1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_MEMNODE_HPP
  26 #define SHARE_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45   bool _unsafe_access;     // Access of unsafe origin.
  46 protected:
  47 #ifdef ASSERT
  48   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  49 #endif
  50   virtual uint size_of() const;
  51 public:
  52   enum { Control,               // When is it safe to do this load?
  53          Memory,                // Chunk of memory is being loaded from
  54          Address,               // Actually address, derived from base
  55          ValueIn,               // Value to store
  56          OopStore               // Preceeding oop store, only in StoreCM
  57   };
  58   typedef enum { unordered = 0,
  59                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  60                  release,       // Store has to release or be preceded by MemBarRelease.
  61                  seqcst,        // LoadStore has to have both acquire and release semantics.
  62                  unset          // The memory ordering is not set (used for testing)
  63   } MemOrd;
  64 protected:
  65   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  66     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false), _unsafe_access(false) {
  67     init_class_id(Class_Mem);
  68     debug_only(_adr_type=at; adr_type();)
  69   }
  70   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  71     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false), _unsafe_access(false) {
  72     init_class_id(Class_Mem);
  73     debug_only(_adr_type=at; adr_type();)
  74   }
  75   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  76     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false), _unsafe_access(false) {
  77     init_class_id(Class_Mem);
  78     debug_only(_adr_type=at; adr_type();)
  79   }
  80 
  81   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
  82   static bool check_if_adr_maybe_raw(Node* adr);
  83 
  84 public:
  85   // Helpers for the optimizer.  Documented in memnode.cpp.
  86   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  87                                       Node* p2, AllocateNode* a2,
  88                                       PhaseTransform* phase);
  89   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  90 
  91   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  92   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  93   // This one should probably be a phase-specific function:
  94   static bool all_controls_dominate(Node* dom, Node* sub);
  95 
  96   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  97 
  98   // Shared code for Ideal methods:
  99   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
 100 
 101   // Helper function for adr_type() implementations.
 102   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
 103 
 104   // Raw access function, to allow copying of adr_type efficiently in
 105   // product builds and retain the debug info for debug builds.
 106   const TypePtr *raw_adr_type() const {
 107 #ifdef ASSERT
 108     return _adr_type;
 109 #else
 110     return 0;
 111 #endif
 112   }
 113 
 114 #ifdef ASSERT
 115   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 116 #endif
 117 
 118   // Map a load or store opcode to its corresponding store opcode.
 119   // (Return -1 if unknown.)
 120   virtual int store_Opcode() const { return -1; }
 121 
 122   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 123   virtual BasicType memory_type() const = 0;
 124   virtual int memory_size() const {
 125 #ifdef ASSERT
 126     return type2aelembytes(memory_type(), true);
 127 #else
 128     return type2aelembytes(memory_type());
 129 #endif
 130   }
 131 
 132   // Search through memory states which precede this node (load or store).
 133   // Look for an exact match for the address, with no intervening
 134   // aliased stores.
 135   Node* find_previous_store(PhaseTransform* phase);
 136 
 137   // Can this node (load or store) accurately see a stored value in
 138   // the given memory state?  (The state may or may not be in(Memory).)
 139   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 140 
 141   void set_unaligned_access() { _unaligned_access = true; }
 142   bool is_unaligned_access() const { return _unaligned_access; }
 143   void set_mismatched_access() { _mismatched_access = true; }
 144   bool is_mismatched_access() const { return _mismatched_access; }
 145   void set_unsafe_access() { _unsafe_access = true; }
 146   bool is_unsafe_access() const { return _unsafe_access; }
 147 
 148 #ifndef PRODUCT
 149   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 150   virtual void dump_spec(outputStream *st) const;
 151 #endif
 152 };
 153 
 154 //------------------------------LoadNode---------------------------------------
 155 // Load value; requires Memory and Address
 156 class LoadNode : public MemNode {
 157 public:
 158   // Some loads (from unsafe) should be pinned: they don't depend only
 159   // on the dominating test.  The field _control_dependency below records
 160   // whether that node depends only on the dominating test.
 161   // Pinned and UnknownControl are similar, but differ in that Pinned
 162   // loads are not allowed to float across safepoints, whereas UnknownControl
 163   // loads are allowed to do that. Therefore, Pinned is stricter.
 164   enum ControlDependency {
 165     Pinned,
 166     UnknownControl,
 167     DependsOnlyOnTest
 168   };
 169 
 170 private:
 171   // LoadNode::hash() doesn't take the _control_dependency field
 172   // into account: If the graph already has a non-pinned LoadNode and
 173   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 174   // to replace the pinned LoadNode with the non-pinned LoadNode,
 175   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 176   // those inputs in the first place. If the graph already has a
 177   // pinned LoadNode and we add a non pinned LoadNode with the same
 178   // inputs, it's safe (but suboptimal) for GVN to replace the
 179   // non-pinned LoadNode by the pinned LoadNode.
 180   ControlDependency _control_dependency;
 181 
 182   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 183   // loads that can be reordered, and such requiring acquire semantics to
 184   // adhere to the Java specification.  The required behaviour is stored in
 185   // this field.
 186   const MemOrd _mo;
 187 
 188   uint _barrier; // Bit field with barrier information
 189 
 190   AllocateNode* is_new_object_mark_load(PhaseGVN *phase) const;
 191 
 192 protected:
 193   virtual bool cmp(const Node &n) const;
 194   virtual uint size_of() const; // Size is bigger
 195   // Should LoadNode::Ideal() attempt to remove control edges?
 196   virtual bool can_remove_control() const;
 197   const Type* const _type;      // What kind of value is loaded?
 198 
 199   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
 200 public:
 201 
 202   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 203     : MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _barrier(0), _type(rt) {
 204     init_class_id(Class_Load);
 205   }
 206   inline bool is_unordered() const { return !is_acquire(); }
 207   inline bool is_acquire() const {
 208     assert(_mo == unordered || _mo == acquire, "unexpected");
 209     return _mo == acquire;
 210   }
 211   inline bool is_unsigned() const {
 212     int lop = Opcode();
 213     return (lop == Op_LoadUB) || (lop == Op_LoadUS);
 214   }
 215 
 216   // Polymorphic factory method:
 217   static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 218                     const TypePtr* at, const Type *rt, BasicType bt,
 219                     MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 220                     bool unaligned = false, bool mismatched = false, bool unsafe = false);
 221 
 222   virtual uint hash()   const;  // Check the type
 223 
 224   // Handle algebraic identities here.  If we have an identity, return the Node
 225   // we are equivalent to.  We look for Load of a Store.
 226   virtual Node* Identity(PhaseGVN* phase);
 227 
 228   // If the load is from Field memory and the pointer is non-null, it might be possible to
 229   // zero out the control input.
 230   // If the offset is constant and the base is an object allocation,
 231   // try to hook me up to the exact initializing store.
 232   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 233 
 234   // Split instance field load through Phi.
 235   Node* split_through_phi(PhaseGVN *phase);
 236 
 237   // Recover original value from boxed values
 238   Node *eliminate_autobox(PhaseGVN *phase);
 239 
 240   // Compute a new Type for this node.  Basically we just do the pre-check,
 241   // then call the virtual add() to set the type.
 242   virtual const Type* Value(PhaseGVN* phase) const;
 243 
 244   // Common methods for LoadKlass and LoadNKlass nodes.
 245   const Type* klass_value_common(PhaseGVN* phase) const;
 246   Node* klass_identity_common(PhaseGVN* phase);
 247 
 248   virtual uint ideal_reg() const;
 249   virtual const Type *bottom_type() const;
 250   // Following method is copied from TypeNode:
 251   void set_type(const Type* t) {
 252     assert(t != NULL, "sanity");
 253     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 254     *(const Type**)&_type = t;   // cast away const-ness
 255     // If this node is in the hash table, make sure it doesn't need a rehash.
 256     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 257   }
 258   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 259 
 260   // Do not match memory edge
 261   virtual uint match_edge(uint idx) const;
 262 
 263   // Map a load opcode to its corresponding store opcode.
 264   virtual int store_Opcode() const = 0;
 265 
 266   // Check if the load's memory input is a Phi node with the same control.
 267   bool is_instance_field_load_with_local_phi(Node* ctrl);
 268 
 269   Node* convert_to_unsigned_load(PhaseGVN& gvn);
 270   Node* convert_to_signed_load(PhaseGVN& gvn);
 271 
 272   void copy_barrier_info(const Node* src) { _barrier = src->as_Load()->_barrier; }
 273   uint barrier_data() { return _barrier; }
 274   void set_barrier_data(uint barrier_data) { _barrier |= barrier_data; }
 275 
 276   void pin() { _control_dependency = Pinned; }
 277   bool has_unknown_control_dependency() const { return _control_dependency == UnknownControl; }
 278 
 279 #ifndef PRODUCT
 280   virtual void dump_spec(outputStream *st) const;
 281 #endif
 282 #ifdef ASSERT
 283   // Helper function to allow a raw load without control edge for some cases
 284   static bool is_immutable_value(Node* adr);
 285 #endif
 286 protected:
 287   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 288                                      ciKlass* klass) const;
 289 
 290   Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const;
 291 
 292   // depends_only_on_test is almost always true, and needs to be almost always
 293   // true to enable key hoisting & commoning optimizations.  However, for the
 294   // special case of RawPtr loads from TLS top & end, and other loads performed by
 295   // GC barriers, the control edge carries the dependence preventing hoisting past
 296   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 297   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 298   // which produce results (new raw memory state) inside of loops preventing all
 299   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 300   // See comment in macro.cpp, around line 125 expand_allocate_common().
 301   virtual bool depends_only_on_test() const {
 302     return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest;
 303   }
 304 };
 305 
 306 //------------------------------LoadBNode--------------------------------------
 307 // Load a byte (8bits signed) from memory
 308 class LoadBNode : public LoadNode {
 309 public:
 310   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 311     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 312   virtual int Opcode() const;
 313   virtual uint ideal_reg() const { return Op_RegI; }
 314   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 315   virtual const Type* Value(PhaseGVN* phase) const;
 316   virtual int store_Opcode() const { return Op_StoreB; }
 317   virtual BasicType memory_type() const { return T_BYTE; }
 318 };
 319 
 320 //------------------------------LoadUBNode-------------------------------------
 321 // Load a unsigned byte (8bits unsigned) from memory
 322 class LoadUBNode : public LoadNode {
 323 public:
 324   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 325     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 326   virtual int Opcode() const;
 327   virtual uint ideal_reg() const { return Op_RegI; }
 328   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 329   virtual const Type* Value(PhaseGVN* phase) const;
 330   virtual int store_Opcode() const { return Op_StoreB; }
 331   virtual BasicType memory_type() const { return T_BYTE; }
 332 };
 333 
 334 //------------------------------LoadUSNode-------------------------------------
 335 // Load an unsigned short/char (16bits unsigned) from memory
 336 class LoadUSNode : public LoadNode {
 337 public:
 338   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 339     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 340   virtual int Opcode() const;
 341   virtual uint ideal_reg() const { return Op_RegI; }
 342   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 343   virtual const Type* Value(PhaseGVN* phase) const;
 344   virtual int store_Opcode() const { return Op_StoreC; }
 345   virtual BasicType memory_type() const { return T_CHAR; }
 346 };
 347 
 348 //------------------------------LoadSNode--------------------------------------
 349 // Load a short (16bits signed) from memory
 350 class LoadSNode : public LoadNode {
 351 public:
 352   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 353     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 354   virtual int Opcode() const;
 355   virtual uint ideal_reg() const { return Op_RegI; }
 356   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 357   virtual const Type* Value(PhaseGVN* phase) const;
 358   virtual int store_Opcode() const { return Op_StoreC; }
 359   virtual BasicType memory_type() const { return T_SHORT; }
 360 };
 361 
 362 //------------------------------LoadINode--------------------------------------
 363 // Load an integer from memory
 364 class LoadINode : public LoadNode {
 365 public:
 366   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 367     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 368   virtual int Opcode() const;
 369   virtual uint ideal_reg() const { return Op_RegI; }
 370   virtual int store_Opcode() const { return Op_StoreI; }
 371   virtual BasicType memory_type() const { return T_INT; }
 372 };
 373 
 374 //------------------------------LoadRangeNode----------------------------------
 375 // Load an array length from the array
 376 class LoadRangeNode : public LoadINode {
 377 public:
 378   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 379     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 380   virtual int Opcode() const;
 381   virtual const Type* Value(PhaseGVN* phase) const;
 382   virtual Node* Identity(PhaseGVN* phase);
 383   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 384 };
 385 
 386 //------------------------------LoadLNode--------------------------------------
 387 // Load a long from memory
 388 class LoadLNode : public LoadNode {
 389   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 390   virtual bool cmp( const Node &n ) const {
 391     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 392       && LoadNode::cmp(n);
 393   }
 394   virtual uint size_of() const { return sizeof(*this); }
 395   const bool _require_atomic_access;  // is piecewise load forbidden?
 396 
 397 public:
 398   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 399             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 400     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 401   virtual int Opcode() const;
 402   virtual uint ideal_reg() const { return Op_RegL; }
 403   virtual int store_Opcode() const { return Op_StoreL; }
 404   virtual BasicType memory_type() const { return T_LONG; }
 405   bool require_atomic_access() const { return _require_atomic_access; }
 406   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 407                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 408                                 bool unaligned = false, bool mismatched = false, bool unsafe = false);
 409 #ifndef PRODUCT
 410   virtual void dump_spec(outputStream *st) const {
 411     LoadNode::dump_spec(st);
 412     if (_require_atomic_access)  st->print(" Atomic!");
 413   }
 414 #endif
 415 };
 416 
 417 //------------------------------LoadL_unalignedNode----------------------------
 418 // Load a long from unaligned memory
 419 class LoadL_unalignedNode : public LoadLNode {
 420 public:
 421   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 422     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 423   virtual int Opcode() const;
 424 };
 425 
 426 //------------------------------LoadFNode--------------------------------------
 427 // Load a float (64 bits) from memory
 428 class LoadFNode : public LoadNode {
 429 public:
 430   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 431     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 432   virtual int Opcode() const;
 433   virtual uint ideal_reg() const { return Op_RegF; }
 434   virtual int store_Opcode() const { return Op_StoreF; }
 435   virtual BasicType memory_type() const { return T_FLOAT; }
 436 };
 437 
 438 //------------------------------LoadDNode--------------------------------------
 439 // Load a double (64 bits) from memory
 440 class LoadDNode : public LoadNode {
 441   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 442   virtual bool cmp( const Node &n ) const {
 443     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 444       && LoadNode::cmp(n);
 445   }
 446   virtual uint size_of() const { return sizeof(*this); }
 447   const bool _require_atomic_access;  // is piecewise load forbidden?
 448 
 449 public:
 450   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 451             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 452     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 453   virtual int Opcode() const;
 454   virtual uint ideal_reg() const { return Op_RegD; }
 455   virtual int store_Opcode() const { return Op_StoreD; }
 456   virtual BasicType memory_type() const { return T_DOUBLE; }
 457   bool require_atomic_access() const { return _require_atomic_access; }
 458   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 459                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 460                                 bool unaligned = false, bool mismatched = false, bool unsafe = false);
 461 #ifndef PRODUCT
 462   virtual void dump_spec(outputStream *st) const {
 463     LoadNode::dump_spec(st);
 464     if (_require_atomic_access)  st->print(" Atomic!");
 465   }
 466 #endif
 467 };
 468 
 469 //------------------------------LoadD_unalignedNode----------------------------
 470 // Load a double from unaligned memory
 471 class LoadD_unalignedNode : public LoadDNode {
 472 public:
 473   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 474     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 475   virtual int Opcode() const;
 476 };
 477 
 478 //------------------------------LoadPNode--------------------------------------
 479 // Load a pointer from memory (either object or array)
 480 class LoadPNode : public LoadNode {
 481 public:
 482   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 483     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 484   virtual int Opcode() const;
 485   virtual uint ideal_reg() const { return Op_RegP; }
 486   virtual int store_Opcode() const { return Op_StoreP; }
 487   virtual BasicType memory_type() const { return T_ADDRESS; }
 488 };
 489 
 490 
 491 //------------------------------LoadNNode--------------------------------------
 492 // Load a narrow oop from memory (either object or array)
 493 class LoadNNode : public LoadNode {
 494 public:
 495   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 496     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 497   virtual int Opcode() const;
 498   virtual uint ideal_reg() const { return Op_RegN; }
 499   virtual int store_Opcode() const { return Op_StoreN; }
 500   virtual BasicType memory_type() const { return T_NARROWOOP; }
 501 };
 502 
 503 //------------------------------LoadKlassNode----------------------------------
 504 // Load a Klass from an object
 505 class LoadKlassNode : public LoadPNode {
 506 private:
 507   bool _clear_prop_bits; // Clear the ArrayStorageProperties bits
 508 protected:
 509   // In most cases, LoadKlassNode does not have the control input set. If the control
 510   // input is set, it must not be removed (by LoadNode::Ideal()).
 511   virtual bool can_remove_control() const;
 512 public:
 513   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo, bool clear_prop_bits)
 514     : LoadPNode(c, mem, adr, at, tk, mo), _clear_prop_bits(clear_prop_bits) {}
 515   virtual uint hash() const { return LoadPNode::hash() + _clear_prop_bits; }
 516   virtual bool cmp(const Node &n) const {
 517     return (_clear_prop_bits == ((LoadKlassNode&)n)._clear_prop_bits) && LoadPNode::cmp(n);
 518   }
 519   virtual uint size_of() const { return sizeof(*this); }
 520   virtual int Opcode() const;
 521   virtual const Type* Value(PhaseGVN* phase) const;
 522   virtual Node* Identity(PhaseGVN* phase);
 523   virtual bool depends_only_on_test() const { return true; }
 524   bool clear_prop_bits() const { return _clear_prop_bits; }
 525 
 526   // Polymorphic factory method:
 527   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 528                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT, bool clear_prop_bits = false);
 529 };
 530 
 531 //------------------------------LoadNKlassNode---------------------------------
 532 // Load a narrow Klass from an object.
 533 class LoadNKlassNode : public LoadNNode {
 534 private:
 535   bool _clear_prop_bits; // Clear the ArrayStorageProperties bits
 536 public:
 537   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo, bool clear_prop_bits)
 538     : LoadNNode(c, mem, adr, at, tk, mo), _clear_prop_bits(clear_prop_bits) {}
 539   virtual uint hash() const { return LoadNNode::hash() + _clear_prop_bits; }
 540   virtual bool cmp(const Node &n) const {
 541     return (_clear_prop_bits == ((LoadNKlassNode&)n)._clear_prop_bits) && LoadNNode::cmp(n);
 542   }
 543   virtual uint size_of() const { return sizeof(*this); }
 544   virtual int Opcode() const;
 545   virtual uint ideal_reg() const { return Op_RegN; }
 546   virtual int store_Opcode() const { return Op_StoreNKlass; }
 547   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 548 
 549   virtual const Type* Value(PhaseGVN* phase) const;
 550   virtual Node* Identity(PhaseGVN* phase);
 551   virtual bool depends_only_on_test() const { return true; }
 552   bool clear_prop_bits() const { return _clear_prop_bits; }
 553 };
 554 
 555 // Retrieve the null free/flattened property from an array klass. This
 556 // is treated a bit like a field that would be read from the klass
 557 // structure at runtime except, the implementation encodes the
 558 // property as a bit in the klass header field of the array. This
 559 // implementation detail is hidden under this node so it doesn't make
 560 // a difference for high level optimizations. At final graph reshaping
 561 // time, this node is turned into the actual logical operations that
 562 // extract the property from the klass pointer. For this to work
 563 // correctly, GeStoragePropertyNodes must take a LoadKlass/LoadNKlass
 564 // input. The Ideal transformation splits the GetStoragePropertyNode
 565 // through phis, Value returns a constant if the node's input is a
 566 // constant. These 2 should guarantee GetStoragePropertyNode does
 567 // indeed have a LoadKlass/LoadNKlass input at final graph reshaping
 568 // time.
 569 class GetStoragePropertyNode : public Node {
 570 protected:
 571   GetStoragePropertyNode(Node* klass) : Node(NULL, klass) {}
 572 public:
 573   virtual const Type* Value(PhaseGVN* phase) const;
 574   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 575   virtual const Type* bottom_type() const {
 576     if (in(1)->bottom_type()->isa_klassptr()) {
 577       return TypeLong::LONG;
 578     }
 579     return TypeInt::INT;
 580   }
 581 };
 582 
 583 
 584 class GetNullFreePropertyNode : public GetStoragePropertyNode {
 585 public:
 586   GetNullFreePropertyNode(Node* klass) : GetStoragePropertyNode(klass) {}
 587   virtual int Opcode() const;
 588 };
 589 
 590 class GetFlattenedPropertyNode : public GetStoragePropertyNode {
 591 public:
 592   GetFlattenedPropertyNode(Node* klass) : GetStoragePropertyNode(klass) {}
 593   virtual int Opcode() const;
 594 };
 595 
 596 //------------------------------StoreNode--------------------------------------
 597 // Store value; requires Store, Address and Value
 598 class StoreNode : public MemNode {
 599 private:
 600   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 601   // stores that can be reordered, and such requiring release semantics to
 602   // adhere to the Java specification.  The required behaviour is stored in
 603   // this field.
 604   const MemOrd _mo;
 605   // Needed for proper cloning.
 606   virtual uint size_of() const { return sizeof(*this); }
 607 protected:
 608   virtual bool cmp( const Node &n ) const;
 609   virtual bool depends_only_on_test() const { return false; }
 610 
 611   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 612   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 613 
 614 public:
 615   // We must ensure that stores of object references will be visible
 616   // only after the object's initialization. So the callers of this
 617   // procedure must indicate that the store requires `release'
 618   // semantics, if the stored value is an object reference that might
 619   // point to a new object and may become externally visible.
 620   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 621     : MemNode(c, mem, adr, at, val), _mo(mo) {
 622     init_class_id(Class_Store);
 623   }
 624   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 625     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 626     init_class_id(Class_Store);
 627   }
 628 
 629   inline bool is_unordered() const { return !is_release(); }
 630   inline bool is_release() const {
 631     assert((_mo == unordered || _mo == release), "unexpected");
 632     return _mo == release;
 633   }
 634 
 635   // Conservatively release stores of object references in order to
 636   // ensure visibility of object initialization.
 637   static inline MemOrd release_if_reference(const BasicType t) {
 638 #ifdef AARCH64
 639     // AArch64 doesn't need a release store here because object
 640     // initialization contains the necessary barriers.
 641     return unordered;
 642 #else
 643     const MemOrd mo = (t == T_ARRAY ||
 644                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 645                        t == T_OBJECT) ? release : unordered;
 646     return mo;
 647 #endif
 648   }
 649 
 650   // Polymorphic factory method
 651   //
 652   // We must ensure that stores of object references will be visible
 653   // only after the object's initialization. So the callers of this
 654   // procedure must indicate that the store requires `release'
 655   // semantics, if the stored value is an object reference that might
 656   // point to a new object and may become externally visible.
 657   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 658                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 659 
 660   virtual uint hash() const;    // Check the type
 661 
 662   // If the store is to Field memory and the pointer is non-null, we can
 663   // zero out the control input.
 664   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 665 
 666   // Compute a new Type for this node.  Basically we just do the pre-check,
 667   // then call the virtual add() to set the type.
 668   virtual const Type* Value(PhaseGVN* phase) const;
 669 
 670   // Check for identity function on memory (Load then Store at same address)
 671   virtual Node* Identity(PhaseGVN* phase);
 672 
 673   // Do not match memory edge
 674   virtual uint match_edge(uint idx) const;
 675 
 676   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 677 
 678   // Map a store opcode to its corresponding own opcode, trivially.
 679   virtual int store_Opcode() const { return Opcode(); }
 680 
 681   // have all possible loads of the value stored been optimized away?
 682   bool value_never_loaded(PhaseTransform *phase) const;
 683 
 684   MemBarNode* trailing_membar() const;
 685 };
 686 
 687 //------------------------------StoreBNode-------------------------------------
 688 // Store byte to memory
 689 class StoreBNode : public StoreNode {
 690 public:
 691   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 692     : StoreNode(c, mem, adr, at, val, mo) {}
 693   virtual int Opcode() const;
 694   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 695   virtual BasicType memory_type() const { return T_BYTE; }
 696 };
 697 
 698 //------------------------------StoreCNode-------------------------------------
 699 // Store char/short to memory
 700 class StoreCNode : public StoreNode {
 701 public:
 702   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 703     : StoreNode(c, mem, adr, at, val, mo) {}
 704   virtual int Opcode() const;
 705   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 706   virtual BasicType memory_type() const { return T_CHAR; }
 707 };
 708 
 709 //------------------------------StoreINode-------------------------------------
 710 // Store int to memory
 711 class StoreINode : public StoreNode {
 712 public:
 713   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 714     : StoreNode(c, mem, adr, at, val, mo) {}
 715   virtual int Opcode() const;
 716   virtual BasicType memory_type() const { return T_INT; }
 717 };
 718 
 719 //------------------------------StoreLNode-------------------------------------
 720 // Store long to memory
 721 class StoreLNode : public StoreNode {
 722   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 723   virtual bool cmp( const Node &n ) const {
 724     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 725       && StoreNode::cmp(n);
 726   }
 727   virtual uint size_of() const { return sizeof(*this); }
 728   const bool _require_atomic_access;  // is piecewise store forbidden?
 729 
 730 public:
 731   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 732     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 733   virtual int Opcode() const;
 734   virtual BasicType memory_type() const { return T_LONG; }
 735   bool require_atomic_access() const { return _require_atomic_access; }
 736   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 737 #ifndef PRODUCT
 738   virtual void dump_spec(outputStream *st) const {
 739     StoreNode::dump_spec(st);
 740     if (_require_atomic_access)  st->print(" Atomic!");
 741   }
 742 #endif
 743 };
 744 
 745 //------------------------------StoreFNode-------------------------------------
 746 // Store float to memory
 747 class StoreFNode : public StoreNode {
 748 public:
 749   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 750     : StoreNode(c, mem, adr, at, val, mo) {}
 751   virtual int Opcode() const;
 752   virtual BasicType memory_type() const { return T_FLOAT; }
 753 };
 754 
 755 //------------------------------StoreDNode-------------------------------------
 756 // Store double to memory
 757 class StoreDNode : public StoreNode {
 758   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 759   virtual bool cmp( const Node &n ) const {
 760     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 761       && StoreNode::cmp(n);
 762   }
 763   virtual uint size_of() const { return sizeof(*this); }
 764   const bool _require_atomic_access;  // is piecewise store forbidden?
 765 public:
 766   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 767              MemOrd mo, bool require_atomic_access = false)
 768     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 769   virtual int Opcode() const;
 770   virtual BasicType memory_type() const { return T_DOUBLE; }
 771   bool require_atomic_access() const { return _require_atomic_access; }
 772   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 773 #ifndef PRODUCT
 774   virtual void dump_spec(outputStream *st) const {
 775     StoreNode::dump_spec(st);
 776     if (_require_atomic_access)  st->print(" Atomic!");
 777   }
 778 #endif
 779 
 780 };
 781 
 782 //------------------------------StorePNode-------------------------------------
 783 // Store pointer to memory
 784 class StorePNode : public StoreNode {
 785 public:
 786   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 787     : StoreNode(c, mem, adr, at, val, mo) {}
 788   virtual int Opcode() const;
 789   virtual BasicType memory_type() const { return T_ADDRESS; }
 790 };
 791 
 792 //------------------------------StoreNNode-------------------------------------
 793 // Store narrow oop to memory
 794 class StoreNNode : public StoreNode {
 795 public:
 796   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 797     : StoreNode(c, mem, adr, at, val, mo) {}
 798   virtual int Opcode() const;
 799   virtual BasicType memory_type() const { return T_NARROWOOP; }
 800 };
 801 
 802 //------------------------------StoreNKlassNode--------------------------------------
 803 // Store narrow klass to memory
 804 class StoreNKlassNode : public StoreNNode {
 805 public:
 806   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 807     : StoreNNode(c, mem, adr, at, val, mo) {}
 808   virtual int Opcode() const;
 809   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 810 };
 811 
 812 //------------------------------StoreCMNode-----------------------------------
 813 // Store card-mark byte to memory for CM
 814 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 815 // Preceeding equivalent StoreCMs may be eliminated.
 816 class StoreCMNode : public StoreNode {
 817  private:
 818   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 819   virtual bool cmp( const Node &n ) const {
 820     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 821       && StoreNode::cmp(n);
 822   }
 823   virtual uint size_of() const { return sizeof(*this); }
 824   int _oop_alias_idx;   // The alias_idx of OopStore
 825 
 826 public:
 827   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 828     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 829     _oop_alias_idx(oop_alias_idx) {
 830     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 831            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 832            "bad oop alias idx");
 833   }
 834   virtual int Opcode() const;
 835   virtual Node* Identity(PhaseGVN* phase);
 836   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 837   virtual const Type* Value(PhaseGVN* phase) const;
 838   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 839   int oop_alias_idx() const { return _oop_alias_idx; }
 840 };
 841 
 842 //------------------------------LoadPLockedNode---------------------------------
 843 // Load-locked a pointer from memory (either object or array).
 844 // On Sparc & Intel this is implemented as a normal pointer load.
 845 // On PowerPC and friends it's a real load-locked.
 846 class LoadPLockedNode : public LoadPNode {
 847 public:
 848   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 849     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 850   virtual int Opcode() const;
 851   virtual int store_Opcode() const { return Op_StorePConditional; }
 852   virtual bool depends_only_on_test() const { return true; }
 853 };
 854 
 855 //------------------------------SCMemProjNode---------------------------------------
 856 // This class defines a projection of the memory  state of a store conditional node.
 857 // These nodes return a value, but also update memory.
 858 class SCMemProjNode : public ProjNode {
 859 public:
 860   enum {SCMEMPROJCON = (uint)-2};
 861   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 862   virtual int Opcode() const;
 863   virtual bool      is_CFG() const  { return false; }
 864   virtual const Type *bottom_type() const {return Type::MEMORY;}
 865   virtual const TypePtr *adr_type() const {
 866     Node* ctrl = in(0);
 867     if (ctrl == NULL)  return NULL; // node is dead
 868     return ctrl->in(MemNode::Memory)->adr_type();
 869   }
 870   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 871   virtual const Type* Value(PhaseGVN* phase) const;
 872 #ifndef PRODUCT
 873   virtual void dump_spec(outputStream *st) const {};
 874 #endif
 875 };
 876 
 877 //------------------------------LoadStoreNode---------------------------
 878 // Note: is_Mem() method returns 'true' for this class.
 879 class LoadStoreNode : public Node {
 880 private:
 881   const Type* const _type;      // What kind of value is loaded?
 882   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 883   bool _has_barrier;
 884   virtual uint size_of() const; // Size is bigger
 885 public:
 886   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 887   virtual bool depends_only_on_test() const { return false; }
 888   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 889 
 890   virtual const Type *bottom_type() const { return _type; }
 891   virtual uint ideal_reg() const;
 892   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 893 
 894   bool result_not_used() const;
 895   MemBarNode* trailing_membar() const;
 896   void set_has_barrier() { _has_barrier = true; };
 897   bool has_barrier() const { return _has_barrier; };
 898 };
 899 
 900 class LoadStoreConditionalNode : public LoadStoreNode {
 901 public:
 902   enum {
 903     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 904   };
 905   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 906 };
 907 
 908 //------------------------------StorePConditionalNode---------------------------
 909 // Conditionally store pointer to memory, if no change since prior
 910 // load-locked.  Sets flags for success or failure of the store.
 911 class StorePConditionalNode : public LoadStoreConditionalNode {
 912 public:
 913   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 914   virtual int Opcode() const;
 915   // Produces flags
 916   virtual uint ideal_reg() const { return Op_RegFlags; }
 917 };
 918 
 919 //------------------------------StoreIConditionalNode---------------------------
 920 // Conditionally store int to memory, if no change since prior
 921 // load-locked.  Sets flags for success or failure of the store.
 922 class StoreIConditionalNode : public LoadStoreConditionalNode {
 923 public:
 924   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 925   virtual int Opcode() const;
 926   // Produces flags
 927   virtual uint ideal_reg() const { return Op_RegFlags; }
 928 };
 929 
 930 //------------------------------StoreLConditionalNode---------------------------
 931 // Conditionally store long to memory, if no change since prior
 932 // load-locked.  Sets flags for success or failure of the store.
 933 class StoreLConditionalNode : public LoadStoreConditionalNode {
 934 public:
 935   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 936   virtual int Opcode() const;
 937   // Produces flags
 938   virtual uint ideal_reg() const { return Op_RegFlags; }
 939 };
 940 
 941 class CompareAndSwapNode : public LoadStoreConditionalNode {
 942 private:
 943   const MemNode::MemOrd _mem_ord;
 944 public:
 945   CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
 946   MemNode::MemOrd order() const {
 947     return _mem_ord;
 948   }
 949 };
 950 
 951 class CompareAndExchangeNode : public LoadStoreNode {
 952 private:
 953   const MemNode::MemOrd _mem_ord;
 954 public:
 955   enum {
 956     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 957   };
 958   CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
 959     LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
 960      init_req(ExpectedIn, ex );
 961   }
 962 
 963   MemNode::MemOrd order() const {
 964     return _mem_ord;
 965   }
 966 };
 967 
 968 //------------------------------CompareAndSwapBNode---------------------------
 969 class CompareAndSwapBNode : public CompareAndSwapNode {
 970 public:
 971   CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 972   virtual int Opcode() const;
 973 };
 974 
 975 //------------------------------CompareAndSwapSNode---------------------------
 976 class CompareAndSwapSNode : public CompareAndSwapNode {
 977 public:
 978   CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 979   virtual int Opcode() const;
 980 };
 981 
 982 //------------------------------CompareAndSwapINode---------------------------
 983 class CompareAndSwapINode : public CompareAndSwapNode {
 984 public:
 985   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 986   virtual int Opcode() const;
 987 };
 988 
 989 //------------------------------CompareAndSwapLNode---------------------------
 990 class CompareAndSwapLNode : public CompareAndSwapNode {
 991 public:
 992   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 993   virtual int Opcode() const;
 994 };
 995 
 996 //------------------------------CompareAndSwapPNode---------------------------
 997 class CompareAndSwapPNode : public CompareAndSwapNode {
 998 public:
 999   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1000   virtual int Opcode() const;
1001 };
1002 
1003 //------------------------------CompareAndSwapNNode---------------------------
1004 class CompareAndSwapNNode : public CompareAndSwapNode {
1005 public:
1006   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1007   virtual int Opcode() const;
1008 };
1009 
1010 //------------------------------WeakCompareAndSwapBNode---------------------------
1011 class WeakCompareAndSwapBNode : public CompareAndSwapNode {
1012 public:
1013   WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1014   virtual int Opcode() const;
1015 };
1016 
1017 //------------------------------WeakCompareAndSwapSNode---------------------------
1018 class WeakCompareAndSwapSNode : public CompareAndSwapNode {
1019 public:
1020   WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1021   virtual int Opcode() const;
1022 };
1023 
1024 //------------------------------WeakCompareAndSwapINode---------------------------
1025 class WeakCompareAndSwapINode : public CompareAndSwapNode {
1026 public:
1027   WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1028   virtual int Opcode() const;
1029 };
1030 
1031 //------------------------------WeakCompareAndSwapLNode---------------------------
1032 class WeakCompareAndSwapLNode : public CompareAndSwapNode {
1033 public:
1034   WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1035   virtual int Opcode() const;
1036 };
1037 
1038 //------------------------------WeakCompareAndSwapPNode---------------------------
1039 class WeakCompareAndSwapPNode : public CompareAndSwapNode {
1040 public:
1041   WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1042   virtual int Opcode() const;
1043 };
1044 
1045 //------------------------------WeakCompareAndSwapNNode---------------------------
1046 class WeakCompareAndSwapNNode : public CompareAndSwapNode {
1047 public:
1048   WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1049   virtual int Opcode() const;
1050 };
1051 
1052 //------------------------------CompareAndExchangeBNode---------------------------
1053 class CompareAndExchangeBNode : public CompareAndExchangeNode {
1054 public:
1055   CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { }
1056   virtual int Opcode() const;
1057 };
1058 
1059 
1060 //------------------------------CompareAndExchangeSNode---------------------------
1061 class CompareAndExchangeSNode : public CompareAndExchangeNode {
1062 public:
1063   CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { }
1064   virtual int Opcode() const;
1065 };
1066 
1067 //------------------------------CompareAndExchangeLNode---------------------------
1068 class CompareAndExchangeLNode : public CompareAndExchangeNode {
1069 public:
1070   CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
1071   virtual int Opcode() const;
1072 };
1073 
1074 
1075 //------------------------------CompareAndExchangeINode---------------------------
1076 class CompareAndExchangeINode : public CompareAndExchangeNode {
1077 public:
1078   CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
1079   virtual int Opcode() const;
1080 };
1081 
1082 
1083 //------------------------------CompareAndExchangePNode---------------------------
1084 class CompareAndExchangePNode : public CompareAndExchangeNode {
1085 public:
1086   CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1087   virtual int Opcode() const;
1088 };
1089 
1090 //------------------------------CompareAndExchangeNNode---------------------------
1091 class CompareAndExchangeNNode : public CompareAndExchangeNode {
1092 public:
1093   CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1094   virtual int Opcode() const;
1095 };
1096 
1097 //------------------------------GetAndAddBNode---------------------------
1098 class GetAndAddBNode : public LoadStoreNode {
1099 public:
1100   GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1101   virtual int Opcode() const;
1102 };
1103 
1104 //------------------------------GetAndAddSNode---------------------------
1105 class GetAndAddSNode : public LoadStoreNode {
1106 public:
1107   GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1108   virtual int Opcode() const;
1109 };
1110 
1111 //------------------------------GetAndAddINode---------------------------
1112 class GetAndAddINode : public LoadStoreNode {
1113 public:
1114   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1115   virtual int Opcode() const;
1116 };
1117 
1118 //------------------------------GetAndAddLNode---------------------------
1119 class GetAndAddLNode : public LoadStoreNode {
1120 public:
1121   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1122   virtual int Opcode() const;
1123 };
1124 
1125 //------------------------------GetAndSetBNode---------------------------
1126 class GetAndSetBNode : public LoadStoreNode {
1127 public:
1128   GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1129   virtual int Opcode() const;
1130 };
1131 
1132 //------------------------------GetAndSetSNode---------------------------
1133 class GetAndSetSNode : public LoadStoreNode {
1134 public:
1135   GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1136   virtual int Opcode() const;
1137 };
1138 
1139 //------------------------------GetAndSetINode---------------------------
1140 class GetAndSetINode : public LoadStoreNode {
1141 public:
1142   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1143   virtual int Opcode() const;
1144 };
1145 
1146 //------------------------------GetAndSetLNode---------------------------
1147 class GetAndSetLNode : public LoadStoreNode {
1148 public:
1149   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1150   virtual int Opcode() const;
1151 };
1152 
1153 //------------------------------GetAndSetPNode---------------------------
1154 class GetAndSetPNode : public LoadStoreNode {
1155 public:
1156   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1157   virtual int Opcode() const;
1158 };
1159 
1160 //------------------------------GetAndSetNNode---------------------------
1161 class GetAndSetNNode : public LoadStoreNode {
1162 public:
1163   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1164   virtual int Opcode() const;
1165 };
1166 
1167 //------------------------------ClearArray-------------------------------------
1168 class ClearArrayNode: public Node {
1169 private:
1170   bool _is_large;
1171   bool _word_copy_only;
1172 public:
1173   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, Node* val, bool is_large)
1174     : Node(ctrl, arymem, word_cnt, base, val), _is_large(is_large),
1175       _word_copy_only(val->bottom_type()->isa_long() && (!val->bottom_type()->is_long()->is_con() || val->bottom_type()->is_long()->get_con() != 0)) {
1176     init_class_id(Class_ClearArray);
1177   }
1178   virtual int         Opcode() const;
1179   virtual const Type *bottom_type() const { return Type::MEMORY; }
1180   // ClearArray modifies array elements, and so affects only the
1181   // array memory addressed by the bottom_type of its base address.
1182   virtual const class TypePtr *adr_type() const;
1183   virtual Node* Identity(PhaseGVN* phase);
1184   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1185   virtual uint match_edge(uint idx) const;
1186   bool is_large() const { return _is_large; }
1187   bool word_copy_only() const { return _word_copy_only; }
1188 
1189   // Clear the given area of an object or array.
1190   // The start offset must always be aligned mod BytesPerInt.
1191   // The end offset must always be aligned mod BytesPerLong.
1192   // Return the new memory.
1193   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1194                             Node* val,
1195                             Node* raw_val,
1196                             intptr_t start_offset,
1197                             intptr_t end_offset,
1198                             PhaseGVN* phase);
1199   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1200                             Node* val,
1201                             Node* raw_val,
1202                             intptr_t start_offset,
1203                             Node* end_offset,
1204                             PhaseGVN* phase);
1205   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1206                             Node* raw_val,
1207                             Node* start_offset,
1208                             Node* end_offset,
1209                             PhaseGVN* phase);
1210   // Return allocation input memory edge if it is different instance
1211   // or itself if it is the one we are looking for.
1212   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
1213 };
1214 
1215 //------------------------------MemBar-----------------------------------------
1216 // There are different flavors of Memory Barriers to match the Java Memory
1217 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1218 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1219 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1220 // preceding ref can be moved to after them.  We insert a MemBar-Release
1221 // before a FastUnlock or volatile-store.  All volatiles need to be
1222 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1223 // separate it from any following volatile-load.
1224 class MemBarNode: public MultiNode {
1225   virtual uint hash() const ;                  // { return NO_HASH; }
1226   virtual bool cmp( const Node &n ) const ;    // Always fail, except on self
1227 
1228   virtual uint size_of() const { return sizeof(*this); }
1229   // Memory type this node is serializing.  Usually either rawptr or bottom.
1230   const TypePtr* _adr_type;
1231 
1232   // How is this membar related to a nearby memory access?
1233   enum {
1234     Standalone,
1235     TrailingLoad,
1236     TrailingStore,
1237     LeadingStore,
1238     TrailingLoadStore,
1239     LeadingLoadStore
1240   } _kind;
1241 
1242 #ifdef ASSERT
1243   uint _pair_idx;
1244 #endif
1245 
1246 public:
1247   enum {
1248     Precedent = TypeFunc::Parms  // optional edge to force precedence
1249   };
1250   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1251   virtual int Opcode() const = 0;
1252   virtual const class TypePtr *adr_type() const { return _adr_type; }
1253   virtual const Type* Value(PhaseGVN* phase) const;
1254   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1255   virtual uint match_edge(uint idx) const { return 0; }
1256   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1257   virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask);
1258   // Factory method.  Builds a wide or narrow membar.
1259   // Optional 'precedent' becomes an extra edge if not null.
1260   static MemBarNode* make(Compile* C, int opcode,
1261                           int alias_idx = Compile::AliasIdxBot,
1262                           Node* precedent = NULL);
1263 
1264   MemBarNode* trailing_membar() const;
1265   MemBarNode* leading_membar() const;
1266 
1267   void set_trailing_load() { _kind = TrailingLoad; }
1268   bool trailing_load() const { return _kind == TrailingLoad; }
1269   bool trailing_store() const { return _kind == TrailingStore; }
1270   bool leading_store() const { return _kind == LeadingStore; }
1271   bool trailing_load_store() const { return _kind == TrailingLoadStore; }
1272   bool leading_load_store() const { return _kind == LeadingLoadStore; }
1273   bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
1274   bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
1275   bool standalone() const { return _kind == Standalone; }
1276 
1277   static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1278   static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1279 
1280   void remove(PhaseIterGVN *igvn);
1281 };
1282 
1283 // "Acquire" - no following ref can move before (but earlier refs can
1284 // follow, like an early Load stalled in cache).  Requires multi-cpu
1285 // visibility.  Inserted after a volatile load.
1286 class MemBarAcquireNode: public MemBarNode {
1287 public:
1288   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1289     : MemBarNode(C, alias_idx, precedent) {}
1290   virtual int Opcode() const;
1291 };
1292 
1293 // "Acquire" - no following ref can move before (but earlier refs can
1294 // follow, like an early Load stalled in cache).  Requires multi-cpu
1295 // visibility.  Inserted independ of any load, as required
1296 // for intrinsic Unsafe.loadFence().
1297 class LoadFenceNode: public MemBarNode {
1298 public:
1299   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1300     : MemBarNode(C, alias_idx, precedent) {}
1301   virtual int Opcode() const;
1302 };
1303 
1304 // "Release" - no earlier ref can move after (but later refs can move
1305 // up, like a speculative pipelined cache-hitting Load).  Requires
1306 // multi-cpu visibility.  Inserted before a volatile store.
1307 class MemBarReleaseNode: public MemBarNode {
1308 public:
1309   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1310     : MemBarNode(C, alias_idx, precedent) {}
1311   virtual int Opcode() const;
1312 };
1313 
1314 // "Release" - no earlier ref can move after (but later refs can move
1315 // up, like a speculative pipelined cache-hitting Load).  Requires
1316 // multi-cpu visibility.  Inserted independent of any store, as required
1317 // for intrinsic Unsafe.storeFence().
1318 class StoreFenceNode: public MemBarNode {
1319 public:
1320   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1321     : MemBarNode(C, alias_idx, precedent) {}
1322   virtual int Opcode() const;
1323 };
1324 
1325 // "Acquire" - no following ref can move before (but earlier refs can
1326 // follow, like an early Load stalled in cache).  Requires multi-cpu
1327 // visibility.  Inserted after a FastLock.
1328 class MemBarAcquireLockNode: public MemBarNode {
1329 public:
1330   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1331     : MemBarNode(C, alias_idx, precedent) {}
1332   virtual int Opcode() const;
1333 };
1334 
1335 // "Release" - no earlier ref can move after (but later refs can move
1336 // up, like a speculative pipelined cache-hitting Load).  Requires
1337 // multi-cpu visibility.  Inserted before a FastUnLock.
1338 class MemBarReleaseLockNode: public MemBarNode {
1339 public:
1340   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1341     : MemBarNode(C, alias_idx, precedent) {}
1342   virtual int Opcode() const;
1343 };
1344 
1345 class MemBarStoreStoreNode: public MemBarNode {
1346 public:
1347   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1348     : MemBarNode(C, alias_idx, precedent) {
1349     init_class_id(Class_MemBarStoreStore);
1350   }
1351   virtual int Opcode() const;
1352 };
1353 
1354 // Ordering between a volatile store and a following volatile load.
1355 // Requires multi-CPU visibility?
1356 class MemBarVolatileNode: public MemBarNode {
1357 public:
1358   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1359     : MemBarNode(C, alias_idx, precedent) {}
1360   virtual int Opcode() const;
1361 };
1362 
1363 // Ordering within the same CPU.  Used to order unsafe memory references
1364 // inside the compiler when we lack alias info.  Not needed "outside" the
1365 // compiler because the CPU does all the ordering for us.
1366 class MemBarCPUOrderNode: public MemBarNode {
1367 public:
1368   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1369     : MemBarNode(C, alias_idx, precedent) {}
1370   virtual int Opcode() const;
1371   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1372 };
1373 
1374 class OnSpinWaitNode: public MemBarNode {
1375 public:
1376   OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent)
1377     : MemBarNode(C, alias_idx, precedent) {}
1378   virtual int Opcode() const;
1379 };
1380 
1381 // Isolation of object setup after an AllocateNode and before next safepoint.
1382 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1383 class InitializeNode: public MemBarNode {
1384   friend class AllocateNode;
1385 
1386   enum {
1387     Incomplete    = 0,
1388     Complete      = 1,
1389     WithArraycopy = 2
1390   };
1391   int _is_complete;
1392 
1393   bool _does_not_escape;
1394 
1395 public:
1396   enum {
1397     Control    = TypeFunc::Control,
1398     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1399     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1400     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1401   };
1402 
1403   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1404   virtual int Opcode() const;
1405   virtual uint size_of() const { return sizeof(*this); }
1406   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1407   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1408 
1409   // Manage incoming memory edges via a MergeMem on in(Memory):
1410   Node* memory(uint alias_idx);
1411 
1412   // The raw memory edge coming directly from the Allocation.
1413   // The contents of this memory are *always* all-zero-bits.
1414   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1415 
1416   // Return the corresponding allocation for this initialization (or null if none).
1417   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1418   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1419   AllocateNode* allocation();
1420 
1421   // Anything other than zeroing in this init?
1422   bool is_non_zero();
1423 
1424   // An InitializeNode must completed before macro expansion is done.
1425   // Completion requires that the AllocateNode must be followed by
1426   // initialization of the new memory to zero, then to any initializers.
1427   bool is_complete() { return _is_complete != Incomplete; }
1428   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1429 
1430   // Mark complete.  (Must not yet be complete.)
1431   void set_complete(PhaseGVN* phase);
1432   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1433 
1434   bool does_not_escape() { return _does_not_escape; }
1435   void set_does_not_escape() { _does_not_escape = true; }
1436 
1437 #ifdef ASSERT
1438   // ensure all non-degenerate stores are ordered and non-overlapping
1439   bool stores_are_sane(PhaseTransform* phase);
1440 #endif //ASSERT
1441 
1442   // See if this store can be captured; return offset where it initializes.
1443   // Return 0 if the store cannot be moved (any sort of problem).
1444   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1445 
1446   // Capture another store; reformat it to write my internal raw memory.
1447   // Return the captured copy, else NULL if there is some sort of problem.
1448   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1449 
1450   // Find captured store which corresponds to the range [start..start+size).
1451   // Return my own memory projection (meaning the initial zero bits)
1452   // if there is no such store.  Return NULL if there is a problem.
1453   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1454 
1455   // Called when the associated AllocateNode is expanded into CFG.
1456   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1457                         intptr_t header_size, Node* size_in_bytes,
1458                         PhaseGVN* phase);
1459 
1460  private:
1461   void remove_extra_zeroes();
1462 
1463   // Find out where a captured store should be placed (or already is placed).
1464   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1465                                      PhaseTransform* phase);
1466 
1467   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1468 
1469   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1470 
1471   bool detect_init_independence(Node* n, int& count);
1472 
1473   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1474                                PhaseGVN* phase);
1475 
1476   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1477 };
1478 
1479 //------------------------------MergeMem---------------------------------------
1480 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1481 class MergeMemNode: public Node {
1482   virtual uint hash() const ;                  // { return NO_HASH; }
1483   virtual bool cmp( const Node &n ) const ;    // Always fail, except on self
1484   friend class MergeMemStream;
1485   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1486 
1487 public:
1488   // If the input is a whole memory state, clone it with all its slices intact.
1489   // Otherwise, make a new memory state with just that base memory input.
1490   // In either case, the result is a newly created MergeMem.
1491   static MergeMemNode* make(Node* base_memory);
1492 
1493   virtual int Opcode() const;
1494   virtual Node* Identity(PhaseGVN* phase);
1495   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1496   virtual uint ideal_reg() const { return NotAMachineReg; }
1497   virtual uint match_edge(uint idx) const { return 0; }
1498   virtual const RegMask &out_RegMask() const;
1499   virtual const Type *bottom_type() const { return Type::MEMORY; }
1500   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1501   // sparse accessors
1502   // Fetch the previously stored "set_memory_at", or else the base memory.
1503   // (Caller should clone it if it is a phi-nest.)
1504   Node* memory_at(uint alias_idx) const;
1505   // set the memory, regardless of its previous value
1506   void set_memory_at(uint alias_idx, Node* n);
1507   // the "base" is the memory that provides the non-finite support
1508   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1509   // warning: setting the base can implicitly set any of the other slices too
1510   void set_base_memory(Node* def);
1511   // sentinel value which denotes a copy of the base memory:
1512   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1513   static Node* make_empty_memory(); // where the sentinel comes from
1514   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1515   // hook for the iterator, to perform any necessary setup
1516   void iteration_setup(const MergeMemNode* other = NULL);
1517   // push sentinels until I am at least as long as the other (semantic no-op)
1518   void grow_to_match(const MergeMemNode* other);
1519   bool verify_sparse() const PRODUCT_RETURN0;
1520 #ifndef PRODUCT
1521   virtual void dump_spec(outputStream *st) const;
1522 #endif
1523 };
1524 
1525 class MergeMemStream : public StackObj {
1526  private:
1527   MergeMemNode*       _mm;
1528   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1529   Node*               _mm_base;  // loop-invariant base memory of _mm
1530   int                 _idx;
1531   int                 _cnt;
1532   Node*               _mem;
1533   Node*               _mem2;
1534   int                 _cnt2;
1535 
1536   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1537     // subsume_node will break sparseness at times, whenever a memory slice
1538     // folds down to a copy of the base ("fat") memory.  In such a case,
1539     // the raw edge will update to base, although it should be top.
1540     // This iterator will recognize either top or base_memory as an
1541     // "empty" slice.  See is_empty, is_empty2, and next below.
1542     //
1543     // The sparseness property is repaired in MergeMemNode::Ideal.
1544     // As long as access to a MergeMem goes through this iterator
1545     // or the memory_at accessor, flaws in the sparseness will
1546     // never be observed.
1547     //
1548     // Also, iteration_setup repairs sparseness.
1549     assert(mm->verify_sparse(), "please, no dups of base");
1550     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1551 
1552     _mm  = mm;
1553     _mm_base = mm->base_memory();
1554     _mm2 = mm2;
1555     _cnt = mm->req();
1556     _idx = Compile::AliasIdxBot-1; // start at the base memory
1557     _mem = NULL;
1558     _mem2 = NULL;
1559   }
1560 
1561 #ifdef ASSERT
1562   Node* check_memory() const {
1563     if (at_base_memory())
1564       return _mm->base_memory();
1565     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1566       return _mm->memory_at(_idx);
1567     else
1568       return _mm_base;
1569   }
1570   Node* check_memory2() const {
1571     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1572   }
1573 #endif
1574 
1575   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1576   void assert_synch() const {
1577     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1578            "no side-effects except through the stream");
1579   }
1580 
1581  public:
1582 
1583   // expected usages:
1584   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1585   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1586 
1587   // iterate over one merge
1588   MergeMemStream(MergeMemNode* mm) {
1589     mm->iteration_setup();
1590     init(mm);
1591     debug_only(_cnt2 = 999);
1592   }
1593   // iterate in parallel over two merges
1594   // only iterates through non-empty elements of mm2
1595   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1596     assert(mm2, "second argument must be a MergeMem also");
1597     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1598     mm->iteration_setup(mm2);
1599     init(mm, mm2);
1600     _cnt2 = mm2->req();
1601   }
1602 #ifdef ASSERT
1603   ~MergeMemStream() {
1604     assert_synch();
1605   }
1606 #endif
1607 
1608   MergeMemNode* all_memory() const {
1609     return _mm;
1610   }
1611   Node* base_memory() const {
1612     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1613     return _mm_base;
1614   }
1615   const MergeMemNode* all_memory2() const {
1616     assert(_mm2 != NULL, "");
1617     return _mm2;
1618   }
1619   bool at_base_memory() const {
1620     return _idx == Compile::AliasIdxBot;
1621   }
1622   int alias_idx() const {
1623     assert(_mem, "must call next 1st");
1624     return _idx;
1625   }
1626 
1627   const TypePtr* adr_type() const {
1628     return Compile::current()->get_adr_type(alias_idx());
1629   }
1630 
1631   const TypePtr* adr_type(Compile* C) const {
1632     return C->get_adr_type(alias_idx());
1633   }
1634   bool is_empty() const {
1635     assert(_mem, "must call next 1st");
1636     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1637     return _mem->is_top();
1638   }
1639   bool is_empty2() const {
1640     assert(_mem2, "must call next 1st");
1641     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1642     return _mem2->is_top();
1643   }
1644   Node* memory() const {
1645     assert(!is_empty(), "must not be empty");
1646     assert_synch();
1647     return _mem;
1648   }
1649   // get the current memory, regardless of empty or non-empty status
1650   Node* force_memory() const {
1651     assert(!is_empty() || !at_base_memory(), "");
1652     // Use _mm_base to defend against updates to _mem->base_memory().
1653     Node *mem = _mem->is_top() ? _mm_base : _mem;
1654     assert(mem == check_memory(), "");
1655     return mem;
1656   }
1657   Node* memory2() const {
1658     assert(_mem2 == check_memory2(), "");
1659     return _mem2;
1660   }
1661   void set_memory(Node* mem) {
1662     if (at_base_memory()) {
1663       // Note that this does not change the invariant _mm_base.
1664       _mm->set_base_memory(mem);
1665     } else {
1666       _mm->set_memory_at(_idx, mem);
1667     }
1668     _mem = mem;
1669     assert_synch();
1670   }
1671 
1672   // Recover from a side effect to the MergeMemNode.
1673   void set_memory() {
1674     _mem = _mm->in(_idx);
1675   }
1676 
1677   bool next()  { return next(false); }
1678   bool next2() { return next(true); }
1679 
1680   bool next_non_empty()  { return next_non_empty(false); }
1681   bool next_non_empty2() { return next_non_empty(true); }
1682   // next_non_empty2 can yield states where is_empty() is true
1683 
1684  private:
1685   // find the next item, which might be empty
1686   bool next(bool have_mm2) {
1687     assert((_mm2 != NULL) == have_mm2, "use other next");
1688     assert_synch();
1689     if (++_idx < _cnt) {
1690       // Note:  This iterator allows _mm to be non-sparse.
1691       // It behaves the same whether _mem is top or base_memory.
1692       _mem = _mm->in(_idx);
1693       if (have_mm2)
1694         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1695       return true;
1696     }
1697     return false;
1698   }
1699 
1700   // find the next non-empty item
1701   bool next_non_empty(bool have_mm2) {
1702     while (next(have_mm2)) {
1703       if (!is_empty()) {
1704         // make sure _mem2 is filled in sensibly
1705         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1706         return true;
1707       } else if (have_mm2 && !is_empty2()) {
1708         return true;   // is_empty() == true
1709       }
1710     }
1711     return false;
1712   }
1713 };
1714 
1715 // cachewb node for guaranteeing writeback of the cache line at a
1716 // given address to (non-volatile) RAM
1717 class CacheWBNode : public Node {
1718 public:
1719   CacheWBNode(Node *ctrl, Node *mem, Node *addr) : Node(ctrl, mem, addr) {}
1720   virtual int Opcode() const;
1721   virtual uint ideal_reg() const { return NotAMachineReg; }
1722   virtual uint match_edge(uint idx) const { return (idx == 2); }
1723   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1724   virtual const Type *bottom_type() const { return Type::MEMORY; }
1725 };
1726 
1727 // cachewb pre sync node for ensuring that writebacks are serialised
1728 // relative to preceding or following stores
1729 class CacheWBPreSyncNode : public Node {
1730 public:
1731   CacheWBPreSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
1732   virtual int Opcode() const;
1733   virtual uint ideal_reg() const { return NotAMachineReg; }
1734   virtual uint match_edge(uint idx) const { return false; }
1735   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1736   virtual const Type *bottom_type() const { return Type::MEMORY; }
1737 };
1738 
1739 // cachewb pre sync node for ensuring that writebacks are serialised
1740 // relative to preceding or following stores
1741 class CacheWBPostSyncNode : public Node {
1742 public:
1743   CacheWBPostSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
1744   virtual int Opcode() const;
1745   virtual uint ideal_reg() const { return NotAMachineReg; }
1746   virtual uint match_edge(uint idx) const { return false; }
1747   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1748   virtual const Type *bottom_type() const { return Type::MEMORY; }
1749 };
1750 
1751 //------------------------------Prefetch---------------------------------------
1752 
1753 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1754 class PrefetchAllocationNode : public Node {
1755 public:
1756   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1757   virtual int Opcode() const;
1758   virtual uint ideal_reg() const { return NotAMachineReg; }
1759   virtual uint match_edge(uint idx) const { return idx==2; }
1760   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1761 };
1762 
1763 #endif // SHARE_OPTO_MEMNODE_HPP