1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "oops/valueArrayKlass.hpp"
  53 #include "oops/valueArrayOop.inline.hpp"
  54 #include "opto/ad.hpp"
  55 #include "opto/addnode.hpp"
  56 #include "opto/callnode.hpp"
  57 #include "opto/cfgnode.hpp"
  58 #include "opto/graphKit.hpp"
  59 #include "opto/machnode.hpp"
  60 #include "opto/matcher.hpp"
  61 #include "opto/memnode.hpp"
  62 #include "opto/mulnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/signature.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/vframe.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "runtime/vframe_hp.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/preserveException.hpp"
  78 
  79 
  80 // For debugging purposes:
  81 //  To force FullGCALot inside a runtime function, add the following two lines
  82 //
  83 //  Universe::release_fullgc_alot_dummy();
  84 //  MarkSweep::invoke(0, "Debugging");
  85 //
  86 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  87 
  88 
  89 
  90 
  91 // Compiled code entry points
  92 address OptoRuntime::_new_instance_Java                           = NULL;
  93 address OptoRuntime::_new_array_Java                              = NULL;
  94 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  95 address OptoRuntime::_multianewarray2_Java                        = NULL;
  96 address OptoRuntime::_multianewarray3_Java                        = NULL;
  97 address OptoRuntime::_multianewarray4_Java                        = NULL;
  98 address OptoRuntime::_multianewarray5_Java                        = NULL;
  99 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 100 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 101 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 102 address OptoRuntime::_monitor_notify_Java                         = NULL;
 103 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 104 address OptoRuntime::_rethrow_Java                                = NULL;
 105 
 106 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 107 address OptoRuntime::_register_finalizer_Java                     = NULL;
 108 
 109 ExceptionBlob* OptoRuntime::_exception_blob;
 110 
 111 // This should be called in an assertion at the start of OptoRuntime routines
 112 // which are entered from compiled code (all of them)
 113 #ifdef ASSERT
 114 static bool check_compiled_frame(JavaThread* thread) {
 115   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 116   RegisterMap map(thread, false);
 117   frame caller = thread->last_frame().sender(&map);
 118   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 119   return true;
 120 }
 121 #endif // ASSERT
 122 
 123 
 124 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 125   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 126   if (var == NULL) { return false; }
 127 
 128 bool OptoRuntime::generate(ciEnv* env) {
 129 
 130   generate_exception_blob();
 131 
 132   // Note: tls: Means fetching the return oop out of the thread-local storage
 133   //
 134   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 135   // -------------------------------------------------------------------------------------------------------------------------------
 136   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 137   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 138   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 139   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 143   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 144   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 145   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 146   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152   return true;
 153 }
 154 
 155 #undef gen
 156 
 157 
 158 // Helper method to do generation of RunTimeStub's
 159 address OptoRuntime::generate_stub( ciEnv* env,
 160                                     TypeFunc_generator gen, address C_function,
 161                                     const char *name, int is_fancy_jump,
 162                                     bool pass_tls,
 163                                     bool save_argument_registers,
 164                                     bool return_pc) {
 165 
 166   // Matching the default directive, we currently have no method to match.
 167   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 168   ResourceMark rm;
 169   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 170   DirectivesStack::release(directive);
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 // object allocation
 197 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 198   JRT_BLOCK;
 199 #ifndef PRODUCT
 200   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 201 #endif
 202   assert(check_compiled_frame(thread), "incorrect caller");
 203   // Check if this is a larval buffer allocation (klass pointer is tagged)
 204   bool is_larval = false;
 205   if (is_set_nth_bit((intptr_t)klass, 0)) {
 206     clear_nth_bit((intptr_t&)klass, 0);
 207     assert(klass->is_value(), "must be value");
 208     is_larval = true;
 209   }
 210   // These checks are cheap to make and support reflective allocation.
 211   int lh = klass->layout_helper();
 212   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 213     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 214     klass->check_valid_for_instantiation(false, THREAD);
 215     if (!HAS_PENDING_EXCEPTION) {
 216       InstanceKlass::cast(klass)->initialize(THREAD);
 217     }
 218   }
 219 
 220   if (!HAS_PENDING_EXCEPTION) {
 221     // Scavenge and allocate an instance.
 222     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 223     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 224     if (is_larval) {
 225       result->set_mark(result->mark().enter_larval_state());
 226     }
 227     thread->set_vm_result(result);
 228 
 229     // Pass oops back through thread local storage.  Our apparent type to Java
 230     // is that we return an oop, but we can block on exit from this routine and
 231     // a GC can trash the oop in C's return register.  The generated stub will
 232     // fetch the oop from TLS after any possible GC.
 233   }
 234 
 235   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 236   JRT_BLOCK_END;
 237 
 238   // inform GC that we won't do card marks for initializing writes.
 239   SharedRuntime::on_slowpath_allocation_exit(thread);
 240 JRT_END
 241 
 242 
 243 // array allocation
 244 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 245   JRT_BLOCK;
 246 #ifndef PRODUCT
 247   SharedRuntime::_new_array_ctr++;            // new array requires GC
 248 #endif
 249   assert(check_compiled_frame(thread), "incorrect caller");
 250 
 251   // Scavenge and allocate an instance.
 252   oop result;
 253 
 254   if (array_type->is_valueArray_klass()) {
 255     Klass* elem_type = ValueArrayKlass::cast(array_type)->element_klass();
 256     result = oopFactory::new_valueArray(elem_type, len, THREAD);
 257   } else if (array_type->is_typeArray_klass()) {
 258     // The oopFactory likes to work with the element type.
 259     // (We could bypass the oopFactory, since it doesn't add much value.)
 260     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 261     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 262   } else {
 263     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 264     result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD);
 265   }
 266 
 267   // Pass oops back through thread local storage.  Our apparent type to Java
 268   // is that we return an oop, but we can block on exit from this routine and
 269   // a GC can trash the oop in C's return register.  The generated stub will
 270   // fetch the oop from TLS after any possible GC.
 271   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 272   thread->set_vm_result(result);
 273   JRT_BLOCK_END;
 274 
 275   // inform GC that we won't do card marks for initializing writes.
 276   SharedRuntime::on_slowpath_allocation_exit(thread);
 277 JRT_END
 278 
 279 // array allocation without zeroing
 280 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 281   JRT_BLOCK;
 282 #ifndef PRODUCT
 283   SharedRuntime::_new_array_ctr++;            // new array requires GC
 284 #endif
 285   assert(check_compiled_frame(thread), "incorrect caller");
 286 
 287   // Scavenge and allocate an instance.
 288   oop result;
 289 
 290   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 291   // The oopFactory likes to work with the element type.
 292   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 293   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 294 
 295   // Pass oops back through thread local storage.  Our apparent type to Java
 296   // is that we return an oop, but we can block on exit from this routine and
 297   // a GC can trash the oop in C's return register.  The generated stub will
 298   // fetch the oop from TLS after any possible GC.
 299   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 300   thread->set_vm_result(result);
 301   JRT_BLOCK_END;
 302 
 303 
 304   // inform GC that we won't do card marks for initializing writes.
 305   SharedRuntime::on_slowpath_allocation_exit(thread);
 306 
 307   oop result = thread->vm_result();
 308   if ((len > 0) && (result != NULL) &&
 309       is_deoptimized_caller_frame(thread)) {
 310     // Zero array here if the caller is deoptimized.
 311     int size = ((typeArrayOop)result)->object_size();
 312     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 313     const size_t hs = arrayOopDesc::header_size(elem_type);
 314     // Align to next 8 bytes to avoid trashing arrays's length.
 315     const size_t aligned_hs = align_object_offset(hs);
 316     HeapWord* obj = (HeapWord*)result;
 317     if (aligned_hs > hs) {
 318       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 319     }
 320     // Optimized zeroing.
 321     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 322   }
 323 
 324 JRT_END
 325 
 326 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 327 
 328 // multianewarray for 2 dimensions
 329 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 330 #ifndef PRODUCT
 331   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 332 #endif
 333   assert(check_compiled_frame(thread), "incorrect caller");
 334   assert(elem_type->is_klass(), "not a class");
 335   jint dims[2];
 336   dims[0] = len1;
 337   dims[1] = len2;
 338   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 339   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 340   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 341   thread->set_vm_result(obj);
 342 JRT_END
 343 
 344 // multianewarray for 3 dimensions
 345 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 346 #ifndef PRODUCT
 347   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 348 #endif
 349   assert(check_compiled_frame(thread), "incorrect caller");
 350   assert(elem_type->is_klass(), "not a class");
 351   jint dims[3];
 352   dims[0] = len1;
 353   dims[1] = len2;
 354   dims[2] = len3;
 355   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 356   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 357   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 358   thread->set_vm_result(obj);
 359 JRT_END
 360 
 361 // multianewarray for 4 dimensions
 362 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 363 #ifndef PRODUCT
 364   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 365 #endif
 366   assert(check_compiled_frame(thread), "incorrect caller");
 367   assert(elem_type->is_klass(), "not a class");
 368   jint dims[4];
 369   dims[0] = len1;
 370   dims[1] = len2;
 371   dims[2] = len3;
 372   dims[3] = len4;
 373   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 374   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 375   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 376   thread->set_vm_result(obj);
 377 JRT_END
 378 
 379 // multianewarray for 5 dimensions
 380 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 381 #ifndef PRODUCT
 382   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 383 #endif
 384   assert(check_compiled_frame(thread), "incorrect caller");
 385   assert(elem_type->is_klass(), "not a class");
 386   jint dims[5];
 387   dims[0] = len1;
 388   dims[1] = len2;
 389   dims[2] = len3;
 390   dims[3] = len4;
 391   dims[4] = len5;
 392   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 393   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 394   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 395   thread->set_vm_result(obj);
 396 JRT_END
 397 
 398 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 399   assert(check_compiled_frame(thread), "incorrect caller");
 400   assert(elem_type->is_klass(), "not a class");
 401   assert(oop(dims)->is_typeArray(), "not an array");
 402 
 403   ResourceMark rm;
 404   jint len = dims->length();
 405   assert(len > 0, "Dimensions array should contain data");
 406   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 407   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 408                                        c_dims, len);
 409 
 410   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 411   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 412   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 413   thread->set_vm_result(obj);
 414 JRT_END
 415 
 416 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 417 
 418   // Very few notify/notifyAll operations find any threads on the waitset, so
 419   // the dominant fast-path is to simply return.
 420   // Relatedly, it's critical that notify/notifyAll be fast in order to
 421   // reduce lock hold times.
 422   if (!SafepointSynchronize::is_synchronizing()) {
 423     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 424       return;
 425     }
 426   }
 427 
 428   // This is the case the fast-path above isn't provisioned to handle.
 429   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 430   // (The fast-path is just a degenerate variant of the slow-path).
 431   // Perform the dreaded state transition and pass control into the slow-path.
 432   JRT_BLOCK;
 433   Handle h_obj(THREAD, obj);
 434   ObjectSynchronizer::notify(h_obj, CHECK);
 435   JRT_BLOCK_END;
 436 JRT_END
 437 
 438 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 439 
 440   if (!SafepointSynchronize::is_synchronizing() ) {
 441     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 442       return;
 443     }
 444   }
 445 
 446   // This is the case the fast-path above isn't provisioned to handle.
 447   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 448   // (The fast-path is just a degenerate variant of the slow-path).
 449   // Perform the dreaded state transition and pass control into the slow-path.
 450   JRT_BLOCK;
 451   Handle h_obj(THREAD, obj);
 452   ObjectSynchronizer::notifyall(h_obj, CHECK);
 453   JRT_BLOCK_END;
 454 JRT_END
 455 
 456 const TypeFunc *OptoRuntime::new_instance_Type() {
 457   // create input type (domain)
 458   const Type **fields = TypeTuple::fields(1);
 459   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 460   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 461 
 462   // create result type (range)
 463   fields = TypeTuple::fields(1);
 464   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 465 
 466   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 467 
 468   return TypeFunc::make(domain, range);
 469 }
 470 
 471 
 472 const TypeFunc *OptoRuntime::athrow_Type() {
 473   // create input type (domain)
 474   const Type **fields = TypeTuple::fields(1);
 475   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 476   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 477 
 478   // create result type (range)
 479   fields = TypeTuple::fields(0);
 480 
 481   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 482 
 483   return TypeFunc::make(domain, range);
 484 }
 485 
 486 
 487 const TypeFunc *OptoRuntime::new_array_Type() {
 488   // create input type (domain)
 489   const Type **fields = TypeTuple::fields(2);
 490   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 491   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 492   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 493 
 494   // create result type (range)
 495   fields = TypeTuple::fields(1);
 496   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 497 
 498   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 499 
 500   return TypeFunc::make(domain, range);
 501 }
 502 
 503 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 504   // create input type (domain)
 505   const int nargs = ndim + 1;
 506   const Type **fields = TypeTuple::fields(nargs);
 507   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 508   for( int i = 1; i < nargs; i++ )
 509     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 510   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 511 
 512   // create result type (range)
 513   fields = TypeTuple::fields(1);
 514   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 515   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 516 
 517   return TypeFunc::make(domain, range);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 521   return multianewarray_Type(2);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 525   return multianewarray_Type(3);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 529   return multianewarray_Type(4);
 530 }
 531 
 532 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 533   return multianewarray_Type(5);
 534 }
 535 
 536 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 537   // create input type (domain)
 538   const Type **fields = TypeTuple::fields(2);
 539   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 540   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 541   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 542 
 543   // create result type (range)
 544   fields = TypeTuple::fields(1);
 545   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 546   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 547 
 548   return TypeFunc::make(domain, range);
 549 }
 550 
 551 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 552   // create input type (domain)
 553   const Type **fields = TypeTuple::fields(1);
 554   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 555   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 556 
 557   // create result type (range)
 558   fields = TypeTuple::fields(0);
 559   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 560 
 561   return TypeFunc::make(domain, range);
 562 }
 563 
 564 //-----------------------------------------------------------------------------
 565 // Monitor Handling
 566 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 567   // create input type (domain)
 568   const Type **fields = TypeTuple::fields(2);
 569   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 570   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 572 
 573   // create result type (range)
 574   fields = TypeTuple::fields(0);
 575 
 576   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 577 
 578   return TypeFunc::make(domain, range);
 579 }
 580 
 581 
 582 //-----------------------------------------------------------------------------
 583 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 584   // create input type (domain)
 585   const Type **fields = TypeTuple::fields(3);
 586   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 587   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 588   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 590 
 591   // create result type (range)
 592   fields = TypeTuple::fields(0);
 593 
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 595 
 596   return TypeFunc::make(domain, range);
 597 }
 598 
 599 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 600   // create input type (domain)
 601   const Type **fields = TypeTuple::fields(1);
 602   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 603   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 604 
 605   // create result type (range)
 606   fields = TypeTuple::fields(0);
 607   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 608   return TypeFunc::make(domain, range);
 609 }
 610 
 611 const TypeFunc* OptoRuntime::flush_windows_Type() {
 612   // create input type (domain)
 613   const Type** fields = TypeTuple::fields(1);
 614   fields[TypeFunc::Parms+0] = NULL; // void
 615   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 616 
 617   // create result type
 618   fields = TypeTuple::fields(1);
 619   fields[TypeFunc::Parms+0] = NULL; // void
 620   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 621 
 622   return TypeFunc::make(domain, range);
 623 }
 624 
 625 const TypeFunc* OptoRuntime::l2f_Type() {
 626   // create input type (domain)
 627   const Type **fields = TypeTuple::fields(2);
 628   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 629   fields[TypeFunc::Parms+1] = Type::HALF;
 630   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 631 
 632   // create result type (range)
 633   fields = TypeTuple::fields(1);
 634   fields[TypeFunc::Parms+0] = Type::FLOAT;
 635   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 636 
 637   return TypeFunc::make(domain, range);
 638 }
 639 
 640 const TypeFunc* OptoRuntime::modf_Type() {
 641   const Type **fields = TypeTuple::fields(2);
 642   fields[TypeFunc::Parms+0] = Type::FLOAT;
 643   fields[TypeFunc::Parms+1] = Type::FLOAT;
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 645 
 646   // create result type (range)
 647   fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = Type::FLOAT;
 649 
 650   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 651 
 652   return TypeFunc::make(domain, range);
 653 }
 654 
 655 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 656   // create input type (domain)
 657   const Type **fields = TypeTuple::fields(2);
 658   // Symbol* name of class to be loaded
 659   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 660   fields[TypeFunc::Parms+1] = Type::HALF;
 661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 662 
 663   // create result type (range)
 664   fields = TypeTuple::fields(2);
 665   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 666   fields[TypeFunc::Parms+1] = Type::HALF;
 667   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 668 
 669   return TypeFunc::make(domain, range);
 670 }
 671 
 672 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 673   const Type **fields = TypeTuple::fields(4);
 674   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 675   fields[TypeFunc::Parms+1] = Type::HALF;
 676   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 677   fields[TypeFunc::Parms+3] = Type::HALF;
 678   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 679 
 680   // create result type (range)
 681   fields = TypeTuple::fields(2);
 682   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 683   fields[TypeFunc::Parms+1] = Type::HALF;
 684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 685 
 686   return TypeFunc::make(domain, range);
 687 }
 688 
 689 //-------------- currentTimeMillis, currentTimeNanos, etc
 690 
 691 const TypeFunc* OptoRuntime::void_long_Type() {
 692   // create input type (domain)
 693   const Type **fields = TypeTuple::fields(0);
 694   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 695 
 696   // create result type (range)
 697   fields = TypeTuple::fields(2);
 698   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 699   fields[TypeFunc::Parms+1] = Type::HALF;
 700   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 701 
 702   return TypeFunc::make(domain, range);
 703 }
 704 
 705 // arraycopy stub variations:
 706 enum ArrayCopyType {
 707   ac_fast,                      // void(ptr, ptr, size_t)
 708   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 709   ac_slow,                      // void(ptr, int, ptr, int, int)
 710   ac_generic                    //  int(ptr, int, ptr, int, int)
 711 };
 712 
 713 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 714   // create input type (domain)
 715   int num_args      = (act == ac_fast ? 3 : 5);
 716   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 717   int argcnt = num_args;
 718   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 719   const Type** fields = TypeTuple::fields(argcnt);
 720   int argp = TypeFunc::Parms;
 721   fields[argp++] = TypePtr::NOTNULL;    // src
 722   if (num_size_args == 0) {
 723     fields[argp++] = TypeInt::INT;      // src_pos
 724   }
 725   fields[argp++] = TypePtr::NOTNULL;    // dest
 726   if (num_size_args == 0) {
 727     fields[argp++] = TypeInt::INT;      // dest_pos
 728     fields[argp++] = TypeInt::INT;      // length
 729   }
 730   while (num_size_args-- > 0) {
 731     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 732     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 733   }
 734   if (act == ac_checkcast) {
 735     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 736   }
 737   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 738   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 739 
 740   // create result type if needed
 741   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 742   fields = TypeTuple::fields(1);
 743   if (retcnt == 0)
 744     fields[TypeFunc::Parms+0] = NULL; // void
 745   else
 746     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 747   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 748   return TypeFunc::make(domain, range);
 749 }
 750 
 751 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 752   // This signature is simple:  Two base pointers and a size_t.
 753   return make_arraycopy_Type(ac_fast);
 754 }
 755 
 756 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 757   // An extension of fast_arraycopy_Type which adds type checking.
 758   return make_arraycopy_Type(ac_checkcast);
 759 }
 760 
 761 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 762   // This signature is exactly the same as System.arraycopy.
 763   // There are no intptr_t (int/long) arguments.
 764   return make_arraycopy_Type(ac_slow);
 765 }
 766 
 767 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 768   // This signature is like System.arraycopy, except that it returns status.
 769   return make_arraycopy_Type(ac_generic);
 770 }
 771 
 772 
 773 const TypeFunc* OptoRuntime::array_fill_Type() {
 774   const Type** fields;
 775   int argp = TypeFunc::Parms;
 776   // create input type (domain): pointer, int, size_t
 777   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 778   fields[argp++] = TypePtr::NOTNULL;
 779   fields[argp++] = TypeInt::INT;
 780   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 781   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 782   const TypeTuple *domain = TypeTuple::make(argp, fields);
 783 
 784   // create result type
 785   fields = TypeTuple::fields(1);
 786   fields[TypeFunc::Parms+0] = NULL; // void
 787   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 788 
 789   return TypeFunc::make(domain, range);
 790 }
 791 
 792 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 793 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 794   // create input type (domain)
 795   int num_args      = 3;
 796   if (Matcher::pass_original_key_for_aes()) {
 797     num_args = 4;
 798   }
 799   int argcnt = num_args;
 800   const Type** fields = TypeTuple::fields(argcnt);
 801   int argp = TypeFunc::Parms;
 802   fields[argp++] = TypePtr::NOTNULL;    // src
 803   fields[argp++] = TypePtr::NOTNULL;    // dest
 804   fields[argp++] = TypePtr::NOTNULL;    // k array
 805   if (Matcher::pass_original_key_for_aes()) {
 806     fields[argp++] = TypePtr::NOTNULL;    // original k array
 807   }
 808   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 809   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 810 
 811   // no result type needed
 812   fields = TypeTuple::fields(1);
 813   fields[TypeFunc::Parms+0] = NULL; // void
 814   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 815   return TypeFunc::make(domain, range);
 816 }
 817 
 818 /**
 819  * int updateBytesCRC32(int crc, byte* b, int len)
 820  */
 821 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 822   // create input type (domain)
 823   int num_args      = 3;
 824   int argcnt = num_args;
 825   const Type** fields = TypeTuple::fields(argcnt);
 826   int argp = TypeFunc::Parms;
 827   fields[argp++] = TypeInt::INT;        // crc
 828   fields[argp++] = TypePtr::NOTNULL;    // src
 829   fields[argp++] = TypeInt::INT;        // len
 830   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 831   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 832 
 833   // result type needed
 834   fields = TypeTuple::fields(1);
 835   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 836   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 837   return TypeFunc::make(domain, range);
 838 }
 839 
 840 /**
 841  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 842  */
 843 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 844   // create input type (domain)
 845   int num_args      = 4;
 846   int argcnt = num_args;
 847   const Type** fields = TypeTuple::fields(argcnt);
 848   int argp = TypeFunc::Parms;
 849   fields[argp++] = TypeInt::INT;        // crc
 850   fields[argp++] = TypePtr::NOTNULL;    // buf
 851   fields[argp++] = TypeInt::INT;        // len
 852   fields[argp++] = TypePtr::NOTNULL;    // table
 853   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 854   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 855 
 856   // result type needed
 857   fields = TypeTuple::fields(1);
 858   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 859   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 860   return TypeFunc::make(domain, range);
 861 }
 862 
 863 /**
 864 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 865 */
 866 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 867   // create input type (domain)
 868   int num_args      = 3;
 869   int argcnt = num_args;
 870   const Type** fields = TypeTuple::fields(argcnt);
 871   int argp = TypeFunc::Parms;
 872   fields[argp++] = TypeInt::INT;        // crc
 873   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 874   fields[argp++] = TypeInt::INT;        // len
 875   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 876   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 877 
 878   // result type needed
 879   fields = TypeTuple::fields(1);
 880   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 881   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 882   return TypeFunc::make(domain, range);
 883 }
 884 
 885 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 886 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 887   // create input type (domain)
 888   int num_args      = 5;
 889   if (Matcher::pass_original_key_for_aes()) {
 890     num_args = 6;
 891   }
 892   int argcnt = num_args;
 893   const Type** fields = TypeTuple::fields(argcnt);
 894   int argp = TypeFunc::Parms;
 895   fields[argp++] = TypePtr::NOTNULL;    // src
 896   fields[argp++] = TypePtr::NOTNULL;    // dest
 897   fields[argp++] = TypePtr::NOTNULL;    // k array
 898   fields[argp++] = TypePtr::NOTNULL;    // r array
 899   fields[argp++] = TypeInt::INT;        // src len
 900   if (Matcher::pass_original_key_for_aes()) {
 901     fields[argp++] = TypePtr::NOTNULL;    // original k array
 902   }
 903   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 904   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 905 
 906   // returning cipher len (int)
 907   fields = TypeTuple::fields(1);
 908   fields[TypeFunc::Parms+0] = TypeInt::INT;
 909   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 910   return TypeFunc::make(domain, range);
 911 }
 912 
 913 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
 914 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
 915   // create input type (domain)
 916   int num_args = 4;
 917   if (Matcher::pass_original_key_for_aes()) {
 918      num_args = 5;
 919   }
 920   int argcnt = num_args;
 921   const Type** fields = TypeTuple::fields(argcnt);
 922   int argp = TypeFunc::Parms;
 923   fields[argp++] = TypePtr::NOTNULL;    // src
 924   fields[argp++] = TypePtr::NOTNULL;    // dest
 925   fields[argp++] = TypePtr::NOTNULL;    // k array
 926   fields[argp++] = TypeInt::INT;        // src len
 927   if (Matcher::pass_original_key_for_aes()) {
 928      fields[argp++] = TypePtr::NOTNULL;    // original k array
 929   }
 930   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 931   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 932 
 933   // returning cipher len (int)
 934   fields = TypeTuple::fields(1);
 935   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 936   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 937   return TypeFunc::make(domain, range);
 938 }
 939 
 940 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 941 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 942   // create input type (domain)
 943   int num_args = 7;
 944   if (Matcher::pass_original_key_for_aes()) {
 945     num_args = 8;
 946   }
 947   int argcnt = num_args;
 948   const Type** fields = TypeTuple::fields(argcnt);
 949   int argp = TypeFunc::Parms;
 950   fields[argp++] = TypePtr::NOTNULL; // src
 951   fields[argp++] = TypePtr::NOTNULL; // dest
 952   fields[argp++] = TypePtr::NOTNULL; // k array
 953   fields[argp++] = TypePtr::NOTNULL; // counter array
 954   fields[argp++] = TypeInt::INT; // src len
 955   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 956   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 957   if (Matcher::pass_original_key_for_aes()) {
 958     fields[argp++] = TypePtr::NOTNULL; // original k array
 959   }
 960   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 961   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 962   // returning cipher len (int)
 963   fields = TypeTuple::fields(1);
 964   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 965   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 966   return TypeFunc::make(domain, range);
 967 }
 968 
 969 /*
 970  * void implCompress(byte[] buf, int ofs)
 971  */
 972 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 973   // create input type (domain)
 974   int num_args = 2;
 975   int argcnt = num_args;
 976   const Type** fields = TypeTuple::fields(argcnt);
 977   int argp = TypeFunc::Parms;
 978   fields[argp++] = TypePtr::NOTNULL; // buf
 979   fields[argp++] = TypePtr::NOTNULL; // state
 980   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 981   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 982 
 983   // no result type needed
 984   fields = TypeTuple::fields(1);
 985   fields[TypeFunc::Parms+0] = NULL; // void
 986   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 987   return TypeFunc::make(domain, range);
 988 }
 989 
 990 /*
 991  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 992  */
 993 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 994   // create input type (domain)
 995   int num_args = 4;
 996   int argcnt = num_args;
 997   const Type** fields = TypeTuple::fields(argcnt);
 998   int argp = TypeFunc::Parms;
 999   fields[argp++] = TypePtr::NOTNULL; // buf
1000   fields[argp++] = TypePtr::NOTNULL; // state
1001   fields[argp++] = TypeInt::INT;     // ofs
1002   fields[argp++] = TypeInt::INT;     // limit
1003   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1004   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1005 
1006   // returning ofs (int)
1007   fields = TypeTuple::fields(1);
1008   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1009   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1010   return TypeFunc::make(domain, range);
1011 }
1012 
1013 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1014   // create input type (domain)
1015   int num_args      = 6;
1016   int argcnt = num_args;
1017   const Type** fields = TypeTuple::fields(argcnt);
1018   int argp = TypeFunc::Parms;
1019   fields[argp++] = TypePtr::NOTNULL;    // x
1020   fields[argp++] = TypeInt::INT;        // xlen
1021   fields[argp++] = TypePtr::NOTNULL;    // y
1022   fields[argp++] = TypeInt::INT;        // ylen
1023   fields[argp++] = TypePtr::NOTNULL;    // z
1024   fields[argp++] = TypeInt::INT;        // zlen
1025   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1026   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1027 
1028   // no result type needed
1029   fields = TypeTuple::fields(1);
1030   fields[TypeFunc::Parms+0] = NULL;
1031   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1032   return TypeFunc::make(domain, range);
1033 }
1034 
1035 const TypeFunc* OptoRuntime::squareToLen_Type() {
1036   // create input type (domain)
1037   int num_args      = 4;
1038   int argcnt = num_args;
1039   const Type** fields = TypeTuple::fields(argcnt);
1040   int argp = TypeFunc::Parms;
1041   fields[argp++] = TypePtr::NOTNULL;    // x
1042   fields[argp++] = TypeInt::INT;        // len
1043   fields[argp++] = TypePtr::NOTNULL;    // z
1044   fields[argp++] = TypeInt::INT;        // zlen
1045   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1046   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1047 
1048   // no result type needed
1049   fields = TypeTuple::fields(1);
1050   fields[TypeFunc::Parms+0] = NULL;
1051   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1052   return TypeFunc::make(domain, range);
1053 }
1054 
1055 // for mulAdd calls, 2 pointers and 3 ints, returning int
1056 const TypeFunc* OptoRuntime::mulAdd_Type() {
1057   // create input type (domain)
1058   int num_args      = 5;
1059   int argcnt = num_args;
1060   const Type** fields = TypeTuple::fields(argcnt);
1061   int argp = TypeFunc::Parms;
1062   fields[argp++] = TypePtr::NOTNULL;    // out
1063   fields[argp++] = TypePtr::NOTNULL;    // in
1064   fields[argp++] = TypeInt::INT;        // offset
1065   fields[argp++] = TypeInt::INT;        // len
1066   fields[argp++] = TypeInt::INT;        // k
1067   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1068   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1069 
1070   // returning carry (int)
1071   fields = TypeTuple::fields(1);
1072   fields[TypeFunc::Parms+0] = TypeInt::INT;
1073   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1074   return TypeFunc::make(domain, range);
1075 }
1076 
1077 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1078   // create input type (domain)
1079   int num_args      = 7;
1080   int argcnt = num_args;
1081   const Type** fields = TypeTuple::fields(argcnt);
1082   int argp = TypeFunc::Parms;
1083   fields[argp++] = TypePtr::NOTNULL;    // a
1084   fields[argp++] = TypePtr::NOTNULL;    // b
1085   fields[argp++] = TypePtr::NOTNULL;    // n
1086   fields[argp++] = TypeInt::INT;        // len
1087   fields[argp++] = TypeLong::LONG;      // inv
1088   fields[argp++] = Type::HALF;
1089   fields[argp++] = TypePtr::NOTNULL;    // result
1090   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1091   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1092 
1093   // result type needed
1094   fields = TypeTuple::fields(1);
1095   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1096 
1097   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1098   return TypeFunc::make(domain, range);
1099 }
1100 
1101 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1102   // create input type (domain)
1103   int num_args      = 6;
1104   int argcnt = num_args;
1105   const Type** fields = TypeTuple::fields(argcnt);
1106   int argp = TypeFunc::Parms;
1107   fields[argp++] = TypePtr::NOTNULL;    // a
1108   fields[argp++] = TypePtr::NOTNULL;    // n
1109   fields[argp++] = TypeInt::INT;        // len
1110   fields[argp++] = TypeLong::LONG;      // inv
1111   fields[argp++] = Type::HALF;
1112   fields[argp++] = TypePtr::NOTNULL;    // result
1113   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1114   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1115 
1116   // result type needed
1117   fields = TypeTuple::fields(1);
1118   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1119 
1120   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1121   return TypeFunc::make(domain, range);
1122 }
1123 
1124 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1125   // create input type (domain)
1126   int num_args = 4;
1127   int argcnt = num_args;
1128   const Type** fields = TypeTuple::fields(argcnt);
1129   int argp = TypeFunc::Parms;
1130   fields[argp++] = TypePtr::NOTNULL;    // obja
1131   fields[argp++] = TypePtr::NOTNULL;    // objb
1132   fields[argp++] = TypeInt::INT;        // length, number of elements
1133   fields[argp++] = TypeInt::INT;        // log2scale, element size
1134   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1135   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1136 
1137   //return mismatch index (int)
1138   fields = TypeTuple::fields(1);
1139   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1140   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1141   return TypeFunc::make(domain, range);
1142 }
1143 
1144 // GHASH block processing
1145 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1146     int argcnt = 4;
1147 
1148     const Type** fields = TypeTuple::fields(argcnt);
1149     int argp = TypeFunc::Parms;
1150     fields[argp++] = TypePtr::NOTNULL;    // state
1151     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1152     fields[argp++] = TypePtr::NOTNULL;    // data
1153     fields[argp++] = TypeInt::INT;        // blocks
1154     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1155     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1156 
1157     // result type needed
1158     fields = TypeTuple::fields(1);
1159     fields[TypeFunc::Parms+0] = NULL; // void
1160     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1161     return TypeFunc::make(domain, range);
1162 }
1163 // Base64 encode function
1164 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1165   int argcnt = 6;
1166 
1167   const Type** fields = TypeTuple::fields(argcnt);
1168   int argp = TypeFunc::Parms;
1169   fields[argp++] = TypePtr::NOTNULL;    // src array
1170   fields[argp++] = TypeInt::INT;        // offset
1171   fields[argp++] = TypeInt::INT;        // length
1172   fields[argp++] = TypePtr::NOTNULL;    // dest array
1173   fields[argp++] = TypeInt::INT;       // dp
1174   fields[argp++] = TypeInt::BOOL;       // isURL
1175   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1176   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1177 
1178   // result type needed
1179   fields = TypeTuple::fields(1);
1180   fields[TypeFunc::Parms + 0] = NULL; // void
1181   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1182   return TypeFunc::make(domain, range);
1183 }
1184 
1185 //------------- Interpreter state access for on stack replacement
1186 const TypeFunc* OptoRuntime::osr_end_Type() {
1187   // create input type (domain)
1188   const Type **fields = TypeTuple::fields(1);
1189   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1190   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1191 
1192   // create result type
1193   fields = TypeTuple::fields(1);
1194   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1195   fields[TypeFunc::Parms+0] = NULL; // void
1196   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1197   return TypeFunc::make(domain, range);
1198 }
1199 
1200 //-------------- methodData update helpers
1201 
1202 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1203   // create input type (domain)
1204   const Type **fields = TypeTuple::fields(2);
1205   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1206   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1207   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1208 
1209   // create result type
1210   fields = TypeTuple::fields(1);
1211   fields[TypeFunc::Parms+0] = NULL; // void
1212   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1213   return TypeFunc::make(domain, range);
1214 }
1215 
1216 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1217   if (receiver == NULL) return;
1218   Klass* receiver_klass = receiver->klass();
1219 
1220   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1221   int empty_row = -1;           // free row, if any is encountered
1222 
1223   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1224   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1225     // if (vc->receiver(row) == receiver_klass)
1226     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1227     intptr_t row_recv = *(mdp + receiver_off);
1228     if (row_recv == (intptr_t) receiver_klass) {
1229       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1230       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1231       *(mdp + count_off) += DataLayout::counter_increment;
1232       return;
1233     } else if (row_recv == 0) {
1234       // else if (vc->receiver(row) == NULL)
1235       empty_row = (int) row;
1236     }
1237   }
1238 
1239   if (empty_row != -1) {
1240     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1241     // vc->set_receiver(empty_row, receiver_klass);
1242     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1243     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1244     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1245     *(mdp + count_off) = DataLayout::counter_increment;
1246   } else {
1247     // Receiver did not match any saved receiver and there is no empty row for it.
1248     // Increment total counter to indicate polymorphic case.
1249     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1250     *count_p += DataLayout::counter_increment;
1251   }
1252 JRT_END
1253 
1254 //-------------------------------------------------------------------------------------
1255 // register policy
1256 
1257 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1258   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1259   switch (register_save_policy[reg]) {
1260     case 'C': return false; //SOC
1261     case 'E': return true ; //SOE
1262     case 'N': return false; //NS
1263     case 'A': return false; //AS
1264   }
1265   ShouldNotReachHere();
1266   return false;
1267 }
1268 
1269 //-----------------------------------------------------------------------
1270 // Exceptions
1271 //
1272 
1273 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1274 
1275 // The method is an entry that is always called by a C++ method not
1276 // directly from compiled code. Compiled code will call the C++ method following.
1277 // We can't allow async exception to be installed during  exception processing.
1278 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1279 
1280   // Do not confuse exception_oop with pending_exception. The exception_oop
1281   // is only used to pass arguments into the method. Not for general
1282   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1283   // the runtime stubs checks this on exit.
1284   assert(thread->exception_oop() != NULL, "exception oop is found");
1285   address handler_address = NULL;
1286 
1287   Handle exception(thread, thread->exception_oop());
1288   address pc = thread->exception_pc();
1289 
1290   // Clear out the exception oop and pc since looking up an
1291   // exception handler can cause class loading, which might throw an
1292   // exception and those fields are expected to be clear during
1293   // normal bytecode execution.
1294   thread->clear_exception_oop_and_pc();
1295 
1296   LogTarget(Info, exceptions) lt;
1297   if (lt.is_enabled()) {
1298     ResourceMark rm;
1299     LogStream ls(lt);
1300     trace_exception(&ls, exception(), pc, "");
1301   }
1302 
1303   // for AbortVMOnException flag
1304   Exceptions::debug_check_abort(exception);
1305 
1306 #ifdef ASSERT
1307   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1308     // should throw an exception here
1309     ShouldNotReachHere();
1310   }
1311 #endif
1312 
1313   // new exception handling: this method is entered only from adapters
1314   // exceptions from compiled java methods are handled in compiled code
1315   // using rethrow node
1316 
1317   nm = CodeCache::find_nmethod(pc);
1318   assert(nm != NULL, "No NMethod found");
1319   if (nm->is_native_method()) {
1320     fatal("Native method should not have path to exception handling");
1321   } else {
1322     // we are switching to old paradigm: search for exception handler in caller_frame
1323     // instead in exception handler of caller_frame.sender()
1324 
1325     if (JvmtiExport::can_post_on_exceptions()) {
1326       // "Full-speed catching" is not necessary here,
1327       // since we're notifying the VM on every catch.
1328       // Force deoptimization and the rest of the lookup
1329       // will be fine.
1330       deoptimize_caller_frame(thread);
1331     }
1332 
1333     // Check the stack guard pages.  If enabled, look for handler in this frame;
1334     // otherwise, forcibly unwind the frame.
1335     //
1336     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1337     bool force_unwind = !thread->reguard_stack();
1338     bool deopting = false;
1339     if (nm->is_deopt_pc(pc)) {
1340       deopting = true;
1341       RegisterMap map(thread, false);
1342       frame deoptee = thread->last_frame().sender(&map);
1343       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1344       // Adjust the pc back to the original throwing pc
1345       pc = deoptee.pc();
1346     }
1347 
1348     // If we are forcing an unwind because of stack overflow then deopt is
1349     // irrelevant since we are throwing the frame away anyway.
1350 
1351     if (deopting && !force_unwind) {
1352       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1353     } else {
1354 
1355       handler_address =
1356         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1357 
1358       if (handler_address == NULL) {
1359         bool recursive_exception = false;
1360         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1361         assert (handler_address != NULL, "must have compiled handler");
1362         // Update the exception cache only when the unwind was not forced
1363         // and there didn't happen another exception during the computation of the
1364         // compiled exception handler. Checking for exception oop equality is not
1365         // sufficient because some exceptions are pre-allocated and reused.
1366         if (!force_unwind && !recursive_exception) {
1367           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1368         }
1369       } else {
1370 #ifdef ASSERT
1371         bool recursive_exception = false;
1372         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1373         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1374                  p2i(handler_address), p2i(computed_address));
1375 #endif
1376       }
1377     }
1378 
1379     thread->set_exception_pc(pc);
1380     thread->set_exception_handler_pc(handler_address);
1381 
1382     // Check if the exception PC is a MethodHandle call site.
1383     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1384   }
1385 
1386   // Restore correct return pc.  Was saved above.
1387   thread->set_exception_oop(exception());
1388   return handler_address;
1389 
1390 JRT_END
1391 
1392 // We are entering here from exception_blob
1393 // If there is a compiled exception handler in this method, we will continue there;
1394 // otherwise we will unwind the stack and continue at the caller of top frame method
1395 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1396 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1397 // we looked up the handler for has been deoptimized in the meantime. If it has been
1398 // we must not use the handler and instead return the deopt blob.
1399 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1400 //
1401 // We are in Java not VM and in debug mode we have a NoHandleMark
1402 //
1403 #ifndef PRODUCT
1404   SharedRuntime::_find_handler_ctr++;          // find exception handler
1405 #endif
1406   debug_only(NoHandleMark __hm;)
1407   nmethod* nm = NULL;
1408   address handler_address = NULL;
1409   {
1410     // Enter the VM
1411 
1412     ResetNoHandleMark rnhm;
1413     handler_address = handle_exception_C_helper(thread, nm);
1414   }
1415 
1416   // Back in java: Use no oops, DON'T safepoint
1417 
1418   // Now check to see if the handler we are returning is in a now
1419   // deoptimized frame
1420 
1421   if (nm != NULL) {
1422     RegisterMap map(thread, false);
1423     frame caller = thread->last_frame().sender(&map);
1424 #ifdef ASSERT
1425     assert(caller.is_compiled_frame(), "must be");
1426 #endif // ASSERT
1427     if (caller.is_deoptimized_frame()) {
1428       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1429     }
1430   }
1431   return handler_address;
1432 }
1433 
1434 //------------------------------rethrow----------------------------------------
1435 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1436 // is either throwing or rethrowing an exception.  The callee-save registers
1437 // have been restored, synchronized objects have been unlocked and the callee
1438 // stack frame has been removed.  The return address was passed in.
1439 // Exception oop is passed as the 1st argument.  This routine is then called
1440 // from the stub.  On exit, we know where to jump in the caller's code.
1441 // After this C code exits, the stub will pop his frame and end in a jump
1442 // (instead of a return).  We enter the caller's default handler.
1443 //
1444 // This must be JRT_LEAF:
1445 //     - caller will not change its state as we cannot block on exit,
1446 //       therefore raw_exception_handler_for_return_address is all it takes
1447 //       to handle deoptimized blobs
1448 //
1449 // However, there needs to be a safepoint check in the middle!  So compiled
1450 // safepoints are completely watertight.
1451 //
1452 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1453 //
1454 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1455 //
1456 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1457 #ifndef PRODUCT
1458   SharedRuntime::_rethrow_ctr++;               // count rethrows
1459 #endif
1460   assert (exception != NULL, "should have thrown a NULLPointerException");
1461 #ifdef ASSERT
1462   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1463     // should throw an exception here
1464     ShouldNotReachHere();
1465   }
1466 #endif
1467 
1468   thread->set_vm_result(exception);
1469   // Frame not compiled (handles deoptimization blob)
1470   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1471 }
1472 
1473 
1474 const TypeFunc *OptoRuntime::rethrow_Type() {
1475   // create input type (domain)
1476   const Type **fields = TypeTuple::fields(1);
1477   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1478   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1479 
1480   // create result type (range)
1481   fields = TypeTuple::fields(1);
1482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1484 
1485   return TypeFunc::make(domain, range);
1486 }
1487 
1488 
1489 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1490   // Deoptimize the caller before continuing, as the compiled
1491   // exception handler table may not be valid.
1492   if (!StressCompiledExceptionHandlers && doit) {
1493     deoptimize_caller_frame(thread);
1494   }
1495 }
1496 
1497 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1498   // Called from within the owner thread, so no need for safepoint
1499   RegisterMap reg_map(thread);
1500   frame stub_frame = thread->last_frame();
1501   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1502   frame caller_frame = stub_frame.sender(&reg_map);
1503 
1504   // Deoptimize the caller frame.
1505   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1506 }
1507 
1508 
1509 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1510   // Called from within the owner thread, so no need for safepoint
1511   RegisterMap reg_map(thread);
1512   frame stub_frame = thread->last_frame();
1513   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1514   frame caller_frame = stub_frame.sender(&reg_map);
1515   return caller_frame.is_deoptimized_frame();
1516 }
1517 
1518 
1519 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1520   // create input type (domain)
1521   const Type **fields = TypeTuple::fields(1);
1522   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1523   // // The JavaThread* is passed to each routine as the last argument
1524   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1525   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1526 
1527   // create result type (range)
1528   fields = TypeTuple::fields(0);
1529 
1530   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1531 
1532   return TypeFunc::make(domain, range);
1533 }
1534 
1535 
1536 //-----------------------------------------------------------------------------
1537 // Dtrace support.  entry and exit probes have the same signature
1538 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1539   // create input type (domain)
1540   const Type **fields = TypeTuple::fields(2);
1541   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1542   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1544 
1545   // create result type (range)
1546   fields = TypeTuple::fields(0);
1547 
1548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1549 
1550   return TypeFunc::make(domain, range);
1551 }
1552 
1553 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1554   // create input type (domain)
1555   const Type **fields = TypeTuple::fields(2);
1556   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1557   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1558 
1559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1560 
1561   // create result type (range)
1562   fields = TypeTuple::fields(0);
1563 
1564   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1565 
1566   return TypeFunc::make(domain, range);
1567 }
1568 
1569 
1570 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1571   assert(oopDesc::is_oop(obj), "must be a valid oop");
1572   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1573   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1574 JRT_END
1575 
1576 //-----------------------------------------------------------------------------
1577 
1578 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1579 
1580 //
1581 // dump the collected NamedCounters.
1582 //
1583 void OptoRuntime::print_named_counters() {
1584   int total_lock_count = 0;
1585   int eliminated_lock_count = 0;
1586 
1587   NamedCounter* c = _named_counters;
1588   while (c) {
1589     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1590       int count = c->count();
1591       if (count > 0) {
1592         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1593         if (Verbose) {
1594           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1595         }
1596         total_lock_count += count;
1597         if (eliminated) {
1598           eliminated_lock_count += count;
1599         }
1600       }
1601     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1602       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1603       if (blc->nonzero()) {
1604         tty->print_cr("%s", c->name());
1605         blc->print_on(tty);
1606       }
1607 #if INCLUDE_RTM_OPT
1608     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1609       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1610       if (rlc->nonzero()) {
1611         tty->print_cr("%s", c->name());
1612         rlc->print_on(tty);
1613       }
1614 #endif
1615     }
1616     c = c->next();
1617   }
1618   if (total_lock_count > 0) {
1619     tty->print_cr("dynamic locks: %d", total_lock_count);
1620     if (eliminated_lock_count) {
1621       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1622                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1623     }
1624   }
1625 }
1626 
1627 //
1628 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1629 //  name which consists of method@line for the inlining tree.
1630 //
1631 
1632 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1633   int max_depth = youngest_jvms->depth();
1634 
1635   // Visit scopes from youngest to oldest.
1636   bool first = true;
1637   stringStream st;
1638   for (int depth = max_depth; depth >= 1; depth--) {
1639     JVMState* jvms = youngest_jvms->of_depth(depth);
1640     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1641     if (!first) {
1642       st.print(" ");
1643     } else {
1644       first = false;
1645     }
1646     int bci = jvms->bci();
1647     if (bci < 0) bci = 0;
1648     if (m != NULL) {
1649       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1650     } else {
1651       st.print("no method");
1652     }
1653     st.print("@%d", bci);
1654     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1655   }
1656   NamedCounter* c;
1657   if (tag == NamedCounter::BiasedLockingCounter) {
1658     c = new BiasedLockingNamedCounter(st.as_string());
1659   } else if (tag == NamedCounter::RTMLockingCounter) {
1660     c = new RTMLockingNamedCounter(st.as_string());
1661   } else {
1662     c = new NamedCounter(st.as_string(), tag);
1663   }
1664 
1665   // atomically add the new counter to the head of the list.  We only
1666   // add counters so this is safe.
1667   NamedCounter* head;
1668   do {
1669     c->set_next(NULL);
1670     head = _named_counters;
1671     c->set_next(head);
1672   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1673   return c;
1674 }
1675 
1676 int trace_exception_counter = 0;
1677 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1678   trace_exception_counter++;
1679   stringStream tempst;
1680 
1681   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1682   exception_oop->print_value_on(&tempst);
1683   tempst.print(" in ");
1684   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1685   if (blob->is_compiled()) {
1686     CompiledMethod* cm = blob->as_compiled_method_or_null();
1687     cm->method()->print_value_on(&tempst);
1688   } else if (blob->is_runtime_stub()) {
1689     tempst.print("<runtime-stub>");
1690   } else {
1691     tempst.print("<unknown>");
1692   }
1693   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1694   tempst.print("]");
1695 
1696   st->print_raw_cr(tempst.as_string());
1697 }
1698 
1699 const TypeFunc *OptoRuntime::store_value_type_fields_Type() {
1700   // create input type (domain)
1701   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1702   const Type **fields = TypeTuple::fields(total);
1703   // We don't know the number of returned values and their
1704   // types. Assume all registers available to the return convention
1705   // are used.
1706   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
1707   uint i = 1;
1708   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
1709     fields[TypeFunc::Parms+i] = TypeInt::INT;
1710   }
1711   for (; i < total; i+=2) {
1712     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1713     fields[TypeFunc::Parms+i+1] = Type::HALF;
1714   }
1715   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1716 
1717   // create result type (range)
1718   fields = TypeTuple::fields(1);
1719   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1720 
1721   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1722 
1723   return TypeFunc::make(domain, range);
1724 }
1725 
1726 const TypeFunc *OptoRuntime::pack_value_type_Type() {
1727   // create input type (domain)
1728   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1729   const Type **fields = TypeTuple::fields(total);
1730   // We don't know the number of returned values and their
1731   // types. Assume all registers available to the return convention
1732   // are used.
1733   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
1734   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
1735   uint i = 2;
1736   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
1737     fields[TypeFunc::Parms+i] = TypeInt::INT;
1738   }
1739   for (; i < total; i+=2) {
1740     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1741     fields[TypeFunc::Parms+i+1] = Type::HALF;
1742   }
1743   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1744 
1745   // create result type (range)
1746   fields = TypeTuple::fields(1);
1747   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1748 
1749   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1750 
1751   return TypeFunc::make(domain, range);
1752 }
1753 
1754 JRT_LEAF(void, OptoRuntime::load_unknown_value(valueArrayOopDesc* array, int index, instanceOopDesc* buffer))
1755 {
1756   array->value_copy_from_index(index, buffer);
1757 }
1758 JRT_END
1759 
1760 const TypeFunc *OptoRuntime::load_unknown_value_Type() {
1761   // create input type (domain)
1762   const Type **fields = TypeTuple::fields(3);
1763   // We don't know the number of returned values and their
1764   // types. Assume all registers available to the return convention
1765   // are used.
1766   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
1767   fields[TypeFunc::Parms+1] = TypeInt::POS;
1768   fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL;
1769 
1770   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
1771 
1772   // create result type (range)
1773   fields = TypeTuple::fields(0);
1774   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1775 
1776   return TypeFunc::make(domain, range);
1777 }
1778 
1779 JRT_LEAF(void, OptoRuntime::store_unknown_value(instanceOopDesc* buffer, valueArrayOopDesc* array, int index))
1780 {
1781   assert(buffer != NULL, "can't store null into flat array");
1782   array->value_copy_to_index(buffer, index);
1783 }
1784 JRT_END
1785 
1786 const TypeFunc *OptoRuntime::store_unknown_value_Type() {
1787   // create input type (domain)
1788   const Type **fields = TypeTuple::fields(3);
1789   // We don't know the number of returned values and their
1790   // types. Assume all registers available to the return convention
1791   // are used.
1792   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
1793   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
1794   fields[TypeFunc::Parms+2] = TypeInt::POS;
1795 
1796   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
1797 
1798   // create result type (range)
1799   fields = TypeTuple::fields(0);
1800   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1801 
1802   return TypeFunc::make(domain, range);
1803 }