The Java HotSpot VM
Under the Hood

Tobias Hartmann
Zoltan Majo

HotSpot Compiler Team
Oracle Corporation

* Tobias Hartmann
— MSc ETH Zurich, Switzerland

— Lives in Rheinfelden, Germany

* Zoltan Majo
— PhD ETH Zurich, Switzerland

— Grew up in Cluj, Romania

* Both of us: @Oracle since 2014

— Compiler team for the Java HotSpot Virtual Machine

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 3

A typical computing platform

User Applications

Java Virtual Machine

Java SE

Operating system

Hardware

S Javar

. Copyright © 2016, Oracle and/or its affiliates. All rights reserved.
—— ORACLE

A typical computing platform

User Applications

System Software

Hardware

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 5

A typical computing platform

User Applications

Java Virtual Machine

Java SE

Operating system

Hardware

S Javar

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

—— ORACLE

Outline

* Why virtual machines?
* The Java HotSpot VM

— Just-in-time compilation
— Optimistic compiler optimizations
— Tiered compilation

— Recent projects: Segmented Code Cache, Compact Strings
— Future: AOT, JVMCI

* Conclusions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Programming language implementation

Programming
language

Language
implementation

Operating
system

Hardware

Compiler ¢
Standard libraries ¢
|
|

¢ Compiler

3 Standard libraries

Debugger

Debugger |
\ Memory management

Memory management

l

Windows
1 Solaris
! 1 1
Intel x86

SPARC

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

(Language) virtual machine

Programming
language

Virtual machine

Operating
system

Hardware

Java

Windows

Intel x86

J/ %

JavaScript Scala Python
Linux Mac OS X Solaris
PPC ARM SPARC

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

The VM: An application developer’s view

Java source code Bytecodes

int i = @; compile : iconst_o execute

do {
i++;
} while (i < f());

: istore_ 1

: iinc

: iload 1

: invokestatic f
: if _icmplt 2

: return

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

HotSpot

IEVERAY

10

The VM: A VM engineer’s view

Bytecodes

: iconst ©

: istore 1

: 1inc

: iload 1

: invokestatic f
: if _icmplt 2

: return

execute

<

HotSpot Java VM

compile

Garbage

Compilation produce Compiled method
system

A 4

collector

manage

aCcess)

access N

Interpreter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

11

Major components of HotSpot

* Runtime
— Interpreter
— Thread management
— Synchronization

— Class loading

* Heap management

— Garbage collectors

* Compilation system

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

12

Interpretation vs. compilation in HotSpot

* Template-based interpreter
— Generated at VM startup (before program execution)

— Maps a well-defined machine code sequence to every bytecode instruction

Bytecodes

28 Jeaeet Machine code
L Yine T mov oAb Vb S «———| 0ad local variable 1
L i1 d1 movzbl Ox1(%rl13), %ebX K
« 110ad_ inc %ri13

: invokestatic + o $OXFF40,%r10 Dispatch next instruction

: if_icmplt 2 : ot .
: return Jmpq (%rie,%rbx,8)

— Optimization: cache top-of-stack value in a register to reduce # of memory accesses

* Compilation system
— Speedup relative to interpretation: ~100X
— Two just-in-time compilers (C1, C2)

— Aggressive optimistic optimizations

S Javar

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

<< " ORACLE

13

Ahead-of-time vs. just-in-time compilation

* AOT: Before program execution

* JIT: During program execution

* Tradeoff: Resource usage vs. performance of generated code

Performance

due to interpretation

Interpretation

S Javar

<< " ORACLE

due to good selection due to compilation
of compiled methods overhead

and of applied

optimizations

Amount of compilation Compile everything

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

14

Balancing resource usage and performance

* Getting to the “sweet spot”

 Carefully selecting
1. Methods to compile

2. Applied compiler optimizations

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

15

1. Selecting method to compile

* Hot methods (frequently executed methods)

* Profile method execution

— # of method invocations, # of backedges

* A method’s lifetime in the VM

Compiler’s optimistic assumptions
proven wrong

Deoptimization

method invocations > THRESHOLD,
] # of backedges > THRESHOLD,

Gather profiling information Compile bytecode to native code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

»
»

Store machine code

16

Virtual call inlining

Class hierarchy Method to be compiled
class A { void foo() {
void bar() { A a = create(); // return A or B TP
S.; loaded a.bar(); Co.mpller.?
} } Inline call?
} Yes.

class B extends A {
void bar() {
S,; not loaded
}
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Virtual call inlining

Class hierarchy Method to be compiled
class A { void foo() {
void bar() { A.a = create(); // return A or B Compiler:
Si; loaded 57 . -')
} } Inline call?
} Yes.

class B extends A { * Benefits of inlining
void bar() {
S,; not loaded

} — Code locality
}

— Virtual call avoided

* Optimistic assumption: only A is loaded
— Note dependence on class hierarchy

— Deoptimize if hierarchy changes

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

18

Virtual call inlining

Class hierarchy Method to be compiled

class A {
void bar() {

S.; loaded S.3
}

void foo() {
A a = create(); // return A or B

}
}

class B extends A {
void bar() {
S,; not loaded
}
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Virtual call inlining

Class hierarchy Method to be compiled

class A {
void bar() {

S.; loaded S.;
}

void foo() {
A_2.=.create(); // return A or B

}
}

class B extends A {
void bar() {
S,; loaded
}
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Virtual call inlining

Class hierarchy Method to be compiled
class A { void foo() {
void bar() { A_a.=.create(); // return A or B TP
S.; loaded a.bar(); Co.mpller.?
} } Inline call?
} No.

class B extends A {
void bar() {
S,; loaded
}
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hot path compilation

Control flow graph Generated code

guard(x > 3)

S15

25 Uncommon trap
35

45
)

10’000

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Deoptimization

* Compiler’s optimistic assumption proven wrong
— Assumptions about class hierarchy

— Profile information does not match method behavior

* Switch execution from compiled code to interpretation
— Reconstruct state of interpreter at runtime

— Complex implementation

* Compiled code

— Possibly thrown away

— Possibly reprofiled and recompiled

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

23

Performance effect of deoptimization

* Follow the variation of a single method’s performance

Performance Interpreted Compiled Interpreted Compiled

e p—

]]

S Javar

== eoNa Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

2. Selecting compiler optimizations

* C1 compiler

— Limited set of optimizations

o Client VM
— Fast compilation
— Small footprint
o . Tiered compilation
compiler (enabled since JDK 8)
— Aggressive optimistic optimizations Server VM

— High resource demands

— High-performance code

* Graal

— Experimental compiler

— Not part of HotSpot

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

25

Balancing resource usage and performance

1. Selecting methods to compile
— “Hot” methods

— Controlled by invocation and backedge threshold

2. Choosing compiler optimizations
— C1: moderately optimizing and fast compiler
— C2: highly optimizing and slow compiler
— Limitation (before JDK 8): Single compiler in the VM (client or server)

— Starting with JDK 8: Both compilers enabled at the same time (tiered compilation)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Outline

* Why virtual machines?
* The Java HotSpot VM

— Just-in-time compilation
— Optimistic compiler optimizations
— Tiered compilation

— Recent projects: Segmented Code Cache, Compact Strings
— Future: AOT, JVMCI

* Conclusions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

27

Tiered compilation

 Combine the benefits of

Interpreter: Fast startup
C1: Fast warmup
C2: High peak performance

Still within the sweet spot of resource usage/performance tradeoff

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

28

Benefits of tiered compilation (artist’s concept)

Client VM (C1 only)

Performance

Method warm-up

time

Interpreted

C1-compiled

Time

VM Teardown

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

29

Benefits of tiered compilation (artist’s concept)

Server VM (C2 only)

Method warm-up time

Performance

Interpreted

C2-compiled

Time

VM Teardown

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

30

Benefits of tiered compilation (artist’s concept)

Tiered compilation

Performance

Method warm-up

time

Interpreted

M NN SN B B S S S - - _‘

Cl-compiled

C2-compiled

Time

VM Teardown

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

31

Tiered compilation

* Combined benefits of interpreter, C1, and C2
* Additional benefits

— More accurate profiling information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

32

More accurate profiling

w/ tiered compilation: 1’100 samples gathered
w/o tiered compilation: 300 samples gathered

Profiling without tiered compilation

I
I
Interpreter I C2 (non-profiled)
A ' A
{ 100 samples | 300 samples 200 samples \ I { \
| I time
100 samples 1000 samples
l] |\ J I \ J
Y Y I Y
Interpreter C1 (profiled) | C2 (non-profiled)
|

Profiling with tiered compilation

S, Javar

== ST Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Tiered compilation

* Combined benefits of interpreter, C1, and C2
* Additional benefits

— More accurate profiling information

* Drawbacks
— Complex implementation
— Careful tuning of compilation thresholds needed

— More pressure on code cache — Tobias will tell you more about that

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

34

A method’s lifetime (w/ tiered compilation)

\ 4

Deoptimization “ Code cache

Interpreter

Collect profiling information

v

-

Generate code quickly Generate high-quality code
Continue collecting Use profiling information
profiling information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

35

Performance of a single method (w/ tiered compilation)

Deoptimization Deoptimization

C2 compiled : Interpreted : C2 compiled

Compilation Compilation

—

Performance Interpreted : C1 compiled ®© Interpreted

S Javar

== eoNa Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

VM Teardown

36

Compilation levels (detailed view)

Typical compilation sequence

3 C1: full profiling

2 C1: limited profiling

1 C1: no profiling

0 Interpreter

Compilation level

S, Javar

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

<< " ORACLE

Associated thresholds:
Tier4InvocationThreshold
Tier4dMinlnvocationThreshold
Tier4dCompileThreshold
Tier4dBackEdgeThreshold

Associated thresholds:
Tier3InvokeNotifyFreglLog
Tier3BackedgeNotifyFreglLog
Tier3InvocationThreshold

Tier3MinlnvocationThreshold
Tier3BackEdgeThreshold
Tier3CompileThreshold

Outline

* Why virtual machines?
* The Java HotSpot VM

— Just-in-time compilation
— Optimistic compiler optimizations
— Tiered compilation

— Recent projects: Segmented Code Cache, Compact Strings
— Future: AOT, JVMCI

* Conclusions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

38

Part 1: Segmented Code Cache

Improving the layout of JIT generated code

Program Agenda

E®» Background
E» Challenges

E» Design

E» Evaluation

I Conclusion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

40

Program Agenda

E» Background

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

41

What is a code cache?

 Stores code generated by JIT compilers

* Continuous chunk of memory
— Fixed size -XX:ReservedCodeCacheSize

— Bump pointer allocation with free list

* Memory managed by sweeper
— Cold methods are evicted

— Hot methods remain

* Why should | care?

— Essential for performance

==
v

o Ry untine

Serviceability Debugging

=
-

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

42

Code cache usage: JDK 6 and 7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

[Ifree space
B VM internals

E compiled code

43

Code cache usage: JDK 8 (Tiered Compilation)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

(I free space

B VM internals

B C1 compiled (profiled)

B C2 compiled (non-profiled)

44

Code cache usage: JDK 9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

(I free space

B VM internals
B C1 compiled (profiled)

B C2 compiled (non-profiled)

45

Program Agenda

E» Challenges

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

46

Challenges

* Tiered compilation increases amount of code by 2-4X

* All code is stored in a single code cache
— Different types with different characteristics
— Different usage frequencies (hotness)

— Access to specific code requires full iteration

* High fragmentation and bad locality

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

47

Properties of compiled code

Optimization level Size

Lifetime

@ Cost of compilation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

48

Types of compiled code

e = -~
» Non-method code optimized small cheap immortal
Profiled code (C1) instrumented medium cheap limited
Non-profiled code (C2) highly optimized large expensive long

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

49

Code cache usage

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

(I free space

B VM internals
B C1 compiled (profiled)

B C2 compiled (non-profiled)

50

Code cache usage: Reality

free space
. profiled code
- non-profiled code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

51

Code cache usage: Reality

1440

4420

400

380

free space
. profiled code
. non-profiled code

360

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

52

Program Agenda

E» Design

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

53

Design

* Without Segmented Code Cache

Code Cache

* With Segmented Code Cache

non-profiled methods

profiled methods

non-methods

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

54

Segmented Code Cache: Reality

profiled methods non-profiled methods

free space
. profiled code
- non-profiled code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

55

Segmented Code Cache: Reality

profiled methods non-profiled methods hotness

: e w— — e —— 510

_ — 495

| 1480

4465

450

435

e = 420
; -
390

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

56

Program Agenda

D) Evaluation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

57

Evaluation: Code locality

* Instruction Cache (ICache)

— 14% less ICache misses

* Instruction Translation Lookaside Buffer (ITLB%)
— 44% less ITLB misses

— 9% speedup with microbenchmark

! caches virtual to physical address
mappings to avoid slow page walks

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

58

Evaluation: Sweeper

40

w
9]

w
o

N
9

Reduction in %
= N
(Oa] o

=
o

U

o

S Javar

<< " ORACLE

full sweeps

Cleanup pause time

Sweep time

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

59

Evaluation: Runtime

14

12

2 . I E
0 - — |

SPECjbb2005 SPECjbb2013 JMH-Javac Octane (Typescript) Octane (Gbemu)

=
o

oo

(@)

Improvement in %

I

S Javar

== eoNa Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

60

Program Agenda

I Conclusion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

61

Conclusion

* Code layout matters
— Significant impact on performance

— Code locality reduces iTLB misses

* Segmented Code Cache helps
— Less sweeper overhead

— Reduced fragmentation

* Base for future extensions

— New code types

— Separation of code and metadata

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

62

Part 2: Compact Strings

Improve VM internal handling of Strings

Program Agenda

E® Java Strings
E» Project Goals
E» Design

E» Evaluation

I Conclusion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

64

Program Agenda

E® Java Strings

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

65

Java Strings

public class HelloWorld {
public static void main(String[] args) {
String myString = "HELLO";
System.out.println(myString);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

66

Java Strings

public class HelloWorld {
public static void main(String[] args) {
String myString = "HELLO";
System.out.println(myString);

} public final class String {
private final char value[];

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

67

Java Strings

public class HelloWorld {
public static void main(String[] args) {
String myString = "HELLO";
System.out.println(myString);
}
} public final class String {
private final char value[]; —

H E L L 0
—> char value[] = HYONIEE HOYOLZEE NoYGeLrel Mool W73 UTF-16 encoded
W_/

2 bytes

S Javar

== eoNa Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

68

“Perfection is achieved, not when there
is nothing more to add, but when there
is nothing more to take away.”

— Antoine de Saint Exupéry

There is a lot to take away here..

* UTF-16 encoded Strings always occupy two bytes per char

* Wasted memory if only Latin-1 (one-byte) characters used:

H E L L 0
W_/

2 bytes

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

70

There is a lot to take away here..

* UTF-16 encoded Strings always occupy two bytes per char

* Wasted memory if only Latin-1 (one-byte) characters used:

H E L L 0
W_/

2 bytes

* But is this a problem in real life?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

71

Real life analysis: char[] footprint

* 950 heap dumps from a variety of applications
— char[] footprint makes up 10% - 45% of live data
— Majority of characters are single byte
— 75% of Strings are smaller than 35 characters

— 75% of Characters are in Strings of length < 250
* Predicted footprint reduction of 5% - 10%

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

72

Program Agenda

E» Project Goals

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

73

Project Goals

* Memory footprint reduction by improving space efficiency of Strings
* Meet or beat throughput performance of baseline JDK 9
* Full compatibility with related Java and native interfaces

* Full platform support
— x86/x64, SPARC, ARM

— Linux, Solaris, Windows, Mac OS X

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

74

Program Agenda

E» Design

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

75

Design

* String class now uses a byte[] instead of a char(]
public final class String {

private final byte value[];
private final byte coder;

}
* Additional 'coder’ field indicates which encoding is used

H E L L 0
o vaer) - [oo
e vaer - [0
H E L L O

Latin-1 encoded

S Javar

== eoNa Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

76

Design

* If all characters have a zero upper byte
— String is compressed to Latin-1 by stripping off high order bytes

* If A character has a non-zero upper byte

— String cannot be compressed and is stored UTF-16 encoded

byte value[]

e [oe el o Jer

lCompression Tlnﬂation

i

byte value[]

S Javar

UTF-16 encoded

Latin-1 encoded

== Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

<—— ORACLE

77

Design

* Compression / inflation needs to fast

* Requires HotSpot support in addition to Java class library changes
— JIT compilers: Intrinsics and String concatenation optimizations
— Runtime: String object constructors, JNI, JVMTI
— GC: String deduplication

* Kill switch to enforce UTF-16 encoding (-XX:-CompactStrings)

— For applications that extensively use UTF-16 characters

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

78

Program Agenda

D) Evaluation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

79

Evaluation

* New and existing unittests
* Microbenchmarks at the String API level

* Large benchmarks to measure overall performance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

80

Microbenchmark: LogLineBench

public class LoglLineBench {
int size;

String method = generateString(size);

public String work() throws Exceptions {
return "[" + System.nanoTime() + "] -
Thread.currentThread().getName() +
"Calling an application method \""
"\" without fear and prejudice.";

+ method +

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

81

LogLineBench results

Performance ns/op
1 10 100

Allocated b/op
1 10 100

» Baseline

CS disabled

CS enabled

149 153 231

152 150 230

142 139 169

888 904 1680

888 904 1680

504 512 904

* Kill switch works (no regression)

* 27% performance improvement and 46% footprint reduction

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

82

Large workloads
* SPECjbb2005

— 21% footprint reduction
— 27% less GCs
— 5% throughput improvement

- SPECjbb2015

— 7% footprint reduction

— 11% critical-jOps improvement

* Weblogic (startup)
— 10% footprint reduction

— 5% startup time improvement

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

83

Program Agenda

I Conclusion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

84

Conclusion

Ongoing effort: Indify
String Concat, Fused Strings

Compact Strings helps our
applications a lot.

‘ .. and tell us how it
performs with your

—
Try out JDK 9 early access:
' jdk9.java.net/download/ applications!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 85

Future

* AOT: Ahead-of-time compilation
— Compile to native code (not to Java bytecodes)

— More information: https://www.youtube.com/watch?v=Xybzyv8qbOc (45-minute talk from JVMLS’15)

* JVMCI: Java Virtual Machine Compiler Interface
— Current compilers written in C/C++
— JVMCI: Interface to allow Java code to intercept JVM activity and plug-in native code

— Experimental feature, Graal and SubstrateVM use it

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

86

Conclusions

* Java — a vibrant platform
— New features: Segmented Code Cache, Compact Strings, JVMCI
— ... and many other features to be released with JDK 9

— Stay tuned!
* The future of the Java platform

"Our SaaS$ products are built on top of Java and the Oracle DB—that’s the platform.”
Larry Ellison, Oracle CTO

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

87

Thank you for your attention!

;_s(_,z Javar

ORACLE

Backup slides

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

90

