1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "oops/valueArrayKlass.hpp"
  53 #include "oops/valueArrayOop.inline.hpp"
  54 #include "opto/ad.hpp"
  55 #include "opto/addnode.hpp"
  56 #include "opto/callnode.hpp"
  57 #include "opto/cfgnode.hpp"
  58 #include "opto/graphKit.hpp"
  59 #include "opto/machnode.hpp"
  60 #include "opto/matcher.hpp"
  61 #include "opto/memnode.hpp"
  62 #include "opto/mulnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/signature.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/vframe.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "runtime/vframe_hp.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/preserveException.hpp"
  78 
  79 
  80 // For debugging purposes:
  81 //  To force FullGCALot inside a runtime function, add the following two lines
  82 //
  83 //  Universe::release_fullgc_alot_dummy();
  84 //  MarkSweep::invoke(0, "Debugging");
  85 //
  86 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  87 
  88 
  89 
  90 
  91 // Compiled code entry points
  92 address OptoRuntime::_new_instance_Java                           = NULL;
  93 address OptoRuntime::_new_array_Java                              = NULL;
  94 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  95 address OptoRuntime::_multianewarray2_Java                        = NULL;
  96 address OptoRuntime::_multianewarray3_Java                        = NULL;
  97 address OptoRuntime::_multianewarray4_Java                        = NULL;
  98 address OptoRuntime::_multianewarray5_Java                        = NULL;
  99 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 100 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 101 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 102 address OptoRuntime::_monitor_notify_Java                         = NULL;
 103 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 104 address OptoRuntime::_rethrow_Java                                = NULL;
 105 
 106 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 107 address OptoRuntime::_register_finalizer_Java                     = NULL;
 108 
 109 ExceptionBlob* OptoRuntime::_exception_blob;
 110 
 111 // This should be called in an assertion at the start of OptoRuntime routines
 112 // which are entered from compiled code (all of them)
 113 #ifdef ASSERT
 114 static bool check_compiled_frame(JavaThread* thread) {
 115   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 116   RegisterMap map(thread, false);
 117   frame caller = thread->last_frame().sender(&map);
 118   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 119   return true;
 120 }
 121 #endif // ASSERT
 122 
 123 
 124 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 125   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 126   if (var == NULL) { return false; }
 127 
 128 bool OptoRuntime::generate(ciEnv* env) {
 129 
 130   generate_exception_blob();
 131 
 132   // Note: tls: Means fetching the return oop out of the thread-local storage
 133   //
 134   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 135   // -------------------------------------------------------------------------------------------------------------------------------
 136   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 137   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 138   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 139   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 143   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 144   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 145   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 146   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152   return true;
 153 }
 154 
 155 #undef gen
 156 
 157 
 158 // Helper method to do generation of RunTimeStub's
 159 address OptoRuntime::generate_stub( ciEnv* env,
 160                                     TypeFunc_generator gen, address C_function,
 161                                     const char *name, int is_fancy_jump,
 162                                     bool pass_tls,
 163                                     bool save_argument_registers,
 164                                     bool return_pc) {
 165 
 166   // Matching the default directive, we currently have no method to match.
 167   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 168   ResourceMark rm;
 169   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 170   DirectivesStack::release(directive);
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 // object allocation
 197 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* thread))
 198   JRT_BLOCK;
 199 #ifndef PRODUCT
 200   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 201 #endif
 202   assert(check_compiled_frame(thread), "incorrect caller");
 203 
 204   // These checks are cheap to make and support reflective allocation.
 205   int lh = klass->layout_helper();
 206   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 207     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 208     klass->check_valid_for_instantiation(false, THREAD);
 209     if (!HAS_PENDING_EXCEPTION) {
 210       InstanceKlass::cast(klass)->initialize(THREAD);
 211     }
 212   }
 213 
 214   if (!HAS_PENDING_EXCEPTION) {
 215     // Scavenge and allocate an instance.
 216     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 217     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 218     if (is_larval) {
 219       // Check if this is a larval buffer allocation
 220       result->set_mark(result->mark().enter_larval_state());
 221     }
 222     thread->set_vm_result(result);
 223 
 224     // Pass oops back through thread local storage.  Our apparent type to Java
 225     // is that we return an oop, but we can block on exit from this routine and
 226     // a GC can trash the oop in C's return register.  The generated stub will
 227     // fetch the oop from TLS after any possible GC.
 228   }
 229 
 230   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 231   JRT_BLOCK_END;
 232 
 233   // inform GC that we won't do card marks for initializing writes.
 234   SharedRuntime::on_slowpath_allocation_exit(thread);
 235 JRT_END
 236 
 237 
 238 // array allocation
 239 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 240   JRT_BLOCK;
 241 #ifndef PRODUCT
 242   SharedRuntime::_new_array_ctr++;            // new array requires GC
 243 #endif
 244   assert(check_compiled_frame(thread), "incorrect caller");
 245 
 246   // Scavenge and allocate an instance.
 247   oop result;
 248 
 249   if (array_type->is_valueArray_klass()) {
 250     Klass* elem_type = ValueArrayKlass::cast(array_type)->element_klass();
 251     result = oopFactory::new_valueArray(elem_type, len, THREAD);
 252   } else if (array_type->is_typeArray_klass()) {
 253     // The oopFactory likes to work with the element type.
 254     // (We could bypass the oopFactory, since it doesn't add much value.)
 255     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 256     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 257   } else {
 258     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 259     result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD);
 260   }
 261 
 262   // Pass oops back through thread local storage.  Our apparent type to Java
 263   // is that we return an oop, but we can block on exit from this routine and
 264   // a GC can trash the oop in C's return register.  The generated stub will
 265   // fetch the oop from TLS after any possible GC.
 266   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 267   thread->set_vm_result(result);
 268   JRT_BLOCK_END;
 269 
 270   // inform GC that we won't do card marks for initializing writes.
 271   SharedRuntime::on_slowpath_allocation_exit(thread);
 272 JRT_END
 273 
 274 // array allocation without zeroing
 275 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 276   JRT_BLOCK;
 277 #ifndef PRODUCT
 278   SharedRuntime::_new_array_ctr++;            // new array requires GC
 279 #endif
 280   assert(check_compiled_frame(thread), "incorrect caller");
 281 
 282   // Scavenge and allocate an instance.
 283   oop result;
 284 
 285   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 286   // The oopFactory likes to work with the element type.
 287   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 288   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 289 
 290   // Pass oops back through thread local storage.  Our apparent type to Java
 291   // is that we return an oop, but we can block on exit from this routine and
 292   // a GC can trash the oop in C's return register.  The generated stub will
 293   // fetch the oop from TLS after any possible GC.
 294   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 295   thread->set_vm_result(result);
 296   JRT_BLOCK_END;
 297 
 298 
 299   // inform GC that we won't do card marks for initializing writes.
 300   SharedRuntime::on_slowpath_allocation_exit(thread);
 301 
 302   oop result = thread->vm_result();
 303   if ((len > 0) && (result != NULL) &&
 304       is_deoptimized_caller_frame(thread)) {
 305     // Zero array here if the caller is deoptimized.
 306     int size = ((typeArrayOop)result)->object_size();
 307     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 308     const size_t hs = arrayOopDesc::header_size(elem_type);
 309     // Align to next 8 bytes to avoid trashing arrays's length.
 310     const size_t aligned_hs = align_object_offset(hs);
 311     HeapWord* obj = (HeapWord*)result;
 312     if (aligned_hs > hs) {
 313       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 314     }
 315     // Optimized zeroing.
 316     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 317   }
 318 
 319 JRT_END
 320 
 321 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 322 
 323 // multianewarray for 2 dimensions
 324 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 325 #ifndef PRODUCT
 326   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 327 #endif
 328   assert(check_compiled_frame(thread), "incorrect caller");
 329   assert(elem_type->is_klass(), "not a class");
 330   jint dims[2];
 331   dims[0] = len1;
 332   dims[1] = len2;
 333   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 334   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 335   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 336   thread->set_vm_result(obj);
 337 JRT_END
 338 
 339 // multianewarray for 3 dimensions
 340 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 341 #ifndef PRODUCT
 342   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 343 #endif
 344   assert(check_compiled_frame(thread), "incorrect caller");
 345   assert(elem_type->is_klass(), "not a class");
 346   jint dims[3];
 347   dims[0] = len1;
 348   dims[1] = len2;
 349   dims[2] = len3;
 350   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 351   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 352   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 353   thread->set_vm_result(obj);
 354 JRT_END
 355 
 356 // multianewarray for 4 dimensions
 357 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 358 #ifndef PRODUCT
 359   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 360 #endif
 361   assert(check_compiled_frame(thread), "incorrect caller");
 362   assert(elem_type->is_klass(), "not a class");
 363   jint dims[4];
 364   dims[0] = len1;
 365   dims[1] = len2;
 366   dims[2] = len3;
 367   dims[3] = len4;
 368   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 369   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 370   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 371   thread->set_vm_result(obj);
 372 JRT_END
 373 
 374 // multianewarray for 5 dimensions
 375 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 376 #ifndef PRODUCT
 377   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 378 #endif
 379   assert(check_compiled_frame(thread), "incorrect caller");
 380   assert(elem_type->is_klass(), "not a class");
 381   jint dims[5];
 382   dims[0] = len1;
 383   dims[1] = len2;
 384   dims[2] = len3;
 385   dims[3] = len4;
 386   dims[4] = len5;
 387   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 388   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 389   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 390   thread->set_vm_result(obj);
 391 JRT_END
 392 
 393 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 394   assert(check_compiled_frame(thread), "incorrect caller");
 395   assert(elem_type->is_klass(), "not a class");
 396   assert(oop(dims)->is_typeArray(), "not an array");
 397 
 398   ResourceMark rm;
 399   jint len = dims->length();
 400   assert(len > 0, "Dimensions array should contain data");
 401   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 402   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 403                                        c_dims, len);
 404 
 405   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 406   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 407   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 408   thread->set_vm_result(obj);
 409 JRT_END
 410 
 411 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 412 
 413   // Very few notify/notifyAll operations find any threads on the waitset, so
 414   // the dominant fast-path is to simply return.
 415   // Relatedly, it's critical that notify/notifyAll be fast in order to
 416   // reduce lock hold times.
 417   if (!SafepointSynchronize::is_synchronizing()) {
 418     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 419       return;
 420     }
 421   }
 422 
 423   // This is the case the fast-path above isn't provisioned to handle.
 424   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 425   // (The fast-path is just a degenerate variant of the slow-path).
 426   // Perform the dreaded state transition and pass control into the slow-path.
 427   JRT_BLOCK;
 428   Handle h_obj(THREAD, obj);
 429   ObjectSynchronizer::notify(h_obj, CHECK);
 430   JRT_BLOCK_END;
 431 JRT_END
 432 
 433 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 434 
 435   if (!SafepointSynchronize::is_synchronizing() ) {
 436     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 437       return;
 438     }
 439   }
 440 
 441   // This is the case the fast-path above isn't provisioned to handle.
 442   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 443   // (The fast-path is just a degenerate variant of the slow-path).
 444   // Perform the dreaded state transition and pass control into the slow-path.
 445   JRT_BLOCK;
 446   Handle h_obj(THREAD, obj);
 447   ObjectSynchronizer::notifyall(h_obj, CHECK);
 448   JRT_BLOCK_END;
 449 JRT_END
 450 
 451 const TypeFunc *OptoRuntime::new_instance_Type() {
 452   // create input type (domain)
 453   const Type **fields = TypeTuple::fields(2);
 454   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 455   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 456   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 457 
 458   // create result type (range)
 459   fields = TypeTuple::fields(1);
 460   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 461 
 462   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 463 
 464   return TypeFunc::make(domain, range);
 465 }
 466 
 467 
 468 const TypeFunc *OptoRuntime::athrow_Type() {
 469   // create input type (domain)
 470   const Type **fields = TypeTuple::fields(1);
 471   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 472   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 473 
 474   // create result type (range)
 475   fields = TypeTuple::fields(0);
 476 
 477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 478 
 479   return TypeFunc::make(domain, range);
 480 }
 481 
 482 
 483 const TypeFunc *OptoRuntime::new_array_Type() {
 484   // create input type (domain)
 485   const Type **fields = TypeTuple::fields(2);
 486   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 487   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 489 
 490   // create result type (range)
 491   fields = TypeTuple::fields(1);
 492   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 493 
 494   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 495 
 496   return TypeFunc::make(domain, range);
 497 }
 498 
 499 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 500   // create input type (domain)
 501   const int nargs = ndim + 1;
 502   const Type **fields = TypeTuple::fields(nargs);
 503   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 504   for( int i = 1; i < nargs; i++ )
 505     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 506   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 507 
 508   // create result type (range)
 509   fields = TypeTuple::fields(1);
 510   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 511   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 512 
 513   return TypeFunc::make(domain, range);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 517   return multianewarray_Type(2);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 521   return multianewarray_Type(3);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 525   return multianewarray_Type(4);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 529   return multianewarray_Type(5);
 530 }
 531 
 532 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 533   // create input type (domain)
 534   const Type **fields = TypeTuple::fields(2);
 535   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 536   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 537   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 538 
 539   // create result type (range)
 540   fields = TypeTuple::fields(1);
 541   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 543 
 544   return TypeFunc::make(domain, range);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 548   // create input type (domain)
 549   const Type **fields = TypeTuple::fields(1);
 550   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 551   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 552 
 553   // create result type (range)
 554   fields = TypeTuple::fields(0);
 555   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 556 
 557   return TypeFunc::make(domain, range);
 558 }
 559 
 560 //-----------------------------------------------------------------------------
 561 // Monitor Handling
 562 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 563   // create input type (domain)
 564   const Type **fields = TypeTuple::fields(2);
 565   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 566   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 568 
 569   // create result type (range)
 570   fields = TypeTuple::fields(0);
 571 
 572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 573 
 574   return TypeFunc::make(domain, range);
 575 }
 576 
 577 
 578 //-----------------------------------------------------------------------------
 579 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 580   // create input type (domain)
 581   const Type **fields = TypeTuple::fields(3);
 582   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 583   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 584   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 585   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 586 
 587   // create result type (range)
 588   fields = TypeTuple::fields(0);
 589 
 590   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 591 
 592   return TypeFunc::make(domain, range);
 593 }
 594 
 595 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 596   // create input type (domain)
 597   const Type **fields = TypeTuple::fields(1);
 598   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 599   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 600 
 601   // create result type (range)
 602   fields = TypeTuple::fields(0);
 603   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 604   return TypeFunc::make(domain, range);
 605 }
 606 
 607 const TypeFunc* OptoRuntime::flush_windows_Type() {
 608   // create input type (domain)
 609   const Type** fields = TypeTuple::fields(1);
 610   fields[TypeFunc::Parms+0] = NULL; // void
 611   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 612 
 613   // create result type
 614   fields = TypeTuple::fields(1);
 615   fields[TypeFunc::Parms+0] = NULL; // void
 616   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 617 
 618   return TypeFunc::make(domain, range);
 619 }
 620 
 621 const TypeFunc* OptoRuntime::l2f_Type() {
 622   // create input type (domain)
 623   const Type **fields = TypeTuple::fields(2);
 624   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 625   fields[TypeFunc::Parms+1] = Type::HALF;
 626   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 627 
 628   // create result type (range)
 629   fields = TypeTuple::fields(1);
 630   fields[TypeFunc::Parms+0] = Type::FLOAT;
 631   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 632 
 633   return TypeFunc::make(domain, range);
 634 }
 635 
 636 const TypeFunc* OptoRuntime::modf_Type() {
 637   const Type **fields = TypeTuple::fields(2);
 638   fields[TypeFunc::Parms+0] = Type::FLOAT;
 639   fields[TypeFunc::Parms+1] = Type::FLOAT;
 640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 641 
 642   // create result type (range)
 643   fields = TypeTuple::fields(1);
 644   fields[TypeFunc::Parms+0] = Type::FLOAT;
 645 
 646   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 647 
 648   return TypeFunc::make(domain, range);
 649 }
 650 
 651 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 652   // create input type (domain)
 653   const Type **fields = TypeTuple::fields(2);
 654   // Symbol* name of class to be loaded
 655   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 656   fields[TypeFunc::Parms+1] = Type::HALF;
 657   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 658 
 659   // create result type (range)
 660   fields = TypeTuple::fields(2);
 661   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 662   fields[TypeFunc::Parms+1] = Type::HALF;
 663   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 664 
 665   return TypeFunc::make(domain, range);
 666 }
 667 
 668 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 669   const Type **fields = TypeTuple::fields(4);
 670   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 671   fields[TypeFunc::Parms+1] = Type::HALF;
 672   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 673   fields[TypeFunc::Parms+3] = Type::HALF;
 674   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 675 
 676   // create result type (range)
 677   fields = TypeTuple::fields(2);
 678   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 679   fields[TypeFunc::Parms+1] = Type::HALF;
 680   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 681 
 682   return TypeFunc::make(domain, range);
 683 }
 684 
 685 //-------------- currentTimeMillis, currentTimeNanos, etc
 686 
 687 const TypeFunc* OptoRuntime::void_long_Type() {
 688   // create input type (domain)
 689   const Type **fields = TypeTuple::fields(0);
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(2);
 694   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 695   fields[TypeFunc::Parms+1] = Type::HALF;
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 // arraycopy stub variations:
 702 enum ArrayCopyType {
 703   ac_fast,                      // void(ptr, ptr, size_t)
 704   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 705   ac_slow,                      // void(ptr, int, ptr, int, int)
 706   ac_generic                    //  int(ptr, int, ptr, int, int)
 707 };
 708 
 709 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 710   // create input type (domain)
 711   int num_args      = (act == ac_fast ? 3 : 5);
 712   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 713   int argcnt = num_args;
 714   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 715   const Type** fields = TypeTuple::fields(argcnt);
 716   int argp = TypeFunc::Parms;
 717   fields[argp++] = TypePtr::NOTNULL;    // src
 718   if (num_size_args == 0) {
 719     fields[argp++] = TypeInt::INT;      // src_pos
 720   }
 721   fields[argp++] = TypePtr::NOTNULL;    // dest
 722   if (num_size_args == 0) {
 723     fields[argp++] = TypeInt::INT;      // dest_pos
 724     fields[argp++] = TypeInt::INT;      // length
 725   }
 726   while (num_size_args-- > 0) {
 727     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 728     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 729   }
 730   if (act == ac_checkcast) {
 731     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 732   }
 733   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 734   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 735 
 736   // create result type if needed
 737   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 738   fields = TypeTuple::fields(1);
 739   if (retcnt == 0)
 740     fields[TypeFunc::Parms+0] = NULL; // void
 741   else
 742     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 743   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 744   return TypeFunc::make(domain, range);
 745 }
 746 
 747 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 748   // This signature is simple:  Two base pointers and a size_t.
 749   return make_arraycopy_Type(ac_fast);
 750 }
 751 
 752 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 753   // An extension of fast_arraycopy_Type which adds type checking.
 754   return make_arraycopy_Type(ac_checkcast);
 755 }
 756 
 757 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 758   // This signature is exactly the same as System.arraycopy.
 759   // There are no intptr_t (int/long) arguments.
 760   return make_arraycopy_Type(ac_slow);
 761 }
 762 
 763 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 764   // This signature is like System.arraycopy, except that it returns status.
 765   return make_arraycopy_Type(ac_generic);
 766 }
 767 
 768 
 769 const TypeFunc* OptoRuntime::array_fill_Type() {
 770   const Type** fields;
 771   int argp = TypeFunc::Parms;
 772   // create input type (domain): pointer, int, size_t
 773   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 774   fields[argp++] = TypePtr::NOTNULL;
 775   fields[argp++] = TypeInt::INT;
 776   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 777   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 778   const TypeTuple *domain = TypeTuple::make(argp, fields);
 779 
 780   // create result type
 781   fields = TypeTuple::fields(1);
 782   fields[TypeFunc::Parms+0] = NULL; // void
 783   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 784 
 785   return TypeFunc::make(domain, range);
 786 }
 787 
 788 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 789 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 790   // create input type (domain)
 791   int num_args      = 3;
 792   if (Matcher::pass_original_key_for_aes()) {
 793     num_args = 4;
 794   }
 795   int argcnt = num_args;
 796   const Type** fields = TypeTuple::fields(argcnt);
 797   int argp = TypeFunc::Parms;
 798   fields[argp++] = TypePtr::NOTNULL;    // src
 799   fields[argp++] = TypePtr::NOTNULL;    // dest
 800   fields[argp++] = TypePtr::NOTNULL;    // k array
 801   if (Matcher::pass_original_key_for_aes()) {
 802     fields[argp++] = TypePtr::NOTNULL;    // original k array
 803   }
 804   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 805   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 806 
 807   // no result type needed
 808   fields = TypeTuple::fields(1);
 809   fields[TypeFunc::Parms+0] = NULL; // void
 810   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 811   return TypeFunc::make(domain, range);
 812 }
 813 
 814 /**
 815  * int updateBytesCRC32(int crc, byte* b, int len)
 816  */
 817 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 818   // create input type (domain)
 819   int num_args      = 3;
 820   int argcnt = num_args;
 821   const Type** fields = TypeTuple::fields(argcnt);
 822   int argp = TypeFunc::Parms;
 823   fields[argp++] = TypeInt::INT;        // crc
 824   fields[argp++] = TypePtr::NOTNULL;    // src
 825   fields[argp++] = TypeInt::INT;        // len
 826   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 827   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 828 
 829   // result type needed
 830   fields = TypeTuple::fields(1);
 831   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 832   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 833   return TypeFunc::make(domain, range);
 834 }
 835 
 836 /**
 837  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 838  */
 839 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 840   // create input type (domain)
 841   int num_args      = 4;
 842   int argcnt = num_args;
 843   const Type** fields = TypeTuple::fields(argcnt);
 844   int argp = TypeFunc::Parms;
 845   fields[argp++] = TypeInt::INT;        // crc
 846   fields[argp++] = TypePtr::NOTNULL;    // buf
 847   fields[argp++] = TypeInt::INT;        // len
 848   fields[argp++] = TypePtr::NOTNULL;    // table
 849   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 850   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 851 
 852   // result type needed
 853   fields = TypeTuple::fields(1);
 854   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 855   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 856   return TypeFunc::make(domain, range);
 857 }
 858 
 859 /**
 860 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 861 */
 862 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 863   // create input type (domain)
 864   int num_args      = 3;
 865   int argcnt = num_args;
 866   const Type** fields = TypeTuple::fields(argcnt);
 867   int argp = TypeFunc::Parms;
 868   fields[argp++] = TypeInt::INT;        // crc
 869   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 870   fields[argp++] = TypeInt::INT;        // len
 871   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 872   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 873 
 874   // result type needed
 875   fields = TypeTuple::fields(1);
 876   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 877   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 878   return TypeFunc::make(domain, range);
 879 }
 880 
 881 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 882 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 883   // create input type (domain)
 884   int num_args      = 5;
 885   if (Matcher::pass_original_key_for_aes()) {
 886     num_args = 6;
 887   }
 888   int argcnt = num_args;
 889   const Type** fields = TypeTuple::fields(argcnt);
 890   int argp = TypeFunc::Parms;
 891   fields[argp++] = TypePtr::NOTNULL;    // src
 892   fields[argp++] = TypePtr::NOTNULL;    // dest
 893   fields[argp++] = TypePtr::NOTNULL;    // k array
 894   fields[argp++] = TypePtr::NOTNULL;    // r array
 895   fields[argp++] = TypeInt::INT;        // src len
 896   if (Matcher::pass_original_key_for_aes()) {
 897     fields[argp++] = TypePtr::NOTNULL;    // original k array
 898   }
 899   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 900   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 901 
 902   // returning cipher len (int)
 903   fields = TypeTuple::fields(1);
 904   fields[TypeFunc::Parms+0] = TypeInt::INT;
 905   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 906   return TypeFunc::make(domain, range);
 907 }
 908 
 909 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
 910 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
 911   // create input type (domain)
 912   int num_args = 4;
 913   if (Matcher::pass_original_key_for_aes()) {
 914      num_args = 5;
 915   }
 916   int argcnt = num_args;
 917   const Type** fields = TypeTuple::fields(argcnt);
 918   int argp = TypeFunc::Parms;
 919   fields[argp++] = TypePtr::NOTNULL;    // src
 920   fields[argp++] = TypePtr::NOTNULL;    // dest
 921   fields[argp++] = TypePtr::NOTNULL;    // k array
 922   fields[argp++] = TypeInt::INT;        // src len
 923   if (Matcher::pass_original_key_for_aes()) {
 924      fields[argp++] = TypePtr::NOTNULL;    // original k array
 925   }
 926   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 927   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 928 
 929   // returning cipher len (int)
 930   fields = TypeTuple::fields(1);
 931   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 932   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 933   return TypeFunc::make(domain, range);
 934 }
 935 
 936 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 937 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 938   // create input type (domain)
 939   int num_args = 7;
 940   if (Matcher::pass_original_key_for_aes()) {
 941     num_args = 8;
 942   }
 943   int argcnt = num_args;
 944   const Type** fields = TypeTuple::fields(argcnt);
 945   int argp = TypeFunc::Parms;
 946   fields[argp++] = TypePtr::NOTNULL; // src
 947   fields[argp++] = TypePtr::NOTNULL; // dest
 948   fields[argp++] = TypePtr::NOTNULL; // k array
 949   fields[argp++] = TypePtr::NOTNULL; // counter array
 950   fields[argp++] = TypeInt::INT; // src len
 951   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 952   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 953   if (Matcher::pass_original_key_for_aes()) {
 954     fields[argp++] = TypePtr::NOTNULL; // original k array
 955   }
 956   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 957   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 958   // returning cipher len (int)
 959   fields = TypeTuple::fields(1);
 960   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 961   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 962   return TypeFunc::make(domain, range);
 963 }
 964 
 965 /*
 966  * void implCompress(byte[] buf, int ofs)
 967  */
 968 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 969   // create input type (domain)
 970   int num_args = 2;
 971   int argcnt = num_args;
 972   const Type** fields = TypeTuple::fields(argcnt);
 973   int argp = TypeFunc::Parms;
 974   fields[argp++] = TypePtr::NOTNULL; // buf
 975   fields[argp++] = TypePtr::NOTNULL; // state
 976   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 977   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 978 
 979   // no result type needed
 980   fields = TypeTuple::fields(1);
 981   fields[TypeFunc::Parms+0] = NULL; // void
 982   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 983   return TypeFunc::make(domain, range);
 984 }
 985 
 986 /*
 987  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 988  */
 989 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 990   // create input type (domain)
 991   int num_args = 4;
 992   int argcnt = num_args;
 993   const Type** fields = TypeTuple::fields(argcnt);
 994   int argp = TypeFunc::Parms;
 995   fields[argp++] = TypePtr::NOTNULL; // buf
 996   fields[argp++] = TypePtr::NOTNULL; // state
 997   fields[argp++] = TypeInt::INT;     // ofs
 998   fields[argp++] = TypeInt::INT;     // limit
 999   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1000   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1001 
1002   // returning ofs (int)
1003   fields = TypeTuple::fields(1);
1004   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1005   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1006   return TypeFunc::make(domain, range);
1007 }
1008 
1009 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1010   // create input type (domain)
1011   int num_args      = 6;
1012   int argcnt = num_args;
1013   const Type** fields = TypeTuple::fields(argcnt);
1014   int argp = TypeFunc::Parms;
1015   fields[argp++] = TypePtr::NOTNULL;    // x
1016   fields[argp++] = TypeInt::INT;        // xlen
1017   fields[argp++] = TypePtr::NOTNULL;    // y
1018   fields[argp++] = TypeInt::INT;        // ylen
1019   fields[argp++] = TypePtr::NOTNULL;    // z
1020   fields[argp++] = TypeInt::INT;        // zlen
1021   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1022   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1023 
1024   // no result type needed
1025   fields = TypeTuple::fields(1);
1026   fields[TypeFunc::Parms+0] = NULL;
1027   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1028   return TypeFunc::make(domain, range);
1029 }
1030 
1031 const TypeFunc* OptoRuntime::squareToLen_Type() {
1032   // create input type (domain)
1033   int num_args      = 4;
1034   int argcnt = num_args;
1035   const Type** fields = TypeTuple::fields(argcnt);
1036   int argp = TypeFunc::Parms;
1037   fields[argp++] = TypePtr::NOTNULL;    // x
1038   fields[argp++] = TypeInt::INT;        // len
1039   fields[argp++] = TypePtr::NOTNULL;    // z
1040   fields[argp++] = TypeInt::INT;        // zlen
1041   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1042   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1043 
1044   // no result type needed
1045   fields = TypeTuple::fields(1);
1046   fields[TypeFunc::Parms+0] = NULL;
1047   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1048   return TypeFunc::make(domain, range);
1049 }
1050 
1051 // for mulAdd calls, 2 pointers and 3 ints, returning int
1052 const TypeFunc* OptoRuntime::mulAdd_Type() {
1053   // create input type (domain)
1054   int num_args      = 5;
1055   int argcnt = num_args;
1056   const Type** fields = TypeTuple::fields(argcnt);
1057   int argp = TypeFunc::Parms;
1058   fields[argp++] = TypePtr::NOTNULL;    // out
1059   fields[argp++] = TypePtr::NOTNULL;    // in
1060   fields[argp++] = TypeInt::INT;        // offset
1061   fields[argp++] = TypeInt::INT;        // len
1062   fields[argp++] = TypeInt::INT;        // k
1063   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1064   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1065 
1066   // returning carry (int)
1067   fields = TypeTuple::fields(1);
1068   fields[TypeFunc::Parms+0] = TypeInt::INT;
1069   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1070   return TypeFunc::make(domain, range);
1071 }
1072 
1073 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1074   // create input type (domain)
1075   int num_args      = 7;
1076   int argcnt = num_args;
1077   const Type** fields = TypeTuple::fields(argcnt);
1078   int argp = TypeFunc::Parms;
1079   fields[argp++] = TypePtr::NOTNULL;    // a
1080   fields[argp++] = TypePtr::NOTNULL;    // b
1081   fields[argp++] = TypePtr::NOTNULL;    // n
1082   fields[argp++] = TypeInt::INT;        // len
1083   fields[argp++] = TypeLong::LONG;      // inv
1084   fields[argp++] = Type::HALF;
1085   fields[argp++] = TypePtr::NOTNULL;    // result
1086   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1087   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1088 
1089   // result type needed
1090   fields = TypeTuple::fields(1);
1091   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1092 
1093   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1094   return TypeFunc::make(domain, range);
1095 }
1096 
1097 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1098   // create input type (domain)
1099   int num_args      = 6;
1100   int argcnt = num_args;
1101   const Type** fields = TypeTuple::fields(argcnt);
1102   int argp = TypeFunc::Parms;
1103   fields[argp++] = TypePtr::NOTNULL;    // a
1104   fields[argp++] = TypePtr::NOTNULL;    // n
1105   fields[argp++] = TypeInt::INT;        // len
1106   fields[argp++] = TypeLong::LONG;      // inv
1107   fields[argp++] = Type::HALF;
1108   fields[argp++] = TypePtr::NOTNULL;    // result
1109   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1110   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1111 
1112   // result type needed
1113   fields = TypeTuple::fields(1);
1114   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1115 
1116   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1117   return TypeFunc::make(domain, range);
1118 }
1119 
1120 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1121   // create input type (domain)
1122   int num_args = 4;
1123   int argcnt = num_args;
1124   const Type** fields = TypeTuple::fields(argcnt);
1125   int argp = TypeFunc::Parms;
1126   fields[argp++] = TypePtr::NOTNULL;    // obja
1127   fields[argp++] = TypePtr::NOTNULL;    // objb
1128   fields[argp++] = TypeInt::INT;        // length, number of elements
1129   fields[argp++] = TypeInt::INT;        // log2scale, element size
1130   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1131   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1132 
1133   //return mismatch index (int)
1134   fields = TypeTuple::fields(1);
1135   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1136   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1137   return TypeFunc::make(domain, range);
1138 }
1139 
1140 // GHASH block processing
1141 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1142     int argcnt = 4;
1143 
1144     const Type** fields = TypeTuple::fields(argcnt);
1145     int argp = TypeFunc::Parms;
1146     fields[argp++] = TypePtr::NOTNULL;    // state
1147     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1148     fields[argp++] = TypePtr::NOTNULL;    // data
1149     fields[argp++] = TypeInt::INT;        // blocks
1150     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1151     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1152 
1153     // result type needed
1154     fields = TypeTuple::fields(1);
1155     fields[TypeFunc::Parms+0] = NULL; // void
1156     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1157     return TypeFunc::make(domain, range);
1158 }
1159 // Base64 encode function
1160 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1161   int argcnt = 6;
1162 
1163   const Type** fields = TypeTuple::fields(argcnt);
1164   int argp = TypeFunc::Parms;
1165   fields[argp++] = TypePtr::NOTNULL;    // src array
1166   fields[argp++] = TypeInt::INT;        // offset
1167   fields[argp++] = TypeInt::INT;        // length
1168   fields[argp++] = TypePtr::NOTNULL;    // dest array
1169   fields[argp++] = TypeInt::INT;       // dp
1170   fields[argp++] = TypeInt::BOOL;       // isURL
1171   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1172   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1173 
1174   // result type needed
1175   fields = TypeTuple::fields(1);
1176   fields[TypeFunc::Parms + 0] = NULL; // void
1177   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1178   return TypeFunc::make(domain, range);
1179 }
1180 
1181 //------------- Interpreter state access for on stack replacement
1182 const TypeFunc* OptoRuntime::osr_end_Type() {
1183   // create input type (domain)
1184   const Type **fields = TypeTuple::fields(1);
1185   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1186   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1187 
1188   // create result type
1189   fields = TypeTuple::fields(1);
1190   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1191   fields[TypeFunc::Parms+0] = NULL; // void
1192   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1193   return TypeFunc::make(domain, range);
1194 }
1195 
1196 //-------------- methodData update helpers
1197 
1198 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1199   // create input type (domain)
1200   const Type **fields = TypeTuple::fields(2);
1201   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1202   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1203   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1204 
1205   // create result type
1206   fields = TypeTuple::fields(1);
1207   fields[TypeFunc::Parms+0] = NULL; // void
1208   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1209   return TypeFunc::make(domain, range);
1210 }
1211 
1212 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1213   if (receiver == NULL) return;
1214   Klass* receiver_klass = receiver->klass();
1215 
1216   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1217   int empty_row = -1;           // free row, if any is encountered
1218 
1219   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1220   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1221     // if (vc->receiver(row) == receiver_klass)
1222     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1223     intptr_t row_recv = *(mdp + receiver_off);
1224     if (row_recv == (intptr_t) receiver_klass) {
1225       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1226       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1227       *(mdp + count_off) += DataLayout::counter_increment;
1228       return;
1229     } else if (row_recv == 0) {
1230       // else if (vc->receiver(row) == NULL)
1231       empty_row = (int) row;
1232     }
1233   }
1234 
1235   if (empty_row != -1) {
1236     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1237     // vc->set_receiver(empty_row, receiver_klass);
1238     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1239     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1240     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1241     *(mdp + count_off) = DataLayout::counter_increment;
1242   } else {
1243     // Receiver did not match any saved receiver and there is no empty row for it.
1244     // Increment total counter to indicate polymorphic case.
1245     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1246     *count_p += DataLayout::counter_increment;
1247   }
1248 JRT_END
1249 
1250 //-------------------------------------------------------------------------------------
1251 // register policy
1252 
1253 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1254   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1255   switch (register_save_policy[reg]) {
1256     case 'C': return false; //SOC
1257     case 'E': return true ; //SOE
1258     case 'N': return false; //NS
1259     case 'A': return false; //AS
1260   }
1261   ShouldNotReachHere();
1262   return false;
1263 }
1264 
1265 //-----------------------------------------------------------------------
1266 // Exceptions
1267 //
1268 
1269 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1270 
1271 // The method is an entry that is always called by a C++ method not
1272 // directly from compiled code. Compiled code will call the C++ method following.
1273 // We can't allow async exception to be installed during  exception processing.
1274 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1275 
1276   // Do not confuse exception_oop with pending_exception. The exception_oop
1277   // is only used to pass arguments into the method. Not for general
1278   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1279   // the runtime stubs checks this on exit.
1280   assert(thread->exception_oop() != NULL, "exception oop is found");
1281   address handler_address = NULL;
1282 
1283   Handle exception(thread, thread->exception_oop());
1284   address pc = thread->exception_pc();
1285 
1286   // Clear out the exception oop and pc since looking up an
1287   // exception handler can cause class loading, which might throw an
1288   // exception and those fields are expected to be clear during
1289   // normal bytecode execution.
1290   thread->clear_exception_oop_and_pc();
1291 
1292   LogTarget(Info, exceptions) lt;
1293   if (lt.is_enabled()) {
1294     ResourceMark rm;
1295     LogStream ls(lt);
1296     trace_exception(&ls, exception(), pc, "");
1297   }
1298 
1299   // for AbortVMOnException flag
1300   Exceptions::debug_check_abort(exception);
1301 
1302 #ifdef ASSERT
1303   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1304     // should throw an exception here
1305     ShouldNotReachHere();
1306   }
1307 #endif
1308 
1309   // new exception handling: this method is entered only from adapters
1310   // exceptions from compiled java methods are handled in compiled code
1311   // using rethrow node
1312 
1313   nm = CodeCache::find_nmethod(pc);
1314   assert(nm != NULL, "No NMethod found");
1315   if (nm->is_native_method()) {
1316     fatal("Native method should not have path to exception handling");
1317   } else {
1318     // we are switching to old paradigm: search for exception handler in caller_frame
1319     // instead in exception handler of caller_frame.sender()
1320 
1321     if (JvmtiExport::can_post_on_exceptions()) {
1322       // "Full-speed catching" is not necessary here,
1323       // since we're notifying the VM on every catch.
1324       // Force deoptimization and the rest of the lookup
1325       // will be fine.
1326       deoptimize_caller_frame(thread);
1327     }
1328 
1329     // Check the stack guard pages.  If enabled, look for handler in this frame;
1330     // otherwise, forcibly unwind the frame.
1331     //
1332     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1333     bool force_unwind = !thread->reguard_stack();
1334     bool deopting = false;
1335     if (nm->is_deopt_pc(pc)) {
1336       deopting = true;
1337       RegisterMap map(thread, false);
1338       frame deoptee = thread->last_frame().sender(&map);
1339       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1340       // Adjust the pc back to the original throwing pc
1341       pc = deoptee.pc();
1342     }
1343 
1344     // If we are forcing an unwind because of stack overflow then deopt is
1345     // irrelevant since we are throwing the frame away anyway.
1346 
1347     if (deopting && !force_unwind) {
1348       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1349     } else {
1350 
1351       handler_address =
1352         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1353 
1354       if (handler_address == NULL) {
1355         bool recursive_exception = false;
1356         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1357         assert (handler_address != NULL, "must have compiled handler");
1358         // Update the exception cache only when the unwind was not forced
1359         // and there didn't happen another exception during the computation of the
1360         // compiled exception handler. Checking for exception oop equality is not
1361         // sufficient because some exceptions are pre-allocated and reused.
1362         if (!force_unwind && !recursive_exception) {
1363           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1364         }
1365       } else {
1366 #ifdef ASSERT
1367         bool recursive_exception = false;
1368         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1369         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1370                  p2i(handler_address), p2i(computed_address));
1371 #endif
1372       }
1373     }
1374 
1375     thread->set_exception_pc(pc);
1376     thread->set_exception_handler_pc(handler_address);
1377 
1378     // Check if the exception PC is a MethodHandle call site.
1379     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1380   }
1381 
1382   // Restore correct return pc.  Was saved above.
1383   thread->set_exception_oop(exception());
1384   return handler_address;
1385 
1386 JRT_END
1387 
1388 // We are entering here from exception_blob
1389 // If there is a compiled exception handler in this method, we will continue there;
1390 // otherwise we will unwind the stack and continue at the caller of top frame method
1391 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1392 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1393 // we looked up the handler for has been deoptimized in the meantime. If it has been
1394 // we must not use the handler and instead return the deopt blob.
1395 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1396 //
1397 // We are in Java not VM and in debug mode we have a NoHandleMark
1398 //
1399 #ifndef PRODUCT
1400   SharedRuntime::_find_handler_ctr++;          // find exception handler
1401 #endif
1402   debug_only(NoHandleMark __hm;)
1403   nmethod* nm = NULL;
1404   address handler_address = NULL;
1405   {
1406     // Enter the VM
1407 
1408     ResetNoHandleMark rnhm;
1409     handler_address = handle_exception_C_helper(thread, nm);
1410   }
1411 
1412   // Back in java: Use no oops, DON'T safepoint
1413 
1414   // Now check to see if the handler we are returning is in a now
1415   // deoptimized frame
1416 
1417   if (nm != NULL) {
1418     RegisterMap map(thread, false);
1419     frame caller = thread->last_frame().sender(&map);
1420 #ifdef ASSERT
1421     assert(caller.is_compiled_frame(), "must be");
1422 #endif // ASSERT
1423     if (caller.is_deoptimized_frame()) {
1424       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1425     }
1426   }
1427   return handler_address;
1428 }
1429 
1430 //------------------------------rethrow----------------------------------------
1431 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1432 // is either throwing or rethrowing an exception.  The callee-save registers
1433 // have been restored, synchronized objects have been unlocked and the callee
1434 // stack frame has been removed.  The return address was passed in.
1435 // Exception oop is passed as the 1st argument.  This routine is then called
1436 // from the stub.  On exit, we know where to jump in the caller's code.
1437 // After this C code exits, the stub will pop his frame and end in a jump
1438 // (instead of a return).  We enter the caller's default handler.
1439 //
1440 // This must be JRT_LEAF:
1441 //     - caller will not change its state as we cannot block on exit,
1442 //       therefore raw_exception_handler_for_return_address is all it takes
1443 //       to handle deoptimized blobs
1444 //
1445 // However, there needs to be a safepoint check in the middle!  So compiled
1446 // safepoints are completely watertight.
1447 //
1448 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1449 //
1450 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1451 //
1452 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1453 #ifndef PRODUCT
1454   SharedRuntime::_rethrow_ctr++;               // count rethrows
1455 #endif
1456   assert (exception != NULL, "should have thrown a NULLPointerException");
1457 #ifdef ASSERT
1458   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1459     // should throw an exception here
1460     ShouldNotReachHere();
1461   }
1462 #endif
1463 
1464   thread->set_vm_result(exception);
1465   // Frame not compiled (handles deoptimization blob)
1466   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1467 }
1468 
1469 
1470 const TypeFunc *OptoRuntime::rethrow_Type() {
1471   // create input type (domain)
1472   const Type **fields = TypeTuple::fields(1);
1473   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1474   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1475 
1476   // create result type (range)
1477   fields = TypeTuple::fields(1);
1478   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1479   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1480 
1481   return TypeFunc::make(domain, range);
1482 }
1483 
1484 
1485 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1486   // Deoptimize the caller before continuing, as the compiled
1487   // exception handler table may not be valid.
1488   if (!StressCompiledExceptionHandlers && doit) {
1489     deoptimize_caller_frame(thread);
1490   }
1491 }
1492 
1493 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1494   // Called from within the owner thread, so no need for safepoint
1495   RegisterMap reg_map(thread);
1496   frame stub_frame = thread->last_frame();
1497   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1498   frame caller_frame = stub_frame.sender(&reg_map);
1499 
1500   // Deoptimize the caller frame.
1501   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1502 }
1503 
1504 
1505 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1506   // Called from within the owner thread, so no need for safepoint
1507   RegisterMap reg_map(thread);
1508   frame stub_frame = thread->last_frame();
1509   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1510   frame caller_frame = stub_frame.sender(&reg_map);
1511   return caller_frame.is_deoptimized_frame();
1512 }
1513 
1514 
1515 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1516   // create input type (domain)
1517   const Type **fields = TypeTuple::fields(1);
1518   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1519   // // The JavaThread* is passed to each routine as the last argument
1520   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1522 
1523   // create result type (range)
1524   fields = TypeTuple::fields(0);
1525 
1526   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1527 
1528   return TypeFunc::make(domain, range);
1529 }
1530 
1531 
1532 //-----------------------------------------------------------------------------
1533 // Dtrace support.  entry and exit probes have the same signature
1534 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1535   // create input type (domain)
1536   const Type **fields = TypeTuple::fields(2);
1537   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1538   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1539   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1540 
1541   // create result type (range)
1542   fields = TypeTuple::fields(0);
1543 
1544   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1545 
1546   return TypeFunc::make(domain, range);
1547 }
1548 
1549 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1550   // create input type (domain)
1551   const Type **fields = TypeTuple::fields(2);
1552   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1553   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1554 
1555   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1556 
1557   // create result type (range)
1558   fields = TypeTuple::fields(0);
1559 
1560   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1561 
1562   return TypeFunc::make(domain, range);
1563 }
1564 
1565 
1566 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1567   assert(oopDesc::is_oop(obj), "must be a valid oop");
1568   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1569   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1570 JRT_END
1571 
1572 //-----------------------------------------------------------------------------
1573 
1574 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1575 
1576 //
1577 // dump the collected NamedCounters.
1578 //
1579 void OptoRuntime::print_named_counters() {
1580   int total_lock_count = 0;
1581   int eliminated_lock_count = 0;
1582 
1583   NamedCounter* c = _named_counters;
1584   while (c) {
1585     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1586       int count = c->count();
1587       if (count > 0) {
1588         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1589         if (Verbose) {
1590           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1591         }
1592         total_lock_count += count;
1593         if (eliminated) {
1594           eliminated_lock_count += count;
1595         }
1596       }
1597     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1598       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1599       if (blc->nonzero()) {
1600         tty->print_cr("%s", c->name());
1601         blc->print_on(tty);
1602       }
1603 #if INCLUDE_RTM_OPT
1604     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1605       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1606       if (rlc->nonzero()) {
1607         tty->print_cr("%s", c->name());
1608         rlc->print_on(tty);
1609       }
1610 #endif
1611     }
1612     c = c->next();
1613   }
1614   if (total_lock_count > 0) {
1615     tty->print_cr("dynamic locks: %d", total_lock_count);
1616     if (eliminated_lock_count) {
1617       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1618                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1619     }
1620   }
1621 }
1622 
1623 //
1624 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1625 //  name which consists of method@line for the inlining tree.
1626 //
1627 
1628 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1629   int max_depth = youngest_jvms->depth();
1630 
1631   // Visit scopes from youngest to oldest.
1632   bool first = true;
1633   stringStream st;
1634   for (int depth = max_depth; depth >= 1; depth--) {
1635     JVMState* jvms = youngest_jvms->of_depth(depth);
1636     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1637     if (!first) {
1638       st.print(" ");
1639     } else {
1640       first = false;
1641     }
1642     int bci = jvms->bci();
1643     if (bci < 0) bci = 0;
1644     if (m != NULL) {
1645       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1646     } else {
1647       st.print("no method");
1648     }
1649     st.print("@%d", bci);
1650     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1651   }
1652   NamedCounter* c;
1653   if (tag == NamedCounter::BiasedLockingCounter) {
1654     c = new BiasedLockingNamedCounter(st.as_string());
1655   } else if (tag == NamedCounter::RTMLockingCounter) {
1656     c = new RTMLockingNamedCounter(st.as_string());
1657   } else {
1658     c = new NamedCounter(st.as_string(), tag);
1659   }
1660 
1661   // atomically add the new counter to the head of the list.  We only
1662   // add counters so this is safe.
1663   NamedCounter* head;
1664   do {
1665     c->set_next(NULL);
1666     head = _named_counters;
1667     c->set_next(head);
1668   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1669   return c;
1670 }
1671 
1672 int trace_exception_counter = 0;
1673 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1674   trace_exception_counter++;
1675   stringStream tempst;
1676 
1677   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1678   exception_oop->print_value_on(&tempst);
1679   tempst.print(" in ");
1680   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1681   if (blob->is_compiled()) {
1682     CompiledMethod* cm = blob->as_compiled_method_or_null();
1683     cm->method()->print_value_on(&tempst);
1684   } else if (blob->is_runtime_stub()) {
1685     tempst.print("<runtime-stub>");
1686   } else {
1687     tempst.print("<unknown>");
1688   }
1689   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1690   tempst.print("]");
1691 
1692   st->print_raw_cr(tempst.as_string());
1693 }
1694 
1695 const TypeFunc *OptoRuntime::store_value_type_fields_Type() {
1696   // create input type (domain)
1697   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1698   const Type **fields = TypeTuple::fields(total);
1699   // We don't know the number of returned values and their
1700   // types. Assume all registers available to the return convention
1701   // are used.
1702   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
1703   uint i = 1;
1704   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
1705     fields[TypeFunc::Parms+i] = TypeInt::INT;
1706   }
1707   for (; i < total; i+=2) {
1708     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1709     fields[TypeFunc::Parms+i+1] = Type::HALF;
1710   }
1711   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1712 
1713   // create result type (range)
1714   fields = TypeTuple::fields(1);
1715   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1716 
1717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1718 
1719   return TypeFunc::make(domain, range);
1720 }
1721 
1722 const TypeFunc *OptoRuntime::pack_value_type_Type() {
1723   // create input type (domain)
1724   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1725   const Type **fields = TypeTuple::fields(total);
1726   // We don't know the number of returned values and their
1727   // types. Assume all registers available to the return convention
1728   // are used.
1729   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
1730   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
1731   uint i = 2;
1732   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
1733     fields[TypeFunc::Parms+i] = TypeInt::INT;
1734   }
1735   for (; i < total; i+=2) {
1736     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1737     fields[TypeFunc::Parms+i+1] = Type::HALF;
1738   }
1739   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1740 
1741   // create result type (range)
1742   fields = TypeTuple::fields(1);
1743   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1744 
1745   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1746 
1747   return TypeFunc::make(domain, range);
1748 }
1749 
1750 JRT_LEAF(void, OptoRuntime::load_unknown_value(valueArrayOopDesc* array, int index, instanceOopDesc* buffer))
1751 {
1752   array->value_copy_from_index(index, buffer);
1753 }
1754 JRT_END
1755 
1756 const TypeFunc *OptoRuntime::load_unknown_value_Type() {
1757   // create input type (domain)
1758   const Type **fields = TypeTuple::fields(3);
1759   // We don't know the number of returned values and their
1760   // types. Assume all registers available to the return convention
1761   // are used.
1762   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
1763   fields[TypeFunc::Parms+1] = TypeInt::POS;
1764   fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL;
1765 
1766   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
1767 
1768   // create result type (range)
1769   fields = TypeTuple::fields(0);
1770   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1771 
1772   return TypeFunc::make(domain, range);
1773 }
1774 
1775 JRT_LEAF(void, OptoRuntime::store_unknown_value(instanceOopDesc* buffer, valueArrayOopDesc* array, int index))
1776 {
1777   assert(buffer != NULL, "can't store null into flat array");
1778   array->value_copy_to_index(buffer, index);
1779 }
1780 JRT_END
1781 
1782 const TypeFunc *OptoRuntime::store_unknown_value_Type() {
1783   // create input type (domain)
1784   const Type **fields = TypeTuple::fields(3);
1785   // We don't know the number of returned values and their
1786   // types. Assume all registers available to the return convention
1787   // are used.
1788   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
1789   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
1790   fields[TypeFunc::Parms+2] = TypeInt::POS;
1791 
1792   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
1793 
1794   // create result type (range)
1795   fields = TypeTuple::fields(0);
1796   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1797 
1798   return TypeFunc::make(domain, range);
1799 }