/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciMethodData.hpp" #include "ci/ciTypeFlow.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionary.hpp" #include "compiler/compileLog.hpp" #include "gc/shared/gcLocker.hpp" #include "libadt/dict.hpp" #include "memory/oopFactory.hpp" #include "memory/resourceArea.hpp" #include "oops/instanceKlass.hpp" #include "oops/instanceMirrorKlass.hpp" #include "oops/objArrayKlass.hpp" #include "oops/typeArrayKlass.hpp" #include "opto/matcher.hpp" #include "opto/node.hpp" #include "opto/opcodes.hpp" #include "opto/type.hpp" // Portions of code courtesy of Clifford Click // Optimization - Graph Style // Dictionary of types shared among compilations. Dict* Type::_shared_type_dict = NULL; // Array which maps compiler types to Basic Types const Type::TypeInfo Type::_type_info[Type::lastype] = { { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array #ifdef SPARC { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ #elif defined(PPC64) { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ #elif defined(S390) { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ #else // all other { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ #endif { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom }; // Map ideal registers (machine types) to ideal types const Type *Type::mreg2type[_last_machine_leaf]; // Map basic types to canonical Type* pointers. const Type* Type:: _const_basic_type[T_CONFLICT+1]; // Map basic types to constant-zero Types. const Type* Type:: _zero_type[T_CONFLICT+1]; // Map basic types to array-body alias types. const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; //============================================================================= // Convenience common pre-built types. const Type *Type::ABIO; // State-of-machine only const Type *Type::BOTTOM; // All values const Type *Type::CONTROL; // Control only const Type *Type::DOUBLE; // All doubles const Type *Type::FLOAT; // All floats const Type *Type::HALF; // Placeholder half of doublewide type const Type *Type::MEMORY; // Abstract store only const Type *Type::RETURN_ADDRESS; const Type *Type::TOP; // No values in set //------------------------------get_const_type--------------------------- const Type* Type::get_const_type(ciType* type) { if (type == NULL) { return NULL; } else if (type->is_primitive_type()) { return get_const_basic_type(type->basic_type()); } else { return TypeOopPtr::make_from_klass(type->as_klass()); } } //---------------------------array_element_basic_type--------------------------------- // Mapping to the array element's basic type. BasicType Type::array_element_basic_type() const { BasicType bt = basic_type(); if (bt == T_INT) { if (this == TypeInt::INT) return T_INT; if (this == TypeInt::CHAR) return T_CHAR; if (this == TypeInt::BYTE) return T_BYTE; if (this == TypeInt::BOOL) return T_BOOLEAN; if (this == TypeInt::SHORT) return T_SHORT; return T_VOID; } return bt; } // For two instance arrays of same dimension, return the base element types. // Otherwise or if the arrays have different dimensions, return NULL. void Type::get_arrays_base_elements(const Type *a1, const Type *a2, const TypeInstPtr **e1, const TypeInstPtr **e2) { if (e1) *e1 = NULL; if (e2) *e2 = NULL; const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr(); const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr(); if (a1tap != NULL && a2tap != NULL) { // Handle multidimensional arrays const TypePtr* a1tp = a1tap->elem()->make_ptr(); const TypePtr* a2tp = a2tap->elem()->make_ptr(); while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { a1tap = a1tp->is_aryptr(); a2tap = a2tp->is_aryptr(); a1tp = a1tap->elem()->make_ptr(); a2tp = a2tap->elem()->make_ptr(); } if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { if (e1) *e1 = a1tp->is_instptr(); if (e2) *e2 = a2tp->is_instptr(); } } } //---------------------------get_typeflow_type--------------------------------- // Import a type produced by ciTypeFlow. const Type* Type::get_typeflow_type(ciType* type) { switch (type->basic_type()) { case ciTypeFlow::StateVector::T_BOTTOM: assert(type == ciTypeFlow::StateVector::bottom_type(), ""); return Type::BOTTOM; case ciTypeFlow::StateVector::T_TOP: assert(type == ciTypeFlow::StateVector::top_type(), ""); return Type::TOP; case ciTypeFlow::StateVector::T_NULL: assert(type == ciTypeFlow::StateVector::null_type(), ""); return TypePtr::NULL_PTR; case ciTypeFlow::StateVector::T_LONG2: // The ciTypeFlow pass pushes a long, then the half. // We do the same. assert(type == ciTypeFlow::StateVector::long2_type(), ""); return TypeInt::TOP; case ciTypeFlow::StateVector::T_DOUBLE2: // The ciTypeFlow pass pushes double, then the half. // Our convention is the same. assert(type == ciTypeFlow::StateVector::double2_type(), ""); return Type::TOP; case T_ADDRESS: assert(type->is_return_address(), ""); return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); default: // make sure we did not mix up the cases: assert(type != ciTypeFlow::StateVector::bottom_type(), ""); assert(type != ciTypeFlow::StateVector::top_type(), ""); assert(type != ciTypeFlow::StateVector::null_type(), ""); assert(type != ciTypeFlow::StateVector::long2_type(), ""); assert(type != ciTypeFlow::StateVector::double2_type(), ""); assert(!type->is_return_address(), ""); return Type::get_const_type(type); } } //-----------------------make_from_constant------------------------------------ const Type* Type::make_from_constant(ciConstant constant, bool require_constant, int stable_dimension, bool is_narrow_oop, bool is_autobox_cache) { switch (constant.basic_type()) { case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); case T_CHAR: return TypeInt::make(constant.as_char()); case T_BYTE: return TypeInt::make(constant.as_byte()); case T_SHORT: return TypeInt::make(constant.as_short()); case T_INT: return TypeInt::make(constant.as_int()); case T_LONG: return TypeLong::make(constant.as_long()); case T_FLOAT: return TypeF::make(constant.as_float()); case T_DOUBLE: return TypeD::make(constant.as_double()); case T_ARRAY: case T_OBJECT: { // cases: // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0) // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2) // An oop is not scavengable if it is in the perm gen. const Type* con_type = NULL; ciObject* oop_constant = constant.as_object(); if (oop_constant->is_null_object()) { con_type = Type::get_zero_type(T_OBJECT); } else if (require_constant || oop_constant->should_be_constant()) { con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); if (con_type != NULL) { if (Compile::current()->eliminate_boxing() && is_autobox_cache) { con_type = con_type->is_aryptr()->cast_to_autobox_cache(true); } if (stable_dimension > 0) { assert(FoldStableValues, "sanity"); assert(!con_type->is_zero_type(), "default value for stable field"); con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); } } } if (is_narrow_oop) { con_type = con_type->make_narrowoop(); } return con_type; } case T_ILLEGAL: // Invalid ciConstant returned due to OutOfMemoryError in the CI assert(Compile::current()->env()->failing(), "otherwise should not see this"); return NULL; default: // Fall through to failure return NULL; } } static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { BasicType conbt = con.basic_type(); switch (conbt) { case T_BOOLEAN: conbt = T_BYTE; break; case T_ARRAY: conbt = T_OBJECT; break; default: break; } switch (loadbt) { case T_BOOLEAN: loadbt = T_BYTE; break; case T_NARROWOOP: loadbt = T_OBJECT; break; case T_ARRAY: loadbt = T_OBJECT; break; case T_ADDRESS: loadbt = T_OBJECT; break; default: break; } if (conbt == loadbt) { if (is_unsigned && conbt == T_BYTE) { // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). return ciConstant(T_INT, con.as_int() & 0xFF); } else { return con; } } if (conbt == T_SHORT && loadbt == T_CHAR) { // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). return ciConstant(T_INT, con.as_int() & 0xFFFF); } return ciConstant(); // T_ILLEGAL } // Try to constant-fold a stable array element. const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, BasicType loadbt, bool is_unsigned_load) { // Decode the results of GraphKit::array_element_address. ciConstant element_value = array->element_value_by_offset(off); if (element_value.basic_type() == T_ILLEGAL) { return NULL; // wrong offset } ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); if (con.is_valid() && // not a mismatched access !con.is_null_or_zero()) { // not a default value bool is_narrow_oop = (loadbt == T_NARROWOOP); return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); } return NULL; } const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { ciField* field; ciType* type = holder->java_mirror_type(); if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { // Static field field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); } else { // Instance field field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); } if (field == NULL) { return NULL; // Wrong offset } return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); } const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, BasicType loadbt, bool is_unsigned_load) { if (!field->is_constant()) { return NULL; // Non-constant field } ciConstant field_value; if (field->is_static()) { // final static field field_value = field->constant_value(); } else if (holder != NULL) { // final or stable non-static field // Treat final non-static fields of trusted classes (classes in // java.lang.invoke and sun.invoke packages and subpackages) as // compile time constants. field_value = field->constant_value_of(holder); } if (!field_value.is_valid()) { return NULL; // Not a constant } ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); bool is_narrow_oop = (loadbt == T_NARROWOOP); const Type* con_type = make_from_constant(con, /*require_constant=*/ true, stable_dimension, is_narrow_oop, field->is_autobox_cache()); if (con_type != NULL && field->is_call_site_target()) { ciCallSite* call_site = holder->as_call_site(); if (!call_site->is_constant_call_site()) { ciMethodHandle* target = con.as_object()->as_method_handle(); Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); } } return con_type; } //------------------------------make------------------------------------------- // Create a simple Type, with default empty symbol sets. Then hashcons it // and look for an existing copy in the type dictionary. const Type *Type::make( enum TYPES t ) { return (new Type(t))->hashcons(); } //------------------------------cmp-------------------------------------------- int Type::cmp( const Type *const t1, const Type *const t2 ) { if( t1->_base != t2->_base ) return 1; // Missed badly assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); return !t1->eq(t2); // Return ZERO if equal } const Type* Type::maybe_remove_speculative(bool include_speculative) const { if (!include_speculative) { return remove_speculative(); } return this; } //------------------------------hash------------------------------------------- int Type::uhash( const Type *const t ) { return t->hash(); } #define SMALLINT ((juint)3) // a value too insignificant to consider widening //--------------------------Initialize_shared---------------------------------- void Type::Initialize_shared(Compile* current) { // This method does not need to be locked because the first system // compilations (stub compilations) occur serially. If they are // changed to proceed in parallel, then this section will need // locking. Arena* save = current->type_arena(); Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); current->set_type_arena(shared_type_arena); _shared_type_dict = new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, shared_type_arena, 128 ); current->set_type_dict(_shared_type_dict); // Make shared pre-built types. CONTROL = make(Control); // Control only TOP = make(Top); // No values in set MEMORY = make(Memory); // Abstract store only ABIO = make(Abio); // State-of-machine only RETURN_ADDRESS=make(Return_Address); FLOAT = make(FloatBot); // All floats DOUBLE = make(DoubleBot); // All doubles BOTTOM = make(Bottom); // Everything HALF = make(Half); // Placeholder half of doublewide type TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) TypeF::ONE = TypeF::make(1.0); // Float 1 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) TypeD::ONE = TypeD::make(1.0); // Double 1 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 TypeInt::ZERO = TypeInt::make( 0); // 0 TypeInt::ONE = TypeInt::make( 1); // 1 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range TypeInt::TYPE_DOMAIN = TypeInt::INT; // CmpL is overloaded both as the bytecode computation returning // a trinary (-1,0,+1) integer result AND as an efficient long // compare returning optimizer ideal-type flags. assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); TypeLong::MINUS_1 = TypeLong::make(-1); // -1 TypeLong::ZERO = TypeLong::make( 0); // 0 TypeLong::ONE = TypeLong::make( 1); // 1 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); TypeLong::TYPE_DOMAIN = TypeLong::LONG; const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); fboth[0] = Type::CONTROL; fboth[1] = Type::CONTROL; TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); ffalse[0] = Type::CONTROL; ffalse[1] = Type::TOP; TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); fneither[0] = Type::TOP; fneither[1] = Type::TOP; TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); ftrue[0] = Type::TOP; ftrue[1] = Type::CONTROL; TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); floop[0] = Type::CONTROL; floop[1] = TypeInt::INT; TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); const Type **fmembar = TypeTuple::fields(0); TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); fsc[0] = TypeInt::CC; fsc[1] = Type::MEMORY; TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), false, 0, oopDesc::mark_offset_in_bytes()); TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), false, 0, oopDesc::klass_offset_in_bytes()); TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot); TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); mreg2type[Op_Node] = Type::BOTTOM; mreg2type[Op_Set ] = 0; mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; mreg2type[Op_RegI] = TypeInt::INT; mreg2type[Op_RegP] = TypePtr::BOTTOM; mreg2type[Op_RegF] = Type::FLOAT; mreg2type[Op_RegD] = Type::DOUBLE; mreg2type[Op_RegL] = TypeLong::LONG; mreg2type[Op_RegFlags] = TypeInt::CC; TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); #ifdef _LP64 if (UseCompressedOops) { assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; } else #endif { // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); } TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert. TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL; TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 ); TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 ); const Type **fi2c = TypeTuple::fields(2); fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); const Type **intpair = TypeTuple::fields(2); intpair[0] = TypeInt::INT; intpair[1] = TypeInt::INT; TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); const Type **longpair = TypeTuple::fields(2); longpair[0] = TypeLong::LONG; longpair[1] = TypeLong::LONG; TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); const Type **intccpair = TypeTuple::fields(2); intccpair[0] = TypeInt::INT; intccpair[1] = TypeInt::CC; TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); const Type **longccpair = TypeTuple::fields(2); longccpair[0] = TypeLong::LONG; longccpair[1] = TypeInt::CC; TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; _const_basic_type[T_CHAR] = TypeInt::CHAR; _const_basic_type[T_BYTE] = TypeInt::BYTE; _const_basic_type[T_SHORT] = TypeInt::SHORT; _const_basic_type[T_INT] = TypeInt::INT; _const_basic_type[T_LONG] = TypeLong::LONG; _const_basic_type[T_FLOAT] = Type::FLOAT; _const_basic_type[T_DOUBLE] = Type::DOUBLE; _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 _zero_type[T_INT] = TypeInt::ZERO; _zero_type[T_LONG] = TypeLong::ZERO; _zero_type[T_FLOAT] = TypeF::ZERO; _zero_type[T_DOUBLE] = TypeD::ZERO; _zero_type[T_OBJECT] = TypePtr::NULL_PTR; _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all // get_zero_type() should not happen for T_CONFLICT _zero_type[T_CONFLICT]= NULL; // Vector predefined types, it needs initialized _const_basic_type[]. if (Matcher::vector_size_supported(T_BYTE,4)) { TypeVect::VECTS = TypeVect::make(T_BYTE,4); } if (Matcher::vector_size_supported(T_FLOAT,2)) { TypeVect::VECTD = TypeVect::make(T_FLOAT,2); } if (Matcher::vector_size_supported(T_FLOAT,4)) { TypeVect::VECTX = TypeVect::make(T_FLOAT,4); } if (Matcher::vector_size_supported(T_FLOAT,8)) { TypeVect::VECTY = TypeVect::make(T_FLOAT,8); } if (Matcher::vector_size_supported(T_FLOAT,16)) { TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); } mreg2type[Op_VecS] = TypeVect::VECTS; mreg2type[Op_VecD] = TypeVect::VECTD; mreg2type[Op_VecX] = TypeVect::VECTX; mreg2type[Op_VecY] = TypeVect::VECTY; mreg2type[Op_VecZ] = TypeVect::VECTZ; // Restore working type arena. current->set_type_arena(save); current->set_type_dict(NULL); } //------------------------------Initialize------------------------------------- void Type::Initialize(Compile* current) { assert(current->type_arena() != NULL, "must have created type arena"); if (_shared_type_dict == NULL) { Initialize_shared(current); } Arena* type_arena = current->type_arena(); // Create the hash-cons'ing dictionary with top-level storage allocation Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 ); current->set_type_dict(tdic); // Transfer the shared types. DictI i(_shared_type_dict); for( ; i.test(); ++i ) { Type* t = (Type*)i._value; tdic->Insert(t,t); // New Type, insert into Type table } } //------------------------------hashcons--------------------------------------- // Do the hash-cons trick. If the Type already exists in the type table, // delete the current Type and return the existing Type. Otherwise stick the // current Type in the Type table. const Type *Type::hashcons(void) { debug_only(base()); // Check the assertion in Type::base(). // Look up the Type in the Type dictionary Dict *tdic = type_dict(); Type* old = (Type*)(tdic->Insert(this, this, false)); if( old ) { // Pre-existing Type? if( old != this ) // Yes, this guy is not the pre-existing? delete this; // Yes, Nuke this guy assert( old->_dual, "" ); return old; // Return pre-existing } // Every type has a dual (to make my lattice symmetric). // Since we just discovered a new Type, compute its dual right now. assert( !_dual, "" ); // No dual yet _dual = xdual(); // Compute the dual if( cmp(this,_dual)==0 ) { // Handle self-symmetric _dual = this; return this; } assert( !_dual->_dual, "" ); // No reverse dual yet assert( !(*tdic)[_dual], "" ); // Dual not in type system either // New Type, insert into Type table tdic->Insert((void*)_dual,(void*)_dual); ((Type*)_dual)->_dual = this; // Finish up being symmetric #ifdef ASSERT Type *dual_dual = (Type*)_dual->xdual(); assert( eq(dual_dual), "xdual(xdual()) should be identity" ); delete dual_dual; #endif return this; // Return new Type } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool Type::eq( const Type * ) const { return true; // Nothing else can go wrong } //------------------------------hash------------------------------------------- // Type-specific hashing function. int Type::hash(void) const { return _base; } //------------------------------is_finite-------------------------------------- // Has a finite value bool Type::is_finite() const { return false; } //------------------------------is_nan----------------------------------------- // Is not a number (NaN) bool Type::is_nan() const { return false; } //----------------------interface_vs_oop--------------------------------------- #ifdef ASSERT bool Type::interface_vs_oop_helper(const Type *t) const { bool result = false; const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop const TypePtr* t_ptr = t->make_ptr(); if( this_ptr == NULL || t_ptr == NULL ) return result; const TypeInstPtr* this_inst = this_ptr->isa_instptr(); const TypeInstPtr* t_inst = t_ptr->isa_instptr(); if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) { bool this_interface = this_inst->klass()->is_interface(); bool t_interface = t_inst->klass()->is_interface(); result = this_interface ^ t_interface; } return result; } bool Type::interface_vs_oop(const Type *t) const { if (interface_vs_oop_helper(t)) { return true; } // Now check the speculative parts as well const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL; const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL; if (this_spec != NULL && t_spec != NULL) { if (this_spec->interface_vs_oop_helper(t_spec)) { return true; } return false; } if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) { return true; } if (t_spec != NULL && interface_vs_oop_helper(t_spec)) { return true; } return false; } #endif //------------------------------meet------------------------------------------- // Compute the MEET of two types. NOT virtual. It enforces that meet is // commutative and the lattice is symmetric. const Type *Type::meet_helper(const Type *t, bool include_speculative) const { if (isa_narrowoop() && t->isa_narrowoop()) { const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); return result->make_narrowoop(); } if (isa_narrowklass() && t->isa_narrowklass()) { const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); return result->make_narrowklass(); } const Type *this_t = maybe_remove_speculative(include_speculative); t = t->maybe_remove_speculative(include_speculative); const Type *mt = this_t->xmeet(t); if (isa_narrowoop() || t->isa_narrowoop()) return mt; if (isa_narrowklass() || t->isa_narrowklass()) return mt; #ifdef ASSERT assert(mt == t->xmeet(this_t), "meet not commutative"); const Type* dual_join = mt->_dual; const Type *t2t = dual_join->xmeet(t->_dual); const Type *t2this = dual_join->xmeet(this_t->_dual); // Interface meet Oop is Not Symmetric: // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) { tty->print_cr("=== Meet Not Symmetric ==="); tty->print("t = "); t->dump(); tty->cr(); tty->print("this= "); this_t->dump(); tty->cr(); tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); tty->print("t_dual= "); t->_dual->dump(); tty->cr(); tty->print("this_dual= "); this_t->_dual->dump(); tty->cr(); tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); fatal("meet not symmetric" ); } #endif return mt; } //------------------------------xmeet------------------------------------------ // Compute the MEET of two types. It returns a new Type object. const Type *Type::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Meeting TOP with anything? if( _base == Top ) return t; // Meeting BOTTOM with anything? if( _base == Bottom ) return BOTTOM; // Current "this->_base" is one of: Bad, Multi, Control, Top, // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. switch (t->base()) { // Switch on original type // Cut in half the number of cases I must handle. Only need cases for when // the given enum "t->type" is less than or equal to the local enum "type". case FloatCon: case DoubleCon: case Int: case Long: return t->xmeet(this); case OopPtr: return t->xmeet(this); case InstPtr: return t->xmeet(this); case MetadataPtr: case KlassPtr: return t->xmeet(this); case AryPtr: return t->xmeet(this); case NarrowOop: return t->xmeet(this); case NarrowKlass: return t->xmeet(this); case Bad: // Type check default: // Bogus type not in lattice typerr(t); return Type::BOTTOM; case Bottom: // Ye Olde Default return t; case FloatTop: if( _base == FloatTop ) return this; case FloatBot: // Float if( _base == FloatBot || _base == FloatTop ) return FLOAT; if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; typerr(t); return Type::BOTTOM; case DoubleTop: if( _base == DoubleTop ) return this; case DoubleBot: // Double if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; typerr(t); return Type::BOTTOM; // These next few cases must match exactly or it is a compile-time error. case Control: // Control of code case Abio: // State of world outside of program case Memory: if( _base == t->_base ) return this; typerr(t); return Type::BOTTOM; case Top: // Top of the lattice return this; } // The type is unchanged return this; } //-----------------------------filter------------------------------------------ const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { const Type* ft = join_helper(kills, include_speculative); if (ft->empty()) return Type::TOP; // Canonical empty value return ft; } //------------------------------xdual------------------------------------------ // Compute dual right now. const Type::TYPES Type::dual_type[Type::lastype] = { Bad, // Bad Control, // Control Bottom, // Top Bad, // Int - handled in v-call Bad, // Long - handled in v-call Half, // Half Bad, // NarrowOop - handled in v-call Bad, // NarrowKlass - handled in v-call Bad, // Tuple - handled in v-call Bad, // Array - handled in v-call Bad, // VectorS - handled in v-call Bad, // VectorD - handled in v-call Bad, // VectorX - handled in v-call Bad, // VectorY - handled in v-call Bad, // VectorZ - handled in v-call Bad, // AnyPtr - handled in v-call Bad, // RawPtr - handled in v-call Bad, // OopPtr - handled in v-call Bad, // InstPtr - handled in v-call Bad, // AryPtr - handled in v-call Bad, // MetadataPtr - handled in v-call Bad, // KlassPtr - handled in v-call Bad, // Function - handled in v-call Abio, // Abio Return_Address,// Return_Address Memory, // Memory FloatBot, // FloatTop FloatCon, // FloatCon FloatTop, // FloatBot DoubleBot, // DoubleTop DoubleCon, // DoubleCon DoubleTop, // DoubleBot Top // Bottom }; const Type *Type::xdual() const { // Note: the base() accessor asserts the sanity of _base. assert(_type_info[base()].dual_type != Bad, "implement with v-call"); return new Type(_type_info[_base].dual_type); } //------------------------------has_memory------------------------------------- bool Type::has_memory() const { Type::TYPES tx = base(); if (tx == Memory) return true; if (tx == Tuple) { const TypeTuple *t = is_tuple(); for (uint i=0; i < t->cnt(); i++) { tx = t->field_at(i)->base(); if (tx == Memory) return true; } } return false; } #ifndef PRODUCT //------------------------------dump2------------------------------------------ void Type::dump2( Dict &d, uint depth, outputStream *st ) const { st->print("%s", _type_info[_base].msg); } //------------------------------dump------------------------------------------- void Type::dump_on(outputStream *st) const { ResourceMark rm; Dict d(cmpkey,hashkey); // Stop recursive type dumping dump2(d,1, st); if (is_ptr_to_narrowoop()) { st->print(" [narrow]"); } else if (is_ptr_to_narrowklass()) { st->print(" [narrowklass]"); } } //----------------------------------------------------------------------------- const char* Type::str(const Type* t) { stringStream ss; t->dump_on(&ss); return ss.as_string(); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Singletons are integer, float or double constants. bool Type::singleton(void) const { return _base == Top || _base == Half; } //------------------------------empty------------------------------------------ // TRUE if Type is a type with no values, FALSE otherwise. bool Type::empty(void) const { switch (_base) { case DoubleTop: case FloatTop: case Top: return true; case Half: case Abio: case Return_Address: case Memory: case Bottom: case FloatBot: case DoubleBot: return false; // never a singleton, therefore never empty default: ShouldNotReachHere(); return false; } } //------------------------------dump_stats------------------------------------- // Dump collected statistics to stderr #ifndef PRODUCT void Type::dump_stats() { tty->print("Types made: %d\n", type_dict()->Size()); } #endif //------------------------------typerr----------------------------------------- void Type::typerr( const Type *t ) const { #ifndef PRODUCT tty->print("\nError mixing types: "); dump(); tty->print(" and "); t->dump(); tty->print("\n"); #endif ShouldNotReachHere(); } //============================================================================= // Convenience common pre-built types. const TypeF *TypeF::ZERO; // Floating point zero const TypeF *TypeF::ONE; // Floating point one //------------------------------make------------------------------------------- // Create a float constant const TypeF *TypeF::make(float f) { return (TypeF*)(new TypeF(f))->hashcons(); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeF::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is FloatCon switch (t->base()) { // Switch on original type case AnyPtr: // Mixing with oops happens when javac case RawPtr: // reuses local variables case OopPtr: case InstPtr: case AryPtr: case MetadataPtr: case KlassPtr: case NarrowOop: case NarrowKlass: case Int: case Long: case DoubleTop: case DoubleCon: case DoubleBot: case Bottom: // Ye Olde Default return Type::BOTTOM; case FloatBot: return t; default: // All else is a mistake typerr(t); case FloatCon: // Float-constant vs Float-constant? if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? // must compare bitwise as positive zero, negative zero and NaN have // all the same representation in C++ return FLOAT; // Return generic float // Equal constants case Top: case FloatTop: break; // Return the float constant } return this; // Return the float constant } //------------------------------xdual------------------------------------------ // Dual: symmetric const Type *TypeF::xdual() const { return this; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeF::eq(const Type *t) const { // Bitwise comparison to distinguish between +/-0. These values must be treated // as different to be consistent with C1 and the interpreter. return (jint_cast(_f) == jint_cast(t->getf())); } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeF::hash(void) const { return *(int*)(&_f); } //------------------------------is_finite-------------------------------------- // Has a finite value bool TypeF::is_finite() const { return g_isfinite(getf()) != 0; } //------------------------------is_nan----------------------------------------- // Is not a number (NaN) bool TypeF::is_nan() const { return g_isnan(getf()) != 0; } //------------------------------dump2------------------------------------------ // Dump float constant Type #ifndef PRODUCT void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { Type::dump2(d,depth, st); st->print("%f", _f); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Singletons are integer, float or double constants // or a single symbol. bool TypeF::singleton(void) const { return true; // Always a singleton } bool TypeF::empty(void) const { return false; // always exactly a singleton } //============================================================================= // Convenience common pre-built types. const TypeD *TypeD::ZERO; // Floating point zero const TypeD *TypeD::ONE; // Floating point one //------------------------------make------------------------------------------- const TypeD *TypeD::make(double d) { return (TypeD*)(new TypeD(d))->hashcons(); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeD::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is DoubleCon switch (t->base()) { // Switch on original type case AnyPtr: // Mixing with oops happens when javac case RawPtr: // reuses local variables case OopPtr: case InstPtr: case AryPtr: case MetadataPtr: case KlassPtr: case NarrowOop: case NarrowKlass: case Int: case Long: case FloatTop: case FloatCon: case FloatBot: case Bottom: // Ye Olde Default return Type::BOTTOM; case DoubleBot: return t; default: // All else is a mistake typerr(t); case DoubleCon: // Double-constant vs Double-constant? if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) return DOUBLE; // Return generic double case Top: case DoubleTop: break; } return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual: symmetric const Type *TypeD::xdual() const { return this; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeD::eq(const Type *t) const { // Bitwise comparison to distinguish between +/-0. These values must be treated // as different to be consistent with C1 and the interpreter. return (jlong_cast(_d) == jlong_cast(t->getd())); } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeD::hash(void) const { return *(int*)(&_d); } //------------------------------is_finite-------------------------------------- // Has a finite value bool TypeD::is_finite() const { return g_isfinite(getd()) != 0; } //------------------------------is_nan----------------------------------------- // Is not a number (NaN) bool TypeD::is_nan() const { return g_isnan(getd()) != 0; } //------------------------------dump2------------------------------------------ // Dump double constant Type #ifndef PRODUCT void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { Type::dump2(d,depth,st); st->print("%f", _d); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Singletons are integer, float or double constants // or a single symbol. bool TypeD::singleton(void) const { return true; // Always a singleton } bool TypeD::empty(void) const { return false; // always exactly a singleton } //============================================================================= // Convience common pre-built types. const TypeInt *TypeInt::MINUS_1;// -1 const TypeInt *TypeInt::ZERO; // 0 const TypeInt *TypeInt::ONE; // 1 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 const TypeInt *TypeInt::CC_GT; // [1] == ONE const TypeInt *TypeInt::CC_EQ; // [0] == ZERO const TypeInt *TypeInt::CC_LE; // [-1,0] const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero const TypeInt *TypeInt::POS1; // Positive 32-bit integers const TypeInt *TypeInt::INT; // 32-bit integers const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT //------------------------------TypeInt---------------------------------------- TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) { } //------------------------------make------------------------------------------- const TypeInt *TypeInt::make( jint lo ) { return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); } static int normalize_int_widen( jint lo, jint hi, int w ) { // Certain normalizations keep us sane when comparing types. // The 'SMALLINT' covers constants and also CC and its relatives. if (lo <= hi) { if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT } else { if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT } return w; } const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { w = normalize_int_widen(lo, hi, w); return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type representation object // with reference count equal to the number of Types pointing at it. // Caller should wrap a Types around it. const Type *TypeInt::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type? // Currently "this->_base" is a TypeInt switch (t->base()) { // Switch on original type case AnyPtr: // Mixing with oops happens when javac case RawPtr: // reuses local variables case OopPtr: case InstPtr: case AryPtr: case MetadataPtr: case KlassPtr: case NarrowOop: case NarrowKlass: case Long: case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case Bottom: // Ye Olde Default return Type::BOTTOM; default: // All else is a mistake typerr(t); case Top: // No change return this; case Int: // Int vs Int? break; } // Expand covered set const TypeInt *r = t->is_int(); return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); } //------------------------------xdual------------------------------------------ // Dual: reverse hi & lo; flip widen const Type *TypeInt::xdual() const { int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); return new TypeInt(_hi,_lo,w); } //------------------------------widen------------------------------------------ // Only happens for optimistic top-down optimizations. const Type *TypeInt::widen( const Type *old, const Type* limit ) const { // Coming from TOP or such; no widening if( old->base() != Int ) return this; const TypeInt *ot = old->is_int(); // If new guy is equal to old guy, no widening if( _lo == ot->_lo && _hi == ot->_hi ) return old; // If new guy contains old, then we widened if( _lo <= ot->_lo && _hi >= ot->_hi ) { // New contains old // If new guy is already wider than old, no widening if( _widen > ot->_widen ) return this; // If old guy was a constant, do not bother if (ot->_lo == ot->_hi) return this; // Now widen new guy. // Check for widening too far if (_widen == WidenMax) { int max = max_jint; int min = min_jint; if (limit->isa_int()) { max = limit->is_int()->_hi; min = limit->is_int()->_lo; } if (min < _lo && _hi < max) { // If neither endpoint is extremal yet, push out the endpoint // which is closer to its respective limit. if (_lo >= 0 || // easy common case (juint)(_lo - min) >= (juint)(max - _hi)) { // Try to widen to an unsigned range type of 31 bits: return make(_lo, max, WidenMax); } else { return make(min, _hi, WidenMax); } } return TypeInt::INT; } // Returned widened new guy return make(_lo,_hi,_widen+1); } // If old guy contains new, then we probably widened too far & dropped to // bottom. Return the wider fellow. if ( ot->_lo <= _lo && ot->_hi >= _hi ) return old; //fatal("Integer value range is not subset"); //return this; return TypeInt::INT; } //------------------------------narrow--------------------------------------- // Only happens for pessimistic optimizations. const Type *TypeInt::narrow( const Type *old ) const { if (_lo >= _hi) return this; // already narrow enough if (old == NULL) return this; const TypeInt* ot = old->isa_int(); if (ot == NULL) return this; jint olo = ot->_lo; jint ohi = ot->_hi; // If new guy is equal to old guy, no narrowing if (_lo == olo && _hi == ohi) return old; // If old guy was maximum range, allow the narrowing if (olo == min_jint && ohi == max_jint) return this; if (_lo < olo || _hi > ohi) return this; // doesn't narrow; pretty wierd // The new type narrows the old type, so look for a "death march". // See comments on PhaseTransform::saturate. juint nrange = (juint)_hi - _lo; juint orange = (juint)ohi - olo; if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { // Use the new type only if the range shrinks a lot. // We do not want the optimizer computing 2^31 point by point. return old; } return this; } //-----------------------------filter------------------------------------------ const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); if (ft == NULL || ft->empty()) return Type::TOP; // Canonical empty value if (ft->_widen < this->_widen) { // Do not allow the value of kill->_widen to affect the outcome. // The widen bits must be allowed to run freely through the graph. ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); } return ft; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeInt::eq( const Type *t ) const { const TypeInt *r = t->is_int(); // Handy access return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeInt::hash(void) const { return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int)); } //------------------------------is_finite-------------------------------------- // Has a finite value bool TypeInt::is_finite() const { return true; } //------------------------------dump2------------------------------------------ // Dump TypeInt #ifndef PRODUCT static const char* intname(char* buf, jint n) { if (n == min_jint) return "min"; else if (n < min_jint + 10000) sprintf(buf, "min+" INT32_FORMAT, n - min_jint); else if (n == max_jint) return "max"; else if (n > max_jint - 10000) sprintf(buf, "max-" INT32_FORMAT, max_jint - n); else sprintf(buf, INT32_FORMAT, n); return buf; } void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { char buf[40], buf2[40]; if (_lo == min_jint && _hi == max_jint) st->print("int"); else if (is_con()) st->print("int:%s", intname(buf, get_con())); else if (_lo == BOOL->_lo && _hi == BOOL->_hi) st->print("bool"); else if (_lo == BYTE->_lo && _hi == BYTE->_hi) st->print("byte"); else if (_lo == CHAR->_lo && _hi == CHAR->_hi) st->print("char"); else if (_lo == SHORT->_lo && _hi == SHORT->_hi) st->print("short"); else if (_hi == max_jint) st->print("int:>=%s", intname(buf, _lo)); else if (_lo == min_jint) st->print("int:<=%s", intname(buf, _hi)); else st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi)); if (_widen != 0 && this != TypeInt::INT) st->print(":%.*s", _widen, "wwww"); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants. bool TypeInt::singleton(void) const { return _lo >= _hi; } bool TypeInt::empty(void) const { return _lo > _hi; } //============================================================================= // Convenience common pre-built types. const TypeLong *TypeLong::MINUS_1;// -1 const TypeLong *TypeLong::ZERO; // 0 const TypeLong *TypeLong::ONE; // 1 const TypeLong *TypeLong::POS; // >=0 const TypeLong *TypeLong::LONG; // 64-bit integers const TypeLong *TypeLong::INT; // 32-bit subrange const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG //------------------------------TypeLong--------------------------------------- TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) { } //------------------------------make------------------------------------------- const TypeLong *TypeLong::make( jlong lo ) { return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); } static int normalize_long_widen( jlong lo, jlong hi, int w ) { // Certain normalizations keep us sane when comparing types. // The 'SMALLINT' covers constants. if (lo <= hi) { if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG } else { if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG } return w; } const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { w = normalize_long_widen(lo, hi, w); return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type representation object // with reference count equal to the number of Types pointing at it. // Caller should wrap a Types around it. const Type *TypeLong::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type? // Currently "this->_base" is a TypeLong switch (t->base()) { // Switch on original type case AnyPtr: // Mixing with oops happens when javac case RawPtr: // reuses local variables case OopPtr: case InstPtr: case AryPtr: case MetadataPtr: case KlassPtr: case NarrowOop: case NarrowKlass: case Int: case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case Bottom: // Ye Olde Default return Type::BOTTOM; default: // All else is a mistake typerr(t); case Top: // No change return this; case Long: // Long vs Long? break; } // Expand covered set const TypeLong *r = t->is_long(); // Turn into a TypeLong return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); } //------------------------------xdual------------------------------------------ // Dual: reverse hi & lo; flip widen const Type *TypeLong::xdual() const { int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); return new TypeLong(_hi,_lo,w); } //------------------------------widen------------------------------------------ // Only happens for optimistic top-down optimizations. const Type *TypeLong::widen( const Type *old, const Type* limit ) const { // Coming from TOP or such; no widening if( old->base() != Long ) return this; const TypeLong *ot = old->is_long(); // If new guy is equal to old guy, no widening if( _lo == ot->_lo && _hi == ot->_hi ) return old; // If new guy contains old, then we widened if( _lo <= ot->_lo && _hi >= ot->_hi ) { // New contains old // If new guy is already wider than old, no widening if( _widen > ot->_widen ) return this; // If old guy was a constant, do not bother if (ot->_lo == ot->_hi) return this; // Now widen new guy. // Check for widening too far if (_widen == WidenMax) { jlong max = max_jlong; jlong min = min_jlong; if (limit->isa_long()) { max = limit->is_long()->_hi; min = limit->is_long()->_lo; } if (min < _lo && _hi < max) { // If neither endpoint is extremal yet, push out the endpoint // which is closer to its respective limit. if (_lo >= 0 || // easy common case ((julong)_lo - min) >= ((julong)max - _hi)) { // Try to widen to an unsigned range type of 32/63 bits: if (max >= max_juint && _hi < max_juint) return make(_lo, max_juint, WidenMax); else return make(_lo, max, WidenMax); } else { return make(min, _hi, WidenMax); } } return TypeLong::LONG; } // Returned widened new guy return make(_lo,_hi,_widen+1); } // If old guy contains new, then we probably widened too far & dropped to // bottom. Return the wider fellow. if ( ot->_lo <= _lo && ot->_hi >= _hi ) return old; // fatal("Long value range is not subset"); // return this; return TypeLong::LONG; } //------------------------------narrow---------------------------------------- // Only happens for pessimistic optimizations. const Type *TypeLong::narrow( const Type *old ) const { if (_lo >= _hi) return this; // already narrow enough if (old == NULL) return this; const TypeLong* ot = old->isa_long(); if (ot == NULL) return this; jlong olo = ot->_lo; jlong ohi = ot->_hi; // If new guy is equal to old guy, no narrowing if (_lo == olo && _hi == ohi) return old; // If old guy was maximum range, allow the narrowing if (olo == min_jlong && ohi == max_jlong) return this; if (_lo < olo || _hi > ohi) return this; // doesn't narrow; pretty wierd // The new type narrows the old type, so look for a "death march". // See comments on PhaseTransform::saturate. julong nrange = _hi - _lo; julong orange = ohi - olo; if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { // Use the new type only if the range shrinks a lot. // We do not want the optimizer computing 2^31 point by point. return old; } return this; } //-----------------------------filter------------------------------------------ const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); if (ft == NULL || ft->empty()) return Type::TOP; // Canonical empty value if (ft->_widen < this->_widen) { // Do not allow the value of kill->_widen to affect the outcome. // The widen bits must be allowed to run freely through the graph. ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); } return ft; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeLong::eq( const Type *t ) const { const TypeLong *r = t->is_long(); // Handy access return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeLong::hash(void) const { return (int)(_lo+_hi+_widen+(int)Type::Long); } //------------------------------is_finite-------------------------------------- // Has a finite value bool TypeLong::is_finite() const { return true; } //------------------------------dump2------------------------------------------ // Dump TypeLong #ifndef PRODUCT static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) { if (n > x) { if (n >= x + 10000) return NULL; sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x); } else if (n < x) { if (n <= x - 10000) return NULL; sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n); } else { return xname; } return buf; } static const char* longname(char* buf, jlong n) { const char* str; if (n == min_jlong) return "min"; else if (n < min_jlong + 10000) sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong); else if (n == max_jlong) return "max"; else if (n > max_jlong - 10000) sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n); else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL) return str; else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL) return str; else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL) return str; else sprintf(buf, JLONG_FORMAT, n); return buf; } void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { char buf[80], buf2[80]; if (_lo == min_jlong && _hi == max_jlong) st->print("long"); else if (is_con()) st->print("long:%s", longname(buf, get_con())); else if (_hi == max_jlong) st->print("long:>=%s", longname(buf, _lo)); else if (_lo == min_jlong) st->print("long:<=%s", longname(buf, _hi)); else st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi)); if (_widen != 0 && this != TypeLong::LONG) st->print(":%.*s", _widen, "wwww"); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants bool TypeLong::singleton(void) const { return _lo >= _hi; } bool TypeLong::empty(void) const { return _lo > _hi; } //============================================================================= // Convenience common pre-built types. const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable const TypeTuple *TypeTuple::IFFALSE; const TypeTuple *TypeTuple::IFTRUE; const TypeTuple *TypeTuple::IFNEITHER; const TypeTuple *TypeTuple::LOOPBODY; const TypeTuple *TypeTuple::MEMBAR; const TypeTuple *TypeTuple::STORECONDITIONAL; const TypeTuple *TypeTuple::START_I2C; const TypeTuple *TypeTuple::INT_PAIR; const TypeTuple *TypeTuple::LONG_PAIR; const TypeTuple *TypeTuple::INT_CC_PAIR; const TypeTuple *TypeTuple::LONG_CC_PAIR; //------------------------------make------------------------------------------- // Make a TypeTuple from the range of a method signature const TypeTuple *TypeTuple::make_range(ciSignature* sig) { ciType* return_type = sig->return_type(); uint arg_cnt = return_type->size(); const Type **field_array = fields(arg_cnt); switch (return_type->basic_type()) { case T_LONG: field_array[TypeFunc::Parms] = TypeLong::LONG; field_array[TypeFunc::Parms+1] = Type::HALF; break; case T_DOUBLE: field_array[TypeFunc::Parms] = Type::DOUBLE; field_array[TypeFunc::Parms+1] = Type::HALF; break; case T_OBJECT: case T_ARRAY: case T_BOOLEAN: case T_CHAR: case T_FLOAT: case T_BYTE: case T_SHORT: case T_INT: field_array[TypeFunc::Parms] = get_const_type(return_type); break; case T_VOID: break; default: ShouldNotReachHere(); } return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); } // Make a TypeTuple from the domain of a method signature const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) { uint arg_cnt = sig->size(); uint pos = TypeFunc::Parms; const Type **field_array; if (recv != NULL) { arg_cnt++; field_array = fields(arg_cnt); // Use get_const_type here because it respects UseUniqueSubclasses: field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL); } else { field_array = fields(arg_cnt); } int i = 0; while (pos < TypeFunc::Parms + arg_cnt) { ciType* type = sig->type_at(i); switch (type->basic_type()) { case T_LONG: field_array[pos++] = TypeLong::LONG; field_array[pos++] = Type::HALF; break; case T_DOUBLE: field_array[pos++] = Type::DOUBLE; field_array[pos++] = Type::HALF; break; case T_OBJECT: case T_ARRAY: case T_FLOAT: case T_INT: field_array[pos++] = get_const_type(type); break; case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: field_array[pos++] = TypeInt::INT; break; default: ShouldNotReachHere(); } i++; } return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); } const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); } //------------------------------fields----------------------------------------- // Subroutine call type with space allocated for argument types // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly const Type **TypeTuple::fields( uint arg_cnt ) { const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); flds[TypeFunc::Control ] = Type::CONTROL; flds[TypeFunc::I_O ] = Type::ABIO; flds[TypeFunc::Memory ] = Type::MEMORY; flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; return flds; } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeTuple::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Tuple switch (t->base()) { // switch on original type case Bottom: // Ye Olde Default return t; default: // All else is a mistake typerr(t); case Tuple: { // Meeting 2 signatures? const TypeTuple *x = t->is_tuple(); assert( _cnt == x->_cnt, "" ); const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) )); for( uint i=0; i<_cnt; i++ ) fields[i] = field_at(i)->xmeet( x->field_at(i) ); return TypeTuple::make(_cnt,fields); } case Top: break; } return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeTuple::xdual() const { const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) )); for( uint i=0; i<_cnt; i++ ) fields[i] = _fields[i]->dual(); return new TypeTuple(_cnt,fields); } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeTuple::eq( const Type *t ) const { const TypeTuple *s = (const TypeTuple *)t; if (_cnt != s->_cnt) return false; // Unequal field counts for (uint i = 0; i < _cnt; i++) if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! return false; // Missed return true; } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeTuple::hash(void) const { intptr_t sum = _cnt; for( uint i=0; i<_cnt; i++ ) sum += (intptr_t)_fields[i]; // Hash on pointers directly return sum; } //------------------------------dump2------------------------------------------ // Dump signature Type #ifndef PRODUCT void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { st->print("{"); if( !depth || d[this] ) { // Check for recursive print st->print("...}"); return; } d.Insert((void*)this, (void*)this); // Stop recursion if( _cnt ) { uint i; for( i=0; i<_cnt-1; i++ ) { st->print("%d:", i); _fields[i]->dump2(d, depth-1, st); st->print(", "); } st->print("%d:", i); _fields[i]->dump2(d, depth-1, st); } st->print("}"); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Singletons are integer, float or double constants // or a single symbol. bool TypeTuple::singleton(void) const { return false; // Never a singleton } bool TypeTuple::empty(void) const { for( uint i=0; i<_cnt; i++ ) { if (_fields[i]->empty()) return true; } return false; } //============================================================================= // Convenience common pre-built types. inline const TypeInt* normalize_array_size(const TypeInt* size) { // Certain normalizations keep us sane when comparing types. // We do not want arrayOop variables to differ only by the wideness // of their index types. Pick minimum wideness, since that is the // forced wideness of small ranges anyway. if (size->_widen != Type::WidenMin) return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); else return size; } //------------------------------make------------------------------------------- const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { if (UseCompressedOops && elem->isa_oopptr()) { elem = elem->make_narrowoop(); } size = normalize_array_size(size); return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeAry::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Ary switch (t->base()) { // switch on original type case Bottom: // Ye Olde Default return t; default: // All else is a mistake typerr(t); case Array: { // Meeting 2 arrays? const TypeAry *a = t->is_ary(); return TypeAry::make(_elem->meet_speculative(a->_elem), _size->xmeet(a->_size)->is_int(), _stable & a->_stable); } case Top: break; } return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeAry::xdual() const { const TypeInt* size_dual = _size->dual()->is_int(); size_dual = normalize_array_size(size_dual); return new TypeAry(_elem->dual(), size_dual, !_stable); } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeAry::eq( const Type *t ) const { const TypeAry *a = (const TypeAry*)t; return _elem == a->_elem && _stable == a->_stable && _size == a->_size; } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeAry::hash(void) const { return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0); } /** * Return same type without a speculative part in the element */ const Type* TypeAry::remove_speculative() const { return make(_elem->remove_speculative(), _size, _stable); } /** * Return same type with cleaned up speculative part of element */ const Type* TypeAry::cleanup_speculative() const { return make(_elem->cleanup_speculative(), _size, _stable); } /** * Return same type but with a different inline depth (used for speculation) * * @param depth depth to meet with */ const TypePtr* TypePtr::with_inline_depth(int depth) const { if (!UseInlineDepthForSpeculativeTypes) { return this; } return make(AnyPtr, _ptr, _offset, _speculative, depth); } //----------------------interface_vs_oop--------------------------------------- #ifdef ASSERT bool TypeAry::interface_vs_oop(const Type *t) const { const TypeAry* t_ary = t->is_ary(); if (t_ary) { const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops const TypePtr* t_ptr = t_ary->_elem->make_ptr(); if(this_ptr != NULL && t_ptr != NULL) { return this_ptr->interface_vs_oop(t_ptr); } } return false; } #endif //------------------------------dump2------------------------------------------ #ifndef PRODUCT void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { if (_stable) st->print("stable:"); _elem->dump2(d, depth, st); st->print("["); _size->dump2(d, depth, st); st->print("]"); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Singletons are integer, float or double constants // or a single symbol. bool TypeAry::singleton(void) const { return false; // Never a singleton } bool TypeAry::empty(void) const { return _elem->empty() || _size->empty(); } //--------------------------ary_must_be_exact---------------------------------- bool TypeAry::ary_must_be_exact() const { if (!UseExactTypes) return false; // This logic looks at the element type of an array, and returns true // if the element type is either a primitive or a final instance class. // In such cases, an array built on this ary must have no subclasses. if (_elem == BOTTOM) return false; // general array not exact if (_elem == TOP ) return false; // inverted general array not exact const TypeOopPtr* toop = NULL; if (UseCompressedOops && _elem->isa_narrowoop()) { toop = _elem->make_ptr()->isa_oopptr(); } else { toop = _elem->isa_oopptr(); } if (!toop) return true; // a primitive type, like int ciKlass* tklass = toop->klass(); if (tklass == NULL) return false; // unloaded class if (!tklass->is_loaded()) return false; // unloaded class const TypeInstPtr* tinst; if (_elem->isa_narrowoop()) tinst = _elem->make_ptr()->isa_instptr(); else tinst = _elem->isa_instptr(); if (tinst) return tklass->as_instance_klass()->is_final(); const TypeAryPtr* tap; if (_elem->isa_narrowoop()) tap = _elem->make_ptr()->isa_aryptr(); else tap = _elem->isa_aryptr(); if (tap) return tap->ary()->ary_must_be_exact(); return false; } //==============================TypeVect======================================= // Convenience common pre-built types. const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors //------------------------------make------------------------------------------- const TypeVect* TypeVect::make(const Type *elem, uint length) { BasicType elem_bt = elem->array_element_basic_type(); assert(is_java_primitive(elem_bt), "only primitive types in vector"); assert(length > 1 && is_power_of_2(length), "vector length is power of 2"); assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); int size = length * type2aelembytes(elem_bt); switch (Matcher::vector_ideal_reg(size)) { case Op_VecS: return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); case Op_RegL: case Op_VecD: case Op_RegD: return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); case Op_VecX: return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); case Op_VecY: return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); case Op_VecZ: return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); } ShouldNotReachHere(); return NULL; } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeVect::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Vector switch (t->base()) { // switch on original type case Bottom: // Ye Olde Default return t; default: // All else is a mistake typerr(t); case VectorS: case VectorD: case VectorX: case VectorY: case VectorZ: { // Meeting 2 vectors? const TypeVect* v = t->is_vect(); assert( base() == v->base(), ""); assert(length() == v->length(), ""); assert(element_basic_type() == v->element_basic_type(), ""); return TypeVect::make(_elem->xmeet(v->_elem), _length); } case Top: break; } return this; } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeVect::xdual() const { return new TypeVect(base(), _elem->dual(), _length); } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeVect::eq(const Type *t) const { const TypeVect *v = t->is_vect(); return (_elem == v->_elem) && (_length == v->_length); } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeVect::hash(void) const { return (intptr_t)_elem + (intptr_t)_length; } //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Vector is singleton if all elements are the same // constant value (when vector is created with Replicate code). bool TypeVect::singleton(void) const { // There is no Con node for vectors yet. // return _elem->singleton(); return false; } bool TypeVect::empty(void) const { return _elem->empty(); } //------------------------------dump2------------------------------------------ #ifndef PRODUCT void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { switch (base()) { case VectorS: st->print("vectors["); break; case VectorD: st->print("vectord["); break; case VectorX: st->print("vectorx["); break; case VectorY: st->print("vectory["); break; case VectorZ: st->print("vectorz["); break; default: ShouldNotReachHere(); } st->print("%d]:{", _length); _elem->dump2(d, depth, st); st->print("}"); } #endif //============================================================================= // Convenience common pre-built types. const TypePtr *TypePtr::NULL_PTR; const TypePtr *TypePtr::NOTNULL; const TypePtr *TypePtr::BOTTOM; //------------------------------meet------------------------------------------- // Meet over the PTR enum const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} }; //------------------------------make------------------------------------------- const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); } //------------------------------cast_to_ptr_type------------------------------- const Type *TypePtr::cast_to_ptr_type(PTR ptr) const { assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); if( ptr == _ptr ) return this; return make(_base, ptr, _offset, _speculative, _inline_depth); } //------------------------------get_con---------------------------------------- intptr_t TypePtr::get_con() const { assert( _ptr == Null, "" ); return _offset; } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypePtr::xmeet(const Type *t) const { const Type* res = xmeet_helper(t); if (res->isa_ptr() == NULL) { return res; } const TypePtr* res_ptr = res->is_ptr(); if (res_ptr->speculative() != NULL) { // type->speculative() == NULL means that speculation is no better // than type, i.e. type->speculative() == type. So there are 2 // ways to represent the fact that we have no useful speculative // data and we should use a single one to be able to test for // equality between types. Check whether type->speculative() == // type and set speculative to NULL if it is the case. if (res_ptr->remove_speculative() == res_ptr->speculative()) { return res_ptr->remove_speculative(); } } return res; } const Type *TypePtr::xmeet_helper(const Type *t) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is AnyPtr switch (t->base()) { // switch on original type case Int: // Mixing ints & oops happens when javac case Long: // reuses local variables case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; case AnyPtr: { // Meeting to AnyPtrs const TypePtr *tp = t->is_ptr(); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); } case RawPtr: // For these, flip the call around to cut down case OopPtr: case InstPtr: // on the cases I have to handle. case AryPtr: case MetadataPtr: case KlassPtr: return t->xmeet(this); // Call in reverse direction default: // All else is a mistake typerr(t); } return this; } //------------------------------meet_offset------------------------------------ int TypePtr::meet_offset( int offset ) const { // Either is 'TOP' offset? Return the other offset! if( _offset == OffsetTop ) return offset; if( offset == OffsetTop ) return _offset; // If either is different, return 'BOTTOM' offset if( _offset != offset ) return OffsetBot; return _offset; } //------------------------------dual_offset------------------------------------ int TypePtr::dual_offset( ) const { if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' return _offset; // Map everything else into self } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { BotPTR, NotNull, Constant, Null, AnyNull, TopPTR }; const Type *TypePtr::xdual() const { return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); } //------------------------------xadd_offset------------------------------------ int TypePtr::xadd_offset( intptr_t offset ) const { // Adding to 'TOP' offset? Return 'TOP'! if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; // Adding to 'BOTTOM' offset? Return 'BOTTOM'! if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! offset += (intptr_t)_offset; if (offset != (int)offset || offset == OffsetTop) return OffsetBot; // assert( _offset >= 0 && _offset+offset >= 0, "" ); // It is possible to construct a negative offset during PhaseCCP return (int)offset; // Sum valid offsets } //------------------------------add_offset------------------------------------- const TypePtr *TypePtr::add_offset( intptr_t offset ) const { return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypePtr::eq( const Type *t ) const { const TypePtr *a = (const TypePtr*)t; return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypePtr::hash(void) const { return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth)); ; } /** * Return same type without a speculative part */ const Type* TypePtr::remove_speculative() const { if (_speculative == NULL) { return this; } assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); return make(AnyPtr, _ptr, _offset, NULL, _inline_depth); } /** * Return same type but drop speculative part if we know we won't use * it */ const Type* TypePtr::cleanup_speculative() const { if (speculative() == NULL) { return this; } const Type* no_spec = remove_speculative(); // If this is NULL_PTR then we don't need the speculative type // (with_inline_depth in case the current type inline depth is // InlineDepthTop) if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { return no_spec; } if (above_centerline(speculative()->ptr())) { return no_spec; } const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); // If the speculative may be null and is an inexact klass then it // doesn't help if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) { return no_spec; } return this; } /** * dual of the speculative part of the type */ const TypePtr* TypePtr::dual_speculative() const { if (_speculative == NULL) { return NULL; } return _speculative->dual()->is_ptr(); } /** * meet of the speculative parts of 2 types * * @param other type to meet with */ const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { bool this_has_spec = (_speculative != NULL); bool other_has_spec = (other->speculative() != NULL); if (!this_has_spec && !other_has_spec) { return NULL; } // If we are at a point where control flow meets and one branch has // a speculative type and the other has not, we meet the speculative // type of one branch with the actual type of the other. If the // actual type is exact and the speculative is as well, then the // result is a speculative type which is exact and we can continue // speculation further. const TypePtr* this_spec = _speculative; const TypePtr* other_spec = other->speculative(); if (!this_has_spec) { this_spec = this; } if (!other_has_spec) { other_spec = other; } return this_spec->meet(other_spec)->is_ptr(); } /** * dual of the inline depth for this type (used for speculation) */ int TypePtr::dual_inline_depth() const { return -inline_depth(); } /** * meet of 2 inline depths (used for speculation) * * @param depth depth to meet with */ int TypePtr::meet_inline_depth(int depth) const { return MAX2(inline_depth(), depth); } /** * Are the speculative parts of 2 types equal? * * @param other type to compare this one to */ bool TypePtr::eq_speculative(const TypePtr* other) const { if (_speculative == NULL || other->speculative() == NULL) { return _speculative == other->speculative(); } if (_speculative->base() != other->speculative()->base()) { return false; } return _speculative->eq(other->speculative()); } /** * Hash of the speculative part of the type */ int TypePtr::hash_speculative() const { if (_speculative == NULL) { return 0; } return _speculative->hash(); } /** * add offset to the speculative part of the type * * @param offset offset to add */ const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { if (_speculative == NULL) { return NULL; } return _speculative->add_offset(offset)->is_ptr(); } /** * return exact klass from the speculative type if there's one */ ciKlass* TypePtr::speculative_type() const { if (_speculative != NULL && _speculative->isa_oopptr()) { const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); if (speculative->klass_is_exact()) { return speculative->klass(); } } return NULL; } /** * return true if speculative type may be null */ bool TypePtr::speculative_maybe_null() const { if (_speculative != NULL) { const TypePtr* speculative = _speculative->join(this)->is_ptr(); return speculative->maybe_null(); } return true; } bool TypePtr::speculative_always_null() const { if (_speculative != NULL) { const TypePtr* speculative = _speculative->join(this)->is_ptr(); return speculative == TypePtr::NULL_PTR; } return false; } /** * Same as TypePtr::speculative_type() but return the klass only if * the speculative tells us is not null */ ciKlass* TypePtr::speculative_type_not_null() const { if (speculative_maybe_null()) { return NULL; } return speculative_type(); } /** * Check whether new profiling would improve speculative type * * @param exact_kls class from profiling * @param inline_depth inlining depth of profile point * * @return true if type profile is valuable */ bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { // no profiling? if (exact_kls == NULL) { return false; } if (speculative() == TypePtr::NULL_PTR) { return false; } // no speculative type or non exact speculative type? if (speculative_type() == NULL) { return true; } // If the node already has an exact speculative type keep it, // unless it was provided by profiling that is at a deeper // inlining level. Profiling at a higher inlining depth is // expected to be less accurate. if (_speculative->inline_depth() == InlineDepthBottom) { return false; } assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); return inline_depth < _speculative->inline_depth(); } /** * Check whether new profiling would improve ptr (= tells us it is non * null) * * @param ptr_kind always null or not null? * * @return true if ptr profile is valuable */ bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { // profiling doesn't tell us anything useful if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { return false; } // We already know this is not null if (!this->maybe_null()) { return false; } // We already know the speculative type cannot be null if (!speculative_maybe_null()) { return false; } // We already know this is always null if (this == TypePtr::NULL_PTR) { return false; } // We already know the speculative type is always null if (speculative_always_null()) { return false; } if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) { return false; } return true; } //------------------------------dump2------------------------------------------ const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR" }; #ifndef PRODUCT void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { if( _ptr == Null ) st->print("NULL"); else st->print("%s *", ptr_msg[_ptr]); if( _offset == OffsetTop ) st->print("+top"); else if( _offset == OffsetBot ) st->print("+bot"); else if( _offset ) st->print("+%d", _offset); dump_inline_depth(st); dump_speculative(st); } /** *dump the speculative part of the type */ void TypePtr::dump_speculative(outputStream *st) const { if (_speculative != NULL) { st->print(" (speculative="); _speculative->dump_on(st); st->print(")"); } } /** *dump the inline depth of the type */ void TypePtr::dump_inline_depth(outputStream *st) const { if (_inline_depth != InlineDepthBottom) { if (_inline_depth == InlineDepthTop) { st->print(" (inline_depth=InlineDepthTop)"); } else { st->print(" (inline_depth=%d)", _inline_depth); } } } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants bool TypePtr::singleton(void) const { // TopPTR, Null, AnyNull, Constant are all singletons return (_offset != OffsetBot) && !below_centerline(_ptr); } bool TypePtr::empty(void) const { return (_offset == OffsetTop) || above_centerline(_ptr); } //============================================================================= // Convenience common pre-built types. const TypeRawPtr *TypeRawPtr::BOTTOM; const TypeRawPtr *TypeRawPtr::NOTNULL; //------------------------------make------------------------------------------- const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { assert( ptr != Constant, "what is the constant?" ); assert( ptr != Null, "Use TypePtr for NULL" ); return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); } const TypeRawPtr *TypeRawPtr::make( address bits ) { assert( bits, "Use TypePtr for NULL" ); return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); } //------------------------------cast_to_ptr_type------------------------------- const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const { assert( ptr != Constant, "what is the constant?" ); assert( ptr != Null, "Use TypePtr for NULL" ); assert( _bits==0, "Why cast a constant address?"); if( ptr == _ptr ) return this; return make(ptr); } //------------------------------get_con---------------------------------------- intptr_t TypeRawPtr::get_con() const { assert( _ptr == Null || _ptr == Constant, "" ); return (intptr_t)_bits; } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeRawPtr::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is RawPtr switch( t->base() ) { // switch on original type case Bottom: // Ye Olde Default return t; case Top: return this; case AnyPtr: // Meeting to AnyPtrs break; case RawPtr: { // might be top, bot, any/not or constant enum PTR tptr = t->is_ptr()->ptr(); enum PTR ptr = meet_ptr( tptr ); if( ptr == Constant ) { // Cannot be equal constants, so... if( tptr == Constant && _ptr != Constant) return t; if( _ptr == Constant && tptr != Constant) return this; ptr = NotNull; // Fall down in lattice } return make( ptr ); } case OopPtr: case InstPtr: case AryPtr: case MetadataPtr: case KlassPtr: return TypePtr::BOTTOM; // Oop meet raw is not well defined default: // All else is a mistake typerr(t); } // Found an AnyPtr type vs self-RawPtr type const TypePtr *tp = t->is_ptr(); switch (tp->ptr()) { case TypePtr::TopPTR: return this; case TypePtr::BotPTR: return t; case TypePtr::Null: if( _ptr == TypePtr::TopPTR ) return t; return TypeRawPtr::BOTTOM; case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); case TypePtr::AnyNull: if( _ptr == TypePtr::Constant) return this; return make( meet_ptr(TypePtr::AnyNull) ); default: ShouldNotReachHere(); } return this; } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeRawPtr::xdual() const { return new TypeRawPtr( dual_ptr(), _bits ); } //------------------------------add_offset------------------------------------- const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const { if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer if( offset == 0 ) return this; // No change switch (_ptr) { case TypePtr::TopPTR: case TypePtr::BotPTR: case TypePtr::NotNull: return this; case TypePtr::Null: case TypePtr::Constant: { address bits = _bits+offset; if ( bits == 0 ) return TypePtr::NULL_PTR; return make( bits ); } default: ShouldNotReachHere(); } return NULL; // Lint noise } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeRawPtr::eq( const Type *t ) const { const TypeRawPtr *a = (const TypeRawPtr*)t; return _bits == a->_bits && TypePtr::eq(t); } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeRawPtr::hash(void) const { return (intptr_t)_bits + TypePtr::hash(); } //------------------------------dump2------------------------------------------ #ifndef PRODUCT void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { if( _ptr == Constant ) st->print(INTPTR_FORMAT, p2i(_bits)); else st->print("rawptr:%s", ptr_msg[_ptr]); } #endif //============================================================================= // Convenience common pre-built type. const TypeOopPtr *TypeOopPtr::BOTTOM; //------------------------------TypeOopPtr------------------------------------- TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypePtr* speculative, int inline_depth) : TypePtr(t, ptr, offset, speculative, inline_depth), _const_oop(o), _klass(k), _klass_is_exact(xk), _is_ptr_to_narrowoop(false), _is_ptr_to_narrowklass(false), _is_ptr_to_boxed_value(false), _instance_id(instance_id) { if (Compile::current()->eliminate_boxing() && (t == InstPtr) && (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); } #ifdef _LP64 if (_offset != 0) { if (_offset == oopDesc::klass_offset_in_bytes()) { _is_ptr_to_narrowklass = UseCompressedClassPointers; } else if (klass() == NULL) { // Array with unknown body type assert(this->isa_aryptr(), "only arrays without klass"); _is_ptr_to_narrowoop = UseCompressedOops; } else if (this->isa_aryptr()) { _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && _offset != arrayOopDesc::length_offset_in_bytes()); } else if (klass()->is_instance_klass()) { ciInstanceKlass* ik = klass()->as_instance_klass(); ciField* field = NULL; if (this->isa_klassptr()) { // Perm objects don't use compressed references } else if (_offset == OffsetBot || _offset == OffsetTop) { // unsafe access _is_ptr_to_narrowoop = UseCompressedOops; } else { // exclude unsafe ops assert(this->isa_instptr(), "must be an instance ptr."); if (klass() == ciEnv::current()->Class_klass() && (_offset == java_lang_Class::klass_offset_in_bytes() || _offset == java_lang_Class::array_klass_offset_in_bytes())) { // Special hidden fields from the Class. assert(this->isa_instptr(), "must be an instance ptr."); _is_ptr_to_narrowoop = false; } else if (klass() == ciEnv::current()->Class_klass() && _offset >= InstanceMirrorKlass::offset_of_static_fields()) { // Static fields assert(o != NULL, "must be constant"); ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass(); ciField* field = k->get_field_by_offset(_offset, true); assert(field != NULL, "missing field"); BasicType basic_elem_type = field->layout_type(); _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY); } else { // Instance fields which contains a compressed oop references. field = ik->get_field_by_offset(_offset, false); if (field != NULL) { BasicType basic_elem_type = field->layout_type(); _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY); } else if (klass()->equals(ciEnv::current()->Object_klass())) { // Compile::find_alias_type() cast exactness on all types to verify // that it does not affect alias type. _is_ptr_to_narrowoop = UseCompressedOops; } else { // Type for the copy start in LibraryCallKit::inline_native_clone(). _is_ptr_to_narrowoop = UseCompressedOops; } } } } } #endif } //------------------------------make------------------------------------------- const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, const TypePtr* speculative, int inline_depth) { assert(ptr != Constant, "no constant generic pointers"); ciKlass* k = Compile::current()->env()->Object_klass(); bool xk = false; ciObject* o = NULL; return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); } //------------------------------cast_to_ptr_type------------------------------- const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const { assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); if( ptr == _ptr ) return this; return make(ptr, _offset, _instance_id, _speculative, _inline_depth); } //-----------------------------cast_to_instance_id---------------------------- const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { // There are no instances of a general oop. // Return self unchanged. return this; } //-----------------------------cast_to_exactness------------------------------- const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { // There is no such thing as an exact general oop. // Return self unchanged. return this; } //------------------------------as_klass_type---------------------------------- // Return the klass type corresponding to this instance or array type. // It is the type that is loaded from an object of this type. const TypeKlassPtr* TypeOopPtr::as_klass_type() const { ciKlass* k = klass(); bool xk = klass_is_exact(); if (k == NULL) return TypeKlassPtr::OBJECT; else return TypeKlassPtr::make(xk? Constant: NotNull, k, 0); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeOopPtr::xmeet_helper(const Type *t) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is OopPtr switch (t->base()) { // switch on original type case Int: // Mixing ints & oops happens when javac case Long: // reuses local variables case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; default: // All else is a mistake typerr(t); case RawPtr: case MetadataPtr: case KlassPtr: return TypePtr::BOTTOM; // Oop meet raw is not well defined case AnyPtr: { // Found an AnyPtr type vs self-OopPtr type const TypePtr *tp = t->is_ptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); switch (tp->ptr()) { case Null: if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); // else fall through: case TopPTR: case AnyNull: { int instance_id = meet_instance_id(InstanceTop); return make(ptr, offset, instance_id, speculative, depth); } case BotPTR: case NotNull: return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); default: typerr(t); } } case OopPtr: { // Meeting to other OopPtrs const TypeOopPtr *tp = t->is_oopptr(); int instance_id = meet_instance_id(tp->instance_id()); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); } case InstPtr: // For these, flip the call around to cut down case AryPtr: return t->xmeet(this); // Call in reverse direction } // End of switch return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual of a pure heap pointer. No relevant klass or oop information. const Type *TypeOopPtr::xdual() const { assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); assert(const_oop() == NULL, "no constants here"); return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); } //--------------------------make_from_klass_common----------------------------- // Computes the element-type given a klass. const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) { if (klass->is_instance_klass()) { Compile* C = Compile::current(); Dependencies* deps = C->dependencies(); assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity"); // Element is an instance bool klass_is_exact = false; if (klass->is_loaded()) { // Try to set klass_is_exact. ciInstanceKlass* ik = klass->as_instance_klass(); klass_is_exact = ik->is_final(); if (!klass_is_exact && klass_change && deps != NULL && UseUniqueSubclasses) { ciInstanceKlass* sub = ik->unique_concrete_subklass(); if (sub != NULL) { deps->assert_abstract_with_unique_concrete_subtype(ik, sub); klass = ik = sub; klass_is_exact = sub->is_final(); } } if (!klass_is_exact && try_for_exact && deps != NULL && UseExactTypes) { if (!ik->is_interface() && !ik->has_subklass()) { // Add a dependence; if concrete subclass added we need to recompile deps->assert_leaf_type(ik); klass_is_exact = true; } } } return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0); } else if (klass->is_obj_array_klass()) { // Element is an object array. Recursively call ourself. const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact); bool xk = etype->klass_is_exact(); const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); // We used to pass NotNull in here, asserting that the sub-arrays // are all not-null. This is not true in generally, as code can // slam NULLs down in the subarrays. const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0); return arr; } else if (klass->is_type_array_klass()) { // Element is an typeArray const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); // We used to pass NotNull in here, asserting that the array pointer // is not-null. That was not true in general. const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); return arr; } else { ShouldNotReachHere(); return NULL; } } //------------------------------make_from_constant----------------------------- // Make a java pointer from an oop constant const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { assert(!o->is_null_object(), "null object not yet handled here."); ciKlass* klass = o->klass(); if (klass->is_instance_klass()) { // Element is an instance if (require_constant) { if (!o->can_be_constant()) return NULL; } else if (!o->should_be_constant()) { return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0); } return TypeInstPtr::make(o); } else if (klass->is_obj_array_klass()) { // Element is an object array. Recursively call ourself. const TypeOopPtr *etype = TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass()); const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); // We used to pass NotNull in here, asserting that the sub-arrays // are all not-null. This is not true in generally, as code can // slam NULLs down in the subarrays. if (require_constant) { if (!o->can_be_constant()) return NULL; } else if (!o->should_be_constant()) { return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); } const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); return arr; } else if (klass->is_type_array_klass()) { // Element is an typeArray const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); // We used to pass NotNull in here, asserting that the array pointer // is not-null. That was not true in general. if (require_constant) { if (!o->can_be_constant()) return NULL; } else if (!o->should_be_constant()) { return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); } const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); return arr; } fatal("unhandled object type"); return NULL; } //------------------------------get_con---------------------------------------- intptr_t TypeOopPtr::get_con() const { assert( _ptr == Null || _ptr == Constant, "" ); assert( _offset >= 0, "" ); if (_offset != 0) { // After being ported to the compiler interface, the compiler no longer // directly manipulates the addresses of oops. Rather, it only has a pointer // to a handle at compile time. This handle is embedded in the generated // code and dereferenced at the time the nmethod is made. Until that time, // it is not reasonable to do arithmetic with the addresses of oops (we don't // have access to the addresses!). This does not seem to currently happen, // but this assertion here is to help prevent its occurence. tty->print_cr("Found oop constant with non-zero offset"); ShouldNotReachHere(); } return (intptr_t)const_oop()->constant_encoding(); } //-----------------------------filter------------------------------------------ // Do not allow interface-vs.-noninterface joins to collapse to top. const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { const Type* ft = join_helper(kills, include_speculative); const TypeInstPtr* ftip = ft->isa_instptr(); const TypeInstPtr* ktip = kills->isa_instptr(); if (ft->empty()) { // Check for evil case of 'this' being a class and 'kills' expecting an // interface. This can happen because the bytecodes do not contain // enough type info to distinguish a Java-level interface variable // from a Java-level object variable. If we meet 2 classes which // both implement interface I, but their meet is at 'j/l/O' which // doesn't implement I, we have no way to tell if the result should // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows // into a Phi which "knows" it's an Interface type we'll have to // uplift the type. if (!empty()) { if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { return kills; // Uplift to interface } // Also check for evil cases of 'this' being a class array // and 'kills' expecting an array of interfaces. Type::get_arrays_base_elements(ft, kills, NULL, &ktip); if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { return kills; // Uplift to array of interface } } return Type::TOP; // Canonical empty value } // If we have an interface-typed Phi or cast and we narrow to a class type, // the join should report back the class. However, if we have a J/L/Object // class-typed Phi and an interface flows in, it's possible that the meet & // join report an interface back out. This isn't possible but happens // because the type system doesn't interact well with interfaces. if (ftip != NULL && ktip != NULL && ftip->is_loaded() && ftip->klass()->is_interface() && ktip->is_loaded() && !ktip->klass()->is_interface()) { assert(!ftip->klass_is_exact(), "interface could not be exact"); return ktip->cast_to_ptr_type(ftip->ptr()); } return ft; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeOopPtr::eq( const Type *t ) const { const TypeOopPtr *a = (const TypeOopPtr*)t; if (_klass_is_exact != a->_klass_is_exact || _instance_id != a->_instance_id) return false; ciObject* one = const_oop(); ciObject* two = a->const_oop(); if (one == NULL || two == NULL) { return (one == two) && TypePtr::eq(t); } else { return one->equals(two) && TypePtr::eq(t); } } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeOopPtr::hash(void) const { return java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact), java_add((jint)_instance_id, (jint)TypePtr::hash())); } //------------------------------dump2------------------------------------------ #ifndef PRODUCT void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { st->print("oopptr:%s", ptr_msg[_ptr]); if( _klass_is_exact ) st->print(":exact"); if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); switch( _offset ) { case OffsetTop: st->print("+top"); break; case OffsetBot: st->print("+any"); break; case 0: break; default: st->print("+%d",_offset); break; } if (_instance_id == InstanceTop) st->print(",iid=top"); else if (_instance_id != InstanceBot) st->print(",iid=%d",_instance_id); dump_inline_depth(st); dump_speculative(st); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants bool TypeOopPtr::singleton(void) const { // detune optimizer to not generate constant oop + constant offset as a constant! // TopPTR, Null, AnyNull, Constant are all singletons return (_offset == 0) && !below_centerline(_ptr); } //------------------------------add_offset------------------------------------- const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const { return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); } /** * Return same type without a speculative part */ const Type* TypeOopPtr::remove_speculative() const { if (_speculative == NULL) { return this; } assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); return make(_ptr, _offset, _instance_id, NULL, _inline_depth); } /** * Return same type but drop speculative part if we know we won't use * it */ const Type* TypeOopPtr::cleanup_speculative() const { // If the klass is exact and the ptr is not null then there's // nothing that the speculative type can help us with if (klass_is_exact() && !maybe_null()) { return remove_speculative(); } return TypePtr::cleanup_speculative(); } /** * Return same type but with a different inline depth (used for speculation) * * @param depth depth to meet with */ const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { if (!UseInlineDepthForSpeculativeTypes) { return this; } return make(_ptr, _offset, _instance_id, _speculative, depth); } //------------------------------meet_instance_id-------------------------------- int TypeOopPtr::meet_instance_id( int instance_id ) const { // Either is 'TOP' instance? Return the other instance! if( _instance_id == InstanceTop ) return instance_id; if( instance_id == InstanceTop ) return _instance_id; // If either is different, return 'BOTTOM' instance if( _instance_id != instance_id ) return InstanceBot; return _instance_id; } //------------------------------dual_instance_id-------------------------------- int TypeOopPtr::dual_instance_id( ) const { if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP return _instance_id; // Map everything else into self } /** * Check whether new profiling would improve speculative type * * @param exact_kls class from profiling * @param inline_depth inlining depth of profile point * * @return true if type profile is valuable */ bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { // no way to improve an already exact type if (klass_is_exact()) { return false; } return TypePtr::would_improve_type(exact_kls, inline_depth); } //============================================================================= // Convenience common pre-built types. const TypeInstPtr *TypeInstPtr::NOTNULL; const TypeInstPtr *TypeInstPtr::BOTTOM; const TypeInstPtr *TypeInstPtr::MIRROR; const TypeInstPtr *TypeInstPtr::MARK; const TypeInstPtr *TypeInstPtr::KLASS; //------------------------------TypeInstPtr------------------------------------- TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypePtr* speculative, int inline_depth) : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) { assert(k != NULL && (k->is_loaded() || o == NULL), "cannot have constants with non-loaded klass"); }; //------------------------------make------------------------------------------- const TypeInstPtr *TypeInstPtr::make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypePtr* speculative, int inline_depth) { assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); // Either const_oop() is NULL or else ptr is Constant assert( (!o && ptr != Constant) || (o && ptr == Constant), "constant pointers must have a value supplied" ); // Ptr is never Null assert( ptr != Null, "NULL pointers are not typed" ); assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); if (!UseExactTypes) xk = false; if (ptr == Constant) { // Note: This case includes meta-object constants, such as methods. xk = true; } else if (k->is_loaded()) { ciInstanceKlass* ik = k->as_instance_klass(); if (!xk && ik->is_final()) xk = true; // no inexact final klass if (xk && ik->is_interface()) xk = false; // no exact interface } // Now hash this baby TypeInstPtr *result = (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); return result; } /** * Create constant type for a constant boxed value */ const Type* TypeInstPtr::get_const_boxed_value() const { assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); assert((const_oop() != NULL), "should be called only for constant object"); ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); BasicType bt = constant.basic_type(); switch (bt) { case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); case T_INT: return TypeInt::make(constant.as_int()); case T_CHAR: return TypeInt::make(constant.as_char()); case T_BYTE: return TypeInt::make(constant.as_byte()); case T_SHORT: return TypeInt::make(constant.as_short()); case T_FLOAT: return TypeF::make(constant.as_float()); case T_DOUBLE: return TypeD::make(constant.as_double()); case T_LONG: return TypeLong::make(constant.as_long()); default: break; } fatal("Invalid boxed value type '%s'", type2name(bt)); return NULL; } //------------------------------cast_to_ptr_type------------------------------- const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const { if( ptr == _ptr ) return this; // Reconstruct _sig info here since not a problem with later lazy // construction, _sig will show up on demand. return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth); } //-----------------------------cast_to_exactness------------------------------- const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { if( klass_is_exact == _klass_is_exact ) return this; if (!UseExactTypes) return this; if (!_klass->is_loaded()) return this; ciInstanceKlass* ik = _klass->as_instance_klass(); if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk if( ik->is_interface() ) return this; // cannot set xk return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); } //-----------------------------cast_to_instance_id---------------------------- const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const { if( instance_id == _instance_id ) return this; return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); } //------------------------------xmeet_unloaded--------------------------------- // Compute the MEET of two InstPtrs when at least one is unloaded. // Assume classes are different since called after check for same name/class-loader const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const { int off = meet_offset(tinst->offset()); PTR ptr = meet_ptr(tinst->ptr()); int instance_id = meet_instance_id(tinst->instance_id()); const TypePtr* speculative = xmeet_speculative(tinst); int depth = meet_inline_depth(tinst->inline_depth()); const TypeInstPtr *loaded = is_loaded() ? this : tinst; const TypeInstPtr *unloaded = is_loaded() ? tinst : this; if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { // // Meet unloaded class with java/lang/Object // // Meet // | Unloaded Class // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | // =================================================================== // TOP | ..........................Unloaded......................| // AnyNull | U-AN |................Unloaded......................| // Constant | ... O-NN .................................. | O-BOT | // NotNull | ... O-NN .................................. | O-BOT | // BOTTOM | ........................Object-BOTTOM ..................| // assert(loaded->ptr() != TypePtr::Null, "insanity check"); // if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; } else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); } else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } else { return TypeInstPtr::NOTNULL; } } else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; } return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr(); } // Both are unloaded, not the same class, not Object // Or meet unloaded with a different loaded class, not java/lang/Object if( ptr != TypePtr::BotPTR ) { return TypeInstPtr::NOTNULL; } return TypeInstPtr::BOTTOM; } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeInstPtr::xmeet_helper(const Type *t) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Pointer switch (t->base()) { // switch on original type case Int: // Mixing ints & oops happens when javac case Long: // reuses local variables case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; default: // All else is a mistake typerr(t); case MetadataPtr: case KlassPtr: case RawPtr: return TypePtr::BOTTOM; case AryPtr: { // All arrays inherit from Object class const TypeAryPtr *tp = t->is_aryptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); int instance_id = meet_instance_id(tp->instance_id()); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); switch (ptr) { case TopPTR: case AnyNull: // Fall 'down' to dual of object klass // For instances when a subclass meets a superclass we fall // below the centerline when the superclass is exact. We need to // do the same here. if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth); } else { // cannot subclass, so the meet has to fall badly below the centerline ptr = NotNull; instance_id = InstanceBot; return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); } case Constant: case NotNull: case BotPTR: // Fall down to object klass // LCA is object_klass, but if we subclass from the top we can do better if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) // If 'this' (InstPtr) is above the centerline and it is Object class // then we can subclass in the Java class hierarchy. // For instances when a subclass meets a superclass we fall // below the centerline when the superclass is exact. We need // to do the same here. if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { // that is, tp's array type is a subtype of my klass return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL), tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth); } } // The other case cannot happen, since I cannot be a subtype of an array. // The meet falls down to Object class below centerline. if( ptr == Constant ) ptr = NotNull; instance_id = InstanceBot; return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); default: typerr(t); } } case OopPtr: { // Meeting to OopPtrs // Found a OopPtr type vs self-InstPtr type const TypeOopPtr *tp = t->is_oopptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); switch (tp->ptr()) { case TopPTR: case AnyNull: { int instance_id = meet_instance_id(InstanceTop); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); return make(ptr, klass(), klass_is_exact(), (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); } case NotNull: case BotPTR: { int instance_id = meet_instance_id(tp->instance_id()); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); } default: typerr(t); } } case AnyPtr: { // Meeting to AnyPtrs // Found an AnyPtr type vs self-InstPtr type const TypePtr *tp = t->is_ptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); int instance_id = meet_instance_id(InstanceTop); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); switch (tp->ptr()) { case Null: if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); // else fall through to AnyNull case TopPTR: case AnyNull: { return make(ptr, klass(), klass_is_exact(), (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); } case NotNull: case BotPTR: return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); default: typerr(t); } } /* A-top } / | \ } Tops B-top A-any C-top } | / | \ | } Any-nulls B-any | C-any } | | | B-con A-con C-con } constants; not comparable across classes | | | B-not | C-not } | \ | / | } not-nulls B-bot A-not C-bot } \ | / } Bottoms A-bot } */ case InstPtr: { // Meeting 2 Oops? // Found an InstPtr sub-type vs self-InstPtr type const TypeInstPtr *tinst = t->is_instptr(); int off = meet_offset( tinst->offset() ); PTR ptr = meet_ptr( tinst->ptr() ); int instance_id = meet_instance_id(tinst->instance_id()); const TypePtr* speculative = xmeet_speculative(tinst); int depth = meet_inline_depth(tinst->inline_depth()); // Check for easy case; klasses are equal (and perhaps not loaded!) // If we have constants, then we created oops so classes are loaded // and we can handle the constants further down. This case handles // both-not-loaded or both-loaded classes if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) { return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth); } // Classes require inspection in the Java klass hierarchy. Must be loaded. ciKlass* tinst_klass = tinst->klass(); ciKlass* this_klass = this->klass(); bool tinst_xk = tinst->klass_is_exact(); bool this_xk = this->klass_is_exact(); if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) { // One of these classes has not been loaded const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst); #ifndef PRODUCT if( PrintOpto && Verbose ) { tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr(); tty->print(" this == "); this->dump(); tty->cr(); tty->print(" tinst == "); tinst->dump(); tty->cr(); } #endif return unloaded_meet; } // Handle mixing oops and interfaces first. if( this_klass->is_interface() && !(tinst_klass->is_interface() || tinst_klass == ciEnv::current()->Object_klass())) { ciKlass *tmp = tinst_klass; // Swap interface around tinst_klass = this_klass; this_klass = tmp; bool tmp2 = tinst_xk; tinst_xk = this_xk; this_xk = tmp2; } if (tinst_klass->is_interface() && !(this_klass->is_interface() || // Treat java/lang/Object as an honorary interface, // because we need a bottom for the interface hierarchy. this_klass == ciEnv::current()->Object_klass())) { // Oop meets interface! // See if the oop subtypes (implements) interface. ciKlass *k; bool xk; if( this_klass->is_subtype_of( tinst_klass ) ) { // Oop indeed subtypes. Now keep oop or interface depending // on whether we are both above the centerline or either is // below the centerline. If we are on the centerline // (e.g., Constant vs. AnyNull interface), use the constant. k = below_centerline(ptr) ? tinst_klass : this_klass; // If we are keeping this_klass, keep its exactness too. xk = below_centerline(ptr) ? tinst_xk : this_xk; } else { // Does not implement, fall to Object // Oop does not implement interface, so mixing falls to Object // just like the verifier does (if both are above the // centerline fall to interface) k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass(); xk = above_centerline(ptr) ? tinst_xk : false; // Watch out for Constant vs. AnyNull interface. if (ptr == Constant) ptr = NotNull; // forget it was a constant instance_id = InstanceBot; } ciObject* o = NULL; // the Constant value, if any if (ptr == Constant) { // Find out which constant. o = (this_klass == klass()) ? const_oop() : tinst->const_oop(); } return make(ptr, k, xk, o, off, instance_id, speculative, depth); } // Either oop vs oop or interface vs interface or interface vs Object // !!! Here's how the symmetry requirement breaks down into invariants: // If we split one up & one down AND they subtype, take the down man. // If we split one up & one down AND they do NOT subtype, "fall hard". // If both are up and they subtype, take the subtype class. // If both are up and they do NOT subtype, "fall hard". // If both are down and they subtype, take the supertype class. // If both are down and they do NOT subtype, "fall hard". // Constants treated as down. // Now, reorder the above list; observe that both-down+subtype is also // "fall hard"; "fall hard" becomes the default case: // If we split one up & one down AND they subtype, take the down man. // If both are up and they subtype, take the subtype class. // If both are down and they subtype, "fall hard". // If both are down and they do NOT subtype, "fall hard". // If both are up and they do NOT subtype, "fall hard". // If we split one up & one down AND they do NOT subtype, "fall hard". // If a proper subtype is exact, and we return it, we return it exactly. // If a proper supertype is exact, there can be no subtyping relationship! // If both types are equal to the subtype, exactness is and-ed below the // centerline and or-ed above it. (N.B. Constants are always exact.) // Check for subtyping: ciKlass *subtype = NULL; bool subtype_exact = false; if( tinst_klass->equals(this_klass) ) { subtype = this_klass; subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk); } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) { subtype = this_klass; // Pick subtyping class subtype_exact = this_xk; } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) { subtype = tinst_klass; // Pick subtyping class subtype_exact = tinst_xk; } if( subtype ) { if( above_centerline(ptr) ) { // both are up? this_klass = tinst_klass = subtype; this_xk = tinst_xk = subtype_exact; } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) { this_klass = tinst_klass; // tinst is down; keep down man this_xk = tinst_xk; } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) { tinst_klass = this_klass; // this is down; keep down man tinst_xk = this_xk; } else { this_xk = subtype_exact; // either they are equal, or we'll do an LCA } } // Check for classes now being equal if (tinst_klass->equals(this_klass)) { // If the klasses are equal, the constants may still differ. Fall to // NotNull if they do (neither constant is NULL; that is a special case // handled elsewhere). ciObject* o = NULL; // Assume not constant when done ciObject* this_oop = const_oop(); ciObject* tinst_oop = tinst->const_oop(); if( ptr == Constant ) { if (this_oop != NULL && tinst_oop != NULL && this_oop->equals(tinst_oop) ) o = this_oop; else if (above_centerline(this ->_ptr)) o = tinst_oop; else if (above_centerline(tinst ->_ptr)) o = this_oop; else ptr = NotNull; } return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth); } // Else classes are not equal // Since klasses are different, we require a LCA in the Java // class hierarchy - which means we have to fall to at least NotNull. if( ptr == TopPTR || ptr == AnyNull || ptr == Constant ) ptr = NotNull; instance_id = InstanceBot; // Now we find the LCA of Java classes ciKlass* k = this_klass->least_common_ancestor(tinst_klass); return make(ptr, k, false, NULL, off, instance_id, speculative, depth); } // End of case InstPtr } // End of switch return this; // Return the double constant } //------------------------java_mirror_type-------------------------------------- ciType* TypeInstPtr::java_mirror_type() const { // must be a singleton type if( const_oop() == NULL ) return NULL; // must be of type java.lang.Class if( klass() != ciEnv::current()->Class_klass() ) return NULL; return const_oop()->as_instance()->java_mirror_type(); } //------------------------------xdual------------------------------------------ // Dual: do NOT dual on klasses. This means I do NOT understand the Java // inheritance mechanism. const Type *TypeInstPtr::xdual() const { return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeInstPtr::eq( const Type *t ) const { const TypeInstPtr *p = t->is_instptr(); return klass()->equals(p->klass()) && TypeOopPtr::eq(p); // Check sub-type stuff } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeInstPtr::hash(void) const { int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash()); return hash; } const bool TypeInstPtr::is_value_based() const { return klass()->is_value_based(); } const bool TypeInstPtr::can_be_value_based() const { return !is_zero_type() && (!klass()->is_loaded() || klass()->is_interface() || klass()->is_java_lang_Object() || klass()->is_value_based()); } //------------------------------dump2------------------------------------------ // Dump oop Type #ifndef PRODUCT void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const { // Print the name of the klass. klass()->print_name_on(st); switch( _ptr ) { case Constant: // TO DO: Make CI print the hex address of the underlying oop. if (WizardMode || Verbose) { const_oop()->print_oop(st); } case BotPTR: if (!WizardMode && !Verbose) { if( _klass_is_exact ) st->print(":exact"); break; } case TopPTR: case AnyNull: case NotNull: st->print(":%s", ptr_msg[_ptr]); if( _klass_is_exact ) st->print(":exact"); break; default: break; } if( _offset ) { // Dump offset, if any if( _offset == OffsetBot ) st->print("+any"); else if( _offset == OffsetTop ) st->print("+unknown"); else st->print("+%d", _offset); } st->print(" *"); if (_instance_id == InstanceTop) st->print(",iid=top"); else if (_instance_id != InstanceBot) st->print(",iid=%d",_instance_id); dump_inline_depth(st); dump_speculative(st); } #endif //------------------------------add_offset------------------------------------- const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const { return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); } const Type *TypeInstPtr::remove_speculative() const { if (_speculative == NULL) { return this; } assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth); } const TypePtr *TypeInstPtr::with_inline_depth(int depth) const { if (!UseInlineDepthForSpeculativeTypes) { return this; } return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); } //============================================================================= // Convenience common pre-built types. const TypeAryPtr *TypeAryPtr::RANGE; const TypeAryPtr *TypeAryPtr::OOPS; const TypeAryPtr *TypeAryPtr::NARROWOOPS; const TypeAryPtr *TypeAryPtr::BYTES; const TypeAryPtr *TypeAryPtr::SHORTS; const TypeAryPtr *TypeAryPtr::CHARS; const TypeAryPtr *TypeAryPtr::INTS; const TypeAryPtr *TypeAryPtr::LONGS; const TypeAryPtr *TypeAryPtr::FLOATS; const TypeAryPtr *TypeAryPtr::DOUBLES; //------------------------------make------------------------------------------- const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypePtr* speculative, int inline_depth) { assert(!(k == NULL && ary->_elem->isa_int()), "integral arrays must be pre-equipped with a class"); if (!xk) xk = ary->ary_must_be_exact(); assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); if (!UseExactTypes) xk = (ptr == Constant); return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); } //------------------------------make------------------------------------------- const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypePtr* speculative, int inline_depth, bool is_autobox_cache) { assert(!(k == NULL && ary->_elem->isa_int()), "integral arrays must be pre-equipped with a class"); assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); if (!xk) xk = (o != NULL) || ary->ary_must_be_exact(); assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); if (!UseExactTypes) xk = (ptr == Constant); return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); } //------------------------------cast_to_ptr_type------------------------------- const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const { if( ptr == _ptr ) return this; return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); } //-----------------------------cast_to_exactness------------------------------- const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { if( klass_is_exact == _klass_is_exact ) return this; if (!UseExactTypes) return this; if (_ary->ary_must_be_exact()) return this; // cannot clear xk return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); } //-----------------------------cast_to_instance_id---------------------------- const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const { if( instance_id == _instance_id ) return this; return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); } //-----------------------------narrow_size_type------------------------------- // Local cache for arrayOopDesc::max_array_length(etype), // which is kind of slow (and cached elsewhere by other users). static jint max_array_length_cache[T_CONFLICT+1]; static jint max_array_length(BasicType etype) { jint& cache = max_array_length_cache[etype]; jint res = cache; if (res == 0) { switch (etype) { case T_NARROWOOP: etype = T_OBJECT; break; case T_NARROWKLASS: case T_CONFLICT: case T_ILLEGAL: case T_VOID: etype = T_BYTE; // will produce conservatively high value break; default: break; } cache = res = arrayOopDesc::max_array_length(etype); } return res; } // Narrow the given size type to the index range for the given array base type. // Return NULL if the resulting int type becomes empty. const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { jint hi = size->_hi; jint lo = size->_lo; jint min_lo = 0; jint max_hi = max_array_length(elem()->basic_type()); //if (index_not_size) --max_hi; // type of a valid array index, FTR bool chg = false; if (lo < min_lo) { lo = min_lo; if (size->is_con()) { hi = lo; } chg = true; } if (hi > max_hi) { hi = max_hi; if (size->is_con()) { lo = hi; } chg = true; } // Negative length arrays will produce weird intermediate dead fast-path code if (lo > hi) return TypeInt::ZERO; if (!chg) return size; return TypeInt::make(lo, hi, Type::WidenMin); } //-------------------------------cast_to_size---------------------------------- const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { assert(new_size != NULL, ""); new_size = narrow_size_type(new_size); if (new_size == size()) return this; const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); } //------------------------------cast_to_stable--------------------------------- const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) return this; const Type* elem = this->elem(); const TypePtr* elem_ptr = elem->make_ptr(); if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) { // If this is widened from a narrow oop, TypeAry::make will re-narrow it. elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); } const TypeAry* new_ary = TypeAry::make(elem, size(), stable); return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); } //-----------------------------stable_dimension-------------------------------- int TypeAryPtr::stable_dimension() const { if (!is_stable()) return 0; int dim = 1; const TypePtr* elem_ptr = elem()->make_ptr(); if (elem_ptr != NULL && elem_ptr->isa_aryptr()) dim += elem_ptr->is_aryptr()->stable_dimension(); return dim; } //----------------------cast_to_autobox_cache----------------------------------- const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const { if (is_autobox_cache() == cache) return this; const TypeOopPtr* etype = elem()->make_oopptr(); if (etype == NULL) return this; // The pointers in the autobox arrays are always non-null. TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull; etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache); } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeAryPtr::eq( const Type *t ) const { const TypeAryPtr *p = t->is_aryptr(); return _ary == p->_ary && // Check array TypeOopPtr::eq(p); // Check sub-parts } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeAryPtr::hash(void) const { return (intptr_t)_ary + TypeOopPtr::hash(); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeAryPtr::xmeet_helper(const Type *t) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Pointer switch (t->base()) { // switch on original type // Mixing ints & oops happens when javac reuses local variables case Int: case Long: case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; default: // All else is a mistake typerr(t); case OopPtr: { // Meeting to OopPtrs // Found a OopPtr type vs self-AryPtr type const TypeOopPtr *tp = t->is_oopptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); int depth = meet_inline_depth(tp->inline_depth()); const TypePtr* speculative = xmeet_speculative(tp); switch (tp->ptr()) { case TopPTR: case AnyNull: { int instance_id = meet_instance_id(InstanceTop); return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); } case BotPTR: case NotNull: { int instance_id = meet_instance_id(tp->instance_id()); return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); } default: ShouldNotReachHere(); } } case AnyPtr: { // Meeting two AnyPtrs // Found an AnyPtr type vs self-AryPtr type const TypePtr *tp = t->is_ptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); switch (tp->ptr()) { case TopPTR: return this; case BotPTR: case NotNull: return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); case Null: if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); // else fall through to AnyNull case AnyNull: { int instance_id = meet_instance_id(InstanceTop); return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); } default: ShouldNotReachHere(); } } case MetadataPtr: case KlassPtr: case RawPtr: return TypePtr::BOTTOM; case AryPtr: { // Meeting 2 references? const TypeAryPtr *tap = t->is_aryptr(); int off = meet_offset(tap->offset()); const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); PTR ptr = meet_ptr(tap->ptr()); int instance_id = meet_instance_id(tap->instance_id()); const TypePtr* speculative = xmeet_speculative(tap); int depth = meet_inline_depth(tap->inline_depth()); ciKlass* lazy_klass = NULL; if (tary->_elem->isa_int()) { // Integral array element types have irrelevant lattice relations. // It is the klass that determines array layout, not the element type. if (_klass == NULL) lazy_klass = tap->_klass; else if (tap->_klass == NULL || tap->_klass == _klass) { lazy_klass = _klass; } else { // Something like byte[int+] meets char[int+]. // This must fall to bottom, not (int[-128..65535])[int+]. instance_id = InstanceBot; tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable); } } else // Non integral arrays. // Must fall to bottom if exact klasses in upper lattice // are not equal or super klass is exact. if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() && // meet with top[] and bottom[] are processed further down: tap->_klass != NULL && this->_klass != NULL && // both are exact and not equal: ((tap->_klass_is_exact && this->_klass_is_exact) || // 'tap' is exact and super or unrelated: (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) || // 'this' is exact and super or unrelated: (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) { if (above_centerline(ptr)) { tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable); } return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth); } bool xk = false; switch (tap->ptr()) { case AnyNull: case TopPTR: // Compute new klass on demand, do not use tap->_klass if (below_centerline(this->_ptr)) { xk = this->_klass_is_exact; } else { xk = (tap->_klass_is_exact | this->_klass_is_exact); } return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth); case Constant: { ciObject* o = const_oop(); if( _ptr == Constant ) { if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) { xk = (klass() == tap->klass()); ptr = NotNull; o = NULL; instance_id = InstanceBot; } else { xk = true; } } else if(above_centerline(_ptr)) { o = tap->const_oop(); xk = true; } else { // Only precise for identical arrays xk = this->_klass_is_exact && (klass() == tap->klass()); } return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth); } case NotNull: case BotPTR: // Compute new klass on demand, do not use tap->_klass if (above_centerline(this->_ptr)) xk = tap->_klass_is_exact; else xk = (tap->_klass_is_exact & this->_klass_is_exact) && (klass() == tap->klass()); // Only precise for identical arrays return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth); default: ShouldNotReachHere(); } } // All arrays inherit from Object class case InstPtr: { const TypeInstPtr *tp = t->is_instptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); int instance_id = meet_instance_id(tp->instance_id()); const TypePtr* speculative = xmeet_speculative(tp); int depth = meet_inline_depth(tp->inline_depth()); switch (ptr) { case TopPTR: case AnyNull: // Fall 'down' to dual of object klass // For instances when a subclass meets a superclass we fall // below the centerline when the superclass is exact. We need to // do the same here. if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); } else { // cannot subclass, so the meet has to fall badly below the centerline ptr = NotNull; instance_id = InstanceBot; return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); } case Constant: case NotNull: case BotPTR: // Fall down to object klass // LCA is object_klass, but if we subclass from the top we can do better if (above_centerline(tp->ptr())) { // If 'tp' is above the centerline and it is Object class // then we can subclass in the Java class hierarchy. // For instances when a subclass meets a superclass we fall // below the centerline when the superclass is exact. We need // to do the same here. if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { // that is, my array type is a subtype of 'tp' klass return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); } } // The other case cannot happen, since t cannot be a subtype of an array. // The meet falls down to Object class below centerline. if( ptr == Constant ) ptr = NotNull; instance_id = InstanceBot; return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); default: typerr(t); } } } return this; // Lint noise } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeAryPtr::xdual() const { return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); } //----------------------interface_vs_oop--------------------------------------- #ifdef ASSERT bool TypeAryPtr::interface_vs_oop(const Type *t) const { const TypeAryPtr* t_aryptr = t->isa_aryptr(); if (t_aryptr) { return _ary->interface_vs_oop(t_aryptr->_ary); } return false; } #endif //------------------------------dump2------------------------------------------ #ifndef PRODUCT void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { _ary->dump2(d,depth,st); switch( _ptr ) { case Constant: const_oop()->print(st); break; case BotPTR: if (!WizardMode && !Verbose) { if( _klass_is_exact ) st->print(":exact"); break; } case TopPTR: case AnyNull: case NotNull: st->print(":%s", ptr_msg[_ptr]); if( _klass_is_exact ) st->print(":exact"); break; default: break; } if( _offset != 0 ) { int header_size = objArrayOopDesc::header_size() * wordSize; if( _offset == OffsetTop ) st->print("+undefined"); else if( _offset == OffsetBot ) st->print("+any"); else if( _offset < header_size ) st->print("+%d", _offset); else { BasicType basic_elem_type = elem()->basic_type(); int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); int elem_size = type2aelembytes(basic_elem_type); st->print("[%d]", (_offset - array_base)/elem_size); } } st->print(" *"); if (_instance_id == InstanceTop) st->print(",iid=top"); else if (_instance_id != InstanceBot) st->print(",iid=%d",_instance_id); dump_inline_depth(st); dump_speculative(st); } #endif bool TypeAryPtr::empty(void) const { if (_ary->empty()) return true; return TypeOopPtr::empty(); } //------------------------------add_offset------------------------------------- const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const { return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); } const Type *TypeAryPtr::remove_speculative() const { if (_speculative == NULL) { return this; } assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth); } const TypePtr *TypeAryPtr::with_inline_depth(int depth) const { if (!UseInlineDepthForSpeculativeTypes) { return this; } return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); } //============================================================================= //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeNarrowPtr::hash(void) const { return _ptrtype->hash() + 7; } bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton return _ptrtype->singleton(); } bool TypeNarrowPtr::empty(void) const { return _ptrtype->empty(); } intptr_t TypeNarrowPtr::get_con() const { return _ptrtype->get_con(); } bool TypeNarrowPtr::eq( const Type *t ) const { const TypeNarrowPtr* tc = isa_same_narrowptr(t); if (tc != NULL) { if (_ptrtype->base() != tc->_ptrtype->base()) { return false; } return tc->_ptrtype->eq(_ptrtype); } return false; } const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. const TypePtr* odual = _ptrtype->dual()->is_ptr(); return make_same_narrowptr(odual); } const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { if (isa_same_narrowptr(kills)) { const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); if (ft->empty()) return Type::TOP; // Canonical empty value if (ft->isa_ptr()) { return make_hash_same_narrowptr(ft->isa_ptr()); } return ft; } else if (kills->isa_ptr()) { const Type* ft = _ptrtype->join_helper(kills, include_speculative); if (ft->empty()) return Type::TOP; // Canonical empty value return ft; } else { return Type::TOP; } } //------------------------------xmeet------------------------------------------ // Compute the MEET of two types. It returns a new Type object. const Type *TypeNarrowPtr::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? if (t->base() == base()) { const Type* result = _ptrtype->xmeet(t->make_ptr()); if (result->isa_ptr()) { return make_hash_same_narrowptr(result->is_ptr()); } return result; } // Current "this->_base" is NarrowKlass or NarrowOop switch (t->base()) { // switch on original type case Int: // Mixing ints & oops happens when javac case Long: // reuses local variables case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case AnyPtr: case RawPtr: case OopPtr: case InstPtr: case AryPtr: case MetadataPtr: case KlassPtr: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; default: // All else is a mistake typerr(t); } // End of switch return this; } #ifndef PRODUCT void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { _ptrtype->dump2(d, depth, st); } #endif const TypeNarrowOop *TypeNarrowOop::BOTTOM; const TypeNarrowOop *TypeNarrowOop::NULL_PTR; const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); } const Type* TypeNarrowOop::remove_speculative() const { return make(_ptrtype->remove_speculative()->is_ptr()); } const Type* TypeNarrowOop::cleanup_speculative() const { return make(_ptrtype->cleanup_speculative()->is_ptr()); } #ifndef PRODUCT void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { st->print("narrowoop: "); TypeNarrowPtr::dump2(d, depth, st); } #endif const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); } #ifndef PRODUCT void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { st->print("narrowklass: "); TypeNarrowPtr::dump2(d, depth, st); } #endif //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeMetadataPtr::eq( const Type *t ) const { const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; ciMetadata* one = metadata(); ciMetadata* two = a->metadata(); if (one == NULL || two == NULL) { return (one == two) && TypePtr::eq(t); } else { return one->equals(two) && TypePtr::eq(t); } } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeMetadataPtr::hash(void) const { return (metadata() ? metadata()->hash() : 0) + TypePtr::hash(); } //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants bool TypeMetadataPtr::singleton(void) const { // detune optimizer to not generate constant metadata + constant offset as a constant! // TopPTR, Null, AnyNull, Constant are all singletons return (_offset == 0) && !below_centerline(_ptr); } //------------------------------add_offset------------------------------------- const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const { return make( _ptr, _metadata, xadd_offset(offset)); } //-----------------------------filter------------------------------------------ // Do not allow interface-vs.-noninterface joins to collapse to top. const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); if (ft == NULL || ft->empty()) return Type::TOP; // Canonical empty value return ft; } //------------------------------get_con---------------------------------------- intptr_t TypeMetadataPtr::get_con() const { assert( _ptr == Null || _ptr == Constant, "" ); assert( _offset >= 0, "" ); if (_offset != 0) { // After being ported to the compiler interface, the compiler no longer // directly manipulates the addresses of oops. Rather, it only has a pointer // to a handle at compile time. This handle is embedded in the generated // code and dereferenced at the time the nmethod is made. Until that time, // it is not reasonable to do arithmetic with the addresses of oops (we don't // have access to the addresses!). This does not seem to currently happen, // but this assertion here is to help prevent its occurence. tty->print_cr("Found oop constant with non-zero offset"); ShouldNotReachHere(); } return (intptr_t)metadata()->constant_encoding(); } //------------------------------cast_to_ptr_type------------------------------- const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { if( ptr == _ptr ) return this; return make(ptr, metadata(), _offset); } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeMetadataPtr::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is OopPtr switch (t->base()) { // switch on original type case Int: // Mixing ints & oops happens when javac case Long: // reuses local variables case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; default: // All else is a mistake typerr(t); case AnyPtr: { // Found an AnyPtr type vs self-OopPtr type const TypePtr *tp = t->is_ptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); switch (tp->ptr()) { case Null: if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); // else fall through: case TopPTR: case AnyNull: { return make(ptr, _metadata, offset); } case BotPTR: case NotNull: return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); default: typerr(t); } } case RawPtr: case KlassPtr: case OopPtr: case InstPtr: case AryPtr: return TypePtr::BOTTOM; // Oop meet raw is not well defined case MetadataPtr: { const TypeMetadataPtr *tp = t->is_metadataptr(); int offset = meet_offset(tp->offset()); PTR tptr = tp->ptr(); PTR ptr = meet_ptr(tptr); ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); if (tptr == TopPTR || _ptr == TopPTR || metadata()->equals(tp->metadata())) { return make(ptr, md, offset); } // metadata is different if( ptr == Constant ) { // Cannot be equal constants, so... if( tptr == Constant && _ptr != Constant) return t; if( _ptr == Constant && tptr != Constant) return this; ptr = NotNull; // Fall down in lattice } return make(ptr, NULL, offset); break; } } // End of switch return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual of a pure metadata pointer. const Type *TypeMetadataPtr::xdual() const { return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); } //------------------------------dump2------------------------------------------ #ifndef PRODUCT void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { st->print("metadataptr:%s", ptr_msg[_ptr]); if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); switch( _offset ) { case OffsetTop: st->print("+top"); break; case OffsetBot: st->print("+any"); break; case 0: break; default: st->print("+%d",_offset); break; } } #endif //============================================================================= // Convenience common pre-built type. const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { } const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { return make(Constant, m, 0); } const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { return make(Constant, m, 0); } //------------------------------make------------------------------------------- // Create a meta data constant const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { assert(m == NULL || !m->is_klass(), "wrong type"); return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); } //============================================================================= // Convenience common pre-built types. // Not-null object klass or below const TypeKlassPtr *TypeKlassPtr::OBJECT; const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL; //------------------------------TypeKlassPtr----------------------------------- TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset ) : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) { } //------------------------------make------------------------------------------- // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) { assert( k != NULL, "Expect a non-NULL klass"); assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop"); TypeKlassPtr *r = (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons(); return r; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeKlassPtr::eq( const Type *t ) const { const TypeKlassPtr *p = t->is_klassptr(); return klass()->equals(p->klass()) && TypePtr::eq(p); } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeKlassPtr::hash(void) const { return java_add((jint)klass()->hash(), (jint)TypePtr::hash()); } //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants bool TypeKlassPtr::singleton(void) const { // detune optimizer to not generate constant klass + constant offset as a constant! // TopPTR, Null, AnyNull, Constant are all singletons return (_offset == 0) && !below_centerline(_ptr); } // Do not allow interface-vs.-noninterface joins to collapse to top. const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { // logic here mirrors the one from TypeOopPtr::filter. See comments // there. const Type* ft = join_helper(kills, include_speculative); const TypeKlassPtr* ftkp = ft->isa_klassptr(); const TypeKlassPtr* ktkp = kills->isa_klassptr(); if (ft->empty()) { if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface()) return kills; // Uplift to interface return Type::TOP; // Canonical empty value } // Interface klass type could be exact in opposite to interface type, // return it here instead of incorrect Constant ptr J/L/Object (6894807). if (ftkp != NULL && ktkp != NULL && ftkp->is_loaded() && ftkp->klass()->is_interface() && !ftkp->klass_is_exact() && // Keep exact interface klass ktkp->is_loaded() && !ktkp->klass()->is_interface()) { return ktkp->cast_to_ptr_type(ftkp->ptr()); } return ft; } //----------------------compute_klass------------------------------------------ // Compute the defining klass for this class ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const { // Compute _klass based on element type. ciKlass* k_ary = NULL; const TypeInstPtr *tinst; const TypeAryPtr *tary; const Type* el = elem(); if (el->isa_narrowoop()) { el = el->make_ptr(); } // Get element klass if ((tinst = el->isa_instptr()) != NULL) { // Compute array klass from element klass k_ary = ciObjArrayKlass::make(tinst->klass()); } else if ((tary = el->isa_aryptr()) != NULL) { // Compute array klass from element klass ciKlass* k_elem = tary->klass(); // If element type is something like bottom[], k_elem will be null. if (k_elem != NULL) k_ary = ciObjArrayKlass::make(k_elem); } else if ((el->base() == Type::Top) || (el->base() == Type::Bottom)) { // element type of Bottom occurs from meet of basic type // and object; Top occurs when doing join on Bottom. // Leave k_ary at NULL. } else { // Cannot compute array klass directly from basic type, // since subtypes of TypeInt all have basic type T_INT. #ifdef ASSERT if (verify && el->isa_int()) { // Check simple cases when verifying klass. BasicType bt = T_ILLEGAL; if (el == TypeInt::BYTE) { bt = T_BYTE; } else if (el == TypeInt::SHORT) { bt = T_SHORT; } else if (el == TypeInt::CHAR) { bt = T_CHAR; } else if (el == TypeInt::INT) { bt = T_INT; } else { return _klass; // just return specified klass } return ciTypeArrayKlass::make(bt); } #endif assert(!el->isa_int(), "integral arrays must be pre-equipped with a class"); // Compute array klass directly from basic type k_ary = ciTypeArrayKlass::make(el->basic_type()); } return k_ary; } //------------------------------klass------------------------------------------ // Return the defining klass for this class ciKlass* TypeAryPtr::klass() const { if( _klass ) return _klass; // Return cached value, if possible // Oops, need to compute _klass and cache it ciKlass* k_ary = compute_klass(); if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { // The _klass field acts as a cache of the underlying // ciKlass for this array type. In order to set the field, // we need to cast away const-ness. // // IMPORTANT NOTE: we *never* set the _klass field for the // type TypeAryPtr::OOPS. This Type is shared between all // active compilations. However, the ciKlass which represents // this Type is *not* shared between compilations, so caching // this value would result in fetching a dangling pointer. // // Recomputing the underlying ciKlass for each request is // a bit less efficient than caching, but calls to // TypeAryPtr::OOPS->klass() are not common enough to matter. ((TypeAryPtr*)this)->_klass = k_ary; if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() && _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) { ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true; } } return k_ary; } //------------------------------add_offset------------------------------------- // Access internals of klass object const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const { return make( _ptr, klass(), xadd_offset(offset) ); } //------------------------------cast_to_ptr_type------------------------------- const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const { assert(_base == KlassPtr, "subclass must override cast_to_ptr_type"); if( ptr == _ptr ) return this; return make(ptr, _klass, _offset); } //-----------------------------cast_to_exactness------------------------------- const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const { if( klass_is_exact == _klass_is_exact ) return this; if (!UseExactTypes) return this; return make(klass_is_exact ? Constant : NotNull, _klass, _offset); } //-----------------------------as_instance_type-------------------------------- // Corresponding type for an instance of the given class. // It will be NotNull, and exact if and only if the klass type is exact. const TypeOopPtr* TypeKlassPtr::as_instance_type() const { ciKlass* k = klass(); bool xk = klass_is_exact(); //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0); const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k); guarantee(toop != NULL, "need type for given klass"); toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); return toop->cast_to_exactness(xk)->is_oopptr(); } //------------------------------xmeet------------------------------------------ // Compute the MEET of two types, return a new Type object. const Type *TypeKlassPtr::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Pointer switch (t->base()) { // switch on original type case Int: // Mixing ints & oops happens when javac case Long: // reuses local variables case FloatTop: case FloatCon: case FloatBot: case DoubleTop: case DoubleCon: case DoubleBot: case NarrowOop: case NarrowKlass: case Bottom: // Ye Olde Default return Type::BOTTOM; case Top: return this; default: // All else is a mistake typerr(t); case AnyPtr: { // Meeting to AnyPtrs // Found an AnyPtr type vs self-KlassPtr type const TypePtr *tp = t->is_ptr(); int offset = meet_offset(tp->offset()); PTR ptr = meet_ptr(tp->ptr()); switch (tp->ptr()) { case TopPTR: return this; case Null: if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); case AnyNull: return make( ptr, klass(), offset ); case BotPTR: case NotNull: return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); default: typerr(t); } } case RawPtr: case MetadataPtr: case OopPtr: case AryPtr: // Meet with AryPtr case InstPtr: // Meet with InstPtr return TypePtr::BOTTOM; // // A-top } // / | \ } Tops // B-top A-any C-top } // | / | \ | } Any-nulls // B-any | C-any } // | | | // B-con A-con C-con } constants; not comparable across classes // | | | // B-not | C-not } // | \ | / | } not-nulls // B-bot A-not C-bot } // \ | / } Bottoms // A-bot } // case KlassPtr: { // Meet two KlassPtr types const TypeKlassPtr *tkls = t->is_klassptr(); int off = meet_offset(tkls->offset()); PTR ptr = meet_ptr(tkls->ptr()); // Check for easy case; klasses are equal (and perhaps not loaded!) // If we have constants, then we created oops so classes are loaded // and we can handle the constants further down. This case handles // not-loaded classes if( ptr != Constant && tkls->klass()->equals(klass()) ) { return make( ptr, klass(), off ); } // Classes require inspection in the Java klass hierarchy. Must be loaded. ciKlass* tkls_klass = tkls->klass(); ciKlass* this_klass = this->klass(); assert( tkls_klass->is_loaded(), "This class should have been loaded."); assert( this_klass->is_loaded(), "This class should have been loaded."); // If 'this' type is above the centerline and is a superclass of the // other, we can treat 'this' as having the same type as the other. if ((above_centerline(this->ptr())) && tkls_klass->is_subtype_of(this_klass)) { this_klass = tkls_klass; } // If 'tinst' type is above the centerline and is a superclass of the // other, we can treat 'tinst' as having the same type as the other. if ((above_centerline(tkls->ptr())) && this_klass->is_subtype_of(tkls_klass)) { tkls_klass = this_klass; } // Check for classes now being equal if (tkls_klass->equals(this_klass)) { // If the klasses are equal, the constants may still differ. Fall to // NotNull if they do (neither constant is NULL; that is a special case // handled elsewhere). if( ptr == Constant ) { if (this->_ptr == Constant && tkls->_ptr == Constant && this->klass()->equals(tkls->klass())); else if (above_centerline(this->ptr())); else if (above_centerline(tkls->ptr())); else ptr = NotNull; } return make( ptr, this_klass, off ); } // Else classes are not equal // Since klasses are different, we require the LCA in the Java // class hierarchy - which means we have to fall to at least NotNull. if( ptr == TopPTR || ptr == AnyNull || ptr == Constant ) ptr = NotNull; // Now we find the LCA of Java classes ciKlass* k = this_klass->least_common_ancestor(tkls_klass); return make( ptr, k, off ); } // End of case KlassPtr } // End of switch return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeKlassPtr::xdual() const { return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() ); } //------------------------------get_con---------------------------------------- intptr_t TypeKlassPtr::get_con() const { assert( _ptr == Null || _ptr == Constant, "" ); assert( _offset >= 0, "" ); if (_offset != 0) { // After being ported to the compiler interface, the compiler no longer // directly manipulates the addresses of oops. Rather, it only has a pointer // to a handle at compile time. This handle is embedded in the generated // code and dereferenced at the time the nmethod is made. Until that time, // it is not reasonable to do arithmetic with the addresses of oops (we don't // have access to the addresses!). This does not seem to currently happen, // but this assertion here is to help prevent its occurence. tty->print_cr("Found oop constant with non-zero offset"); ShouldNotReachHere(); } return (intptr_t)klass()->constant_encoding(); } //------------------------------dump2------------------------------------------ // Dump Klass Type #ifndef PRODUCT void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { switch( _ptr ) { case Constant: st->print("precise "); case NotNull: { const char *name = klass()->name()->as_utf8(); if( name ) { st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass())); } else { ShouldNotReachHere(); } } case BotPTR: if( !WizardMode && !Verbose && !_klass_is_exact ) break; case TopPTR: case AnyNull: st->print(":%s", ptr_msg[_ptr]); if( _klass_is_exact ) st->print(":exact"); break; default: break; } if( _offset ) { // Dump offset, if any if( _offset == OffsetBot ) { st->print("+any"); } else if( _offset == OffsetTop ) { st->print("+unknown"); } else { st->print("+%d", _offset); } } st->print(" *"); } #endif //============================================================================= // Convenience common pre-built types. //------------------------------make------------------------------------------- const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); } //------------------------------make------------------------------------------- const TypeFunc *TypeFunc::make(ciMethod* method) { Compile* C = Compile::current(); const TypeFunc* tf = C->last_tf(method); // check cache if (tf != NULL) return tf; // The hit rate here is almost 50%. const TypeTuple *domain; if (method->is_static()) { domain = TypeTuple::make_domain(NULL, method->signature()); } else { domain = TypeTuple::make_domain(method->holder(), method->signature()); } const TypeTuple *range = TypeTuple::make_range(method->signature()); tf = TypeFunc::make(domain, range); C->set_last_tf(method, tf); // fill cache return tf; } //------------------------------meet------------------------------------------- // Compute the MEET of two types. It returns a new Type object. const Type *TypeFunc::xmeet( const Type *t ) const { // Perform a fast test for common case; meeting the same types together. if( this == t ) return this; // Meeting same type-rep? // Current "this->_base" is Func switch (t->base()) { // switch on original type case Bottom: // Ye Olde Default return t; default: // All else is a mistake typerr(t); case Top: break; } return this; // Return the double constant } //------------------------------xdual------------------------------------------ // Dual: compute field-by-field dual const Type *TypeFunc::xdual() const { return this; } //------------------------------eq--------------------------------------------- // Structural equality check for Type representations bool TypeFunc::eq( const Type *t ) const { const TypeFunc *a = (const TypeFunc*)t; return _domain == a->_domain && _range == a->_range; } //------------------------------hash------------------------------------------- // Type-specific hashing function. int TypeFunc::hash(void) const { return (intptr_t)_domain + (intptr_t)_range; } //------------------------------dump2------------------------------------------ // Dump Function Type #ifndef PRODUCT void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { if( _range->cnt() <= Parms ) st->print("void"); else { uint i; for (i = Parms; i < _range->cnt()-1; i++) { _range->field_at(i)->dump2(d,depth,st); st->print("/"); } _range->field_at(i)->dump2(d,depth,st); } st->print(" "); st->print("( "); if( !depth || d[this] ) { // Check for recursive dump st->print("...)"); return; } d.Insert((void*)this,(void*)this); // Stop recursion if (Parms < _domain->cnt()) _domain->field_at(Parms)->dump2(d,depth-1,st); for (uint i = Parms+1; i < _domain->cnt(); i++) { st->print(", "); _domain->field_at(i)->dump2(d,depth-1,st); } st->print(" )"); } #endif //------------------------------singleton-------------------------------------- // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple // constants (Ldi nodes). Singletons are integer, float or double constants // or a single symbol. bool TypeFunc::singleton(void) const { return false; // Never a singleton } bool TypeFunc::empty(void) const { return false; // Never empty } BasicType TypeFunc::return_type() const{ if (range()->cnt() == TypeFunc::Parms) { return T_VOID; } return range()->field_at(TypeFunc::Parms)->basic_type(); }