
Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

The	Java	HotSpot	VM	
Under	the	Hood	
	

Tobias	Hartmann	
Zoltán	Majó	
	
HotSpot	Compiler	Team	
Oracle	Corpora6on	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

About	us	
•  Tobias	Hartmann	
–  MSc	ETH	Zurich,	Switzerland	
–  Lives	in	Rheinfelden,	Germany	

•  Zoltán	Majó	
–  PhD	ETH	Zurich,	Switzerland	
–  Grew	up	in	Cluj,	Romania	

•  Both	of	us:	@Oracle	since	2014	
–  Compiler	team	for	the	Java	HotSpot	Virtual	Machine	

2	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Safe	Harbor	Statement	
The	following	is	intended	to	outline	our	general	product	direcRon.	It	is	intended	for	
informaRon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcRonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Rming	of	any	features	or	
funcRonality	described	for	Oracle’s	products	remains	at	the	sole	discreRon	of	Oracle.	

3	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

A	typical	compu6ng	plaJorm	

4	

Hardware	

Opera6ng	system	

Java	Virtual	Machine	

User	Applica6ons	

Java	EE	Java	SE	

Applica'on	So,ware	

System	So,ware	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

A	typical	compu6ng	plaJorm	

5	

Hardware	

Opera6ng	system	

Java	Virtual	Machine	

User	Applica6ons	

Java	EE	Java	SE	

Applica'on	So,ware	

System	So,ware	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

A	typical	compu6ng	plaJorm	

6	

Hardware	

Opera6ng	system	

Java	Virtual	Machine	

User	Applica6ons	

Java	EE	Java	SE	

Applica'on	So,ware	

System	So,ware	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Outline	
• Why	virtual	machines?	
•  The	Java	HotSpot	VM	
–  Just-in-Rme	compilaRon	
–  OpRmisRc	compiler	opRmizaRons	
–  Tiered	compilaRon	
–  Recent	projects:	Segmented	Code	Cache,	Compact	Strings	
–  Future:	AOT,	JVMCI	

•  Conclusions	

7	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Programming	language	implementa6on	

C	

Windows	

Intel	x86	

8	

Opera6ng	
system	

Language	
implementa6on	

Hardware	

Programming	
language	

Compiler	
Standard	libraries	
Debugger	
Memory	management	

Linux	

Intel	x86	

Compiler	
Standard	libraries	
Debugger	
Memory	management	

Linux	

ARM	

Compiler	
Standard	libraries	
Debugger	
Memory	management	

Solaris	

SPARC	

Compiler	
Standard	libraries	
Debugger	
Memory	management	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 9	

(Language)	virtual	machine	

Java	

Windows	

Intel	x86	

Opera6ng	
system	

Virtual	machine	

Hardware	

Programming	
language	

HotSpot	VM	

PPC	 ARM	 SPARC	

Mac	OS	X	 Solaris	Linux	

JavaScript	 Scala	 Python	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

The	VM:	An	applica6on	developer’s	view	

Java	source	code	
	
int	i	=	0;	
do	{	
				i++;	
}	while	(i	<	f());	

Bytecodes	
	
	0:	iconst_0	
	1:	istore_1	
	2:	iinc	
	5:	iload_1	
	6:	invokestatic	f	
	9:	if_icmplt	2	
12:	return	
	
	

compile	
HotSpot	
Java	VM	execute	

• 	Ahead-of-6me	
• 	Using	javac

• 	Instruc6ons	for	an	abstract	machine	
• 	Stack-based	machine	(no	registers)	

10	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

The	VM:	A	VM	engineer’s	view	

11	

Bytecodes	
	
	0:	iconst_0	
	1:	istore_1	
	2:	iinc	
	5:	iload_1	
	6:	invokestatic	f	
	9:	if_icmplt	2	
12:	return	
	
	

HotSpot	Java	VM	

Garbage	
collector	

manage	

Interpreter	

execute	
Heap	

Stack	

access	

access	

Compila6on	
system	

compile	

C1	

C2	

Compiled	method	produce	

Machine	code	

Debug	info	

Object	maps	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Major	components	of	HotSpot	
•  Run6me	
–  Interpreter	
–  Thread	management	
–  SynchronizaRon	
–  Class	loading	

•  Heap	management	
–  Garbage	collectors	

•  Compila6on	system	

12	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Interpreta6on	vs.	compila6on	in	HotSpot	
•  Template-based	interpreter	
–  Generated	at	VM	startup	(before	program	execuRon)	
–  Maps	a	well-defined	machine	code	sequence	to	every	bytecode	instrucRon	

–  OpRmizaRon:	cache	top-of-stack	value	in	a	register	to	reduce	#	of	memory	accesses	

•  Compila6on	system	
–  Speedup	relaRve	to	interpretaRon:	~100X	
–  Two	just-in-'me	compilers	(C1,	C2)	
–  Aggressive	opRmisRc	opRmizaRons	

13	

Bytecodes	
	0:	iconst_0	
	1:	istore_1	
	2:	iinc	
	5:	iload_1	
	6:	invokestatic	f	
	9:	if_icmplt	2	
12:	return	
	
	

Machine	code	
mov				-0x8(%r14),	%eax	
movzbl		0x1(%r13),	%ebx	
inc					%r13	
mov					$0xff40,%r10	
jmpq				*(%r10,%rbx,8)	

Load	local	variable	1	

Dispatch	next	instrucRon	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Ahead-of-6me	vs.	just-in-6me	compila6on	
•  AOT:	Before	program	execu6on	
•  JIT:	During	program	execu6on	

•  Tradeoff:	Resource	usage	vs.	performance	of	generated	code	

14	

Performance	

Amount	of	compila6on	Interpreta'on	 Compile	everything	

Bad	performance	
due	to	interpreta6on	

Bad	performance	
due	to	compila6on	
overhead	

Good	performance	
due	to	good	selec6on	
of	compiled	methods	
and	of	applied	
op6miza6ons	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Balancing	resource	usage	and	performance	
•  Gecng	to	the	“sweet	spot”	
•  Carefully	selec6ng	

1.  Methods	to	compile	
2.  Applied	compiler	opRmizaRons	

15	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

1.	Selec6ng	method	to	compile	
•  Hot	methods	(frequently	executed	methods)	
•  Profile	method	execu6on		
–  #	of	method	invocaRons,	#	of	backedges	

•  A	method’s	life6me	in	the	VM	

16	

Interpreter	 Compiler	(C1	or	C2)	 Code	cache	

Gather	profiling	informaRon	 Compile	bytecode	to	naRve	code	 Store	machine	code	

#	method	invocaRons	>	THRESHOLD1	
#	of	backedges	>	THRESHOLD2	

DeopRmizaRon	

Compiler’s	opRmisRc	assumpRons	
proven	wrong	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Virtual	call	inlining	

17	

class	A	{	
		void	bar()	{	
				S1;	
		}	
}	

class	B	extends	A	{	
		void	bar()	{	
				S2;	
		}	
}	

void	foo()	{	
		A	a	=	create();	//	return	A	or	B	
		a.bar();	
}	

Class	hierarchy	 Method	to	be	compiled	

loaded	

not	loaded	

Compiler:	
Inline	call?	
Yes.	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Virtual	call	inlining	

•  Benefits	of	inlining	
–  Virtual	call	avoided	
–  Code	locality	

•  Op6mis6c	assump6on:	only	A	is	loaded	
–  Note	dependence	on	class	hierarchy	
–  DeopRmize	if	hierarchy	changes	

18	

class	A	{	
		void	bar()	{	
				S1;	
		}	
}	

class	B	extends	A	{	
		void	bar()	{	
				S2;	
		}	
}	

void	foo()	{	
		A	a	=	create();	//	return	A	or	B	
		S1;	
}	

Class	hierarchy	 Method	to	be	compiled	

loaded	

not	loaded	

Compiler:	
Inline	call?	
Yes.	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Virtual	call	inlining	

19	

class	A	{	
		void	bar()	{	
				S1;	
		}	
}	

class	B	extends	A	{	
		void	bar()	{	
				S2;	
		}	
}	

void	foo()	{	
		A	a	=	create();	//	return	A	or	B	
		S1;	
}	

Class	hierarchy	 Method	to	be	compiled	

loaded	

not	loaded	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Virtual	call	inlining	

20	

class	A	{	
		void	bar()	{	
				S1;	
		}	
}	

class	B	extends	A	{	
		void	bar()	{	
				S2;	
		}	
}	

void	foo()	{	
		A	a	=	create();	//	return	A	or	B	
		S1;	
}	

Class	hierarchy	 Method	to	be	compiled	

loaded	

loaded	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Virtual	call	inlining	

21	

class	A	{	
		void	bar()	{	
				S1;	
		}	
}	

class	B	extends	A	{	
		void	bar()	{	
				S2;	
		}	
}	

void	foo()	{	
		A	a	=	create();	//	return	A	or	B	
		a.bar();	
}	

Class	hierarchy	 Method	to	be	compiled	

loaded	

loaded	

Compiler:	
Inline	call?	
No.	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

False	

Control	flow	graph	 Generated	code	

Hot	path	compila6on	

S1;	
S2;	
S3;	
if	(x	>	3)	

S4;	 S5;	
S6;	
S7;	

S8;	
S9;	

10’000	 0	

guard(x	>	3)	
S1;	
S2;	
S3;	
S4;	
S5;	
	

Uncommon	trap	

22	

True	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Deop6miza6on	
•  Compiler’s	op6mis6c	assump6on	proven	wrong	
–  AssumpRons	about	class	hierarchy	
–  Profile	informaRon	does	not	match	method	behavior	

•  Switch	execu6on	from	compiled	code	to	interpreta6on	
–  Reconstruct	state	of	interpreter	at	runRme	
–  Complex	implementaRon	

•  Compiled	code	
–  Possibly	thrown	away	
–  Possibly	reprofiled	and	recompiled	

23	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Performance	effect	of	deop6miza6on	
•  Follow	the	varia6on	of		a	single	method’s	performance	

24	

Performance	

Time	VM	Startup	 VM	Teardown	

Interpreted	 Compiled	 Interpreted	 Compiled	

Compila>on	 Deop>miza>on	 Compila>on	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

2.	Selec6ng	compiler	op6miza6ons	
•  C1	compiler	
–  Limited	set	of	opRmizaRons	
–  Fast	compilaRon	
–  Small	footprint	

•  C2	compiler	
–  Aggressive	opRmisRc	opRmizaRons	
–  High	resource	demands	
–  High-performance	code	

•  Graal	
–  Experimental	compiler	
–  Not	part	of	HotSpot	

25	

Client	VM	

Server	VM	

Tiered	compila6on	
(enabled	since	JDK	8)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Balancing	resource	usage	and	performance	
1.   Selec6ng	methods	to	compile	
–  “Hot”	methods	
–  Controlled	by	invocaRon	and	backedge	threshold	

2.   Choosing	compiler	op6miza6ons	
–  C1:	moderately	op'mizing	and		fast	compiler	
–  C2:	highly	op'mizing	and	slow	compiler	
–  LimitaRon	(before	JDK	8):	Single	compiler	in	the	VM	(client	or	server)	
–  StarRng	with	JDK	8:	Both	compilers	enabled	at	the	same	Rme	(Rered	compilaRon)	

26	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Outline	
• Why	virtual	machines?	
•  The	Java	HotSpot	VM	
–  Just-in-Rme	compilaRon	
–  OpRmisRc	compiler	opRmizaRons	
–  Tiered	compilaRon	
–  Recent	projects:	Segmented	Code	Cache,	Compact	Strings	
–  Future:	AOT,	JVMCI	

•  Conclusions	

27	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Tiered	compila6on	
•  Combine	the	benefits	of	
–  Interpreter:	Fast	startup	
–  C1:	Fast	warmup	
–  C2:	High	peak	performance	
–  SRll	within	the	sweet	spot	of	resource	usage/performance	tradeoff	

28	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Benefits	of	6ered	compila6on	(ar6st’s	concept)	

29	

Performance	

Time	VM	Startup	 VM	Teardown	

Interpreted	 C1-compiled	

Method	warm-up	
Rme	

Client	VM	(C1	only)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Benefits	of	6ered	compila6on	(ar6st’s	concept)	

30	

Performance	

Time	VM	Startup	 VM	Teardown	

Interpreted	 C2-compiled	

Method	warm-up	Rme	

Server	VM	(C2	only)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Benefits	of	6ered	compila6on	(ar6st’s	concept)	

31	

Performance	

Time	VM	Startup	 VM	Teardown	

Interpreted	 C1-compiled	

Method	warm-up	
Rme	

Tiered	compila6on	

C2-compiled	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Tiered	compila6on	
•  Combined	benefits	of	interpreter,	C1,	and	C2	
•  Addi6onal	benefits	
–  More	accurate	profiling	informaRon	

32	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

More	accurate	profiling	

Rme	

Interpreter	 C1	(profiled)	 C2	(non-profiled)	

Interpreter	

Profiling	without	6ered	compila6on	

Profiling	with	6ered	compila6on	

C2	(non-profiled)	

300	samples	

100	samples	 1000	samples	

100	samples	 200	samples	

w/	6ered	compila6on:	1’100	samples	gathered	
w/o	6ered	compila6on:	300	samples	gathered	

33	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Tiered	compila6on	
•  Combined	benefits	of	interpreter,	C1,	and	C2	
•  Addi6onal	benefits	
–  More	accurate	profiling	informaRon	

•  Drawbacks	
–  Complex	implementaRon	
–  Careful	tuning	of	compilaRon	thresholds	needed	
–  More	pressure	on	code	cache	–	Tobias	will	tell	you	more	about	that	

34	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

A	method’s	life6me	(w/	6ered	compila6on)	

Interpreter	 C1		 C2	

Code	cache	

Collect	profiling	informaRon	 Generate	code	quickly	
ConRnue	collecRng	
profiling	informaRon	

Generate	high-quality	code	
Use	profiling	informaRon	

DeopRmizaRon	

35	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Performance	of	a	single	method	(w/	6ered	compila6on)	

36	

Performance	

Time	VM	Startup	 VM	Teardown	

Interpreted	 C1	compiled	 Interpreted	 C2	compiled	

Compila>on	

Deop>miza>on	

Compila>on	

Interpreted	 C2	compiled	

Deop>miza>on	

Compila>on	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Compila6on	levels	(detailed	view)	

Interpreter	

C1:	no	profiling	

C1:	limited	profiling	

C1:	full	profiling	

C2	

0	

1	

2	

3	

4	

Co
m
pi
la
Ro

n	
le
ve
l	

Typical	compilaRon	sequence	

Associated	thresholds:	
Tier3InvokeNoRfyFreqLog	
Tier3BackedgeNoRfyFreqLog	
Tier3InvocaRonThreshold	
Tier3MinInvocaRonThreshold	
Tier3BackEdgeThreshold	
Tier3CompileThreshold	

Associated	thresholds:	
Tier4InvocaRonThreshold	
Tier4MinInvocaRonThreshold	
Tier4CompileThreshold	
Tier4BackEdgeThreshold	

37	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Outline	
• Why	virtual	machines?	
•  The	Java	HotSpot	VM	
–  Just-in-Rme	compilaRon	
–  OpRmisRc	compiler	opRmizaRons	
–  Tiered	compilaRon	
–  Recent	projects:	Segmented	Code	Cache,	Compact	Strings	
–  Future:	AOT,	JVMCI	

•  Conclusions	

38	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Part	1:	Segmented	Code	Cache	
Improving	the	layout	of	JIT	generated	code	

39	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Background	

Challenges	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

40	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Background	

Challenges	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

41	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

What	is	a	code	cache?	
•  Stores	code	generated	by	JIT	compilers	
•  Con6nuous	chunk	of	memory	
–  Fixed	size	-XX:ReservedCodeCacheSize	
–  Bump	pointer	allocaRon	with	free	list	

• Memory	managed	by	sweeper	
–  Cold	methods	are	evicted	
–  Hot	methods	remain	

• Why	should	I	care?	
–  EssenRal	for	performance	

42	

RunRme	

Debugging	

Compiler	

GC	

Serviceability	

Sweeper	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Code	cache	usage:	JDK	6	and	7	

free	space	
VM	internals	
compiled	code	

43	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Code	cache	usage:	JDK	8	(Tiered	Compila6on)	

44	

free	space	

VM	internals	

C1	compiled	(profiled)	

C2	compiled	(non-profiled)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Code	cache	usage:	JDK	9	

45	

free	space	

VM	internals	

C1	compiled	(profiled)	

C2	compiled	(non-profiled)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Background	

Challenges	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

46	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Challenges	
•  Tiered	compila6on	increases	amount	of	code	by	2-4X	
•  All	code	is	stored	in	a	single	code	cache	
–  Different	types	with	different	characterisRcs	
–  Different	usage	frequencies	(hotness)	
–  Access	to	specific	code	requires	full	iteraRon	

•  High	fragmenta6on	and	bad	locality	

	

47	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Proper6es	of	compiled	code	

Op6miza6on	level	 Size	

Cost	of	compila6on	 Life6me	

48	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Types	of	compiled	code	

Non-method	code	 opRmized	 small	 cheap	 immortal	

Profiled	code	(C1)	 instrumented	 medium	 cheap	 limited	

Non-profiled	code	(C2)	 highly	opRmized	 large	 expensive	 long	

49	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Code	cache	usage	

50	

free	space	

VM	internals	

C1	compiled	(profiled)	

C2	compiled	(non-profiled)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 51	

Code	cache	usage:	Reality	

profiled	code	
non-profiled	code	

free	space	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 52	

Code	cache	usage:	Reality	

profiled	code	
non-profiled	code	

free	space	

hotness	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Background	

Challenges	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

53	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

• Without	Segmented	Code	Cache	 • With	Segmented	Code	Cache	

54	

Design	

Code	Cache	

non-profiled	methods	

profiled	methods	

non-methods	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

non-profiled	methods	profiled	methods	

55	

Segmented	Code	Cache:	Reality	

profiled	code	
non-profiled	code	

free	space	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 56	

Segmented	Code	Cache:	Reality	

non-profiled	methods	profiled	methods	 hotness	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Background	

Challenges	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

57	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Evalua6on:	Code	locality	
•  Instruc6on	Cache	(ICache)	
–  14%	less	ICache	misses	

•  Instruc6on	Transla6on	Lookaside	Buffer	(ITLB1)	
–  44%	less	ITLB	misses	
–  9%	speedup	with	microbenchmark	

58	

1	caches	virtual	to	physical	address	
mappings	to	avoid	slow	page	walks	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Evalua6on:	Sweeper	

59	

0	

5	

10	

15	

20	

25	

30	

35	

40	

#	full	sweeps	 Cleanup	pause	Rme	 Sweep	Rme	

Re
du

c6
on

	in
	%
	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Evalua6on:	Run6me	

60	

0	

2	

4	

6	

8	

10	

12	

14	

SPECjbb2005	 SPECjbb2013	 JMH-Javac	 Octane	(Typescript)	 Octane	(Gbemu)	

Im
pr
ov
em

en
t	i
n	
%
	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Background	

Challenges	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

61	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Conclusion	
•  Code	layout	maters	
–  Significant	impact	on	performance	
–  Code	locality	reduces	iTLB	misses	

•  Segmented	Code	Cache	helps	
–  Less	sweeper	overhead	
–  Reduced	fragmentaRon	

•  Base	for	future	extensions	
–  New	code	types	
–  SeparaRon	of	code	and	metadata	

62	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Part	2:	Compact	Strings	
Improve	VM	internal	handling	of	Strings	

63	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Java	Strings	

Project	Goals	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

64	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Java	Strings	

Project	Goals	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

65	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

	
public	class	HelloWorld	{	
				public	static	void	main(String[]	args)	{	

	String	myString	=	"HELLO";	
	System.out.println(myString);	

				}	
}	

Java	Strings	

66	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 67	

	
public	class	HelloWorld	{	
				public	static	void	main(String[]	args)	{	

	String	myString	=	"HELLO";	
	System.out.println(myString);	

				}	
}	

Java	Strings	

	
public	final	class	String	{	
				private	final	char	value[];	
				...	
}	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 68	

	
public	class	HelloWorld	{	
				public	static	void	main(String[]	args)	{	

	String	myString	=	"HELLO";	
	System.out.println(myString);	

				}	
}	

Java	Strings	

	
public	final	class	String	{	
				private	final	char	value[];	
				...	
}	

char	value[]	=	

H	
0x0048	 0x0045	 0x004C	 0x004C	 0x004F	

2	bytes	

E	 L	 L	 O	
UTF-16	encoded	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

“PerfecRon	is	achieved,	not	when	there	
is	nothing	more	to	add,	but	when	there	
is	nothing	more	to	take	away.”	
–  Antoine	de	Saint	Exupéry	

69	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

There	is	a	lot	to	take	away	here..	
•  UTF-16	encoded	Strings	always	occupy	two	bytes	per	char	
• Wasted	memory	if	only	La6n-1	(one-byte)	characters	used:	

	

70	

char	value[]	=	

H	
0x0048	 0x0045	 0x004C	 0x004C	 0x004F	

2	bytes	

E	 L	 L	 O	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

There	is	a	lot	to	take	away	here..	
•  UTF-16	encoded	Strings	always	occupy	two	bytes	per	char	
• Wasted	memory	if	only	La6n-1	(one-byte)	characters	used:	

	

•  But	is	this	a	problem	in	real	life?	

71	

char	value[]	=	

H	
0x0048	 0x0045	 0x004C	 0x004C	 0x004F	

2	bytes	

E	 L	 L	 O	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Real	life	analysis:	char[]	footprint	
•  950	heap	dumps	from	a	variety	of	applica6ons	
–  char[]	footprint	makes	up	10%	-	45%	of	live	data	
–  Majority	of	characters	are	single	byte	
–  75%	of	Strings	are	smaller	than	35	characters	
–  75%	of	Characters	are	in	Strings	of	length	<	250	

•  Predicted	footprint	reduc6on	of	5%	-	10%	

72	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Java	Strings	

Project	Goals	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

73	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Project	Goals	
• Memory	footprint	reduc6on	by	improving	space	efficiency	of	Strings	
• Meet	or	beat	throughput	performance	of	baseline	JDK	9	

•  Full	compa6bility	with	related	Java	and	na6ve	interfaces	

•  Full	plaJorm	support	
–  x86/x64,	SPARC,	ARM	
–  Linux,	Solaris,	Windows,	Mac	OS	X	

74	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Java	Strings	

Project	Goals	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

75	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Design	
•  String	class	now	uses	a	byte[]	instead	of	a	char[]	

•  Addi6onal	'coder'	field	indicates	which	encoding	is	used	
	

	

	

76	

	
public	final	class	String	{	
				private	final	byte	value[];	
				private	final	byte	coder;	
				...	
}	

H	 E	 L	 L	 O	
byte	value[]	=	 0x00	 0x48	 0x00	 0x45	 0x00	 0x4C	 0x00	 0x4C	 0x00	 0x4F	

byte	value[]	=	 0x48	 0x45	 0x4C	 0x4C	 0x4F	

UTF-16	encoded	

La6n-1	encoded	

H	 E	 L	 L	 O	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Design	
•  If	all	characters	have	a	zero	upper	byte	

→ 	String	is	compressed	to	La6n-1	by	stripping	off	high	order	bytes	

•  If	A	character	has	a	non-zero	upper	byte	
→ 	String	cannot	be	compressed	and	is	stored	UTF-16	encoded	

	

	

77	

byte	value[]	=	 0x00	 0x48	 0x00	 0x45	 0x00	 0x4C	 0x00	 0x4C	 0x00	 0x4F	

byte	value[]	=	0x48	 0x45	 0x4C	0x4C	 0x4F	

UTF-16	encoded	

La6n-1	encoded	

Infla6on	Compression	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Design	
•  Compression	/	infla6on	needs	to	fast	
•  Requires	HotSpot	support	in	addi6on	to	Java	class	library	changes	
–  JIT	compilers:	Intrinsics	and	String	concatenaRon	opRmizaRons	
–  RunRme:	String	object	constructors,	JNI,	JVMTI	
–  GC:	String	deduplicaRon	

•  Kill	switch	to	enforce	UTF-16	encoding	(-XX:-CompactStrings)	
–  For	applicaRons	that	extensively	use	UTF-16	characters	

	

	

78	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Java	Strings	

Project	Goals	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

79	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Evalua6on	
•  New	and	exis6ng	unitests	
• Microbenchmarks	at	the	String	API	level	

•  Large	benchmarks	to	measure	overall	performance	

	

80	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			 81	

	
public	class	LogLineBench	{	
				int	size;	
	
				String	method	=	generateString(size);	
	
				public	String	work()	throws	Exceptions	{	
								return	"["	+	System.nanoTime()	+	"]	"	+	
															Thread.currentThread().getName()	+	
															"Calling	an	application	method	\""	+	method	+	
															"\"	without	fear	and	prejudice.";	
}	

Microbenchmark:	LogLineBench	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

LogLineBench	results	
Performance	ns/op	 Allocated	b/op	

1	 10	 100	 1	 10	 100	

Baseline	 149	 153	 231	 888	 904	 1680	

CS	disabled	 152	 150	 230	 888	 904	 1680	

CS	enabled	 142	 139	 169	 504	 512	 904	

82	

•  Kill	switch	works	(no	regression)	
•  27%	performance	improvement	and	46%	footprint	reducRon		

	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Large	workloads	
•  SPECjbb2005	
–  21%	footprint	reducRon	
–  27%	less	GCs	
–  5%	throughput	improvement	

•  SPECjbb2015	
–  7%	footprint	reducRon	
–  11%	criRcal-jOps	improvement	

• Weblogic	(startup)	
–  10%	footprint	reducRon	
–  5%	startup	Rme	improvement	

	

	
83	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Program	Agenda	

Java	Strings	

Project	Goals	

Design	

Evalua6on	

Conclusion	

1	

2	

3	

4	

84	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Conclusion	

Compact	Strings	helps	our	
applica6ons	a	lot.	

Ongoing	effort:	Indify	
String	Concat,	Fused	Strings	

Try	out	JDK	9	early	access:	
jdk9.java.net/download/	

..	and	tell	us	how	it	
performs	with	your	
applica6ons!	

85	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Future	
•  AOT:	Ahead-of-6me	compila6on	
–  Compile	to	naRve	code	(not	to	Java	bytecodes)	
–  More	informaRon:	hvps://www.youtube.com/watch?v=Xybzyv8qbOc	(45-minute	talk	from	JVMLS’15)	

•  JVMCI:	Java	Virtual	Machine	Compiler	Interface	
–  Current	compilers	wriven	in	C/C++	
–  JVMCI:	Interface	to	allow	Java	code	to	intercept	JVM	acRvity	and	plug-in	naRve	code	
–  Experimental	feature,	Graal	and	SubstrateVM	use	it	

86	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Conclusions	
•  Java	–	a	vibrant	plaJorm	
–  New	features:	Segmented	Code	Cache,	Compact	Strings,	JVMCI	
–  …	and	many	other	features	to	be	released	with	JDK	9	
–  Stay	tuned!	

•  The	future	of	the	Java	plaJorm	

"Our	SaaS	products	are	built	on	top	of	Java	and	the	Oracle	DB—that’s	the	plaMorm.”	
		Larry	Ellison,	Oracle	CTO	

87	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Thank	you	for	your	aten6on!	

88	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.			

Backup	slides	

90	

