) return Type::TOP;
2727   const Type *t2 = phase->type( in(MemNode::Address) );
2728   if( t2 == Type::TOP ) return Type::TOP;
2729   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2730   if( t3 == Type::TOP ) return Type::TOP;
2731   return Type::MEMORY;
2732 }
2733 
2734 //------------------------------Identity---------------------------------------
2735 // Remove redundant stores:
2736 //   Store(m, p, Load(m, p)) changes to m.
2737 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2738 Node* StoreNode::Identity(PhaseGVN* phase) {
2739   Node* mem = in(MemNode::Memory);
2740   Node* adr = in(MemNode::Address);
2741   Node* val = in(MemNode::ValueIn);
2742 
2743   Node* result = this;
2744 
2745   // Load then Store?  Then the Store is useless
2746   if (val->is_Load() &&
2747       val->in(MemNode::Address)->eqv_uncast(adr) &&
2748       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2749       val->as_Load()->store_Opcode() == Opcode()) {
2750     result = mem;
2751   }
2752 
2753   // Two stores in a row of the same value?
2754   if (result == this &&
2755       mem->is_Store() &&
2756       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2757       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2758       mem->Opcode() == Opcode()) {
2759     result = mem;
2760   }
2761 
2762   // Store of zero anywhere into a freshly-allocated object?
2763   // Then the store is useless.
2764   // (It must already have been captured by the InitializeNode.)
2765   if (result == this && ReduceFieldZeroing) {
2766     // a newly allocated object is already all-zeroes everywhere
2767     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
2768         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == val)) {
2769       assert(!phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == NULL, "storing null to value array is forbidden");
2770       result = mem;
2771     }
2772 
2773     if (result == this) {
2774       // the store may also apply to zero-bits in an earlier object
2775       Node* prev_mem = find_previous_store(phase);
2776       // Steps (a), (b):  Walk past independent stores to find an exact match.
2777       if (prev_mem != NULL) {
2778         Node* prev_val = can_see_stored_value(prev_mem, phase);
2779         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2780           // prev_val and val might differ by a cast; it would be good
2781           // to keep the more informative of the two.
2782           if (phase->type(val)->is_zero_type()) {
2783             result = mem;
2784           } else if (prev_mem->is_Proj() && prev_mem->in(0)->is_Initialize()) {
2785             InitializeNode* init = prev_mem->in(0)->as_Initialize();
2786             AllocateNode* alloc = init->allocation();
2787             if (alloc != NULL && alloc->in(AllocateNode::DefaultValue) == val) {
2788               result = mem;
2789             }
2790           }
2791         }
2792       }
2793     }
2794   }
2795 
2796   if (result != this && phase->is_IterGVN() != NULL) {
2797     MemBarNode* trailing = trailing_membar();
2798     if (trailing != NULL) {
2799 #ifdef ASSERT
2800       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2801       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2802 #endif
2803       PhaseIterGVN* igvn = phase->is_IterGVN();
2804       trailing->remove(igvn);
2805     }
2806   }
2807 
2808   return result;
2809 }
2810 
2811 //------------------------------match_edge-------------------------------------
2812 // Do we Match on this edge index or not?  Match only memory & value
2813 uint StoreNode::match_edge(uint idx) const {
2814   return idx == MemNode::Address || idx == MemNode::ValueIn;
2815 }
2816 
2817 //------------------------------cmp--------------------------------------------
2818 // Do not common stores up together.  They generally have to be split
2819 // back up anyways, so do not bother.
2820 bool StoreNode::cmp( const Node &n ) const {
2821   return (&n == this);          // Always fail except on self
2822 }
2823 
2824 //------------------------------Ideal_masked_input-----------------------------
2825 // Check for a useless mask before a partial-word store
2826 // (StoreB ... (AndI valIn conIa) )
2827 // If (conIa & mask == mask) this simplifies to
2828 // (StoreB ... (valIn) )
2829 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2830   Node *val = in(MemNode::ValueIn);
2831   if( val->Opcode() == Op_AndI ) {
2832     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2833     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2834       set_req(MemNode::ValueIn, val->in(1));
2835       return this;
2836     }
2837   }
2838   return NULL;
2839 }
2840 
2841 
2842 //------------------------------Ideal_sign_extended_input----------------------
2843 // Check for useless sign-extension before a partial-word store
2844 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2845 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2846 // (StoreB ... (valIn) )
2847 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2848   Node *val = in(MemNode::ValueIn);
2849   if( val->Opcode() == Op_RShiftI ) {
2850     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2851     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2852       Node *shl = val->in(1);
2853       if( shl->Opcode() == Op_LShiftI ) {
2854         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2855         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2856           set_req(MemNode::ValueIn, shl->in(1));
2857           return this;
2858         }
2859       }
2860     }
2861   }
2862   return NULL;
2863 }
2864 
2865 //------------------------------value_never_loaded-----------------------------------
2866 // Determine whether there are any possible loads of the value stored.
2867 // For simplicity, we actually check if there are any loads from the
2868 // address stored to, not just for loads of the value stored by this node.
2869 //
2870 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2871   Node *adr = in(Address);
2872   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2873   if (adr_oop == NULL)
2874     return false;
2875   if (!adr_oop->is_known_instance_field())
2876     return false; // if not a distinct instance, there may be aliases of the address
2877   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2878     Node *use = adr->fast_out(i);
2879     if (use->is_Load() || use->is_LoadStore()) {
2880       return false;
2881     }
2882   }
2883   return true;
2884 }
2885 
2886 MemBarNode* StoreNode::trailing_membar() const {
2887   if (is_release()) {
2888     MemBarNode* trailing_mb = NULL;
2889     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2890       Node* u = fast_out(i);
2891       if (u->is_MemBar()) {
2892         if (u->as_MemBar()->trailing_store()) {
2893           assert(u->Opcode() == Op_MemBarVolatile, "");
2894           assert(trailing_mb == NULL, "only one");
2895           trailing_mb = u->as_MemBar();
2896 #ifdef ASSERT
2897           Node* leading = u->as_MemBar()->leading_membar();
2898           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2899           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2900           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2901 #endif
2902         } else {
2903           assert(u->as_MemBar()->standalone(), "");
2904         }
2905       }
2906     }
2907     return trailing_mb;
2908   }
2909   return NULL;
2910 }
2911 
2912 
2913 //=============================================================================
2914 //------------------------------Ideal------------------------------------------
2915 // If the store is from an AND mask that leaves the low bits untouched, then
2916 // we can skip the AND operation.  If the store is from a sign-extension
2917 // (a left shift, then right shift) we can skip both.
2918 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2919   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2920   if( progress != NULL ) return progress;
2921 
2922   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2923   if( progress != NULL ) return progress;
2924 
2925   // Finally check the default case
2926   return StoreNode::Ideal(phase, can_reshape);
2927 }
2928 
2929 //=============================================================================
2930 //------------------------------Ideal------------------------------------------
2931 // If the store is from an AND mask that leaves the low bits untouched, then
2932 // we can skip the AND operation
2933 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2934   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2935   if( progress != NULL ) return progress;
2936 
2937   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2938   if( progress != NULL ) return progress;
2939 
2940   // Finally check the default case
2941   return StoreNode::Ideal(phase, can_reshape);
2942 }
2943 
2944 //=============================================================================
2945 //------------------------------Identity---------------------------------------
2946 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2947   // No need to card mark when storing a null ptr
2948   Node* my_store = in(MemNode::OopStore);
2949   if (my_store->is_Store()) {
2950     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2951     if( t1 == TypePtr::NULL_PTR ) {
2952       return in(MemNode::Memory);
2953     }
2954   }
2955   return this;
2956 }
2957 
2958 //=============================================================================
2959 //------------------------------Ideal---------------------------------------
2960 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2961   Node* progress = StoreNode::Ideal(phase, can_reshape);
2962   if (progress != NULL) return progress;
2963 
2964   Node* my_store = in(MemNode::OopStore);
2965   if (my_store->is_MergeMem()) {
2966     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2967     set_req(MemNode::OopStore, mem);
2968     return this;
2969   }
2970 
2971   return NULL;
2972 }
2973 
2974 //------------------------------Value-----------------------------------------
2975 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2976   // Either input is TOP ==> the result is TOP
2977   const Type *t = phase->type( in(MemNode::Memory) );
2978   if( t == Type::TOP ) return Type::TOP;
2979   t = phase->type( in(MemNode::Address) );
2980   if( t == Type::TOP ) return Type::TOP;
2981   t = phase->type( in(MemNode::ValueIn) );
2982   if( t == Type::TOP ) return Type::TOP;
2983   // If extra input is TOP ==> the result is TOP
2984   t = phase->type( in(MemNode::OopStore) );
2985   if( t == Type::TOP ) return Type::TOP;
2986 
2987   return StoreNode::Value( phase );
2988 }
2989 
2990 
2991 //=============================================================================
2992 //----------------------------------SCMemProjNode------------------------------
2993 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2994 {
2995   return bottom_type();
2996 }
2997 
2998 //=============================================================================
2999 //----------------------------------LoadStoreNode------------------------------
3000 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
3001   : Node(required),
3002     _type(rt),
3003     _adr_type(at),
3004     _has_barrier(false)
3005 {
3006   init_req(MemNode::Control, c  );
3007   init_req(MemNode::Memory , mem);
3008   init_req(MemNode::Address, adr);
3009   init_req(MemNode::ValueIn, val);
3010   init_class_id(Class_LoadStore);
3011 }
3012 
3013 uint LoadStoreNode::ideal_reg() const {
3014   return _type->ideal_reg();
3015 }
3016 
3017 bool LoadStoreNode::result_not_used() const {
3018   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
3019     Node *x = fast_out(i);
3020     if (x->Opcode() == Op_SCMemProj) continue;
3021     return false;
3022   }
3023   return true;
3024 }
3025 
3026 MemBarNode* LoadStoreNode::trailing_membar() const {
3027   MemBarNode* trailing = NULL;
3028   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3029     Node* u = fast_out(i);
3030     if (u->is_MemBar()) {
3031       if (u->as_MemBar()->trailing_load_store()) {
3032         assert(u->Opcode() == Op_MemBarAcquire, "");
3033         assert(trailing == NULL, "only one");
3034         trailing = u->as_MemBar();
3035 #ifdef ASSERT
3036         Node* leading = trailing->leading_membar();
3037         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
3038         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
3039         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
3040 #endif
3041       } else {
3042         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
3043       }
3044     }
3045   }
3046 
3047   return trailing;
3048 }
3049 
3050 uint LoadStoreNode::size_of() const { return sizeof(*this); }
3051 
3052 //=============================================================================
3053 //----------------------------------LoadStoreConditionalNode--------------------
3054 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
3055   init_req(ExpectedIn, ex );
3056 }
3057 
3058 //=============================================================================
3059 //-------------------------------adr_type--------------------------------------
3060 const TypePtr* ClearArrayNode::adr_type() const {
3061   Node *adr = in(3);
3062   if (adr == NULL)  return NULL; // node is dead
3063   return MemNode::calculate_adr_type(adr->bottom_type());
3064 }
3065 
3066 //------------------------------match_edge-------------------------------------
3067 // Do we Match on this edge index or not?  Do not match memory
3068 uint ClearArrayNode::match_edge(uint idx) const {
3069   return idx > 1;
3070 }
3071 
3072 //------------------------------Identity---------------------------------------
3073 // Clearing a zero length array does nothing
3074 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
3075   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
3076 }
3077 
3078 //------------------------------Idealize---------------------------------------
3079 // Clearing a short array is faster with stores
3080 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3081   // Already know this is a large node, do not try to ideal it
3082   if (!IdealizeClearArrayNode || _is_large) return NULL;
3083 
3084   const int unit = BytesPerLong;
3085   const TypeX* t = phase->type(in(2))->isa_intptr_t();
3086   if (!t)  return NULL;
3087   if (!t->is_con())  return NULL;
3088   intptr_t raw_count = t->get_con();
3089   intptr_t size = raw_count;
3090   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
3091   // Clearing nothing uses the Identity call.
3092   // Negative clears are possible on dead ClearArrays
3093   // (see jck test stmt114.stmt11402.val).
3094   if (size <= 0 || size % unit != 0)  return NULL;
3095   intptr_t count = size / unit;
3096   // Length too long; communicate this to matchers and assemblers.
3097   // Assemblers are responsible to produce fast hardware clears for it.
3098   if (size > InitArrayShortSize) {
3099     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
3100   }
3101   Node *mem = in(1);
3102   if( phase->type(mem)==Type::TOP ) return NULL;
3103   Node *adr = in(3);
3104   const Type* at = phase->type(adr);
3105   if( at==Type::TOP ) return NULL;
3106   const TypePtr* atp = at->isa_ptr();
3107   // adjust atp to be the correct array element address type
3108   if (atp == NULL)  atp = TypePtr::BOTTOM;
3109   else              atp = atp->add_offset(Type::OffsetBot);
3110   // Get base for derived pointer purposes
3111   if( adr->Opcode() != Op_AddP ) Unimplemented();
3112   Node *base = adr->in(1);
3113 
3114   Node *val = in(4);
3115   Node *off  = phase->MakeConX(BytesPerLong);
3116   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
3117   count--;
3118   while( count-- ) {
3119     mem = phase->transform(mem);
3120     adr = phase->transform(new AddPNode(base,adr,off));
3121     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
3122   }
3123   return mem;
3124 }
3125 
3126 //----------------------------step_through----------------------------------
3127 // Return allocation input memory edge if it is different instance
3128 // or itself if it is the one we are looking for.
3129 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
3130   Node* n = *np;
3131   assert(n->is_ClearArray(), "sanity");
3132   intptr_t offset;
3133   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
3134   // This method is called only before Allocate nodes are expanded
3135   // during macro nodes expansion. Before that ClearArray nodes are
3136   // only generated in PhaseMacroExpand::generate_arraycopy() (before
3137   // Allocate nodes are expanded) which follows allocations.
3138   assert(alloc != NULL, "should have allocation");
3139   if (alloc->_idx == instance_id) {
3140     // Can not bypass initialization of the instance we are looking for.
3141     return false;
3142   }
3143   // Otherwise skip it.
3144   InitializeNode* init = alloc->initialization();
3145   if (init != NULL)
3146     *np = init->in(TypeFunc::Memory);
3147   else
3148     *np = alloc->in(TypeFunc::Memory);
3149   return true;
3150 }
3151 
3152 //----------------------------clear_memory-------------------------------------
3153 // Generate code to initialize object storage to zero.
3154 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3155                                    Node* val,
3156                                    Node* raw_val,
3157                                    intptr_t start_offset,
3158                                    Node* end_offset,
3159                                    PhaseGVN* phase) {
3160   intptr_t offset = start_offset;
3161 
3162   int unit = BytesPerLong;
3163   if ((offset % unit) != 0) {
3164     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3165     adr = phase->transform(adr);
3166     const TypePtr* atp = TypeRawPtr::BOTTOM;
3167     if (val != NULL) {
3168       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3169       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3170     } else {
3171       assert(raw_val == NULL, "val may not be null");
3172       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3173     }
3174     mem = phase->transform(mem);
3175     offset += BytesPerInt;
3176   }
3177   assert((offset % unit) == 0, "");
3178 
3179   // Initialize the remaining stuff, if any, with a ClearArray.
3180   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
3181 }
3182 
3183 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3184                                    Node* raw_val,
3185                                    Node* start_offset,
3186                                    Node* end_offset,
3187                                    PhaseGVN* phase) {
3188   if (start_offset == end_offset) {
3189     // nothing to do
3190     return mem;
3191   }
3192 
3193   int unit = BytesPerLong;
3194   Node* zbase = start_offset;
3195   Node* zend  = end_offset;
3196 
3197   // Scale to the unit required by the CPU:
3198   if (!Matcher::init_array_count_is_in_bytes) {
3199     Node* shift = phase->intcon(exact_log2(unit));
3200     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3201     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3202   }
3203 
3204   // Bulk clear double-words
3205   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3206   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3207   if (raw_val == NULL) {
3208     raw_val = phase->MakeConX(0);
3209   }
3210   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
3211   return phase->transform(mem);
3212 }
3213 
3214 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3215                                    Node* val,
3216                                    Node* raw_val,
3217                                    intptr_t start_offset,
3218                                    intptr_t end_offset,
3219                                    PhaseGVN* phase) {
3220   if (start_offset == end_offset) {
3221     // nothing to do
3222     return mem;
3223   }
3224 
3225   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3226   intptr_t done_offset = end_offset;
3227   if ((done_offset % BytesPerLong) != 0) {
3228     done_offset -= BytesPerInt;
3229   }
3230   if (done_offset > start_offset) {
3231     mem = clear_memory(ctl, mem, dest, val, raw_val,
3232                        start_offset, phase->MakeConX(done_offset), phase);
3233   }
3234   if (done_offset < end_offset) { // emit the final 32-bit store
3235     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3236     adr = phase->transform(adr);
3237     const TypePtr* atp = TypeRawPtr::BOTTOM;
3238     if (val != NULL) {
3239       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3240       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3241     } else {
3242       assert(raw_val == NULL, "val may not be null");
3243       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3244     }
3245     mem = phase->transform(mem);
3246     done_offset += BytesPerInt;
3247   }
3248   assert(done_offset == end_offset, "");
3249   return mem;
3250 }
3251 
3252 //=============================================================================
3253 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3254   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3255     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3256 #ifdef ASSERT
3257   , _pair_idx(0)
3258 #endif
3259 {
3260   init_class_id(Class_MemBar);
3261   Node* top = C->top();
3262   init_req(TypeFunc::I_O,top);
3263   init_req(TypeFunc::FramePtr,top);
3264   init_req(TypeFunc::ReturnAdr,top);
3265   if (precedent != NULL)
3266     init_req(TypeFunc::Parms, precedent);
3267 }
3268 
3269 //------------------------------cmp--------------------------------------------
3270 uint MemBarNode::hash() const { return NO_HASH; }
3271 bool MemBarNode::cmp( const Node &n ) const {
3272   return (&n == this);          // Always fail except on self
3273 }
3274 
3275 //------------------------------make-------------------------------------------
3276 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3277   switch (opcode) {
3278   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3279   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3280   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3281   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3282   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3283   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3284   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3285   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3286   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3287   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3288   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3289   default: ShouldNotReachHere(); return NULL;
3290   }
3291 }
3292 
3293 void MemBarNode::remove(PhaseIterGVN *igvn) {
3294   if (outcnt() != 2) {
3295     return;
3296   }
3297   if (trailing_store() || trailing_load_store()) {
3298     MemBarNode* leading = leading_membar();
3299     if (leading != NULL) {
3300       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3301       leading->remove(igvn);
3302     }
3303   }
3304   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3305   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3306 }
3307 
3308 //------------------------------Ideal------------------------------------------
3309 // Return a node which is more "ideal" than the current node.  Strip out
3310 // control copies
3311 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3312   if (remove_dead_region(phase, can_reshape)) return this;
3313   // Don't bother trying to transform a dead node
3314   if (in(0) && in(0)->is_top()) {
3315     return NULL;
3316   }
3317 
3318   bool progress = false;
3319   // Eliminate volatile MemBars for scalar replaced objects.
3320   if (can_reshape && req() == (Precedent+1)) {
3321     bool eliminate = false;
3322     int opc = Opcode();
3323     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3324       // Volatile field loads and stores.
3325       Node* my_mem = in(MemBarNode::Precedent);
3326       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3327       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3328         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3329         // replace this Precedent (decodeN) with the Load instead.
3330         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3331           Node* load_node = my_mem->in(1);
3332           set_req(MemBarNode::Precedent, load_node);
3333           phase->is_IterGVN()->_worklist.push(my_mem);
3334           my_mem = load_node;
3335         } else {
3336           assert(my_mem->unique_out() == this, "sanity");
3337           del_req(Precedent);
3338           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3339           my_mem = NULL;
3340         }
3341         progress = true;
3342       }
3343       if (my_mem != NULL && my_mem->is_Mem()) {
3344         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3345         // Check for scalar replaced object reference.
3346         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3347             t_oop->offset() != Type::OffsetBot &&
3348             t_oop->offset() != Type::OffsetTop) {
3349           eliminate = true;
3350         }
3351       }
3352     } else if (opc == Op_MemBarRelease) {
3353       // Final field stores.
3354       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3355       if ((alloc != NULL) && alloc->is_Allocate() &&
3356           alloc->as_Allocate()->does_not_escape_thread()) {
3357         // The allocated object does not escape.
3358         eliminate = true;
3359       }
3360     }
3361     if (eliminate) {
3362       // Replace MemBar projections by its inputs.
3363       PhaseIterGVN* igvn = phase->is_IterGVN();
3364       remove(igvn);
3365       // Must return either the original node (now dead) or a new node
3366       // (Do not return a top here, since that would break the uniqueness of top.)
3367       return new ConINode(TypeInt::ZERO);
3368     }
3369   }
3370   return progress ? this : NULL;
3371 }
3372 
3373 //------------------------------Value------------------------------------------
3374 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3375   if( !in(0) ) return Type::TOP;
3376   if( phase->type(in(0)) == Type::TOP )
3377     return Type::TOP;
3378   return TypeTuple::MEMBAR;
3379 }
3380 
3381 //------------------------------match------------------------------------------
3382 // Construct projections for memory.
3383 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3384   switch (proj->_con) {
3385   case TypeFunc::Control:
3386   case TypeFunc::Memory:
3387     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3388   }
3389   ShouldNotReachHere();
3390   return NULL;
3391 }
3392 
3393 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3394   trailing->_kind = TrailingStore;
3395   leading->_kind = LeadingStore;
3396 #ifdef ASSERT
3397   trailing->_pair_idx = leading->_idx;
3398   leading->_pair_idx = leading->_idx;
3399 #endif
3400 }
3401 
3402 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3403   trailing->_kind = TrailingLoadStore;
3404   leading->_kind = LeadingLoadStore;
3405 #ifdef ASSERT
3406   trailing->_pair_idx = leading->_idx;
3407   leading->_pair_idx = leading->_idx;
3408 #endif
3409 }
3410 
3411 MemBarNode* MemBarNode::trailing_membar() const {
3412   ResourceMark rm;
3413   Node* trailing = (Node*)this;
3414   VectorSet seen(Thread::current()->resource_area());
3415   Node_Stack multis(0);
3416   do {
3417     Node* c = trailing;
3418     uint i = 0;
3419     do {
3420       trailing = NULL;
3421       for (; i < c->outcnt(); i++) {
3422         Node* next = c->raw_out(i);
3423         if (next != c && next->is_CFG()) {
3424           if (c->is_MultiBranch()) {
3425             if (multis.node() == c) {
3426               multis.set_index(i+1);
3427             } else {
3428               multis.push(c, i+1);
3429             }
3430           }
3431           trailing = next;
3432           break;
3433         }
3434       }
3435       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3436         break;
3437       }
3438       while (multis.size() > 0) {
3439         c = multis.node();
3440         i = multis.index();
3441         if (i < c->req()) {
3442           break;
3443         }
3444         multis.pop();
3445       }
3446     } while (multis.size() > 0);
3447   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3448 
3449   MemBarNode* mb = trailing->as_MemBar();
3450   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3451          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3452   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3453   return mb;
3454 }
3455 
3456 MemBarNode* MemBarNode::leading_membar() const {
3457   ResourceMark rm;
3458   VectorSet seen(Thread::current()->resource_area());
3459   Node_Stack regions(0);
3460   Node* leading = in(0);
3461   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3462     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3463       leading = NULL;
3464       while (regions.size() > 0 && leading == NULL) {
3465         Node* r = regions.node();
3466         uint i = regions.index();
3467         if (i < r->req()) {
3468           leading = r->in(i);
3469           regions.set_index(i+1);
3470         } else {
3471           regions.pop();
3472         }
3473       }
3474       if (leading == NULL) {
3475         assert(regions.size() == 0, "all paths should have been tried");
3476         return NULL;
3477       }
3478     }
3479     if (leading->is_Region()) {
3480       regions.push(leading, 2);
3481       leading = leading->in(1);
3482     } else {
3483       leading = leading->in(0);
3484     }
3485   }
3486 #ifdef ASSERT
3487   Unique_Node_List wq;
3488   wq.push((Node*)this);
3489   uint found = 0;
3490   for (uint i = 0; i < wq.size(); i++) {
3491     Node* n = wq.at(i);
3492     if (n->is_Region()) {
3493       for (uint j = 1; j < n->req(); j++) {
3494         Node* in = n->in(j);
3495         if (in != NULL && !in->is_top()) {
3496           wq.push(in);
3497         }
3498       }
3499     } else {
3500       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3501         assert(n == leading, "consistency check failed");
3502         found++;
3503       } else {
3504         Node* in = n->in(0);
3505         if (in != NULL && !in->is_top()) {
3506           wq.push(in);
3507         }
3508       }
3509     }
3510   }
3511   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3512 #endif
3513   if (leading == NULL) {
3514     return NULL;
3515   }
3516   MemBarNode* mb = leading->as_MemBar();
3517   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3518          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3519   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3520   return mb;
3521 }
3522 
3523 //===========================InitializeNode====================================
3524 // SUMMARY:
3525 // This node acts as a memory barrier on raw memory, after some raw stores.
3526 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3527 // The Initialize can 'capture' suitably constrained stores as raw inits.
3528 // It can coalesce related raw stores into larger units (called 'tiles').
3529 // It can avoid zeroing new storage for memory units which have raw inits.
3530 // At macro-expansion, it is marked 'complete', and does not optimize further.
3531 //
3532 // EXAMPLE:
3533 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3534 //   ctl = incoming control; mem* = incoming memory
3535 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3536 // First allocate uninitialized memory and fill in the header:
3537 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3538 //   ctl := alloc.Control; mem* := alloc.Memory*
3539 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3540 // Then initialize to zero the non-header parts of the raw memory block:
3541 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3542 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3543 // After the initialize node executes, the object is ready for service:
3544 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3545 // Suppose its body is immediately initialized as {1,2}:
3546 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3547 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3548 //   mem.SLICE(#short[*]) := store2
3549 //
3550 // DETAILS:
3551 // An InitializeNode collects and isolates object initialization after
3552 // an AllocateNode and before the next possible safepoint.  As a
3553 // memory barrier (MemBarNode), it keeps critical stores from drifting
3554 // down past any safepoint or any publication of the allocation.
3555 // Before this barrier, a newly-allocated object may have uninitialized bits.
3556 // After this barrier, it may be treated as a real oop, and GC is allowed.
3557 //
3558 // The semantics of the InitializeNode include an implicit zeroing of
3559 // the new object from object header to the end of the object.
3560 // (The object header and end are determined by the AllocateNode.)
3561 //
3562 // Certain stores may be added as direct inputs to the InitializeNode.
3563 // These stores must update raw memory, and they must be to addresses
3564 // derived from the raw address produced by AllocateNode, and with
3565 // a constant offset.  They must be ordered by increasing offset.
3566 // The first one is at in(RawStores), the last at in(req()-1).
3567 // Unlike most memory operations, they are not linked in a chain,
3568 // but are displayed in parallel as users of the rawmem output of
3569 // the allocation.
3570 //
3571 // (See comments in InitializeNode::capture_store, which continue
3572 // the example given above.)
3573 //
3574 // When the associated Allocate is macro-expanded, the InitializeNode
3575 // may be rewritten to optimize collected stores.  A ClearArrayNode
3576 // may also be created at that point to represent any required zeroing.
3577 // The InitializeNode is then marked 'complete', prohibiting further
3578 // capturing of nearby memory operations.
3579 //
3580 // During macro-expansion, all captured initializations which store
3581 // constant values of 32 bits or smaller are coalesced (if advantageous)
3582 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3583 // initialized in fewer memory operations.  Memory words which are
3584 // covered by neither tiles nor non-constant stores are pre-zeroed
3585 // by explicit stores of zero.  (The code shape happens to do all
3586 // zeroing first, then all other stores, with both sequences occurring
3587 // in order of ascending offsets.)
3588 //
3589 // Alternatively, code may be inserted between an AllocateNode and its
3590 // InitializeNode, to perform arbitrary initialization of the new object.
3591 // E.g., the object copying intrinsics insert complex data transfers here.
3592 // The initialization must then be marked as 'complete' disable the
3593 // built-in zeroing semantics and the collection of initializing stores.
3594 //
3595 // While an InitializeNode is incomplete, reads from the memory state
3596 // produced by it are optimizable if they match the control edge and
3597 // new oop address associated with the allocation/initialization.
3598 // They return a stored value (if the offset matches) or else zero.
3599 // A write to the memory state, if it matches control and address,
3600 // and if it is to a constant offset, may be 'captured' by the
3601 // InitializeNode.  It is cloned as a raw memory operation and rewired
3602 // inside the initialization, to the raw oop produced by the allocation.
3603 // Operations on addresses which are provably distinct (e.g., to
3604 // other AllocateNodes) are allowed to bypass the initialization.
3605 //
3606 // The effect of all this is to consolidate object initialization
3607 // (both arrays and non-arrays, both piecewise and bulk) into a
3608 // single location, where it can be optimized as a unit.
3609 //
3610 // Only stores with an offset less than TrackedInitializationLimit words
3611 // will be considered for capture by an InitializeNode.  This puts a
3612 // reasonable limit on the complexity of optimized initializations.
3613 
3614 //---------------------------InitializeNode------------------------------------
3615 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3616   : MemBarNode(C, adr_type, rawoop),
3617     _is_complete(Incomplete), _does_not_escape(false)
3618 {
3619   init_class_id(Class_Initialize);
3620 
3621   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3622   assert(in(RawAddress) == rawoop, "proper init");
3623   // Note:  allocation() can be NULL, for secondary initialization barriers
3624 }
3625 
3626 // Since this node is not matched, it will be processed by the
3627 // register allocator.  Declare that there are no constraints
3628 // on the allocation of the RawAddress edge.
3629 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3630   // This edge should be set to top, by the set_complete.  But be conservative.
3631   if (idx == InitializeNode::RawAddress)
3632     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3633   return RegMask::Empty;
3634 }
3635 
3636 Node* InitializeNode::memory(uint alias_idx) {
3637   Node* mem = in(Memory);
3638   if (mem->is_MergeMem()) {
3639     return mem->as_MergeMem()->memory_at(alias_idx);
3640   } else {
3641     // incoming raw memory is not split
3642     return mem;
3643   }
3644 }
3645 
3646 bool InitializeNode::is_non_zero() {
3647   if (is_complete())  return false;
3648   remove_extra_zeroes();
3649   return (req() > RawStores);
3650 }
3651 
3652 void InitializeNode::set_complete(PhaseGVN* phase) {
3653   assert(!is_complete(), "caller responsibility");
3654   _is_complete = Complete;
3655 
3656   // After this node is complete, it contains a bunch of
3657   // raw-memory initializations.  There is no need for
3658   // it to have anything to do with non-raw memory effects.
3659   // Therefore, tell all non-raw users to re-optimize themselves,
3660   // after skipping the memory effects of this initialization.
3661   PhaseIterGVN* igvn = phase->is_IterGVN();
3662   if (igvn)  igvn->add_users_to_worklist(this);
3663 }
3664 
3665 // convenience function
3666 // return false if the init contains any stores already
3667 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3668   InitializeNode* init = initialization();
3669   if (init == NULL || init->is_complete()) {
3670     return false;
3671   }
3672   init->remove_extra_zeroes();
3673   // for now, if this allocation has already collected any inits, bail:
3674   if (init->is_non_zero())  return false;
3675   init->set_complete(phase);
3676   return true;
3677 }
3678 
3679 void InitializeNode::remove_extra_zeroes() {
3680   if (req() == RawStores)  return;
3681   Node* zmem = zero_memory();
3682   uint fill = RawStores;
3683   for (uint i = fill; i < req(); i++) {
3684     Node* n = in(i);
3685     if (n->is_top() || n == zmem)  continue;  // skip
3686     if (fill < i)  set_req(fill, n);          // compact
3687     ++fill;
3688   }
3689   // delete any empty spaces created:
3690   while (fill < req()) {
3691     del_req(fill);
3692   }
3693 }
3694 
3695 // Helper for remembering which stores go with which offsets.
3696 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3697   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3698   intptr_t offset = -1;
3699   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3700                                                phase, offset);
3701   if (base == NULL)     return -1;  // something is dead,
3702   if (offset < 0)       return -1;  //        dead, dead
3703   return offset;
3704 }
3705 
3706 // Helper for proving that an initialization expression is
3707 // "simple enough" to be folded into an object initialization.
3708 // Attempts to prove that a store's initial value 'n' can be captured
3709 // within the initialization without creating a vicious cycle, such as:
3710 //     { Foo p = new Foo(); p.next = p; }
3711 // True for constants and parameters and small combinations thereof.
3712 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3713   if (n == NULL)      return true;   // (can this really happen?)
3714   if (n->is_Proj())   n = n->in(0);
3715   if (n == this)      return false;  // found a cycle
3716   if (n->is_Con())    return true;
3717   if (n->is_Start())  return true;   // params, etc., are OK
3718   if (n->is_Root())   return true;   // even better
3719 
3720   Node* ctl = n->in(0);
3721   if (ctl != NULL && !ctl->is_top()) {
3722     if (ctl->is_Proj())  ctl = ctl->in(0);
3723     if (ctl == this)  return false;
3724 
3725     // If we already know that the enclosing memory op is pinned right after
3726     // the init, then any control flow that the store has picked up
3727     // must have preceded the init, or else be equal to the init.
3728     // Even after loop optimizations (which might change control edges)
3729     // a store is never pinned *before* the availability of its inputs.
3730     if (!MemNode::all_controls_dominate(n, this))
3731       return false;                  // failed to prove a good control
3732   }
3733 
3734   // Check data edges for possible dependencies on 'this'.
3735   if ((count += 1) > 20)  return false;  // complexity limit
3736   for (uint i = 1; i < n->req(); i++) {
3737     Node* m = n->in(i);
3738     if (m == NULL || m == n || m->is_top())  continue;
3739     uint first_i = n->find_edge(m);
3740     if (i != first_i)  continue;  // process duplicate edge just once
3741     if (!detect_init_independence(m, count)) {
3742       return false;
3743     }
3744   }
3745 
3746   return true;
3747 }
3748 
3749 // Here are all the checks a Store must pass before it can be moved into
3750 // an initialization.  Returns zero if a check fails.
3751 // On success, returns the (constant) offset to which the store applies,
3752 // within the initialized memory.
3753 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3754   const int FAIL = 0;
3755   if (st->req() != MemNode::ValueIn + 1)
3756     return FAIL;                // an inscrutable StoreNode (card mark?)
3757   Node* ctl = st->in(MemNode::Control);
3758   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3759     return FAIL;                // must be unconditional after the initialization
3760   Node* mem = st->in(MemNode::Memory);
3761   if (!(mem->is_Proj() && mem->in(0) == this))
3762     return FAIL;                // must not be preceded by other stores
3763   Node* adr = st->in(MemNode::Address);
3764   intptr_t offset;
3765   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3766   if (alloc == NULL)
3767     return FAIL;                // inscrutable address
3768   if (alloc != allocation())
3769     return FAIL;                // wrong allocation!  (store needs to float up)
3770   int size_in_bytes = st->memory_size();
3771   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3772     return FAIL;                // mismatched access
3773   }
3774   Node* val = st->in(MemNode::ValueIn);
3775   int complexity_count = 0;
3776   if (!detect_init_independence(val, complexity_count))
3777     return FAIL;                // stored value must be 'simple enough'
3778 
3779   // The Store can be captured only if nothing after the allocation
3780   // and before the Store is using the memory location that the store
3781   // overwrites.
3782   bool failed = false;
3783   // If is_complete_with_arraycopy() is true the shape of the graph is
3784   // well defined and is safe so no need for extra checks.
3785   if (!is_complete_with_arraycopy()) {
3786     // We are going to look at each use of the memory state following
3787     // the allocation to make sure nothing reads the memory that the
3788     // Store writes.
3789     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3790     int alias_idx = phase->C->get_alias_index(t_adr);
3791     ResourceMark rm;
3792     Unique_Node_List mems;
3793     mems.push(mem);
3794     Node* unique_merge = NULL;
3795     for (uint next = 0; next < mems.size(); ++next) {
3796       Node *m  = mems.at(next);
3797       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3798         Node *n = m->fast_out(j);
3799         if (n->outcnt() == 0) {
3800           continue;
3801         }
3802         if (n == st) {
3803           continue;
3804         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3805           // If the control of this use is different from the control
3806           // of the Store which is right after the InitializeNode then
3807           // this node cannot be between the InitializeNode and the
3808           // Store.
3809           continue;
3810         } else if (n->is_MergeMem()) {
3811           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3812             // We can hit a MergeMemNode (that will likely go away
3813             // later) that is a direct use of the memory state
3814             // following the InitializeNode on the same slice as the
3815             // store node that we'd like to capture. We need to check
3816             // the uses of the MergeMemNode.
3817             mems.push(n);
3818           }
3819         } else if (n->is_Mem()) {
3820           Node* other_adr = n->in(MemNode::Address);
3821           if (other_adr == adr) {
3822             failed = true;
3823             break;
3824           } else {
3825             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3826             if (other_t_adr != NULL) {
3827               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3828               if (other_alias_idx == alias_idx) {
3829                 // A load from the same memory slice as the store right
3830                 // after the InitializeNode. We check the control of the
3831                 // object/array that is loaded from. If it's the same as
3832                 // the store control then we cannot capture the store.
3833                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3834                 Node* base = other_adr;
3835                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3836                 base = base->in(AddPNode::Base);
3837                 if (base != NULL) {
3838                   base = base->uncast();
3839                   if (base->is_Proj() && base->in(0) == alloc) {
3840                     failed = true;
3841                     break;
3842                   }
3843                 }
3844               }
3845             }
3846           }
3847         } else {
3848           failed = true;
3849           break;
3850         }
3851       }
3852     }
3853   }
3854   if (failed) {
3855     if (!can_reshape) {
3856       // We decided we couldn't capture the store during parsing. We
3857       // should try again during the next IGVN once the graph is
3858       // cleaner.
3859       phase->C->record_for_igvn(st);
3860     }
3861     return FAIL;
3862   }
3863 
3864   return offset;                // success
3865 }
3866 
3867 // Find the captured store in(i) which corresponds to the range
3868 // [start..start+size) in the initialized object.
3869 // If there is one, return its index i.  If there isn't, return the
3870 // negative of the index where it should be inserted.
3871 // Return 0 if the queried range overlaps an initialization boundary
3872 // or if dead code is encountered.
3873 // If size_in_bytes is zero, do not bother with overlap checks.
3874 int InitializeNode::captured_store_insertion_point(intptr_t start,
3875                                                    int size_in_bytes,
3876                                                    PhaseTransform* phase) {
3877   const int FAIL = 0, MAX_STORE = BytesPerLong;
3878 
3879   if (is_complete())
3880     return FAIL;                // arraycopy got here first; punt
3881 
3882   assert(allocation() != NULL, "must be present");
3883 
3884   // no negatives, no header fields:
3885   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3886 
3887   // after a certain size, we bail out on tracking all the stores:
3888   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3889   if (start >= ti_limit)  return FAIL;
3890 
3891   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3892     if (i >= limit)  return -(int)i; // not found; here is where to put it
3893 
3894     Node*    st     = in(i);
3895     intptr_t st_off = get_store_offset(st, phase);
3896     if (st_off < 0) {
3897       if (st != zero_memory()) {
3898         return FAIL;            // bail out if there is dead garbage
3899       }
3900     } else if (st_off > start) {
3901       // ...we are done, since stores are ordered
3902       if (st_off < start + size_in_bytes) {
3903         return FAIL;            // the next store overlaps
3904       }
3905       return -(int)i;           // not found; here is where to put it
3906     } else if (st_off < start) {
3907       if (size_in_bytes != 0 &&
3908           start < st_off + MAX_STORE &&
3909           start < st_off + st->as_Store()->memory_size()) {
3910         return FAIL;            // the previous store overlaps
3911       }
3912     } else {
3913       if (size_in_bytes != 0 &&
3914           st->as_Store()->memory_size() != size_in_bytes) {
3915         return FAIL;            // mismatched store size
3916       }
3917       return i;
3918     }
3919 
3920     ++i;
3921   }
3922 }
3923 
3924 // Look for a captured store which initializes at the offset 'start'
3925 // with the given size.  If there is no such store, and no other
3926 // initialization interferes, then return zero_memory (the memory
3927 // projection of the AllocateNode).
3928 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3929                                           PhaseTransform* phase) {
3930   assert(stores_are_sane(phase), "");
3931   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3932   if (i == 0) {
3933     return NULL;                // something is dead
3934   } else if (i < 0) {
3935     return zero_memory();       // just primordial zero bits here
3936   } else {
3937     Node* st = in(i);           // here is the store at this position
3938     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3939     return st;
3940   }
3941 }
3942 
3943 // Create, as a raw pointer, an address within my new object at 'offset'.
3944 Node* InitializeNode::make_raw_address(intptr_t offset,
3945                                        PhaseTransform* phase) {
3946   Node* addr = in(RawAddress);
3947   if (offset != 0) {
3948     Compile* C = phase->C;
3949     addr = phase->transform( new AddPNode(C->top(), addr,
3950                                                  phase->MakeConX(offset)) );
3951   }
3952   return addr;
3953 }
3954 
3955 // Clone the given store, converting it into a raw store
3956 // initializing a field or element of my new object.
3957 // Caller is responsible for retiring the original store,
3958 // with subsume_node or the like.
3959 //
3960 // From the example above InitializeNode::InitializeNode,
3961 // here are the old stores to be captured:
3962 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3963 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3964 //
3965 // Here is the changed code; note the extra edges on init:
3966 //   alloc = (Allocate ...)
3967 //   rawoop = alloc.RawAddress
3968 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3969 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3970 //   init = (Initialize alloc.Control alloc.Memory rawoop
3971 //                      rawstore1 rawstore2)
3972 //
3973 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3974                                     PhaseTransform* phase, bool can_reshape) {
3975   assert(stores_are_sane(phase), "");
3976 
3977   if (start < 0)  return NULL;
3978   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3979 
3980   Compile* C = phase->C;
3981   int size_in_bytes = st->memory_size();
3982   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3983   if (i == 0)  return NULL;     // bail out
3984   Node* prev_mem = NULL;        // raw memory for the captured store
3985   if (i > 0) {
3986     prev_mem = in(i);           // there is a pre-existing store under this one
3987     set_req(i, C->top());       // temporarily disconnect it
3988     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3989   } else {
3990     i = -i;                     // no pre-existing store
3991     prev_mem = zero_memory();   // a slice of the newly allocated object
3992     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3993       set_req(--i, C->top());   // reuse this edge; it has been folded away
3994     else
3995       ins_req(i, C->top());     // build a new edge
3996   }
3997   Node* new_st = st->clone();
3998   new_st->set_req(MemNode::Control, in(Control));
3999   new_st->set_req(MemNode::Memory,  prev_mem);
4000   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
4001   new_st = phase->transform(new_st);
4002 
4003   // At this point, new_st might have swallowed a pre-existing store
4004   // at the same offset, or perhaps new_st might have disappeared,
4005   // if it redundantly stored the same value (or zero to fresh memory).
4006 
4007   // In any case, wire it in:
4008   phase->igvn_rehash_node_delayed(this);
4009   set_req(i, new_st);
4010 
4011   // The caller may now kill the old guy.
4012   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
4013   assert(check_st == new_st || check_st == NULL, "must be findable");
4014   assert(!is_complete(), "");
4015   return new_st;
4016 }
4017 
4018 static bool store_constant(jlong* tiles, int num_tiles,
4019                            intptr_t st_off, int st_size,
4020                            jlong con) {
4021   if ((st_off & (st_size-1)) != 0)
4022     return false;               // strange store offset (assume size==2**N)
4023   address addr = (address)tiles + st_off;
4024   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
4025   switch (st_size) {
4026   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
4027   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
4028   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
4029   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
4030   default: return false;        // strange store size (detect size!=2**N here)
4031   }
4032   return true;                  // return success to caller
4033 }
4034 
4035 // Coalesce subword constants into int constants and possibly
4036 // into long constants.  The goal, if the CPU permits,
4037 // is to initialize the object with a small number of 64-bit tiles.
4038 // Also, convert floating-point constants to bit patterns.
4039 // Non-constants are not relevant to this pass.
4040 //
4041 // In terms of the running example on InitializeNode::InitializeNode
4042 // and InitializeNode::capture_store, here is the transformation
4043 // of rawstore1 and rawstore2 into rawstore12:
4044 //   alloc = (Allocate ...)
4045 //   rawoop = alloc.RawAddress
4046 //   tile12 = 0x00010002
4047 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
4048 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
4049 //
4050 void
4051 InitializeNode::coalesce_subword_stores(intptr_t header_size,
4052                                         Node* size_in_bytes,
4053                                         PhaseGVN* phase) {
4054   Compile* C = phase->C;
4055 
4056   assert(stores_are_sane(phase), "");
4057   // Note:  After this pass, they are not completely sane,
4058   // since there may be some overlaps.
4059 
4060   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
4061 
4062   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
4063   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
4064   size_limit = MIN2(size_limit, ti_limit);
4065   size_limit = align_up(size_limit, BytesPerLong);
4066   int num_tiles = size_limit / BytesPerLong;
4067 
4068   // allocate space for the tile map:
4069   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
4070   jlong  tiles_buf[small_len];
4071   Node*  nodes_buf[small_len];
4072   jlong  inits_buf[small_len];
4073   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
4074                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
4075   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
4076                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
4077   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
4078                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
4079   // tiles: exact bitwise model of all primitive constants
4080   // nodes: last constant-storing node subsumed into the tiles model
4081   // inits: which bytes (in each tile) are touched by any initializations
4082 
4083   //// Pass A: Fill in the tile model with any relevant stores.
4084 
4085   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
4086   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
4087   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
4088   Node* zmem = zero_memory(); // initially zero memory state
4089   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4090     Node* st = in(i);
4091     intptr_t st_off = get_store_offset(st, phase);
4092 
4093     // Figure out the store's offset and constant value:
4094     if (st_off < header_size)             continue; //skip (ignore header)
4095     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
4096     int st_size = st->as_Store()->memory_size();
4097     if (st_off + st_size > size_limit)    break;
4098 
4099     // Record which bytes are touched, whether by constant or not.
4100     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
4101       continue;                 // skip (strange store size)
4102 
4103     const Type* val = phase->type(st->in(MemNode::ValueIn));
4104     if (!val->singleton())                continue; //skip (non-con store)
4105     BasicType type = val->basic_type();
4106 
4107     jlong con = 0;
4108     switch (type) {
4109     case T_INT:    con = val->is_int()->get_con();  break;
4110     case T_LONG:   con = val->is_long()->get_con(); break;
4111     case T_FLOAT:  con = jint_cast(val->getf());    break;
4112     case T_DOUBLE: con = jlong_cast(val->getd());   break;
4113     default:                              continue; //skip (odd store type)
4114     }
4115 
4116     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
4117         st->Opcode() == Op_StoreL) {
4118       continue;                 // This StoreL is already optimal.
4119     }
4120 
4121     // Store down the constant.
4122     store_constant(tiles, num_tiles, st_off, st_size, con);
4123 
4124     intptr_t j = st_off >> LogBytesPerLong;
4125 
4126     if (type == T_INT && st_size == BytesPerInt
4127         && (st_off & BytesPerInt) == BytesPerInt) {
4128       jlong lcon = tiles[j];
4129       if (!Matcher::isSimpleConstant64(lcon) &&
4130           st->Opcode() == Op_StoreI) {
4131         // This StoreI is already optimal by itself.
4132         jint* intcon = (jint*) &tiles[j];
4133         intcon[1] = 0;  // undo the store_constant()
4134 
4135         // If the previous store is also optimal by itself, back up and
4136         // undo the action of the previous loop iteration... if we can.
4137         // But if we can't, just let the previous half take care of itself.
4138         st = nodes[j];
4139         st_off -= BytesPerInt;
4140         con = intcon[0];
4141         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
4142           assert(st_off >= header_size, "still ignoring header");
4143           assert(get_store_offset(st, phase) == st_off, "must be");
4144           assert(in(i-1) == zmem, "must be");
4145           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
4146           assert(con == tcon->is_int()->get_con(), "must be");
4147           // Undo the effects of the previous loop trip, which swallowed st:
4148           intcon[0] = 0;        // undo store_constant()
4149           set_req(i-1, st);     // undo set_req(i, zmem)
4150           nodes[j] = NULL;      // undo nodes[j] = st
4151           --old_subword;        // undo ++old_subword
4152         }
4153         continue;               // This StoreI is already optimal.
4154       }
4155     }
4156 
4157     // This store is not needed.
4158     set_req(i, zmem);
4159     nodes[j] = st;              // record for the moment
4160     if (st_size < BytesPerLong) // something has changed
4161           ++old_subword;        // includes int/float, but who's counting...
4162     else  ++old_long;
4163   }
4164 
4165   if ((old_subword + old_long) == 0)
4166     return;                     // nothing more to do
4167 
4168   //// Pass B: Convert any non-zero tiles into optimal constant stores.
4169   // Be sure to insert them before overlapping non-constant stores.
4170   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
4171   for (int j = 0; j < num_tiles; j++) {
4172     jlong con  = tiles[j];
4173     jlong init = inits[j];
4174     if (con == 0)  continue;
4175     jint con0,  con1;           // split the constant, address-wise
4176     jint init0, init1;          // split the init map, address-wise
4177     { union { jlong con; jint intcon[2]; } u;
4178       u.con = con;
4179       con0  = u.intcon[0];
4180       con1  = u.intcon[1];
4181       u.con = init;
4182       init0 = u.intcon[0];
4183       init1 = u.intcon[1];
4184     }
4185 
4186     Node* old = nodes[j];
4187     assert(old != NULL, "need the prior store");
4188     intptr_t offset = (j * BytesPerLong);
4189 
4190     bool split = !Matcher::isSimpleConstant64(con);
4191 
4192     if (offset < header_size) {
4193       assert(offset + BytesPerInt >= header_size, "second int counts");
4194       assert(*(jint*)&tiles[j] == 0, "junk in header");
4195       split = true;             // only the second word counts
4196       // Example:  int a[] = { 42 ... }
4197     } else if (con0 == 0 && init0 == -1) {
4198       split = true;             // first word is covered by full inits
4199       // Example:  int a[] = { ... foo(), 42 ... }
4200     } else if (con1 == 0 && init1 == -1) {
4201       split = true;             // second word is covered by full inits
4202       // Example:  int a[] = { ... 42, foo() ... }
4203     }
4204 
4205     // Here's a case where init0 is neither 0 nor -1:
4206     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4207     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4208     // In this case the tile is not split; it is (jlong)42.
4209     // The big tile is stored down, and then the foo() value is inserted.
4210     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4211 
4212     Node* ctl = old->in(MemNode::Control);
4213     Node* adr = make_raw_address(offset, phase);
4214     const TypePtr* atp = TypeRawPtr::BOTTOM;
4215 
4216     // One or two coalesced stores to plop down.
4217     Node*    st[2];
4218     intptr_t off[2];
4219     int  nst = 0;
4220     if (!split) {
4221       ++new_long;
4222       off[nst] = offset;
4223       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4224                                   phase->longcon(con), T_LONG, MemNode::unordered);
4225     } else {
4226       // Omit either if it is a zero.
4227       if (con0 != 0) {
4228         ++new_int;
4229         off[nst]  = offset;
4230         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4231                                     phase->intcon(con0), T_INT, MemNode::unordered);
4232       }
4233       if (con1 != 0) {
4234         ++new_int;
4235         offset += BytesPerInt;
4236         adr = make_raw_address(offset, phase);
4237         off[nst]  = offset;
4238         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4239                                     phase->intcon(con1), T_INT, MemNode::unordered);
4240       }
4241     }
4242 
4243     // Insert second store first, then the first before the second.
4244     // Insert each one just before any overlapping non-constant stores.
4245     while (nst > 0) {
4246       Node* st1 = st[--nst];
4247       C->copy_node_notes_to(st1, old);
4248       st1 = phase->transform(st1);
4249       offset = off[nst];
4250       assert(offset >= header_size, "do not smash header");
4251       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4252       guarantee(ins_idx != 0, "must re-insert constant store");
4253       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4254       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4255         set_req(--ins_idx, st1);
4256       else
4257         ins_req(ins_idx, st1);
4258     }
4259   }
4260 
4261   if (PrintCompilation && WizardMode)
4262     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4263                   old_subword, old_long, new_int, new_long);
4264   if (C->log() != NULL)
4265     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4266                    old_subword, old_long, new_int, new_long);
4267 
4268   // Clean up any remaining occurrences of zmem:
4269   remove_extra_zeroes();
4270 }
4271 
4272 // Explore forward from in(start) to find the first fully initialized
4273 // word, and return its offset.  Skip groups of subword stores which
4274 // together initialize full words.  If in(start) is itself part of a
4275 // fully initialized word, return the offset of in(start).  If there
4276 // are no following full-word stores, or if something is fishy, return
4277 // a negative value.
4278 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4279   int       int_map = 0;
4280   intptr_t  int_map_off = 0;
4281   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4282 
4283   for (uint i = start, limit = req(); i < limit; i++) {
4284     Node* st = in(i);
4285 
4286     intptr_t st_off = get_store_offset(st, phase);
4287     if (st_off < 0)  break;  // return conservative answer
4288 
4289     int st_size = st->as_Store()->memory_size();
4290     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4291       return st_off;            // we found a complete word init
4292     }
4293 
4294     // update the map:
4295 
4296     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4297     if (this_int_off != int_map_off) {
4298       // reset the map:
4299       int_map = 0;
4300       int_map_off = this_int_off;
4301     }
4302 
4303     int subword_off = st_off - this_int_off;
4304     int_map |= right_n_bits(st_size) << subword_off;
4305     if ((int_map & FULL_MAP) == FULL_MAP) {
4306       return this_int_off;      // we found a complete word init
4307     }
4308 
4309     // Did this store hit or cross the word boundary?
4310     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4311     if (next_int_off == this_int_off + BytesPerInt) {
4312       // We passed the current int, without fully initializing it.
4313       int_map_off = next_int_off;
4314       int_map >>= BytesPerInt;
4315     } else if (next_int_off > this_int_off + BytesPerInt) {
4316       // We passed the current and next int.
4317       return this_int_off + BytesPerInt;
4318     }
4319   }
4320 
4321   return -1;
4322 }
4323 
4324 
4325 // Called when the associated AllocateNode is expanded into CFG.
4326 // At this point, we may perform additional optimizations.
4327 // Linearize the stores by ascending offset, to make memory
4328 // activity as coherent as possible.
4329 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4330                                       intptr_t header_size,
4331                                       Node* size_in_bytes,
4332                                       PhaseGVN* phase) {
4333   assert(!is_complete(), "not already complete");
4334   assert(stores_are_sane(phase), "");
4335   assert(allocation() != NULL, "must be present");
4336 
4337   remove_extra_zeroes();
4338 
4339   if (ReduceFieldZeroing || ReduceBulkZeroing)
4340     // reduce instruction count for common initialization patterns
4341     coalesce_subword_stores(header_size, size_in_bytes, phase);
4342 
4343   Node* zmem = zero_memory();   // initially zero memory state
4344   Node* inits = zmem;           // accumulating a linearized chain of inits
4345   #ifdef ASSERT
4346   intptr_t first_offset = allocation()->minimum_header_size();
4347   intptr_t last_init_off = first_offset;  // previous init offset
4348   intptr_t last_init_end = first_offset;  // previous init offset+size
4349   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4350   #endif
4351   intptr_t zeroes_done = header_size;
4352 
4353   bool do_zeroing = true;       // we might give up if inits are very sparse
4354   int  big_init_gaps = 0;       // how many large gaps have we seen?
4355 
4356   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4357   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4358 
4359   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4360     Node* st = in(i);
4361     intptr_t st_off = get_store_offset(st, phase);
4362     if (st_off < 0)
4363       break;                    // unknown junk in the inits
4364     if (st->in(MemNode::Memory) != zmem)
4365       break;                    // complicated store chains somehow in list
4366 
4367     int st_size = st->as_Store()->memory_size();
4368     intptr_t next_init_off = st_off + st_size;
4369 
4370     if (do_zeroing && zeroes_done < next_init_off) {
4371       // See if this store needs a zero before it or under it.
4372       intptr_t zeroes_needed = st_off;
4373 
4374       if (st_size < BytesPerInt) {
4375         // Look for subword stores which only partially initialize words.
4376         // If we find some, we must lay down some word-level zeroes first,
4377         // underneath the subword stores.
4378         //
4379         // Examples:
4380         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4381         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4382         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4383         //
4384         // Note:  coalesce_subword_stores may have already done this,
4385         // if it was prompted by constant non-zero subword initializers.
4386         // But this case can still arise with non-constant stores.
4387 
4388         intptr_t next_full_store = find_next_fullword_store(i, phase);
4389 
4390         // In the examples above:
4391         //   in(i)          p   q   r   s     x   y     z
4392         //   st_off        12  13  14  15    12  13    14
4393         //   st_size        1   1   1   1     1   1     1
4394         //   next_full_s.  12  16  16  16    16  16    16
4395         //   z's_done      12  16  16  16    12  16    12
4396         //   z's_needed    12  16  16  16    16  16    16
4397         //   zsize          0   0   0   0     4   0     4
4398         if (next_full_store < 0) {
4399           // Conservative tack:  Zero to end of current word.
4400           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4401         } else {
4402           // Zero to beginning of next fully initialized word.
4403           // Or, don't zero at all, if we are already in that word.
4404           assert(next_full_store >= zeroes_needed, "must go forward");
4405           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4406           zeroes_needed = next_full_store;
4407         }
4408       }
4409 
4410       if (zeroes_needed > zeroes_done) {
4411         intptr_t zsize = zeroes_needed - zeroes_done;
4412         // Do some incremental zeroing on rawmem, in parallel with inits.
4413         zeroes_done = align_down(zeroes_done, BytesPerInt);
4414         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4415                                               allocation()->in(AllocateNode::DefaultValue),
4416                                               allocation()->in(AllocateNode::RawDefaultValue),
4417                                               zeroes_done, zeroes_needed,
4418                                               phase);
4419         zeroes_done = zeroes_needed;
4420         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4421           do_zeroing = false;   // leave the hole, next time
4422       }
4423     }
4424 
4425     // Collect the store and move on:
4426     st->set_req(MemNode::Memory, inits);
4427     inits = st;                 // put it on the linearized chain
4428     set_req(i, zmem);           // unhook from previous position
4429 
4430     if (zeroes_done == st_off)
4431       zeroes_done = next_init_off;
4432 
4433     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4434 
4435     #ifdef ASSERT
4436     // Various order invariants.  Weaker than stores_are_sane because
4437     // a large constant tile can be filled in by smaller non-constant stores.
4438     assert(st_off >= last_init_off, "inits do not reverse");
4439     last_init_off = st_off;
4440     const Type* val = NULL;
4441     if (st_size >= BytesPerInt &&
4442         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4443         (int)val->basic_type() < (int)T_OBJECT) {
4444       assert(st_off >= last_tile_end, "tiles do not overlap");
4445       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4446       last_tile_end = MAX2(last_tile_end, next_init_off);
4447     } else {
4448       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4449       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4450       assert(st_off      >= last_init_end, "inits do not overlap");
4451       last_init_end = next_init_off;  // it's a non-tile
4452     }
4453     #endif //ASSERT
4454   }
4455 
4456   remove_extra_zeroes();        // clear out all the zmems left over
4457   add_req(inits);
4458 
4459   if (!(UseTLAB && ZeroTLAB)) {
4460     // If anything remains to be zeroed, zero it all now.
4461     zeroes_done = align_down(zeroes_done, BytesPerInt);
4462     // if it is the last unused 4 bytes of an instance, forget about it
4463     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4464     if (zeroes_done + BytesPerLong >= size_limit) {
4465       AllocateNode* alloc = allocation();
4466       assert(alloc != NULL, "must be present");
4467       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4468         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4469         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4470         if (zeroes_done == k->layout_helper())
4471           zeroes_done = size_limit;
4472       }
4473     }
4474     if (zeroes_done < size_limit) {
4475       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4476                                             allocation()->in(AllocateNode::DefaultValue),
4477                                             allocation()->in(AllocateNode::RawDefaultValue),
4478                                             zeroes_done, size_in_bytes, phase);
4479     }
4480   }
4481 
4482   set_complete(phase);
4483   return rawmem;
4484 }
4485 
4486 
4487 #ifdef ASSERT
4488 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4489   if (is_complete())
4490     return true;                // stores could be anything at this point
4491   assert(allocation() != NULL, "must be present");
4492   intptr_t last_off = allocation()->minimum_header_size();
4493   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4494     Node* st = in(i);
4495     intptr_t st_off = get_store_offset(st, phase);
4496     if (st_off < 0)  continue;  // ignore dead garbage
4497     if (last_off > st_off) {
4498       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4499       this->dump(2);
4500       assert(false, "ascending store offsets");
4501       return false;
4502     }
4503     last_off = st_off + st->as_Store()->memory_size();
4504   }
4505   return true;
4506 }
4507 #endif //ASSERT
4508 
4509 
4510 
4511 
4512 //============================MergeMemNode=====================================
4513 //
4514 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4515 // contributing store or call operations.  Each contributor provides the memory
4516 // state for a particular "alias type" (see Compile::alias_type).  For example,
4517 // if a MergeMem has an input X for alias category #6, then any memory reference
4518 // to alias category #6 may use X as its memory state input, as an exact equivalent
4519 // to using the MergeMem as a whole.
4520 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4521 //
4522 // (Here, the <N> notation gives the index of the relevant adr_type.)
4523 //
4524 // In one special case (and more cases in the future), alias categories overlap.
4525 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4526 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4527 // it is exactly equivalent to that state W:
4528 //   MergeMem(<Bot>: W) <==> W
4529 //
4530 // Usually, the merge has more than one input.  In that case, where inputs
4531 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4532 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4533 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4534 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4535 //
4536 // A merge can take a "wide" memory state as one of its narrow inputs.
4537 // This simply means that the merge observes out only the relevant parts of
4538 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4539 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4540 //
4541 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4542 // and that memory slices "leak through":
4543 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4544 //
4545 // But, in such a cascade, repeated memory slices can "block the leak":
4546 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4547 //
4548 // In the last example, Y is not part of the combined memory state of the
4549 // outermost MergeMem.  The system must, of course, prevent unschedulable
4550 // memory states from arising, so you can be sure that the state Y is somehow
4551 // a precursor to state Y'.
4552 //
4553 //
4554 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4555 // of each MergeMemNode array are exactly the numerical alias indexes, including
4556 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4557 // Compile::alias_type (and kin) produce and manage these indexes.
4558 //
4559 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4560 // (Note that this provides quick access to the top node inside MergeMem methods,
4561 // without the need to reach out via TLS to Compile::current.)
4562 //
4563 // As a consequence of what was just described, a MergeMem that represents a full
4564 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4565 // containing all alias categories.
4566 //
4567 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4568 //
4569 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4570 // a memory state for the alias type <N>, or else the top node, meaning that
4571 // there is no particular input for that alias type.  Note that the length of
4572 // a MergeMem is variable, and may be extended at any time to accommodate new
4573 // memory states at larger alias indexes.  When merges grow, they are of course
4574 // filled with "top" in the unused in() positions.
4575 //
4576 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4577 // (Top was chosen because it works smoothly with passes like GCM.)
4578 //
4579 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4580 // the type of random VM bits like TLS references.)  Since it is always the
4581 // first non-Bot memory slice, some low-level loops use it to initialize an
4582 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4583 //
4584 //
4585 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4586 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4587 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4588 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4589 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4590 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4591 //
4592 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4593 // really that different from the other memory inputs.  An abbreviation called
4594 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4595 //
4596 //
4597 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4598 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4599 // that "emerges though" the base memory will be marked as excluding the alias types
4600 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4601 //
4602 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4603 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4604 //
4605 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4606 // (It is currently unimplemented.)  As you can see, the resulting merge is
4607 // actually a disjoint union of memory states, rather than an overlay.
4608 //
4609 
4610 //------------------------------MergeMemNode-----------------------------------
4611 Node* MergeMemNode::make_empty_memory() {
4612   Node* empty_memory = (Node*) Compile::current()->top();
4613   assert(empty_memory->is_top(), "correct sentinel identity");
4614   return empty_memory;
4615 }
4616 
4617 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4618   init_class_id(Class_MergeMem);
4619   // all inputs are nullified in Node::Node(int)
4620   // set_input(0, NULL);  // no control input
4621 
4622   // Initialize the edges uniformly to top, for starters.
4623   Node* empty_mem = make_empty_memory();
4624   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4625     init_req(i,empty_mem);
4626   }
4627   assert(empty_memory() == empty_mem, "");
4628 
4629   if( new_base != NULL && new_base->is_MergeMem() ) {
4630     MergeMemNode* mdef = new_base->as_MergeMem();
4631     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4632     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4633       mms.set_memory(mms.memory2());
4634     }
4635     assert(base_memory() == mdef->base_memory(), "");
4636   } else {
4637     set_base_memory(new_base);
4638   }
4639 }
4640 
4641 // Make a new, untransformed MergeMem with the same base as 'mem'.
4642 // If mem is itself a MergeMem, populate the result with the same edges.
4643 MergeMemNode* MergeMemNode::make(Node* mem) {
4644   return new MergeMemNode(mem);
4645 }
4646 
4647 //------------------------------cmp--------------------------------------------
4648 uint MergeMemNode::hash() const { return NO_HASH; }
4649 bool MergeMemNode::cmp( const Node &n ) const {
4650   return (&n == this);          // Always fail except on self
4651 }
4652 
4653 //------------------------------Identity---------------------------------------
4654 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4655   // Identity if this merge point does not record any interesting memory
4656   // disambiguations.
4657   Node* base_mem = base_memory();
4658   Node* empty_mem = empty_memory();
4659   if (base_mem != empty_mem) {  // Memory path is not dead?
4660     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4661       Node* mem = in(i);
4662       if (mem != empty_mem && mem != base_mem) {
4663         return this;            // Many memory splits; no change
4664       }
4665     }
4666   }
4667   return base_mem;              // No memory splits; ID on the one true input
4668 }
4669 
4670 //------------------------------Ideal------------------------------------------
4671 // This method is invoked recursively on chains of MergeMem nodes
4672 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4673   // Remove chain'd MergeMems
4674   //
4675   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4676   // relative to the "in(Bot)".  Since we are patching both at the same time,
4677   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4678   // but rewrite each "in(i)" relative to the new "in(Bot)".
4679   Node *progress = NULL;
4680 
4681 
4682   Node* old_base = base_memory();
4683   Node* empty_mem = empty_memory();
4684   if (old_base == empty_mem)
4685     return NULL; // Dead memory path.
4686 
4687   MergeMemNode* old_mbase;
4688   if (old_base != NULL && old_base->is_MergeMem())
4689     old_mbase = old_base->as_MergeMem();
4690   else
4691     old_mbase = NULL;
4692   Node* new_base = old_base;
4693 
4694   // simplify stacked MergeMems in base memory
4695   if (old_mbase)  new_base = old_mbase->base_memory();
4696 
4697   // the base memory might contribute new slices beyond my req()
4698   if (old_mbase)  grow_to_match(old_mbase);
4699 
4700   // Look carefully at the base node if it is a phi.
4701   PhiNode* phi_base;
4702   if (new_base != NULL && new_base->is_Phi())
4703     phi_base = new_base->as_Phi();
4704   else
4705     phi_base = NULL;
4706 
4707   Node*    phi_reg = NULL;
4708   uint     phi_len = (uint)-1;
4709   if (phi_base != NULL && !phi_base->is_copy()) {
4710     // do not examine phi if degraded to a copy
4711     phi_reg = phi_base->region();
4712     phi_len = phi_base->req();
4713     // see if the phi is unfinished
4714     for (uint i = 1; i < phi_len; i++) {
4715       if (phi_base->in(i) == NULL) {
4716         // incomplete phi; do not look at it yet!
4717         phi_reg = NULL;
4718         phi_len = (uint)-1;
4719         break;
4720       }
4721     }
4722   }
4723 
4724   // Note:  We do not call verify_sparse on entry, because inputs
4725   // can normalize to the base_memory via subsume_node or similar
4726   // mechanisms.  This method repairs that damage.
4727 
4728   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4729 
4730   // Look at each slice.
4731   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4732     Node* old_in = in(i);
4733     // calculate the old memory value
4734     Node* old_mem = old_in;
4735     if (old_mem == empty_mem)  old_mem = old_base;
4736     assert(old_mem == memory_at(i), "");
4737 
4738     // maybe update (reslice) the old memory value
4739 
4740     // simplify stacked MergeMems
4741     Node* new_mem = old_mem;
4742     MergeMemNode* old_mmem;
4743     if (old_mem != NULL && old_mem->is_MergeMem())
4744       old_mmem = old_mem->as_MergeMem();
4745     else
4746       old_mmem = NULL;
4747     if (old_mmem == this) {
4748       // This can happen if loops break up and safepoints disappear.
4749       // A merge of BotPtr (default) with a RawPtr memory derived from a
4750       // safepoint can be rewritten to a merge of the same BotPtr with
4751       // the BotPtr phi coming into the loop.  If that phi disappears
4752       // also, we can end up with a self-loop of the mergemem.
4753       // In general, if loops degenerate and memory effects disappear,
4754       // a mergemem can be left looking at itself.  This simply means
4755       // that the mergemem's default should be used, since there is
4756       // no longer any apparent effect on this slice.
4757       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4758       //       from start.  Update the input to TOP.
4759       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4760     }
4761     else if (old_mmem != NULL) {
4762       new_mem = old_mmem->memory_at(i);
4763     }
4764     // else preceding memory was not a MergeMem
4765 
4766     // replace equivalent phis (unfortunately, they do not GVN together)
4767     if (new_mem != NULL && new_mem != new_base &&
4768         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4769       if (new_mem->is_Phi()) {
4770         PhiNode* phi_mem = new_mem->as_Phi();
4771         for (uint i = 1; i < phi_len; i++) {
4772           if (phi_base->in(i) != phi_mem->in(i)) {
4773             phi_mem = NULL;
4774             break;
4775           }
4776         }
4777         if (phi_mem != NULL) {
4778           // equivalent phi nodes; revert to the def
4779           new_mem = new_base;
4780         }
4781       }
4782     }
4783 
4784     // maybe store down a new value
4785     Node* new_in = new_mem;
4786     if (new_in == new_base)  new_in = empty_mem;
4787 
4788     if (new_in != old_in) {
4789       // Warning:  Do not combine this "if" with the previous "if"
4790       // A memory slice might have be be rewritten even if it is semantically
4791       // unchanged, if the base_memory value has changed.
4792       set_req(i, new_in);
4793       progress = this;          // Report progress
4794     }
4795   }
4796 
4797   if (new_base != old_base) {
4798     set_req(Compile::AliasIdxBot, new_base);
4799     // Don't use set_base_memory(new_base), because we need to update du.
4800     assert(base_memory() == new_base, "");
4801     progress = this;
4802   }
4803 
4804   if( base_memory() == this ) {
4805     // a self cycle indicates this memory path is dead
4806     set_req(Compile::AliasIdxBot, empty_mem);
4807   }
4808 
4809   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4810   // Recursion must occur after the self cycle check above
4811   if( base_memory()->is_MergeMem() ) {
4812     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4813     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4814     if( m != NULL &&
4815         (m->is_top() ||
4816          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4817       // propagate rollup of dead cycle to self
4818       set_req(Compile::AliasIdxBot, empty_mem);
4819     }
4820   }
4821 
4822   if( base_memory() == empty_mem ) {
4823     progress = this;
4824     // Cut inputs during Parse phase only.
4825     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4826     if( !can_reshape ) {
4827       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4828         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4829       }
4830     }
4831   }
4832 
4833   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4834     // Check if PhiNode::Ideal's "Split phis through memory merges"
4835     // transform should be attempted. Look for this->phi->this cycle.
4836     uint merge_width = req();
4837     if (merge_width > Compile::AliasIdxRaw) {
4838       PhiNode* phi = base_memory()->as_Phi();
4839       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4840         if (phi->in(i) == this) {
4841           phase->is_IterGVN()->_worklist.push(phi);
4842           break;
4843         }
4844       }
4845     }
4846   }
4847 
4848   assert(progress || verify_sparse(), "please, no dups of base");
4849   return progress;
4850 }
4851 
4852 //-------------------------set_base_memory-------------------------------------
4853 void MergeMemNode::set_base_memory(Node *new_base) {
4854   Node* empty_mem = empty_memory();
4855   set_req(Compile::AliasIdxBot, new_base);
4856   assert(memory_at(req()) == new_base, "must set default memory");
4857   // Clear out other occurrences of new_base:
4858   if (new_base != empty_mem) {
4859     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4860       if (in(i) == new_base)  set_req(i, empty_mem);
4861     }
4862   }
4863 }
4864 
4865 //------------------------------out_RegMask------------------------------------
4866 const RegMask &MergeMemNode::out_RegMask() const {
4867   return RegMask::Empty;
4868 }
4869 
4870 //------------------------------dump_spec--------------------------------------
4871 #ifndef PRODUCT
4872 void MergeMemNode::dump_spec(outputStream *st) const {
4873   st->print(" {");
4874   Node* base_mem = base_memory();
4875   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4876     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4877     if (mem == base_mem) { st->print(" -"); continue; }
4878     st->print( " N%d:", mem->_idx );
4879     Compile::current()->get_adr_type(i)->dump_on(st);
4880   }
4881   st->print(" }");
4882 }
4883 #endif // !PRODUCT
4884 
4885 
4886 #ifdef ASSERT
4887 static bool might_be_same(Node* a, Node* b) {
4888   if (a == b)  return true;
4889   if (!(a->is_Phi() || b->is_Phi()))  return false;
4890   // phis shift around during optimization
4891   return true;  // pretty stupid...
4892 }
4893 
4894 // verify a narrow slice (either incoming or outgoing)
4895 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4896   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4897   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4898   if (Node::in_dump())               return;  // muzzle asserts when printing
4899   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4900   assert(n != NULL, "");
4901   // Elide intervening MergeMem's
4902   while (n->is_MergeMem()) {
4903     n = n->as_MergeMem()->memory_at(alias_idx);
4904   }
4905   Compile* C = Compile::current();
4906   const TypePtr* n_adr_type = n->adr_type();
4907   if (n == m->empty_memory()) {
4908     // Implicit copy of base_memory()
4909   } else if (n_adr_type != TypePtr::BOTTOM) {
4910     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4911     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4912   } else {
4913     // A few places like make_runtime_call "know" that VM calls are narrow,
4914     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4915     bool expected_wide_mem = false;
4916     if (n == m->base_memory()) {
4917       expected_wide_mem = true;
4918     } else if (alias_idx == Compile::AliasIdxRaw ||
4919                n == m->memory_at(Compile::AliasIdxRaw)) {
4920       expected_wide_mem = true;
4921     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4922       // memory can "leak through" calls on channels that
4923       // are write-once.  Allow this also.
4924       expected_wide_mem = true;
4925     }
4926     assert(expected_wide_mem, "expected narrow slice replacement");
4927   }
4928 }
4929 #else // !ASSERT
4930 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4931 #endif
4932 
4933 
4934 //-----------------------------memory_at---------------------------------------
4935 Node* MergeMemNode::memory_at(uint alias_idx) const {
4936   assert(alias_idx >= Compile::AliasIdxRaw ||
4937          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4938          "must avoid base_memory and AliasIdxTop");
4939 
4940   // Otherwise, it is a narrow slice.
4941   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4942   Compile *C = Compile::current();
4943   if (is_empty_memory(n)) {
4944     // the array is sparse; empty slots are the "top" node
4945     n = base_memory();
4946     assert(Node::in_dump()
4947            || n == NULL || n->bottom_type() == Type::TOP
4948            || n->adr_type() == NULL // address is TOP
4949            || n->adr_type() == TypePtr::BOTTOM
4950            || n->adr_type() == TypeRawPtr::BOTTOM
4951            || Compile::current()->AliasLevel() == 0,
4952            "must be a wide memory");
4953     // AliasLevel == 0 if we are organizing the memory states manually.
4954     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4955   } else {
4956     // make sure the stored slice is sane
4957     #ifdef ASSERT
4958     if (VMError::is_error_reported() || Node::in_dump()) {
4959     } else if (might_be_same(n, base_memory())) {
4960       // Give it a pass:  It is a mostly harmless repetition of the base.
4961       // This can arise normally from node subsumption during optimization.
4962     } else {
4963       verify_memory_slice(this, alias_idx, n);
4964     }
4965     #endif
4966   }
4967   return n;
4968 }
4969 
4970 //---------------------------set_memory_at-------------------------------------
4971 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4972   verify_memory_slice(this, alias_idx, n);
4973   Node* empty_mem = empty_memory();
4974   if (n == base_memory())  n = empty_mem;  // collapse default
4975   uint need_req = alias_idx+1;
4976   if (req() < need_req) {
4977     if (n == empty_mem)  return;  // already the default, so do not grow me
4978     // grow the sparse array
4979     do {
4980       add_req(empty_mem);
4981     } while (req() < need_req);
4982   }
4983   set_req( alias_idx, n );
4984 }
4985 
4986 
4987 
4988 //--------------------------iteration_setup------------------------------------
4989 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4990   if (other != NULL) {
4991     grow_to_match(other);
4992     // invariant:  the finite support of mm2 is within mm->req()
4993     #ifdef ASSERT
4994     for (uint i = req(); i < other->req(); i++) {
4995       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4996     }
4997     #endif
4998   }
4999   // Replace spurious copies of base_memory by top.
5000   Node* base_mem = base_memory();
5001   if (base_mem != NULL && !base_mem->is_top()) {
5002     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
5003       if (in(i) == base_mem)
5004         set_req(i, empty_memory());
5005     }
5006   }
5007 }
5008 
5009 //---------------------------grow_to_match-------------------------------------
5010 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
5011   Node* empty_mem = empty_memory();
5012   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
5013   // look for the finite support of the other memory
5014   for (uint i = other->req(); --i >= req(); ) {
5015     if (other->in(i) != empty_mem) {
5016       uint new_len = i+1;
5017       while (req() < new_len)  add_req(empty_mem);
5018       break;
5019     }
5020   }
5021 }
5022 
5023 //---------------------------verify_sparse-------------------------------------
5024 #ifndef PRODUCT
5025 bool MergeMemNode::verify_sparse() const {
5026   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
5027   Node* base_mem = base_memory();
5028   // The following can happen in degenerate cases, since empty==top.
5029   if (is_empty_memory(base_mem))  return true;
5030   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5031     assert(in(i) != NULL, "sane slice");
5032     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
5033   }
5034   return true;
5035 }
5036 
5037 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
5038   Node* n;
5039   n = mm->in(idx);
5040   if (mem == n)  return true;  // might be empty_memory()
5041   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
5042   if (mem == n)  return true;
5043   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
5044     if (mem == n)  return true;
5045     if (n == NULL)  break;
5046   }
5047   return false;
5048 }
5049 #endif // !PRODUCT