1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.inline.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.inline.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/vframe.inline.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "utilities/copy.hpp"
  76 #include "utilities/dtrace.hpp"
  77 #include "utilities/events.hpp"
  78 #include "utilities/hashtable.inline.hpp"
  79 #include "utilities/macros.hpp"
  80 #include "utilities/xmlstream.hpp"
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  88 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111 
 112 #if COMPILER2_OR_JVMCI
 113   // Vectors are generated only by C2 and JVMCI.
 114   bool support_wide = is_wide_vector(MaxVectorSize);
 115   if (support_wide) {
 116     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 117   }
 118 #endif // COMPILER2_OR_JVMCI
 119   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 120   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 121 
 122   generate_deopt_blob();
 123 
 124 #ifdef COMPILER2
 125   generate_uncommon_trap_blob();
 126 #endif // COMPILER2
 127 }
 128 
 129 #include <math.h>
 130 
 131 // Implementation of SharedRuntime
 132 
 133 #ifndef PRODUCT
 134 // For statistics
 135 int SharedRuntime::_ic_miss_ctr = 0;
 136 int SharedRuntime::_wrong_method_ctr = 0;
 137 int SharedRuntime::_resolve_static_ctr = 0;
 138 int SharedRuntime::_resolve_virtual_ctr = 0;
 139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 140 int SharedRuntime::_implicit_null_throws = 0;
 141 int SharedRuntime::_implicit_div0_throws = 0;
 142 int SharedRuntime::_throw_null_ctr = 0;
 143 
 144 int SharedRuntime::_nof_normal_calls = 0;
 145 int SharedRuntime::_nof_optimized_calls = 0;
 146 int SharedRuntime::_nof_inlined_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_calls = 0;
 148 int SharedRuntime::_nof_static_calls = 0;
 149 int SharedRuntime::_nof_inlined_static_calls = 0;
 150 int SharedRuntime::_nof_interface_calls = 0;
 151 int SharedRuntime::_nof_optimized_interface_calls = 0;
 152 int SharedRuntime::_nof_inlined_interface_calls = 0;
 153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 154 int SharedRuntime::_nof_removable_exceptions = 0;
 155 
 156 int SharedRuntime::_new_instance_ctr=0;
 157 int SharedRuntime::_new_array_ctr=0;
 158 int SharedRuntime::_multi1_ctr=0;
 159 int SharedRuntime::_multi2_ctr=0;
 160 int SharedRuntime::_multi3_ctr=0;
 161 int SharedRuntime::_multi4_ctr=0;
 162 int SharedRuntime::_multi5_ctr=0;
 163 int SharedRuntime::_mon_enter_stub_ctr=0;
 164 int SharedRuntime::_mon_exit_stub_ctr=0;
 165 int SharedRuntime::_mon_enter_ctr=0;
 166 int SharedRuntime::_mon_exit_ctr=0;
 167 int SharedRuntime::_partial_subtype_ctr=0;
 168 int SharedRuntime::_jbyte_array_copy_ctr=0;
 169 int SharedRuntime::_jshort_array_copy_ctr=0;
 170 int SharedRuntime::_jint_array_copy_ctr=0;
 171 int SharedRuntime::_jlong_array_copy_ctr=0;
 172 int SharedRuntime::_oop_array_copy_ctr=0;
 173 int SharedRuntime::_checkcast_array_copy_ctr=0;
 174 int SharedRuntime::_unsafe_array_copy_ctr=0;
 175 int SharedRuntime::_generic_array_copy_ctr=0;
 176 int SharedRuntime::_slow_array_copy_ctr=0;
 177 int SharedRuntime::_find_handler_ctr=0;
 178 int SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 
 212 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 213   return x * y;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 218   if (x == min_jlong && y == CONST64(-1)) {
 219     return x;
 220   } else {
 221     return x / y;
 222   }
 223 JRT_END
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 227   if (x == min_jlong && y == CONST64(-1)) {
 228     return 0;
 229   } else {
 230     return x % y;
 231   }
 232 JRT_END
 233 
 234 
 235 const juint  float_sign_mask  = 0x7FFFFFFF;
 236 const juint  float_infinity   = 0x7F800000;
 237 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 238 const julong double_infinity  = CONST64(0x7FF0000000000000);
 239 
 240 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 241 #ifdef _WIN64
 242   // 64-bit Windows on amd64 returns the wrong values for
 243   // infinity operands.
 244   union { jfloat f; juint i; } xbits, ybits;
 245   xbits.f = x;
 246   ybits.f = y;
 247   // x Mod Infinity == x unless x is infinity
 248   if (((xbits.i & float_sign_mask) != float_infinity) &&
 249        ((ybits.i & float_sign_mask) == float_infinity) ) {
 250     return x;
 251   }
 252   return ((jfloat)fmod_winx64((double)x, (double)y));
 253 #else
 254   return ((jfloat)fmod((double)x,(double)y));
 255 #endif
 256 JRT_END
 257 
 258 
 259 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 260 #ifdef _WIN64
 261   union { jdouble d; julong l; } xbits, ybits;
 262   xbits.d = x;
 263   ybits.d = y;
 264   // x Mod Infinity == x unless x is infinity
 265   if (((xbits.l & double_sign_mask) != double_infinity) &&
 266        ((ybits.l & double_sign_mask) == double_infinity) ) {
 267     return x;
 268   }
 269   return ((jdouble)fmod_winx64((double)x, (double)y));
 270 #else
 271   return ((jdouble)fmod((double)x,(double)y));
 272 #endif
 273 JRT_END
 274 
 275 #ifdef __SOFTFP__
 276 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 277   return x + y;
 278 JRT_END
 279 
 280 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 281   return x - y;
 282 JRT_END
 283 
 284 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 285   return x * y;
 286 JRT_END
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 289   return x / y;
 290 JRT_END
 291 
 292 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 309   return (jfloat)x;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 313   return (jdouble)x;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 317   return (jdouble)x;
 318 JRT_END
 319 
 320 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 321   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 322 JRT_END
 323 
 324 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 325   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 326 JRT_END
 327 
 328 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 329   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 333   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 334 JRT_END
 335 
 336 // Functions to return the opposite of the aeabi functions for nan.
 337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 338   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 339 JRT_END
 340 
 341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 343 JRT_END
 344 
 345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 346   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 347 JRT_END
 348 
 349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 354   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 362   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 // Intrinsics make gcc generate code for these.
 370 float  SharedRuntime::fneg(float f)   {
 371   return -f;
 372 }
 373 
 374 double SharedRuntime::dneg(double f)  {
 375   return -f;
 376 }
 377 
 378 #endif // __SOFTFP__
 379 
 380 #if defined(__SOFTFP__) || defined(E500V2)
 381 // Intrinsics make gcc generate code for these.
 382 double SharedRuntime::dabs(double f)  {
 383   return (f <= (double)0.0) ? (double)0.0 - f : f;
 384 }
 385 
 386 #endif
 387 
 388 #if defined(__SOFTFP__) || defined(PPC)
 389 double SharedRuntime::dsqrt(double f) {
 390   return sqrt(f);
 391 }
 392 #endif
 393 
 394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 395   if (g_isnan(x))
 396     return 0;
 397   if (x >= (jfloat) max_jint)
 398     return max_jint;
 399   if (x <= (jfloat) min_jint)
 400     return min_jint;
 401   return (jint) x;
 402 JRT_END
 403 
 404 
 405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 406   if (g_isnan(x))
 407     return 0;
 408   if (x >= (jfloat) max_jlong)
 409     return max_jlong;
 410   if (x <= (jfloat) min_jlong)
 411     return min_jlong;
 412   return (jlong) x;
 413 JRT_END
 414 
 415 
 416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 417   if (g_isnan(x))
 418     return 0;
 419   if (x >= (jdouble) max_jint)
 420     return max_jint;
 421   if (x <= (jdouble) min_jint)
 422     return min_jint;
 423   return (jint) x;
 424 JRT_END
 425 
 426 
 427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 428   if (g_isnan(x))
 429     return 0;
 430   if (x >= (jdouble) max_jlong)
 431     return max_jlong;
 432   if (x <= (jdouble) min_jlong)
 433     return min_jlong;
 434   return (jlong) x;
 435 JRT_END
 436 
 437 
 438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 439   return (jfloat)x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 444   return (jfloat)x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 449   return (jdouble)x;
 450 JRT_END
 451 
 452 // Exception handling across interpreter/compiler boundaries
 453 //
 454 // exception_handler_for_return_address(...) returns the continuation address.
 455 // The continuation address is the entry point of the exception handler of the
 456 // previous frame depending on the return address.
 457 
 458 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 459   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 460   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 461 
 462   // Reset method handle flag.
 463   thread->set_is_method_handle_return(false);
 464 
 465 #if INCLUDE_JVMCI
 466   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 467   // and other exception handler continuations do not read it
 468   thread->set_exception_pc(NULL);
 469 #endif // INCLUDE_JVMCI
 470 
 471   // The fastest case first
 472   CodeBlob* blob = CodeCache::find_blob(return_address);
 473   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 474   if (nm != NULL) {
 475     // Set flag if return address is a method handle call site.
 476     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 477     // native nmethods don't have exception handlers
 478     assert(!nm->is_native_method(), "no exception handler");
 479     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 480     if (nm->is_deopt_pc(return_address)) {
 481       // If we come here because of a stack overflow, the stack may be
 482       // unguarded. Reguard the stack otherwise if we return to the
 483       // deopt blob and the stack bang causes a stack overflow we
 484       // crash.
 485       bool guard_pages_enabled = thread->stack_guards_enabled();
 486       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 487       if (thread->reserved_stack_activation() != thread->stack_base()) {
 488         thread->set_reserved_stack_activation(thread->stack_base());
 489       }
 490       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 491       return SharedRuntime::deopt_blob()->unpack_with_exception();
 492     } else {
 493       return nm->exception_begin();
 494     }
 495   }
 496 
 497   // Entry code
 498   if (StubRoutines::returns_to_call_stub(return_address)) {
 499     return StubRoutines::catch_exception_entry();
 500   }
 501   // Interpreted code
 502   if (Interpreter::contains(return_address)) {
 503     return Interpreter::rethrow_exception_entry();
 504   }
 505 
 506   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 507   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 508 
 509 #ifndef PRODUCT
 510   { ResourceMark rm;
 511     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 512     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 513     tty->print_cr("b) other problem");
 514   }
 515 #endif // PRODUCT
 516 
 517   ShouldNotReachHere();
 518   return NULL;
 519 }
 520 
 521 
 522 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 523   return raw_exception_handler_for_return_address(thread, return_address);
 524 JRT_END
 525 
 526 
 527 address SharedRuntime::get_poll_stub(address pc) {
 528   address stub;
 529   // Look up the code blob
 530   CodeBlob *cb = CodeCache::find_blob(pc);
 531 
 532   // Should be an nmethod
 533   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 534 
 535   // Look up the relocation information
 536   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 537     "safepoint polling: type must be poll");
 538 
 539 #ifdef ASSERT
 540   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 541     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 542     Disassembler::decode(cb);
 543     fatal("Only polling locations are used for safepoint");
 544   }
 545 #endif
 546 
 547   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 548   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 549   if (at_poll_return) {
 550     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 551            "polling page return stub not created yet");
 552     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 553   } else if (has_wide_vectors) {
 554     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 555            "polling page vectors safepoint stub not created yet");
 556     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 557   } else {
 558     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 559            "polling page safepoint stub not created yet");
 560     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 561   }
 562   log_debug(safepoint)("... found polling page %s exception at pc = "
 563                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 564                        at_poll_return ? "return" : "loop",
 565                        (intptr_t)pc, (intptr_t)stub);
 566   return stub;
 567 }
 568 
 569 
 570 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 571   assert(caller.is_interpreted_frame(), "");
 572   int args_size = ArgumentSizeComputer(sig).size() + 1;
 573   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 574   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 575   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 576   return result;
 577 }
 578 
 579 
 580 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 581   if (JvmtiExport::can_post_on_exceptions()) {
 582     vframeStream vfst(thread, true);
 583     methodHandle method = methodHandle(thread, vfst.method());
 584     address bcp = method()->bcp_from(vfst.bci());
 585     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 586   }
 587   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 588 }
 589 
 590 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 591   Handle h_exception = Exceptions::new_exception(thread, name, message);
 592   throw_and_post_jvmti_exception(thread, h_exception);
 593 }
 594 
 595 // The interpreter code to call this tracing function is only
 596 // called/generated when UL is on for redefine, class and has the right level
 597 // and tags. Since obsolete methods are never compiled, we don't have
 598 // to modify the compilers to generate calls to this function.
 599 //
 600 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 601     JavaThread* thread, Method* method))
 602   if (method->is_obsolete()) {
 603     // We are calling an obsolete method, but this is not necessarily
 604     // an error. Our method could have been redefined just after we
 605     // fetched the Method* from the constant pool.
 606     ResourceMark rm;
 607     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 608   }
 609   return 0;
 610 JRT_END
 611 
 612 // ret_pc points into caller; we are returning caller's exception handler
 613 // for given exception
 614 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 615                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 616   assert(cm != NULL, "must exist");
 617   ResourceMark rm;
 618 
 619 #if INCLUDE_JVMCI
 620   if (cm->is_compiled_by_jvmci()) {
 621     // lookup exception handler for this pc
 622     int catch_pco = ret_pc - cm->code_begin();
 623     ExceptionHandlerTable table(cm);
 624     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 625     if (t != NULL) {
 626       return cm->code_begin() + t->pco();
 627     } else {
 628       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 629     }
 630   }
 631 #endif // INCLUDE_JVMCI
 632 
 633   nmethod* nm = cm->as_nmethod();
 634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 635   // determine handler bci, if any
 636   EXCEPTION_MARK;
 637 
 638   int handler_bci = -1;
 639   int scope_depth = 0;
 640   if (!force_unwind) {
 641     int bci = sd->bci();
 642     bool recursive_exception = false;
 643     do {
 644       bool skip_scope_increment = false;
 645       // exception handler lookup
 646       Klass* ek = exception->klass();
 647       methodHandle mh(THREAD, sd->method());
 648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 649       if (HAS_PENDING_EXCEPTION) {
 650         recursive_exception = true;
 651         // We threw an exception while trying to find the exception handler.
 652         // Transfer the new exception to the exception handle which will
 653         // be set into thread local storage, and do another lookup for an
 654         // exception handler for this exception, this time starting at the
 655         // BCI of the exception handler which caused the exception to be
 656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 657         // argument to ensure that the correct exception is thrown (4870175).
 658         recursive_exception_occurred = true;
 659         exception = Handle(THREAD, PENDING_EXCEPTION);
 660         CLEAR_PENDING_EXCEPTION;
 661         if (handler_bci >= 0) {
 662           bci = handler_bci;
 663           handler_bci = -1;
 664           skip_scope_increment = true;
 665         }
 666       }
 667       else {
 668         recursive_exception = false;
 669       }
 670       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 671         sd = sd->sender();
 672         if (sd != NULL) {
 673           bci = sd->bci();
 674         }
 675         ++scope_depth;
 676       }
 677     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 678   }
 679 
 680   // found handling method => lookup exception handler
 681   int catch_pco = ret_pc - nm->code_begin();
 682 
 683   ExceptionHandlerTable table(nm);
 684   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 685   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 686     // Allow abbreviated catch tables.  The idea is to allow a method
 687     // to materialize its exceptions without committing to the exact
 688     // routing of exceptions.  In particular this is needed for adding
 689     // a synthetic handler to unlock monitors when inlining
 690     // synchronized methods since the unlock path isn't represented in
 691     // the bytecodes.
 692     t = table.entry_for(catch_pco, -1, 0);
 693   }
 694 
 695 #ifdef COMPILER1
 696   if (t == NULL && nm->is_compiled_by_c1()) {
 697     assert(nm->unwind_handler_begin() != NULL, "");
 698     return nm->unwind_handler_begin();
 699   }
 700 #endif
 701 
 702   if (t == NULL) {
 703     ttyLocker ttyl;
 704     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 705     tty->print_cr("   Exception:");
 706     exception->print();
 707     tty->cr();
 708     tty->print_cr(" Compiled exception table :");
 709     table.print();
 710     nm->print_code();
 711     guarantee(false, "missing exception handler");
 712     return NULL;
 713   }
 714 
 715   return nm->code_begin() + t->pco();
 716 }
 717 
 718 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 719   // These errors occur only at call sites
 720   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 721 JRT_END
 722 
 723 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 724   // These errors occur only at call sites
 725   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 726 JRT_END
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 737   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 738   // cache sites (when the callee activation is not yet set up) so we are at a call site
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 743   throw_StackOverflowError_common(thread, false);
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 747   throw_StackOverflowError_common(thread, true);
 748 JRT_END
 749 
 750 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 751   // We avoid using the normal exception construction in this case because
 752   // it performs an upcall to Java, and we're already out of stack space.
 753   Thread* THREAD = thread;
 754   Klass* k = SystemDictionary::StackOverflowError_klass();
 755   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 756   if (delayed) {
 757     java_lang_Throwable::set_message(exception_oop,
 758                                      Universe::delayed_stack_overflow_error_message());
 759   }
 760   Handle exception (thread, exception_oop);
 761   if (StackTraceInThrowable) {
 762     java_lang_Throwable::fill_in_stack_trace(exception);
 763   }
 764   // Increment counter for hs_err file reporting
 765   Atomic::inc(&Exceptions::_stack_overflow_errors);
 766   throw_and_post_jvmti_exception(thread, exception);
 767 }
 768 
 769 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 770                                                            address pc,
 771                                                            ImplicitExceptionKind exception_kind)
 772 {
 773   address target_pc = NULL;
 774 
 775   if (Interpreter::contains(pc)) {
 776 #ifdef CC_INTERP
 777     // C++ interpreter doesn't throw implicit exceptions
 778     ShouldNotReachHere();
 779 #else
 780     switch (exception_kind) {
 781       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 782       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 783       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 784       default:                      ShouldNotReachHere();
 785     }
 786 #endif // !CC_INTERP
 787   } else {
 788     switch (exception_kind) {
 789       case STACK_OVERFLOW: {
 790         // Stack overflow only occurs upon frame setup; the callee is
 791         // going to be unwound. Dispatch to a shared runtime stub
 792         // which will cause the StackOverflowError to be fabricated
 793         // and processed.
 794         // Stack overflow should never occur during deoptimization:
 795         // the compiled method bangs the stack by as much as the
 796         // interpreter would need in case of a deoptimization. The
 797         // deoptimization blob and uncommon trap blob bang the stack
 798         // in a debug VM to verify the correctness of the compiled
 799         // method stack banging.
 800         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 801         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 802         return StubRoutines::throw_StackOverflowError_entry();
 803       }
 804 
 805       case IMPLICIT_NULL: {
 806         if (VtableStubs::contains(pc)) {
 807           // We haven't yet entered the callee frame. Fabricate an
 808           // exception and begin dispatching it in the caller. Since
 809           // the caller was at a call site, it's safe to destroy all
 810           // caller-saved registers, as these entry points do.
 811           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 812 
 813           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 814           if (vt_stub == NULL) return NULL;
 815 
 816           if (vt_stub->is_abstract_method_error(pc)) {
 817             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 818             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 819             // Instead of throwing the abstract method error here directly, we re-resolve
 820             // and will throw the AbstractMethodError during resolve. As a result, we'll
 821             // get a more detailed error message.
 822             return SharedRuntime::get_handle_wrong_method_stub();
 823           } else {
 824             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 825             // Assert that the signal comes from the expected location in stub code.
 826             assert(vt_stub->is_null_pointer_exception(pc),
 827                    "obtained signal from unexpected location in stub code");
 828             return StubRoutines::throw_NullPointerException_at_call_entry();
 829           }
 830         } else {
 831           CodeBlob* cb = CodeCache::find_blob(pc);
 832 
 833           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 834           if (cb == NULL) return NULL;
 835 
 836           // Exception happened in CodeCache. Must be either:
 837           // 1. Inline-cache check in C2I handler blob,
 838           // 2. Inline-cache check in nmethod, or
 839           // 3. Implicit null exception in nmethod
 840 
 841           if (!cb->is_compiled()) {
 842             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 843             if (!is_in_blob) {
 844               // Allow normal crash reporting to handle this
 845               return NULL;
 846             }
 847             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 848             // There is no handler here, so we will simply unwind.
 849             return StubRoutines::throw_NullPointerException_at_call_entry();
 850           }
 851 
 852           // Otherwise, it's a compiled method.  Consult its exception handlers.
 853           CompiledMethod* cm = (CompiledMethod*)cb;
 854           if (cm->inlinecache_check_contains(pc)) {
 855             // exception happened inside inline-cache check code
 856             // => the nmethod is not yet active (i.e., the frame
 857             // is not set up yet) => use return address pushed by
 858             // caller => don't push another return address
 859             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 860             return StubRoutines::throw_NullPointerException_at_call_entry();
 861           }
 862 
 863           if (cm->method()->is_method_handle_intrinsic()) {
 864             // exception happened inside MH dispatch code, similar to a vtable stub
 865             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 866             return StubRoutines::throw_NullPointerException_at_call_entry();
 867           }
 868 
 869 #ifndef PRODUCT
 870           _implicit_null_throws++;
 871 #endif
 872           target_pc = cm->continuation_for_implicit_null_exception(pc);
 873           // If there's an unexpected fault, target_pc might be NULL,
 874           // in which case we want to fall through into the normal
 875           // error handling code.
 876         }
 877 
 878         break; // fall through
 879       }
 880 
 881 
 882       case IMPLICIT_DIVIDE_BY_ZERO: {
 883         CompiledMethod* cm = CodeCache::find_compiled(pc);
 884         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 885 #ifndef PRODUCT
 886         _implicit_div0_throws++;
 887 #endif
 888         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 889         // If there's an unexpected fault, target_pc might be NULL,
 890         // in which case we want to fall through into the normal
 891         // error handling code.
 892         break; // fall through
 893       }
 894 
 895       default: ShouldNotReachHere();
 896     }
 897 
 898     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 899 
 900     if (exception_kind == IMPLICIT_NULL) {
 901 #ifndef PRODUCT
 902       // for AbortVMOnException flag
 903       Exceptions::debug_check_abort("java.lang.NullPointerException");
 904 #endif //PRODUCT
 905       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 906     } else {
 907 #ifndef PRODUCT
 908       // for AbortVMOnException flag
 909       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 910 #endif //PRODUCT
 911       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 912     }
 913     return target_pc;
 914   }
 915 
 916   ShouldNotReachHere();
 917   return NULL;
 918 }
 919 
 920 
 921 /**
 922  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 923  * installed in the native function entry of all native Java methods before
 924  * they get linked to their actual native methods.
 925  *
 926  * \note
 927  * This method actually never gets called!  The reason is because
 928  * the interpreter's native entries call NativeLookup::lookup() which
 929  * throws the exception when the lookup fails.  The exception is then
 930  * caught and forwarded on the return from NativeLookup::lookup() call
 931  * before the call to the native function.  This might change in the future.
 932  */
 933 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 934 {
 935   // We return a bad value here to make sure that the exception is
 936   // forwarded before we look at the return value.
 937   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 938 }
 939 JNI_END
 940 
 941 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 942   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 943 }
 944 
 945 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 946 #if INCLUDE_JVMCI
 947   if (!obj->klass()->has_finalizer()) {
 948     return;
 949   }
 950 #endif // INCLUDE_JVMCI
 951   assert(oopDesc::is_oop(obj), "must be a valid oop");
 952   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 953   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 954 JRT_END
 955 
 956 
 957 jlong SharedRuntime::get_java_tid(Thread* thread) {
 958   if (thread != NULL) {
 959     if (thread->is_Java_thread()) {
 960       oop obj = ((JavaThread*)thread)->threadObj();
 961       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 962     }
 963   }
 964   return 0;
 965 }
 966 
 967 /**
 968  * This function ought to be a void function, but cannot be because
 969  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 970  * 6254741.  Once that is fixed we can remove the dummy return value.
 971  */
 972 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 973   return dtrace_object_alloc_base(Thread::current(), o, size);
 974 }
 975 
 976 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 977   assert(DTraceAllocProbes, "wrong call");
 978   Klass* klass = o->klass();
 979   Symbol* name = klass->name();
 980   HOTSPOT_OBJECT_ALLOC(
 981                    get_java_tid(thread),
 982                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 983   return 0;
 984 }
 985 
 986 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 987     JavaThread* thread, Method* method))
 988   assert(DTraceMethodProbes, "wrong call");
 989   Symbol* kname = method->klass_name();
 990   Symbol* name = method->name();
 991   Symbol* sig = method->signature();
 992   HOTSPOT_METHOD_ENTRY(
 993       get_java_tid(thread),
 994       (char *) kname->bytes(), kname->utf8_length(),
 995       (char *) name->bytes(), name->utf8_length(),
 996       (char *) sig->bytes(), sig->utf8_length());
 997   return 0;
 998 JRT_END
 999 
1000 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1001     JavaThread* thread, Method* method))
1002   assert(DTraceMethodProbes, "wrong call");
1003   Symbol* kname = method->klass_name();
1004   Symbol* name = method->name();
1005   Symbol* sig = method->signature();
1006   HOTSPOT_METHOD_RETURN(
1007       get_java_tid(thread),
1008       (char *) kname->bytes(), kname->utf8_length(),
1009       (char *) name->bytes(), name->utf8_length(),
1010       (char *) sig->bytes(), sig->utf8_length());
1011   return 0;
1012 JRT_END
1013 
1014 
1015 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1016 // for a call current in progress, i.e., arguments has been pushed on stack
1017 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1018 // vtable updates, etc.  Caller frame must be compiled.
1019 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1020   ResourceMark rm(THREAD);
1021 
1022   // last java frame on stack (which includes native call frames)
1023   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1024 
1025   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1026 }
1027 
1028 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1029   CompiledMethod* caller = vfst.nm();
1030 
1031   nmethodLocker caller_lock(caller);
1032 
1033   address pc = vfst.frame_pc();
1034   { // Get call instruction under lock because another thread may be busy patching it.
1035     CompiledICLocker ic_locker(caller);
1036     return caller->attached_method_before_pc(pc);
1037   }
1038   return NULL;
1039 }
1040 
1041 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1042 // for a call current in progress, i.e., arguments has been pushed on stack
1043 // but callee has not been invoked yet.  Caller frame must be compiled.
1044 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1045                                               vframeStream& vfst,
1046                                               Bytecodes::Code& bc,
1047                                               CallInfo& callinfo, TRAPS) {
1048   Handle receiver;
1049   Handle nullHandle;  //create a handy null handle for exception returns
1050 
1051   assert(!vfst.at_end(), "Java frame must exist");
1052 
1053   // Find caller and bci from vframe
1054   methodHandle caller(THREAD, vfst.method());
1055   int          bci   = vfst.bci();
1056 
1057   // Substitutability test implementation piggy backs on static call resolution
1058   Bytecodes::Code code = caller->java_code_at(bci);
1059   if (code == Bytecodes::_if_acmpeq || code == Bytecodes::_if_acmpne) {
1060     bc = Bytecodes::_invokestatic;
1061     methodHandle attached_method(THREAD, extract_attached_method(vfst));
1062     assert(attached_method.not_null(), "must have attached method");
1063     SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NH);
1064     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, false, CHECK_NH);
1065 #ifdef ASSERT
1066     Method* is_subst = SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1067     assert(callinfo.selected_method() == is_subst, "must be isSubstitutable method");
1068 #endif
1069     return receiver;
1070   }
1071 
1072   Bytecode_invoke bytecode(caller, bci);
1073   int bytecode_index = bytecode.index();
1074   bc = bytecode.invoke_code();
1075 
1076   methodHandle attached_method(THREAD, extract_attached_method(vfst));
1077   if (attached_method.not_null()) {
1078     Method* callee = bytecode.static_target(CHECK_NH);
1079     vmIntrinsics::ID id = callee->intrinsic_id();
1080     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1081     // it attaches statically resolved method to the call site.
1082     if (MethodHandles::is_signature_polymorphic(id) &&
1083         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1084       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1085 
1086       // Adjust invocation mode according to the attached method.
1087       switch (bc) {
1088         case Bytecodes::_invokevirtual:
1089           if (attached_method->method_holder()->is_interface()) {
1090             bc = Bytecodes::_invokeinterface;
1091           }
1092           break;
1093         case Bytecodes::_invokeinterface:
1094           if (!attached_method->method_holder()->is_interface()) {
1095             bc = Bytecodes::_invokevirtual;
1096           }
1097           break;
1098         case Bytecodes::_invokehandle:
1099           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1100             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1101                                               : Bytecodes::_invokevirtual;
1102           }
1103           break;
1104         default:
1105           break;
1106       }
1107     } else {
1108       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1109       if (!attached_method->method_holder()->is_value()) {
1110         // Ignore the attached method in this case to not confuse below code
1111         attached_method = methodHandle(thread, NULL);
1112       }
1113     }
1114   }
1115 
1116   assert(bc != Bytecodes::_illegal, "not initialized");
1117 
1118   bool has_receiver = bc != Bytecodes::_invokestatic &&
1119                       bc != Bytecodes::_invokedynamic &&
1120                       bc != Bytecodes::_invokehandle;
1121   bool check_null_and_abstract = true;
1122 
1123   // Find receiver for non-static call
1124   if (has_receiver) {
1125     // This register map must be update since we need to find the receiver for
1126     // compiled frames. The receiver might be in a register.
1127     RegisterMap reg_map2(thread);
1128     frame stubFrame   = thread->last_frame();
1129     // Caller-frame is a compiled frame
1130     frame callerFrame = stubFrame.sender(&reg_map2);
1131     bool caller_is_c1 = false;
1132 
1133     if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) {
1134       caller_is_c1 = callerFrame.cb()->is_compiled_by_c1();
1135     }
1136 
1137     Method* callee = attached_method();
1138     if (callee == NULL) {
1139       callee = bytecode.static_target(CHECK_NH);
1140       if (callee == NULL) {
1141         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1142       }
1143     }
1144     if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_value()) {
1145       // If the receiver is a value type that is passed as fields, no oop is available.
1146       // Resolve the call without receiver null checking.
1147       assert(attached_method.not_null() && !attached_method->is_abstract(), "must have non-abstract attached method");
1148       if (bc == Bytecodes::_invokeinterface) {
1149         bc = Bytecodes::_invokevirtual; // C2 optimistically replaces interface calls by virtual calls
1150       }
1151       check_null_and_abstract = false;
1152     } else {
1153       // Retrieve from a compiled argument list
1154       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1155       if (receiver.is_null()) {
1156         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1157       }
1158     }
1159   }
1160 
1161   // Resolve method
1162   if (attached_method.not_null()) {
1163     // Parameterized by attached method.
1164     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, check_null_and_abstract, CHECK_NH);
1165   } else {
1166     // Parameterized by bytecode.
1167     constantPoolHandle constants(THREAD, caller->constants());
1168     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1169   }
1170 
1171 #ifdef ASSERT
1172   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1173   if (has_receiver && check_null_and_abstract) {
1174     assert(receiver.not_null(), "should have thrown exception");
1175     Klass* receiver_klass = receiver->klass();
1176     Klass* rk = NULL;
1177     if (attached_method.not_null()) {
1178       // In case there's resolved method attached, use its holder during the check.
1179       rk = attached_method->method_holder();
1180     } else {
1181       // Klass is already loaded.
1182       constantPoolHandle constants(THREAD, caller->constants());
1183       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1184     }
1185     Klass* static_receiver_klass = rk;
1186     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1187            "actual receiver must be subclass of static receiver klass");
1188     if (receiver_klass->is_instance_klass()) {
1189       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1190         tty->print_cr("ERROR: Klass not yet initialized!!");
1191         receiver_klass->print();
1192       }
1193       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1194     }
1195   }
1196 #endif
1197 
1198   return receiver;
1199 }
1200 
1201 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1202   ResourceMark rm(THREAD);
1203   // We need first to check if any Java activations (compiled, interpreted)
1204   // exist on the stack since last JavaCall.  If not, we need
1205   // to get the target method from the JavaCall wrapper.
1206   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1207   methodHandle callee_method;
1208   if (vfst.at_end()) {
1209     // No Java frames were found on stack since we did the JavaCall.
1210     // Hence the stack can only contain an entry_frame.  We need to
1211     // find the target method from the stub frame.
1212     RegisterMap reg_map(thread, false);
1213     frame fr = thread->last_frame();
1214     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1215     fr = fr.sender(&reg_map);
1216     assert(fr.is_entry_frame(), "must be");
1217     // fr is now pointing to the entry frame.
1218     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1219   } else {
1220     Bytecodes::Code bc;
1221     CallInfo callinfo;
1222     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1223     callee_method = methodHandle(THREAD, callinfo.selected_method());
1224   }
1225   assert(callee_method()->is_method(), "must be");
1226   return callee_method;
1227 }
1228 
1229 // Resolves a call.
1230 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1231                                            bool is_virtual,
1232                                            bool is_optimized,
1233                                            bool* caller_is_c1, TRAPS) {
1234   methodHandle callee_method;
1235   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1236   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1237     int retry_count = 0;
1238     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1239            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1240       // If has a pending exception then there is no need to re-try to
1241       // resolve this method.
1242       // If the method has been redefined, we need to try again.
1243       // Hack: we have no way to update the vtables of arrays, so don't
1244       // require that java.lang.Object has been updated.
1245 
1246       // It is very unlikely that method is redefined more than 100 times
1247       // in the middle of resolve. If it is looping here more than 100 times
1248       // means then there could be a bug here.
1249       guarantee((retry_count++ < 100),
1250                 "Could not resolve to latest version of redefined method");
1251       // method is redefined in the middle of resolve so re-try.
1252       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1253     }
1254   }
1255   return callee_method;
1256 }
1257 
1258 // This fails if resolution required refilling of IC stubs
1259 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1260                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1261                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1262   StaticCallInfo static_call_info;
1263   CompiledICInfo virtual_call_info;
1264 
1265   // Make sure the callee nmethod does not get deoptimized and removed before
1266   // we are done patching the code.
1267   CompiledMethod* callee = callee_method->code();
1268 
1269   if (callee != NULL) {
1270     assert(callee->is_compiled(), "must be nmethod for patching");
1271   }
1272 
1273   if (callee != NULL && !callee->is_in_use()) {
1274     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1275     callee = NULL;
1276   }
1277   nmethodLocker nl_callee(callee);
1278 #ifdef ASSERT
1279   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1280 #endif
1281 
1282   bool is_nmethod = caller_nm->is_nmethod();
1283   bool caller_is_c1 = caller_nm->is_compiled_by_c1();
1284 
1285   if (is_virtual) {
1286     Klass* receiver_klass = NULL;
1287     if (ValueTypePassFieldsAsArgs && !caller_is_c1 && callee_method->method_holder()->is_value()) {
1288       // If the receiver is a value type that is passed as fields, no oop is available
1289       receiver_klass = callee_method->method_holder();
1290     } else {
1291       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1292       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1293     }
1294     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1295     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1296                      is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info,
1297                      CHECK_false);
1298   } else {
1299     // static call
1300     CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info);
1301   }
1302 
1303   // grab lock, check for deoptimization and potentially patch caller
1304   {
1305     CompiledICLocker ml(caller_nm);
1306 
1307     // Lock blocks for safepoint during which both nmethods can change state.
1308 
1309     // Now that we are ready to patch if the Method* was redefined then
1310     // don't update call site and let the caller retry.
1311     // Don't update call site if callee nmethod was unloaded or deoptimized.
1312     // Don't update call site if callee nmethod was replaced by an other nmethod
1313     // which may happen when multiply alive nmethod (tiered compilation)
1314     // will be supported.
1315     if (!callee_method->is_old() &&
1316         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1317       NoSafepointVerifier nsv;
1318 #ifdef ASSERT
1319       // We must not try to patch to jump to an already unloaded method.
1320       if (dest_entry_point != 0) {
1321         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1322         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1323                "should not call unloaded nmethod");
1324       }
1325 #endif
1326       if (is_virtual) {
1327         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1328         if (inline_cache->is_clean()) {
1329           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1330             return false;
1331           }
1332         }
1333       } else {
1334         if (VM_Version::supports_fast_class_init_checks() &&
1335             invoke_code == Bytecodes::_invokestatic &&
1336             callee_method->needs_clinit_barrier() &&
1337             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1338           return true; // skip patching for JVMCI or AOT code
1339         }
1340         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1341         if (ssc->is_clean()) ssc->set(static_call_info);
1342       }
1343     }
1344   } // unlock CompiledICLocker
1345   return true;
1346 }
1347 
1348 // Resolves a call.  The compilers generate code for calls that go here
1349 // and are patched with the real destination of the call.
1350 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1351                                                bool is_virtual,
1352                                                bool is_optimized,
1353                                                bool* caller_is_c1, TRAPS) {
1354 
1355   ResourceMark rm(thread);
1356   RegisterMap cbl_map(thread, false);
1357   frame caller_frame = thread->last_frame().sender(&cbl_map);
1358 
1359   CodeBlob* caller_cb = caller_frame.cb();
1360   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1361   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1362   *caller_is_c1 = caller_nm->is_compiled_by_c1();
1363 
1364   // make sure caller is not getting deoptimized
1365   // and removed before we are done with it.
1366   // CLEANUP - with lazy deopt shouldn't need this lock
1367   nmethodLocker caller_lock(caller_nm);
1368 
1369   // determine call info & receiver
1370   // note: a) receiver is NULL for static calls
1371   //       b) an exception is thrown if receiver is NULL for non-static calls
1372   CallInfo call_info;
1373   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1374   Handle receiver = find_callee_info(thread, invoke_code,
1375                                      call_info, CHECK_(methodHandle()));
1376   methodHandle callee_method(THREAD, call_info.selected_method());
1377 
1378   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1379          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1380          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1381          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1382          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1383 
1384   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1385 
1386 #ifndef PRODUCT
1387   // tracing/debugging/statistics
1388   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1389                 (is_virtual) ? (&_resolve_virtual_ctr) :
1390                                (&_resolve_static_ctr);
1391   Atomic::inc(addr);
1392 
1393   if (TraceCallFixup) {
1394     ResourceMark rm(thread);
1395     tty->print("resolving %s%s (%s) call to",
1396       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1397       Bytecodes::name(invoke_code));
1398     callee_method->print_short_name(tty);
1399     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1400                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1401   }
1402 #endif
1403 
1404   if (invoke_code == Bytecodes::_invokestatic) {
1405     assert(callee_method->method_holder()->is_initialized() ||
1406            callee_method->method_holder()->is_reentrant_initialization(thread),
1407            "invalid class initialization state for invoke_static");
1408     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1409       // In order to keep class initialization check, do not patch call
1410       // site for static call when the class is not fully initialized.
1411       // Proper check is enforced by call site re-resolution on every invocation.
1412       //
1413       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1414       // explicit class initialization check is put in nmethod entry (VEP).
1415       assert(callee_method->method_holder()->is_linked(), "must be");
1416       return callee_method;
1417     }
1418   }
1419 
1420   // JSR 292 key invariant:
1421   // If the resolved method is a MethodHandle invoke target, the call
1422   // site must be a MethodHandle call site, because the lambda form might tail-call
1423   // leaving the stack in a state unknown to either caller or callee
1424   // TODO detune for now but we might need it again
1425 //  assert(!callee_method->is_compiled_lambda_form() ||
1426 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1427 
1428   // Compute entry points. This might require generation of C2I converter
1429   // frames, so we cannot be holding any locks here. Furthermore, the
1430   // computation of the entry points is independent of patching the call.  We
1431   // always return the entry-point, but we only patch the stub if the call has
1432   // not been deoptimized.  Return values: For a virtual call this is an
1433   // (cached_oop, destination address) pair. For a static call/optimized
1434   // virtual this is just a destination address.
1435 
1436   // Patching IC caches may fail if we run out if transition stubs.
1437   // We refill the ic stubs then and try again.
1438   for (;;) {
1439     ICRefillVerifier ic_refill_verifier;
1440     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1441                                                   is_virtual, is_optimized, receiver,
1442                                                   call_info, invoke_code, CHECK_(methodHandle()));
1443     if (successful) {
1444       return callee_method;
1445     } else {
1446       InlineCacheBuffer::refill_ic_stubs();
1447     }
1448   }
1449 
1450 }
1451 
1452 
1453 // Inline caches exist only in compiled code
1454 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1455 #ifdef ASSERT
1456   RegisterMap reg_map(thread, false);
1457   frame stub_frame = thread->last_frame();
1458   assert(stub_frame.is_runtime_frame(), "sanity check");
1459   frame caller_frame = stub_frame.sender(&reg_map);
1460   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1461 #endif /* ASSERT */
1462 
1463   methodHandle callee_method;
1464   bool is_optimized = false;
1465   bool caller_is_c1 = false;
1466   JRT_BLOCK
1467     callee_method = SharedRuntime::handle_ic_miss_helper(thread, is_optimized, caller_is_c1, CHECK_NULL);
1468     // Return Method* through TLS
1469     thread->set_vm_result_2(callee_method());
1470   JRT_BLOCK_END
1471   // return compiled code entry point after potential safepoints
1472   return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1);
1473 JRT_END
1474 
1475 
1476 // Handle call site that has been made non-entrant
1477 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1478   // 6243940 We might end up in here if the callee is deoptimized
1479   // as we race to call it.  We don't want to take a safepoint if
1480   // the caller was interpreted because the caller frame will look
1481   // interpreted to the stack walkers and arguments are now
1482   // "compiled" so it is much better to make this transition
1483   // invisible to the stack walking code. The i2c path will
1484   // place the callee method in the callee_target. It is stashed
1485   // there because if we try and find the callee by normal means a
1486   // safepoint is possible and have trouble gc'ing the compiled args.
1487   RegisterMap reg_map(thread, false);
1488   frame stub_frame = thread->last_frame();
1489   assert(stub_frame.is_runtime_frame(), "sanity check");
1490   frame caller_frame = stub_frame.sender(&reg_map);
1491 
1492   if (caller_frame.is_interpreted_frame() ||
1493       caller_frame.is_entry_frame()) {
1494     Method* callee = thread->callee_target();
1495     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1496     thread->set_vm_result_2(callee);
1497     thread->set_callee_target(NULL);
1498     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1499       // Bypass class initialization checks in c2i when caller is in native.
1500       // JNI calls to static methods don't have class initialization checks.
1501       // Fast class initialization checks are present in c2i adapters and call into
1502       // SharedRuntime::handle_wrong_method() on the slow path.
1503       //
1504       // JVM upcalls may land here as well, but there's a proper check present in
1505       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1506       // so bypassing it in c2i adapter is benign.
1507       return callee->get_c2i_no_clinit_check_entry();
1508     } else {
1509       return callee->get_c2i_entry();
1510     }
1511   }
1512 
1513   // Must be compiled to compiled path which is safe to stackwalk
1514   methodHandle callee_method;
1515   bool is_static_call = false;
1516   bool is_optimized = false;
1517   bool caller_is_c1 = false;
1518   JRT_BLOCK
1519     // Force resolving of caller (if we called from compiled frame)
1520     callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_NULL);
1521     thread->set_vm_result_2(callee_method());
1522   JRT_BLOCK_END
1523   // return compiled code entry point after potential safepoints
1524   return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1);
1525 JRT_END
1526 
1527 // Handle abstract method call
1528 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1529   // Verbose error message for AbstractMethodError.
1530   // Get the called method from the invoke bytecode.
1531   vframeStream vfst(thread, true);
1532   assert(!vfst.at_end(), "Java frame must exist");
1533   methodHandle caller(thread, vfst.method());
1534   Bytecode_invoke invoke(caller, vfst.bci());
1535   DEBUG_ONLY( invoke.verify(); )
1536 
1537   // Find the compiled caller frame.
1538   RegisterMap reg_map(thread);
1539   frame stubFrame = thread->last_frame();
1540   assert(stubFrame.is_runtime_frame(), "must be");
1541   frame callerFrame = stubFrame.sender(&reg_map);
1542   assert(callerFrame.is_compiled_frame(), "must be");
1543 
1544   // Install exception and return forward entry.
1545   address res = StubRoutines::throw_AbstractMethodError_entry();
1546   JRT_BLOCK
1547     methodHandle callee(thread, invoke.static_target(thread));
1548     if (!callee.is_null()) {
1549       oop recv = callerFrame.retrieve_receiver(&reg_map);
1550       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1551       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1552       res = StubRoutines::forward_exception_entry();
1553     }
1554   JRT_BLOCK_END
1555   return res;
1556 JRT_END
1557 
1558 
1559 // resolve a static call and patch code
1560 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1561   methodHandle callee_method;
1562   bool caller_is_c1;
1563   JRT_BLOCK
1564     callee_method = SharedRuntime::resolve_helper(thread, false, false, &caller_is_c1, CHECK_NULL);
1565     thread->set_vm_result_2(callee_method());
1566   JRT_BLOCK_END
1567   // return compiled code entry point after potential safepoints
1568   address entry = caller_is_c1 ?
1569     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1570   assert(entry != NULL, "Jump to zero!");
1571   return entry;
1572 JRT_END
1573 
1574 
1575 // resolve virtual call and update inline cache to monomorphic
1576 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1577   methodHandle callee_method;
1578   bool caller_is_c1;
1579   JRT_BLOCK
1580     callee_method = SharedRuntime::resolve_helper(thread, true, false, &caller_is_c1, CHECK_NULL);
1581     thread->set_vm_result_2(callee_method());
1582   JRT_BLOCK_END
1583   // return compiled code entry point after potential safepoints
1584   address entry = caller_is_c1 ?
1585     callee_method->verified_value_code_entry() : callee_method->verified_value_ro_code_entry();
1586   assert(entry != NULL, "Jump to zero!");
1587   return entry;
1588 JRT_END
1589 
1590 
1591 // Resolve a virtual call that can be statically bound (e.g., always
1592 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1593 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1594   methodHandle callee_method;
1595   bool caller_is_c1;
1596   JRT_BLOCK
1597     callee_method = SharedRuntime::resolve_helper(thread, true, true, &caller_is_c1, CHECK_NULL);
1598     thread->set_vm_result_2(callee_method());
1599   JRT_BLOCK_END
1600   // return compiled code entry point after potential safepoints
1601   address entry = caller_is_c1 ?
1602     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1603   assert(entry != NULL, "Jump to zero!");
1604   return entry;
1605 JRT_END
1606 
1607 // The handle_ic_miss_helper_internal function returns false if it failed due
1608 // to either running out of vtable stubs or ic stubs due to IC transitions
1609 // to transitional states. The needs_ic_stub_refill value will be set if
1610 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1611 // refills the IC stubs and tries again.
1612 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1613                                                    const frame& caller_frame, methodHandle callee_method,
1614                                                    Bytecodes::Code bc, CallInfo& call_info,
1615                                                    bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) {
1616   CompiledICLocker ml(caller_nm);
1617   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1618   bool should_be_mono = false;
1619   if (inline_cache->is_optimized()) {
1620     if (TraceCallFixup) {
1621       ResourceMark rm(THREAD);
1622       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1623       callee_method->print_short_name(tty);
1624       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1625     }
1626     is_optimized = true;
1627     should_be_mono = true;
1628   } else if (inline_cache->is_icholder_call()) {
1629     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1630     if (ic_oop != NULL) {
1631       if (!ic_oop->is_loader_alive()) {
1632         // Deferred IC cleaning due to concurrent class unloading
1633         if (!inline_cache->set_to_clean()) {
1634           needs_ic_stub_refill = true;
1635           return false;
1636         }
1637       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1638         // This isn't a real miss. We must have seen that compiled code
1639         // is now available and we want the call site converted to a
1640         // monomorphic compiled call site.
1641         // We can't assert for callee_method->code() != NULL because it
1642         // could have been deoptimized in the meantime
1643         if (TraceCallFixup) {
1644           ResourceMark rm(THREAD);
1645           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1646           callee_method->print_short_name(tty);
1647           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1648         }
1649         should_be_mono = true;
1650       }
1651     }
1652   }
1653 
1654   if (should_be_mono) {
1655     // We have a path that was monomorphic but was going interpreted
1656     // and now we have (or had) a compiled entry. We correct the IC
1657     // by using a new icBuffer.
1658     CompiledICInfo info;
1659     Klass* receiver_klass = receiver()->klass();
1660     inline_cache->compute_monomorphic_entry(callee_method,
1661                                             receiver_klass,
1662                                             inline_cache->is_optimized(),
1663                                             false, caller_nm->is_nmethod(),
1664                                             caller_nm->is_compiled_by_c1(),
1665                                             info, CHECK_false);
1666     if (!inline_cache->set_to_monomorphic(info)) {
1667       needs_ic_stub_refill = true;
1668       return false;
1669     }
1670   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1671     // Potential change to megamorphic
1672 
1673     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false);
1674     if (needs_ic_stub_refill) {
1675       return false;
1676     }
1677     if (!successful) {
1678       if (!inline_cache->set_to_clean()) {
1679         needs_ic_stub_refill = true;
1680         return false;
1681       }
1682     }
1683   } else {
1684     // Either clean or megamorphic
1685   }
1686   return true;
1687 }
1688 
1689 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1690   ResourceMark rm(thread);
1691   CallInfo call_info;
1692   Bytecodes::Code bc;
1693 
1694   // receiver is NULL for static calls. An exception is thrown for NULL
1695   // receivers for non-static calls
1696   Handle receiver = find_callee_info(thread, bc, call_info,
1697                                      CHECK_(methodHandle()));
1698   // Compiler1 can produce virtual call sites that can actually be statically bound
1699   // If we fell thru to below we would think that the site was going megamorphic
1700   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1701   // we'd try and do a vtable dispatch however methods that can be statically bound
1702   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1703   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1704   // plain ic_miss) and the site will be converted to an optimized virtual call site
1705   // never to miss again. I don't believe C2 will produce code like this but if it
1706   // did this would still be the correct thing to do for it too, hence no ifdef.
1707   //
1708   if (call_info.resolved_method()->can_be_statically_bound()) {
1709     bool is_static_call = false;
1710     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1711     assert(!is_static_call, "IC miss at static call?");
1712     if (TraceCallFixup) {
1713       RegisterMap reg_map(thread, false);
1714       frame caller_frame = thread->last_frame().sender(&reg_map);
1715       ResourceMark rm(thread);
1716       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1717       callee_method->print_short_name(tty);
1718       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1719       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1720     }
1721     return callee_method;
1722   }
1723 
1724   methodHandle callee_method(thread, call_info.selected_method());
1725 
1726 #ifndef PRODUCT
1727   Atomic::inc(&_ic_miss_ctr);
1728 
1729   // Statistics & Tracing
1730   if (TraceCallFixup) {
1731     ResourceMark rm(thread);
1732     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1733     callee_method->print_short_name(tty);
1734     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1735   }
1736 
1737   if (ICMissHistogram) {
1738     MutexLocker m(VMStatistic_lock);
1739     RegisterMap reg_map(thread, false);
1740     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1741     // produce statistics under the lock
1742     trace_ic_miss(f.pc());
1743   }
1744 #endif
1745 
1746   // install an event collector so that when a vtable stub is created the
1747   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1748   // event can't be posted when the stub is created as locks are held
1749   // - instead the event will be deferred until the event collector goes
1750   // out of scope.
1751   JvmtiDynamicCodeEventCollector event_collector;
1752 
1753   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1754   // Transitioning IC caches may require transition stubs. If we run out
1755   // of transition stubs, we have to drop locks and perform a safepoint
1756   // that refills them.
1757   RegisterMap reg_map(thread, false);
1758   frame caller_frame = thread->last_frame().sender(&reg_map);
1759   CodeBlob* cb = caller_frame.cb();
1760   CompiledMethod* caller_nm = cb->as_compiled_method();
1761   caller_is_c1 = caller_nm->is_compiled_by_c1();
1762 
1763   for (;;) {
1764     ICRefillVerifier ic_refill_verifier;
1765     bool needs_ic_stub_refill = false;
1766     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1767                                                      bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1768     if (successful || !needs_ic_stub_refill) {
1769       return callee_method;
1770     } else {
1771       InlineCacheBuffer::refill_ic_stubs();
1772     }
1773   }
1774 }
1775 
1776 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1777   CompiledICLocker ml(caller_nm);
1778   if (is_static_call) {
1779     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1780     if (!ssc->is_clean()) {
1781       return ssc->set_to_clean();
1782     }
1783   } else {
1784     // compiled, dispatched call (which used to call an interpreted method)
1785     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1786     if (!inline_cache->is_clean()) {
1787       return inline_cache->set_to_clean();
1788     }
1789   }
1790   return true;
1791 }
1792 
1793 //
1794 // Resets a call-site in compiled code so it will get resolved again.
1795 // This routines handles both virtual call sites, optimized virtual call
1796 // sites, and static call sites. Typically used to change a call sites
1797 // destination from compiled to interpreted.
1798 //
1799 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1800   ResourceMark rm(thread);
1801   RegisterMap reg_map(thread, false);
1802   frame stub_frame = thread->last_frame();
1803   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1804   frame caller = stub_frame.sender(&reg_map);
1805 
1806   // Do nothing if the frame isn't a live compiled frame.
1807   // nmethod could be deoptimized by the time we get here
1808   // so no update to the caller is needed.
1809 
1810   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1811 
1812     address pc = caller.pc();
1813 
1814     // Check for static or virtual call
1815     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1816     caller_is_c1 = caller_nm->is_compiled_by_c1();
1817 
1818     // Default call_addr is the location of the "basic" call.
1819     // Determine the address of the call we a reresolving. With
1820     // Inline Caches we will always find a recognizable call.
1821     // With Inline Caches disabled we may or may not find a
1822     // recognizable call. We will always find a call for static
1823     // calls and for optimized virtual calls. For vanilla virtual
1824     // calls it depends on the state of the UseInlineCaches switch.
1825     //
1826     // With Inline Caches disabled we can get here for a virtual call
1827     // for two reasons:
1828     //   1 - calling an abstract method. The vtable for abstract methods
1829     //       will run us thru handle_wrong_method and we will eventually
1830     //       end up in the interpreter to throw the ame.
1831     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1832     //       call and between the time we fetch the entry address and
1833     //       we jump to it the target gets deoptimized. Similar to 1
1834     //       we will wind up in the interprter (thru a c2i with c2).
1835     //
1836     address call_addr = NULL;
1837     {
1838       // Get call instruction under lock because another thread may be
1839       // busy patching it.
1840       CompiledICLocker ml(caller_nm);
1841       // Location of call instruction
1842       call_addr = caller_nm->call_instruction_address(pc);
1843     }
1844     // Make sure nmethod doesn't get deoptimized and removed until
1845     // this is done with it.
1846     // CLEANUP - with lazy deopt shouldn't need this lock
1847     nmethodLocker nmlock(caller_nm);
1848 
1849     if (call_addr != NULL) {
1850       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1851       int ret = iter.next(); // Get item
1852       if (ret) {
1853         assert(iter.addr() == call_addr, "must find call");
1854         if (iter.type() == relocInfo::static_call_type) {
1855           is_static_call = true;
1856         } else {
1857           assert(iter.type() == relocInfo::virtual_call_type ||
1858                  iter.type() == relocInfo::opt_virtual_call_type
1859                 , "unexpected relocInfo. type");
1860           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1861         }
1862       } else {
1863         assert(!UseInlineCaches, "relocation info. must exist for this address");
1864       }
1865 
1866       // Cleaning the inline cache will force a new resolve. This is more robust
1867       // than directly setting it to the new destination, since resolving of calls
1868       // is always done through the same code path. (experience shows that it
1869       // leads to very hard to track down bugs, if an inline cache gets updated
1870       // to a wrong method). It should not be performance critical, since the
1871       // resolve is only done once.
1872 
1873       for (;;) {
1874         ICRefillVerifier ic_refill_verifier;
1875         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1876           InlineCacheBuffer::refill_ic_stubs();
1877         } else {
1878           break;
1879         }
1880       }
1881     }
1882   }
1883 
1884   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1885 
1886 #ifndef PRODUCT
1887   Atomic::inc(&_wrong_method_ctr);
1888 
1889   if (TraceCallFixup) {
1890     ResourceMark rm(thread);
1891     tty->print("handle_wrong_method reresolving call to");
1892     callee_method->print_short_name(tty);
1893     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1894   }
1895 #endif
1896 
1897   return callee_method;
1898 }
1899 
1900 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1901   // The faulting unsafe accesses should be changed to throw the error
1902   // synchronously instead. Meanwhile the faulting instruction will be
1903   // skipped over (effectively turning it into a no-op) and an
1904   // asynchronous exception will be raised which the thread will
1905   // handle at a later point. If the instruction is a load it will
1906   // return garbage.
1907 
1908   // Request an async exception.
1909   thread->set_pending_unsafe_access_error();
1910 
1911   // Return address of next instruction to execute.
1912   return next_pc;
1913 }
1914 
1915 #ifdef ASSERT
1916 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1917                                                                 const BasicType* sig_bt,
1918                                                                 const VMRegPair* regs) {
1919   ResourceMark rm;
1920   const int total_args_passed = method->size_of_parameters();
1921   const VMRegPair*    regs_with_member_name = regs;
1922         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1923 
1924   const int member_arg_pos = total_args_passed - 1;
1925   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1926   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1927 
1928   const bool is_outgoing = method->is_method_handle_intrinsic();
1929   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1930 
1931   for (int i = 0; i < member_arg_pos; i++) {
1932     VMReg a =    regs_with_member_name[i].first();
1933     VMReg b = regs_without_member_name[i].first();
1934     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1935   }
1936   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1937 }
1938 #endif
1939 
1940 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1941   if (destination != entry_point) {
1942     CodeBlob* callee = CodeCache::find_blob(destination);
1943     // callee == cb seems weird. It means calling interpreter thru stub.
1944     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1945       // static call or optimized virtual
1946       if (TraceCallFixup) {
1947         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1948         moop->print_short_name(tty);
1949         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1950       }
1951       return true;
1952     } else {
1953       if (TraceCallFixup) {
1954         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1955         moop->print_short_name(tty);
1956         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1957       }
1958       // assert is too strong could also be resolve destinations.
1959       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1960     }
1961   } else {
1962     if (TraceCallFixup) {
1963       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1964       moop->print_short_name(tty);
1965       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1966     }
1967   }
1968   return false;
1969 }
1970 
1971 // ---------------------------------------------------------------------------
1972 // We are calling the interpreter via a c2i. Normally this would mean that
1973 // we were called by a compiled method. However we could have lost a race
1974 // where we went int -> i2c -> c2i and so the caller could in fact be
1975 // interpreted. If the caller is compiled we attempt to patch the caller
1976 // so he no longer calls into the interpreter.
1977 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1978   Method* moop(method);
1979 
1980   // It's possible that deoptimization can occur at a call site which hasn't
1981   // been resolved yet, in which case this function will be called from
1982   // an nmethod that has been patched for deopt and we can ignore the
1983   // request for a fixup.
1984   // Also it is possible that we lost a race in that from_compiled_entry
1985   // is now back to the i2c in that case we don't need to patch and if
1986   // we did we'd leap into space because the callsite needs to use
1987   // "to interpreter" stub in order to load up the Method*. Don't
1988   // ask me how I know this...
1989 
1990   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1991   if (cb == NULL || !cb->is_compiled()) {
1992     return;
1993   }
1994   address entry_point = moop->from_compiled_entry_no_trampoline(cb->is_compiled_by_c1());
1995   if (entry_point == moop->get_c2i_entry()) {
1996     return;
1997   }
1998 
1999   // The check above makes sure this is a nmethod.
2000   CompiledMethod* nm = cb->as_compiled_method_or_null();
2001   assert(nm, "must be");
2002 
2003   // Get the return PC for the passed caller PC.
2004   address return_pc = caller_pc + frame::pc_return_offset;
2005 
2006   // There is a benign race here. We could be attempting to patch to a compiled
2007   // entry point at the same time the callee is being deoptimized. If that is
2008   // the case then entry_point may in fact point to a c2i and we'd patch the
2009   // call site with the same old data. clear_code will set code() to NULL
2010   // at the end of it. If we happen to see that NULL then we can skip trying
2011   // to patch. If we hit the window where the callee has a c2i in the
2012   // from_compiled_entry and the NULL isn't present yet then we lose the race
2013   // and patch the code with the same old data. Asi es la vida.
2014 
2015   if (moop->code() == NULL) return;
2016 
2017   if (nm->is_in_use()) {
2018     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2019     CompiledICLocker ic_locker(nm);
2020     if (NativeCall::is_call_before(return_pc)) {
2021       ResourceMark mark;
2022       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2023       //
2024       // bug 6281185. We might get here after resolving a call site to a vanilla
2025       // virtual call. Because the resolvee uses the verified entry it may then
2026       // see compiled code and attempt to patch the site by calling us. This would
2027       // then incorrectly convert the call site to optimized and its downhill from
2028       // there. If you're lucky you'll get the assert in the bugid, if not you've
2029       // just made a call site that could be megamorphic into a monomorphic site
2030       // for the rest of its life! Just another racing bug in the life of
2031       // fixup_callers_callsite ...
2032       //
2033       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2034       iter.next();
2035       assert(iter.has_current(), "must have a reloc at java call site");
2036       relocInfo::relocType typ = iter.reloc()->type();
2037       if (typ != relocInfo::static_call_type &&
2038            typ != relocInfo::opt_virtual_call_type &&
2039            typ != relocInfo::static_stub_type) {
2040         return;
2041       }
2042       address destination = call->destination();
2043       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2044         call->set_destination_mt_safe(entry_point);
2045       }
2046     }
2047   }
2048 JRT_END
2049 
2050 
2051 // same as JVM_Arraycopy, but called directly from compiled code
2052 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2053                                                 oopDesc* dest, jint dest_pos,
2054                                                 jint length,
2055                                                 JavaThread* thread)) {
2056 #ifndef PRODUCT
2057   _slow_array_copy_ctr++;
2058 #endif
2059   // Check if we have null pointers
2060   if (src == NULL || dest == NULL) {
2061     THROW(vmSymbols::java_lang_NullPointerException());
2062   }
2063   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2064   // even though the copy_array API also performs dynamic checks to ensure
2065   // that src and dest are truly arrays (and are conformable).
2066   // The copy_array mechanism is awkward and could be removed, but
2067   // the compilers don't call this function except as a last resort,
2068   // so it probably doesn't matter.
2069   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2070                                         (arrayOopDesc*)dest, dest_pos,
2071                                         length, thread);
2072 }
2073 JRT_END
2074 
2075 // The caller of generate_class_cast_message() (or one of its callers)
2076 // must use a ResourceMark in order to correctly free the result.
2077 char* SharedRuntime::generate_class_cast_message(
2078     JavaThread* thread, Klass* caster_klass) {
2079 
2080   // Get target class name from the checkcast instruction
2081   vframeStream vfst(thread, true);
2082   assert(!vfst.at_end(), "Java frame must exist");
2083   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2084   constantPoolHandle cpool(thread, vfst.method()->constants());
2085   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2086   Symbol* target_klass_name = NULL;
2087   if (target_klass == NULL) {
2088     // This klass should be resolved, but just in case, get the name in the klass slot.
2089     target_klass_name = cpool->klass_name_at(cc.index());
2090   }
2091   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2092 }
2093 
2094 
2095 // The caller of generate_class_cast_message() (or one of its callers)
2096 // must use a ResourceMark in order to correctly free the result.
2097 char* SharedRuntime::generate_class_cast_message(
2098     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2099   const char* caster_name = caster_klass->external_name();
2100 
2101   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2102   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2103                                                    target_klass->external_name();
2104 
2105   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2106 
2107   const char* caster_klass_description = "";
2108   const char* target_klass_description = "";
2109   const char* klass_separator = "";
2110   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2111     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2112   } else {
2113     caster_klass_description = caster_klass->class_in_module_of_loader();
2114     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2115     klass_separator = (target_klass != NULL) ? "; " : "";
2116   }
2117 
2118   // add 3 for parenthesis and preceeding space
2119   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2120 
2121   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2122   if (message == NULL) {
2123     // Shouldn't happen, but don't cause even more problems if it does
2124     message = const_cast<char*>(caster_klass->external_name());
2125   } else {
2126     jio_snprintf(message,
2127                  msglen,
2128                  "class %s cannot be cast to class %s (%s%s%s)",
2129                  caster_name,
2130                  target_name,
2131                  caster_klass_description,
2132                  klass_separator,
2133                  target_klass_description
2134                  );
2135   }
2136   return message;
2137 }
2138 
2139 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2140   (void) JavaThread::current()->reguard_stack();
2141 JRT_END
2142 
2143 
2144 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2145 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2146   if (!SafepointSynchronize::is_synchronizing()) {
2147     // Only try quick_enter() if we're not trying to reach a safepoint
2148     // so that the calling thread reaches the safepoint more quickly.
2149     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2150   }
2151   // NO_ASYNC required because an async exception on the state transition destructor
2152   // would leave you with the lock held and it would never be released.
2153   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2154   // and the model is that an exception implies the method failed.
2155   JRT_BLOCK_NO_ASYNC
2156   oop obj(_obj);
2157   if (PrintBiasedLockingStatistics) {
2158     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2159   }
2160   Handle h_obj(THREAD, obj);
2161   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2162   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2163   JRT_BLOCK_END
2164 JRT_END
2165 
2166 // Handles the uncommon cases of monitor unlocking in compiled code
2167 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2168    oop obj(_obj);
2169   assert(JavaThread::current() == THREAD, "invariant");
2170   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2171   // testing was unable to ever fire the assert that guarded it so I have removed it.
2172   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2173 #undef MIGHT_HAVE_PENDING
2174 #ifdef MIGHT_HAVE_PENDING
2175   // Save and restore any pending_exception around the exception mark.
2176   // While the slow_exit must not throw an exception, we could come into
2177   // this routine with one set.
2178   oop pending_excep = NULL;
2179   const char* pending_file;
2180   int pending_line;
2181   if (HAS_PENDING_EXCEPTION) {
2182     pending_excep = PENDING_EXCEPTION;
2183     pending_file  = THREAD->exception_file();
2184     pending_line  = THREAD->exception_line();
2185     CLEAR_PENDING_EXCEPTION;
2186   }
2187 #endif /* MIGHT_HAVE_PENDING */
2188 
2189   {
2190     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2191     EXCEPTION_MARK;
2192     ObjectSynchronizer::exit(obj, lock, THREAD);
2193   }
2194 
2195 #ifdef MIGHT_HAVE_PENDING
2196   if (pending_excep != NULL) {
2197     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2198   }
2199 #endif /* MIGHT_HAVE_PENDING */
2200 JRT_END
2201 
2202 #ifndef PRODUCT
2203 
2204 void SharedRuntime::print_statistics() {
2205   ttyLocker ttyl;
2206   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2207 
2208   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2209 
2210   SharedRuntime::print_ic_miss_histogram();
2211 
2212   if (CountRemovableExceptions) {
2213     if (_nof_removable_exceptions > 0) {
2214       Unimplemented(); // this counter is not yet incremented
2215       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2216     }
2217   }
2218 
2219   // Dump the JRT_ENTRY counters
2220   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2221   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2222   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2223   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2224   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2225   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2226   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2227 
2228   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2229   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2230   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2231   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2232   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2233 
2234   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2235   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2236   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2237   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2238   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2239   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2240   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2241   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2242   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2243   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2244   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2245   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2246   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2247   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2248   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2249   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2250 
2251   AdapterHandlerLibrary::print_statistics();
2252 
2253   if (xtty != NULL)  xtty->tail("statistics");
2254 }
2255 
2256 inline double percent(int x, int y) {
2257   return 100.0 * x / MAX2(y, 1);
2258 }
2259 
2260 class MethodArityHistogram {
2261  public:
2262   enum { MAX_ARITY = 256 };
2263  private:
2264   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2265   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2266   static int _max_arity;                      // max. arity seen
2267   static int _max_size;                       // max. arg size seen
2268 
2269   static void add_method_to_histogram(nmethod* nm) {
2270     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2271       Method* method = nm->method();
2272       ArgumentCount args(method->signature());
2273       int arity   = args.size() + (method->is_static() ? 0 : 1);
2274       int argsize = method->size_of_parameters();
2275       arity   = MIN2(arity, MAX_ARITY-1);
2276       argsize = MIN2(argsize, MAX_ARITY-1);
2277       int count = method->compiled_invocation_count();
2278       _arity_histogram[arity]  += count;
2279       _size_histogram[argsize] += count;
2280       _max_arity = MAX2(_max_arity, arity);
2281       _max_size  = MAX2(_max_size, argsize);
2282     }
2283   }
2284 
2285   void print_histogram_helper(int n, int* histo, const char* name) {
2286     const int N = MIN2(5, n);
2287     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2288     double sum = 0;
2289     double weighted_sum = 0;
2290     int i;
2291     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2292     double rest = sum;
2293     double percent = sum / 100;
2294     for (i = 0; i <= N; i++) {
2295       rest -= histo[i];
2296       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2297     }
2298     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2299     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2300   }
2301 
2302   void print_histogram() {
2303     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2304     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2305     tty->print_cr("\nSame for parameter size (in words):");
2306     print_histogram_helper(_max_size, _size_histogram, "size");
2307     tty->cr();
2308   }
2309 
2310  public:
2311   MethodArityHistogram() {
2312     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2313     _max_arity = _max_size = 0;
2314     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2315     CodeCache::nmethods_do(add_method_to_histogram);
2316     print_histogram();
2317   }
2318 };
2319 
2320 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2321 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2322 int MethodArityHistogram::_max_arity;
2323 int MethodArityHistogram::_max_size;
2324 
2325 void SharedRuntime::print_call_statistics(int comp_total) {
2326   tty->print_cr("Calls from compiled code:");
2327   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2328   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2329   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2330   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2331   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2332   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2333   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2334   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2335   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2336   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2337   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2338   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2339   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2340   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2341   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2342   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2343   tty->cr();
2344   tty->print_cr("Note 1: counter updates are not MT-safe.");
2345   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2346   tty->print_cr("        %% in nested categories are relative to their category");
2347   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2348   tty->cr();
2349 
2350   MethodArityHistogram h;
2351 }
2352 #endif
2353 
2354 
2355 // A simple wrapper class around the calling convention information
2356 // that allows sharing of adapters for the same calling convention.
2357 class AdapterFingerPrint : public CHeapObj<mtCode> {
2358  private:
2359   enum {
2360     _basic_type_bits = 4,
2361     _basic_type_mask = right_n_bits(_basic_type_bits),
2362     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2363     _compact_int_count = 3
2364   };
2365   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2366   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2367 
2368   union {
2369     int  _compact[_compact_int_count];
2370     int* _fingerprint;
2371   } _value;
2372   int _length; // A negative length indicates the fingerprint is in the compact form,
2373                // Otherwise _value._fingerprint is the array.
2374 
2375   // Remap BasicTypes that are handled equivalently by the adapters.
2376   // These are correct for the current system but someday it might be
2377   // necessary to make this mapping platform dependent.
2378   static int adapter_encoding(BasicType in, bool is_valuetype) {
2379     switch (in) {
2380       case T_BOOLEAN:
2381       case T_BYTE:
2382       case T_SHORT:
2383       case T_CHAR: {
2384         if (is_valuetype) {
2385           // Do not widen value type field types
2386           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2387           return in;
2388         } else {
2389           // They are all promoted to T_INT in the calling convention
2390           return T_INT;
2391         }
2392       }
2393 
2394       case T_VALUETYPE: {
2395         // If value types are passed as fields, return 'in' to differentiate
2396         // between a T_VALUETYPE and a T_OBJECT in the signature.
2397         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2398       }
2399 
2400       case T_OBJECT:
2401       case T_ARRAY:
2402         // In other words, we assume that any register good enough for
2403         // an int or long is good enough for a managed pointer.
2404 #ifdef _LP64
2405         return T_LONG;
2406 #else
2407         return T_INT;
2408 #endif
2409 
2410       case T_INT:
2411       case T_LONG:
2412       case T_FLOAT:
2413       case T_DOUBLE:
2414       case T_VOID:
2415         return in;
2416 
2417       default:
2418         ShouldNotReachHere();
2419         return T_CONFLICT;
2420     }
2421   }
2422 
2423  public:
2424   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2425     // The fingerprint is based on the BasicType signature encoded
2426     // into an array of ints with eight entries per int.
2427     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2428     int* ptr;
2429     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2430     if (len <= _compact_int_count) {
2431       assert(_compact_int_count == 3, "else change next line");
2432       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2433       // Storing the signature encoded as signed chars hits about 98%
2434       // of the time.
2435       _length = -len;
2436       ptr = _value._compact;
2437     } else {
2438       _length = len;
2439       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2440       ptr = _value._fingerprint;
2441     }
2442 
2443     // Now pack the BasicTypes with 8 per int
2444     int sig_index = 0;
2445     BasicType prev_sbt = T_ILLEGAL;
2446     int vt_count = 0;
2447     for (int index = 0; index < len; index++) {
2448       int value = 0;
2449       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2450         int bt = 0;
2451         if (sig_index < total_args_passed) {
2452           BasicType sbt = sig->at(sig_index++)._bt;
2453           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2454             // Found start of value type in signature
2455             vt_count++;
2456             if (sig_index == 1 && has_ro_adapter) {
2457               // With a ro_adapter, replace receiver value type delimiter by T_VOID to prevent matching
2458               // with other adapters that have the same value type as first argument and no receiver.
2459               sbt = T_VOID;
2460             }
2461           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2462                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2463             // Found end of value type in signature
2464             vt_count--;
2465             assert(vt_count >= 0, "invalid vt_count");
2466           }
2467           bt = adapter_encoding(sbt, vt_count > 0);
2468           prev_sbt = sbt;
2469         }
2470         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2471         value = (value << _basic_type_bits) | bt;
2472       }
2473       ptr[index] = value;
2474     }
2475     assert(vt_count == 0, "invalid vt_count");
2476   }
2477 
2478   ~AdapterFingerPrint() {
2479     if (_length > 0) {
2480       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2481     }
2482   }
2483 
2484   int value(int index) {
2485     if (_length < 0) {
2486       return _value._compact[index];
2487     }
2488     return _value._fingerprint[index];
2489   }
2490   int length() {
2491     if (_length < 0) return -_length;
2492     return _length;
2493   }
2494 
2495   bool is_compact() {
2496     return _length <= 0;
2497   }
2498 
2499   unsigned int compute_hash() {
2500     int hash = 0;
2501     for (int i = 0; i < length(); i++) {
2502       int v = value(i);
2503       hash = (hash << 8) ^ v ^ (hash >> 5);
2504     }
2505     return (unsigned int)hash;
2506   }
2507 
2508   const char* as_string() {
2509     stringStream st;
2510     st.print("0x");
2511     for (int i = 0; i < length(); i++) {
2512       st.print("%08x", value(i));
2513     }
2514     return st.as_string();
2515   }
2516 
2517   bool equals(AdapterFingerPrint* other) {
2518     if (other->_length != _length) {
2519       return false;
2520     }
2521     if (_length < 0) {
2522       assert(_compact_int_count == 3, "else change next line");
2523       return _value._compact[0] == other->_value._compact[0] &&
2524              _value._compact[1] == other->_value._compact[1] &&
2525              _value._compact[2] == other->_value._compact[2];
2526     } else {
2527       for (int i = 0; i < _length; i++) {
2528         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2529           return false;
2530         }
2531       }
2532     }
2533     return true;
2534   }
2535 };
2536 
2537 
2538 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2539 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2540   friend class AdapterHandlerTableIterator;
2541 
2542  private:
2543 
2544 #ifndef PRODUCT
2545   static int _lookups; // number of calls to lookup
2546   static int _buckets; // number of buckets checked
2547   static int _equals;  // number of buckets checked with matching hash
2548   static int _hits;    // number of successful lookups
2549   static int _compact; // number of equals calls with compact signature
2550 #endif
2551 
2552   AdapterHandlerEntry* bucket(int i) {
2553     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2554   }
2555 
2556  public:
2557   AdapterHandlerTable()
2558     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2559 
2560   // Create a new entry suitable for insertion in the table
2561   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry,
2562                                  address c2i_value_entry, address c2i_value_ro_entry,
2563                                  address c2i_unverified_entry, address c2i_unverified_value_entry, address c2i_no_clinit_check_entry) {
2564     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2565     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry,
2566                 c2i_unverified_entry, c2i_unverified_value_entry, c2i_no_clinit_check_entry);
2567     if (DumpSharedSpaces) {
2568       ((CDSAdapterHandlerEntry*)entry)->init();
2569     }
2570     return entry;
2571   }
2572 
2573   // Insert an entry into the table
2574   void add(AdapterHandlerEntry* entry) {
2575     int index = hash_to_index(entry->hash());
2576     add_entry(index, entry);
2577   }
2578 
2579   void free_entry(AdapterHandlerEntry* entry) {
2580     entry->deallocate();
2581     BasicHashtable<mtCode>::free_entry(entry);
2582   }
2583 
2584   // Find a entry with the same fingerprint if it exists
2585   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2586     NOT_PRODUCT(_lookups++);
2587     AdapterFingerPrint fp(sig, has_ro_adapter);
2588     unsigned int hash = fp.compute_hash();
2589     int index = hash_to_index(hash);
2590     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2591       NOT_PRODUCT(_buckets++);
2592       if (e->hash() == hash) {
2593         NOT_PRODUCT(_equals++);
2594         if (fp.equals(e->fingerprint())) {
2595 #ifndef PRODUCT
2596           if (fp.is_compact()) _compact++;
2597           _hits++;
2598 #endif
2599           return e;
2600         }
2601       }
2602     }
2603     return NULL;
2604   }
2605 
2606 #ifndef PRODUCT
2607   void print_statistics() {
2608     ResourceMark rm;
2609     int longest = 0;
2610     int empty = 0;
2611     int total = 0;
2612     int nonempty = 0;
2613     for (int index = 0; index < table_size(); index++) {
2614       int count = 0;
2615       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2616         count++;
2617       }
2618       if (count != 0) nonempty++;
2619       if (count == 0) empty++;
2620       if (count > longest) longest = count;
2621       total += count;
2622     }
2623     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2624                   empty, longest, total, total / (double)nonempty);
2625     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2626                   _lookups, _buckets, _equals, _hits, _compact);
2627   }
2628 #endif
2629 };
2630 
2631 
2632 #ifndef PRODUCT
2633 
2634 int AdapterHandlerTable::_lookups;
2635 int AdapterHandlerTable::_buckets;
2636 int AdapterHandlerTable::_equals;
2637 int AdapterHandlerTable::_hits;
2638 int AdapterHandlerTable::_compact;
2639 
2640 #endif
2641 
2642 class AdapterHandlerTableIterator : public StackObj {
2643  private:
2644   AdapterHandlerTable* _table;
2645   int _index;
2646   AdapterHandlerEntry* _current;
2647 
2648   void scan() {
2649     while (_index < _table->table_size()) {
2650       AdapterHandlerEntry* a = _table->bucket(_index);
2651       _index++;
2652       if (a != NULL) {
2653         _current = a;
2654         return;
2655       }
2656     }
2657   }
2658 
2659  public:
2660   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2661     scan();
2662   }
2663   bool has_next() {
2664     return _current != NULL;
2665   }
2666   AdapterHandlerEntry* next() {
2667     if (_current != NULL) {
2668       AdapterHandlerEntry* result = _current;
2669       _current = _current->next();
2670       if (_current == NULL) scan();
2671       return result;
2672     } else {
2673       return NULL;
2674     }
2675   }
2676 };
2677 
2678 
2679 // ---------------------------------------------------------------------------
2680 // Implementation of AdapterHandlerLibrary
2681 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2682 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2683 const int AdapterHandlerLibrary_size = 32*K;
2684 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2685 
2686 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2687   // Should be called only when AdapterHandlerLibrary_lock is active.
2688   if (_buffer == NULL) // Initialize lazily
2689       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2690   return _buffer;
2691 }
2692 
2693 extern "C" void unexpected_adapter_call() {
2694   ShouldNotCallThis();
2695 }
2696 
2697 void AdapterHandlerLibrary::initialize() {
2698   if (_adapters != NULL) return;
2699   _adapters = new AdapterHandlerTable();
2700 
2701   // Create a special handler for abstract methods.  Abstract methods
2702   // are never compiled so an i2c entry is somewhat meaningless, but
2703   // throw AbstractMethodError just in case.
2704   // Pass wrong_method_abstract for the c2i transitions to return
2705   // AbstractMethodError for invalid invocations.
2706   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2707   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2708                                                               StubRoutines::throw_AbstractMethodError_entry(),
2709                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2710                                                               wrong_method_abstract, wrong_method_abstract);
2711 }
2712 
2713 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2714                                                       address i2c_entry,
2715                                                       address c2i_entry,
2716                                                       address c2i_value_entry,
2717                                                       address c2i_value_ro_entry,
2718                                                       address c2i_unverified_entry,
2719                                                       address c2i_unverified_value_entry,
2720                                                       address c2i_no_clinit_check_entry) {
2721   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry,
2722                               c2i_unverified_value_entry, c2i_no_clinit_check_entry);
2723 }
2724 
2725 static void generate_trampoline(address trampoline, address destination) {
2726   if (*(int*)trampoline == 0) {
2727     CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2728     MacroAssembler _masm(&buffer);
2729     SharedRuntime::generate_trampoline(&_masm, destination);
2730     assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2731       _masm.flush();
2732 
2733     if (PrintInterpreter) {
2734       Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2735     }
2736   }
2737 }
2738 
2739 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2740   AdapterHandlerEntry* entry = get_adapter0(method);
2741   if (entry != NULL && method->is_shared()) {
2742     // See comments around Method::link_method()
2743     MutexLocker mu(AdapterHandlerLibrary_lock);
2744     if (method->adapter() == NULL) {
2745       method->update_adapter_trampoline(entry);
2746     }
2747     generate_trampoline(method->from_compiled_entry(),          entry->get_c2i_entry());
2748     generate_trampoline(method->from_compiled_value_ro_entry(), entry->get_c2i_value_ro_entry());
2749     generate_trampoline(method->from_compiled_value_entry(),    entry->get_c2i_value_entry());
2750   }
2751 
2752   return entry;
2753 }
2754 
2755 
2756 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2757   _method(method), _num_value_args(0), _has_value_recv(false),
2758   _sig_cc(NULL), _sig_cc_ro(NULL), _regs(NULL), _regs_cc(NULL), _regs_cc_ro(NULL),
2759   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2760   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _has_scalarized_args(false) {
2761   _has_reserved_entries = false;
2762   _sig = new GrowableArray<SigEntry>(method->size_of_parameters());
2763 
2764 }
2765 
2766 int CompiledEntrySignature::compute_scalarized_cc(GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2767   InstanceKlass* holder = _method->method_holder();
2768   sig_cc = new GrowableArray<SigEntry>(_method->size_of_parameters());
2769   if (!_method->is_static()) {
2770     if (holder->is_value() && scalar_receiver && ValueKlass::cast(holder)->is_scalarizable()) {
2771       sig_cc->appendAll(ValueKlass::cast(holder)->extended_sig());
2772     } else {
2773       SigEntry::add_entry(sig_cc, T_OBJECT);
2774     }
2775   }
2776   Thread* THREAD = Thread::current();
2777   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2778     if (ss.type() == T_VALUETYPE) {
2779       ValueKlass* vk = ss.as_value_klass(holder);
2780       if (vk->is_scalarizable()) {
2781         sig_cc->appendAll(vk->extended_sig());
2782       } else {
2783         SigEntry::add_entry(sig_cc, T_OBJECT);
2784       }
2785     } else {
2786       SigEntry::add_entry(sig_cc, ss.type());
2787     }
2788   }
2789   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2);
2790   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2791 }
2792 
2793 int CompiledEntrySignature::insert_reserved_entry(int ret_off) {
2794   // Find index in signature that belongs to return address slot
2795   BasicType bt = T_ILLEGAL;
2796   int i = 0;
2797   for (uint off = 0; i < _sig_cc->length(); ++i) {
2798     if (SigEntry::skip_value_delimiters(_sig_cc, i)) {
2799       VMReg first = _regs_cc[off++].first();
2800       if (first->is_valid() && first->is_stack()) {
2801         // Select a type for the reserved entry that will end up on the stack
2802         bt = _sig_cc->at(i)._bt;
2803         if (((int)first->reg2stack() + VMRegImpl::slots_per_word) == ret_off) {
2804           break; // Index of the return address found
2805         }
2806       }
2807     }
2808   }
2809   // Insert reserved entry and re-compute calling convention
2810   SigEntry::insert_reserved_entry(_sig_cc, i, bt);
2811   return SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
2812 }
2813 
2814 // See if we can save space by sharing the same entry for VVEP and VVEP(RO),
2815 // or the same entry for VEP and VVEP(RO).
2816 CodeOffsets::Entries CompiledEntrySignature::c1_value_ro_entry_type() const {
2817   if (!has_scalarized_args()) {
2818     // VEP/VVEP/VVEP(RO) all share the same entry. There's no packing.
2819     return CodeOffsets::Verified_Entry;
2820   }
2821   if (_method->is_static()) {
2822     // Static methods don't need VVEP(RO)
2823     return CodeOffsets::Verified_Entry;
2824   }
2825 
2826   if (has_value_recv()) {
2827     if (num_value_args() == 1) {
2828       // Share same entry for VVEP and VVEP(RO).
2829       // This is quite common: we have an instance method in a ValueKlass that has
2830       // no value args other than <this>.
2831       return CodeOffsets::Verified_Value_Entry;
2832     } else {
2833       assert(num_value_args() > 1, "must be");
2834       // No sharing:
2835       //   VVEP(RO) -- <this> is passed as object
2836       //   VEP      -- <this> is passed as fields
2837       return CodeOffsets::Verified_Value_Entry_RO;
2838     }
2839   }
2840 
2841   // Either a static method, or <this> is not a value type
2842   if (args_on_stack_cc() != args_on_stack_cc_ro() || _has_reserved_entries) {
2843     // No sharing:
2844     // Some arguments are passed on the stack, and we have inserted reserved entries
2845     // into the VEP, but we never insert reserved entries into the VVEP(RO).
2846     return CodeOffsets::Verified_Value_Entry_RO;
2847   } else {
2848     // Share same entry for VEP and VVEP(RO).
2849     return CodeOffsets::Verified_Entry;
2850   }
2851 }
2852 
2853 
2854 void CompiledEntrySignature::compute_calling_conventions() {
2855   // Get the (non-scalarized) signature and check for value type arguments
2856   if (!_method->is_static()) {
2857     if (_method->method_holder()->is_value() && ValueKlass::cast(_method->method_holder())->is_scalarizable()) {
2858       _has_value_recv = true;
2859       _num_value_args++;
2860     }
2861     SigEntry::add_entry(_sig, T_OBJECT);
2862   }
2863   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2864     BasicType bt = ss.type();
2865     if (bt == T_VALUETYPE) {
2866       if (ss.as_value_klass(_method->method_holder())->is_scalarizable()) {
2867         _num_value_args++;
2868       }
2869       bt = T_OBJECT;
2870     }
2871     SigEntry::add_entry(_sig, bt);
2872   }
2873   if (_method->is_abstract() && !(ValueTypePassFieldsAsArgs && has_value_arg())) {
2874     return;
2875   }
2876 
2877   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2878   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2879   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2880 
2881   // Now compute the scalarized calling convention if there are value types in the signature
2882   _sig_cc = _sig;
2883   _sig_cc_ro = _sig;
2884   _regs_cc = _regs;
2885   _regs_cc_ro = _regs;
2886   _args_on_stack_cc = _args_on_stack;
2887   _args_on_stack_cc_ro = _args_on_stack;
2888 
2889   if (ValueTypePassFieldsAsArgs && has_value_arg() && !_method->is_native()) {
2890     _args_on_stack_cc = compute_scalarized_cc(_sig_cc, _regs_cc, /* scalar_receiver = */ true);
2891 
2892     _sig_cc_ro = _sig_cc;
2893     _regs_cc_ro = _regs_cc;
2894     _args_on_stack_cc_ro = _args_on_stack_cc;
2895     if (_has_value_recv || _args_on_stack_cc > _args_on_stack) {
2896       // For interface calls, we need another entry point / adapter to unpack the receiver
2897       _args_on_stack_cc_ro = compute_scalarized_cc(_sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false);
2898     }
2899 
2900     // Compute the stack extension that is required to convert between the calling conventions.
2901     // The stack slots at these offsets are occupied by the return address with the unscalarized
2902     // calling convention. Don't use them for arguments with the scalarized calling convention.
2903     int ret_off    = _args_on_stack_cc - _args_on_stack;
2904     int ret_off_ro = _args_on_stack_cc - _args_on_stack_cc_ro;
2905     assert(ret_off_ro <= 0 || ret_off > 0, "receiver unpacking requires more stack space than expected");
2906 
2907     if (ret_off > 0) {
2908       // Make sure the stack of the scalarized calling convention with the reserved
2909       // entries (2 slots each) remains 16-byte (4 slots) aligned after stack extension.
2910       int alignment = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
2911       if (ret_off_ro != ret_off && ret_off_ro >= 0) {
2912         ret_off    += 4; // Account for two reserved entries (4 slots)
2913         ret_off_ro += 4;
2914         ret_off     = align_up(ret_off, alignment);
2915         ret_off_ro  = align_up(ret_off_ro, alignment);
2916         // TODO can we avoid wasting a stack slot here?
2917         //assert(ret_off != ret_off_ro, "fail");
2918         if (ret_off > ret_off_ro) {
2919           swap(ret_off, ret_off_ro); // Sort by offset
2920         }
2921         _args_on_stack_cc = insert_reserved_entry(ret_off);
2922         _args_on_stack_cc = insert_reserved_entry(ret_off_ro);
2923       } else {
2924         ret_off += 2; // Account for one reserved entry (2 slots)
2925         ret_off = align_up(ret_off, alignment);
2926         _args_on_stack_cc = insert_reserved_entry(ret_off);
2927       }
2928 
2929       _has_reserved_entries = true;
2930     }
2931 
2932     // Upper bound on stack arguments to avoid hitting the argument limit and
2933     // bailing out of compilation ("unsupported incoming calling sequence").
2934     // TODO we need a reasonable limit (flag?) here
2935     if (_args_on_stack_cc > 50) {
2936       // Don't scalarize value type arguments
2937       _sig_cc = _sig;
2938       _sig_cc_ro = _sig;
2939       _regs_cc = _regs;
2940       _regs_cc_ro = _regs;
2941       _args_on_stack_cc = _args_on_stack;
2942       _args_on_stack_cc_ro = _args_on_stack;
2943     } else {
2944       _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2945       _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2946       _has_scalarized_args = true;
2947     }
2948   }
2949 }
2950 
2951 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2952   // Use customized signature handler.  Need to lock around updates to
2953   // the AdapterHandlerTable (it is not safe for concurrent readers
2954   // and a single writer: this could be fixed if it becomes a
2955   // problem).
2956 
2957   ResourceMark rm;
2958 
2959   NOT_PRODUCT(int insts_size = 0);
2960   AdapterBlob* new_adapter = NULL;
2961   AdapterHandlerEntry* entry = NULL;
2962   AdapterFingerPrint* fingerprint = NULL;
2963 
2964   {
2965     MutexLocker mu(AdapterHandlerLibrary_lock);
2966     // make sure data structure is initialized
2967     initialize();
2968 
2969     CompiledEntrySignature ces(method());
2970     {
2971        MutexUnlocker mul(AdapterHandlerLibrary_lock);
2972        ces.compute_calling_conventions();
2973     }
2974     GrowableArray<SigEntry>& sig       = ces.sig();
2975     GrowableArray<SigEntry>& sig_cc    = ces.sig_cc();
2976     GrowableArray<SigEntry>& sig_cc_ro = ces.sig_cc_ro();
2977     VMRegPair* regs         = ces.regs();
2978     VMRegPair* regs_cc      = ces.regs_cc();
2979     VMRegPair* regs_cc_ro   = ces.regs_cc_ro();
2980 
2981     if (ces.has_scalarized_args()) {
2982       method->set_has_scalarized_args(true);
2983       method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair());
2984       method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair());
2985     }
2986 
2987     if (method->is_abstract()) {
2988       if (ces.has_scalarized_args()) {
2989         // Save a C heap allocated version of the signature for abstract methods with scalarized value type arguments
2990         address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2991         entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2992                                                  StubRoutines::throw_AbstractMethodError_entry(),
2993                                                  wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2994                                                  wrong_method_abstract, wrong_method_abstract);
2995         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc_ro.length(), true);
2996         heap_sig->appendAll(&sig_cc_ro);
2997         entry->set_sig_cc(heap_sig);
2998         return entry;
2999       } else {
3000         return _abstract_method_handler;
3001       }
3002     }
3003 
3004     // Lookup method signature's fingerprint
3005     entry = _adapters->lookup(&sig_cc, regs_cc != regs_cc_ro);
3006 
3007 #ifdef ASSERT
3008     AdapterHandlerEntry* shared_entry = NULL;
3009     // Start adapter sharing verification only after the VM is booted.
3010     if (VerifyAdapterSharing && (entry != NULL)) {
3011       shared_entry = entry;
3012       entry = NULL;
3013     }
3014 #endif
3015 
3016     if (entry != NULL) {
3017       return entry;
3018     }
3019 
3020     // Make a C heap allocated version of the fingerprint to store in the adapter
3021     fingerprint = new AdapterFingerPrint(&sig_cc, regs_cc != regs_cc_ro);
3022 
3023     // StubRoutines::code2() is initialized after this function can be called. As a result,
3024     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
3025     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
3026     // stub that ensure that an I2C stub is called from an interpreter frame.
3027     bool contains_all_checks = StubRoutines::code2() != NULL;
3028 
3029     // Create I2C & C2I handlers
3030     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3031     if (buf != NULL) {
3032       CodeBuffer buffer(buf);
3033       short buffer_locs[20];
3034       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3035                                              sizeof(buffer_locs)/sizeof(relocInfo));
3036 
3037       MacroAssembler _masm(&buffer);
3038       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
3039                                                      ces.args_on_stack(),
3040                                                      &sig,
3041                                                      regs,
3042                                                      &sig_cc,
3043                                                      regs_cc,
3044                                                      &sig_cc_ro,
3045                                                      regs_cc_ro,
3046                                                      fingerprint,
3047                                                      new_adapter);
3048 
3049       if (ces.has_scalarized_args()) {
3050         // Save a C heap allocated version of the scalarized signature and store it in the adapter
3051         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc.length(), true);
3052         heap_sig->appendAll(&sig_cc);
3053         entry->set_sig_cc(heap_sig);
3054       }
3055 
3056 #ifdef ASSERT
3057       if (VerifyAdapterSharing) {
3058         if (shared_entry != NULL) {
3059           if (!shared_entry->compare_code(buf->code_begin(), buffer.insts_size())) {
3060             method->print();
3061           }
3062           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
3063           // Release the one just created and return the original
3064           _adapters->free_entry(entry);
3065           return shared_entry;
3066         } else  {
3067           entry->save_code(buf->code_begin(), buffer.insts_size());
3068         }
3069       }
3070 #endif
3071 
3072       NOT_PRODUCT(insts_size = buffer.insts_size());
3073     }
3074     if (new_adapter == NULL) {
3075       // CodeCache is full, disable compilation
3076       // Ought to log this but compile log is only per compile thread
3077       // and we're some non descript Java thread.
3078       return NULL; // Out of CodeCache space
3079     }
3080     entry->relocate(new_adapter->content_begin());
3081 #ifndef PRODUCT
3082     // debugging suppport
3083     if (PrintAdapterHandlers || PrintStubCode) {
3084       ttyLocker ttyl;
3085       entry->print_adapter_on(tty);
3086       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
3087                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
3088                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
3089       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
3090       if (Verbose || PrintStubCode) {
3091         address first_pc = entry->base_address();
3092         if (first_pc != NULL) {
3093           Disassembler::decode(first_pc, first_pc + insts_size);
3094           tty->cr();
3095         }
3096       }
3097     }
3098 #endif
3099     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3100     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3101     if (contains_all_checks || !VerifyAdapterCalls) {
3102       _adapters->add(entry);
3103     }
3104   }
3105   // Outside of the lock
3106   if (new_adapter != NULL) {
3107     char blob_id[256];
3108     jio_snprintf(blob_id,
3109                  sizeof(blob_id),
3110                  "%s(%s)@" PTR_FORMAT,
3111                  new_adapter->name(),
3112                  fingerprint->as_string(),
3113                  new_adapter->content_begin());
3114     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3115 
3116     if (JvmtiExport::should_post_dynamic_code_generated()) {
3117       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3118     }
3119   }
3120   return entry;
3121 }
3122 
3123 address AdapterHandlerEntry::base_address() {
3124   address base = _i2c_entry;
3125   if (base == NULL)  base = _c2i_entry;
3126   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3127   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
3128   assert(base <= _c2i_value_ro_entry || _c2i_value_ro_entry == NULL, "");
3129   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3130   assert(base <= _c2i_unverified_value_entry || _c2i_unverified_value_entry == NULL, "");
3131   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
3132   return base;
3133 }
3134 
3135 void AdapterHandlerEntry::relocate(address new_base) {
3136   address old_base = base_address();
3137   assert(old_base != NULL, "");
3138   ptrdiff_t delta = new_base - old_base;
3139   if (_i2c_entry != NULL)
3140     _i2c_entry += delta;
3141   if (_c2i_entry != NULL)
3142     _c2i_entry += delta;
3143   if (_c2i_value_entry != NULL)
3144     _c2i_value_entry += delta;
3145   if (_c2i_value_ro_entry != NULL)
3146     _c2i_value_ro_entry += delta;
3147   if (_c2i_unverified_entry != NULL)
3148     _c2i_unverified_entry += delta;
3149   if (_c2i_unverified_value_entry != NULL)
3150     _c2i_unverified_value_entry += delta;
3151   if (_c2i_no_clinit_check_entry != NULL)
3152     _c2i_no_clinit_check_entry += delta;
3153   assert(base_address() == new_base, "");
3154 }
3155 
3156 
3157 void AdapterHandlerEntry::deallocate() {
3158   delete _fingerprint;
3159   if (_sig_cc != NULL) {
3160     delete _sig_cc;
3161   }
3162 #ifdef ASSERT
3163   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3164 #endif
3165 }
3166 
3167 
3168 #ifdef ASSERT
3169 // Capture the code before relocation so that it can be compared
3170 // against other versions.  If the code is captured after relocation
3171 // then relative instructions won't be equivalent.
3172 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3173   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3174   _saved_code_length = length;
3175   memcpy(_saved_code, buffer, length);
3176 }
3177 
3178 
3179 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3180   if (length != _saved_code_length) {
3181     return false;
3182   }
3183 
3184   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3185 }
3186 #endif
3187 
3188 
3189 /**
3190  * Create a native wrapper for this native method.  The wrapper converts the
3191  * Java-compiled calling convention to the native convention, handles
3192  * arguments, and transitions to native.  On return from the native we transition
3193  * back to java blocking if a safepoint is in progress.
3194  */
3195 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3196   ResourceMark rm;
3197   nmethod* nm = NULL;
3198   address critical_entry = NULL;
3199 
3200   assert(method->is_native(), "must be native");
3201   assert(method->is_method_handle_intrinsic() ||
3202          method->has_native_function(), "must have something valid to call!");
3203 
3204   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
3205     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
3206     critical_entry = NativeLookup::lookup_critical_entry(method);
3207   }
3208 
3209   {
3210     // Perform the work while holding the lock, but perform any printing outside the lock
3211     MutexLocker mu(AdapterHandlerLibrary_lock);
3212     // See if somebody beat us to it
3213     if (method->code() != NULL) {
3214       return;
3215     }
3216 
3217     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3218     assert(compile_id > 0, "Must generate native wrapper");
3219 
3220 
3221     ResourceMark rm;
3222     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3223     if (buf != NULL) {
3224       CodeBuffer buffer(buf);
3225       double locs_buf[20];
3226       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3227       MacroAssembler _masm(&buffer);
3228 
3229       // Fill in the signature array, for the calling-convention call.
3230       const int total_args_passed = method->size_of_parameters();
3231 
3232       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3233       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3234       int i=0;
3235       if (!method->is_static())  // Pass in receiver first
3236         sig_bt[i++] = T_OBJECT;
3237       SignatureStream ss(method->signature());
3238       for (; !ss.at_return_type(); ss.next()) {
3239         BasicType bt = ss.type();
3240         sig_bt[i++] = bt;  // Collect remaining bits of signature
3241         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3242           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3243       }
3244       assert(i == total_args_passed, "");
3245       BasicType ret_type = ss.type();
3246 
3247       // Now get the compiled-Java layout as input (or output) arguments.
3248       // NOTE: Stubs for compiled entry points of method handle intrinsics
3249       // are just trampolines so the argument registers must be outgoing ones.
3250       const bool is_outgoing = method->is_method_handle_intrinsic();
3251       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3252 
3253       // Generate the compiled-to-native wrapper code
3254       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
3255 
3256       if (nm != NULL) {
3257         {
3258           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3259           if (nm->make_in_use()) {
3260             method->set_code(method, nm);
3261           }
3262         }
3263 
3264         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3265         if (directive->PrintAssemblyOption) {
3266           nm->print_code();
3267         }
3268         DirectivesStack::release(directive);
3269       }
3270     }
3271   } // Unlock AdapterHandlerLibrary_lock
3272 
3273 
3274   // Install the generated code.
3275   if (nm != NULL) {
3276     const char *msg = method->is_static() ? "(static)" : "";
3277     CompileTask::print_ul(nm, msg);
3278     if (PrintCompilation) {
3279       ttyLocker ttyl;
3280       CompileTask::print(tty, nm, msg);
3281     }
3282     nm->post_compiled_method_load_event();
3283   }
3284 }
3285 
3286 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3287   assert(thread == JavaThread::current(), "must be");
3288   // The code is about to enter a JNI lazy critical native method and
3289   // _needs_gc is true, so if this thread is already in a critical
3290   // section then just return, otherwise this thread should block
3291   // until needs_gc has been cleared.
3292   if (thread->in_critical()) {
3293     return;
3294   }
3295   // Lock and unlock a critical section to give the system a chance to block
3296   GCLocker::lock_critical(thread);
3297   GCLocker::unlock_critical(thread);
3298 JRT_END
3299 
3300 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3301   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3302   assert(obj != NULL, "Should not be null");
3303   oop o(obj);
3304   o = Universe::heap()->pin_object(thread, o);
3305   assert(o != NULL, "Should not be null");
3306   return o;
3307 JRT_END
3308 
3309 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3310   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3311   assert(obj != NULL, "Should not be null");
3312   oop o(obj);
3313   Universe::heap()->unpin_object(thread, o);
3314 JRT_END
3315 
3316 // -------------------------------------------------------------------------
3317 // Java-Java calling convention
3318 // (what you use when Java calls Java)
3319 
3320 //------------------------------name_for_receiver----------------------------------
3321 // For a given signature, return the VMReg for parameter 0.
3322 VMReg SharedRuntime::name_for_receiver() {
3323   VMRegPair regs;
3324   BasicType sig_bt = T_OBJECT;
3325   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3326   // Return argument 0 register.  In the LP64 build pointers
3327   // take 2 registers, but the VM wants only the 'main' name.
3328   return regs.first();
3329 }
3330 
3331 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3332   // This method is returning a data structure allocating as a
3333   // ResourceObject, so do not put any ResourceMarks in here.
3334   char *s = sig->as_C_string();
3335   int len = (int)strlen(s);
3336   s++; len--;                   // Skip opening paren
3337 
3338   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3339   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3340   int cnt = 0;
3341   if (has_receiver) {
3342     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3343   }
3344 
3345   while (*s != JVM_SIGNATURE_ENDFUNC) { // Find closing right paren
3346     switch (*s++) {                     // Switch on signature character
3347     case JVM_SIGNATURE_BYTE:    sig_bt[cnt++] = T_BYTE;    break;
3348     case JVM_SIGNATURE_CHAR:    sig_bt[cnt++] = T_CHAR;    break;
3349     case JVM_SIGNATURE_DOUBLE:  sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3350     case JVM_SIGNATURE_FLOAT:   sig_bt[cnt++] = T_FLOAT;   break;
3351     case JVM_SIGNATURE_INT:     sig_bt[cnt++] = T_INT;     break;
3352     case JVM_SIGNATURE_LONG:    sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3353     case JVM_SIGNATURE_SHORT:   sig_bt[cnt++] = T_SHORT;   break;
3354     case JVM_SIGNATURE_BOOLEAN: sig_bt[cnt++] = T_BOOLEAN; break;
3355     case JVM_SIGNATURE_VOID:    sig_bt[cnt++] = T_VOID;    break;
3356     case JVM_SIGNATURE_CLASS: // Oop
3357       while (*s++ != JVM_SIGNATURE_ENDCLASS);   // Skip signature
3358       sig_bt[cnt++] = T_OBJECT;
3359       break;
3360     case JVM_SIGNATURE_VALUETYPE:               // Value type
3361       while (*s++ != JVM_SIGNATURE_ENDCLASS);   // Skip signature
3362       sig_bt[cnt++] = T_VALUETYPE;
3363       break;
3364     case JVM_SIGNATURE_ARRAY: { // Array
3365       do {                      // Skip optional size
3366         while (*s >= '0' && *s <= '9') s++;
3367       } while (*s++ == JVM_SIGNATURE_ARRAY);   // Nested arrays?
3368       // Skip element type
3369       if (s[-1] == JVM_SIGNATURE_CLASS || s[-1] == JVM_SIGNATURE_VALUETYPE)
3370         while (*s++ != JVM_SIGNATURE_ENDCLASS); // Skip signature
3371       sig_bt[cnt++] = T_ARRAY;
3372       break;
3373     }
3374     default : ShouldNotReachHere();
3375     }
3376   }
3377 
3378   if (has_appendix) {
3379     sig_bt[cnt++] = T_OBJECT;
3380   }
3381 
3382   assert(cnt < 256, "grow table size");
3383 
3384   int comp_args_on_stack;
3385   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3386 
3387   // the calling convention doesn't count out_preserve_stack_slots so
3388   // we must add that in to get "true" stack offsets.
3389 
3390   if (comp_args_on_stack) {
3391     for (int i = 0; i < cnt; i++) {
3392       VMReg reg1 = regs[i].first();
3393       if (reg1->is_stack()) {
3394         // Yuck
3395         reg1 = reg1->bias(out_preserve_stack_slots());
3396       }
3397       VMReg reg2 = regs[i].second();
3398       if (reg2->is_stack()) {
3399         // Yuck
3400         reg2 = reg2->bias(out_preserve_stack_slots());
3401       }
3402       regs[i].set_pair(reg2, reg1);
3403     }
3404   }
3405 
3406   // results
3407   *arg_size = cnt;
3408   return regs;
3409 }
3410 
3411 // OSR Migration Code
3412 //
3413 // This code is used convert interpreter frames into compiled frames.  It is
3414 // called from very start of a compiled OSR nmethod.  A temp array is
3415 // allocated to hold the interesting bits of the interpreter frame.  All
3416 // active locks are inflated to allow them to move.  The displaced headers and
3417 // active interpreter locals are copied into the temp buffer.  Then we return
3418 // back to the compiled code.  The compiled code then pops the current
3419 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3420 // copies the interpreter locals and displaced headers where it wants.
3421 // Finally it calls back to free the temp buffer.
3422 //
3423 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3424 
3425 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3426 
3427   //
3428   // This code is dependent on the memory layout of the interpreter local
3429   // array and the monitors. On all of our platforms the layout is identical
3430   // so this code is shared. If some platform lays the their arrays out
3431   // differently then this code could move to platform specific code or
3432   // the code here could be modified to copy items one at a time using
3433   // frame accessor methods and be platform independent.
3434 
3435   frame fr = thread->last_frame();
3436   assert(fr.is_interpreted_frame(), "");
3437   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3438 
3439   // Figure out how many monitors are active.
3440   int active_monitor_count = 0;
3441   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3442        kptr < fr.interpreter_frame_monitor_begin();
3443        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3444     if (kptr->obj() != NULL) active_monitor_count++;
3445   }
3446 
3447   // QQQ we could place number of active monitors in the array so that compiled code
3448   // could double check it.
3449 
3450   Method* moop = fr.interpreter_frame_method();
3451   int max_locals = moop->max_locals();
3452   // Allocate temp buffer, 1 word per local & 2 per active monitor
3453   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3454   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3455 
3456   // Copy the locals.  Order is preserved so that loading of longs works.
3457   // Since there's no GC I can copy the oops blindly.
3458   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3459   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3460                        (HeapWord*)&buf[0],
3461                        max_locals);
3462 
3463   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3464   int i = max_locals;
3465   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3466        kptr2 < fr.interpreter_frame_monitor_begin();
3467        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3468     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3469       BasicLock *lock = kptr2->lock();
3470       // Inflate so the displaced header becomes position-independent
3471       if (lock->displaced_header().is_unlocked())
3472         ObjectSynchronizer::inflate_helper(kptr2->obj());
3473       // Now the displaced header is free to move
3474       buf[i++] = (intptr_t)lock->displaced_header().value();
3475       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3476     }
3477   }
3478   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3479 
3480   return buf;
3481 JRT_END
3482 
3483 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3484   FREE_C_HEAP_ARRAY(intptr_t, buf);
3485 JRT_END
3486 
3487 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3488   AdapterHandlerTableIterator iter(_adapters);
3489   while (iter.has_next()) {
3490     AdapterHandlerEntry* a = iter.next();
3491     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3492   }
3493   return false;
3494 }
3495 
3496 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3497   AdapterHandlerTableIterator iter(_adapters);
3498   while (iter.has_next()) {
3499     AdapterHandlerEntry* a = iter.next();
3500     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3501       st->print("Adapter for signature: ");
3502       a->print_adapter_on(tty);
3503       return;
3504     }
3505   }
3506   assert(false, "Should have found handler");
3507 }
3508 
3509 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3510   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3511   if (get_i2c_entry() != NULL) {
3512     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3513   }
3514   if (get_c2i_entry() != NULL) {
3515     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3516   }
3517   if (get_c2i_entry() != NULL) {
3518     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_value_entry()));
3519   }
3520   if (get_c2i_entry() != NULL) {
3521     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_value_ro_entry()));
3522   }
3523   if (get_c2i_unverified_entry() != NULL) {
3524     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3525   }
3526   if (get_c2i_unverified_entry() != NULL) {
3527     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_value_entry()));
3528   }
3529   if (get_c2i_no_clinit_check_entry() != NULL) {
3530     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3531   }
3532   st->cr();
3533 }
3534 
3535 #if INCLUDE_CDS
3536 
3537 void CDSAdapterHandlerEntry::init() {
3538   assert(DumpSharedSpaces, "used during dump time only");
3539   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3540   _c2i_value_ro_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3541   _c2i_value_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3542   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3543 };
3544 
3545 #endif // INCLUDE_CDS
3546 
3547 
3548 #ifndef PRODUCT
3549 
3550 void AdapterHandlerLibrary::print_statistics() {
3551   _adapters->print_statistics();
3552 }
3553 
3554 #endif /* PRODUCT */
3555 
3556 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3557   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3558   if (thread->stack_reserved_zone_disabled()) {
3559   thread->enable_stack_reserved_zone();
3560   }
3561   thread->set_reserved_stack_activation(thread->stack_base());
3562 JRT_END
3563 
3564 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3565   ResourceMark rm(thread);
3566   frame activation;
3567   CompiledMethod* nm = NULL;
3568   int count = 1;
3569 
3570   assert(fr.is_java_frame(), "Must start on Java frame");
3571 
3572   while (true) {
3573     Method* method = NULL;
3574     bool found = false;
3575     if (fr.is_interpreted_frame()) {
3576       method = fr.interpreter_frame_method();
3577       if (method != NULL && method->has_reserved_stack_access()) {
3578         found = true;
3579       }
3580     } else {
3581       CodeBlob* cb = fr.cb();
3582       if (cb != NULL && cb->is_compiled()) {
3583         nm = cb->as_compiled_method();
3584         method = nm->method();
3585         // scope_desc_near() must be used, instead of scope_desc_at() because on
3586         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3587         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3588           method = sd->method();
3589           if (method != NULL && method->has_reserved_stack_access()) {
3590             found = true;
3591       }
3592     }
3593       }
3594     }
3595     if (found) {
3596       activation = fr;
3597       warning("Potentially dangerous stack overflow in "
3598               "ReservedStackAccess annotated method %s [%d]",
3599               method->name_and_sig_as_C_string(), count++);
3600       EventReservedStackActivation event;
3601       if (event.should_commit()) {
3602         event.set_method(method);
3603         event.commit();
3604       }
3605     }
3606     if (fr.is_first_java_frame()) {
3607       break;
3608     } else {
3609       fr = fr.java_sender();
3610     }
3611   }
3612   return activation;
3613 }
3614 
3615 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3616   // After any safepoint, just before going back to compiled code,
3617   // we inform the GC that we will be doing initializing writes to
3618   // this object in the future without emitting card-marks, so
3619   // GC may take any compensating steps.
3620 
3621   oop new_obj = thread->vm_result();
3622   if (new_obj == NULL) return;
3623 
3624   BarrierSet *bs = BarrierSet::barrier_set();
3625   bs->on_slowpath_allocation_exit(thread, new_obj);
3626 }
3627 
3628 // We are at a compiled code to interpreter call. We need backing
3629 // buffers for all value type arguments. Allocate an object array to
3630 // hold them (convenient because once we're done with it we don't have
3631 // to worry about freeing it).
3632 oop SharedRuntime::allocate_value_types_impl(JavaThread* thread, methodHandle callee, bool allocate_receiver, TRAPS) {
3633   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3634   ResourceMark rm;
3635 
3636   int nb_slots = 0;
3637   InstanceKlass* holder = callee->method_holder();
3638   allocate_receiver &= !callee->is_static() && holder->is_value();
3639   if (allocate_receiver) {
3640     nb_slots++;
3641   }
3642   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3643     if (ss.type() == T_VALUETYPE) {
3644       nb_slots++;
3645     }
3646   }
3647   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3648   objArrayHandle array(THREAD, array_oop);
3649   int i = 0;
3650   if (allocate_receiver) {
3651     ValueKlass* vk = ValueKlass::cast(holder);
3652     oop res = vk->allocate_instance(CHECK_NULL);
3653     array->obj_at_put(i, res);
3654     i++;
3655   }
3656   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3657     if (ss.type() == T_VALUETYPE) {
3658       ValueKlass* vk = ss.as_value_klass(holder);
3659       oop res = vk->allocate_instance(CHECK_NULL);
3660       array->obj_at_put(i, res);
3661       i++;
3662     }
3663   }
3664   return array();
3665 }
3666 
3667 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method, bool allocate_receiver))
3668   methodHandle callee(thread, callee_method);
3669   oop array = SharedRuntime::allocate_value_types_impl(thread, callee, allocate_receiver, CHECK);
3670   thread->set_vm_result(array);
3671   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3672 JRT_END
3673 
3674 // TODO remove this once the AARCH64 dependency is gone
3675 // Iterate over the array of heap allocated value types and apply the GC post barrier to all reference fields.
3676 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3677 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3678 {
3679   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3680   assert(oopDesc::is_oop(array), "should be oop");
3681   for (int i = 0; i < array->length(); ++i) {
3682     instanceOop valueOop = (instanceOop)array->obj_at(i);
3683     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3684     if (vk->contains_oops()) {
3685       const address dst_oop_addr = ((address) (void*) valueOop);
3686       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3687       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3688       while (map != end) {
3689         address doop_address = dst_oop_addr + map->offset();
3690         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3691           write_ref_array((HeapWord*) doop_address, map->count());
3692         map++;
3693       }
3694     }
3695   }
3696 }
3697 JRT_END
3698 
3699 // We're returning from an interpreted method: load each field into a
3700 // register following the calling convention
3701 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3702 {
3703   assert(res->klass()->is_value(), "only value types here");
3704   ResourceMark rm;
3705   RegisterMap reg_map(thread);
3706   frame stubFrame = thread->last_frame();
3707   frame callerFrame = stubFrame.sender(&reg_map);
3708   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3709 
3710   ValueKlass* vk = ValueKlass::cast(res->klass());
3711 
3712   const Array<SigEntry>* sig_vk = vk->extended_sig();
3713   const Array<VMRegPair>* regs = vk->return_regs();
3714 
3715   if (regs == NULL) {
3716     // The fields of the value klass don't fit in registers, bail out
3717     return;
3718   }
3719 
3720   int j = 1;
3721   for (int i = 0; i < sig_vk->length(); i++) {
3722     BasicType bt = sig_vk->at(i)._bt;
3723     if (bt == T_VALUETYPE) {
3724       continue;
3725     }
3726     if (bt == T_VOID) {
3727       if (sig_vk->at(i-1)._bt == T_LONG ||
3728           sig_vk->at(i-1)._bt == T_DOUBLE) {
3729         j++;
3730       }
3731       continue;
3732     }
3733     int off = sig_vk->at(i)._offset;
3734     assert(off > 0, "offset in object should be positive");
3735     VMRegPair pair = regs->at(j);
3736     address loc = reg_map.location(pair.first());
3737     switch(bt) {
3738     case T_BOOLEAN:
3739       *(jboolean*)loc = res->bool_field(off);
3740       break;
3741     case T_CHAR:
3742       *(jchar*)loc = res->char_field(off);
3743       break;
3744     case T_BYTE:
3745       *(jbyte*)loc = res->byte_field(off);
3746       break;
3747     case T_SHORT:
3748       *(jshort*)loc = res->short_field(off);
3749       break;
3750     case T_INT: {
3751       *(jint*)loc = res->int_field(off);
3752       break;
3753     }
3754     case T_LONG:
3755 #ifdef _LP64
3756       *(intptr_t*)loc = res->long_field(off);
3757 #else
3758       Unimplemented();
3759 #endif
3760       break;
3761     case T_OBJECT:
3762     case T_ARRAY: {
3763       *(oop*)loc = res->obj_field(off);
3764       break;
3765     }
3766     case T_FLOAT:
3767       *(jfloat*)loc = res->float_field(off);
3768       break;
3769     case T_DOUBLE:
3770       *(jdouble*)loc = res->double_field(off);
3771       break;
3772     default:
3773       ShouldNotReachHere();
3774     }
3775     j++;
3776   }
3777   assert(j == regs->length(), "missed a field?");
3778 
3779 #ifdef ASSERT
3780   VMRegPair pair = regs->at(0);
3781   address loc = reg_map.location(pair.first());
3782   assert(*(oopDesc**)loc == res, "overwritten object");
3783 #endif
3784 
3785   thread->set_vm_result(res);
3786 }
3787 JRT_END
3788 
3789 // We've returned to an interpreted method, the interpreter needs a
3790 // reference to a value type instance. Allocate it and initialize it
3791 // from field's values in registers.
3792 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3793 {
3794   ResourceMark rm;
3795   RegisterMap reg_map(thread);
3796   frame stubFrame = thread->last_frame();
3797   frame callerFrame = stubFrame.sender(&reg_map);
3798 
3799 #ifdef ASSERT
3800   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3801 #endif
3802 
3803   if (!is_set_nth_bit(res, 0)) {
3804     // We're not returning with value type fields in registers (the
3805     // calling convention didn't allow it for this value klass)
3806     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3807     thread->set_vm_result((oopDesc*)res);
3808     assert(verif_vk == NULL, "broken calling convention");
3809     return;
3810   }
3811 
3812   clear_nth_bit(res, 0);
3813   ValueKlass* vk = (ValueKlass*)res;
3814   assert(verif_vk == vk, "broken calling convention");
3815   assert(Metaspace::contains((void*)res), "should be klass");
3816 
3817   // Allocate handles for every oop field so they are safe in case of
3818   // a safepoint when allocating
3819   GrowableArray<Handle> handles;
3820   vk->save_oop_fields(reg_map, handles);
3821 
3822   // It's unsafe to safepoint until we are here
3823   JRT_BLOCK;
3824   {
3825     Thread* THREAD = thread;
3826     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3827     thread->set_vm_result(vt);
3828   }
3829   JRT_BLOCK_END;
3830 }
3831 JRT_END
3832